xfs: decouple log and transaction headers
[deliverable/linux.git] / fs / xfs / xfs_file.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_sb.h"
24 #include "xfs_ag.h"
25 #include "xfs_mount.h"
26 #include "xfs_da_format.h"
27 #include "xfs_da_btree.h"
28 #include "xfs_bmap_btree.h"
29 #include "xfs_alloc.h"
30 #include "xfs_dinode.h"
31 #include "xfs_inode.h"
32 #include "xfs_trans.h"
33 #include "xfs_inode_item.h"
34 #include "xfs_bmap.h"
35 #include "xfs_bmap_util.h"
36 #include "xfs_error.h"
37 #include "xfs_dir2.h"
38 #include "xfs_dir2_priv.h"
39 #include "xfs_ioctl.h"
40 #include "xfs_trace.h"
41 #include "xfs_log.h"
42
43 #include <linux/aio.h>
44 #include <linux/dcache.h>
45 #include <linux/falloc.h>
46 #include <linux/pagevec.h>
47
48 static const struct vm_operations_struct xfs_file_vm_ops;
49
50 /*
51 * Locking primitives for read and write IO paths to ensure we consistently use
52 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
53 */
54 static inline void
55 xfs_rw_ilock(
56 struct xfs_inode *ip,
57 int type)
58 {
59 if (type & XFS_IOLOCK_EXCL)
60 mutex_lock(&VFS_I(ip)->i_mutex);
61 xfs_ilock(ip, type);
62 }
63
64 static inline void
65 xfs_rw_iunlock(
66 struct xfs_inode *ip,
67 int type)
68 {
69 xfs_iunlock(ip, type);
70 if (type & XFS_IOLOCK_EXCL)
71 mutex_unlock(&VFS_I(ip)->i_mutex);
72 }
73
74 static inline void
75 xfs_rw_ilock_demote(
76 struct xfs_inode *ip,
77 int type)
78 {
79 xfs_ilock_demote(ip, type);
80 if (type & XFS_IOLOCK_EXCL)
81 mutex_unlock(&VFS_I(ip)->i_mutex);
82 }
83
84 /*
85 * xfs_iozero
86 *
87 * xfs_iozero clears the specified range of buffer supplied,
88 * and marks all the affected blocks as valid and modified. If
89 * an affected block is not allocated, it will be allocated. If
90 * an affected block is not completely overwritten, and is not
91 * valid before the operation, it will be read from disk before
92 * being partially zeroed.
93 */
94 int
95 xfs_iozero(
96 struct xfs_inode *ip, /* inode */
97 loff_t pos, /* offset in file */
98 size_t count) /* size of data to zero */
99 {
100 struct page *page;
101 struct address_space *mapping;
102 int status;
103
104 mapping = VFS_I(ip)->i_mapping;
105 do {
106 unsigned offset, bytes;
107 void *fsdata;
108
109 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
110 bytes = PAGE_CACHE_SIZE - offset;
111 if (bytes > count)
112 bytes = count;
113
114 status = pagecache_write_begin(NULL, mapping, pos, bytes,
115 AOP_FLAG_UNINTERRUPTIBLE,
116 &page, &fsdata);
117 if (status)
118 break;
119
120 zero_user(page, offset, bytes);
121
122 status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
123 page, fsdata);
124 WARN_ON(status <= 0); /* can't return less than zero! */
125 pos += bytes;
126 count -= bytes;
127 status = 0;
128 } while (count);
129
130 return (-status);
131 }
132
133 /*
134 * Fsync operations on directories are much simpler than on regular files,
135 * as there is no file data to flush, and thus also no need for explicit
136 * cache flush operations, and there are no non-transaction metadata updates
137 * on directories either.
138 */
139 STATIC int
140 xfs_dir_fsync(
141 struct file *file,
142 loff_t start,
143 loff_t end,
144 int datasync)
145 {
146 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
147 struct xfs_mount *mp = ip->i_mount;
148 xfs_lsn_t lsn = 0;
149
150 trace_xfs_dir_fsync(ip);
151
152 xfs_ilock(ip, XFS_ILOCK_SHARED);
153 if (xfs_ipincount(ip))
154 lsn = ip->i_itemp->ili_last_lsn;
155 xfs_iunlock(ip, XFS_ILOCK_SHARED);
156
157 if (!lsn)
158 return 0;
159 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
160 }
161
162 STATIC int
163 xfs_file_fsync(
164 struct file *file,
165 loff_t start,
166 loff_t end,
167 int datasync)
168 {
169 struct inode *inode = file->f_mapping->host;
170 struct xfs_inode *ip = XFS_I(inode);
171 struct xfs_mount *mp = ip->i_mount;
172 int error = 0;
173 int log_flushed = 0;
174 xfs_lsn_t lsn = 0;
175
176 trace_xfs_file_fsync(ip);
177
178 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
179 if (error)
180 return error;
181
182 if (XFS_FORCED_SHUTDOWN(mp))
183 return -XFS_ERROR(EIO);
184
185 xfs_iflags_clear(ip, XFS_ITRUNCATED);
186
187 if (mp->m_flags & XFS_MOUNT_BARRIER) {
188 /*
189 * If we have an RT and/or log subvolume we need to make sure
190 * to flush the write cache the device used for file data
191 * first. This is to ensure newly written file data make
192 * it to disk before logging the new inode size in case of
193 * an extending write.
194 */
195 if (XFS_IS_REALTIME_INODE(ip))
196 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
197 else if (mp->m_logdev_targp != mp->m_ddev_targp)
198 xfs_blkdev_issue_flush(mp->m_ddev_targp);
199 }
200
201 /*
202 * All metadata updates are logged, which means that we just have
203 * to flush the log up to the latest LSN that touched the inode.
