Merge remote-tracking branch 'at91/at91-next'
[deliverable/linux.git] / fs / xfs / xfs_icache.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_sb.h"
24 #include "xfs_mount.h"
25 #include "xfs_inode.h"
26 #include "xfs_error.h"
27 #include "xfs_trans.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_quota.h"
31 #include "xfs_trace.h"
32 #include "xfs_icache.h"
33 #include "xfs_bmap_util.h"
34 #include "xfs_dquot_item.h"
35 #include "xfs_dquot.h"
36
37 #include <linux/kthread.h>
38 #include <linux/freezer.h>
39
40 /*
41 * Allocate and initialise an xfs_inode.
42 */
43 struct xfs_inode *
44 xfs_inode_alloc(
45 struct xfs_mount *mp,
46 xfs_ino_t ino)
47 {
48 struct xfs_inode *ip;
49
50 /*
51 * if this didn't occur in transactions, we could use
52 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
53 * code up to do this anyway.
54 */
55 ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
56 if (!ip)
57 return NULL;
58 if (inode_init_always(mp->m_super, VFS_I(ip))) {
59 kmem_zone_free(xfs_inode_zone, ip);
60 return NULL;
61 }
62
63 /* VFS doesn't initialise i_mode! */
64 VFS_I(ip)->i_mode = 0;
65
66 XFS_STATS_INC(mp, vn_active);
67 ASSERT(atomic_read(&ip->i_pincount) == 0);
68 ASSERT(!spin_is_locked(&ip->i_flags_lock));
69 ASSERT(!xfs_isiflocked(ip));
70 ASSERT(ip->i_ino == 0);
71
72 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
73
74 /* initialise the xfs inode */
75 ip->i_ino = ino;
76 ip->i_mount = mp;
77 memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
78 ip->i_afp = NULL;
79 memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
80 ip->i_flags = 0;
81 ip->i_delayed_blks = 0;
82 memset(&ip->i_d, 0, sizeof(ip->i_d));
83
84 return ip;
85 }
86
87 STATIC void
88 xfs_inode_free_callback(
89 struct rcu_head *head)
90 {
91 struct inode *inode = container_of(head, struct inode, i_rcu);
92 struct xfs_inode *ip = XFS_I(inode);
93
94 switch (VFS_I(ip)->i_mode & S_IFMT) {
95 case S_IFREG:
96 case S_IFDIR:
97 case S_IFLNK:
98 xfs_idestroy_fork(ip, XFS_DATA_FORK);
99 break;
100 }
101
102 if (ip->i_afp)
103 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
104
105 if (ip->i_itemp) {
106 ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL));
107 xfs_inode_item_destroy(ip);
108 ip->i_itemp = NULL;
109 }
110
111 kmem_zone_free(xfs_inode_zone, ip);
112 }
113
114 static void
115 __xfs_inode_free(
116 struct xfs_inode *ip)
117 {
118 /* asserts to verify all state is correct here */
119 ASSERT(atomic_read(&ip->i_pincount) == 0);
120 ASSERT(!xfs_isiflocked(ip));
121 XFS_STATS_DEC(ip->i_mount, vn_active);
122
123 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
124 }
125
126 void
127 xfs_inode_free(
128 struct xfs_inode *ip)
129 {
130 /*
131 * Because we use RCU freeing we need to ensure the inode always
132 * appears to be reclaimed with an invalid inode number when in the
133 * free state. The ip->i_flags_lock provides the barrier against lookup
134 * races.
135 */
136 spin_lock(&ip->i_flags_lock);
137 ip->i_flags = XFS_IRECLAIM;
138 ip->i_ino = 0;
139 spin_unlock(&ip->i_flags_lock);
140
141 __xfs_inode_free(ip);
142 }
143
144 /*
145 * Queue a new inode reclaim pass if there are reclaimable inodes and there
146 * isn't a reclaim pass already in progress. By default it runs every 5s based
147 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
148 * tunable, but that can be done if this method proves to be ineffective or too
149 * aggressive.
150 */
151 static void
152 xfs_reclaim_work_queue(
153 struct xfs_mount *mp)
154 {
155
156 rcu_read_lock();
157 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
158 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
159 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
160 }
161 rcu_read_unlock();
162 }
163
164 /*
165 * This is a fast pass over the inode cache to try to get reclaim moving on as
166 * many inodes as possible in a short period of time. It kicks itself every few
167 * seconds, as well as being kicked by the inode cache shrinker when memory
168 * goes low. It scans as quickly as possible avoiding locked inodes or those
169 * already being flushed, and once done schedules a future pass.
170 */
171 void
172 xfs_reclaim_worker(
173 struct work_struct *work)
174 {
175 struct xfs_mount *mp = container_of(to_delayed_work(work),
176 struct xfs_mount, m_reclaim_work);
177
178 xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
179 xfs_reclaim_work_queue(mp);
180 }
181
182 static void
183 xfs_perag_set_reclaim_tag(
184 struct xfs_perag *pag)
185 {
186 struct xfs_mount *mp = pag->pag_mount;
187
188 ASSERT(spin_is_locked(&pag->pag_ici_lock));
189 if (pag->pag_ici_reclaimable++)
190 return;
191
192 /* propagate the reclaim tag up into the perag radix tree */
193 spin_lock(&mp->m_perag_lock);
194 radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno,
195 XFS_ICI_RECLAIM_TAG);
196 spin_unlock(&mp->m_perag_lock);
197
198 /* schedule periodic background inode reclaim */
199 xfs_reclaim_work_queue(mp);
200
201 trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
202 }
203
204 static void
205 xfs_perag_clear_reclaim_tag(
206 struct xfs_perag *pag)
207 {
208 struct xfs_mount *mp = pag->pag_mount;
209
210 ASSERT(spin_is_locked(&pag->pag_ici_lock));
211 if (--pag->pag_ici_reclaimable)
212 return;
213
214 /* clear the reclaim tag from the perag radix tree */
215 spin_lock(&mp->m_perag_lock);
216 radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno,
217 XFS_ICI_RECLAIM_TAG);
218 spin_unlock(&mp->m_perag_lock);
219 trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
220 }
221
222
223 /*
224 * We set the inode flag atomically with the radix tree tag.
