xfs: fix efi/efd error handling to avoid fs shutdown hangs
[deliverable/linux.git] / fs / xfs / xfs_extfree_item.c
1 /*
2 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_mount.h"
24 #include "xfs_trans.h"
25 #include "xfs_trans_priv.h"
26 #include "xfs_buf_item.h"
27 #include "xfs_extfree_item.h"
28 #include "xfs_log.h"
29
30
31 kmem_zone_t *xfs_efi_zone;
32 kmem_zone_t *xfs_efd_zone;
33
34 static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
35 {
36 return container_of(lip, struct xfs_efi_log_item, efi_item);
37 }
38
39 void
40 xfs_efi_item_free(
41 struct xfs_efi_log_item *efip)
42 {
43 if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
44 kmem_free(efip);
45 else
46 kmem_zone_free(xfs_efi_zone, efip);
47 }
48
49 /*
50 * Freeing the efi requires that we remove it from the AIL if it has already
51 * been placed there. However, the EFI may not yet have been placed in the AIL
52 * when called by xfs_efi_release() from EFD processing due to the ordering of
53 * committed vs unpin operations in bulk insert operations. Hence the reference
54 * count to ensure only the last caller frees the EFI.
55 */
56 STATIC void
57 __xfs_efi_release(
58 struct xfs_efi_log_item *efip)
59 {
60 struct xfs_ail *ailp = efip->efi_item.li_ailp;
61
62 if (atomic_dec_and_test(&efip->efi_refcount)) {
63 spin_lock(&ailp->xa_lock);
64 /*
65 * We don't know whether the EFI made it to the AIL. Remove it
66 * if so. Note that xfs_trans_ail_delete() drops the AIL lock.
67 */
68 if (efip->efi_item.li_flags & XFS_LI_IN_AIL)
69 xfs_trans_ail_delete(ailp, &efip->efi_item,
70 SHUTDOWN_LOG_IO_ERROR);
71 else
72 spin_unlock(&ailp->xa_lock);
73 xfs_efi_item_free(efip);
74 }
75 }
76
77 /*
78 * This returns the number of iovecs needed to log the given efi item.
79 * We only need 1 iovec for an efi item. It just logs the efi_log_format
80 * structure.
81 */
82 static inline int
83 xfs_efi_item_sizeof(
84 struct xfs_efi_log_item *efip)
85 {
86 return sizeof(struct xfs_efi_log_format) +
87 (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
88 }
89
90 STATIC void
91 xfs_efi_item_size(
92 struct xfs_log_item *lip,
93 int *nvecs,
94 int *nbytes)
95 {
96 *nvecs += 1;
97 *nbytes += xfs_efi_item_sizeof(EFI_ITEM(lip));
98 }
99
100 /*
101 * This is called to fill in the vector of log iovecs for the
102 * given efi log item. We use only 1 iovec, and we point that
103 * at the efi_log_format structure embedded in the efi item.
104 * It is at this point that we assert that all of the extent
105 * slots in the efi item have been filled.
106 */
107 STATIC void
108 xfs_efi_item_format(
109 struct xfs_log_item *lip,
110 struct xfs_log_vec *lv)
111 {
112 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
113 struct xfs_log_iovec *vecp = NULL;
114
115 ASSERT(atomic_read(&efip->efi_next_extent) ==
116 efip->efi_format.efi_nextents);
117
118 efip->efi_format.efi_type = XFS_LI_EFI;
119 efip->efi_format.efi_size = 1;
120
121 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT,
122 &efip->efi_format,
123 xfs_efi_item_sizeof(efip));
124 }
125
126
127 /*
128 * Pinning has no meaning for an efi item, so just return.
129 */
130 STATIC void
131 xfs_efi_item_pin(
132 struct xfs_log_item *lip)
133 {
134 }
135
136 /*
137 * The unpin operation is the last place an EFI is manipulated in the log. It is
138 * either inserted in the AIL or aborted in the event of a log I/O error. In
139 * either case, the EFI transaction has been successfully committed to make it
140 * this far. Therefore, we expect whoever committed the EFI to either construct
141 * and commit the EFD or drop the EFD's reference in the event of error. Simply
142 * drop the log's EFI reference now that the log is done with it.
