f925335e4553ae93fad266e3880abad1863b753c
[deliverable/linux.git] / fs / xfs / xfs_iget.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of version 2 of the GNU General Public License as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it would be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
11 *
12 * Further, this software is distributed without any warranty that it is
13 * free of the rightful claim of any third person regarding infringement
14 * or the like. Any license provided herein, whether implied or
15 * otherwise, applies only to this software file. Patent licenses, if
16 * any, provided herein do not apply to combinations of this program with
17 * other software, or any other product whatsoever.
18 *
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, write the Free Software Foundation, Inc., 59
21 * Temple Place - Suite 330, Boston MA 02111-1307, USA.
22 *
23 * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
24 * Mountain View, CA 94043, or:
25 *
26 * http://www.sgi.com
27 *
28 * For further information regarding this notice, see:
29 *
30 * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/
31 */
32 #include "xfs.h"
33 #include "xfs_fs.h"
34 #include "xfs_types.h"
35 #include "xfs_bit.h"
36 #include "xfs_log.h"
37 #include "xfs_inum.h"
38 #include "xfs_trans.h"
39 #include "xfs_sb.h"
40 #include "xfs_ag.h"
41 #include "xfs_dir.h"
42 #include "xfs_dir2.h"
43 #include "xfs_dmapi.h"
44 #include "xfs_mount.h"
45 #include "xfs_bmap_btree.h"
46 #include "xfs_alloc_btree.h"
47 #include "xfs_ialloc_btree.h"
48 #include "xfs_dir_sf.h"
49 #include "xfs_dir2_sf.h"
50 #include "xfs_attr_sf.h"
51 #include "xfs_dinode.h"
52 #include "xfs_inode.h"
53 #include "xfs_btree.h"
54 #include "xfs_ialloc.h"
55 #include "xfs_quota.h"
56 #include "xfs_utils.h"
57
58 /*
59 * Initialize the inode hash table for the newly mounted file system.
60 * Choose an initial table size based on user specified value, else
61 * use a simple algorithm using the maximum number of inodes as an
62 * indicator for table size, and clamp it between one and some large
63 * number of pages.
64 */
65 void
66 xfs_ihash_init(xfs_mount_t *mp)
67 {
68 __uint64_t icount;
69 uint i, flags = KM_SLEEP | KM_MAYFAIL;
70
71 if (!mp->m_ihsize) {
72 icount = mp->m_maxicount ? mp->m_maxicount :
73 (mp->m_sb.sb_dblocks << mp->m_sb.sb_inopblog);
74 mp->m_ihsize = 1 << max_t(uint, 8,
75 (xfs_highbit64(icount) + 1) / 2);
76 mp->m_ihsize = min_t(uint, mp->m_ihsize,
77 (64 * NBPP) / sizeof(xfs_ihash_t));
78 }
79
80 while (!(mp->m_ihash = (xfs_ihash_t *)kmem_zalloc(mp->m_ihsize *
81 sizeof(xfs_ihash_t), flags))) {
82 if ((mp->m_ihsize >>= 1) <= NBPP)
83 flags = KM_SLEEP;
84 }
85 for (i = 0; i < mp->m_ihsize; i++) {
86 rwlock_init(&(mp->m_ihash[i].ih_lock));
87 }
88 }
89
90 /*
91 * Free up structures allocated by xfs_ihash_init, at unmount time.
92 */
93 void
94 xfs_ihash_free(xfs_mount_t *mp)
95 {
96 kmem_free(mp->m_ihash, mp->m_ihsize*sizeof(xfs_ihash_t));
97 mp->m_ihash = NULL;
98 }
99
100 /*
101 * Initialize the inode cluster hash table for the newly mounted file system.
102 * Its size is derived from the ihash table size.
103 */
104 void
105 xfs_chash_init(xfs_mount_t *mp)
106 {
107 uint i;
108
109 mp->m_chsize = max_t(uint, 1, mp->m_ihsize /
110 (XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog));
111 mp->m_chsize = min_t(uint, mp->m_chsize, mp->m_ihsize);
112 mp->m_chash = (xfs_chash_t *)kmem_zalloc(mp->m_chsize
113 * sizeof(xfs_chash_t),
114 KM_SLEEP);
115 for (i = 0; i < mp->m_chsize; i++) {
116 spinlock_init(&mp->m_chash[i].ch_lock,"xfshash");
117 }
118 }
119
120 /*
121 * Free up structures allocated by xfs_chash_init, at unmount time.
