mirror O_APPEND and O_DIRECT into iocb->ki_flags
[deliverable/linux.git] / fs / xfs / xfs_file.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_da_format.h"
26 #include "xfs_da_btree.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_bmap.h"
31 #include "xfs_bmap_util.h"
32 #include "xfs_error.h"
33 #include "xfs_dir2.h"
34 #include "xfs_dir2_priv.h"
35 #include "xfs_ioctl.h"
36 #include "xfs_trace.h"
37 #include "xfs_log.h"
38 #include "xfs_icache.h"
39 #include "xfs_pnfs.h"
40
41 #include <linux/dcache.h>
42 #include <linux/falloc.h>
43 #include <linux/pagevec.h>
44
45 static const struct vm_operations_struct xfs_file_vm_ops;
46
47 /*
48 * Locking primitives for read and write IO paths to ensure we consistently use
49 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
50 */
51 static inline void
52 xfs_rw_ilock(
53 struct xfs_inode *ip,
54 int type)
55 {
56 if (type & XFS_IOLOCK_EXCL)
57 mutex_lock(&VFS_I(ip)->i_mutex);
58 xfs_ilock(ip, type);
59 }
60
61 static inline void
62 xfs_rw_iunlock(
63 struct xfs_inode *ip,
64 int type)
65 {
66 xfs_iunlock(ip, type);
67 if (type & XFS_IOLOCK_EXCL)
68 mutex_unlock(&VFS_I(ip)->i_mutex);
69 }
70
71 static inline void
72 xfs_rw_ilock_demote(
73 struct xfs_inode *ip,
74 int type)
75 {
76 xfs_ilock_demote(ip, type);
77 if (type & XFS_IOLOCK_EXCL)
78 mutex_unlock(&VFS_I(ip)->i_mutex);
79 }
80
81 /*
82 * xfs_iozero
83 *
84 * xfs_iozero clears the specified range of buffer supplied,
85 * and marks all the affected blocks as valid and modified. If
86 * an affected block is not allocated, it will be allocated. If
87 * an affected block is not completely overwritten, and is not
88 * valid before the operation, it will be read from disk before
89 * being partially zeroed.
90 */
91 int
92 xfs_iozero(
93 struct xfs_inode *ip, /* inode */
94 loff_t pos, /* offset in file */
95 size_t count) /* size of data to zero */
96 {
97 struct page *page;
98 struct address_space *mapping;
99 int status;
100
101 mapping = VFS_I(ip)->i_mapping;
102 do {
103 unsigned offset, bytes;
104 void *fsdata;
105
106 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
107 bytes = PAGE_CACHE_SIZE - offset;
108 if (bytes > count)
109 bytes = count;
110
111 status = pagecache_write_begin(NULL, mapping, pos, bytes,
112 AOP_FLAG_UNINTERRUPTIBLE,
113 &page, &fsdata);
114 if (status)
115 break;
116
117 zero_user(page, offset, bytes);
118
119 status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
120 page, fsdata);
121 WARN_ON(status <= 0); /* can't return less than zero! */
122 pos += bytes;
123 count -= bytes;
124 status = 0;
125 } while (count);
126
127 return (-status);
128 }
129
130 int
131 xfs_update_prealloc_flags(
132 struct xfs_inode *ip,
133 enum xfs_prealloc_flags flags)
134 {
135 struct xfs_trans *tp;
136 int error;
137
138 tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID);
139 error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0);
140 if (error) {
141 xfs_trans_cancel(tp, 0);
142 return error;
143 }
144
145 xfs_ilock(ip, XFS_ILOCK_EXCL);
146 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
147
148 if (!(flags & XFS_PREALLOC_INVISIBLE)) {
149 ip->i_d.di_mode &= ~S_ISUID;
150 if (ip->i_d.di_mode & S_IXGRP)
151 ip->i_d.di_mode &= ~S_ISGID;
152 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
153 }
154
155 if (flags & XFS_PREALLOC_SET)
156 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
157 if (flags & XFS_PREALLOC_CLEAR)
158 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
159
160 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
161 if (flags & XFS_PREALLOC_SYNC)
162 xfs_trans_set_sync(tp);
163 return xfs_trans_commit(tp, 0);
164 }
165
166 /*
167 * Fsync operations on directories are much simpler than on regular files,
168 * as there is no file data to flush, and thus also no need for explicit
169 * cache flush operations, and there are no non-transaction metadata updates
170 * on directories either.
171 */
172 STATIC int
173 xfs_dir_fsync(
174 struct file *file,
175 loff_t start,
176 loff_t end,
177 int datasync)
178 {
179 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
180 struct xfs_mount *mp = ip->i_mount;
181 xfs_lsn_t lsn = 0;
182
183 trace_xfs_dir_fsync(ip);
184
185 xfs_ilock(ip, XFS_ILOCK_SHARED);
186 if (xfs_ipincount(ip))
187 lsn = ip->i_itemp->ili_last_lsn;
188 xfs_iunlock(ip, XFS_ILOCK_SHARED);
189
190 if (!lsn)
191 return 0;
192 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
193 }
194
195 STATIC int
196 xfs_file_fsync(
197 struct file *file,
198 loff_t start,
199 loff_t end,
200 int datasync)
201 {
202 struct inode *inode = file->f_mapping->host;
203 struct xfs_inode *ip = XFS_I(inode);
204 struct xfs_mount *mp = ip->i_mount;
205 int error = 0;
206 int log_flushed = 0;
207 xfs_lsn_t lsn = 0;
208
209 trace_xfs_file_fsync(ip);
210
211 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
212 if (error)
213 return error;
214
215 if (XFS_FORCED_SHUTDOWN(mp))
216 return -EIO;
217
218 xfs_iflags_clear(ip, XFS_ITRUNCATED);
219
220 if (mp->m_flags & XFS_MOUNT_BARRIER) {
221 /*
222 * If we have an RT and/or log subvolume we need to make sure
223 * to flush the write cache the device used for file data
224 * first. This is to ensure newly written file data make
225 * it to disk before logging the new inode size in case of
226 * an extending write.