143 */
144 STATIC void
145 xfs_efi_item_unpin(
146 struct xfs_log_item *lip,
147 int remove)
148 {
149 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
150 xfs_efi_release(efip);
151 }
152
153 /*
154 * Efi items have no locking or pushing. However, since EFIs are pulled from
155 * the AIL when their corresponding EFDs are committed to disk, their situation
156 * is very similar to being pinned. Return XFS_ITEM_PINNED so that the caller
157 * will eventually flush the log. This should help in getting the EFI out of
158 * the AIL.
159 */
160 STATIC uint
161 xfs_efi_item_push(
162 struct xfs_log_item *lip,
163 struct list_head *buffer_list)
164 {
165 return XFS_ITEM_PINNED;
166 }
167
168 /*
169 * The EFI has been either committed or aborted if the transaction has been
170 * cancelled. If the transaction was cancelled, an EFD isn't going to be
171 * constructed and thus we free the EFI here directly.
172 */
173 STATIC void
174 xfs_efi_item_unlock(
175 struct xfs_log_item *lip)
176 {
177 if (lip->li_flags & XFS_LI_ABORTED)
178 xfs_efi_item_free(EFI_ITEM(lip));
179 }
180
181 /*
182 * The EFI is logged only once and cannot be moved in the log, so simply return
183 * the lsn at which it's been logged.
184 */
185 STATIC xfs_lsn_t
186 xfs_efi_item_committed(
187 struct xfs_log_item *lip,
188 xfs_lsn_t lsn)
189 {
190 return lsn;
191 }
192
193 /*
194 * The EFI dependency tracking op doesn't do squat. It can't because
195 * it doesn't know where the free extent is coming from. The dependency
196 * tracking has to be handled by the "enclosing" metadata object. For
197 * example, for inodes, the inode is locked throughout the extent freeing
198 * so the dependency should be recorded there.
199 */
200 STATIC void
201 xfs_efi_item_committing(
202 struct xfs_log_item *lip,
203 xfs_lsn_t lsn)
204 {
205 }
206
207 /*
208 * This is the ops vector shared by all efi log items.
209 */
210 static const struct xfs_item_ops xfs_efi_item_ops = {
211 .iop_size = xfs_efi_item_size,
212 .iop_format = xfs_efi_item_format,
213 .iop_pin = xfs_efi_item_pin,
214 .iop_unpin = xfs_efi_item_unpin,
215 .iop_unlock = xfs_efi_item_unlock,
216 .iop_committed = xfs_efi_item_committed,
217 .iop_push = xfs_efi_item_push,
218 .iop_committing = xfs_efi_item_committing
219 };
220
221
222 /*
223 * Allocate and initialize an efi item with the given number of extents.
224 */
225 struct xfs_efi_log_item *
226 xfs_efi_init(
227 struct xfs_mount *mp,
228 uint nextents)
229
230 {
231 struct xfs_efi_log_item *efip;
232 uint size;
233
234 ASSERT(nextents > 0);
235 if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
236 size = (uint)(sizeof(xfs_efi_log_item_t) +
237 ((nextents - 1) * sizeof(xfs_extent_t)));
238 efip = kmem_zalloc(size, KM_SLEEP);
239 } else {
240 efip = kmem_zone_zalloc(xfs_efi_zone, KM_SLEEP);
241 }
242
243 xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
244 efip->efi_format.efi_nextents = nextents;
245 efip->efi_format.efi_id = (uintptr_t)(void *)efip;
246 atomic_set(&efip->efi_next_extent, 0);
247 atomic_set(&efip->efi_refcount, 2);
248
249 return efip;
250 }
251
252 /*
253 * Copy an EFI format buffer from the given buf, and into the destination
254 * EFI format structure.
255 * The given buffer can be in 32 bit or 64 bit form (which has different padding),
256 * one of which will be the native format for this kernel.