225 * Once we get tag lookups on the radix tree, this inode flag
226 * can go away.
227 */
228 void
229 xfs_inode_set_reclaim_tag(
230 struct xfs_inode *ip)
231 {
232 struct xfs_mount *mp = ip->i_mount;
233 struct xfs_perag *pag;
234
235 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
236 spin_lock(&pag->pag_ici_lock);
237 spin_lock(&ip->i_flags_lock);
238
239 radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino),
240 XFS_ICI_RECLAIM_TAG);
241 xfs_perag_set_reclaim_tag(pag);
242 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
243
244 spin_unlock(&ip->i_flags_lock);
245 spin_unlock(&pag->pag_ici_lock);
246 xfs_perag_put(pag);
247 }
248
249 STATIC void
250 xfs_inode_clear_reclaim_tag(
251 struct xfs_perag *pag,
252 xfs_ino_t ino)
253 {
254 radix_tree_tag_clear(&pag->pag_ici_root,
255 XFS_INO_TO_AGINO(pag->pag_mount, ino),
256 XFS_ICI_RECLAIM_TAG);
257 xfs_perag_clear_reclaim_tag(pag);
258 }
259
260 /*
261 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
262 * part of the structure. This is made more complex by the fact we store
263 * information about the on-disk values in the VFS inode and so we can't just
264 * overwrite the values unconditionally. Hence we save the parameters we
265 * need to retain across reinitialisation, and rewrite them into the VFS inode
266 * after reinitialisation even if it fails.
267 */
268 static int
269 xfs_reinit_inode(
270 struct xfs_mount *mp,
271 struct inode *inode)
272 {
273 int error;
274 uint32_t nlink = inode->i_nlink;
275 uint32_t generation = inode->i_generation;
276 uint64_t version = inode->i_version;
277 umode_t mode = inode->i_mode;
278
279 error = inode_init_always(mp->m_super, inode);
280
281 set_nlink(inode, nlink);
282 inode->i_generation = generation;
283 inode->i_version = version;
284 inode->i_mode = mode;
285 return error;
286 }
287
288 /*
289 * Check the validity of the inode we just found it the cache
290 */
291 static int
292 xfs_iget_cache_hit(
293 struct xfs_perag *pag,
294 struct xfs_inode *ip,
295 xfs_ino_t ino,
296 int flags,
297 int lock_flags) __releases(RCU)
298 {
299 struct inode *inode = VFS_I(ip);
300 struct xfs_mount *mp = ip->i_mount;
301 int error;
302
303 /*
304 * check for re-use of an inode within an RCU grace period due to the
305 * radix tree nodes not being updated yet. We monitor for this by
306 * setting the inode number to zero before freeing the inode structure.
307 * If the inode has been reallocated and set up, then the inode number
308 * will not match, so check for that, too.
309 */
310 spin_lock(&ip->i_flags_lock);
311 if (ip->i_ino != ino) {
312 trace_xfs_iget_skip(ip);
313 XFS_STATS_INC(mp, xs_ig_frecycle);
314 error = -EAGAIN;
315 goto out_error;
316 }
317
318
319 /*
320 * If we are racing with another cache hit that is currently
321 * instantiating this inode or currently recycling it out of
322 * reclaimabe state, wait for the initialisation to complete
323 * before continuing.
324 *
325 * XXX(hch): eventually we should do something equivalent to
326 * wait_on_inode to wait for these flags to be cleared
327 * instead of polling for it.
328 */
329 if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
330 trace_xfs_iget_skip(ip);
331 XFS_STATS_INC(mp, xs_ig_frecycle);
332 error = -EAGAIN;
333 goto out_error;
334 }
335
336 /*
337 * If lookup is racing with unlink return an error immediately.
338 */
339 if (VFS_I(ip)->i_mode == 0 && !(flags & XFS_IGET_CREATE)) {
340 error = -ENOENT;
341 goto out_error;
342 }
343
344 /*
345 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
346 * Need to carefully get it back into useable state.
347 */
348 if (ip->i_flags & XFS_IRECLAIMABLE) {
349 trace_xfs_iget_reclaim(ip);
350
351 /*
352 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
353 * from stomping over us while we recycle the inode. We can't
354 * clear the radix tree reclaimable tag yet as it requires
355 * pag_ici_lock to be held exclusive.
356 */
357 ip->i_flags |= XFS_IRECLAIM;
358
359 spin_unlock(&ip->i_flags_lock);
360 rcu_read_unlock();
361
362 error = xfs_reinit_inode(mp, inode);
363 if (error) {
364 /*
365 * Re-initializing the inode failed, and we are in deep
366 * trouble. Try to re-add it to the reclaim list.
367 */
368 rcu_read_lock();
369 spin_lock(&ip->i_flags_lock);
370
371 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
372 ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
373 trace_xfs_iget_reclaim_fail(ip);
374 goto out_error;
375 }
376
377 spin_lock(&pag->pag_ici_lock);
378 spin_lock(&ip->i_flags_lock);
379
380 /*
381 * Clear the per-lifetime state in the inode as we are now
382 * effectively a new inode and need to return to the initial
383 * state before reuse occurs.