122 */
123 void
124 xfs_chash_free(xfs_mount_t *mp)
125 {
126 int i;
127
128 for (i = 0; i < mp->m_chsize; i++) {
129 spinlock_destroy(&mp->m_chash[i].ch_lock);
130 }
131
132 kmem_free(mp->m_chash, mp->m_chsize*sizeof(xfs_chash_t));
133 mp->m_chash = NULL;
134 }
135
136 /*
137 * Try to move an inode to the front of its hash list if possible
138 * (and if its not there already). Called right after obtaining
139 * the list version number and then dropping the read_lock on the
140 * hash list in question (which is done right after looking up the
141 * inode in question...).
142 */
143 STATIC void
144 xfs_ihash_promote(
145 xfs_ihash_t *ih,
146 xfs_inode_t *ip,
147 ulong version)
148 {
149 xfs_inode_t *iq;
150
151 if ((ip->i_prevp != &ih->ih_next) && write_trylock(&ih->ih_lock)) {
152 if (likely(version == ih->ih_version)) {
153 /* remove from list */
154 if ((iq = ip->i_next)) {
155 iq->i_prevp = ip->i_prevp;
156 }
157 *ip->i_prevp = iq;
158
159 /* insert at list head */
160 iq = ih->ih_next;
161 iq->i_prevp = &ip->i_next;
162 ip->i_next = iq;
163 ip->i_prevp = &ih->ih_next;
164 ih->ih_next = ip;
165 }
166 write_unlock(&ih->ih_lock);
167 }
168 }
169
170 /*
171 * Look up an inode by number in the given file system.
172 * The inode is looked up in the hash table for the file system
173 * represented by the mount point parameter mp. Each bucket of
174 * the hash table is guarded by an individual semaphore.
175 *
176 * If the inode is found in the hash table, its corresponding vnode
177 * is obtained with a call to vn_get(). This call takes care of
178 * coordination with the reclamation of the inode and vnode. Note
179 * that the vmap structure is filled in while holding the hash lock.
180 * This gives us the state of the inode/vnode when we found it and
181 * is used for coordination in vn_get().
182 *
183 * If it is not in core, read it in from the file system's device and
184 * add the inode into the hash table.
185 *
186 * The inode is locked according to the value of the lock_flags parameter.
187 * This flag parameter indicates how and if the inode's IO lock and inode lock
188 * should be taken.
189 *
190 * mp -- the mount point structure for the current file system. It points
191 * to the inode hash table.
192 * tp -- a pointer to the current transaction if there is one. This is
193 * simply passed through to the xfs_iread() call.
194 * ino -- the number of the inode desired. This is the unique identifier
195 * within the file system for the inode being requested.
196 * lock_flags -- flags indicating how to lock the inode. See the comment
197 * for xfs_ilock() for a list of valid values.
198 * bno -- the block number starting the buffer containing the inode,
199 * if known (as by bulkstat), else 0.
200 */
201 STATIC int
202 xfs_iget_core(
203 vnode_t *vp,
204 xfs_mount_t *mp,
205 xfs_trans_t *tp,
206 xfs_ino_t ino,
207 uint flags,
208 uint lock_flags,
209 xfs_inode_t **ipp,
210 xfs_daddr_t bno)
211 {
212 xfs_ihash_t *ih;
213 xfs_inode_t *ip;
214 xfs_inode_t *iq;
215 vnode_t *inode_vp;
216 ulong version;
217 int error;
218 /* REFERENCED */
219 xfs_chash_t *ch;
220 xfs_chashlist_t *chl, *chlnew;
221 SPLDECL(s);
222
223
224 ih = XFS_IHASH(mp, ino);
225
226 again:
227 read_lock(&ih->ih_lock);
228
229 for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
230 if (ip->i_ino == ino) {
231 /*
232 * If INEW is set this inode is being set up
233 * we need to pause and try again.
234 */
235 if (ip->i_flags & XFS_INEW) {
236 read_unlock(&ih->ih_lock);
237 delay(1);
238 XFS_STATS_INC(xs_ig_frecycle);
239
240 goto again;
241 }
242
243 inode_vp = XFS_ITOV_NULL(ip);
244 if (inode_vp == NULL) {
245 /*
246 * If IRECLAIM is set this inode is
247 * on its way out of the system,
248 * we need to pause and try again.
