[XFS] dinode endianess annotations
[deliverable/linux.git] / fs / xfs / xfs_inode.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_imap.h"
25 #include "xfs_trans.h"
26 #include "xfs_trans_priv.h"
27 #include "xfs_sb.h"
28 #include "xfs_ag.h"
29 #include "xfs_dir2.h"
30 #include "xfs_dmapi.h"
31 #include "xfs_mount.h"
32 #include "xfs_bmap_btree.h"
33 #include "xfs_alloc_btree.h"
34 #include "xfs_ialloc_btree.h"
35 #include "xfs_dir2_sf.h"
36 #include "xfs_attr_sf.h"
37 #include "xfs_dinode.h"
38 #include "xfs_inode.h"
39 #include "xfs_buf_item.h"
40 #include "xfs_inode_item.h"
41 #include "xfs_btree.h"
42 #include "xfs_alloc.h"
43 #include "xfs_ialloc.h"
44 #include "xfs_bmap.h"
45 #include "xfs_rw.h"
46 #include "xfs_error.h"
47 #include "xfs_utils.h"
48 #include "xfs_dir2_trace.h"
49 #include "xfs_quota.h"
50 #include "xfs_acl.h"
51 #include "xfs_filestream.h"
52
53 kmem_zone_t *xfs_ifork_zone;
54 kmem_zone_t *xfs_inode_zone;
55 kmem_zone_t *xfs_chashlist_zone;
56
57 /*
58 * Used in xfs_itruncate(). This is the maximum number of extents
59 * freed from a file in a single transaction.
60 */
61 #define XFS_ITRUNC_MAX_EXTENTS 2
62
63 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
64 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
65 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
66 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
67
68 #ifdef DEBUG
69 /*
70 * Make sure that the extents in the given memory buffer
71 * are valid.
72 */
73 STATIC void
74 xfs_validate_extents(
75 xfs_ifork_t *ifp,
76 int nrecs,
77 xfs_exntfmt_t fmt)
78 {
79 xfs_bmbt_irec_t irec;
80 xfs_bmbt_rec_host_t rec;
81 int i;
82
83 for (i = 0; i < nrecs; i++) {
84 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
85 rec.l0 = get_unaligned(&ep->l0);
86 rec.l1 = get_unaligned(&ep->l1);
87 xfs_bmbt_get_all(&rec, &irec);
88 if (fmt == XFS_EXTFMT_NOSTATE)
89 ASSERT(irec.br_state == XFS_EXT_NORM);
90 }
91 }
92 #else /* DEBUG */
93 #define xfs_validate_extents(ifp, nrecs, fmt)
94 #endif /* DEBUG */
95
96 /*
97 * Check that none of the inode's in the buffer have a next
98 * unlinked field of 0.
99 */
100 #if defined(DEBUG)
101 void
102 xfs_inobp_check(
103 xfs_mount_t *mp,
104 xfs_buf_t *bp)
105 {
106 int i;
107 int j;
108 xfs_dinode_t *dip;
109
110 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
111
112 for (i = 0; i < j; i++) {
113 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
114 i * mp->m_sb.sb_inodesize);
115 if (!dip->di_next_unlinked) {
116 xfs_fs_cmn_err(CE_ALERT, mp,
117 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
118 bp);
119 ASSERT(dip->di_next_unlinked);
120 }
121 }
122 }
123 #endif
124
125 /*
126 * This routine is called to map an inode number within a file
127 * system to the buffer containing the on-disk version of the
128 * inode. It returns a pointer to the buffer containing the
129 * on-disk inode in the bpp parameter, and in the dip parameter
130 * it returns a pointer to the on-disk inode within that buffer.
131 *
132 * If a non-zero error is returned, then the contents of bpp and
133 * dipp are undefined.
134 *
135 * Use xfs_imap() to determine the size and location of the
136 * buffer to read from disk.
137 */
138 STATIC int
139 xfs_inotobp(
140 xfs_mount_t *mp,
141 xfs_trans_t *tp,
142 xfs_ino_t ino,
143 xfs_dinode_t **dipp,
144 xfs_buf_t **bpp,
145 int *offset)
146 {
147 int di_ok;
148 xfs_imap_t imap;
149 xfs_buf_t *bp;
150 int error;
151 xfs_dinode_t *dip;
152
153 /*
154 * Call the space management code to find the location of the
155 * inode on disk.
156 */
157 imap.im_blkno = 0;
158 error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
159 if (error != 0) {
160 cmn_err(CE_WARN,
161 "xfs_inotobp: xfs_imap() returned an "
162 "error %d on %s. Returning error.", error, mp->m_fsname);
163 return error;
164 }
165
166 /*
167 * If the inode number maps to a block outside the bounds of the
168 * file system then return NULL rather than calling read_buf
169 * and panicing when we get an error from the driver.
170 */
171 if ((imap.im_blkno + imap.im_len) >
172 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
173 cmn_err(CE_WARN,
174 "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
175 "of the file system %s. Returning EINVAL.",
176 (unsigned long long)imap.im_blkno,
177 imap.im_len, mp->m_fsname);
178 return XFS_ERROR(EINVAL);
179 }
180
181 /*
182 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
183 * default to just a read_buf() call.
184 */
185 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
186 (int)imap.im_len, XFS_BUF_LOCK, &bp);
187
188 if (error) {
189 cmn_err(CE_WARN,
190 "xfs_inotobp: xfs_trans_read_buf() returned an "
191 "error %d on %s. Returning error.", error, mp->m_fsname);
192 return error;
193 }
194 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
195 di_ok =
196 be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC &&
197 XFS_DINODE_GOOD_VERSION(dip->di_core.di_version);
198 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
199 XFS_RANDOM_ITOBP_INOTOBP))) {
200 XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
201 xfs_trans_brelse(tp, bp);
202 cmn_err(CE_WARN,
203 "xfs_inotobp: XFS_TEST_ERROR() returned an "
204 "error on %s. Returning EFSCORRUPTED.", mp->m_fsname);
205 return XFS_ERROR(EFSCORRUPTED);
206 }
207
208 xfs_inobp_check(mp, bp);
209
210 /*
211 * Set *dipp to point to the on-disk inode in the buffer.
212 */
213 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
214 *bpp = bp;
215 *offset = imap.im_boffset;
216 return 0;
217 }
218
219
220 /*
221 * This routine is called to map an inode to the buffer containing
222 * the on-disk version of the inode. It returns a pointer to the
223 * buffer containing the on-disk inode in the bpp parameter, and in
224 * the dip parameter it returns a pointer to the on-disk inode within
225 * that buffer.
226 *
227 * If a non-zero error is returned, then the contents of bpp and
228 * dipp are undefined.
229 *
230 * If the inode is new and has not yet been initialized, use xfs_imap()
231 * to determine the size and location of the buffer to read from disk.
232 * If the inode has already been mapped to its buffer and read in once,
233 * then use the mapping information stored in the inode rather than
234 * calling xfs_imap(). This allows us to avoid the overhead of looking
235 * at the inode btree for small block file systems (see xfs_dilocate()).
236 * We can tell whether the inode has been mapped in before by comparing
237 * its disk block address to 0. Only uninitialized inodes will have
238 * 0 for the disk block address.
239 */
240 int
241 xfs_itobp(
242 xfs_mount_t *mp,
243 xfs_trans_t *tp,
244 xfs_inode_t *ip,
245 xfs_dinode_t **dipp,
246 xfs_buf_t **bpp,
247 xfs_daddr_t bno,
248 uint imap_flags)
249 {
250 xfs_imap_t imap;
251 xfs_buf_t *bp;
252 int error;
253 int i;
254 int ni;
255
256 if (ip->i_blkno == (xfs_daddr_t)0) {
257 /*
258 * Call the space management code to find the location of the
259 * inode on disk.
260 */
261 imap.im_blkno = bno;
262 if ((error = xfs_imap(mp, tp, ip->i_ino, &imap,
263 XFS_IMAP_LOOKUP | imap_flags)))
264 return error;
265
266 /*
267 * If the inode number maps to a block outside the bounds
268 * of the file system then return NULL rather than calling
269 * read_buf and panicing when we get an error from the
270 * driver.