384 */
385 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
386 ip->i_flags |= XFS_INEW;
387 xfs_inode_clear_reclaim_tag(pag, ip->i_ino);
388 inode->i_state = I_NEW;
389
390 ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock));
391 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
392
393 spin_unlock(&ip->i_flags_lock);
394 spin_unlock(&pag->pag_ici_lock);
395 } else {
396 /* If the VFS inode is being torn down, pause and try again. */
397 if (!igrab(inode)) {
398 trace_xfs_iget_skip(ip);
399 error = -EAGAIN;
400 goto out_error;
401 }
402
403 /* We've got a live one. */
404 spin_unlock(&ip->i_flags_lock);
405 rcu_read_unlock();
406 trace_xfs_iget_hit(ip);
407 }
408
409 if (lock_flags != 0)
410 xfs_ilock(ip, lock_flags);
411
412 xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
413 XFS_STATS_INC(mp, xs_ig_found);
414
415 return 0;
416
417 out_error:
418 spin_unlock(&ip->i_flags_lock);
419 rcu_read_unlock();
420 return error;
421 }
422
423
424 static int
425 xfs_iget_cache_miss(
426 struct xfs_mount *mp,
427 struct xfs_perag *pag,
428 xfs_trans_t *tp,
429 xfs_ino_t ino,
430 struct xfs_inode **ipp,
431 int flags,
432 int lock_flags)
433 {
434 struct xfs_inode *ip;
435 int error;
436 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
437 int iflags;
438
439 ip = xfs_inode_alloc(mp, ino);
440 if (!ip)
441 return -ENOMEM;
442
443 error = xfs_iread(mp, tp, ip, flags);
444 if (error)
445 goto out_destroy;
446
447 trace_xfs_iget_miss(ip);
448
449 if ((VFS_I(ip)->i_mode == 0) && !(flags & XFS_IGET_CREATE)) {
450 error = -ENOENT;
451 goto out_destroy;
452 }
453
454 /*
455 * Preload the radix tree so we can insert safely under the
456 * write spinlock. Note that we cannot sleep inside the preload
457 * region. Since we can be called from transaction context, don't
458 * recurse into the file system.
459 */
460 if (radix_tree_preload(GFP_NOFS)) {
461 error = -EAGAIN;
462 goto out_destroy;
463 }
464
465 /*
466 * Because the inode hasn't been added to the radix-tree yet it can't
467 * be found by another thread, so we can do the non-sleeping lock here.
468 */
469 if (lock_flags) {
470 if (!xfs_ilock_nowait(ip, lock_flags))
471 BUG();
472 }
473
474 /*
475 * These values must be set before inserting the inode into the radix
476 * tree as the moment it is inserted a concurrent lookup (allowed by the
477 * RCU locking mechanism) can find it and that lookup must see that this
478 * is an inode currently under construction (i.e. that XFS_INEW is set).
479 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
480 * memory barrier that ensures this detection works correctly at lookup
481 * time.
482 */
483 iflags = XFS_INEW;
484 if (flags & XFS_IGET_DONTCACHE)
485 iflags |= XFS_IDONTCACHE;
486 ip->i_udquot = NULL;
487 ip->i_gdquot = NULL;
488 ip->i_pdquot = NULL;
489 xfs_iflags_set(ip, iflags);
490
491 /* insert the new inode */
492 spin_lock(&pag->pag_ici_lock);
493 error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
494 if (unlikely(error)) {
495 WARN_ON(error != -EEXIST);
496 XFS_STATS_INC(mp, xs_ig_dup);
497 error = -EAGAIN;
498 goto out_preload_end;
499 }
500 spin_unlock(&pag->pag_ici_lock);
501 radix_tree_preload_end();
502
503 *ipp = ip;
504 return 0;
505
506 out_preload_end:
507 spin_unlock(&pag->pag_ici_lock);
508 radix_tree_preload_end();
509 if (lock_flags)
510 xfs_iunlock(ip, lock_flags);
511 out_destroy:
512 __destroy_inode(VFS_I(ip));
513 xfs_inode_free(ip);
514 return error;
515 }
516
517 /*
518 * Look up an inode by number in the given file system.
519 * The inode is looked up in the cache held in each AG.
520 * If the inode is found in the cache, initialise the vfs inode
521 * if necessary.
522 *
523 * If it is not in core, read it in from the file system's device,
524 * add it to the cache and initialise the vfs inode.
525 *
526 * The inode is locked according to the value of the lock_flags parameter.
527 * This flag parameter indicates how and if the inode's IO lock and inode lock
528 * should be taken.
529 *
530 * mp -- the mount point structure for the current file system. It points
531 * to the inode hash table.
532 * tp -- a pointer to the current transaction if there is one. This is
533 * simply passed through to the xfs_iread() call.
534 * ino -- the number of the inode desired. This is the unique identifier
535 * within the file system for the inode being requested.
536 * lock_flags -- flags indicating how to lock the inode. See the comment
537 * for xfs_ilock() for a list of valid values.
538 */
539 int
540 xfs_iget(
541 xfs_mount_t *mp,
542 xfs_trans_t *tp,
543 xfs_ino_t ino,
544 uint flags,
545 uint lock_flags,
546 xfs_inode_t **ipp)
547 {
548 xfs_inode_t *ip;
549 int error;
550 xfs_perag_t *pag;
551 xfs_agino_t agino;
552
553 /*
554 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
555 * doesn't get freed while it's being referenced during a
556 * radix tree traversal here. It assumes this function
557 * aqcuires only the ILOCK (and therefore it has no need to
558 * involve the IOLOCK in this synchronization).