227 */
228 if (XFS_IS_REALTIME_INODE(ip))
229 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
230 else if (mp->m_logdev_targp != mp->m_ddev_targp)
231 xfs_blkdev_issue_flush(mp->m_ddev_targp);
232 }
233
234 /*
235 * All metadata updates are logged, which means that we just have
236 * to flush the log up to the latest LSN that touched the inode.
237 */
238 xfs_ilock(ip, XFS_ILOCK_SHARED);
239 if (xfs_ipincount(ip)) {
240 if (!datasync ||
241 (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
242 lsn = ip->i_itemp->ili_last_lsn;
243 }
244 xfs_iunlock(ip, XFS_ILOCK_SHARED);
245
246 if (lsn)
247 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
248
249 /*
250 * If we only have a single device, and the log force about was
251 * a no-op we might have to flush the data device cache here.
252 * This can only happen for fdatasync/O_DSYNC if we were overwriting
253 * an already allocated file and thus do not have any metadata to
254 * commit.
255 */
256 if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
257 mp->m_logdev_targp == mp->m_ddev_targp &&
258 !XFS_IS_REALTIME_INODE(ip) &&
259 !log_flushed)
260 xfs_blkdev_issue_flush(mp->m_ddev_targp);
261
262 return error;
263 }
264
265 STATIC ssize_t
266 xfs_file_read_iter(
267 struct kiocb *iocb,
268 struct iov_iter *to)
269 {
270 struct file *file = iocb->ki_filp;
271 struct inode *inode = file->f_mapping->host;
272 struct xfs_inode *ip = XFS_I(inode);
273 struct xfs_mount *mp = ip->i_mount;
274 size_t size = iov_iter_count(to);
275 ssize_t ret = 0;
276 int ioflags = 0;
277 xfs_fsize_t n;
278 loff_t pos = iocb->ki_pos;
279
280 XFS_STATS_INC(xs_read_calls);
281
282 if (unlikely(iocb->ki_flags & IOCB_DIRECT))
283 ioflags |= XFS_IO_ISDIRECT;
284 if (file->f_mode & FMODE_NOCMTIME)
285 ioflags |= XFS_IO_INVIS;
286
287 if (unlikely(ioflags & XFS_IO_ISDIRECT)) {
288 xfs_buftarg_t *target =
289 XFS_IS_REALTIME_INODE(ip) ?
290 mp->m_rtdev_targp : mp->m_ddev_targp;
291 /* DIO must be aligned to device logical sector size */
292 if ((pos | size) & target->bt_logical_sectormask) {
293 if (pos == i_size_read(inode))
294 return 0;
295 return -EINVAL;
296 }
297 }
298
299 n = mp->m_super->s_maxbytes - pos;
300 if (n <= 0 || size == 0)
301 return 0;
302
303 if (n < size)
304 size = n;
305
306 if (XFS_FORCED_SHUTDOWN(mp))
307 return -EIO;
308
309 /*
310 * Locking is a bit tricky here. If we take an exclusive lock
311 * for direct IO, we effectively serialise all new concurrent
312 * read IO to this file and block it behind IO that is currently in
313 * progress because IO in progress holds the IO lock shared. We only
314 * need to hold the lock exclusive to blow away the page cache, so
315 * only take lock exclusively if the page cache needs invalidation.
316 * This allows the normal direct IO case of no page cache pages to
317 * proceeed concurrently without serialisation.
318 */
319 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
320 if ((ioflags & XFS_IO_ISDIRECT) && inode->i_mapping->nrpages) {
321 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
322 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
323
324 if (inode->i_mapping->nrpages) {
325 ret = filemap_write_and_wait_range(
326 VFS_I(ip)->i_mapping,
327 pos, pos + size - 1);
328 if (ret) {
329 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
330 return ret;
331 }
332
333 /*
334 * Invalidate whole pages. This can return an error if
335 * we fail to invalidate a page, but this should never
336 * happen on XFS. Warn if it does fail.
337 */
338 ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
339 pos >> PAGE_CACHE_SHIFT,
340 (pos + size - 1) >> PAGE_CACHE_SHIFT);
341 WARN_ON_ONCE(ret);
342 ret = 0;
343 }
344 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
345 }
346
347 trace_xfs_file_read(ip, size, pos, ioflags);
348
349 ret = generic_file_read_iter(iocb, to);
350 if (ret > 0)
351 XFS_STATS_ADD(xs_read_bytes, ret);
352
353 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
354 return ret;
355 }
356
357 STATIC ssize_t
358 xfs_file_splice_read(
359 struct file *infilp,
360 loff_t *ppos,
361 struct pipe_inode_info *pipe,
362 size_t count,
363 unsigned int flags)
364 {
365 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host);
366 int ioflags = 0;
367 ssize_t ret;
368
369 XFS_STATS_INC(xs_read_calls);
370
371 if (infilp->f_mode & FMODE_NOCMTIME)
372 ioflags |= XFS_IO_INVIS;
373
374 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
375 return -EIO;
376
377 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
378
379 trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
380
381 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
382 if (ret > 0)
383 XFS_STATS_ADD(xs_read_bytes, ret);
384
385 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
386 return ret;
387 }
388
389 /*
390 * This routine is called to handle zeroing any space in the last block of the
391 * file that is beyond the EOF. We do this since the size is being increased
392 * without writing anything to that block and we don't want to read the
393 * garbage on the disk.