204 */
205 xfs_ilock(ip, XFS_ILOCK_SHARED);
206 if (xfs_ipincount(ip)) {
207 if (!datasync ||
208 (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
209 lsn = ip->i_itemp->ili_last_lsn;
210 }
211 xfs_iunlock(ip, XFS_ILOCK_SHARED);
212
213 if (lsn)
214 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
215
216 /*
217 * If we only have a single device, and the log force about was
218 * a no-op we might have to flush the data device cache here.
219 * This can only happen for fdatasync/O_DSYNC if we were overwriting
220 * an already allocated file and thus do not have any metadata to
221 * commit.
222 */
223 if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
224 mp->m_logdev_targp == mp->m_ddev_targp &&
225 !XFS_IS_REALTIME_INODE(ip) &&
226 !log_flushed)
227 xfs_blkdev_issue_flush(mp->m_ddev_targp);
228
229 return -error;
230 }
231
232 STATIC ssize_t
233 xfs_file_aio_read(
234 struct kiocb *iocb,
235 const struct iovec *iovp,
236 unsigned long nr_segs,
237 loff_t pos)
238 {
239 struct file *file = iocb->ki_filp;
240 struct inode *inode = file->f_mapping->host;
241 struct xfs_inode *ip = XFS_I(inode);
242 struct xfs_mount *mp = ip->i_mount;
243 size_t size = 0;
244 ssize_t ret = 0;
245 int ioflags = 0;
246 xfs_fsize_t n;
247
248 XFS_STATS_INC(xs_read_calls);
249
250 BUG_ON(iocb->ki_pos != pos);
251
252 if (unlikely(file->f_flags & O_DIRECT))
253 ioflags |= IO_ISDIRECT;
254 if (file->f_mode & FMODE_NOCMTIME)
255 ioflags |= IO_INVIS;
256
257 ret = generic_segment_checks(iovp, &nr_segs, &size, VERIFY_WRITE);
258 if (ret < 0)
259 return ret;
260
261 if (unlikely(ioflags & IO_ISDIRECT)) {
262 xfs_buftarg_t *target =
263 XFS_IS_REALTIME_INODE(ip) ?
264 mp->m_rtdev_targp : mp->m_ddev_targp;
265 if ((pos & target->bt_smask) || (size & target->bt_smask)) {
266 if (pos == i_size_read(inode))
267 return 0;
268 return -XFS_ERROR(EINVAL);
269 }
270 }
271
272 n = mp->m_super->s_maxbytes - pos;
273 if (n <= 0 || size == 0)
274 return 0;
275
276 if (n < size)
277 size = n;
278
279 if (XFS_FORCED_SHUTDOWN(mp))
280 return -EIO;
281
282 /*
283 * Locking is a bit tricky here. If we take an exclusive lock
284 * for direct IO, we effectively serialise all new concurrent
285 * read IO to this file and block it behind IO that is currently in
286 * progress because IO in progress holds the IO lock shared. We only
287 * need to hold the lock exclusive to blow away the page cache, so
288 * only take lock exclusively if the page cache needs invalidation.
289 * This allows the normal direct IO case of no page cache pages to
290 * proceeed concurrently without serialisation.
291 */
292 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
293 if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) {
294 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
295 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
296
297 if (inode->i_mapping->nrpages) {
298 ret = -filemap_write_and_wait_range(
299 VFS_I(ip)->i_mapping,
300 pos, -1);
301 if (ret) {
302 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
303 return ret;
304 }
305 truncate_pagecache_range(VFS_I(ip), pos, -1);
306 }
307 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
308 }
309
310 trace_xfs_file_read(ip, size, pos, ioflags);
311
312 ret = generic_file_aio_read(iocb, iovp, nr_segs, pos);
313 if (ret > 0)
314 XFS_STATS_ADD(xs_read_bytes, ret);
315
316 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
317 return ret;
318 }
319
320 STATIC ssize_t
321 xfs_file_splice_read(
322 struct file *infilp,
323 loff_t *ppos,
324 struct pipe_inode_info *pipe,
325 size_t count,
326 unsigned int flags)
327 {
328 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host);
329 int ioflags = 0;
330 ssize_t ret;
331
332 XFS_STATS_INC(xs_read_calls);
333
334 if (infilp->f_mode & FMODE_NOCMTIME)
335 ioflags |= IO_INVIS;
336
337 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
338 return -EIO;
339
340 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
341
342 trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
343
344 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
345 if (ret > 0)
346 XFS_STATS_ADD(xs_read_bytes, ret);
347
348 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
349 return ret;
350 }
351
352 /*
353 * xfs_file_splice_write() does not use xfs_rw_ilock() because
354 * generic_file_splice_write() takes the i_mutex itself. This, in theory,
355 * couuld cause lock inversions between the aio_write path and the splice path
356 * if someone is doing concurrent splice(2) based writes and write(2) based
357 * writes to the same inode. The only real way to fix this is to re-implement
358 * the generic code here with correct locking orders.