249 */
250 if (ip->i_flags & XFS_IRECLAIM) {
251 read_unlock(&ih->ih_lock);
252 delay(1);
253 XFS_STATS_INC(xs_ig_frecycle);
254
255 goto again;
256 }
257
258 vn_trace_exit(vp, "xfs_iget.alloc",
259 (inst_t *)__return_address);
260
261 XFS_STATS_INC(xs_ig_found);
262
263 ip->i_flags &= ~XFS_IRECLAIMABLE;
264 version = ih->ih_version;
265 read_unlock(&ih->ih_lock);
266 xfs_ihash_promote(ih, ip, version);
267
268 XFS_MOUNT_ILOCK(mp);
269 list_del_init(&ip->i_reclaim);
270 XFS_MOUNT_IUNLOCK(mp);
271
272 goto finish_inode;
273
274 } else if (vp != inode_vp) {
275 struct inode *inode = LINVFS_GET_IP(inode_vp);
276
277 /* The inode is being torn down, pause and
278 * try again.
279 */
280 if (inode->i_state & (I_FREEING | I_CLEAR)) {
281 read_unlock(&ih->ih_lock);
282 delay(1);
283 XFS_STATS_INC(xs_ig_frecycle);
284
285 goto again;
286 }
287 /* Chances are the other vnode (the one in the inode) is being torn
288 * down right now, and we landed on top of it. Question is, what do
289 * we do? Unhook the old inode and hook up the new one?
290 */
291 cmn_err(CE_PANIC,
292 "xfs_iget_core: ambiguous vns: vp/0x%p, invp/0x%p",
293 inode_vp, vp);
294 }
295
296 /*
297 * Inode cache hit: if ip is not at the front of
298 * its hash chain, move it there now.
299 * Do this with the lock held for update, but
300 * do statistics after releasing the lock.
301 */
302 version = ih->ih_version;
303 read_unlock(&ih->ih_lock);
304 xfs_ihash_promote(ih, ip, version);
305 XFS_STATS_INC(xs_ig_found);
306
307 finish_inode:
308 if (ip->i_d.di_mode == 0) {
309 if (!(flags & IGET_CREATE))
310 return ENOENT;
311 xfs_iocore_inode_reinit(ip);
312 }
313
314 if (lock_flags != 0)
315 xfs_ilock(ip, lock_flags);
316
317 ip->i_flags &= ~XFS_ISTALE;
318
319 vn_trace_exit(vp, "xfs_iget.found",
320 (inst_t *)__return_address);
321 goto return_ip;
322 }
323 }
324
325 /*
326 * Inode cache miss: save the hash chain version stamp and unlock
327 * the chain, so we don't deadlock in vn_alloc.
328 */
329 XFS_STATS_INC(xs_ig_missed);
330
331 version = ih->ih_version;
332
333 read_unlock(&ih->ih_lock);
334
335 /*
336 * Read the disk inode attributes into a new inode structure and get
337 * a new vnode for it. This should also initialize i_ino and i_mount.
338 */
339 error = xfs_iread(mp, tp, ino, &ip, bno);
340 if (error) {
341 return error;
342 }
343
344 vn_trace_exit(vp, "xfs_iget.alloc", (inst_t *)__return_address);
345
346 xfs_inode_lock_init(ip, vp);
347 xfs_iocore_inode_init(ip);
348
349 if (lock_flags != 0) {
350 xfs_ilock(ip, lock_flags);
351 }
352
353 if ((ip->i_d.di_mode == 0) && !(flags & IGET_CREATE)) {
354 xfs_idestroy(ip);
355 return ENOENT;
356 }
357
358 /*
359 * Put ip on its hash chain, unless someone else hashed a duplicate
360 * after we released the hash lock.
361 */
362 write_lock(&ih->ih_lock);
363
364 if (ih->ih_version != version) {
365 for (iq = ih->ih_next; iq != NULL; iq = iq->i_next) {
366 if (iq->i_ino == ino) {
367 write_unlock(&ih->ih_lock);
368 xfs_idestroy(ip);
369
370 XFS_STATS_INC(xs_ig_dup);
371 goto again;
372 }
373 }
374 }
375
376 /*
377 * These values _must_ be set before releasing ihlock!