394 */
395 STATIC int /* error (positive) */
396 xfs_zero_last_block(
397 struct xfs_inode *ip,
398 xfs_fsize_t offset,
399 xfs_fsize_t isize,
400 bool *did_zeroing)
401 {
402 struct xfs_mount *mp = ip->i_mount;
403 xfs_fileoff_t last_fsb = XFS_B_TO_FSBT(mp, isize);
404 int zero_offset = XFS_B_FSB_OFFSET(mp, isize);
405 int zero_len;
406 int nimaps = 1;
407 int error = 0;
408 struct xfs_bmbt_irec imap;
409
410 xfs_ilock(ip, XFS_ILOCK_EXCL);
411 error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
412 xfs_iunlock(ip, XFS_ILOCK_EXCL);
413 if (error)
414 return error;
415
416 ASSERT(nimaps > 0);
417
418 /*
419 * If the block underlying isize is just a hole, then there
420 * is nothing to zero.
421 */
422 if (imap.br_startblock == HOLESTARTBLOCK)
423 return 0;
424
425 zero_len = mp->m_sb.sb_blocksize - zero_offset;
426 if (isize + zero_len > offset)
427 zero_len = offset - isize;
428 *did_zeroing = true;
429 return xfs_iozero(ip, isize, zero_len);
430 }
431
432 /*
433 * Zero any on disk space between the current EOF and the new, larger EOF.
434 *
435 * This handles the normal case of zeroing the remainder of the last block in
436 * the file and the unusual case of zeroing blocks out beyond the size of the
437 * file. This second case only happens with fixed size extents and when the
438 * system crashes before the inode size was updated but after blocks were
439 * allocated.
440 *
441 * Expects the iolock to be held exclusive, and will take the ilock internally.
442 */
443 int /* error (positive) */
444 xfs_zero_eof(
445 struct xfs_inode *ip,
446 xfs_off_t offset, /* starting I/O offset */
447 xfs_fsize_t isize, /* current inode size */
448 bool *did_zeroing)
449 {
450 struct xfs_mount *mp = ip->i_mount;
451 xfs_fileoff_t start_zero_fsb;
452 xfs_fileoff_t end_zero_fsb;
453 xfs_fileoff_t zero_count_fsb;
454 xfs_fileoff_t last_fsb;
455 xfs_fileoff_t zero_off;
456 xfs_fsize_t zero_len;
457 int nimaps;
458 int error = 0;
459 struct xfs_bmbt_irec imap;
460
461 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
462 ASSERT(offset > isize);
463
464 /*
465 * First handle zeroing the block on which isize resides.
466 *
467 * We only zero a part of that block so it is handled specially.
468 */
469 if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
470 error = xfs_zero_last_block(ip, offset, isize, did_zeroing);
471 if (error)
472 return error;
473 }
474
475 /*
476 * Calculate the range between the new size and the old where blocks
477 * needing to be zeroed may exist.
478 *
479 * To get the block where the last byte in the file currently resides,
480 * we need to subtract one from the size and truncate back to a block
481 * boundary. We subtract 1 in case the size is exactly on a block
482 * boundary.
483 */
484 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
485 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
486 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
487 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
488 if (last_fsb == end_zero_fsb) {
489 /*
490 * The size was only incremented on its last block.
491 * We took care of that above, so just return.
492 */
493 return 0;
494 }
495
496 ASSERT(start_zero_fsb <= end_zero_fsb);
497 while (start_zero_fsb <= end_zero_fsb) {
498 nimaps = 1;
499 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
500
501 xfs_ilock(ip, XFS_ILOCK_EXCL);
502 error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
503 &imap, &nimaps, 0);
504 xfs_iunlock(ip, XFS_ILOCK_EXCL);
505 if (error)
506 return error;
507
508 ASSERT(nimaps > 0);
509
510 if (imap.br_state == XFS_EXT_UNWRITTEN ||
511 imap.br_startblock == HOLESTARTBLOCK) {
512 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
513 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
514 continue;
515 }
516
517 /*
518 * There are blocks we need to zero.
519 */
520 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
521 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
522
523 if ((zero_off + zero_len) > offset)
524 zero_len = offset - zero_off;
525
526 error = xfs_iozero(ip, zero_off, zero_len);
527 if (error)
528 return error;
529
530 *did_zeroing = true;
531 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
532 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
533 }
534
535 return 0;
536 }
537
538 /*
539 * Common pre-write limit and setup checks.
540 *
541 * Called with the iolocked held either shared and exclusive according to
542 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
543 * if called for a direct write beyond i_size.
