Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target...
[deliverable/linux.git] / fs / xfs / xfs_file.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_log.h"
21 #include "xfs_sb.h"
22 #include "xfs_ag.h"
23 #include "xfs_trans.h"
24 #include "xfs_mount.h"
25 #include "xfs_bmap_btree.h"
26 #include "xfs_alloc.h"
27 #include "xfs_dinode.h"
28 #include "xfs_inode.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_bmap.h"
31 #include "xfs_bmap_util.h"
32 #include "xfs_error.h"
33 #include "xfs_da_btree.h"
34 #include "xfs_dir2_format.h"
35 #include "xfs_dir2.h"
36 #include "xfs_dir2_priv.h"
37 #include "xfs_ioctl.h"
38 #include "xfs_trace.h"
39
40 #include <linux/aio.h>
41 #include <linux/dcache.h>
42 #include <linux/falloc.h>
43 #include <linux/pagevec.h>
44
45 static const struct vm_operations_struct xfs_file_vm_ops;
46
47 /*
48 * Locking primitives for read and write IO paths to ensure we consistently use
49 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
50 */
51 static inline void
52 xfs_rw_ilock(
53 struct xfs_inode *ip,
54 int type)
55 {
56 if (type & XFS_IOLOCK_EXCL)
57 mutex_lock(&VFS_I(ip)->i_mutex);
58 xfs_ilock(ip, type);
59 }
60
61 static inline void
62 xfs_rw_iunlock(
63 struct xfs_inode *ip,
64 int type)
65 {
66 xfs_iunlock(ip, type);
67 if (type & XFS_IOLOCK_EXCL)
68 mutex_unlock(&VFS_I(ip)->i_mutex);
69 }
70
71 static inline void
72 xfs_rw_ilock_demote(
73 struct xfs_inode *ip,
74 int type)
75 {
76 xfs_ilock_demote(ip, type);
77 if (type & XFS_IOLOCK_EXCL)
78 mutex_unlock(&VFS_I(ip)->i_mutex);
79 }
80
81 /*
82 * xfs_iozero
83 *
84 * xfs_iozero clears the specified range of buffer supplied,
85 * and marks all the affected blocks as valid and modified. If
86 * an affected block is not allocated, it will be allocated. If
87 * an affected block is not completely overwritten, and is not
88 * valid before the operation, it will be read from disk before
89 * being partially zeroed.
90 */
91 int
92 xfs_iozero(
93 struct xfs_inode *ip, /* inode */
94 loff_t pos, /* offset in file */
95 size_t count) /* size of data to zero */
96 {
97 struct page *page;
98 struct address_space *mapping;
99 int status;
100
101 mapping = VFS_I(ip)->i_mapping;
102 do {
103 unsigned offset, bytes;
104 void *fsdata;
105
106 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
107 bytes = PAGE_CACHE_SIZE - offset;
108 if (bytes > count)
109 bytes = count;
110
111 status = pagecache_write_begin(NULL, mapping, pos, bytes,
112 AOP_FLAG_UNINTERRUPTIBLE,
113 &page, &fsdata);
114 if (status)
115 break;
116
117 zero_user(page, offset, bytes);
118
119 status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
120 page, fsdata);
121 WARN_ON(status <= 0); /* can't return less than zero! */
122 pos += bytes;
123 count -= bytes;
124 status = 0;
125 } while (count);
126
127 return (-status);
128 }
129
130 /*
131 * Fsync operations on directories are much simpler than on regular files,
132 * as there is no file data to flush, and thus also no need for explicit
133 * cache flush operations, and there are no non-transaction metadata updates
134 * on directories either.
135 */
136 STATIC int
137 xfs_dir_fsync(
138 struct file *file,
139 loff_t start,
140 loff_t end,
141 int datasync)
142 {
143 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
144 struct xfs_mount *mp = ip->i_mount;
145 xfs_lsn_t lsn = 0;
146
147 trace_xfs_dir_fsync(ip);
148
149 xfs_ilock(ip, XFS_ILOCK_SHARED);
150 if (xfs_ipincount(ip))
151 lsn = ip->i_itemp->ili_last_lsn;
152 xfs_iunlock(ip, XFS_ILOCK_SHARED);
153
154 if (!lsn)
155 return 0;
156 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
157 }
158
159 STATIC int
160 xfs_file_fsync(
161 struct file *file,
162 loff_t start,
163 loff_t end,
164 int datasync)
165 {
166 struct inode *inode = file->f_mapping->host;
167 struct xfs_inode *ip = XFS_I(inode);
168 struct xfs_mount *mp = ip->i_mount;
169 int error = 0;
170 int log_flushed = 0;
171 xfs_lsn_t lsn = 0;
172
173 trace_xfs_file_fsync(ip);
174
175 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
176 if (error)
177 return error;
178
179 if (XFS_FORCED_SHUTDOWN(mp))
180 return -XFS_ERROR(EIO);
181
182 xfs_iflags_clear(ip, XFS_ITRUNCATED);
183
184 if (mp->m_flags & XFS_MOUNT_BARRIER) {
185 /*
186 * If we have an RT and/or log subvolume we need to make sure
187 * to flush the write cache the device used for file data
188 * first. This is to ensure newly written file data make
189 * it to disk before logging the new inode size in case of
190 * an extending write.
191 */
192 if (XFS_IS_REALTIME_INODE(ip))
193 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
194 else if (mp->m_logdev_targp != mp->m_ddev_targp)
195 xfs_blkdev_issue_flush(mp->m_ddev_targp);
196 }
197
198 /*
199 * All metadata updates are logged, which means that we just have
200 * to flush the log up to the latest LSN that touched the inode.