378 */
379 ip->i_hash = ih;
380 if ((iq = ih->ih_next)) {
381 iq->i_prevp = &ip->i_next;
382 }
383 ip->i_next = iq;
384 ip->i_prevp = &ih->ih_next;
385 ih->ih_next = ip;
386 ip->i_udquot = ip->i_gdquot = NULL;
387 ih->ih_version++;
388 ip->i_flags |= XFS_INEW;
389
390 write_unlock(&ih->ih_lock);
391
392 /*
393 * put ip on its cluster's hash chain
394 */
395 ASSERT(ip->i_chash == NULL && ip->i_cprev == NULL &&
396 ip->i_cnext == NULL);
397
398 chlnew = NULL;
399 ch = XFS_CHASH(mp, ip->i_blkno);
400 chlredo:
401 s = mutex_spinlock(&ch->ch_lock);
402 for (chl = ch->ch_list; chl != NULL; chl = chl->chl_next) {
403 if (chl->chl_blkno == ip->i_blkno) {
404
405 /* insert this inode into the doubly-linked list
406 * where chl points */
407 if ((iq = chl->chl_ip)) {
408 ip->i_cprev = iq->i_cprev;
409 iq->i_cprev->i_cnext = ip;
410 iq->i_cprev = ip;
411 ip->i_cnext = iq;
412 } else {
413 ip->i_cnext = ip;
414 ip->i_cprev = ip;
415 }
416 chl->chl_ip = ip;
417 ip->i_chash = chl;
418 break;
419 }
420 }
421
422 /* no hash list found for this block; add a new hash list */
423 if (chl == NULL) {
424 if (chlnew == NULL) {
425 mutex_spinunlock(&ch->ch_lock, s);
426 ASSERT(xfs_chashlist_zone != NULL);
427 chlnew = (xfs_chashlist_t *)
428 kmem_zone_alloc(xfs_chashlist_zone,
429 KM_SLEEP);
430 ASSERT(chlnew != NULL);
431 goto chlredo;
432 } else {
433 ip->i_cnext = ip;
434 ip->i_cprev = ip;
435 ip->i_chash = chlnew;
436 chlnew->chl_ip = ip;
437 chlnew->chl_blkno = ip->i_blkno;
438 chlnew->chl_next = ch->ch_list;
439 ch->ch_list = chlnew;
440 chlnew = NULL;
441 }
442 } else {
443 if (chlnew != NULL) {
444 kmem_zone_free(xfs_chashlist_zone, chlnew);
445 }
446 }
447
448 mutex_spinunlock(&ch->ch_lock, s);
449
450
451 /*
452 * Link ip to its mount and thread it on the mount's inode list.
453 */
454 XFS_MOUNT_ILOCK(mp);
455 if ((iq = mp->m_inodes)) {
456 ASSERT(iq->i_mprev->i_mnext == iq);
457 ip->i_mprev = iq->i_mprev;
458 iq->i_mprev->i_mnext = ip;
459 iq->i_mprev = ip;
460 ip->i_mnext = iq;
461 } else {
462 ip->i_mnext = ip;
463 ip->i_mprev = ip;
464 }
465 mp->m_inodes = ip;
466
467 XFS_MOUNT_IUNLOCK(mp);
468
469 return_ip:
470 ASSERT(ip->i_df.if_ext_max ==
471 XFS_IFORK_DSIZE(ip) / sizeof(xfs_bmbt_rec_t));
472
473 ASSERT(((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) != 0) ==
474 ((ip->i_iocore.io_flags & XFS_IOCORE_RT) != 0));
475
476 *ipp = ip;
477
478 /*
479 * If we have a real type for an on-disk inode, we can set ops(&unlock)
480 * now. If it's a new inode being created, xfs_ialloc will handle it.
481 */
482 VFS_INIT_VNODE(XFS_MTOVFS(mp), vp, XFS_ITOBHV(ip), 1);
483
484 return 0;
485 }
486
487
488 /*
489 * The 'normal' internal xfs_iget, if needed it will
490 * 'allocate', or 'get', the vnode.
491 */
492 int
493 xfs_iget(
494 xfs_mount_t *mp,
495 xfs_trans_t *tp,
496 xfs_ino_t ino,
497 uint flags,
498 uint lock_flags,
499 xfs_inode_t **ipp,
500 xfs_daddr_t bno)
501 {
502 struct inode *inode;
503 vnode_t *vp = NULL;
504 int error;
505
506 XFS_STATS_INC(xs_ig_attempts);
507
508 retry:
509 if ((inode = iget_locked(XFS_MTOVFS(mp)->vfs_super, ino))) {
510 bhv_desc_t *bdp;
511 xfs_inode_t *ip;
512
513 vp = LINVFS_GET_VP(inode);
514 if (inode->i_state & I_NEW) {
515 vn_initialize(inode);
516 error = xfs_iget_core(vp, mp, tp, ino, flags,
517 lock_flags, ipp, bno);
518 if (error) {
519 vn_mark_bad(vp);
520 if (inode->i_state & I_NEW)
521 unlock_new_inode(inode);
522 iput(inode);
523 }
524 } else {
525 /*
526 * If the inode is not fully constructed due to
527 * filehandle mistmatches wait for the inode to go
528 * away and try again.