544 */
545 STATIC ssize_t
546 xfs_file_aio_write_checks(
547 struct kiocb *iocb,
548 struct iov_iter *from,
549 int *iolock)
550 {
551 struct file *file = iocb->ki_filp;
552 struct inode *inode = file->f_mapping->host;
553 struct xfs_inode *ip = XFS_I(inode);
554 ssize_t error = 0;
555 size_t count = iov_iter_count(from);
556
557 restart:
558 error = generic_write_checks(iocb, from);
559 if (error <= 0)
560 return error;
561
562 error = xfs_break_layouts(inode, iolock);
563 if (error)
564 return error;
565
566 /*
567 * If the offset is beyond the size of the file, we need to zero any
568 * blocks that fall between the existing EOF and the start of this
569 * write. If zeroing is needed and we are currently holding the
570 * iolock shared, we need to update it to exclusive which implies
571 * having to redo all checks before.
572 */
573 if (iocb->ki_pos > i_size_read(inode)) {
574 bool zero = false;
575
576 if (*iolock == XFS_IOLOCK_SHARED) {
577 xfs_rw_iunlock(ip, *iolock);
578 *iolock = XFS_IOLOCK_EXCL;
579 xfs_rw_ilock(ip, *iolock);
580 iov_iter_reexpand(from, count);
581 goto restart;
582 }
583 error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
584 if (error)
585 return error;
586 }
587
588 /*
589 * Updating the timestamps will grab the ilock again from
590 * xfs_fs_dirty_inode, so we have to call it after dropping the
591 * lock above. Eventually we should look into a way to avoid
592 * the pointless lock roundtrip.
593 */
594 if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
595 error = file_update_time(file);
596 if (error)
597 return error;
598 }
599
600 /*
601 * If we're writing the file then make sure to clear the setuid and
602 * setgid bits if the process is not being run by root. This keeps
603 * people from modifying setuid and setgid binaries.
604 */
605 return file_remove_suid(file);
606 }
607
608 /*
609 * xfs_file_dio_aio_write - handle direct IO writes
610 *
611 * Lock the inode appropriately to prepare for and issue a direct IO write.
612 * By separating it from the buffered write path we remove all the tricky to
613 * follow locking changes and looping.
614 *
615 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
616 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
617 * pages are flushed out.
618 *
619 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
620 * allowing them to be done in parallel with reads and other direct IO writes.
621 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
622 * needs to do sub-block zeroing and that requires serialisation against other
623 * direct IOs to the same block. In this case we need to serialise the
624 * submission of the unaligned IOs so that we don't get racing block zeroing in
625 * the dio layer. To avoid the problem with aio, we also need to wait for
626 * outstanding IOs to complete so that unwritten extent conversion is completed
627 * before we try to map the overlapping block. This is currently implemented by
628 * hitting it with a big hammer (i.e. inode_dio_wait()).
629 *
630 * Returns with locks held indicated by @iolock and errors indicated by
631 * negative return values.
632 */
633 STATIC ssize_t
634 xfs_file_dio_aio_write(
635 struct kiocb *iocb,
636 struct iov_iter *from)
637 {
638 struct file *file = iocb->ki_filp;
639 struct address_space *mapping = file->f_mapping;
640 struct inode *inode = mapping->host;
641 struct xfs_inode *ip = XFS_I(inode);
642 struct xfs_mount *mp = ip->i_mount;
643 ssize_t ret = 0;
644 int unaligned_io = 0;
645 int iolock;
646 size_t count = iov_iter_count(from);
647 loff_t pos = iocb->ki_pos;
648 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
649 mp->m_rtdev_targp : mp->m_ddev_targp;
650
651 /* DIO must be aligned to device logical sector size */
652 if ((pos | count) & target->bt_logical_sectormask)
653 return -EINVAL;
654
655 /* "unaligned" here means not aligned to a filesystem block */
656 if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
657 unaligned_io = 1;
658
659 /*
660 * We don't need to take an exclusive lock unless there page cache needs
661 * to be invalidated or unaligned IO is being executed. We don't need to
662 * consider the EOF extension case here because
663 * xfs_file_aio_write_checks() will relock the inode as necessary for
664 * EOF zeroing cases and fill out the new inode size as appropriate.
665 */
666 if (unaligned_io || mapping->nrpages)
667 iolock = XFS_IOLOCK_EXCL;
668 else
669 iolock = XFS_IOLOCK_SHARED;
670 xfs_rw_ilock(ip, iolock);
671
672 /*
673 * Recheck if there are cached pages that need invalidate after we got
674 * the iolock to protect against other threads adding new pages while
675 * we were waiting for the iolock.
676 */
677 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
678 xfs_rw_iunlock(ip, iolock);
679 iolock = XFS_IOLOCK_EXCL;
680 xfs_rw_ilock(ip, iolock);
681 }
682
683 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
684 if (ret)
685 goto out;
686 count = iov_iter_count(from);
687 pos = iocb->ki_pos;
688
689 if (mapping->nrpages) {
690 ret = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
691 pos, pos + count - 1);
692 if (ret)
693 goto out;
694 /*
695 * Invalidate whole pages. This can return an error if
696 * we fail to invalidate a page, but this should never
697 * happen on XFS. Warn if it does fail.