271 */
272 if ((imap.im_blkno + imap.im_len) >
273 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
274 #ifdef DEBUG
275 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
276 "(imap.im_blkno (0x%llx) "
277 "+ imap.im_len (0x%llx)) > "
278 " XFS_FSB_TO_BB(mp, "
279 "mp->m_sb.sb_dblocks) (0x%llx)",
280 (unsigned long long) imap.im_blkno,
281 (unsigned long long) imap.im_len,
282 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
283 #endif /* DEBUG */
284 return XFS_ERROR(EINVAL);
285 }
286
287 /*
288 * Fill in the fields in the inode that will be used to
289 * map the inode to its buffer from now on.
290 */
291 ip->i_blkno = imap.im_blkno;
292 ip->i_len = imap.im_len;
293 ip->i_boffset = imap.im_boffset;
294 } else {
295 /*
296 * We've already mapped the inode once, so just use the
297 * mapping that we saved the first time.
298 */
299 imap.im_blkno = ip->i_blkno;
300 imap.im_len = ip->i_len;
301 imap.im_boffset = ip->i_boffset;
302 }
303 ASSERT(bno == 0 || bno == imap.im_blkno);
304
305 /*
306 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
307 * default to just a read_buf() call.
308 */
309 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
310 (int)imap.im_len, XFS_BUF_LOCK, &bp);
311 if (error) {
312 #ifdef DEBUG
313 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
314 "xfs_trans_read_buf() returned error %d, "
315 "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
316 error, (unsigned long long) imap.im_blkno,
317 (unsigned long long) imap.im_len);
318 #endif /* DEBUG */
319 return error;
320 }
321
322 /*
323 * Validate the magic number and version of every inode in the buffer
324 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
325 * No validation is done here in userspace (xfs_repair).
326 */
327 #if !defined(__KERNEL__)
328 ni = 0;
329 #elif defined(DEBUG)
330 ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog;
331 #else /* usual case */
332 ni = 1;
333 #endif
334
335 for (i = 0; i < ni; i++) {
336 int di_ok;
337 xfs_dinode_t *dip;
338
339 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
340 (i << mp->m_sb.sb_inodelog));
341 di_ok = be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC &&
342 XFS_DINODE_GOOD_VERSION(dip->di_core.di_version);
343 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
344 XFS_ERRTAG_ITOBP_INOTOBP,
345 XFS_RANDOM_ITOBP_INOTOBP))) {
346 if (imap_flags & XFS_IMAP_BULKSTAT) {
347 xfs_trans_brelse(tp, bp);
348 return XFS_ERROR(EINVAL);
349 }
350 #ifdef DEBUG
351 cmn_err(CE_ALERT,
352 "Device %s - bad inode magic/vsn "
353 "daddr %lld #%d (magic=%x)",
354 XFS_BUFTARG_NAME(mp->m_ddev_targp),
355 (unsigned long long)imap.im_blkno, i,
356 be16_to_cpu(dip->di_core.di_magic));
357 #endif
358 XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
359 mp, dip);
360 xfs_trans_brelse(tp, bp);
361 return XFS_ERROR(EFSCORRUPTED);
362 }
363 }
364
365 xfs_inobp_check(mp, bp);
366
367 /*
368 * Mark the buffer as an inode buffer now that it looks good
369 */
370 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
371
372 /*
373 * Set *dipp to point to the on-disk inode in the buffer.
374 */
375 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
376 *bpp = bp;
377 return 0;
378 }
379
380 /*
381 * Move inode type and inode format specific information from the
382 * on-disk inode to the in-core inode. For fifos, devs, and sockets
383 * this means set if_rdev to the proper value. For files, directories,
384 * and symlinks this means to bring in the in-line data or extent
385 * pointers. For a file in B-tree format, only the root is immediately
386 * brought in-core. The rest will be in-lined in if_extents when it
387 * is first referenced (see xfs_iread_extents()).
388 */
389 STATIC int
390 xfs_iformat(
391 xfs_inode_t *ip,
392 xfs_dinode_t *dip)
393 {
394 xfs_attr_shortform_t *atp;
395 int size;
396 int error;
397 xfs_fsize_t di_size;
398 ip->i_df.if_ext_max =
399 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
400 error = 0;
401
402 if (unlikely(be32_to_cpu(dip->di_core.di_nextents) +
403 be16_to_cpu(dip->di_core.di_anextents) >
404 be64_to_cpu(dip->di_core.di_nblocks))) {
405 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
406 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
407 (unsigned long long)ip->i_ino,
408 (int)(be32_to_cpu(dip->di_core.di_nextents) +
409 be16_to_cpu(dip->di_core.di_anextents)),
410 (unsigned long long)
411 be64_to_cpu(dip->di_core.di_nblocks));
412 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
413 ip->i_mount, dip);
414 return XFS_ERROR(EFSCORRUPTED);
415 }
416
417 if (unlikely(dip->di_core.di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
418 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
419 "corrupt dinode %Lu, forkoff = 0x%x.",
420 (unsigned long long)ip->i_ino,
421 dip->di_core.di_forkoff);
422 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
423 ip->i_mount, dip);
424 return XFS_ERROR(EFSCORRUPTED);
425 }
426
427 switch (ip->i_d.di_mode & S_IFMT) {
428 case S_IFIFO:
429 case S_IFCHR:
430 case S_IFBLK:
431 case S_IFSOCK:
432 if (unlikely(dip->di_core.di_format != XFS_DINODE_FMT_DEV)) {
433 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
434 ip->i_mount, dip);
435 return XFS_ERROR(EFSCORRUPTED);
436 }
437 ip->i_d.di_size = 0;
438 ip->i_size = 0;
439 ip->i_df.if_u2.if_rdev = be32_to_cpu(dip->di_u.di_dev);
440 break;
441
442 case S_IFREG:
443 case S_IFLNK:
444 case S_IFDIR:
445 switch (dip->di_core.di_format) {
446 case XFS_DINODE_FMT_LOCAL:
447 /*
448 * no local regular files yet
449 */
450 if (unlikely((be16_to_cpu(dip->di_core.di_mode) & S_IFMT) == S_IFREG)) {
451 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
452 "corrupt inode %Lu "
453 "(local format for regular file).",
454 (unsigned long long) ip->i_ino);
455 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
456 XFS_ERRLEVEL_LOW,
457 ip->i_mount, dip);
458 return XFS_ERROR(EFSCORRUPTED);
459 }
460
461 di_size = be64_to_cpu(dip->di_core.di_size);
462 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
463 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
464 "corrupt inode %Lu "
465 "(bad size %Ld for local inode).",
466 (unsigned long long) ip->i_ino,
467 (long long) di_size);
468 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
469 XFS_ERRLEVEL_LOW,
470 ip->i_mount, dip);
471 return XFS_ERROR(EFSCORRUPTED);
472 }
473
474 size = (int)di_size;
475 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
476 break;
477 case XFS_DINODE_FMT_EXTENTS:
478 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
479 break;
480 case XFS_DINODE_FMT_BTREE:
481 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
482 break;
483 default:
484 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
485 ip->i_mount);
486 return XFS_ERROR(EFSCORRUPTED);
487 }
488 break;
489
490 default:
491 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
492 return XFS_ERROR(EFSCORRUPTED);
493 }
494 if (error) {
495 return error;
496 }
497 if (!XFS_DFORK_Q(dip))
498 return 0;
499 ASSERT(ip->i_afp == NULL);
500 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
501 ip->i_afp->if_ext_max =
502 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
503 switch (dip->di_core.di_aformat) {
504 case XFS_DINODE_FMT_LOCAL:
505 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
506 size = be16_to_cpu(atp->hdr.totsize);
507 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
508 break;
509 case XFS_DINODE_FMT_EXTENTS:
510 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
511 break;
512 case XFS_DINODE_FMT_BTREE:
513 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
514 break;
515 default:
516 error = XFS_ERROR(EFSCORRUPTED);
517 break;
518 }
519 if (error) {
520 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
521 ip->i_afp = NULL;
522 xfs_idestroy_fork(ip, XFS_DATA_FORK);
523 }
524 return error;
525 }
526
527 /*
528 * The file is in-lined in the on-disk inode.
529 * If it fits into if_inline_data, then copy
530 * it there, otherwise allocate a buffer for it
531 * and copy the data there. Either way, set
532 * if_data to point at the data.
533 * If we allocate a buffer for the data, make
534 * sure that its size is a multiple of 4 and
535 * record the real size in i_real_bytes.