559 */
560 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
561
562 /* reject inode numbers outside existing AGs */
563 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
564 return -EINVAL;
565
566 XFS_STATS_INC(mp, xs_ig_attempts);
567
568 /* get the perag structure and ensure that it's inode capable */
569 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
570 agino = XFS_INO_TO_AGINO(mp, ino);
571
572 again:
573 error = 0;
574 rcu_read_lock();
575 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
576
577 if (ip) {
578 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
579 if (error)
580 goto out_error_or_again;
581 } else {
582 rcu_read_unlock();
583 XFS_STATS_INC(mp, xs_ig_missed);
584
585 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
586 flags, lock_flags);
587 if (error)
588 goto out_error_or_again;
589 }
590 xfs_perag_put(pag);
591
592 *ipp = ip;
593
594 /*
595 * If we have a real type for an on-disk inode, we can setup the inode
596 * now. If it's a new inode being created, xfs_ialloc will handle it.
597 */
598 if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
599 xfs_setup_existing_inode(ip);
600 return 0;
601
602 out_error_or_again:
603 if (error == -EAGAIN) {
604 delay(1);
605 goto again;
606 }
607 xfs_perag_put(pag);
608 return error;
609 }
610
611 /*
612 * The inode lookup is done in batches to keep the amount of lock traffic and
613 * radix tree lookups to a minimum. The batch size is a trade off between
614 * lookup reduction and stack usage. This is in the reclaim path, so we can't
615 * be too greedy.
616 */
617 #define XFS_LOOKUP_BATCH 32
618
619 STATIC int
620 xfs_inode_ag_walk_grab(
621 struct xfs_inode *ip)
622 {
623 struct inode *inode = VFS_I(ip);
624
625 ASSERT(rcu_read_lock_held());
626
627 /*
628 * check for stale RCU freed inode
629 *
630 * If the inode has been reallocated, it doesn't matter if it's not in
631 * the AG we are walking - we are walking for writeback, so if it
632 * passes all the "valid inode" checks and is dirty, then we'll write
633 * it back anyway. If it has been reallocated and still being
634 * initialised, the XFS_INEW check below will catch it.
635 */
636 spin_lock(&ip->i_flags_lock);
637 if (!ip->i_ino)
638 goto out_unlock_noent;
639
640 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
641 if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
642 goto out_unlock_noent;
643 spin_unlock(&ip->i_flags_lock);
644
645 /* nothing to sync during shutdown */
646 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
647 return -EFSCORRUPTED;
648
649 /* If we can't grab the inode, it must on it's way to reclaim. */
650 if (!igrab(inode))
651 return -ENOENT;
652
653 /* inode is valid */
654 return 0;
655
656 out_unlock_noent:
657 spin_unlock(&ip->i_flags_lock);
658 return -ENOENT;
659 }
660
661 STATIC int
662 xfs_inode_ag_walk(
663 struct xfs_mount *mp,
664 struct xfs_perag *pag,
665 int (*execute)(struct xfs_inode *ip, int flags,
666 void *args),
667 int flags,
668 void *args,
669 int tag)
670 {
671 uint32_t first_index;
672 int last_error = 0;
673 int skipped;
674 int done;
675 int nr_found;
676
677 restart:
678 done = 0;
679 skipped = 0;
680 first_index = 0;
681 nr_found = 0;
682 do {
683 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
684 int error = 0;
685 int i;
686
687 rcu_read_lock();
688
689 if (tag == -1)
690 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
691 (void **)batch, first_index,
692 XFS_LOOKUP_BATCH);
693 else
694 nr_found = radix_tree_gang_lookup_tag(
695 &pag->pag_ici_root,
696 (void **) batch, first_index,
697 XFS_LOOKUP_BATCH, tag);
698
699 if (!nr_found) {
700 rcu_read_unlock();
701 break;
702 }
703
704 /*
705 * Grab the inodes before we drop the lock. if we found
706 * nothing, nr == 0 and the loop will be skipped.
707 */
708 for (i = 0; i < nr_found; i++) {
709 struct xfs_inode *ip = batch[i];
710
711 if (done || xfs_inode_ag_walk_grab(ip))
712 batch[i] = NULL;
713
714 /*
715 * Update the index for the next lookup. Catch
716 * overflows into the next AG range which can occur if
717 * we have inodes in the last block of the AG and we
718 * are currently pointing to the last inode.
719 *
720 * Because we may see inodes that are from the wrong AG
721 * due to RCU freeing and reallocation, only update the
722 * index if it lies in this AG. It was a race that lead
723 * us to see this inode, so another lookup from the
724 * same index will not find it again.