201 */
202 xfs_ilock(ip, XFS_ILOCK_SHARED);
203 if (xfs_ipincount(ip)) {
204 if (!datasync ||
205 (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
206 lsn = ip->i_itemp->ili_last_lsn;
207 }
208 xfs_iunlock(ip, XFS_ILOCK_SHARED);
209
210 if (lsn)
211 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
212
213 /*
214 * If we only have a single device, and the log force about was
215 * a no-op we might have to flush the data device cache here.
216 * This can only happen for fdatasync/O_DSYNC if we were overwriting
217 * an already allocated file and thus do not have any metadata to
218 * commit.
219 */
220 if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
221 mp->m_logdev_targp == mp->m_ddev_targp &&
222 !XFS_IS_REALTIME_INODE(ip) &&
223 !log_flushed)
224 xfs_blkdev_issue_flush(mp->m_ddev_targp);
225
226 return -error;
227 }
228
229 STATIC ssize_t
230 xfs_file_aio_read(
231 struct kiocb *iocb,
232 const struct iovec *iovp,
233 unsigned long nr_segs,
234 loff_t pos)
235 {
236 struct file *file = iocb->ki_filp;
237 struct inode *inode = file->f_mapping->host;
238 struct xfs_inode *ip = XFS_I(inode);
239 struct xfs_mount *mp = ip->i_mount;
240 size_t size = 0;
241 ssize_t ret = 0;
242 int ioflags = 0;
243 xfs_fsize_t n;
244
245 XFS_STATS_INC(xs_read_calls);
246
247 BUG_ON(iocb->ki_pos != pos);
248
249 if (unlikely(file->f_flags & O_DIRECT))
250 ioflags |= IO_ISDIRECT;
251 if (file->f_mode & FMODE_NOCMTIME)
252 ioflags |= IO_INVIS;
253
254 ret = generic_segment_checks(iovp, &nr_segs, &size, VERIFY_WRITE);
255 if (ret < 0)
256 return ret;
257
258 if (unlikely(ioflags & IO_ISDIRECT)) {
259 xfs_buftarg_t *target =
260 XFS_IS_REALTIME_INODE(ip) ?
261 mp->m_rtdev_targp : mp->m_ddev_targp;
262 if ((pos & target->bt_smask) || (size & target->bt_smask)) {
263 if (pos == i_size_read(inode))
264 return 0;
265 return -XFS_ERROR(EINVAL);
266 }
267 }
268
269 n = mp->m_super->s_maxbytes - pos;
270 if (n <= 0 || size == 0)
271 return 0;
272
273 if (n < size)
274 size = n;
275
276 if (XFS_FORCED_SHUTDOWN(mp))
277 return -EIO;
278
279 /*
280 * Locking is a bit tricky here. If we take an exclusive lock
281 * for direct IO, we effectively serialise all new concurrent
282 * read IO to this file and block it behind IO that is currently in
283 * progress because IO in progress holds the IO lock shared. We only
284 * need to hold the lock exclusive to blow away the page cache, so
285 * only take lock exclusively if the page cache needs invalidation.
286 * This allows the normal direct IO case of no page cache pages to
287 * proceeed concurrently without serialisation.
288 */
289 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
290 if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) {
291 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
292 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
293
294 if (inode->i_mapping->nrpages) {
295 ret = -filemap_write_and_wait_range(
296 VFS_I(ip)->i_mapping,
297 pos, -1);
298 if (ret) {
299 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
300 return ret;
301 }
302 truncate_pagecache_range(VFS_I(ip), pos, -1);
303 }
304 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
305 }
306
307 trace_xfs_file_read(ip, size, pos, ioflags);
308
309 ret = generic_file_aio_read(iocb, iovp, nr_segs, pos);
310 if (ret > 0)
311 XFS_STATS_ADD(xs_read_bytes, ret);
312
313 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
314 return ret;
315 }
316
317 STATIC ssize_t
318 xfs_file_splice_read(
319 struct file *infilp,
320 loff_t *ppos,
321 struct pipe_inode_info *pipe,
322 size_t count,
323 unsigned int flags)
324 {
325 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host);
326 int ioflags = 0;
327 ssize_t ret;
328
329 XFS_STATS_INC(xs_read_calls);
330
331 if (infilp->f_mode & FMODE_NOCMTIME)
332 ioflags |= IO_INVIS;
333
334 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
335 return -EIO;
336
337 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
338
339 trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
340
341 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
342 if (ret > 0)
343 XFS_STATS_ADD(xs_read_bytes, ret);
344
345 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
346 return ret;
347 }
348
349 /*
350 * xfs_file_splice_write() does not use xfs_rw_ilock() because
351 * generic_file_splice_write() takes the i_mutex itself. This, in theory,
352 * couuld cause lock inversions between the aio_write path and the splice path
353 * if someone is doing concurrent splice(2) based writes and write(2) based
354 * writes to the same inode. The only real way to fix this is to re-implement
355 * the generic code here with correct locking orders.