257 * It will handle the conversion of formats if necessary.
258 */
259 int
260 xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
261 {
262 xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
263 uint i;
264 uint len = sizeof(xfs_efi_log_format_t) +
265 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t);
266 uint len32 = sizeof(xfs_efi_log_format_32_t) +
267 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t);
268 uint len64 = sizeof(xfs_efi_log_format_64_t) +
269 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t);
270
271 if (buf->i_len == len) {
272 memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len);
273 return 0;
274 } else if (buf->i_len == len32) {
275 xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
276
277 dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type;
278 dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size;
279 dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
280 dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id;
281 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
282 dst_efi_fmt->efi_extents[i].ext_start =
283 src_efi_fmt_32->efi_extents[i].ext_start;
284 dst_efi_fmt->efi_extents[i].ext_len =
285 src_efi_fmt_32->efi_extents[i].ext_len;
286 }
287 return 0;
288 } else if (buf->i_len == len64) {
289 xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
290
291 dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type;
292 dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size;
293 dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
294 dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id;
295 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
296 dst_efi_fmt->efi_extents[i].ext_start =
297 src_efi_fmt_64->efi_extents[i].ext_start;
298 dst_efi_fmt->efi_extents[i].ext_len =
299 src_efi_fmt_64->efi_extents[i].ext_len;
300 }
301 return 0;
302 }
303 return -EFSCORRUPTED;
304 }
305
306 /*
307 * This is called by the efd item code below to release references to the given
308 * efi item. Each efd calls this with the number of extents that it has
309 * logged, and when the sum of these reaches the total number of extents logged
310 * by this efi item we can free the efi item.
311 */
312 void
313 xfs_efi_release(
314 struct xfs_efi_log_item *efip)
315 {
316 /* recovery needs us to drop the EFI reference, too */
317 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags))
318 __xfs_efi_release(efip);
319
320 __xfs_efi_release(efip);
321 /* efip may now have been freed, do not reference it again. */
322 }
323
324 static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
325 {
326 return container_of(lip, struct xfs_efd_log_item, efd_item);
327 }
328
329 STATIC void
330 xfs_efd_item_free(struct xfs_efd_log_item *efdp)
331 {
332 if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
333 kmem_free(efdp);
334 else
335 kmem_zone_free(xfs_efd_zone, efdp);
336 }
337
338 /*
339 * This returns the number of iovecs needed to log the given efd item.
340 * We only need 1 iovec for an efd item. It just logs the efd_log_format
341 * structure.
342 */
343 static inline int
344 xfs_efd_item_sizeof(
345 struct xfs_efd_log_item *efdp)
346 {
347 return sizeof(xfs_efd_log_format_t) +
348 (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
349 }
350
351 STATIC void
352 xfs_efd_item_size(
353 struct xfs_log_item *lip,
354 int *nvecs,
355 int *nbytes)
356 {
357 *nvecs += 1;
358 *nbytes += xfs_efd_item_sizeof(EFD_ITEM(lip));
359 }
360
361 /*
362 * This is called to fill in the vector of log iovecs for the
363 * given efd log item. We use only 1 iovec, and we point that
364 * at the efd_log_format structure embedded in the efd item.
365 * It is at this point that we assert that all of the extent
366 * slots in the efd item have been filled.
367 */
368 STATIC void
369 xfs_efd_item_format(
370 struct xfs_log_item *lip,
371 struct xfs_log_vec *lv)
372 {
373 struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
374 struct xfs_log_iovec *vecp = NULL;
375
376 ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
377
378 efdp->efd_format.efd_type = XFS_LI_EFD;
379 efdp->efd_format.efd_size = 1;
380
381 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT,
382 &efdp->efd_format,
383 xfs_efd_item_sizeof(efdp));
384 }
385
386 /*
387 * Pinning has no meaning for an efd item, so just return.
388 */
389 STATIC void
390 xfs_efd_item_pin(
391 struct xfs_log_item *lip)
392 {
393 }
394
395 /*
396 * Since pinning has no meaning for an efd item, unpinning does
397 * not either.