725 */
726 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
727 continue;
728 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
729 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
730 done = 1;
731 }
732
733 /* unlock now we've grabbed the inodes. */
734 rcu_read_unlock();
735
736 for (i = 0; i < nr_found; i++) {
737 if (!batch[i])
738 continue;
739 error = execute(batch[i], flags, args);
740 IRELE(batch[i]);
741 if (error == -EAGAIN) {
742 skipped++;
743 continue;
744 }
745 if (error && last_error != -EFSCORRUPTED)
746 last_error = error;
747 }
748
749 /* bail out if the filesystem is corrupted. */
750 if (error == -EFSCORRUPTED)
751 break;
752
753 cond_resched();
754
755 } while (nr_found && !done);
756
757 if (skipped) {
758 delay(1);
759 goto restart;
760 }
761 return last_error;
762 }
763
764 /*
765 * Background scanning to trim post-EOF preallocated space. This is queued
766 * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
767 */
768 void
769 xfs_queue_eofblocks(
770 struct xfs_mount *mp)
771 {
772 rcu_read_lock();
773 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
774 queue_delayed_work(mp->m_eofblocks_workqueue,
775 &mp->m_eofblocks_work,
776 msecs_to_jiffies(xfs_eofb_secs * 1000));
777 rcu_read_unlock();
778 }
779
780 void
781 xfs_eofblocks_worker(
782 struct work_struct *work)
783 {
784 struct xfs_mount *mp = container_of(to_delayed_work(work),
785 struct xfs_mount, m_eofblocks_work);
786 xfs_icache_free_eofblocks(mp, NULL);
787 xfs_queue_eofblocks(mp);
788 }
789
790 int
791 xfs_inode_ag_iterator(
792 struct xfs_mount *mp,
793 int (*execute)(struct xfs_inode *ip, int flags,
794 void *args),
795 int flags,
796 void *args)
797 {
798 struct xfs_perag *pag;
799 int error = 0;
800 int last_error = 0;
801 xfs_agnumber_t ag;
802
803 ag = 0;
804 while ((pag = xfs_perag_get(mp, ag))) {
805 ag = pag->pag_agno + 1;
806 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1);
807 xfs_perag_put(pag);
808 if (error) {
809 last_error = error;
810 if (error == -EFSCORRUPTED)
811 break;
812 }
813 }
814 return last_error;
815 }
816
817 int
818 xfs_inode_ag_iterator_tag(
819 struct xfs_mount *mp,
820 int (*execute)(struct xfs_inode *ip, int flags,
821 void *args),
822 int flags,
823 void *args,
824 int tag)
825 {
826 struct xfs_perag *pag;
827 int error = 0;
828 int last_error = 0;
829 xfs_agnumber_t ag;
830
831 ag = 0;
832 while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
833 ag = pag->pag_agno + 1;
834 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag);
835 xfs_perag_put(pag);
836 if (error) {
837 last_error = error;
838 if (error == -EFSCORRUPTED)
839 break;
840 }
841 }
842 return last_error;
843 }
844
845 /*
846 * Grab the inode for reclaim exclusively.
847 * Return 0 if we grabbed it, non-zero otherwise.
848 */
849 STATIC int
850 xfs_reclaim_inode_grab(
851 struct xfs_inode *ip,
852 int flags)
853 {
854 ASSERT(rcu_read_lock_held());
855
856 /* quick check for stale RCU freed inode */
857 if (!ip->i_ino)
858 return 1;
859
860 /*
861 * If we are asked for non-blocking operation, do unlocked checks to
862 * see if the inode already is being flushed or in reclaim to avoid
863 * lock traffic.
864 */
865 if ((flags & SYNC_TRYLOCK) &&
866 __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
867 return 1;
868
869 /*
870 * The radix tree lock here protects a thread in xfs_iget from racing
871 * with us starting reclaim on the inode. Once we have the
872 * XFS_IRECLAIM flag set it will not touch us.
873 *
874 * Due to RCU lookup, we may find inodes that have been freed and only
875 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
876 * aren't candidates for reclaim at all, so we must check the
877 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
878 */
879 spin_lock(&ip->i_flags_lock);
880 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
881 __xfs_iflags_test(ip, XFS_IRECLAIM)) {
882 /* not a reclaim candidate. */
883 spin_unlock(&ip->i_flags_lock);
884 return 1;
885 }
886 __xfs_iflags_set(ip, XFS_IRECLAIM);
887 spin_unlock(&ip->i_flags_lock);
888 return 0;
889 }
890
891 /*
892 * Inodes in different states need to be treated differently. The following
893 * table lists the inode states and the reclaim actions necessary:
894 *
895 * inode state iflush ret required action
896 * --------------- ---------- ---------------
897 * bad - reclaim
898 * shutdown EIO unpin and reclaim
899 * clean, unpinned 0 reclaim
900 * stale, unpinned 0 reclaim
901 * clean, pinned(*) 0 requeue
902 * stale, pinned EAGAIN requeue
903 * dirty, async - requeue
904 * dirty, sync 0 reclaim
905 *
906 * (*) dgc: I don't think the clean, pinned state is possible but it gets
907 * handled anyway given the order of checks implemented.
908 *
909 * Also, because we get the flush lock first, we know that any inode that has
910 * been flushed delwri has had the flush completed by the time we check that
911 * the inode is clean.
912 *
913 * Note that because the inode is flushed delayed write by AIL pushing, the
914 * flush lock may already be held here and waiting on it can result in very
915 * long latencies. Hence for sync reclaims, where we wait on the flush lock,
916 * the caller should push the AIL first before trying to reclaim inodes to
917 * minimise the amount of time spent waiting. For background relaim, we only
918 * bother to reclaim clean inodes anyway.
919 *
920 * Hence the order of actions after gaining the locks should be:
921 * bad => reclaim
922 * shutdown => unpin and reclaim
923 * pinned, async => requeue
924 * pinned, sync => unpin
925 * stale => reclaim
926 * clean => reclaim
927 * dirty, async => requeue
928 * dirty, sync => flush, wait and reclaim
929 */
930 STATIC int
931 xfs_reclaim_inode(
932 struct xfs_inode *ip,
933 struct xfs_perag *pag,
934 int sync_mode)
935 {
936 struct xfs_buf *bp = NULL;
937 xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */
938 int error;
939
940 restart:
941 error = 0;
942 xfs_ilock(ip, XFS_ILOCK_EXCL);
943 if (!xfs_iflock_nowait(ip)) {
944 if (!(sync_mode & SYNC_WAIT))
945 goto out;
946 xfs_iflock(ip);
947 }
948
949 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
950 xfs_iunpin_wait(ip);
951 xfs_iflush_abort(ip, false);
952 goto reclaim;
953 }
954 if (xfs_ipincount(ip)) {
955 if (!(sync_mode & SYNC_WAIT))
956 goto out_ifunlock;
957 xfs_iunpin_wait(ip);
958 }
959 if (xfs_iflags_test(ip, XFS_ISTALE))
960 goto reclaim;
961 if (xfs_inode_clean(ip))
962 goto reclaim;
963
964 /*
965 * Never flush out dirty data during non-blocking reclaim, as it would
966 * just contend with AIL pushing trying to do the same job.