359 */
360 STATIC ssize_t
361 xfs_file_splice_write(
362 struct pipe_inode_info *pipe,
363 struct file *outfilp,
364 loff_t *ppos,
365 size_t count,
366 unsigned int flags)
367 {
368 struct inode *inode = outfilp->f_mapping->host;
369 struct xfs_inode *ip = XFS_I(inode);
370 int ioflags = 0;
371 ssize_t ret;
372
373 XFS_STATS_INC(xs_write_calls);
374
375 if (outfilp->f_mode & FMODE_NOCMTIME)
376 ioflags |= IO_INVIS;
377
378 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
379 return -EIO;
380
381 xfs_ilock(ip, XFS_IOLOCK_EXCL);
382
383 trace_xfs_file_splice_write(ip, count, *ppos, ioflags);
384
385 ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
386 if (ret > 0)
387 XFS_STATS_ADD(xs_write_bytes, ret);
388
389 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
390 return ret;
391 }
392
393 /*
394 * This routine is called to handle zeroing any space in the last block of the
395 * file that is beyond the EOF. We do this since the size is being increased
396 * without writing anything to that block and we don't want to read the
397 * garbage on the disk.
398 */
399 STATIC int /* error (positive) */
400 xfs_zero_last_block(
401 struct xfs_inode *ip,
402 xfs_fsize_t offset,
403 xfs_fsize_t isize)
404 {
405 struct xfs_mount *mp = ip->i_mount;
406 xfs_fileoff_t last_fsb = XFS_B_TO_FSBT(mp, isize);
407 int zero_offset = XFS_B_FSB_OFFSET(mp, isize);
408 int zero_len;
409 int nimaps = 1;
410 int error = 0;
411 struct xfs_bmbt_irec imap;
412
413 xfs_ilock(ip, XFS_ILOCK_EXCL);
414 error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
415 xfs_iunlock(ip, XFS_ILOCK_EXCL);
416 if (error)
417 return error;
418
419 ASSERT(nimaps > 0);
420
421 /*
422 * If the block underlying isize is just a hole, then there
423 * is nothing to zero.
424 */
425 if (imap.br_startblock == HOLESTARTBLOCK)
426 return 0;
427
428 zero_len = mp->m_sb.sb_blocksize - zero_offset;
429 if (isize + zero_len > offset)
430 zero_len = offset - isize;
431 return xfs_iozero(ip, isize, zero_len);
432 }
433
434 /*
435 * Zero any on disk space between the current EOF and the new, larger EOF.
436 *
437 * This handles the normal case of zeroing the remainder of the last block in
438 * the file and the unusual case of zeroing blocks out beyond the size of the
439 * file. This second case only happens with fixed size extents and when the
440 * system crashes before the inode size was updated but after blocks were
441 * allocated.
442 *
443 * Expects the iolock to be held exclusive, and will take the ilock internally.
444 */
445 int /* error (positive) */
446 xfs_zero_eof(
447 struct xfs_inode *ip,
448 xfs_off_t offset, /* starting I/O offset */
449 xfs_fsize_t isize) /* current inode size */
450 {
451 struct xfs_mount *mp = ip->i_mount;
452 xfs_fileoff_t start_zero_fsb;
453 xfs_fileoff_t end_zero_fsb;
454 xfs_fileoff_t zero_count_fsb;
455 xfs_fileoff_t last_fsb;
456 xfs_fileoff_t zero_off;
457 xfs_fsize_t zero_len;
458 int nimaps;
459 int error = 0;
460 struct xfs_bmbt_irec imap;
461
462 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
463 ASSERT(offset > isize);
464
465 /*
466 * First handle zeroing the block on which isize resides.
467 *
468 * We only zero a part of that block so it is handled specially.
469 */
470 if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
471 error = xfs_zero_last_block(ip, offset, isize);
472 if (error)
473 return error;
474 }
475
476 /*
477 * Calculate the range between the new size and the old where blocks
478 * needing to be zeroed may exist.
479 *
480 * To get the block where the last byte in the file currently resides,
481 * we need to subtract one from the size and truncate back to a block
482 * boundary. We subtract 1 in case the size is exactly on a block
483 * boundary.
484 */
485 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
486 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
487 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
488 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
489 if (last_fsb == end_zero_fsb) {
490 /*
491 * The size was only incremented on its last block.
492 * We took care of that above, so just return.
493 */
494 return 0;
495 }
496
497 ASSERT(start_zero_fsb <= end_zero_fsb);
498 while (start_zero_fsb <= end_zero_fsb) {
499 nimaps = 1;
500 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
501
502 xfs_ilock(ip, XFS_ILOCK_EXCL);
503 error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
504 &imap, &nimaps, 0);
505 xfs_iunlock(ip, XFS_ILOCK_EXCL);
506 if (error)
507 return error;
508
509 ASSERT(nimaps > 0);
510
511 if (imap.br_state == XFS_EXT_UNWRITTEN ||
512 imap.br_startblock == HOLESTARTBLOCK) {
513 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
514 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
515 continue;
516 }
517
518 /*
519 * There are blocks we need to zero.
520 */
521 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
522 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
523
524 if ((zero_off + zero_len) > offset)
525 zero_len = offset - zero_off;
526
527 error = xfs_iozero(ip, zero_off, zero_len);
528 if (error)
529 return error;
530
531 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
532 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
533 }
534
535 return 0;
536 }
537
538 /*
539 * Common pre-write limit and setup checks.
540 *
541 * Called with the iolocked held either shared and exclusive according to
542 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
543 * if called for a direct write beyond i_size.
544 */
545 STATIC ssize_t
546 xfs_file_aio_write_checks(
547 struct file *file,
548 loff_t *pos,
549 size_t *count,
550 int *iolock)
551 {
552 struct inode *inode = file->f_mapping->host;
553 struct xfs_inode *ip = XFS_I(inode);
554 int error = 0;
555
556 restart:
557 error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
558 if (error)
559 return error;
560
561 /*
562 * If the offset is beyond the size of the file, we need to zero any
563 * blocks that fall between the existing EOF and the start of this
564 * write. If zeroing is needed and we are currently holding the
565 * iolock shared, we need to update it to exclusive which implies
566 * having to redo all checks before.