529 *
530 * iget_locked will call __wait_on_freeing_inode
531 * to wait for the inode to go away.
532 */
533 if (is_bad_inode(inode) ||
534 ((bdp = vn_bhv_lookup(VN_BHV_HEAD(vp),
535 &xfs_vnodeops)) == NULL)) {
536 iput(inode);
537 delay(1);
538 goto retry;
539 }
540
541 ip = XFS_BHVTOI(bdp);
542 if (lock_flags != 0)
543 xfs_ilock(ip, lock_flags);
544 XFS_STATS_INC(xs_ig_found);
545 *ipp = ip;
546 error = 0;
547 }
548 } else
549 error = ENOMEM; /* If we got no inode we are out of memory */
550
551 return error;
552 }
553
554 /*
555 * Do the setup for the various locks within the incore inode.
556 */
557 void
558 xfs_inode_lock_init(
559 xfs_inode_t *ip,
560 vnode_t *vp)
561 {
562 mrlock_init(&ip->i_lock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER,
563 "xfsino", (long)vp->v_number);
564 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", vp->v_number);
565 init_waitqueue_head(&ip->i_ipin_wait);
566 atomic_set(&ip->i_pincount, 0);
567 init_sema(&ip->i_flock, 1, "xfsfino", vp->v_number);
568 }
569
570 /*
571 * Look for the inode corresponding to the given ino in the hash table.
572 * If it is there and its i_transp pointer matches tp, return it.
573 * Otherwise, return NULL.
574 */
575 xfs_inode_t *
576 xfs_inode_incore(xfs_mount_t *mp,
577 xfs_ino_t ino,
578 xfs_trans_t *tp)
579 {
580 xfs_ihash_t *ih;
581 xfs_inode_t *ip;
582 ulong version;
583
584 ih = XFS_IHASH(mp, ino);
585 read_lock(&ih->ih_lock);
586 for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
587 if (ip->i_ino == ino) {
588 /*
589 * If we find it and tp matches, return it.
590 * Also move it to the front of the hash list
591 * if we find it and it is not already there.
592 * Otherwise break from the loop and return
593 * NULL.
594 */
595 if (ip->i_transp == tp) {
596 version = ih->ih_version;
597 read_unlock(&ih->ih_lock);
598 xfs_ihash_promote(ih, ip, version);
599 return (ip);
600 }
601 break;
602 }
603 }
604 read_unlock(&ih->ih_lock);
605 return (NULL);
606 }
607
608 /*
609 * Decrement reference count of an inode structure and unlock it.
610 *
611 * ip -- the inode being released
612 * lock_flags -- this parameter indicates the inode's locks to be
613 * to be released. See the comment on xfs_iunlock() for a list
614 * of valid values.
615 */
616 void
617 xfs_iput(xfs_inode_t *ip,
618 uint lock_flags)
619 {
620 vnode_t *vp = XFS_ITOV(ip);
621
622 vn_trace_entry(vp, "xfs_iput", (inst_t *)__return_address);
623
624 xfs_iunlock(ip, lock_flags);
625
626 VN_RELE(vp);
627 }
628
629 /*
630 * Special iput for brand-new inodes that are still locked
631 */
632 void
633 xfs_iput_new(xfs_inode_t *ip,
634 uint lock_flags)
635 {
636 vnode_t *vp = XFS_ITOV(ip);
637 struct inode *inode = LINVFS_GET_IP(vp);
638
639 vn_trace_entry(vp, "xfs_iput_new", (inst_t *)__return_address);
640
641 if ((ip->i_d.di_mode == 0)) {
642 ASSERT(!(ip->i_flags & XFS_IRECLAIMABLE));
643 vn_mark_bad(vp);
644 }
645 if (inode->i_state & I_NEW)
646 unlock_new_inode(inode);
647 if (lock_flags)
648 xfs_iunlock(ip, lock_flags);
649 VN_RELE(vp);
650 }
651
652
653 /*
654 * This routine embodies the part of the reclaim code that pulls
655 * the inode from the inode hash table and the mount structure's
656 * inode list.
657 * This should only be called from xfs_reclaim().
658 */
659 void
660 xfs_ireclaim(xfs_inode_t *ip)
661 {
662 vnode_t *vp;
663
664 /*
665 * Remove from old hash list and mount list.