536 */
537 STATIC int
538 xfs_iformat_local(
539 xfs_inode_t *ip,
540 xfs_dinode_t *dip,
541 int whichfork,
542 int size)
543 {
544 xfs_ifork_t *ifp;
545 int real_size;
546
547 /*
548 * If the size is unreasonable, then something
549 * is wrong and we just bail out rather than crash in
550 * kmem_alloc() or memcpy() below.
551 */
552 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
553 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
554 "corrupt inode %Lu "
555 "(bad size %d for local fork, size = %d).",
556 (unsigned long long) ip->i_ino, size,
557 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
558 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
559 ip->i_mount, dip);
560 return XFS_ERROR(EFSCORRUPTED);
561 }
562 ifp = XFS_IFORK_PTR(ip, whichfork);
563 real_size = 0;
564 if (size == 0)
565 ifp->if_u1.if_data = NULL;
566 else if (size <= sizeof(ifp->if_u2.if_inline_data))
567 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
568 else {
569 real_size = roundup(size, 4);
570 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
571 }
572 ifp->if_bytes = size;
573 ifp->if_real_bytes = real_size;
574 if (size)
575 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
576 ifp->if_flags &= ~XFS_IFEXTENTS;
577 ifp->if_flags |= XFS_IFINLINE;
578 return 0;
579 }
580
581 /*
582 * The file consists of a set of extents all
583 * of which fit into the on-disk inode.
584 * If there are few enough extents to fit into
585 * the if_inline_ext, then copy them there.
586 * Otherwise allocate a buffer for them and copy
587 * them into it. Either way, set if_extents
588 * to point at the extents.
589 */
590 STATIC int
591 xfs_iformat_extents(
592 xfs_inode_t *ip,
593 xfs_dinode_t *dip,
594 int whichfork)
595 {
596 xfs_bmbt_rec_t *dp;
597 xfs_ifork_t *ifp;
598 int nex;
599 int size;
600 int i;
601
602 ifp = XFS_IFORK_PTR(ip, whichfork);
603 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
604 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
605
606 /*
607 * If the number of extents is unreasonable, then something
608 * is wrong and we just bail out rather than crash in
609 * kmem_alloc() or memcpy() below.
610 */
611 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
612 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
613 "corrupt inode %Lu ((a)extents = %d).",
614 (unsigned long long) ip->i_ino, nex);
615 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
616 ip->i_mount, dip);
617 return XFS_ERROR(EFSCORRUPTED);
618 }
619
620 ifp->if_real_bytes = 0;
621 if (nex == 0)
622 ifp->if_u1.if_extents = NULL;
623 else if (nex <= XFS_INLINE_EXTS)
624 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
625 else
626 xfs_iext_add(ifp, 0, nex);
627
628 ifp->if_bytes = size;
629 if (size) {
630 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
631 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
632 for (i = 0; i < nex; i++, dp++) {
633 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
634 ep->l0 = be64_to_cpu(get_unaligned(&dp->l0));
635 ep->l1 = be64_to_cpu(get_unaligned(&dp->l1));
636 }
637 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
638 if (whichfork != XFS_DATA_FORK ||
639 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
640 if (unlikely(xfs_check_nostate_extents(
641 ifp, 0, nex))) {
642 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
643 XFS_ERRLEVEL_LOW,
644 ip->i_mount);
645 return XFS_ERROR(EFSCORRUPTED);
646 }
647 }
648 ifp->if_flags |= XFS_IFEXTENTS;
649 return 0;
650 }
651
652 /*
653 * The file has too many extents to fit into
654 * the inode, so they are in B-tree format.
655 * Allocate a buffer for the root of the B-tree
656 * and copy the root into it. The i_extents
657 * field will remain NULL until all of the
658 * extents are read in (when they are needed).
659 */
660 STATIC int
661 xfs_iformat_btree(
662 xfs_inode_t *ip,
663 xfs_dinode_t *dip,
664 int whichfork)
665 {
666 xfs_bmdr_block_t *dfp;
667 xfs_ifork_t *ifp;
668 /* REFERENCED */
669 int nrecs;
670 int size;
671
672 ifp = XFS_IFORK_PTR(ip, whichfork);
673 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
674 size = XFS_BMAP_BROOT_SPACE(dfp);
675 nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
676
677 /*
678 * blow out if -- fork has less extents than can fit in
679 * fork (fork shouldn't be a btree format), root btree
680 * block has more records than can fit into the fork,
681 * or the number of extents is greater than the number of
682 * blocks.
683 */
684 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
685 || XFS_BMDR_SPACE_CALC(nrecs) >
686 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
687 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
688 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
689 "corrupt inode %Lu (btree).",
690 (unsigned long long) ip->i_ino);
691 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
692 ip->i_mount);
693 return XFS_ERROR(EFSCORRUPTED);
694 }
695
696 ifp->if_broot_bytes = size;
697 ifp->if_broot = kmem_alloc(size, KM_SLEEP);
698 ASSERT(ifp->if_broot != NULL);
699 /*
700 * Copy and convert from the on-disk structure
701 * to the in-memory structure.
702 */
703 xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
704 ifp->if_broot, size);
705 ifp->if_flags &= ~XFS_IFEXTENTS;
706 ifp->if_flags |= XFS_IFBROOT;
707
708 return 0;
709 }
710
711 void
712 xfs_dinode_from_disk(
713 xfs_icdinode_t *to,
714 xfs_dinode_core_t *from)
715 {
716 to->di_magic = be16_to_cpu(from->di_magic);
717 to->di_mode = be16_to_cpu(from->di_mode);
718 to->di_version = from ->di_version;
719 to->di_format = from->di_format;
720 to->di_onlink = be16_to_cpu(from->di_onlink);
721 to->di_uid = be32_to_cpu(from->di_uid);
722 to->di_gid = be32_to_cpu(from->di_gid);
723 to->di_nlink = be32_to_cpu(from->di_nlink);
724 to->di_projid = be16_to_cpu(from->di_projid);
725 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
726 to->di_flushiter = be16_to_cpu(from->di_flushiter);
727 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
728 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
729 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
730 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
731 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
732 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
733 to->di_size = be64_to_cpu(from->di_size);
734 to->di_nblocks = be64_to_cpu(from->di_nblocks);
735 to->di_extsize = be32_to_cpu(from->di_extsize);
736 to->di_nextents = be32_to_cpu(from->di_nextents);
737 to->di_anextents = be16_to_cpu(from->di_anextents);
738 to->di_forkoff = from->di_forkoff;
739 to->di_aformat = from->di_aformat;
740 to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
741 to->di_dmstate = be16_to_cpu(from->di_dmstate);
742 to->di_flags = be16_to_cpu(from->di_flags);
743 to->di_gen = be32_to_cpu(from->di_gen);
744 }
745
746 void
747 xfs_dinode_to_disk(
748 xfs_dinode_core_t *to,
749 xfs_icdinode_t *from)
750 {
751 to->di_magic = cpu_to_be16(from->di_magic);
752 to->di_mode = cpu_to_be16(from->di_mode);
753 to->di_version = from ->di_version;
754 to->di_format = from->di_format;
755 to->di_onlink = cpu_to_be16(from->di_onlink);
756 to->di_uid = cpu_to_be32(from->di_uid);
757 to->di_gid = cpu_to_be32(from->di_gid);
758 to->di_nlink = cpu_to_be32(from->di_nlink);
759 to->di_projid = cpu_to_be16(from->di_projid);
760 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
761 to->di_flushiter = cpu_to_be16(from->di_flushiter);
762 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
763 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
764 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
765 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
766 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
767 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
768 to->di_size = cpu_to_be64(from->di_size);
769 to->di_nblocks = cpu_to_be64(from->di_nblocks);
770 to->di_extsize = cpu_to_be32(from->di_extsize);
771 to->di_nextents = cpu_to_be32(from->di_nextents);
772 to->di_anextents = cpu_to_be16(from->di_anextents);
773 to->di_forkoff = from->di_forkoff;
774 to->di_aformat = from->di_aformat;
775 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
776 to->di_dmstate = cpu_to_be16(from->di_dmstate);
777 to->di_flags = cpu_to_be16(from->di_flags);
778 to->di_gen = cpu_to_be32(from->di_gen);
779 }
780
781 STATIC uint
782 _xfs_dic2xflags(
783 __uint16_t di_flags)
784 {
785 uint flags = 0;
786
787 if (di_flags & XFS_DIFLAG_ANY) {
788 if (di_flags & XFS_DIFLAG_REALTIME)
789 flags |= XFS_XFLAG_REALTIME;
790 if (di_flags & XFS_DIFLAG_PREALLOC)
791 flags |= XFS_XFLAG_PREALLOC;
792 if (di_flags & XFS_DIFLAG_IMMUTABLE)
793 flags |= XFS_XFLAG_IMMUTABLE;
794 if (di_flags & XFS_DIFLAG_APPEND)
795 flags |= XFS_XFLAG_APPEND;
796 if (di_flags & XFS_DIFLAG_SYNC)
797 flags |= XFS_XFLAG_SYNC;
798 if (di_flags & XFS_DIFLAG_NOATIME)
799 flags |= XFS_XFLAG_NOATIME;
800 if (di_flags & XFS_DIFLAG_NODUMP)
801 flags |= XFS_XFLAG_NODUMP;
802 if (di_flags & XFS_DIFLAG_RTINHERIT)
803 flags |= XFS_XFLAG_RTINHERIT;
804 if (di_flags & XFS_DIFLAG_PROJINHERIT)
805 flags |= XFS_XFLAG_PROJINHERIT;
806 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
807 flags |= XFS_XFLAG_NOSYMLINKS;
808 if (di_flags & XFS_DIFLAG_EXTSIZE)
809 flags |= XFS_XFLAG_EXTSIZE;
810 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
811 flags |= XFS_XFLAG_EXTSZINHERIT;
812 if (di_flags & XFS_DIFLAG_NODEFRAG)
813 flags |= XFS_XFLAG_NODEFRAG;
814 if (di_flags & XFS_DIFLAG_FILESTREAM)
815 flags |= XFS_XFLAG_FILESTREAM;
816 }
817
818 return flags;
819 }
820
821 uint
822 xfs_ip2xflags(
823 xfs_inode_t *ip)
824 {
825 xfs_icdinode_t *dic = &ip->i_d;
826
827 return _xfs_dic2xflags(dic->di_flags) |
828 (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
829 }
830
831 uint
832 xfs_dic2xflags(
833 xfs_dinode_core_t *dic)
834 {
835 return _xfs_dic2xflags(be16_to_cpu(dic->di_flags)) |
836 (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
837 }
838
839 /*
840 * Given a mount structure and an inode number, return a pointer
841 * to a newly allocated in-core inode corresponding to the given
842 * inode number.
