xfs: use EFI refcount consistently in log recovery
[deliverable/linux.git] / fs / xfs / xfs_extfree_item.c
1 /*
2 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_mount.h"
24 #include "xfs_trans.h"
25 #include "xfs_trans_priv.h"
26 #include "xfs_buf_item.h"
27 #include "xfs_extfree_item.h"
28 #include "xfs_log.h"
29
30
31 kmem_zone_t *xfs_efi_zone;
32 kmem_zone_t *xfs_efd_zone;
33
34 static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
35 {
36 return container_of(lip, struct xfs_efi_log_item, efi_item);
37 }
38
39 void
40 xfs_efi_item_free(
41 struct xfs_efi_log_item *efip)
42 {
43 if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
44 kmem_free(efip);
45 else
46 kmem_zone_free(xfs_efi_zone, efip);
47 }
48
49 /*
50 * This returns the number of iovecs needed to log the given efi item.
51 * We only need 1 iovec for an efi item. It just logs the efi_log_format
52 * structure.
53 */
54 static inline int
55 xfs_efi_item_sizeof(
56 struct xfs_efi_log_item *efip)
57 {
58 return sizeof(struct xfs_efi_log_format) +
59 (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
60 }
61
62 STATIC void
63 xfs_efi_item_size(
64 struct xfs_log_item *lip,
65 int *nvecs,
66 int *nbytes)
67 {
68 *nvecs += 1;
69 *nbytes += xfs_efi_item_sizeof(EFI_ITEM(lip));
70 }
71
72 /*
73 * This is called to fill in the vector of log iovecs for the
74 * given efi log item. We use only 1 iovec, and we point that
75 * at the efi_log_format structure embedded in the efi item.
76 * It is at this point that we assert that all of the extent
77 * slots in the efi item have been filled.
78 */
79 STATIC void
80 xfs_efi_item_format(
81 struct xfs_log_item *lip,
82 struct xfs_log_vec *lv)
83 {
84 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
85 struct xfs_log_iovec *vecp = NULL;
86
87 ASSERT(atomic_read(&efip->efi_next_extent) ==
88 efip->efi_format.efi_nextents);
89
90 efip->efi_format.efi_type = XFS_LI_EFI;
91 efip->efi_format.efi_size = 1;
92
93 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT,
94 &efip->efi_format,
95 xfs_efi_item_sizeof(efip));
96 }
97
98
99 /*
100 * Pinning has no meaning for an efi item, so just return.
101 */
102 STATIC void
103 xfs_efi_item_pin(
104 struct xfs_log_item *lip)
105 {
106 }
107
108 /*
109 * The unpin operation is the last place an EFI is manipulated in the log. It is
110 * either inserted in the AIL or aborted in the event of a log I/O error. In
111 * either case, the EFI transaction has been successfully committed to make it
112 * this far. Therefore, we expect whoever committed the EFI to either construct
113 * and commit the EFD or drop the EFD's reference in the event of error. Simply
114 * drop the log's EFI reference now that the log is done with it.
115 */
116 STATIC void
117 xfs_efi_item_unpin(
118 struct xfs_log_item *lip,
119 int remove)
120 {
121 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
122 xfs_efi_release(efip);
123 }
124
125 /*
126 * Efi items have no locking or pushing. However, since EFIs are pulled from
127 * the AIL when their corresponding EFDs are committed to disk, their situation
128 * is very similar to being pinned. Return XFS_ITEM_PINNED so that the caller
129 * will eventually flush the log. This should help in getting the EFI out of
130 * the AIL.
131 */
132 STATIC uint
133 xfs_efi_item_push(
134 struct xfs_log_item *lip,
135 struct list_head *buffer_list)
136 {
137 return XFS_ITEM_PINNED;
138 }
139
140 /*
141 * The EFI has been either committed or aborted if the transaction has been
142 * cancelled. If the transaction was cancelled, an EFD isn't going to be
143 * constructed and thus we free the EFI here directly.