567 */
568 if (*pos > i_size_read(inode)) {
569 if (*iolock == XFS_IOLOCK_SHARED) {
570 xfs_rw_iunlock(ip, *iolock);
571 *iolock = XFS_IOLOCK_EXCL;
572 xfs_rw_ilock(ip, *iolock);
573 goto restart;
574 }
575 error = -xfs_zero_eof(ip, *pos, i_size_read(inode));
576 if (error)
577 return error;
578 }
579
580 /*
581 * Updating the timestamps will grab the ilock again from
582 * xfs_fs_dirty_inode, so we have to call it after dropping the
583 * lock above. Eventually we should look into a way to avoid
584 * the pointless lock roundtrip.
585 */
586 if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
587 error = file_update_time(file);
588 if (error)
589 return error;
590 }
591
592 /*
593 * If we're writing the file then make sure to clear the setuid and
594 * setgid bits if the process is not being run by root. This keeps
595 * people from modifying setuid and setgid binaries.
596 */
597 return file_remove_suid(file);
598 }
599
600 /*
601 * xfs_file_dio_aio_write - handle direct IO writes
602 *
603 * Lock the inode appropriately to prepare for and issue a direct IO write.
604 * By separating it from the buffered write path we remove all the tricky to
605 * follow locking changes and looping.
606 *
607 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
608 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
609 * pages are flushed out.
610 *
611 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
612 * allowing them to be done in parallel with reads and other direct IO writes.
613 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
614 * needs to do sub-block zeroing and that requires serialisation against other
615 * direct IOs to the same block. In this case we need to serialise the
616 * submission of the unaligned IOs so that we don't get racing block zeroing in
617 * the dio layer. To avoid the problem with aio, we also need to wait for
618 * outstanding IOs to complete so that unwritten extent conversion is completed
619 * before we try to map the overlapping block. This is currently implemented by
620 * hitting it with a big hammer (i.e. inode_dio_wait()).
621 *
622 * Returns with locks held indicated by @iolock and errors indicated by
623 * negative return values.
624 */
625 STATIC ssize_t
626 xfs_file_dio_aio_write(
627 struct kiocb *iocb,
628 const struct iovec *iovp,
629 unsigned long nr_segs,
630 loff_t pos,
631 size_t ocount)
632 {
633 struct file *file = iocb->ki_filp;
634 struct address_space *mapping = file->f_mapping;
635 struct inode *inode = mapping->host;
636 struct xfs_inode *ip = XFS_I(inode);
637 struct xfs_mount *mp = ip->i_mount;
638 ssize_t ret = 0;
639 size_t count = ocount;
640 int unaligned_io = 0;
641 int iolock;
642 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
643 mp->m_rtdev_targp : mp->m_ddev_targp;
644
645 if ((pos & target->bt_smask) || (count & target->bt_smask))
646 return -XFS_ERROR(EINVAL);
647
648 if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
649 unaligned_io = 1;
650
651 /*
652 * We don't need to take an exclusive lock unless there page cache needs
653 * to be invalidated or unaligned IO is being executed. We don't need to
654 * consider the EOF extension case here because
655 * xfs_file_aio_write_checks() will relock the inode as necessary for
656 * EOF zeroing cases and fill out the new inode size as appropriate.
657 */
658 if (unaligned_io || mapping->nrpages)
659 iolock = XFS_IOLOCK_EXCL;
660 else
661 iolock = XFS_IOLOCK_SHARED;
662 xfs_rw_ilock(ip, iolock);
663
664 /*
665 * Recheck if there are cached pages that need invalidate after we got
666 * the iolock to protect against other threads adding new pages while
667 * we were waiting for the iolock.
668 */
669 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
670 xfs_rw_iunlock(ip, iolock);
671 iolock = XFS_IOLOCK_EXCL;
672 xfs_rw_ilock(ip, iolock);
673 }
674
675 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
676 if (ret)
677 goto out;
678
679 if (mapping->nrpages) {
680 ret = -filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
681 pos, -1);
682 if (ret)
683 goto out;
684 truncate_pagecache_range(VFS_I(ip), pos, -1);
685 }
686
687 /*
688 * If we are doing unaligned IO, wait for all other IO to drain,
689 * otherwise demote the lock if we had to flush cached pages
690 */
691 if (unaligned_io)
692 inode_dio_wait(inode);
693 else if (iolock == XFS_IOLOCK_EXCL) {
694 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
695 iolock = XFS_IOLOCK_SHARED;
696 }
697
698 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
699 ret = generic_file_direct_write(iocb, iovp,
700 &nr_segs, pos, &iocb->ki_pos, count, ocount);
701
702 out:
703 xfs_rw_iunlock(ip, iolock);
704
705 /* No fallback to buffered IO on errors for XFS. */
706 ASSERT(ret < 0 || ret == count);
707 return ret;
708 }
709
710 STATIC ssize_t
711 xfs_file_buffered_aio_write(
712 struct kiocb *iocb,
713 const struct iovec *iovp,
714 unsigned long nr_segs,
715 loff_t pos,
716 size_t ocount)
717 {
718 struct file *file = iocb->ki_filp;
719 struct address_space *mapping = file->f_mapping;
720 struct inode *inode = mapping->host;
721 struct xfs_inode *ip = XFS_I(inode);
722 ssize_t ret;
723 int enospc = 0;
724 int iolock = XFS_IOLOCK_EXCL;
725 size_t count = ocount;
726
727 xfs_rw_ilock(ip, iolock);
728
729 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
730 if (ret)
731 goto out;
732
733 /* We can write back this queue in page reclaim */
734 current->backing_dev_info = mapping->backing_dev_info;
735
736 write_retry:
737 trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
738 ret = generic_file_buffered_write(iocb, iovp, nr_segs,
739 pos, &iocb->ki_pos, count, 0);
740
741 /*
742 * If we just got an ENOSPC, try to write back all dirty inodes to
743 * convert delalloc space to free up some of the excess reserved
744 * metadata space.