843 *
844 * Initialize the inode's attributes and extent pointers if it
845 * already has them (it will not if the inode has no links).
846 */
847 int
848 xfs_iread(
849 xfs_mount_t *mp,
850 xfs_trans_t *tp,
851 xfs_ino_t ino,
852 xfs_inode_t **ipp,
853 xfs_daddr_t bno,
854 uint imap_flags)
855 {
856 xfs_buf_t *bp;
857 xfs_dinode_t *dip;
858 xfs_inode_t *ip;
859 int error;
860
861 ASSERT(xfs_inode_zone != NULL);
862
863 ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
864 ip->i_ino = ino;
865 ip->i_mount = mp;
866 spin_lock_init(&ip->i_flags_lock);
867
868 /*
869 * Get pointer's to the on-disk inode and the buffer containing it.
870 * If the inode number refers to a block outside the file system
871 * then xfs_itobp() will return NULL. In this case we should
872 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
873 * know that this is a new incore inode.
874 */
875 error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags);
876 if (error) {
877 kmem_zone_free(xfs_inode_zone, ip);
878 return error;
879 }
880
881 /*
882 * Initialize inode's trace buffers.
883 * Do this before xfs_iformat in case it adds entries.
884 */
885 #ifdef XFS_BMAP_TRACE
886 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
887 #endif
888 #ifdef XFS_BMBT_TRACE
889 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
890 #endif
891 #ifdef XFS_RW_TRACE
892 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
893 #endif
894 #ifdef XFS_ILOCK_TRACE
895 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
896 #endif
897 #ifdef XFS_DIR2_TRACE
898 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
899 #endif
900
901 /*
902 * If we got something that isn't an inode it means someone
903 * (nfs or dmi) has a stale handle.
904 */
905 if (be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC) {
906 kmem_zone_free(xfs_inode_zone, ip);
907 xfs_trans_brelse(tp, bp);
908 #ifdef DEBUG
909 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
910 "dip->di_core.di_magic (0x%x) != "
911 "XFS_DINODE_MAGIC (0x%x)",
912 be16_to_cpu(dip->di_core.di_magic),
913 XFS_DINODE_MAGIC);
914 #endif /* DEBUG */
915 return XFS_ERROR(EINVAL);
916 }
917
918 /*
919 * If the on-disk inode is already linked to a directory
920 * entry, copy all of the inode into the in-core inode.
921 * xfs_iformat() handles copying in the inode format
922 * specific information.
923 * Otherwise, just get the truly permanent information.
924 */
925 if (dip->di_core.di_mode) {
926 xfs_dinode_from_disk(&ip->i_d, &dip->di_core);
927 error = xfs_iformat(ip, dip);
928 if (error) {
929 kmem_zone_free(xfs_inode_zone, ip);
930 xfs_trans_brelse(tp, bp);
931 #ifdef DEBUG
932 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
933 "xfs_iformat() returned error %d",
934 error);
935 #endif /* DEBUG */
936 return error;
937 }
938 } else {
939 ip->i_d.di_magic = be16_to_cpu(dip->di_core.di_magic);
940 ip->i_d.di_version = dip->di_core.di_version;
941 ip->i_d.di_gen = be32_to_cpu(dip->di_core.di_gen);
942 ip->i_d.di_flushiter = be16_to_cpu(dip->di_core.di_flushiter);
943 /*
944 * Make sure to pull in the mode here as well in
945 * case the inode is released without being used.
946 * This ensures that xfs_inactive() will see that
947 * the inode is already free and not try to mess
948 * with the uninitialized part of it.
949 */
950 ip->i_d.di_mode = 0;
951 /*
952 * Initialize the per-fork minima and maxima for a new
953 * inode here. xfs_iformat will do it for old inodes.
954 */
955 ip->i_df.if_ext_max =
956 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
957 }
958
959 INIT_LIST_HEAD(&ip->i_reclaim);
960
961 /*
962 * The inode format changed when we moved the link count and
963 * made it 32 bits long. If this is an old format inode,
964 * convert it in memory to look like a new one. If it gets
965 * flushed to disk we will convert back before flushing or
966 * logging it. We zero out the new projid field and the old link
967 * count field. We'll handle clearing the pad field (the remains
968 * of the old uuid field) when we actually convert the inode to
969 * the new format. We don't change the version number so that we
970 * can distinguish this from a real new format inode.
971 */
972 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
973 ip->i_d.di_nlink = ip->i_d.di_onlink;
974 ip->i_d.di_onlink = 0;
975 ip->i_d.di_projid = 0;
976 }
977
978 ip->i_delayed_blks = 0;
979 ip->i_size = ip->i_d.di_size;
980
981 /*
982 * Mark the buffer containing the inode as something to keep
983 * around for a while. This helps to keep recently accessed
984 * meta-data in-core longer.
985 */
986 XFS_BUF_SET_REF(bp, XFS_INO_REF);
987
988 /*
989 * Use xfs_trans_brelse() to release the buffer containing the
990 * on-disk inode, because it was acquired with xfs_trans_read_buf()
991 * in xfs_itobp() above. If tp is NULL, this is just a normal
992 * brelse(). If we're within a transaction, then xfs_trans_brelse()
993 * will only release the buffer if it is not dirty within the
994 * transaction. It will be OK to release the buffer in this case,
995 * because inodes on disk are never destroyed and we will be
996 * locking the new in-core inode before putting it in the hash
997 * table where other processes can find it. Thus we don't have
998 * to worry about the inode being changed just because we released
999 * the buffer.
1000 */
1001 xfs_trans_brelse(tp, bp);
1002 *ipp = ip;
1003 return 0;
1004 }
1005
1006 /*
1007 * Read in extents from a btree-format inode.