666 */
667 XFS_STATS_INC(xs_ig_reclaims);
668
669 xfs_iextract(ip);
670
671 /*
672 * Here we do a spurious inode lock in order to coordinate with
673 * xfs_sync(). This is because xfs_sync() references the inodes
674 * in the mount list without taking references on the corresponding
675 * vnodes. We make that OK here by ensuring that we wait until
676 * the inode is unlocked in xfs_sync() before we go ahead and
677 * free it. We get both the regular lock and the io lock because
678 * the xfs_sync() code may need to drop the regular one but will
679 * still hold the io lock.
680 */
681 xfs_ilock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
682
683 /*
684 * Release dquots (and their references) if any. An inode may escape
685 * xfs_inactive and get here via vn_alloc->vn_reclaim path.
686 */
687 XFS_QM_DQDETACH(ip->i_mount, ip);
688
689 /*
690 * Pull our behavior descriptor from the vnode chain.
691 */
692 vp = XFS_ITOV_NULL(ip);
693 if (vp) {
694 vn_bhv_remove(VN_BHV_HEAD(vp), XFS_ITOBHV(ip));
695 }
696
697 /*
698 * Free all memory associated with the inode.
699 */
700 xfs_idestroy(ip);
701 }
702
703 /*
704 * This routine removes an about-to-be-destroyed inode from
705 * all of the lists in which it is located with the exception
706 * of the behavior chain.
707 */
708 void
709 xfs_iextract(
710 xfs_inode_t *ip)
711 {
712 xfs_ihash_t *ih;
713 xfs_inode_t *iq;
714 xfs_mount_t *mp;
715 xfs_chash_t *ch;
716 xfs_chashlist_t *chl, *chm;
717 SPLDECL(s);
718
719 ih = ip->i_hash;
720 write_lock(&ih->ih_lock);
721 if ((iq = ip->i_next)) {
722 iq->i_prevp = ip->i_prevp;
723 }
724 *ip->i_prevp = iq;
725 ih->ih_version++;
726 write_unlock(&ih->ih_lock);
727
728 /*
729 * Remove from cluster hash list
730 * 1) delete the chashlist if this is the last inode on the chashlist
731 * 2) unchain from list of inodes
732 * 3) point chashlist->chl_ip to 'chl_next' if to this inode.
733 */
734 mp = ip->i_mount;
735 ch = XFS_CHASH(mp, ip->i_blkno);
736 s = mutex_spinlock(&ch->ch_lock);
737
738 if (ip->i_cnext == ip) {
739 /* Last inode on chashlist */
740 ASSERT(ip->i_cnext == ip && ip->i_cprev == ip);
741 ASSERT(ip->i_chash != NULL);
742 chm=NULL;
743 for (chl = ch->ch_list; chl != NULL; chl = chl->chl_next) {
744 if (chl->chl_blkno == ip->i_blkno) {
745 if (chm == NULL) {
746 /* first item on the list */
747 ch->ch_list = chl->chl_next;
748 } else {
749 chm->chl_next = chl->chl_next;
750 }
751 kmem_zone_free(xfs_chashlist_zone, chl);
752 break;
753 } else {
754 ASSERT(chl->chl_ip != ip);
755 chm = chl;
756 }
757 }
758 ASSERT_ALWAYS(chl != NULL);
759 } else {
760 /* delete one inode from a non-empty list */
761 iq = ip->i_cnext;
762 iq->i_cprev = ip->i_cprev;
763 ip->i_cprev->i_cnext = iq;
764 if (ip->i_chash->chl_ip == ip) {
765 ip->i_chash->chl_ip = iq;
766 }
767 ip->i_chash = __return_address;
768 ip->i_cprev = __return_address;
769 ip->i_cnext = __return_address;
770 }
771 mutex_spinunlock(&ch->ch_lock, s);
772
773 /*
774 * Remove from mount's inode list.
775 */
776 XFS_MOUNT_ILOCK(mp);
777 ASSERT((ip->i_mnext != NULL) && (ip->i_mprev != NULL));
778 iq = ip->i_mnext;
779 iq->i_mprev = ip->i_mprev;
780 ip->i_mprev->i_mnext = iq;
781
782 /*
783 * Fix up the head pointer if it points to the inode being deleted.
784 */
785 if (mp->m_inodes == ip) {
786 if (ip == iq) {
787 mp->m_inodes = NULL;
788 } else {
789 mp->m_inodes = iq;
790 }
791 }
792
793 /* Deal with the deleted inodes list */
794 list_del_init(&ip->i_reclaim);
795
796 mp->m_ireclaims++;
797 XFS_MOUNT_IUNLOCK(mp);
798 }
799
800 /*
801 * This is a wrapper routine around the xfs_ilock() routine
802 * used to centralize some grungy code. It is used in places
803 * that wish to lock the inode solely for reading the extents.