356 */
357 STATIC ssize_t
358 xfs_file_splice_write(
359 struct pipe_inode_info *pipe,
360 struct file *outfilp,
361 loff_t *ppos,
362 size_t count,
363 unsigned int flags)
364 {
365 struct inode *inode = outfilp->f_mapping->host;
366 struct xfs_inode *ip = XFS_I(inode);
367 int ioflags = 0;
368 ssize_t ret;
369
370 XFS_STATS_INC(xs_write_calls);
371
372 if (outfilp->f_mode & FMODE_NOCMTIME)
373 ioflags |= IO_INVIS;
374
375 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
376 return -EIO;
377
378 xfs_ilock(ip, XFS_IOLOCK_EXCL);
379
380 trace_xfs_file_splice_write(ip, count, *ppos, ioflags);
381
382 ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
383 if (ret > 0)
384 XFS_STATS_ADD(xs_write_bytes, ret);
385
386 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
387 return ret;
388 }
389
390 /*
391 * This routine is called to handle zeroing any space in the last block of the
392 * file that is beyond the EOF. We do this since the size is being increased
393 * without writing anything to that block and we don't want to read the
394 * garbage on the disk.
395 */
396 STATIC int /* error (positive) */
397 xfs_zero_last_block(
398 struct xfs_inode *ip,
399 xfs_fsize_t offset,
400 xfs_fsize_t isize)
401 {
402 struct xfs_mount *mp = ip->i_mount;
403 xfs_fileoff_t last_fsb = XFS_B_TO_FSBT(mp, isize);
404 int zero_offset = XFS_B_FSB_OFFSET(mp, isize);
405 int zero_len;
406 int nimaps = 1;
407 int error = 0;
408 struct xfs_bmbt_irec imap;
409
410 xfs_ilock(ip, XFS_ILOCK_EXCL);
411 error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
412 xfs_iunlock(ip, XFS_ILOCK_EXCL);
413 if (error)
414 return error;
415
416 ASSERT(nimaps > 0);
417
418 /*
419 * If the block underlying isize is just a hole, then there
420 * is nothing to zero.
421 */
422 if (imap.br_startblock == HOLESTARTBLOCK)
423 return 0;
424
425 zero_len = mp->m_sb.sb_blocksize - zero_offset;
426 if (isize + zero_len > offset)
427 zero_len = offset - isize;
428 return xfs_iozero(ip, isize, zero_len);
429 }
430
431 /*
432 * Zero any on disk space between the current EOF and the new, larger EOF.
433 *
434 * This handles the normal case of zeroing the remainder of the last block in
435 * the file and the unusual case of zeroing blocks out beyond the size of the
436 * file. This second case only happens with fixed size extents and when the
437 * system crashes before the inode size was updated but after blocks were
438 * allocated.
439 *
440 * Expects the iolock to be held exclusive, and will take the ilock internally.
441 */
442 int /* error (positive) */
443 xfs_zero_eof(
444 struct xfs_inode *ip,
445 xfs_off_t offset, /* starting I/O offset */
446 xfs_fsize_t isize) /* current inode size */
447 {
448 struct xfs_mount *mp = ip->i_mount;
449 xfs_fileoff_t start_zero_fsb;
450 xfs_fileoff_t end_zero_fsb;
451 xfs_fileoff_t zero_count_fsb;
452 xfs_fileoff_t last_fsb;
453 xfs_fileoff_t zero_off;
454 xfs_fsize_t zero_len;
455 int nimaps;
456 int error = 0;
457 struct xfs_bmbt_irec imap;
458
459 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
460 ASSERT(offset > isize);
461
462 /*
463 * First handle zeroing the block on which isize resides.
464 *
465 * We only zero a part of that block so it is handled specially.
466 */
467 if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
468 error = xfs_zero_last_block(ip, offset, isize);
469 if (error)
470 return error;
471 }
472
473 /*
474 * Calculate the range between the new size and the old where blocks
475 * needing to be zeroed may exist.
476 *
477 * To get the block where the last byte in the file currently resides,
478 * we need to subtract one from the size and truncate back to a block
479 * boundary. We subtract 1 in case the size is exactly on a block
480 * boundary.
481 */
482 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
483 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
484 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
485 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
486 if (last_fsb == end_zero_fsb) {
487 /*
488 * The size was only incremented on its last block.
489 * We took care of that above, so just return.
490 */
491 return 0;
492 }
493
494 ASSERT(start_zero_fsb <= end_zero_fsb);
495 while (start_zero_fsb <= end_zero_fsb) {
496 nimaps = 1;
497 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
498
499 xfs_ilock(ip, XFS_ILOCK_EXCL);
500 error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
501 &imap, &nimaps, 0);
502 xfs_iunlock(ip, XFS_ILOCK_EXCL);
503 if (error)
504 return error;
505
506 ASSERT(nimaps > 0);
507
508 if (imap.br_state == XFS_EXT_UNWRITTEN ||
509 imap.br_startblock == HOLESTARTBLOCK) {
510 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
511 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
512 continue;
513 }
514
515 /*
516 * There are blocks we need to zero.
517 */
518 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
519 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
520
521 if ((zero_off + zero_len) > offset)
522 zero_len = offset - zero_off;
523
524 error = xfs_iozero(ip, zero_off, zero_len);
525 if (error)
526 return error;
527
528 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
529 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
530 }
531
532 return 0;
533 }
534
535 /*
536 * Common pre-write limit and setup checks.
537 *
538 * Called with the iolocked held either shared and exclusive according to
539 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
540 * if called for a direct write beyond i_size.
541 */
542 STATIC ssize_t
543 xfs_file_aio_write_checks(
544 struct file *file,
545 loff_t *pos,
546 size_t *count,
547 int *iolock)
548 {
549 struct inode *inode = file->f_mapping->host;
550 struct xfs_inode *ip = XFS_I(inode);
551 int error = 0;
552
553 restart:
554 error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
555 if (error)
556 return error;
557
558 /*
559 * If the offset is beyond the size of the file, we need to zero any
560 * blocks that fall between the existing EOF and the start of this
561 * write. If zeroing is needed and we are currently holding the
562 * iolock shared, we need to update it to exclusive which implies
563 * having to redo all checks before.