1008 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
1009 */
1010 int
1011 xfs_iread_extents(
1012 xfs_trans_t *tp,
1013 xfs_inode_t *ip,
1014 int whichfork)
1015 {
1016 int error;
1017 xfs_ifork_t *ifp;
1018 xfs_extnum_t nextents;
1019 size_t size;
1020
1021 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
1022 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
1023 ip->i_mount);
1024 return XFS_ERROR(EFSCORRUPTED);
1025 }
1026 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
1027 size = nextents * sizeof(xfs_bmbt_rec_t);
1028 ifp = XFS_IFORK_PTR(ip, whichfork);
1029
1030 /*
1031 * We know that the size is valid (it's checked in iformat_btree)
1032 */
1033 ifp->if_lastex = NULLEXTNUM;
1034 ifp->if_bytes = ifp->if_real_bytes = 0;
1035 ifp->if_flags |= XFS_IFEXTENTS;
1036 xfs_iext_add(ifp, 0, nextents);
1037 error = xfs_bmap_read_extents(tp, ip, whichfork);
1038 if (error) {
1039 xfs_iext_destroy(ifp);
1040 ifp->if_flags &= ~XFS_IFEXTENTS;
1041 return error;
1042 }
1043 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
1044 return 0;
1045 }
1046
1047 /*
1048 * Allocate an inode on disk and return a copy of its in-core version.
1049 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1050 * appropriately within the inode. The uid and gid for the inode are
1051 * set according to the contents of the given cred structure.
1052 *
1053 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1054 * has a free inode available, call xfs_iget()
1055 * to obtain the in-core version of the allocated inode. Finally,
1056 * fill in the inode and log its initial contents. In this case,
1057 * ialloc_context would be set to NULL and call_again set to false.
1058 *
1059 * If xfs_dialloc() does not have an available inode,
1060 * it will replenish its supply by doing an allocation. Since we can
1061 * only do one allocation within a transaction without deadlocks, we
1062 * must commit the current transaction before returning the inode itself.
1063 * In this case, therefore, we will set call_again to true and return.
1064 * The caller should then commit the current transaction, start a new
1065 * transaction, and call xfs_ialloc() again to actually get the inode.
1066 *
1067 * To ensure that some other process does not grab the inode that
1068 * was allocated during the first call to xfs_ialloc(), this routine
1069 * also returns the [locked] bp pointing to the head of the freelist
1070 * as ialloc_context. The caller should hold this buffer across
1071 * the commit and pass it back into this routine on the second call.
1072 *
1073 * If we are allocating quota inodes, we do not have a parent inode
1074 * to attach to or associate with (i.e. pip == NULL) because they
1075 * are not linked into the directory structure - they are attached
1076 * directly to the superblock - and so have no parent.
1077 */
1078 int
1079 xfs_ialloc(
1080 xfs_trans_t *tp,
1081 xfs_inode_t *pip,
1082 mode_t mode,
1083 xfs_nlink_t nlink,
1084 xfs_dev_t rdev,
1085 cred_t *cr,
1086 xfs_prid_t prid,
1087 int okalloc,
1088 xfs_buf_t **ialloc_context,
1089 boolean_t *call_again,
1090 xfs_inode_t **ipp)
1091 {
1092 xfs_ino_t ino;
1093 xfs_inode_t *ip;
1094 bhv_vnode_t *vp;
1095 uint flags;
1096 int error;
1097
1098 /*
1099 * Call the space management code to pick
1100 * the on-disk inode to be allocated.
1101 */
1102 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1103 ialloc_context, call_again, &ino);
1104 if (error != 0) {
1105 return error;
1106 }
1107 if (*call_again || ino == NULLFSINO) {
1108 *ipp = NULL;
1109 return 0;
1110 }
1111 ASSERT(*ialloc_context == NULL);
1112
1113 /*
1114 * Get the in-core inode with the lock held exclusively.
1115 * This is because we're setting fields here we need
1116 * to prevent others from looking at until we're done.
1117 */
1118 error = xfs_trans_iget(tp->t_mountp, tp, ino,
1119 XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1120 if (error != 0) {
1121 return error;
1122 }
1123 ASSERT(ip != NULL);
1124
1125 vp = XFS_ITOV(ip);
1126 ip->i_d.di_mode = (__uint16_t)mode;
1127 ip->i_d.di_onlink = 0;
1128 ip->i_d.di_nlink = nlink;
1129 ASSERT(ip->i_d.di_nlink == nlink);
1130 ip->i_d.di_uid = current_fsuid(cr);
1131 ip->i_d.di_gid = current_fsgid(cr);
1132 ip->i_d.di_projid = prid;
1133 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1134
1135 /*
1136 * If the superblock version is up to where we support new format
1137 * inodes and this is currently an old format inode, then change
1138 * the inode version number now. This way we only do the conversion
1139 * here rather than here and in the flush/logging code.
1140 */
1141 if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
1142 ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1143 ip->i_d.di_version = XFS_DINODE_VERSION_2;
1144 /*
1145 * We've already zeroed the old link count, the projid field,
1146 * and the pad field.
1147 */
1148 }
1149
1150 /*
1151 * Project ids won't be stored on disk if we are using a version 1 inode.
1152 */
1153 if ((prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
1154 xfs_bump_ino_vers2(tp, ip);
1155
1156 if (pip && XFS_INHERIT_GID(pip, vp->v_vfsp)) {
1157 ip->i_d.di_gid = pip->i_d.di_gid;
1158 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1159 ip->i_d.di_mode |= S_ISGID;
1160 }
1161 }
1162
1163 /*
1164 * If the group ID of the new file does not match the effective group
1165 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1166 * (and only if the irix_sgid_inherit compatibility variable is set).
1167 */
1168 if ((irix_sgid_inherit) &&
1169 (ip->i_d.di_mode & S_ISGID) &&
1170 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1171 ip->i_d.di_mode &= ~S_ISGID;
1172 }
1173
1174 ip->i_d.di_size = 0;
1175 ip->i_size = 0;
1176 ip->i_d.di_nextents = 0;
1177 ASSERT(ip->i_d.di_nblocks == 0);
1178 xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
1179 /*
1180 * di_gen will have been taken care of in xfs_iread.
1181 */
1182 ip->i_d.di_extsize = 0;
1183 ip->i_d.di_dmevmask = 0;
1184 ip->i_d.di_dmstate = 0;
1185 ip->i_d.di_flags = 0;
1186 flags = XFS_ILOG_CORE;
1187 switch (mode & S_IFMT) {
1188 case S_IFIFO:
1189 case S_IFCHR:
1190 case S_IFBLK:
1191 case S_IFSOCK:
1192 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1193 ip->i_df.if_u2.if_rdev = rdev;
1194 ip->i_df.if_flags = 0;
1195 flags |= XFS_ILOG_DEV;
1196 break;
1197 case S_IFREG:
1198 if (pip && xfs_inode_is_filestream(pip)) {
1199 error = xfs_filestream_associate(pip, ip);
1200 if (error < 0)
1201 return -error;
1202 if (!error)
1203 xfs_iflags_set(ip, XFS_IFILESTREAM);
1204 }
1205 /* fall through */
1206 case S_IFDIR:
1207 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1208 uint di_flags = 0;
1209
1210 if ((mode & S_IFMT) == S_IFDIR) {
1211 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1212 di_flags |= XFS_DIFLAG_RTINHERIT;
1213 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1214 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1215 ip->i_d.di_extsize = pip->i_d.di_extsize;
1216 }
1217 } else if ((mode & S_IFMT) == S_IFREG) {
1218 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
1219 di_flags |= XFS_DIFLAG_REALTIME;
1220 ip->i_iocore.io_flags |= XFS_IOCORE_RT;
1221 }
1222 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1223 di_flags |= XFS_DIFLAG_EXTSIZE;
1224 ip->i_d.di_extsize = pip->i_d.di_extsize;
1225 }
1226 }
1227 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1228 xfs_inherit_noatime)
1229 di_flags |= XFS_DIFLAG_NOATIME;
1230 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1231 xfs_inherit_nodump)
1232 di_flags |= XFS_DIFLAG_NODUMP;
1233 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1234 xfs_inherit_sync)
1235 di_flags |= XFS_DIFLAG_SYNC;
1236 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1237 xfs_inherit_nosymlinks)
1238 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1239 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1240 di_flags |= XFS_DIFLAG_PROJINHERIT;
1241 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1242 xfs_inherit_nodefrag)
1243 di_flags |= XFS_DIFLAG_NODEFRAG;
1244 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1245 di_flags |= XFS_DIFLAG_FILESTREAM;
1246 ip->i_d.di_flags |= di_flags;
1247 }
1248 /* FALLTHROUGH */
1249 case S_IFLNK:
1250 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1251 ip->i_df.if_flags = XFS_IFEXTENTS;
1252 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1253 ip->i_df.if_u1.if_extents = NULL;
1254 break;
1255 default:
1256 ASSERT(0);
1257 }
1258 /*
1259 * Attribute fork settings for new inode.