698 */
699 ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
700 pos >> PAGE_CACHE_SHIFT,
701 (pos + count - 1) >> PAGE_CACHE_SHIFT);
702 WARN_ON_ONCE(ret);
703 ret = 0;
704 }
705
706 /*
707 * If we are doing unaligned IO, wait for all other IO to drain,
708 * otherwise demote the lock if we had to flush cached pages
709 */
710 if (unaligned_io)
711 inode_dio_wait(inode);
712 else if (iolock == XFS_IOLOCK_EXCL) {
713 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
714 iolock = XFS_IOLOCK_SHARED;
715 }
716
717 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
718 ret = generic_file_direct_write(iocb, from, pos);
719
720 out:
721 xfs_rw_iunlock(ip, iolock);
722
723 /* No fallback to buffered IO on errors for XFS. */
724 ASSERT(ret < 0 || ret == count);
725 return ret;
726 }
727
728 STATIC ssize_t
729 xfs_file_buffered_aio_write(
730 struct kiocb *iocb,
731 struct iov_iter *from)
732 {
733 struct file *file = iocb->ki_filp;
734 struct address_space *mapping = file->f_mapping;
735 struct inode *inode = mapping->host;
736 struct xfs_inode *ip = XFS_I(inode);
737 ssize_t ret;
738 int enospc = 0;
739 int iolock = XFS_IOLOCK_EXCL;
740
741 xfs_rw_ilock(ip, iolock);
742
743 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
744 if (ret)
745 goto out;
746
747 /* We can write back this queue in page reclaim */
748 current->backing_dev_info = inode_to_bdi(inode);
749
750 write_retry:
751 trace_xfs_file_buffered_write(ip, iov_iter_count(from),
752 iocb->ki_pos, 0);
753 ret = generic_perform_write(file, from, iocb->ki_pos);
754 if (likely(ret >= 0))
755 iocb->ki_pos += ret;
756
757 /*
758 * If we hit a space limit, try to free up some lingering preallocated
759 * space before returning an error. In the case of ENOSPC, first try to
760 * write back all dirty inodes to free up some of the excess reserved
761 * metadata space. This reduces the chances that the eofblocks scan
762 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
763 * also behaves as a filter to prevent too many eofblocks scans from
764 * running at the same time.
765 */
766 if (ret == -EDQUOT && !enospc) {
767 enospc = xfs_inode_free_quota_eofblocks(ip);
768 if (enospc)
769 goto write_retry;
770 } else if (ret == -ENOSPC && !enospc) {
771 struct xfs_eofblocks eofb = {0};
772
773 enospc = 1;
774 xfs_flush_inodes(ip->i_mount);
775 eofb.eof_scan_owner = ip->i_ino; /* for locking */
776 eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
777 xfs_icache_free_eofblocks(ip->i_mount, &eofb);
778 goto write_retry;
779 }
780
781 current->backing_dev_info = NULL;
782 out:
783 xfs_rw_iunlock(ip, iolock);
784 return ret;
785 }
786
787 STATIC ssize_t
788 xfs_file_write_iter(
789 struct kiocb *iocb,
790 struct iov_iter *from)
791 {
792 struct file *file = iocb->ki_filp;
793 struct address_space *mapping = file->f_mapping;
794 struct inode *inode = mapping->host;
795 struct xfs_inode *ip = XFS_I(inode);
796 ssize_t ret;
797 size_t ocount = iov_iter_count(from);
798
799 XFS_STATS_INC(xs_write_calls);
800
801 if (ocount == 0)
802 return 0;
803
804 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
805 return -EIO;
806
807 if (unlikely(iocb->ki_flags & IOCB_DIRECT))
808 ret = xfs_file_dio_aio_write(iocb, from);
809 else
810 ret = xfs_file_buffered_aio_write(iocb, from);
811
812 if (ret > 0) {
813 ssize_t err;
814
815 XFS_STATS_ADD(xs_write_bytes, ret);
816
817 /* Handle various SYNC-type writes */
818 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
819 if (err < 0)
820 ret = err;
821 }
822 return ret;
823 }
824
825 STATIC long
826 xfs_file_fallocate(
827 struct file *file,
828 int mode,
829 loff_t offset,
830 loff_t len)
831 {
832 struct inode *inode = file_inode(file);
833 struct xfs_inode *ip = XFS_I(inode);
834 long error;
835 enum xfs_prealloc_flags flags = 0;
836 uint iolock = XFS_IOLOCK_EXCL;
837 loff_t new_size = 0;
838
839 if (!S_ISREG(inode->i_mode))
840 return -EINVAL;
841 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
842 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE))
843 return -EOPNOTSUPP;
844
845 xfs_ilock(ip, iolock);
846 error = xfs_break_layouts(inode, &iolock);
847 if (error)
848 goto out_unlock;
849
850 if (mode & FALLOC_FL_PUNCH_HOLE) {
851 error = xfs_free_file_space(ip, offset, len);
852 if (error)
853 goto out_unlock;
854 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
855 unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
856
857 if (offset & blksize_mask || len & blksize_mask) {
858 error = -EINVAL;
859 goto out_unlock;
860 }
861
862 /*
863 * There is no need to overlap collapse range with EOF,
864 * in which case it is effectively a truncate operation
865 */
866 if (offset + len >= i_size_read(inode)) {
867 error = -EINVAL;
868 goto out_unlock;
869 }
870
871 new_size = i_size_read(inode) - len;
872
873 error = xfs_collapse_file_space(ip, offset, len);
874 if (error)
875 goto out_unlock;
876 } else {
877 flags |= XFS_PREALLOC_SET;
878
879 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
880 offset + len > i_size_read(inode)) {
881 new_size = offset + len;
882 error = inode_newsize_ok(inode, new_size);
883 if (error)
884 goto out_unlock;
885 }
886
887 if (mode & FALLOC_FL_ZERO_RANGE)
888 error = xfs_zero_file_space(ip, offset, len);
889 else
890 error = xfs_alloc_file_space(ip, offset, len,
891 XFS_BMAPI_PREALLOC);
892 if (error)
893 goto out_unlock;
894 }
895
896 if (file->f_flags & O_DSYNC)
897 flags |= XFS_PREALLOC_SYNC;
898
899 error = xfs_update_prealloc_flags(ip, flags);
900 if (error)
901 goto out_unlock;
902
903 /* Change file size if needed */
904 if (new_size) {
905 struct iattr iattr;
906
907 iattr.ia_valid = ATTR_SIZE;
908 iattr.ia_size = new_size;
909 error = xfs_setattr_size(ip, &iattr);
910 }
911
912 out_unlock:
913 xfs_iunlock(ip, iolock);
914 return error;
915 }
916
917
918 STATIC int
919 xfs_file_open(
920 struct inode *inode,
921 struct file *file)
922 {
923 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
924 return -EFBIG;
925 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
926 return -EIO;
927 return 0;
928 }
929
930 STATIC int
931 xfs_dir_open(
932 struct inode *inode,
933 struct file *file)
934 {
935 struct xfs_inode *ip = XFS_I(inode);
936 int mode;
937 int error;
938
939 error = xfs_file_open(inode, file);
940 if (error)
941 return error;
942
943 /*
944 * If there are any blocks, read-ahead block 0 as we're almost
945 * certain to have the next operation be a read there.