398 */
399 STATIC void
400 xfs_efd_item_unpin(
401 struct xfs_log_item *lip,
402 int remove)
403 {
404 }
405
406 /*
407 * There isn't much you can do to push on an efd item. It is simply stuck
408 * waiting for the log to be flushed to disk.
409 */
410 STATIC uint
411 xfs_efd_item_push(
412 struct xfs_log_item *lip,
413 struct list_head *buffer_list)
414 {
415 return XFS_ITEM_PINNED;
416 }
417
418 /*
419 * The EFD is either committed or aborted if the transaction is cancelled. If
420 * the transaction is cancelled, drop our reference to the EFI and free the EFD.
421 */
422 STATIC void
423 xfs_efd_item_unlock(
424 struct xfs_log_item *lip)
425 {
426 struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
427
428 if (lip->li_flags & XFS_LI_ABORTED) {
429 xfs_efi_release(efdp->efd_efip);
430 xfs_efd_item_free(efdp);
431 }
432 }
433
434 /*
435 * When the efd item is committed to disk, all we need to do is delete our
436 * reference to our partner efi item and then free ourselves. Since we're
437 * freeing ourselves we must return -1 to keep the transaction code from further
438 * referencing this item.
439 */
440 STATIC xfs_lsn_t
441 xfs_efd_item_committed(
442 struct xfs_log_item *lip,
443 xfs_lsn_t lsn)
444 {
445 struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
446
447 /*
448 * Drop the EFI reference regardless of whether the EFD has been
449 * aborted. Once the EFD transaction is constructed, it is the sole
450 * responsibility of the EFD to release the EFI (even if the EFI is
451 * aborted due to log I/O error).
452 */
453 xfs_efi_release(efdp->efd_efip);
454 xfs_efd_item_free(efdp);
455
456 return (xfs_lsn_t)-1;
457 }
458
459 /*
460 * The EFD dependency tracking op doesn't do squat. It can't because
461 * it doesn't know where the free extent is coming from. The dependency
462 * tracking has to be handled by the "enclosing" metadata object. For
463 * example, for inodes, the inode is locked throughout the extent freeing
464 * so the dependency should be recorded there.
465 */
466 STATIC void
467 xfs_efd_item_committing(
468 struct xfs_log_item *lip,
469 xfs_lsn_t lsn)
470 {
471 }
472
473 /*
474 * This is the ops vector shared by all efd log items.
475 */
476 static const struct xfs_item_ops xfs_efd_item_ops = {
477 .iop_size = xfs_efd_item_size,
478 .iop_format = xfs_efd_item_format,
479 .iop_pin = xfs_efd_item_pin,
480 .iop_unpin = xfs_efd_item_unpin,
481 .iop_unlock = xfs_efd_item_unlock,
482 .iop_committed = xfs_efd_item_committed,
483 .iop_push = xfs_efd_item_push,
484 .iop_committing = xfs_efd_item_committing
485 };
486
487 /*
488 * Allocate and initialize an efd item with the given number of extents.
489 */
490 struct xfs_efd_log_item *
491 xfs_efd_init(
492 struct xfs_mount *mp,
493 struct xfs_efi_log_item *efip,
494 uint nextents)
495
496 {
497 struct xfs_efd_log_item *efdp;
498 uint size;
499
500 ASSERT(nextents > 0);
501 if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
502 size = (uint)(sizeof(xfs_efd_log_item_t) +
503 ((nextents - 1) * sizeof(xfs_extent_t)));
504 efdp = kmem_zalloc(size, KM_SLEEP);
505 } else {
506 efdp = kmem_zone_zalloc(xfs_efd_zone, KM_SLEEP);
507 }
508
509 xfs_log_item_init(mp, &efdp->efd_item, XFS_LI_EFD, &xfs_efd_item_ops);
510 efdp->efd_efip = efip;
511 efdp->efd_format.efd_nextents = nextents;
512 efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
513
514 return efdp;
515 }
This page took 0.043803 seconds and 6 git commands to generate.