967 */
968 if (!(sync_mode & SYNC_WAIT))
969 goto out_ifunlock;
970
971 /*
972 * Now we have an inode that needs flushing.
973 *
974 * Note that xfs_iflush will never block on the inode buffer lock, as
975 * xfs_ifree_cluster() can lock the inode buffer before it locks the
976 * ip->i_lock, and we are doing the exact opposite here. As a result,
977 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
978 * result in an ABBA deadlock with xfs_ifree_cluster().
979 *
980 * As xfs_ifree_cluser() must gather all inodes that are active in the
981 * cache to mark them stale, if we hit this case we don't actually want
982 * to do IO here - we want the inode marked stale so we can simply
983 * reclaim it. Hence if we get an EAGAIN error here, just unlock the
984 * inode, back off and try again. Hopefully the next pass through will
985 * see the stale flag set on the inode.
986 */
987 error = xfs_iflush(ip, &bp);
988 if (error == -EAGAIN) {
989 xfs_iunlock(ip, XFS_ILOCK_EXCL);
990 /* backoff longer than in xfs_ifree_cluster */
991 delay(2);
992 goto restart;
993 }
994
995 if (!error) {
996 error = xfs_bwrite(bp);
997 xfs_buf_relse(bp);
998 }
999
1000 xfs_iflock(ip);
1001 reclaim:
1002 /*
1003 * Because we use RCU freeing we need to ensure the inode always appears
1004 * to be reclaimed with an invalid inode number when in the free state.
1005 * We do this as early as possible under the ILOCK and flush lock so
1006 * that xfs_iflush_cluster() can be guaranteed to detect races with us
1007 * here. By doing this, we guarantee that once xfs_iflush_cluster has
1008 * locked both the XFS_ILOCK and the flush lock that it will see either
1009 * a valid, flushable inode that will serialise correctly against the
1010 * locks below, or it will see a clean (and invalid) inode that it can
1011 * skip.
1012 */
1013 spin_lock(&ip->i_flags_lock);
1014 ip->i_flags = XFS_IRECLAIM;
1015 ip->i_ino = 0;
1016 spin_unlock(&ip->i_flags_lock);
1017
1018 xfs_ifunlock(ip);
1019 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1020
1021 XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
1022 /*
1023 * Remove the inode from the per-AG radix tree.
1024 *
1025 * Because radix_tree_delete won't complain even if the item was never
1026 * added to the tree assert that it's been there before to catch
1027 * problems with the inode life time early on.
1028 */
1029 spin_lock(&pag->pag_ici_lock);
1030 if (!radix_tree_delete(&pag->pag_ici_root,
1031 XFS_INO_TO_AGINO(ip->i_mount, ino)))
1032 ASSERT(0);
1033 xfs_perag_clear_reclaim_tag(pag);
1034 spin_unlock(&pag->pag_ici_lock);
1035
1036 /*
1037 * Here we do an (almost) spurious inode lock in order to coordinate
1038 * with inode cache radix tree lookups. This is because the lookup
1039 * can reference the inodes in the cache without taking references.
1040 *
1041 * We make that OK here by ensuring that we wait until the inode is
1042 * unlocked after the lookup before we go ahead and free it.
1043 */
1044 xfs_ilock(ip, XFS_ILOCK_EXCL);
1045 xfs_qm_dqdetach(ip);
1046 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1047
1048 __xfs_inode_free(ip);
1049 return error;
1050
1051 out_ifunlock:
1052 xfs_ifunlock(ip);
1053 out:
1054 xfs_iflags_clear(ip, XFS_IRECLAIM);
1055 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1056 /*
1057 * We could return -EAGAIN here to make reclaim rescan the inode tree in
1058 * a short while. However, this just burns CPU time scanning the tree
1059 * waiting for IO to complete and the reclaim work never goes back to
1060 * the idle state. Instead, return 0 to let the next scheduled
1061 * background reclaim attempt to reclaim the inode again.
1062 */
1063 return 0;
1064 }
1065
1066 /*
1067 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1068 * corrupted, we still want to try to reclaim all the inodes. If we don't,
1069 * then a shut down during filesystem unmount reclaim walk leak all the
1070 * unreclaimed inodes.
1071 */
1072 STATIC int
1073 xfs_reclaim_inodes_ag(
1074 struct xfs_mount *mp,
1075 int flags,
1076 int *nr_to_scan)
1077 {
1078 struct xfs_perag *pag;
1079 int error = 0;
1080 int last_error = 0;
1081 xfs_agnumber_t ag;
1082 int trylock = flags & SYNC_TRYLOCK;
1083 int skipped;
1084
1085 restart:
1086 ag = 0;
1087 skipped = 0;
1088 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1089 unsigned long first_index = 0;
1090 int done = 0;
1091 int nr_found = 0;
1092
1093 ag = pag->pag_agno + 1;
1094
1095 if (trylock) {
1096 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
1097 skipped++;
1098 xfs_perag_put(pag);
1099 continue;
1100 }
1101 first_index = pag->pag_ici_reclaim_cursor;
1102 } else
1103 mutex_lock(&pag->pag_ici_reclaim_lock);
1104
1105 do {
1106 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1107 int i;
1108
1109 rcu_read_lock();
1110 nr_found = radix_tree_gang_lookup_tag(
1111 &pag->pag_ici_root,
1112 (void **)batch, first_index,
1113 XFS_LOOKUP_BATCH,
1114 XFS_ICI_RECLAIM_TAG);
1115 if (!nr_found) {
1116 done = 1;
1117 rcu_read_unlock();
1118 break;
1119 }
1120
1121 /*
1122 * Grab the inodes before we drop the lock. if we found
1123 * nothing, nr == 0 and the loop will be skipped.