144 */
145 STATIC void
146 xfs_efi_item_unlock(
147 struct xfs_log_item *lip)
148 {
149 if (lip->li_flags & XFS_LI_ABORTED)
150 xfs_efi_item_free(EFI_ITEM(lip));
151 }
152
153 /*
154 * The EFI is logged only once and cannot be moved in the log, so simply return
155 * the lsn at which it's been logged.
156 */
157 STATIC xfs_lsn_t
158 xfs_efi_item_committed(
159 struct xfs_log_item *lip,
160 xfs_lsn_t lsn)
161 {
162 return lsn;
163 }
164
165 /*
166 * The EFI dependency tracking op doesn't do squat. It can't because
167 * it doesn't know where the free extent is coming from. The dependency
168 * tracking has to be handled by the "enclosing" metadata object. For
169 * example, for inodes, the inode is locked throughout the extent freeing
170 * so the dependency should be recorded there.
171 */
172 STATIC void
173 xfs_efi_item_committing(
174 struct xfs_log_item *lip,
175 xfs_lsn_t lsn)
176 {
177 }
178
179 /*
180 * This is the ops vector shared by all efi log items.
181 */
182 static const struct xfs_item_ops xfs_efi_item_ops = {
183 .iop_size = xfs_efi_item_size,
184 .iop_format = xfs_efi_item_format,
185 .iop_pin = xfs_efi_item_pin,
186 .iop_unpin = xfs_efi_item_unpin,
187 .iop_unlock = xfs_efi_item_unlock,
188 .iop_committed = xfs_efi_item_committed,
189 .iop_push = xfs_efi_item_push,
190 .iop_committing = xfs_efi_item_committing
191 };
192
193
194 /*
195 * Allocate and initialize an efi item with the given number of extents.
196 */
197 struct xfs_efi_log_item *
198 xfs_efi_init(
199 struct xfs_mount *mp,
200 uint nextents)
201
202 {
203 struct xfs_efi_log_item *efip;
204 uint size;
205
206 ASSERT(nextents > 0);
207 if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
208 size = (uint)(sizeof(xfs_efi_log_item_t) +
209 ((nextents - 1) * sizeof(xfs_extent_t)));
210 efip = kmem_zalloc(size, KM_SLEEP);
211 } else {
212 efip = kmem_zone_zalloc(xfs_efi_zone, KM_SLEEP);
213 }
214
215 xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
216 efip->efi_format.efi_nextents = nextents;
217 efip->efi_format.efi_id = (uintptr_t)(void *)efip;
218 atomic_set(&efip->efi_next_extent, 0);
219 atomic_set(&efip->efi_refcount, 2);
220
221 return efip;
222 }
223
224 /*
225 * Copy an EFI format buffer from the given buf, and into the destination
226 * EFI format structure.
227 * The given buffer can be in 32 bit or 64 bit form (which has different padding),
228 * one of which will be the native format for this kernel.
229 * It will handle the conversion of formats if necessary.
230 */
231 int
232 xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
233 {
234 xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
235 uint i;
236 uint len = sizeof(xfs_efi_log_format_t) +
237 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t);
238 uint len32 = sizeof(xfs_efi_log_format_32_t) +
239 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t);
240 uint len64 = sizeof(xfs_efi_log_format_64_t) +
241 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t);
242
243 if (buf->i_len == len) {
244 memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len);
245 return 0;
246 } else if (buf->i_len == len32) {
247 xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
248
249 dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type;
250 dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size;
251 dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
252 dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id;
253 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
254 dst_efi_fmt->efi_extents[i].ext_start =
255 src_efi_fmt_32->efi_extents[i].ext_start;
256 dst_efi_fmt->efi_extents[i].ext_len =
257 src_efi_fmt_32->efi_extents[i].ext_len;
258 }
259 return 0;
260 } else if (buf->i_len == len64) {
261 xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
262
263 dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type;
264 dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size;
265 dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
266 dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id;
267 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
268 dst_efi_fmt->efi_extents[i].ext_start =
269 src_efi_fmt_64->efi_extents[i].ext_start;
270 dst_efi_fmt->efi_extents[i].ext_len =
271 src_efi_fmt_64->efi_extents[i].ext_len;
272 }
273 return 0;
274 }
275 return -EFSCORRUPTED;
276 }
277
278 /*
279 * Freeing the efi requires that we remove it from the AIL if it has already
280 * been placed there. However, the EFI may not yet have been placed in the AIL
281 * when called by xfs_efi_release() from EFD processing due to the ordering of
282 * committed vs unpin operations in bulk insert operations. Hence the reference
283 * count to ensure only the last caller frees the EFI.