745 */
746 if (ret == -ENOSPC && !enospc) {
747 enospc = 1;
748 xfs_flush_inodes(ip->i_mount);
749 goto write_retry;
750 }
751
752 current->backing_dev_info = NULL;
753 out:
754 xfs_rw_iunlock(ip, iolock);
755 return ret;
756 }
757
758 STATIC ssize_t
759 xfs_file_aio_write(
760 struct kiocb *iocb,
761 const struct iovec *iovp,
762 unsigned long nr_segs,
763 loff_t pos)
764 {
765 struct file *file = iocb->ki_filp;
766 struct address_space *mapping = file->f_mapping;
767 struct inode *inode = mapping->host;
768 struct xfs_inode *ip = XFS_I(inode);
769 ssize_t ret;
770 size_t ocount = 0;
771
772 XFS_STATS_INC(xs_write_calls);
773
774 BUG_ON(iocb->ki_pos != pos);
775
776 ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ);
777 if (ret)
778 return ret;
779
780 if (ocount == 0)
781 return 0;
782
783 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
784 ret = -EIO;
785 goto out;
786 }
787
788 if (unlikely(file->f_flags & O_DIRECT))
789 ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos, ocount);
790 else
791 ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos,
792 ocount);
793
794 if (ret > 0) {
795 ssize_t err;
796
797 XFS_STATS_ADD(xs_write_bytes, ret);
798
799 /* Handle various SYNC-type writes */
800 err = generic_write_sync(file, pos, ret);
801 if (err < 0)
802 ret = err;
803 }
804
805 out:
806 return ret;
807 }
808
809 STATIC long
810 xfs_file_fallocate(
811 struct file *file,
812 int mode,
813 loff_t offset,
814 loff_t len)
815 {
816 struct inode *inode = file_inode(file);
817 struct xfs_inode *ip = XFS_I(inode);
818 struct xfs_trans *tp;
819 long error;
820 loff_t new_size = 0;
821
822 if (!S_ISREG(inode->i_mode))
823 return -EINVAL;
824 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
825 return -EOPNOTSUPP;
826
827 xfs_ilock(ip, XFS_IOLOCK_EXCL);
828 if (mode & FALLOC_FL_PUNCH_HOLE) {
829 error = xfs_free_file_space(ip, offset, len);
830 if (error)
831 goto out_unlock;
832 } else {
833 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
834 offset + len > i_size_read(inode)) {
835 new_size = offset + len;
836 error = -inode_newsize_ok(inode, new_size);
837 if (error)
838 goto out_unlock;
839 }
840
841 error = xfs_alloc_file_space(ip, offset, len,
842 XFS_BMAPI_PREALLOC);
843 if (error)
844 goto out_unlock;
845 }
846
847 tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID);
848 error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0);
849 if (error) {
850 xfs_trans_cancel(tp, 0);
851 goto out_unlock;
852 }
853
854 xfs_ilock(ip, XFS_ILOCK_EXCL);
855 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
856 ip->i_d.di_mode &= ~S_ISUID;
857 if (ip->i_d.di_mode & S_IXGRP)
858 ip->i_d.di_mode &= ~S_ISGID;
859
860 if (!(mode & FALLOC_FL_PUNCH_HOLE))
861 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
862
863 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
864 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
865
866 if (file->f_flags & O_DSYNC)
867 xfs_trans_set_sync(tp);
868 error = xfs_trans_commit(tp, 0);
869 if (error)
870 goto out_unlock;
871
872 /* Change file size if needed */
873 if (new_size) {
874 struct iattr iattr;
875
876 iattr.ia_valid = ATTR_SIZE;
877 iattr.ia_size = new_size;
878 error = xfs_setattr_size(ip, &iattr);
879 }
880
881 out_unlock:
882 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
883 return -error;
884 }
885
886
887 STATIC int
888 xfs_file_open(
889 struct inode *inode,
890 struct file *file)
891 {
892 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
893 return -EFBIG;
894 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
895 return -EIO;
896 return 0;
897 }
898
899 STATIC int
900 xfs_dir_open(
901 struct inode *inode,
902 struct file *file)
903 {
904 struct xfs_inode *ip = XFS_I(inode);
905 int mode;
906 int error;
907
908 error = xfs_file_open(inode, file);
909 if (error)
910 return error;
911
912 /*
913 * If there are any blocks, read-ahead block 0 as we're almost
914 * certain to have the next operation be a read there.
915 */
916 mode = xfs_ilock_map_shared(ip);
917 if (ip->i_d.di_nextents > 0)
918 xfs_dir3_data_readahead(NULL, ip, 0, -1);
919 xfs_iunlock(ip, mode);
920 return 0;
921 }
922
923 STATIC int
924 xfs_file_release(
925 struct inode *inode,
926 struct file *filp)
927 {
928 return -xfs_release(XFS_I(inode));
929 }
930
931 STATIC int
932 xfs_file_readdir(
933 struct file *file,
934 struct dir_context *ctx)
935 {
936 struct inode *inode = file_inode(file);
937 xfs_inode_t *ip = XFS_I(inode);
938 int error;
939 size_t bufsize;
940
941 /*
942 * The Linux API doesn't pass down the total size of the buffer
943 * we read into down to the filesystem. With the filldir concept
944 * it's not needed for correct information, but the XFS dir2 leaf
945 * code wants an estimate of the buffer size to calculate it's
946 * readahead window and size the buffers used for mapping to
947 * physical blocks.