946 */
947 mode = xfs_ilock_data_map_shared(ip);
948 if (ip->i_d.di_nextents > 0)
949 xfs_dir3_data_readahead(ip, 0, -1);
950 xfs_iunlock(ip, mode);
951 return 0;
952 }
953
954 STATIC int
955 xfs_file_release(
956 struct inode *inode,
957 struct file *filp)
958 {
959 return xfs_release(XFS_I(inode));
960 }
961
962 STATIC int
963 xfs_file_readdir(
964 struct file *file,
965 struct dir_context *ctx)
966 {
967 struct inode *inode = file_inode(file);
968 xfs_inode_t *ip = XFS_I(inode);
969 size_t bufsize;
970
971 /*
972 * The Linux API doesn't pass down the total size of the buffer
973 * we read into down to the filesystem. With the filldir concept
974 * it's not needed for correct information, but the XFS dir2 leaf
975 * code wants an estimate of the buffer size to calculate it's
976 * readahead window and size the buffers used for mapping to
977 * physical blocks.
978 *
979 * Try to give it an estimate that's good enough, maybe at some
980 * point we can change the ->readdir prototype to include the
981 * buffer size. For now we use the current glibc buffer size.
982 */
983 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
984
985 return xfs_readdir(ip, ctx, bufsize);
986 }
987
988 STATIC int
989 xfs_file_mmap(
990 struct file *filp,
991 struct vm_area_struct *vma)
992 {
993 vma->vm_ops = &xfs_file_vm_ops;
994
995 file_accessed(filp);
996 return 0;
997 }
998
999 /*
1000 * mmap()d file has taken write protection fault and is being made
1001 * writable. We can set the page state up correctly for a writable
1002 * page, which means we can do correct delalloc accounting (ENOSPC
1003 * checking!) and unwritten extent mapping.
1004 */
1005 STATIC int
1006 xfs_vm_page_mkwrite(
1007 struct vm_area_struct *vma,
1008 struct vm_fault *vmf)
1009 {
1010 return block_page_mkwrite(vma, vmf, xfs_get_blocks);
1011 }
1012
1013 /*
1014 * This type is designed to indicate the type of offset we would like
1015 * to search from page cache for xfs_seek_hole_data().
1016 */
1017 enum {
1018 HOLE_OFF = 0,
1019 DATA_OFF,
1020 };
1021
1022 /*
1023 * Lookup the desired type of offset from the given page.
1024 *
1025 * On success, return true and the offset argument will point to the
1026 * start of the region that was found. Otherwise this function will
1027 * return false and keep the offset argument unchanged.
1028 */
1029 STATIC bool
1030 xfs_lookup_buffer_offset(
1031 struct page *page,
1032 loff_t *offset,
1033 unsigned int type)
1034 {
1035 loff_t lastoff = page_offset(page);
1036 bool found = false;
1037 struct buffer_head *bh, *head;
1038
1039 bh = head = page_buffers(page);
1040 do {
1041 /*
1042 * Unwritten extents that have data in the page
1043 * cache covering them can be identified by the
1044 * BH_Unwritten state flag. Pages with multiple
1045 * buffers might have a mix of holes, data and
1046 * unwritten extents - any buffer with valid
1047 * data in it should have BH_Uptodate flag set
1048 * on it.
1049 */
1050 if (buffer_unwritten(bh) ||
1051 buffer_uptodate(bh)) {
1052 if (type == DATA_OFF)
1053 found = true;
1054 } else {
1055 if (type == HOLE_OFF)
1056 found = true;
1057 }
1058
1059 if (found) {
1060 *offset = lastoff;
1061 break;
1062 }
1063 lastoff += bh->b_size;
1064 } while ((bh = bh->b_this_page) != head);
1065
1066 return found;
1067 }
1068
1069 /*
1070 * This routine is called to find out and return a data or hole offset
1071 * from the page cache for unwritten extents according to the desired
1072 * type for xfs_seek_hole_data().
1073 *
1074 * The argument offset is used to tell where we start to search from the
1075 * page cache. Map is used to figure out the end points of the range to
1076 * lookup pages.
1077 *
1078 * Return true if the desired type of offset was found, and the argument
1079 * offset is filled with that address. Otherwise, return false and keep
1080 * offset unchanged.