1260 */
1261 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1262 ip->i_d.di_anextents = 0;
1263
1264 /*
1265 * Log the new values stuffed into the inode.
1266 */
1267 xfs_trans_log_inode(tp, ip, flags);
1268
1269 /* now that we have an i_mode we can setup inode ops and unlock */
1270 bhv_vfs_init_vnode(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1);
1271
1272 *ipp = ip;
1273 return 0;
1274 }
1275
1276 /*
1277 * Check to make sure that there are no blocks allocated to the
1278 * file beyond the size of the file. We don't check this for
1279 * files with fixed size extents or real time extents, but we
1280 * at least do it for regular files.
1281 */
1282 #ifdef DEBUG
1283 void
1284 xfs_isize_check(
1285 xfs_mount_t *mp,
1286 xfs_inode_t *ip,
1287 xfs_fsize_t isize)
1288 {
1289 xfs_fileoff_t map_first;
1290 int nimaps;
1291 xfs_bmbt_irec_t imaps[2];
1292
1293 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1294 return;
1295
1296 if (ip->i_d.di_flags & (XFS_DIFLAG_REALTIME | XFS_DIFLAG_EXTSIZE))
1297 return;
1298
1299 nimaps = 2;
1300 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1301 /*
1302 * The filesystem could be shutting down, so bmapi may return
1303 * an error.
1304 */
1305 if (xfs_bmapi(NULL, ip, map_first,
1306 (XFS_B_TO_FSB(mp,
1307 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1308 map_first),
1309 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1310 NULL, NULL))
1311 return;
1312 ASSERT(nimaps == 1);
1313 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1314 }
1315 #endif /* DEBUG */
1316
1317 /*
1318 * Calculate the last possible buffered byte in a file. This must
1319 * include data that was buffered beyond the EOF by the write code.
1320 * This also needs to deal with overflowing the xfs_fsize_t type
1321 * which can happen for sizes near the limit.
1322 *
1323 * We also need to take into account any blocks beyond the EOF. It
1324 * may be the case that they were buffered by a write which failed.
1325 * In that case the pages will still be in memory, but the inode size
1326 * will never have been updated.
1327 */
1328 xfs_fsize_t
1329 xfs_file_last_byte(
1330 xfs_inode_t *ip)
1331 {
1332 xfs_mount_t *mp;
1333 xfs_fsize_t last_byte;
1334 xfs_fileoff_t last_block;
1335 xfs_fileoff_t size_last_block;
1336 int error;
1337
1338 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
1339
1340 mp = ip->i_mount;
1341 /*
1342 * Only check for blocks beyond the EOF if the extents have
1343 * been read in. This eliminates the need for the inode lock,
1344 * and it also saves us from looking when it really isn't
1345 * necessary.
1346 */
1347 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1348 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1349 XFS_DATA_FORK);
1350 if (error) {
1351 last_block = 0;
1352 }
1353 } else {
1354 last_block = 0;
1355 }
1356 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
1357 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1358
1359 last_byte = XFS_FSB_TO_B(mp, last_block);
1360 if (last_byte < 0) {
1361 return XFS_MAXIOFFSET(mp);
1362 }
1363 last_byte += (1 << mp->m_writeio_log);
1364 if (last_byte < 0) {
1365 return XFS_MAXIOFFSET(mp);
1366 }
1367 return last_byte;
1368 }
1369
1370 #if defined(XFS_RW_TRACE)
1371 STATIC void
1372 xfs_itrunc_trace(
1373 int tag,
1374 xfs_inode_t *ip,
1375 int flag,
1376 xfs_fsize_t new_size,
1377 xfs_off_t toss_start,
1378 xfs_off_t toss_finish)
1379 {
1380 if (ip->i_rwtrace == NULL) {
1381 return;
1382 }
1383
1384 ktrace_enter(ip->i_rwtrace,
1385 (void*)((long)tag),
1386 (void*)ip,
1387 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1388 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1389 (void*)((long)flag),
1390 (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1391 (void*)(unsigned long)(new_size & 0xffffffff),
1392 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1393 (void*)(unsigned long)(toss_start & 0xffffffff),
1394 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1395 (void*)(unsigned long)(toss_finish & 0xffffffff),
1396 (void*)(unsigned long)current_cpu(),
1397 (void*)(unsigned long)current_pid(),
1398 (void*)NULL,
1399 (void*)NULL,
1400 (void*)NULL);
1401 }
1402 #else
1403 #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1404 #endif
1405
1406 /*
1407 * Start the truncation of the file to new_size. The new size
1408 * must be smaller than the current size. This routine will
1409 * clear the buffer and page caches of file data in the removed
1410 * range, and xfs_itruncate_finish() will remove the underlying
1411 * disk blocks.
1412 *
1413 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1414 * must NOT have the inode lock held at all. This is because we're
1415 * calling into the buffer/page cache code and we can't hold the
1416 * inode lock when we do so.
1417 *
1418 * We need to wait for any direct I/Os in flight to complete before we
1419 * proceed with the truncate. This is needed to prevent the extents
1420 * being read or written by the direct I/Os from being removed while the
1421 * I/O is in flight as there is no other method of synchronising
1422 * direct I/O with the truncate operation. Also, because we hold
1423 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1424 * started until the truncate completes and drops the lock. Essentially,
1425 * the vn_iowait() call forms an I/O barrier that provides strict ordering
1426 * between direct I/Os and the truncate operation.
1427 *
1428 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1429 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1430 * in the case that the caller is locking things out of order and
1431 * may not be able to call xfs_itruncate_finish() with the inode lock
1432 * held without dropping the I/O lock. If the caller must drop the
1433 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1434 * must be called again with all the same restrictions as the initial
1435 * call.
1436 */
1437 int
1438 xfs_itruncate_start(
1439 xfs_inode_t *ip,
1440 uint flags,
1441 xfs_fsize_t new_size)
1442 {
1443 xfs_fsize_t last_byte;
1444 xfs_off_t toss_start;
1445 xfs_mount_t *mp;
1446 bhv_vnode_t *vp;
1447 int error = 0;
1448
1449 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1450 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1451 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1452 (flags == XFS_ITRUNC_MAYBE));
1453
1454 mp = ip->i_mount;
1455 vp = XFS_ITOV(ip);
1456
1457 vn_iowait(vp); /* wait for the completion of any pending DIOs */
1458
1459 /*
1460 * Call toss_pages or flushinval_pages to get rid of pages
1461 * overlapping the region being removed. We have to use
1462 * the less efficient flushinval_pages in the case that the
1463 * caller may not be able to finish the truncate without
1464 * dropping the inode's I/O lock. Make sure
1465 * to catch any pages brought in by buffers overlapping
1466 * the EOF by searching out beyond the isize by our
1467 * block size. We round new_size up to a block boundary
1468 * so that we don't toss things on the same block as
1469 * new_size but before it.
1470 *
1471 * Before calling toss_page or flushinval_pages, make sure to
1472 * call remapf() over the same region if the file is mapped.
1473 * This frees up mapped file references to the pages in the
1474 * given range and for the flushinval_pages case it ensures
1475 * that we get the latest mapped changes flushed out.
1476 */
1477 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1478 toss_start = XFS_FSB_TO_B(mp, toss_start);
1479 if (toss_start < 0) {
1480 /*
1481 * The place to start tossing is beyond our maximum
1482 * file size, so there is no way that the data extended
1483 * out there.
1484 */
1485 return 0;
1486 }
1487 last_byte = xfs_file_last_byte(ip);
1488 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1489 last_byte);
1490 if (last_byte > toss_start) {
1491 if (flags & XFS_ITRUNC_DEFINITE) {
1492 bhv_vop_toss_pages(vp, toss_start, -1, FI_REMAPF_LOCKED);
1493 } else {
1494 error = bhv_vop_flushinval_pages(vp, toss_start, -1, FI_REMAPF_LOCKED);
1495 }
1496 }
1497
1498 #ifdef DEBUG
1499 if (new_size == 0) {
1500 ASSERT(VN_CACHED(vp) == 0);
1501 }
1502 #endif
1503 return error;
1504 }
1505
1506 /*
1507 * Shrink the file to the given new_size. The new
1508 * size must be smaller than the current size.