804 * The reason these places can't just call xfs_ilock(SHARED)
805 * is that the inode lock also guards to bringing in of the
806 * extents from disk for a file in b-tree format. If the inode
807 * is in b-tree format, then we need to lock the inode exclusively
808 * until the extents are read in. Locking it exclusively all
809 * the time would limit our parallelism unnecessarily, though.
810 * What we do instead is check to see if the extents have been
811 * read in yet, and only lock the inode exclusively if they
812 * have not.
813 *
814 * The function returns a value which should be given to the
815 * corresponding xfs_iunlock_map_shared(). This value is
816 * the mode in which the lock was actually taken.
817 */
818 uint
819 xfs_ilock_map_shared(
820 xfs_inode_t *ip)
821 {
822 uint lock_mode;
823
824 if ((ip->i_d.di_format == XFS_DINODE_FMT_BTREE) &&
825 ((ip->i_df.if_flags & XFS_IFEXTENTS) == 0)) {
826 lock_mode = XFS_ILOCK_EXCL;
827 } else {
828 lock_mode = XFS_ILOCK_SHARED;
829 }
830
831 xfs_ilock(ip, lock_mode);
832
833 return lock_mode;
834 }
835
836 /*
837 * This is simply the unlock routine to go with xfs_ilock_map_shared().
838 * All it does is call xfs_iunlock() with the given lock_mode.
839 */
840 void
841 xfs_iunlock_map_shared(
842 xfs_inode_t *ip,
843 unsigned int lock_mode)
844 {
845 xfs_iunlock(ip, lock_mode);
846 }
847
848 /*
849 * The xfs inode contains 2 locks: a multi-reader lock called the
850 * i_iolock and a multi-reader lock called the i_lock. This routine
851 * allows either or both of the locks to be obtained.
852 *
853 * The 2 locks should always be ordered so that the IO lock is
854 * obtained first in order to prevent deadlock.
855 *
856 * ip -- the inode being locked
857 * lock_flags -- this parameter indicates the inode's locks
858 * to be locked. It can be:
859 * XFS_IOLOCK_SHARED,
860 * XFS_IOLOCK_EXCL,
861 * XFS_ILOCK_SHARED,
862 * XFS_ILOCK_EXCL,
863 * XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED,
864 * XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL,
865 * XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED,
866 * XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL
867 */
868 void
869 xfs_ilock(xfs_inode_t *ip,
870 uint lock_flags)
871 {
872 /*
873 * You can't set both SHARED and EXCL for the same lock,
874 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
875 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
876 */
877 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
878 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
879 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
880 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
881 ASSERT((lock_flags & ~XFS_LOCK_MASK) == 0);
882
883 if (lock_flags & XFS_IOLOCK_EXCL) {
884 mrupdate(&ip->i_iolock);
885 } else if (lock_flags & XFS_IOLOCK_SHARED) {
886 mraccess(&ip->i_iolock);
887 }
888 if (lock_flags & XFS_ILOCK_EXCL) {
889 mrupdate(&ip->i_lock);
890 } else if (lock_flags & XFS_ILOCK_SHARED) {
891 mraccess(&ip->i_lock);
892 }
893 xfs_ilock_trace(ip, 1, lock_flags, (inst_t *)__return_address);
894 }
895
896 /*
897 * This is just like xfs_ilock(), except that the caller
898 * is guaranteed not to sleep. It returns 1 if it gets
899 * the requested locks and 0 otherwise. If the IO lock is
900 * obtained but the inode lock cannot be, then the IO lock
901 * is dropped before returning.
902 *
903 * ip -- the inode being locked
904 * lock_flags -- this parameter indicates the inode's locks to be
905 * to be locked. See the comment for xfs_ilock() for a list
906 * of valid values.