1081 */
1082 STATIC bool
1083 xfs_find_get_desired_pgoff(
1084 struct inode *inode,
1085 struct xfs_bmbt_irec *map,
1086 unsigned int type,
1087 loff_t *offset)
1088 {
1089 struct xfs_inode *ip = XFS_I(inode);
1090 struct xfs_mount *mp = ip->i_mount;
1091 struct pagevec pvec;
1092 pgoff_t index;
1093 pgoff_t end;
1094 loff_t endoff;
1095 loff_t startoff = *offset;
1096 loff_t lastoff = startoff;
1097 bool found = false;
1098
1099 pagevec_init(&pvec, 0);
1100
1101 index = startoff >> PAGE_CACHE_SHIFT;
1102 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1103 end = endoff >> PAGE_CACHE_SHIFT;
1104 do {
1105 int want;
1106 unsigned nr_pages;
1107 unsigned int i;
1108
1109 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1110 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1111 want);
1112 /*
1113 * No page mapped into given range. If we are searching holes
1114 * and if this is the first time we got into the loop, it means
1115 * that the given offset is landed in a hole, return it.
1116 *
1117 * If we have already stepped through some block buffers to find
1118 * holes but they all contains data. In this case, the last
1119 * offset is already updated and pointed to the end of the last
1120 * mapped page, if it does not reach the endpoint to search,
1121 * that means there should be a hole between them.
1122 */
1123 if (nr_pages == 0) {
1124 /* Data search found nothing */
1125 if (type == DATA_OFF)
1126 break;
1127
1128 ASSERT(type == HOLE_OFF);
1129 if (lastoff == startoff || lastoff < endoff) {
1130 found = true;
1131 *offset = lastoff;
1132 }
1133 break;
1134 }
1135
1136 /*
1137 * At lease we found one page. If this is the first time we
1138 * step into the loop, and if the first page index offset is
1139 * greater than the given search offset, a hole was found.
1140 */
1141 if (type == HOLE_OFF && lastoff == startoff &&
1142 lastoff < page_offset(pvec.pages[0])) {
1143 found = true;
1144 break;
1145 }
1146
1147 for (i = 0; i < nr_pages; i++) {
1148 struct page *page = pvec.pages[i];
1149 loff_t b_offset;
1150
1151 /*
1152 * At this point, the page may be truncated or
1153 * invalidated (changing page->mapping to NULL),
1154 * or even swizzled back from swapper_space to tmpfs
1155 * file mapping. However, page->index will not change
1156 * because we have a reference on the page.
1157 *
1158 * Searching done if the page index is out of range.
1159 * If the current offset is not reaches the end of
1160 * the specified search range, there should be a hole
1161 * between them.
1162 */
1163 if (page->index > end) {
1164 if (type == HOLE_OFF && lastoff < endoff) {
1165 *offset = lastoff;
1166 found = true;
1167 }
1168 goto out;
1169 }
1170
1171 lock_page(page);
1172 /*
1173 * Page truncated or invalidated(page->mapping == NULL).
1174 * We can freely skip it and proceed to check the next
1175 * page.
1176 */
1177 if (unlikely(page->mapping != inode->i_mapping)) {
1178 unlock_page(page);
1179 continue;
1180 }
1181
1182 if (!page_has_buffers(page)) {
1183 unlock_page(page);
1184 continue;
1185 }
1186
1187 found = xfs_lookup_buffer_offset(page, &b_offset, type);
1188 if (found) {
1189 /*
1190 * The found offset may be less than the start
1191 * point to search if this is the first time to
1192 * come here.
1193 */
1194 *offset = max_t(loff_t, startoff, b_offset);
1195 unlock_page(page);
1196 goto out;
1197 }
1198
1199 /*
1200 * We either searching data but nothing was found, or
1201 * searching hole but found a data buffer. In either
1202 * case, probably the next page contains the desired
1203 * things, update the last offset to it so.
1204 */
1205 lastoff = page_offset(page) + PAGE_SIZE;
1206 unlock_page(page);
1207 }
1208
1209 /*
1210 * The number of returned pages less than our desired, search
1211 * done. In this case, nothing was found for searching data,
1212 * but we found a hole behind the last offset.
1213 */
1214 if (nr_pages < want) {
1215 if (type == HOLE_OFF) {
1216 *offset = lastoff;
1217 found = true;
1218 }
1219 break;
1220 }
1221
1222 index = pvec.pages[i - 1]->index + 1;
1223 pagevec_release(&pvec);
1224 } while (index <= end);
1225
1226 out:
1227 pagevec_release(&pvec);
1228 return found;
1229 }
1230
1231 STATIC loff_t
1232 xfs_seek_hole_data(
1233 struct file *file,
1234 loff_t start,
1235 int whence)
1236 {
1237 struct inode *inode = file->f_mapping->host;
1238 struct xfs_inode *ip = XFS_I(inode);
1239 struct xfs_mount *mp = ip->i_mount;
1240 loff_t uninitialized_var(offset);
1241 xfs_fsize_t isize;
1242 xfs_fileoff_t fsbno;
1243 xfs_filblks_t end;
1244 uint lock;
1245 int error;
1246
1247 if (XFS_FORCED_SHUTDOWN(mp))
1248 return -EIO;
1249
1250 lock = xfs_ilock_data_map_shared(ip);
1251
1252 isize = i_size_read(inode);
1253 if (start >= isize) {
1254 error = -ENXIO;
1255 goto out_unlock;
1256 }
1257
1258 /*
1259 * Try to read extents from the first block indicated
1260 * by fsbno to the end block of the file.