564 */
565 if (*pos > i_size_read(inode)) {
566 if (*iolock == XFS_IOLOCK_SHARED) {
567 xfs_rw_iunlock(ip, *iolock);
568 *iolock = XFS_IOLOCK_EXCL;
569 xfs_rw_ilock(ip, *iolock);
570 goto restart;
571 }
572 error = -xfs_zero_eof(ip, *pos, i_size_read(inode));
573 if (error)
574 return error;
575 }
576
577 /*
578 * Updating the timestamps will grab the ilock again from
579 * xfs_fs_dirty_inode, so we have to call it after dropping the
580 * lock above. Eventually we should look into a way to avoid
581 * the pointless lock roundtrip.
582 */
583 if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
584 error = file_update_time(file);
585 if (error)
586 return error;
587 }
588
589 /*
590 * If we're writing the file then make sure to clear the setuid and
591 * setgid bits if the process is not being run by root. This keeps
592 * people from modifying setuid and setgid binaries.
593 */
594 return file_remove_suid(file);
595 }
596
597 /*
598 * xfs_file_dio_aio_write - handle direct IO writes
599 *
600 * Lock the inode appropriately to prepare for and issue a direct IO write.
601 * By separating it from the buffered write path we remove all the tricky to
602 * follow locking changes and looping.
603 *
604 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
605 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
606 * pages are flushed out.
607 *
608 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
609 * allowing them to be done in parallel with reads and other direct IO writes.
610 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
611 * needs to do sub-block zeroing and that requires serialisation against other
612 * direct IOs to the same block. In this case we need to serialise the
613 * submission of the unaligned IOs so that we don't get racing block zeroing in
614 * the dio layer. To avoid the problem with aio, we also need to wait for
615 * outstanding IOs to complete so that unwritten extent conversion is completed
616 * before we try to map the overlapping block. This is currently implemented by
617 * hitting it with a big hammer (i.e. inode_dio_wait()).
618 *
619 * Returns with locks held indicated by @iolock and errors indicated by
620 * negative return values.
621 */
622 STATIC ssize_t
623 xfs_file_dio_aio_write(
624 struct kiocb *iocb,
625 const struct iovec *iovp,
626 unsigned long nr_segs,
627 loff_t pos,
628 size_t ocount)
629 {
630 struct file *file = iocb->ki_filp;
631 struct address_space *mapping = file->f_mapping;
632 struct inode *inode = mapping->host;
633 struct xfs_inode *ip = XFS_I(inode);
634 struct xfs_mount *mp = ip->i_mount;
635 ssize_t ret = 0;
636 size_t count = ocount;
637 int unaligned_io = 0;
638 int iolock;
639 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
640 mp->m_rtdev_targp : mp->m_ddev_targp;
641
642 if ((pos & target->bt_smask) || (count & target->bt_smask))
643 return -XFS_ERROR(EINVAL);
644
645 if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
646 unaligned_io = 1;
647
648 /*
649 * We don't need to take an exclusive lock unless there page cache needs
650 * to be invalidated or unaligned IO is being executed. We don't need to
651 * consider the EOF extension case here because
652 * xfs_file_aio_write_checks() will relock the inode as necessary for
653 * EOF zeroing cases and fill out the new inode size as appropriate.
654 */
655 if (unaligned_io || mapping->nrpages)
656 iolock = XFS_IOLOCK_EXCL;
657 else
658 iolock = XFS_IOLOCK_SHARED;
659 xfs_rw_ilock(ip, iolock);
660
661 /*
662 * Recheck if there are cached pages that need invalidate after we got
663 * the iolock to protect against other threads adding new pages while
664 * we were waiting for the iolock.
665 */
666 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
667 xfs_rw_iunlock(ip, iolock);
668 iolock = XFS_IOLOCK_EXCL;
669 xfs_rw_ilock(ip, iolock);
670 }
671
672 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
673 if (ret)
674 goto out;
675
676 if (mapping->nrpages) {
677 ret = -filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
678 pos, -1);
679 if (ret)
680 goto out;
681 truncate_pagecache_range(VFS_I(ip), pos, -1);
682 }
683
684 /*
685 * If we are doing unaligned IO, wait for all other IO to drain,
686 * otherwise demote the lock if we had to flush cached pages
687 */
688 if (unaligned_io)
689 inode_dio_wait(inode);
690 else if (iolock == XFS_IOLOCK_EXCL) {
691 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
692 iolock = XFS_IOLOCK_SHARED;
693 }
694
695 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
696 ret = generic_file_direct_write(iocb, iovp,
697 &nr_segs, pos, &iocb->ki_pos, count, ocount);
698
699 out:
700 xfs_rw_iunlock(ip, iolock);
701
702 /* No fallback to buffered IO on errors for XFS. */
703 ASSERT(ret < 0 || ret == count);
704 return ret;
705 }
706
707 STATIC ssize_t
708 xfs_file_buffered_aio_write(
709 struct kiocb *iocb,
710 const struct iovec *iovp,
711 unsigned long nr_segs,
712 loff_t pos,
713 size_t ocount)
714 {
715 struct file *file = iocb->ki_filp;
716 struct address_space *mapping = file->f_mapping;
717 struct inode *inode = mapping->host;
718 struct xfs_inode *ip = XFS_I(inode);
719 ssize_t ret;
720 int enospc = 0;
721 int iolock = XFS_IOLOCK_EXCL;
722 size_t count = ocount;
723
724 xfs_rw_ilock(ip, iolock);
725
726 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
727 if (ret)
728 goto out;
729
730 /* We can write back this queue in page reclaim */
731 current->backing_dev_info = mapping->backing_dev_info;
732
733 write_retry:
734 trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
735 ret = generic_file_buffered_write(iocb, iovp, nr_segs,
736 pos, &iocb->ki_pos, count, 0);
737
738 /*
739 * If we just got an ENOSPC, try to write back all dirty inodes to
740 * convert delalloc space to free up some of the excess reserved
741 * metadata space.