948 *
949 * Try to give it an estimate that's good enough, maybe at some
950 * point we can change the ->readdir prototype to include the
951 * buffer size. For now we use the current glibc buffer size.
952 */
953 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
954
955 error = xfs_readdir(ip, ctx, bufsize);
956 if (error)
957 return -error;
958 return 0;
959 }
960
961 STATIC int
962 xfs_file_mmap(
963 struct file *filp,
964 struct vm_area_struct *vma)
965 {
966 vma->vm_ops = &xfs_file_vm_ops;
967
968 file_accessed(filp);
969 return 0;
970 }
971
972 /*
973 * mmap()d file has taken write protection fault and is being made
974 * writable. We can set the page state up correctly for a writable
975 * page, which means we can do correct delalloc accounting (ENOSPC
976 * checking!) and unwritten extent mapping.
977 */
978 STATIC int
979 xfs_vm_page_mkwrite(
980 struct vm_area_struct *vma,
981 struct vm_fault *vmf)
982 {
983 return block_page_mkwrite(vma, vmf, xfs_get_blocks);
984 }
985
986 /*
987 * This type is designed to indicate the type of offset we would like
988 * to search from page cache for either xfs_seek_data() or xfs_seek_hole().
989 */
990 enum {
991 HOLE_OFF = 0,
992 DATA_OFF,
993 };
994
995 /*
996 * Lookup the desired type of offset from the given page.
997 *
998 * On success, return true and the offset argument will point to the
999 * start of the region that was found. Otherwise this function will
1000 * return false and keep the offset argument unchanged.
1001 */
1002 STATIC bool
1003 xfs_lookup_buffer_offset(
1004 struct page *page,
1005 loff_t *offset,
1006 unsigned int type)
1007 {
1008 loff_t lastoff = page_offset(page);
1009 bool found = false;
1010 struct buffer_head *bh, *head;
1011
1012 bh = head = page_buffers(page);
1013 do {
1014 /*
1015 * Unwritten extents that have data in the page
1016 * cache covering them can be identified by the
1017 * BH_Unwritten state flag. Pages with multiple
1018 * buffers might have a mix of holes, data and
1019 * unwritten extents - any buffer with valid
1020 * data in it should have BH_Uptodate flag set
1021 * on it.
1022 */
1023 if (buffer_unwritten(bh) ||
1024 buffer_uptodate(bh)) {
1025 if (type == DATA_OFF)
1026 found = true;
1027 } else {
1028 if (type == HOLE_OFF)
1029 found = true;
1030 }
1031
1032 if (found) {
1033 *offset = lastoff;
1034 break;
1035 }
1036 lastoff += bh->b_size;
1037 } while ((bh = bh->b_this_page) != head);
1038
1039 return found;
1040 }
1041
1042 /*
1043 * This routine is called to find out and return a data or hole offset
1044 * from the page cache for unwritten extents according to the desired
1045 * type for xfs_seek_data() or xfs_seek_hole().
1046 *
1047 * The argument offset is used to tell where we start to search from the
1048 * page cache. Map is used to figure out the end points of the range to
1049 * lookup pages.
1050 *
1051 * Return true if the desired type of offset was found, and the argument
1052 * offset is filled with that address. Otherwise, return false and keep
1053 * offset unchanged.
1054 */
1055 STATIC bool
1056 xfs_find_get_desired_pgoff(
1057 struct inode *inode,
1058 struct xfs_bmbt_irec *map,
1059 unsigned int type,
1060 loff_t *offset)
1061 {
1062 struct xfs_inode *ip = XFS_I(inode);
1063 struct xfs_mount *mp = ip->i_mount;
1064 struct pagevec pvec;
1065 pgoff_t index;
1066 pgoff_t end;
1067 loff_t endoff;
1068 loff_t startoff = *offset;
1069 loff_t lastoff = startoff;
1070 bool found = false;
1071
1072 pagevec_init(&pvec, 0);
1073
1074 index = startoff >> PAGE_CACHE_SHIFT;
1075 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1076 end = endoff >> PAGE_CACHE_SHIFT;
1077 do {
1078 int want;
1079 unsigned nr_pages;
1080 unsigned int i;
1081
1082 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1083 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1084 want);
1085 /*
1086 * No page mapped into given range. If we are searching holes
1087 * and if this is the first time we got into the loop, it means
1088 * that the given offset is landed in a hole, return it.
1089 *
1090 * If we have already stepped through some block buffers to find
1091 * holes but they all contains data. In this case, the last
1092 * offset is already updated and pointed to the end of the last
1093 * mapped page, if it does not reach the endpoint to search,
1094 * that means there should be a hole between them.
1095 */
1096 if (nr_pages == 0) {
1097 /* Data search found nothing */
1098 if (type == DATA_OFF)
1099 break;
1100
1101 ASSERT(type == HOLE_OFF);
1102 if (lastoff == startoff || lastoff < endoff) {
1103 found = true;
1104 *offset = lastoff;
1105 }
1106 break;
1107 }
1108
1109 /*
1110 * At lease we found one page. If this is the first time we
1111 * step into the loop, and if the first page index offset is
1112 * greater than the given search offset, a hole was found.