907 *
908 */
909 int
910 xfs_ilock_nowait(xfs_inode_t *ip,
911 uint lock_flags)
912 {
913 int iolocked;
914 int ilocked;
915
916 /*
917 * You can't set both SHARED and EXCL for the same lock,
918 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
919 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
920 */
921 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
922 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
923 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
924 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
925 ASSERT((lock_flags & ~XFS_LOCK_MASK) == 0);
926
927 iolocked = 0;
928 if (lock_flags & XFS_IOLOCK_EXCL) {
929 iolocked = mrtryupdate(&ip->i_iolock);
930 if (!iolocked) {
931 return 0;
932 }
933 } else if (lock_flags & XFS_IOLOCK_SHARED) {
934 iolocked = mrtryaccess(&ip->i_iolock);
935 if (!iolocked) {
936 return 0;
937 }
938 }
939 if (lock_flags & XFS_ILOCK_EXCL) {
940 ilocked = mrtryupdate(&ip->i_lock);
941 if (!ilocked) {
942 if (iolocked) {
943 mrunlock(&ip->i_iolock);
944 }
945 return 0;
946 }
947 } else if (lock_flags & XFS_ILOCK_SHARED) {
948 ilocked = mrtryaccess(&ip->i_lock);
949 if (!ilocked) {
950 if (iolocked) {
951 mrunlock(&ip->i_iolock);
952 }
953 return 0;
954 }
955 }
956 xfs_ilock_trace(ip, 2, lock_flags, (inst_t *)__return_address);
957 return 1;
958 }
959
960 /*
961 * xfs_iunlock() is used to drop the inode locks acquired with
962 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
963 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
964 * that we know which locks to drop.
965 *
966 * ip -- the inode being unlocked
967 * lock_flags -- this parameter indicates the inode's locks to be
968 * to be unlocked. See the comment for xfs_ilock() for a list
969 * of valid values for this parameter.
970 *
971 */
972 void
973 xfs_iunlock(xfs_inode_t *ip,
974 uint lock_flags)
975 {
976 /*
977 * You can't set both SHARED and EXCL for the same lock,
978 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
979 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
980 */
981 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
982 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
983 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
984 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
985 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_IUNLOCK_NONOTIFY)) == 0);
986 ASSERT(lock_flags != 0);
987
988 if (lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) {
989 ASSERT(!(lock_flags & XFS_IOLOCK_SHARED) ||
990 (ismrlocked(&ip->i_iolock, MR_ACCESS)));
991 ASSERT(!(lock_flags & XFS_IOLOCK_EXCL) ||
992 (ismrlocked(&ip->i_iolock, MR_UPDATE)));
993 mrunlock(&ip->i_iolock);
994 }
995
996 if (lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) {
997 ASSERT(!(lock_flags & XFS_ILOCK_SHARED) ||
998 (ismrlocked(&ip->i_lock, MR_ACCESS)));
999 ASSERT(!(lock_flags & XFS_ILOCK_EXCL) ||
1000 (ismrlocked(&ip->i_lock, MR_UPDATE)));
1001 mrunlock(&ip->i_lock);
1002
1003 /*
1004 * Let the AIL know that this item has been unlocked in case
1005 * it is in the AIL and anyone is waiting on it. Don't do
1006 * this if the caller has asked us not to.
1007 */
1008 if (!(lock_flags & XFS_IUNLOCK_NONOTIFY) &&
1009 ip->i_itemp != NULL) {
1010 xfs_trans_unlocked_item(ip->i_mount,
1011 (xfs_log_item_t*)(ip->i_itemp));
1012 }
1013 }
1014 xfs_ilock_trace(ip, 3, lock_flags, (inst_t *)__return_address);
1015 }
1016
1017 /*
1018 * give up write locks. the i/o lock cannot be held nested
1019 * if it is being demoted.
1020 */
1021 void
1022 xfs_ilock_demote(xfs_inode_t *ip,
1023 uint lock_flags)
1024 {
1025 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL));
1026 ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
1027
1028 if (lock_flags & XFS_ILOCK_EXCL) {
1029 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
1030 mrdemote(&ip->i_lock);
1031 }
1032 if (lock_flags & XFS_IOLOCK_EXCL) {
1033 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE));
1034 mrdemote(&ip->i_iolock);
1035 }
1036 }
1037
1038 /*
1039 * The following three routines simply manage the i_flock
1040 * semaphore embedded in the inode. This semaphore synchronizes
1041 * processes attempting to flush the in-core inode back to disk.
1042 */
1043 void
1044 xfs_iflock(xfs_inode_t *ip)
1045 {
1046 psema(&(ip->i_flock), PINOD|PLTWAIT);
1047 }
1048
1049 int
1050 xfs_iflock_nowait(xfs_inode_t *ip)
1051 {
1052 return (cpsema(&(ip->i_flock)));
1053 }
1054
1055 void
1056 xfs_ifunlock(xfs_inode_t *ip)
1057 {
1058 ASSERT(valusema(&(ip->i_flock)) <= 0);
1059 vsema(&(ip->i_flock));
1060 }
This page took 0.101207 seconds and 5 git commands to generate.