742 */
743 if (ret == -ENOSPC && !enospc) {
744 enospc = 1;
745 xfs_flush_inodes(ip->i_mount);
746 goto write_retry;
747 }
748
749 current->backing_dev_info = NULL;
750 out:
751 xfs_rw_iunlock(ip, iolock);
752 return ret;
753 }
754
755 STATIC ssize_t
756 xfs_file_aio_write(
757 struct kiocb *iocb,
758 const struct iovec *iovp,
759 unsigned long nr_segs,
760 loff_t pos)
761 {
762 struct file *file = iocb->ki_filp;
763 struct address_space *mapping = file->f_mapping;
764 struct inode *inode = mapping->host;
765 struct xfs_inode *ip = XFS_I(inode);
766 ssize_t ret;
767 size_t ocount = 0;
768
769 XFS_STATS_INC(xs_write_calls);
770
771 BUG_ON(iocb->ki_pos != pos);
772
773 ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ);
774 if (ret)
775 return ret;
776
777 if (ocount == 0)
778 return 0;
779
780 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
781 ret = -EIO;
782 goto out;
783 }
784
785 if (unlikely(file->f_flags & O_DIRECT))
786 ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos, ocount);
787 else
788 ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos,
789 ocount);
790
791 if (ret > 0) {
792 ssize_t err;
793
794 XFS_STATS_ADD(xs_write_bytes, ret);
795
796 /* Handle various SYNC-type writes */
797 err = generic_write_sync(file, pos, ret);
798 if (err < 0)
799 ret = err;
800 }
801
802 out:
803 return ret;
804 }
805
806 STATIC long
807 xfs_file_fallocate(
808 struct file *file,
809 int mode,
810 loff_t offset,
811 loff_t len)
812 {
813 struct inode *inode = file_inode(file);
814 long error;
815 loff_t new_size = 0;
816 xfs_flock64_t bf;
817 xfs_inode_t *ip = XFS_I(inode);
818 int cmd = XFS_IOC_RESVSP;
819 int attr_flags = XFS_ATTR_NOLOCK;
820
821 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
822 return -EOPNOTSUPP;
823
824 bf.l_whence = 0;
825 bf.l_start = offset;
826 bf.l_len = len;
827
828 xfs_ilock(ip, XFS_IOLOCK_EXCL);
829
830 if (mode & FALLOC_FL_PUNCH_HOLE)
831 cmd = XFS_IOC_UNRESVSP;
832
833 /* check the new inode size is valid before allocating */
834 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
835 offset + len > i_size_read(inode)) {
836 new_size = offset + len;
837 error = inode_newsize_ok(inode, new_size);
838 if (error)
839 goto out_unlock;
840 }
841
842 if (file->f_flags & O_DSYNC)
843 attr_flags |= XFS_ATTR_SYNC;
844
845 error = -xfs_change_file_space(ip, cmd, &bf, 0, attr_flags);
846 if (error)
847 goto out_unlock;
848
849 /* Change file size if needed */
850 if (new_size) {
851 struct iattr iattr;
852
853 iattr.ia_valid = ATTR_SIZE;
854 iattr.ia_size = new_size;
855 error = -xfs_setattr_size(ip, &iattr, XFS_ATTR_NOLOCK);
856 }
857
858 out_unlock:
859 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
860 return error;
861 }
862
863
864 STATIC int
865 xfs_file_open(
866 struct inode *inode,
867 struct file *file)
868 {
869 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
870 return -EFBIG;
871 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
872 return -EIO;
873 return 0;
874 }
875
876 STATIC int
877 xfs_dir_open(
878 struct inode *inode,
879 struct file *file)
880 {
881 struct xfs_inode *ip = XFS_I(inode);
882 int mode;
883 int error;
884
885 error = xfs_file_open(inode, file);
886 if (error)
887 return error;
888
889 /*
890 * If there are any blocks, read-ahead block 0 as we're almost
891 * certain to have the next operation be a read there.
892 */
893 mode = xfs_ilock_map_shared(ip);
894 if (ip->i_d.di_nextents > 0)
895 xfs_dir3_data_readahead(NULL, ip, 0, -1);
896 xfs_iunlock(ip, mode);
897 return 0;
898 }
899
900 STATIC int
901 xfs_file_release(
902 struct inode *inode,
903 struct file *filp)
904 {
905 return -xfs_release(XFS_I(inode));
906 }
907
908 STATIC int
909 xfs_file_readdir(
910 struct file *file,
911 struct dir_context *ctx)
912 {
913 struct inode *inode = file_inode(file);
914 xfs_inode_t *ip = XFS_I(inode);
915 int error;
916 size_t bufsize;
917
918 /*
919 * The Linux API doesn't pass down the total size of the buffer
920 * we read into down to the filesystem. With the filldir concept
921 * it's not needed for correct information, but the XFS dir2 leaf
922 * code wants an estimate of the buffer size to calculate it's
923 * readahead window and size the buffers used for mapping to
924 * physical blocks.