1509 * This will free up the underlying blocks
1510 * in the removed range after a call to xfs_itruncate_start()
1511 * or xfs_atruncate_start().
1512 *
1513 * The transaction passed to this routine must have made
1514 * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
1515 * This routine may commit the given transaction and
1516 * start new ones, so make sure everything involved in
1517 * the transaction is tidy before calling here.
1518 * Some transaction will be returned to the caller to be
1519 * committed. The incoming transaction must already include
1520 * the inode, and both inode locks must be held exclusively.
1521 * The inode must also be "held" within the transaction. On
1522 * return the inode will be "held" within the returned transaction.
1523 * This routine does NOT require any disk space to be reserved
1524 * for it within the transaction.
1525 *
1526 * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
1527 * and it indicates the fork which is to be truncated. For the
1528 * attribute fork we only support truncation to size 0.
1529 *
1530 * We use the sync parameter to indicate whether or not the first
1531 * transaction we perform might have to be synchronous. For the attr fork,
1532 * it needs to be so if the unlink of the inode is not yet known to be
1533 * permanent in the log. This keeps us from freeing and reusing the
1534 * blocks of the attribute fork before the unlink of the inode becomes
1535 * permanent.
1536 *
1537 * For the data fork, we normally have to run synchronously if we're
1538 * being called out of the inactive path or we're being called
1539 * out of the create path where we're truncating an existing file.
1540 * Either way, the truncate needs to be sync so blocks don't reappear
1541 * in the file with altered data in case of a crash. wsync filesystems
1542 * can run the first case async because anything that shrinks the inode
1543 * has to run sync so by the time we're called here from inactive, the
1544 * inode size is permanently set to 0.
1545 *
1546 * Calls from the truncate path always need to be sync unless we're
1547 * in a wsync filesystem and the file has already been unlinked.
1548 *
1549 * The caller is responsible for correctly setting the sync parameter.
1550 * It gets too hard for us to guess here which path we're being called
1551 * out of just based on inode state.
1552 */
1553 int
1554 xfs_itruncate_finish(
1555 xfs_trans_t **tp,
1556 xfs_inode_t *ip,
1557 xfs_fsize_t new_size,
1558 int fork,
1559 int sync)
1560 {
1561 xfs_fsblock_t first_block;
1562 xfs_fileoff_t first_unmap_block;
1563 xfs_fileoff_t last_block;
1564 xfs_filblks_t unmap_len=0;
1565 xfs_mount_t *mp;
1566 xfs_trans_t *ntp;
1567 int done;
1568 int committed;
1569 xfs_bmap_free_t free_list;
1570 int error;
1571
1572 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1573 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
1574 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1575 ASSERT(*tp != NULL);
1576 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1577 ASSERT(ip->i_transp == *tp);
1578 ASSERT(ip->i_itemp != NULL);
1579 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1580
1581
1582 ntp = *tp;
1583 mp = (ntp)->t_mountp;
1584 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1585
1586 /*
1587 * We only support truncating the entire attribute fork.
1588 */
1589 if (fork == XFS_ATTR_FORK) {
1590 new_size = 0LL;
1591 }
1592 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1593 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1594 /*
1595 * The first thing we do is set the size to new_size permanently
1596 * on disk. This way we don't have to worry about anyone ever
1597 * being able to look at the data being freed even in the face
1598 * of a crash. What we're getting around here is the case where
1599 * we free a block, it is allocated to another file, it is written
1600 * to, and then we crash. If the new data gets written to the
1601 * file but the log buffers containing the free and reallocation
1602 * don't, then we'd end up with garbage in the blocks being freed.
1603 * As long as we make the new_size permanent before actually
1604 * freeing any blocks it doesn't matter if they get writtten to.
1605 *
1606 * The callers must signal into us whether or not the size
1607 * setting here must be synchronous. There are a few cases
1608 * where it doesn't have to be synchronous. Those cases
1609 * occur if the file is unlinked and we know the unlink is
1610 * permanent or if the blocks being truncated are guaranteed
1611 * to be beyond the inode eof (regardless of the link count)
1612 * and the eof value is permanent. Both of these cases occur
1613 * only on wsync-mounted filesystems. In those cases, we're
1614 * guaranteed that no user will ever see the data in the blocks
1615 * that are being truncated so the truncate can run async.
1616 * In the free beyond eof case, the file may wind up with
1617 * more blocks allocated to it than it needs if we crash
1618 * and that won't get fixed until the next time the file
1619 * is re-opened and closed but that's ok as that shouldn't
1620 * be too many blocks.
1621 *
1622 * However, we can't just make all wsync xactions run async
1623 * because there's one call out of the create path that needs
1624 * to run sync where it's truncating an existing file to size
1625 * 0 whose size is > 0.
1626 *
1627 * It's probably possible to come up with a test in this
1628 * routine that would correctly distinguish all the above
1629 * cases from the values of the function parameters and the
1630 * inode state but for sanity's sake, I've decided to let the
1631 * layers above just tell us. It's simpler to correctly figure
1632 * out in the layer above exactly under what conditions we
1633 * can run async and I think it's easier for others read and
1634 * follow the logic in case something has to be changed.
1635 * cscope is your friend -- rcc.
1636 *
1637 * The attribute fork is much simpler.
1638 *
1639 * For the attribute fork we allow the caller to tell us whether
1640 * the unlink of the inode that led to this call is yet permanent
1641 * in the on disk log. If it is not and we will be freeing extents
1642 * in this inode then we make the first transaction synchronous
1643 * to make sure that the unlink is permanent by the time we free
1644 * the blocks.
1645 */
1646 if (fork == XFS_DATA_FORK) {
1647 if (ip->i_d.di_nextents > 0) {
1648 /*
1649 * If we are not changing the file size then do
1650 * not update the on-disk file size - we may be
1651 * called from xfs_inactive_free_eofblocks(). If we
1652 * update the on-disk file size and then the system
1653 * crashes before the contents of the file are
1654 * flushed to disk then the files may be full of
1655 * holes (ie NULL files bug).
1656 */
1657 if (ip->i_size != new_size) {
1658 ip->i_d.di_size = new_size;
1659 ip->i_size = new_size;
1660 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1661 }
1662 }
1663 } else if (sync) {
1664 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1665 if (ip->i_d.di_anextents > 0)
1666 xfs_trans_set_sync(ntp);
1667 }
1668 ASSERT(fork == XFS_DATA_FORK ||
1669 (fork == XFS_ATTR_FORK &&
1670 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1671 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1672
1673 /*
1674 * Since it is possible for space to become allocated beyond
1675 * the end of the file (in a crash where the space is allocated
1676 * but the inode size is not yet updated), simply remove any
1677 * blocks which show up between the new EOF and the maximum
1678 * possible file size. If the first block to be removed is
1679 * beyond the maximum file size (ie it is the same as last_block),
1680 * then there is nothing to do.
1681 */
1682 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1683 ASSERT(first_unmap_block <= last_block);
1684 done = 0;
1685 if (last_block == first_unmap_block) {
1686 done = 1;
1687 } else {
1688 unmap_len = last_block - first_unmap_block + 1;
1689 }
1690 while (!done) {
1691 /*
1692 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1693 * will tell us whether it freed the entire range or
1694 * not. If this is a synchronous mount (wsync),
1695 * then we can tell bunmapi to keep all the
1696 * transactions asynchronous since the unlink
1697 * transaction that made this inode inactive has
1698 * already hit the disk. There's no danger of
1699 * the freed blocks being reused, there being a
1700 * crash, and the reused blocks suddenly reappearing
1701 * in this file with garbage in them once recovery
1702 * runs.
1703 */
1704 XFS_BMAP_INIT(&free_list, &first_block);
1705 error = XFS_BUNMAPI(mp, ntp, &ip->i_iocore,
1706 first_unmap_block, unmap_len,
1707 XFS_BMAPI_AFLAG(fork) |
1708 (sync ? 0 : XFS_BMAPI_ASYNC),
1709 XFS_ITRUNC_MAX_EXTENTS,
1710 &first_block, &free_list,
1711 NULL, &done);
1712 if (error) {
1713 /*
1714 * If the bunmapi call encounters an error,
1715 * return to the caller where the transaction
1716 * can be properly aborted. We just need to
1717 * make sure we're not holding any resources
1718 * that we were not when we came in.