1124 */
1125 for (i = 0; i < nr_found; i++) {
1126 struct xfs_inode *ip = batch[i];
1127
1128 if (done || xfs_reclaim_inode_grab(ip, flags))
1129 batch[i] = NULL;
1130
1131 /*
1132 * Update the index for the next lookup. Catch
1133 * overflows into the next AG range which can
1134 * occur if we have inodes in the last block of
1135 * the AG and we are currently pointing to the
1136 * last inode.
1137 *
1138 * Because we may see inodes that are from the
1139 * wrong AG due to RCU freeing and
1140 * reallocation, only update the index if it
1141 * lies in this AG. It was a race that lead us
1142 * to see this inode, so another lookup from
1143 * the same index will not find it again.
1144 */
1145 if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1146 pag->pag_agno)
1147 continue;
1148 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1149 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1150 done = 1;
1151 }
1152
1153 /* unlock now we've grabbed the inodes. */
1154 rcu_read_unlock();
1155
1156 for (i = 0; i < nr_found; i++) {
1157 if (!batch[i])
1158 continue;
1159 error = xfs_reclaim_inode(batch[i], pag, flags);
1160 if (error && last_error != -EFSCORRUPTED)
1161 last_error = error;
1162 }
1163
1164 *nr_to_scan -= XFS_LOOKUP_BATCH;
1165
1166 cond_resched();
1167
1168 } while (nr_found && !done && *nr_to_scan > 0);
1169
1170 if (trylock && !done)
1171 pag->pag_ici_reclaim_cursor = first_index;
1172 else
1173 pag->pag_ici_reclaim_cursor = 0;
1174 mutex_unlock(&pag->pag_ici_reclaim_lock);
1175 xfs_perag_put(pag);
1176 }
1177
1178 /*
1179 * if we skipped any AG, and we still have scan count remaining, do
1180 * another pass this time using blocking reclaim semantics (i.e
1181 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1182 * ensure that when we get more reclaimers than AGs we block rather
1183 * than spin trying to execute reclaim.
1184 */
1185 if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1186 trylock = 0;
1187 goto restart;
1188 }
1189 return last_error;
1190 }
1191
1192 int
1193 xfs_reclaim_inodes(
1194 xfs_mount_t *mp,
1195 int mode)
1196 {
1197 int nr_to_scan = INT_MAX;
1198
1199 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1200 }
1201
1202 /*
1203 * Scan a certain number of inodes for reclaim.
1204 *
1205 * When called we make sure that there is a background (fast) inode reclaim in
1206 * progress, while we will throttle the speed of reclaim via doing synchronous
1207 * reclaim of inodes. That means if we come across dirty inodes, we wait for
1208 * them to be cleaned, which we hope will not be very long due to the
1209 * background walker having already kicked the IO off on those dirty inodes.
1210 */
1211 long
1212 xfs_reclaim_inodes_nr(
1213 struct xfs_mount *mp,
1214 int nr_to_scan)
1215 {
1216 /* kick background reclaimer and push the AIL */
1217 xfs_reclaim_work_queue(mp);
1218 xfs_ail_push_all(mp->m_ail);
1219
1220 return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1221 }
1222
1223 /*
1224 * Return the number of reclaimable inodes in the filesystem for
1225 * the shrinker to determine how much to reclaim.
1226 */
1227 int
1228 xfs_reclaim_inodes_count(
1229 struct xfs_mount *mp)
1230 {
1231 struct xfs_perag *pag;
1232 xfs_agnumber_t ag = 0;
1233 int reclaimable = 0;
1234
1235 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1236 ag = pag->pag_agno + 1;
1237 reclaimable += pag->pag_ici_reclaimable;
1238 xfs_perag_put(pag);
1239 }
1240 return reclaimable;
1241 }
1242
1243 STATIC int
1244 xfs_inode_match_id(
1245 struct xfs_inode *ip,
1246 struct xfs_eofblocks *eofb)
1247 {
1248 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1249 !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1250 return 0;
1251
1252 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1253 !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1254 return 0;
1255
1256 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1257 xfs_get_projid(ip) != eofb->eof_prid)
1258 return 0;
1259
1260 return 1;
1261 }
1262
1263 /*
1264 * A union-based inode filtering algorithm. Process the inode if any of the
1265 * criteria match. This is for global/internal scans only.
1266 */
1267 STATIC int
1268 xfs_inode_match_id_union(
1269 struct xfs_inode *ip,
1270 struct xfs_eofblocks *eofb)
1271 {
1272 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1273 uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1274 return 1;
1275
1276 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1277 gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1278 return 1;
1279
1280 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1281 xfs_get_projid(ip) == eofb->eof_prid)
1282 return 1;
1283
1284 return 0;
1285 }
1286
1287 STATIC int
1288 xfs_inode_free_eofblocks(
1289 struct xfs_inode *ip,
1290 int flags,
1291 void *args)
1292 {
1293 int ret;
1294 struct xfs_eofblocks *eofb = args;
1295 bool need_iolock = true;
1296 int match;
1297
1298 ASSERT(!eofb || (eofb && eofb->eof_scan_owner != 0));
1299
1300 if (!xfs_can_free_eofblocks(ip, false)) {
1301 /* inode could be preallocated or append-only */
1302 trace_xfs_inode_free_eofblocks_invalid(ip);
1303 xfs_inode_clear_eofblocks_tag(ip);
1304 return 0;
1305 }
1306
1307 /*
1308 * If the mapping is dirty the operation can block and wait for some
1309 * time. Unless we are waiting, skip it.