925 *
926 * Try to give it an estimate that's good enough, maybe at some
927 * point we can change the ->readdir prototype to include the
928 * buffer size. For now we use the current glibc buffer size.
929 */
930 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
931
932 error = xfs_readdir(ip, ctx, bufsize);
933 if (error)
934 return -error;
935 return 0;
936 }
937
938 STATIC int
939 xfs_file_mmap(
940 struct file *filp,
941 struct vm_area_struct *vma)
942 {
943 vma->vm_ops = &xfs_file_vm_ops;
944
945 file_accessed(filp);
946 return 0;
947 }
948
949 /*
950 * mmap()d file has taken write protection fault and is being made
951 * writable. We can set the page state up correctly for a writable
952 * page, which means we can do correct delalloc accounting (ENOSPC
953 * checking!) and unwritten extent mapping.
954 */
955 STATIC int
956 xfs_vm_page_mkwrite(
957 struct vm_area_struct *vma,
958 struct vm_fault *vmf)
959 {
960 return block_page_mkwrite(vma, vmf, xfs_get_blocks);
961 }
962
963 /*
964 * This type is designed to indicate the type of offset we would like
965 * to search from page cache for either xfs_seek_data() or xfs_seek_hole().
966 */
967 enum {
968 HOLE_OFF = 0,
969 DATA_OFF,
970 };
971
972 /*
973 * Lookup the desired type of offset from the given page.
974 *
975 * On success, return true and the offset argument will point to the
976 * start of the region that was found. Otherwise this function will
977 * return false and keep the offset argument unchanged.
978 */
979 STATIC bool
980 xfs_lookup_buffer_offset(
981 struct page *page,
982 loff_t *offset,
983 unsigned int type)
984 {
985 loff_t lastoff = page_offset(page);
986 bool found = false;
987 struct buffer_head *bh, *head;
988
989 bh = head = page_buffers(page);
990 do {
991 /*
992 * Unwritten extents that have data in the page
993 * cache covering them can be identified by the
994 * BH_Unwritten state flag. Pages with multiple
995 * buffers might have a mix of holes, data and
996 * unwritten extents - any buffer with valid
997 * data in it should have BH_Uptodate flag set
998 * on it.
999 */
1000 if (buffer_unwritten(bh) ||
1001 buffer_uptodate(bh)) {
1002 if (type == DATA_OFF)
1003 found = true;
1004 } else {
1005 if (type == HOLE_OFF)
1006 found = true;
1007 }
1008
1009 if (found) {
1010 *offset = lastoff;
1011 break;
1012 }
1013 lastoff += bh->b_size;
1014 } while ((bh = bh->b_this_page) != head);
1015
1016 return found;
1017 }
1018
1019 /*
1020 * This routine is called to find out and return a data or hole offset
1021 * from the page cache for unwritten extents according to the desired
1022 * type for xfs_seek_data() or xfs_seek_hole().
1023 *
1024 * The argument offset is used to tell where we start to search from the
1025 * page cache. Map is used to figure out the end points of the range to
1026 * lookup pages.
1027 *
1028 * Return true if the desired type of offset was found, and the argument
1029 * offset is filled with that address. Otherwise, return false and keep
1030 * offset unchanged.
1031 */
1032 STATIC bool
1033 xfs_find_get_desired_pgoff(
1034 struct inode *inode,
1035 struct xfs_bmbt_irec *map,
1036 unsigned int type,
1037 loff_t *offset)
1038 {
1039 struct xfs_inode *ip = XFS_I(inode);
1040 struct xfs_mount *mp = ip->i_mount;
1041 struct pagevec pvec;
1042 pgoff_t index;
1043 pgoff_t end;
1044 loff_t endoff;
1045 loff_t startoff = *offset;
1046 loff_t lastoff = startoff;
1047 bool found = false;
1048
1049 pagevec_init(&pvec, 0);
1050
1051 index = startoff >> PAGE_CACHE_SHIFT;
1052 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1053 end = endoff >> PAGE_CACHE_SHIFT;
1054 do {
1055 int want;
1056 unsigned nr_pages;
1057 unsigned int i;
1058
1059 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1060 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1061 want);
1062 /*
1063 * No page mapped into given range. If we are searching holes
1064 * and if this is the first time we got into the loop, it means
1065 * that the given offset is landed in a hole, return it.
1066 *
1067 * If we have already stepped through some block buffers to find
1068 * holes but they all contains data. In this case, the last
1069 * offset is already updated and pointed to the end of the last
1070 * mapped page, if it does not reach the endpoint to search,
1071 * that means there should be a hole between them.
1072 */
1073 if (nr_pages == 0) {
1074 /* Data search found nothing */
1075 if (type == DATA_OFF)
1076 break;
1077
1078 ASSERT(type == HOLE_OFF);
1079 if (lastoff == startoff || lastoff < endoff) {
1080 found = true;
1081 *offset = lastoff;
1082 }
1083 break;
1084 }
1085
1086 /*
1087 * At lease we found one page. If this is the first time we
1088 * step into the loop, and if the first page index offset is
1089 * greater than the given search offset, a hole was found.