284 */
285 void
286 xfs_efi_release(
287 struct xfs_efi_log_item *efip)
288 {
289 struct xfs_ail *ailp = efip->efi_item.li_ailp;
290
291 if (atomic_dec_and_test(&efip->efi_refcount)) {
292 spin_lock(&ailp->xa_lock);
293 /*
294 * We don't know whether the EFI made it to the AIL. Remove it
295 * if so. Note that xfs_trans_ail_delete() drops the AIL lock.
296 */
297 if (efip->efi_item.li_flags & XFS_LI_IN_AIL)
298 xfs_trans_ail_delete(ailp, &efip->efi_item,
299 SHUTDOWN_LOG_IO_ERROR);
300 else
301 spin_unlock(&ailp->xa_lock);
302
303 xfs_efi_item_free(efip);
304 }
305 }
306
307 static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
308 {
309 return container_of(lip, struct xfs_efd_log_item, efd_item);
310 }
311
312 STATIC void
313 xfs_efd_item_free(struct xfs_efd_log_item *efdp)
314 {
315 if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
316 kmem_free(efdp);
317 else
318 kmem_zone_free(xfs_efd_zone, efdp);
319 }
320
321 /*
322 * This returns the number of iovecs needed to log the given efd item.
323 * We only need 1 iovec for an efd item. It just logs the efd_log_format
324 * structure.
325 */
326 static inline int
327 xfs_efd_item_sizeof(
328 struct xfs_efd_log_item *efdp)
329 {
330 return sizeof(xfs_efd_log_format_t) +
331 (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
332 }
333
334 STATIC void
335 xfs_efd_item_size(
336 struct xfs_log_item *lip,
337 int *nvecs,
338 int *nbytes)
339 {
340 *nvecs += 1;
341 *nbytes += xfs_efd_item_sizeof(EFD_ITEM(lip));
342 }
343
344 /*
345 * This is called to fill in the vector of log iovecs for the
346 * given efd log item. We use only 1 iovec, and we point that
347 * at the efd_log_format structure embedded in the efd item.
348 * It is at this point that we assert that all of the extent
349 * slots in the efd item have been filled.
350 */
351 STATIC void
352 xfs_efd_item_format(
353 struct xfs_log_item *lip,
354 struct xfs_log_vec *lv)
355 {
356 struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
357 struct xfs_log_iovec *vecp = NULL;
358
359 ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
360
361 efdp->efd_format.efd_type = XFS_LI_EFD;
362 efdp->efd_format.efd_size = 1;
363
364 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT,
365 &efdp->efd_format,
366 xfs_efd_item_sizeof(efdp));
367 }
368
369 /*
370 * Pinning has no meaning for an efd item, so just return.
371 */
372 STATIC void
373 xfs_efd_item_pin(
374 struct xfs_log_item *lip)
375 {
376 }
377
378 /*
379 * Since pinning has no meaning for an efd item, unpinning does
380 * not either.