1310 */
1311 if (!(flags & SYNC_WAIT) &&
1312 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1313 return 0;
1314
1315 if (eofb) {
1316 if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1317 match = xfs_inode_match_id_union(ip, eofb);
1318 else
1319 match = xfs_inode_match_id(ip, eofb);
1320 if (!match)
1321 return 0;
1322
1323 /* skip the inode if the file size is too small */
1324 if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1325 XFS_ISIZE(ip) < eofb->eof_min_file_size)
1326 return 0;
1327
1328 /*
1329 * A scan owner implies we already hold the iolock. Skip it in
1330 * xfs_free_eofblocks() to avoid deadlock. This also eliminates
1331 * the possibility of EAGAIN being returned.
1332 */
1333 if (eofb->eof_scan_owner == ip->i_ino)
1334 need_iolock = false;
1335 }
1336
1337 ret = xfs_free_eofblocks(ip->i_mount, ip, need_iolock);
1338
1339 /* don't revisit the inode if we're not waiting */
1340 if (ret == -EAGAIN && !(flags & SYNC_WAIT))
1341 ret = 0;
1342
1343 return ret;
1344 }
1345
1346 int
1347 xfs_icache_free_eofblocks(
1348 struct xfs_mount *mp,
1349 struct xfs_eofblocks *eofb)
1350 {
1351 int flags = SYNC_TRYLOCK;
1352
1353 if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
1354 flags = SYNC_WAIT;
1355
1356 return xfs_inode_ag_iterator_tag(mp, xfs_inode_free_eofblocks, flags,
1357 eofb, XFS_ICI_EOFBLOCKS_TAG);
1358 }
1359
1360 /*
1361 * Run eofblocks scans on the quotas applicable to the inode. For inodes with
1362 * multiple quotas, we don't know exactly which quota caused an allocation
1363 * failure. We make a best effort by including each quota under low free space
1364 * conditions (less than 1% free space) in the scan.
1365 */
1366 int
1367 xfs_inode_free_quota_eofblocks(
1368 struct xfs_inode *ip)
1369 {
1370 int scan = 0;
1371 struct xfs_eofblocks eofb = {0};
1372 struct xfs_dquot *dq;
1373
1374 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1375
1376 /*
1377 * Set the scan owner to avoid a potential livelock. Otherwise, the scan
1378 * can repeatedly trylock on the inode we're currently processing. We
1379 * run a sync scan to increase effectiveness and use the union filter to
1380 * cover all applicable quotas in a single scan.
1381 */
1382 eofb.eof_scan_owner = ip->i_ino;
1383 eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;
1384
1385 if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
1386 dq = xfs_inode_dquot(ip, XFS_DQ_USER);
1387 if (dq && xfs_dquot_lowsp(dq)) {
1388 eofb.eof_uid = VFS_I(ip)->i_uid;
1389 eofb.eof_flags |= XFS_EOF_FLAGS_UID;
1390 scan = 1;
1391 }
1392 }
1393
1394 if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
1395 dq = xfs_inode_dquot(ip, XFS_DQ_GROUP);
1396 if (dq && xfs_dquot_lowsp(dq)) {
1397 eofb.eof_gid = VFS_I(ip)->i_gid;
1398 eofb.eof_flags |= XFS_EOF_FLAGS_GID;
1399 scan = 1;
1400 }
1401 }
1402
1403 if (scan)
1404 xfs_icache_free_eofblocks(ip->i_mount, &eofb);
1405
1406 return scan;
1407 }
1408
1409 void
1410 xfs_inode_set_eofblocks_tag(
1411 xfs_inode_t *ip)
1412 {
1413 struct xfs_mount *mp = ip->i_mount;
1414 struct xfs_perag *pag;
1415 int tagged;
1416
1417 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1418 spin_lock(&pag->pag_ici_lock);
1419 trace_xfs_inode_set_eofblocks_tag(ip);
1420
1421 tagged = radix_tree_tagged(&pag->pag_ici_root,
1422 XFS_ICI_EOFBLOCKS_TAG);
1423 radix_tree_tag_set(&pag->pag_ici_root,
1424 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
1425 XFS_ICI_EOFBLOCKS_TAG);
1426 if (!tagged) {
1427 /* propagate the eofblocks tag up into the perag radix tree */
1428 spin_lock(&ip->i_mount->m_perag_lock);
1429 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
1430 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1431 XFS_ICI_EOFBLOCKS_TAG);
1432 spin_unlock(&ip->i_mount->m_perag_lock);
1433
1434 /* kick off background trimming */
1435 xfs_queue_eofblocks(ip->i_mount);
1436
1437 trace_xfs_perag_set_eofblocks(ip->i_mount, pag->pag_agno,
1438 -1, _RET_IP_);
1439 }
1440
1441 spin_unlock(&pag->pag_ici_lock);
1442 xfs_perag_put(pag);
1443 }
1444
1445 void
1446 xfs_inode_clear_eofblocks_tag(
1447 xfs_inode_t *ip)
1448 {
1449 struct xfs_mount *mp = ip->i_mount;
1450 struct xfs_perag *pag;
1451
1452 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1453 spin_lock(&pag->pag_ici_lock);
1454 trace_xfs_inode_clear_eofblocks_tag(ip);
1455
1456 radix_tree_tag_clear(&pag->pag_ici_root,
1457 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
1458 XFS_ICI_EOFBLOCKS_TAG);
1459 if (!radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_EOFBLOCKS_TAG)) {
1460 /* clear the eofblocks tag from the perag radix tree */
1461 spin_lock(&ip->i_mount->m_perag_lock);
1462 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
1463 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1464 XFS_ICI_EOFBLOCKS_TAG);
1465 spin_unlock(&ip->i_mount->m_perag_lock);
1466 trace_xfs_perag_clear_eofblocks(ip->i_mount, pag->pag_agno,
1467 -1, _RET_IP_);
1468 }
1469
1470 spin_unlock(&pag->pag_ici_lock);
1471 xfs_perag_put(pag);
1472 }
1473
This page took 0.065062 seconds and 5 git commands to generate.