1090 */
1091 if (type == HOLE_OFF && lastoff == startoff &&
1092 lastoff < page_offset(pvec.pages[0])) {
1093 found = true;
1094 break;
1095 }
1096
1097 for (i = 0; i < nr_pages; i++) {
1098 struct page *page = pvec.pages[i];
1099 loff_t b_offset;
1100
1101 /*
1102 * At this point, the page may be truncated or
1103 * invalidated (changing page->mapping to NULL),
1104 * or even swizzled back from swapper_space to tmpfs
1105 * file mapping. However, page->index will not change
1106 * because we have a reference on the page.
1107 *
1108 * Searching done if the page index is out of range.
1109 * If the current offset is not reaches the end of
1110 * the specified search range, there should be a hole
1111 * between them.
1112 */
1113 if (page->index > end) {
1114 if (type == HOLE_OFF && lastoff < endoff) {
1115 *offset = lastoff;
1116 found = true;
1117 }
1118 goto out;
1119 }
1120
1121 lock_page(page);
1122 /*
1123 * Page truncated or invalidated(page->mapping == NULL).
1124 * We can freely skip it and proceed to check the next
1125 * page.
1126 */
1127 if (unlikely(page->mapping != inode->i_mapping)) {
1128 unlock_page(page);
1129 continue;
1130 }
1131
1132 if (!page_has_buffers(page)) {
1133 unlock_page(page);
1134 continue;
1135 }
1136
1137 found = xfs_lookup_buffer_offset(page, &b_offset, type);
1138 if (found) {
1139 /*
1140 * The found offset may be less than the start
1141 * point to search if this is the first time to
1142 * come here.
1143 */
1144 *offset = max_t(loff_t, startoff, b_offset);
1145 unlock_page(page);
1146 goto out;
1147 }
1148
1149 /*
1150 * We either searching data but nothing was found, or
1151 * searching hole but found a data buffer. In either
1152 * case, probably the next page contains the desired
1153 * things, update the last offset to it so.
1154 */
1155 lastoff = page_offset(page) + PAGE_SIZE;
1156 unlock_page(page);
1157 }
1158
1159 /*
1160 * The number of returned pages less than our desired, search
1161 * done. In this case, nothing was found for searching data,
1162 * but we found a hole behind the last offset.
1163 */
1164 if (nr_pages < want) {
1165 if (type == HOLE_OFF) {
1166 *offset = lastoff;
1167 found = true;
1168 }
1169 break;
1170 }
1171
1172 index = pvec.pages[i - 1]->index + 1;
1173 pagevec_release(&pvec);
1174 } while (index <= end);
1175
1176 out:
1177 pagevec_release(&pvec);
1178 return found;
1179 }
1180
1181 STATIC loff_t
1182 xfs_seek_data(
1183 struct file *file,
1184 loff_t start)
1185 {
1186 struct inode *inode = file->f_mapping->host;
1187 struct xfs_inode *ip = XFS_I(inode);
1188 struct xfs_mount *mp = ip->i_mount;
1189 loff_t uninitialized_var(offset);
1190 xfs_fsize_t isize;
1191 xfs_fileoff_t fsbno;
1192 xfs_filblks_t end;
1193 uint lock;
1194 int error;
1195
1196 lock = xfs_ilock_map_shared(ip);
1197
1198 isize = i_size_read(inode);
1199 if (start >= isize) {
1200 error = ENXIO;
1201 goto out_unlock;
1202 }
1203
1204 /*
1205 * Try to read extents from the first block indicated
1206 * by fsbno to the end block of the file.
1207 */
1208 fsbno = XFS_B_TO_FSBT(mp, start);
1209 end = XFS_B_TO_FSB(mp, isize);
1210 for (;;) {
1211 struct xfs_bmbt_irec map[2];
1212 int nmap = 2;
1213 unsigned int i;
1214
1215 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1216 XFS_BMAPI_ENTIRE);
1217 if (error)
1218 goto out_unlock;
1219
1220 /* No extents at given offset, must be beyond EOF */
1221 if (nmap == 0) {
1222 error = ENXIO;
1223 goto out_unlock;
1224 }
1225
1226 for (i = 0; i < nmap; i++) {
1227 offset = max_t(loff_t, start,
1228 XFS_FSB_TO_B(mp, map[i].br_startoff));
1229
1230 /* Landed in a data extent */
1231 if (map[i].br_startblock == DELAYSTARTBLOCK ||
1232 (map[i].br_state == XFS_EXT_NORM &&
1233 !isnullstartblock(map[i].br_startblock)))
1234 goto out;
1235
1236 /*
1237 * Landed in an unwritten extent, try to search data
1238 * from page cache.
1239 */
1240 if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1241 if (xfs_find_get_desired_pgoff(inode, &map[i],
1242 DATA_OFF, &offset))
1243 goto out;
1244 }
1245 }
1246
1247 /*
1248 * map[0] is hole or its an unwritten extent but
1249 * without data in page cache. Probably means that
1250 * we are reading after EOF if nothing in map[1].
1251 */
1252 if (nmap == 1) {
1253 error = ENXIO;
1254 goto out_unlock;
1255 }
1256
1257 ASSERT(i > 1);
1258
1259 /*
1260 * Nothing was found, proceed to the next round of search
1261 * if reading offset not beyond or hit EOF.