1261 */
1262 fsbno = XFS_B_TO_FSBT(mp, start);
1263 end = XFS_B_TO_FSB(mp, isize);
1264
1265 for (;;) {
1266 struct xfs_bmbt_irec map[2];
1267 int nmap = 2;
1268 unsigned int i;
1269
1270 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1271 XFS_BMAPI_ENTIRE);
1272 if (error)
1273 goto out_unlock;
1274
1275 /* No extents at given offset, must be beyond EOF */
1276 if (nmap == 0) {
1277 error = -ENXIO;
1278 goto out_unlock;
1279 }
1280
1281 for (i = 0; i < nmap; i++) {
1282 offset = max_t(loff_t, start,
1283 XFS_FSB_TO_B(mp, map[i].br_startoff));
1284
1285 /* Landed in the hole we wanted? */
1286 if (whence == SEEK_HOLE &&
1287 map[i].br_startblock == HOLESTARTBLOCK)
1288 goto out;
1289
1290 /* Landed in the data extent we wanted? */
1291 if (whence == SEEK_DATA &&
1292 (map[i].br_startblock == DELAYSTARTBLOCK ||
1293 (map[i].br_state == XFS_EXT_NORM &&
1294 !isnullstartblock(map[i].br_startblock))))
1295 goto out;
1296
1297 /*
1298 * Landed in an unwritten extent, try to search
1299 * for hole or data from page cache.
1300 */
1301 if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1302 if (xfs_find_get_desired_pgoff(inode, &map[i],
1303 whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
1304 &offset))
1305 goto out;
1306 }
1307 }
1308
1309 /*
1310 * We only received one extent out of the two requested. This
1311 * means we've hit EOF and didn't find what we are looking for.
1312 */
1313 if (nmap == 1) {
1314 /*
1315 * If we were looking for a hole, set offset to
1316 * the end of the file (i.e., there is an implicit
1317 * hole at the end of any file).
1318 */
1319 if (whence == SEEK_HOLE) {
1320 offset = isize;
1321 break;
1322 }
1323 /*
1324 * If we were looking for data, it's nowhere to be found
1325 */
1326 ASSERT(whence == SEEK_DATA);
1327 error = -ENXIO;
1328 goto out_unlock;
1329 }
1330
1331 ASSERT(i > 1);
1332
1333 /*
1334 * Nothing was found, proceed to the next round of search
1335 * if the next reading offset is not at or beyond EOF.
1336 */
1337 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1338 start = XFS_FSB_TO_B(mp, fsbno);
1339 if (start >= isize) {
1340 if (whence == SEEK_HOLE) {
1341 offset = isize;
1342 break;
1343 }
1344 ASSERT(whence == SEEK_DATA);
1345 error = -ENXIO;
1346 goto out_unlock;
1347 }
1348 }
1349
1350 out:
1351 /*
1352 * If at this point we have found the hole we wanted, the returned
1353 * offset may be bigger than the file size as it may be aligned to
1354 * page boundary for unwritten extents. We need to deal with this
1355 * situation in particular.
1356 */
1357 if (whence == SEEK_HOLE)
1358 offset = min_t(loff_t, offset, isize);
1359 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1360
1361 out_unlock:
1362 xfs_iunlock(ip, lock);
1363
1364 if (error)
1365 return error;
1366 return offset;
1367 }
1368
1369 STATIC loff_t
1370 xfs_file_llseek(
1371 struct file *file,
1372 loff_t offset,
1373 int whence)
1374 {
1375 switch (whence) {
1376 case SEEK_END:
1377 case SEEK_CUR:
1378 case SEEK_SET:
1379 return generic_file_llseek(file, offset, whence);
1380 case SEEK_HOLE:
1381 case SEEK_DATA:
1382 return xfs_seek_hole_data(file, offset, whence);
1383 default:
1384 return -EINVAL;
1385 }
1386 }
1387
1388 const struct file_operations xfs_file_operations = {
1389 .llseek = xfs_file_llseek,
1390 .read_iter = xfs_file_read_iter,
1391 .write_iter = xfs_file_write_iter,
1392 .splice_read = xfs_file_splice_read,
1393 .splice_write = iter_file_splice_write,
1394 .unlocked_ioctl = xfs_file_ioctl,
1395 #ifdef CONFIG_COMPAT
1396 .compat_ioctl = xfs_file_compat_ioctl,
1397 #endif
1398 .mmap = xfs_file_mmap,
1399 .open = xfs_file_open,
1400 .release = xfs_file_release,
1401 .fsync = xfs_file_fsync,
1402 .fallocate = xfs_file_fallocate,
1403 };
1404
1405 const struct file_operations xfs_dir_file_operations = {
1406 .open = xfs_dir_open,
1407 .read = generic_read_dir,
1408 .iterate = xfs_file_readdir,
1409 .llseek = generic_file_llseek,
1410 .unlocked_ioctl = xfs_file_ioctl,
1411 #ifdef CONFIG_COMPAT
1412 .compat_ioctl = xfs_file_compat_ioctl,
1413 #endif
1414 .fsync = xfs_dir_fsync,
1415 };
1416
1417 static const struct vm_operations_struct xfs_file_vm_ops = {
1418 .fault = filemap_fault,
1419 .map_pages = filemap_map_pages,
1420 .page_mkwrite = xfs_vm_page_mkwrite,
1421 };
This page took 0.062624 seconds and 5 git commands to generate.