1113 */
1114 if (type == HOLE_OFF && lastoff == startoff &&
1115 lastoff < page_offset(pvec.pages[0])) {
1116 found = true;
1117 break;
1118 }
1119
1120 for (i = 0; i < nr_pages; i++) {
1121 struct page *page = pvec.pages[i];
1122 loff_t b_offset;
1123
1124 /*
1125 * At this point, the page may be truncated or
1126 * invalidated (changing page->mapping to NULL),
1127 * or even swizzled back from swapper_space to tmpfs
1128 * file mapping. However, page->index will not change
1129 * because we have a reference on the page.
1130 *
1131 * Searching done if the page index is out of range.
1132 * If the current offset is not reaches the end of
1133 * the specified search range, there should be a hole
1134 * between them.
1135 */
1136 if (page->index > end) {
1137 if (type == HOLE_OFF && lastoff < endoff) {
1138 *offset = lastoff;
1139 found = true;
1140 }
1141 goto out;
1142 }
1143
1144 lock_page(page);
1145 /*
1146 * Page truncated or invalidated(page->mapping == NULL).
1147 * We can freely skip it and proceed to check the next
1148 * page.
1149 */
1150 if (unlikely(page->mapping != inode->i_mapping)) {
1151 unlock_page(page);
1152 continue;
1153 }
1154
1155 if (!page_has_buffers(page)) {
1156 unlock_page(page);
1157 continue;
1158 }
1159
1160 found = xfs_lookup_buffer_offset(page, &b_offset, type);
1161 if (found) {
1162 /*
1163 * The found offset may be less than the start
1164 * point to search if this is the first time to
1165 * come here.
1166 */
1167 *offset = max_t(loff_t, startoff, b_offset);
1168 unlock_page(page);
1169 goto out;
1170 }
1171
1172 /*
1173 * We either searching data but nothing was found, or
1174 * searching hole but found a data buffer. In either
1175 * case, probably the next page contains the desired
1176 * things, update the last offset to it so.
1177 */
1178 lastoff = page_offset(page) + PAGE_SIZE;
1179 unlock_page(page);
1180 }
1181
1182 /*
1183 * The number of returned pages less than our desired, search
1184 * done. In this case, nothing was found for searching data,
1185 * but we found a hole behind the last offset.
1186 */
1187 if (nr_pages < want) {
1188 if (type == HOLE_OFF) {
1189 *offset = lastoff;
1190 found = true;
1191 }
1192 break;
1193 }
1194
1195 index = pvec.pages[i - 1]->index + 1;
1196 pagevec_release(&pvec);
1197 } while (index <= end);
1198
1199 out:
1200 pagevec_release(&pvec);
1201 return found;
1202 }
1203
1204 STATIC loff_t
1205 xfs_seek_data(
1206 struct file *file,
1207 loff_t start)
1208 {
1209 struct inode *inode = file->f_mapping->host;
1210 struct xfs_inode *ip = XFS_I(inode);
1211 struct xfs_mount *mp = ip->i_mount;
1212 loff_t uninitialized_var(offset);
1213 xfs_fsize_t isize;
1214 xfs_fileoff_t fsbno;
1215 xfs_filblks_t end;
1216 uint lock;
1217 int error;
1218
1219 lock = xfs_ilock_map_shared(ip);
1220
1221 isize = i_size_read(inode);
1222 if (start >= isize) {
1223 error = ENXIO;
1224 goto out_unlock;
1225 }
1226
1227 /*
1228 * Try to read extents from the first block indicated
1229 * by fsbno to the end block of the file.
1230 */
1231 fsbno = XFS_B_TO_FSBT(mp, start);
1232 end = XFS_B_TO_FSB(mp, isize);
1233 for (;;) {
1234 struct xfs_bmbt_irec map[2];
1235 int nmap = 2;
1236 unsigned int i;
1237
1238 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1239 XFS_BMAPI_ENTIRE);
1240 if (error)
1241 goto out_unlock;
1242
1243 /* No extents at given offset, must be beyond EOF */
1244 if (nmap == 0) {
1245 error = ENXIO;
1246 goto out_unlock;
1247 }
1248
1249 for (i = 0; i < nmap; i++) {
1250 offset = max_t(loff_t, start,
1251 XFS_FSB_TO_B(mp, map[i].br_startoff));
1252
1253 /* Landed in a data extent */
1254 if (map[i].br_startblock == DELAYSTARTBLOCK ||
1255 (map[i].br_state == XFS_EXT_NORM &&
1256 !isnullstartblock(map[i].br_startblock)))
1257 goto out;
1258
1259 /*
1260 * Landed in an unwritten extent, try to search data
1261 * from page cache.
1262 */
1263 if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1264 if (xfs_find_get_desired_pgoff(inode, &map[i],
1265 DATA_OFF, &offset))
1266 goto out;
1267 }
1268 }
1269
1270 /*
1271 * map[0] is hole or its an unwritten extent but
1272 * without data in page cache. Probably means that
1273 * we are reading after EOF if nothing in map[1].
1274 */
1275 if (nmap == 1) {
1276 error = ENXIO;
1277 goto out_unlock;
1278 }
1279
1280 ASSERT(i > 1);
1281
1282 /*
1283 * Nothing was found, proceed to the next round of search
1284 * if reading offset not beyond or hit EOF.