381 */
382 STATIC void
383 xfs_efd_item_unpin(
384 struct xfs_log_item *lip,
385 int remove)
386 {
387 }
388
389 /*
390 * There isn't much you can do to push on an efd item. It is simply stuck
391 * waiting for the log to be flushed to disk.
392 */
393 STATIC uint
394 xfs_efd_item_push(
395 struct xfs_log_item *lip,
396 struct list_head *buffer_list)
397 {
398 return XFS_ITEM_PINNED;
399 }
400
401 /*
402 * The EFD is either committed or aborted if the transaction is cancelled. If
403 * the transaction is cancelled, drop our reference to the EFI and free the EFD.
404 */
405 STATIC void
406 xfs_efd_item_unlock(
407 struct xfs_log_item *lip)
408 {
409 struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
410
411 if (lip->li_flags & XFS_LI_ABORTED) {
412 xfs_efi_release(efdp->efd_efip);
413 xfs_efd_item_free(efdp);
414 }
415 }
416
417 /*
418 * When the efd item is committed to disk, all we need to do is delete our
419 * reference to our partner efi item and then free ourselves. Since we're
420 * freeing ourselves we must return -1 to keep the transaction code from further
421 * referencing this item.
422 */
423 STATIC xfs_lsn_t
424 xfs_efd_item_committed(
425 struct xfs_log_item *lip,
426 xfs_lsn_t lsn)
427 {
428 struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
429
430 /*
431 * Drop the EFI reference regardless of whether the EFD has been
432 * aborted. Once the EFD transaction is constructed, it is the sole
433 * responsibility of the EFD to release the EFI (even if the EFI is
434 * aborted due to log I/O error).
435 */
436 xfs_efi_release(efdp->efd_efip);
437 xfs_efd_item_free(efdp);
438
439 return (xfs_lsn_t)-1;
440 }
441
442 /*
443 * The EFD dependency tracking op doesn't do squat. It can't because
444 * it doesn't know where the free extent is coming from. The dependency
445 * tracking has to be handled by the "enclosing" metadata object. For
446 * example, for inodes, the inode is locked throughout the extent freeing
447 * so the dependency should be recorded there.
448 */
449 STATIC void
450 xfs_efd_item_committing(
451 struct xfs_log_item *lip,
452 xfs_lsn_t lsn)
453 {
454 }
455
456 /*
457 * This is the ops vector shared by all efd log items.
458 */
459 static const struct xfs_item_ops xfs_efd_item_ops = {
460 .iop_size = xfs_efd_item_size,
461 .iop_format = xfs_efd_item_format,
462 .iop_pin = xfs_efd_item_pin,
463 .iop_unpin = xfs_efd_item_unpin,
464 .iop_unlock = xfs_efd_item_unlock,
465 .iop_committed = xfs_efd_item_committed,
466 .iop_push = xfs_efd_item_push,
467 .iop_committing = xfs_efd_item_committing
468 };
469
470 /*
471 * Allocate and initialize an efd item with the given number of extents.
472 */
473 struct xfs_efd_log_item *
474 xfs_efd_init(
475 struct xfs_mount *mp,
476 struct xfs_efi_log_item *efip,
477 uint nextents)
478
479 {
480 struct xfs_efd_log_item *efdp;
481 uint size;
482
483 ASSERT(nextents > 0);
484 if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
485 size = (uint)(sizeof(xfs_efd_log_item_t) +
486 ((nextents - 1) * sizeof(xfs_extent_t)));
487 efdp = kmem_zalloc(size, KM_SLEEP);
488 } else {
489 efdp = kmem_zone_zalloc(xfs_efd_zone, KM_SLEEP);
490 }
491
492 xfs_log_item_init(mp, &efdp->efd_item, XFS_LI_EFD, &xfs_efd_item_ops);
493 efdp->efd_efip = efip;
494 efdp->efd_format.efd_nextents = nextents;
495 efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
496
497 return efdp;
498 }
This page took 0.046714 seconds and 6 git commands to generate.