1262 */
1263 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1264 start = XFS_FSB_TO_B(mp, fsbno);
1265 if (start >= isize) {
1266 error = ENXIO;
1267 goto out_unlock;
1268 }
1269 }
1270
1271 out:
1272 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1273
1274 out_unlock:
1275 xfs_iunlock_map_shared(ip, lock);
1276
1277 if (error)
1278 return -error;
1279 return offset;
1280 }
1281
1282 STATIC loff_t
1283 xfs_seek_hole(
1284 struct file *file,
1285 loff_t start)
1286 {
1287 struct inode *inode = file->f_mapping->host;
1288 struct xfs_inode *ip = XFS_I(inode);
1289 struct xfs_mount *mp = ip->i_mount;
1290 loff_t uninitialized_var(offset);
1291 xfs_fsize_t isize;
1292 xfs_fileoff_t fsbno;
1293 xfs_filblks_t end;
1294 uint lock;
1295 int error;
1296
1297 if (XFS_FORCED_SHUTDOWN(mp))
1298 return -XFS_ERROR(EIO);
1299
1300 lock = xfs_ilock_map_shared(ip);
1301
1302 isize = i_size_read(inode);
1303 if (start >= isize) {
1304 error = ENXIO;
1305 goto out_unlock;
1306 }
1307
1308 fsbno = XFS_B_TO_FSBT(mp, start);
1309 end = XFS_B_TO_FSB(mp, isize);
1310
1311 for (;;) {
1312 struct xfs_bmbt_irec map[2];
1313 int nmap = 2;
1314 unsigned int i;
1315
1316 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1317 XFS_BMAPI_ENTIRE);
1318 if (error)
1319 goto out_unlock;
1320
1321 /* No extents at given offset, must be beyond EOF */
1322 if (nmap == 0) {
1323 error = ENXIO;
1324 goto out_unlock;
1325 }
1326
1327 for (i = 0; i < nmap; i++) {
1328 offset = max_t(loff_t, start,
1329 XFS_FSB_TO_B(mp, map[i].br_startoff));
1330
1331 /* Landed in a hole */
1332 if (map[i].br_startblock == HOLESTARTBLOCK)
1333 goto out;
1334
1335 /*
1336 * Landed in an unwritten extent, try to search hole
1337 * from page cache.
1338 */
1339 if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1340 if (xfs_find_get_desired_pgoff(inode, &map[i],
1341 HOLE_OFF, &offset))
1342 goto out;
1343 }
1344 }
1345
1346 /*
1347 * map[0] contains data or its unwritten but contains
1348 * data in page cache, probably means that we are
1349 * reading after EOF. We should fix offset to point
1350 * to the end of the file(i.e., there is an implicit
1351 * hole at the end of any file).
1352 */
1353 if (nmap == 1) {
1354 offset = isize;
1355 break;
1356 }
1357
1358 ASSERT(i > 1);
1359
1360 /*
1361 * Both mappings contains data, proceed to the next round of
1362 * search if the current reading offset not beyond or hit EOF.
1363 */
1364 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1365 start = XFS_FSB_TO_B(mp, fsbno);
1366 if (start >= isize) {
1367 offset = isize;
1368 break;
1369 }
1370 }
1371
1372 out:
1373 /*
1374 * At this point, we must have found a hole. However, the returned
1375 * offset may be bigger than the file size as it may be aligned to
1376 * page boundary for unwritten extents, we need to deal with this
1377 * situation in particular.
1378 */
1379 offset = min_t(loff_t, offset, isize);
1380 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1381
1382 out_unlock:
1383 xfs_iunlock_map_shared(ip, lock);
1384
1385 if (error)
1386 return -error;
1387 return offset;
1388 }
1389
1390 STATIC loff_t
1391 xfs_file_llseek(
1392 struct file *file,
1393 loff_t offset,
1394 int origin)
1395 {
1396 switch (origin) {
1397 case SEEK_END:
1398 case SEEK_CUR:
1399 case SEEK_SET:
1400 return generic_file_llseek(file, offset, origin);
1401 case SEEK_DATA:
1402 return xfs_seek_data(file, offset);
1403 case SEEK_HOLE:
1404 return xfs_seek_hole(file, offset);
1405 default:
1406 return -EINVAL;
1407 }
1408 }
1409
1410 const struct file_operations xfs_file_operations = {
1411 .llseek = xfs_file_llseek,
1412 .read = do_sync_read,
1413 .write = do_sync_write,
1414 .aio_read = xfs_file_aio_read,
1415 .aio_write = xfs_file_aio_write,
1416 .splice_read = xfs_file_splice_read,
1417 .splice_write = xfs_file_splice_write,
1418 .unlocked_ioctl = xfs_file_ioctl,
1419 #ifdef CONFIG_COMPAT
1420 .compat_ioctl = xfs_file_compat_ioctl,
1421 #endif
1422 .mmap = xfs_file_mmap,
1423 .open = xfs_file_open,
1424 .release = xfs_file_release,
1425 .fsync = xfs_file_fsync,
1426 .fallocate = xfs_file_fallocate,
1427 };
1428
1429 const struct file_operations xfs_dir_file_operations = {
1430 .open = xfs_dir_open,
1431 .read = generic_read_dir,
1432 .iterate = xfs_file_readdir,
1433 .llseek = generic_file_llseek,
1434 .unlocked_ioctl = xfs_file_ioctl,
1435 #ifdef CONFIG_COMPAT
1436 .compat_ioctl = xfs_file_compat_ioctl,
1437 #endif
1438 .fsync = xfs_dir_fsync,
1439 };
1440
1441 static const struct vm_operations_struct xfs_file_vm_ops = {
1442 .fault = filemap_fault,
1443 .page_mkwrite = xfs_vm_page_mkwrite,
1444 .remap_pages = generic_file_remap_pages,
1445 };
This page took 0.084595 seconds and 5 git commands to generate.