1285 */
1286 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1287 start = XFS_FSB_TO_B(mp, fsbno);
1288 if (start >= isize) {
1289 error = ENXIO;
1290 goto out_unlock;
1291 }
1292 }
1293
1294 out:
1295 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1296
1297 out_unlock:
1298 xfs_iunlock_map_shared(ip, lock);
1299
1300 if (error)
1301 return -error;
1302 return offset;
1303 }
1304
1305 STATIC loff_t
1306 xfs_seek_hole(
1307 struct file *file,
1308 loff_t start)
1309 {
1310 struct inode *inode = file->f_mapping->host;
1311 struct xfs_inode *ip = XFS_I(inode);
1312 struct xfs_mount *mp = ip->i_mount;
1313 loff_t uninitialized_var(offset);
1314 xfs_fsize_t isize;
1315 xfs_fileoff_t fsbno;
1316 xfs_filblks_t end;
1317 uint lock;
1318 int error;
1319
1320 if (XFS_FORCED_SHUTDOWN(mp))
1321 return -XFS_ERROR(EIO);
1322
1323 lock = xfs_ilock_map_shared(ip);
1324
1325 isize = i_size_read(inode);
1326 if (start >= isize) {
1327 error = ENXIO;
1328 goto out_unlock;
1329 }
1330
1331 fsbno = XFS_B_TO_FSBT(mp, start);
1332 end = XFS_B_TO_FSB(mp, isize);
1333
1334 for (;;) {
1335 struct xfs_bmbt_irec map[2];
1336 int nmap = 2;
1337 unsigned int i;
1338
1339 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1340 XFS_BMAPI_ENTIRE);
1341 if (error)
1342 goto out_unlock;
1343
1344 /* No extents at given offset, must be beyond EOF */
1345 if (nmap == 0) {
1346 error = ENXIO;
1347 goto out_unlock;
1348 }
1349
1350 for (i = 0; i < nmap; i++) {
1351 offset = max_t(loff_t, start,
1352 XFS_FSB_TO_B(mp, map[i].br_startoff));
1353
1354 /* Landed in a hole */
1355 if (map[i].br_startblock == HOLESTARTBLOCK)
1356 goto out;
1357
1358 /*
1359 * Landed in an unwritten extent, try to search hole
1360 * from page cache.
1361 */
1362 if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1363 if (xfs_find_get_desired_pgoff(inode, &map[i],
1364 HOLE_OFF, &offset))
1365 goto out;
1366 }
1367 }
1368
1369 /*
1370 * map[0] contains data or its unwritten but contains
1371 * data in page cache, probably means that we are
1372 * reading after EOF. We should fix offset to point
1373 * to the end of the file(i.e., there is an implicit
1374 * hole at the end of any file).
1375 */
1376 if (nmap == 1) {
1377 offset = isize;
1378 break;
1379 }
1380
1381 ASSERT(i > 1);
1382
1383 /*
1384 * Both mappings contains data, proceed to the next round of
1385 * search if the current reading offset not beyond or hit EOF.
1386 */
1387 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1388 start = XFS_FSB_TO_B(mp, fsbno);
1389 if (start >= isize) {
1390 offset = isize;
1391 break;
1392 }
1393 }
1394
1395 out:
1396 /*
1397 * At this point, we must have found a hole. However, the returned
1398 * offset may be bigger than the file size as it may be aligned to
1399 * page boundary for unwritten extents, we need to deal with this
1400 * situation in particular.
1401 */
1402 offset = min_t(loff_t, offset, isize);
1403 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1404
1405 out_unlock:
1406 xfs_iunlock_map_shared(ip, lock);
1407
1408 if (error)
1409 return -error;
1410 return offset;
1411 }
1412
1413 STATIC loff_t
1414 xfs_file_llseek(
1415 struct file *file,
1416 loff_t offset,
1417 int origin)
1418 {
1419 switch (origin) {
1420 case SEEK_END:
1421 case SEEK_CUR:
1422 case SEEK_SET:
1423 return generic_file_llseek(file, offset, origin);
1424 case SEEK_DATA:
1425 return xfs_seek_data(file, offset);
1426 case SEEK_HOLE:
1427 return xfs_seek_hole(file, offset);
1428 default:
1429 return -EINVAL;
1430 }
1431 }
1432
1433 const struct file_operations xfs_file_operations = {
1434 .llseek = xfs_file_llseek,
1435 .read = do_sync_read,
1436 .write = do_sync_write,
1437 .aio_read = xfs_file_aio_read,
1438 .aio_write = xfs_file_aio_write,
1439 .splice_read = xfs_file_splice_read,
1440 .splice_write = xfs_file_splice_write,
1441 .unlocked_ioctl = xfs_file_ioctl,
1442 #ifdef CONFIG_COMPAT
1443 .compat_ioctl = xfs_file_compat_ioctl,
1444 #endif
1445 .mmap = xfs_file_mmap,
1446 .open = xfs_file_open,
1447 .release = xfs_file_release,
1448 .fsync = xfs_file_fsync,
1449 .fallocate = xfs_file_fallocate,
1450 };
1451
1452 const struct file_operations xfs_dir_file_operations = {
1453 .open = xfs_dir_open,
1454 .read = generic_read_dir,
1455 .iterate = xfs_file_readdir,
1456 .llseek = generic_file_llseek,
1457 .unlocked_ioctl = xfs_file_ioctl,
1458 #ifdef CONFIG_COMPAT
1459 .compat_ioctl = xfs_file_compat_ioctl,
1460 #endif
1461 .fsync = xfs_dir_fsync,
1462 };
1463
1464 static const struct vm_operations_struct xfs_file_vm_ops = {
1465 .fault = filemap_fault,
1466 .page_mkwrite = xfs_vm_page_mkwrite,
1467 .remap_pages = generic_file_remap_pages,
1468 };
This page took 0.078949 seconds and 5 git commands to generate.