1719 */
1720 xfs_bmap_cancel(&free_list);
1721 return error;
1722 }
1723
1724 /*
1725 * Duplicate the transaction that has the permanent
1726 * reservation and commit the old transaction.
1727 */
1728 error = xfs_bmap_finish(tp, &free_list, &committed);
1729 ntp = *tp;
1730 if (error) {
1731 /*
1732 * If the bmap finish call encounters an error,
1733 * return to the caller where the transaction
1734 * can be properly aborted. We just need to
1735 * make sure we're not holding any resources
1736 * that we were not when we came in.
1737 *
1738 * Aborting from this point might lose some
1739 * blocks in the file system, but oh well.
1740 */
1741 xfs_bmap_cancel(&free_list);
1742 if (committed) {
1743 /*
1744 * If the passed in transaction committed
1745 * in xfs_bmap_finish(), then we want to
1746 * add the inode to this one before returning.
1747 * This keeps things simple for the higher
1748 * level code, because it always knows that
1749 * the inode is locked and held in the
1750 * transaction that returns to it whether
1751 * errors occur or not. We don't mark the
1752 * inode dirty so that this transaction can
1753 * be easily aborted if possible.
1754 */
1755 xfs_trans_ijoin(ntp, ip,
1756 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1757 xfs_trans_ihold(ntp, ip);
1758 }
1759 return error;
1760 }
1761
1762 if (committed) {
1763 /*
1764 * The first xact was committed,
1765 * so add the inode to the new one.
1766 * Mark it dirty so it will be logged
1767 * and moved forward in the log as
1768 * part of every commit.
1769 */
1770 xfs_trans_ijoin(ntp, ip,
1771 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1772 xfs_trans_ihold(ntp, ip);
1773 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1774 }
1775 ntp = xfs_trans_dup(ntp);
1776 (void) xfs_trans_commit(*tp, 0);
1777 *tp = ntp;
1778 error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
1779 XFS_TRANS_PERM_LOG_RES,
1780 XFS_ITRUNCATE_LOG_COUNT);
1781 /*
1782 * Add the inode being truncated to the next chained
1783 * transaction.
1784 */
1785 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1786 xfs_trans_ihold(ntp, ip);
1787 if (error)
1788 return (error);
1789 }
1790 /*
1791 * Only update the size in the case of the data fork, but
1792 * always re-log the inode so that our permanent transaction
1793 * can keep on rolling it forward in the log.
1794 */
1795 if (fork == XFS_DATA_FORK) {
1796 xfs_isize_check(mp, ip, new_size);
1797 /*
1798 * If we are not changing the file size then do
1799 * not update the on-disk file size - we may be
1800 * called from xfs_inactive_free_eofblocks(). If we
1801 * update the on-disk file size and then the system
1802 * crashes before the contents of the file are
1803 * flushed to disk then the files may be full of
1804 * holes (ie NULL files bug).
1805 */
1806 if (ip->i_size != new_size) {
1807 ip->i_d.di_size = new_size;
1808 ip->i_size = new_size;
1809 }
1810 }
1811 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1812 ASSERT((new_size != 0) ||
1813 (fork == XFS_ATTR_FORK) ||
1814 (ip->i_delayed_blks == 0));
1815 ASSERT((new_size != 0) ||
1816 (fork == XFS_ATTR_FORK) ||
1817 (ip->i_d.di_nextents == 0));
1818 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1819 return 0;
1820 }
1821
1822
1823 /*
1824 * xfs_igrow_start
1825 *
1826 * Do the first part of growing a file: zero any data in the last
1827 * block that is beyond the old EOF. We need to do this before
1828 * the inode is joined to the transaction to modify the i_size.
1829 * That way we can drop the inode lock and call into the buffer
1830 * cache to get the buffer mapping the EOF.
1831 */
1832 int
1833 xfs_igrow_start(
1834 xfs_inode_t *ip,
1835 xfs_fsize_t new_size,
1836 cred_t *credp)
1837 {
1838 int error;
1839
1840 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1841 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1842 ASSERT(new_size > ip->i_size);
1843
1844 /*
1845 * Zero any pages that may have been created by
1846 * xfs_write_file() beyond the end of the file
1847 * and any blocks between the old and new file sizes.
1848 */
1849 error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size,
1850 ip->i_size);
1851 return error;
1852 }
1853
1854 /*
1855 * xfs_igrow_finish
1856 *
1857 * This routine is called to extend the size of a file.
1858 * The inode must have both the iolock and the ilock locked
1859 * for update and it must be a part of the current transaction.
1860 * The xfs_igrow_start() function must have been called previously.
1861 * If the change_flag is not zero, the inode change timestamp will
1862 * be updated.
1863 */
1864 void
1865 xfs_igrow_finish(
1866 xfs_trans_t *tp,
1867 xfs_inode_t *ip,
1868 xfs_fsize_t new_size,
1869 int change_flag)
1870 {
1871 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1872 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1873 ASSERT(ip->i_transp == tp);
1874 ASSERT(new_size > ip->i_size);
1875
1876 /*
1877 * Update the file size. Update the inode change timestamp
1878 * if change_flag set.
1879 */
1880 ip->i_d.di_size = new_size;
1881 ip->i_size = new_size;
1882 if (change_flag)
1883 xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
1884 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1885
1886 }
1887
1888
1889 /*
1890 * This is called when the inode's link count goes to 0.
1891 * We place the on-disk inode on a list in the AGI. It
1892 * will be pulled from this list when the inode is freed.
1893 */
1894 int
1895 xfs_iunlink(
1896 xfs_trans_t *tp,
1897 xfs_inode_t *ip)
1898 {
1899 xfs_mount_t *mp;
1900 xfs_agi_t *agi;
1901 xfs_dinode_t *dip;
1902 xfs_buf_t *agibp;
1903 xfs_buf_t *ibp;
1904 xfs_agnumber_t agno;
1905 xfs_daddr_t agdaddr;
1906 xfs_agino_t agino;
1907 short bucket_index;
1908 int offset;
1909 int error;
1910 int agi_ok;
1911
1912 ASSERT(ip->i_d.di_nlink == 0);
1913 ASSERT(ip->i_d.di_mode != 0);
1914 ASSERT(ip->i_transp == tp);
1915
1916 mp = tp->t_mountp;
1917
1918 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1919 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1920
1921 /*
1922 * Get the agi buffer first. It ensures lock ordering
1923 * on the list.
1924 */
1925 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1926 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1927 if (error) {
1928 return error;
1929 }
1930 /*
1931 * Validate the magic number of the agi block.
1932 */
1933 agi = XFS_BUF_TO_AGI(agibp);
1934 agi_ok =
1935 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1936 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1937 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
1938 XFS_RANDOM_IUNLINK))) {
1939 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
1940 xfs_trans_brelse(tp, agibp);
1941 return XFS_ERROR(EFSCORRUPTED);
1942 }
1943 /*
1944 * Get the index into the agi hash table for the
1945 * list this inode will go on.
1946 */
1947 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1948 ASSERT(agino != 0);
1949 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1950 ASSERT(agi->agi_unlinked[bucket_index]);
1951 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1952
1953 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1954 /*
1955 * There is already another inode in the bucket we need
1956 * to add ourselves to. Add us at the front of the list.
1957 * Here we put the head pointer into our next pointer,
1958 * and then we fall through to point the head at us.
1959 */
1960 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
1961 if (error) {
1962 return error;
1963 }
1964 ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
1965 /* both on-disk, don't endian flip twice */
1966 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1967 offset = ip->i_boffset +
1968 offsetof(xfs_dinode_t, di_next_unlinked);
1969 xfs_trans_inode_buf(tp, ibp);
1970 xfs_trans_log_buf(tp, ibp, offset,
1971 (offset + sizeof(xfs_agino_t) - 1));
1972 xfs_inobp_check(mp, ibp);
1973 }
1974
1975 /*
1976 * Point the bucket head pointer at the inode being inserted.
1977 */
1978 ASSERT(agino != 0);
1979 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1980 offset = offsetof(xfs_agi_t, agi_unlinked) +
1981 (sizeof(xfs_agino_t) * bucket_index);
1982 xfs_trans_log_buf(tp, agibp, offset,
1983 (offset + sizeof(xfs_agino_t) - 1));
1984 return 0;
1985 }
1986
1987 /*
1988 * Pull the on-disk inode from the AGI unlinked list.
1989 */
1990 STATIC int
1991 xfs_iunlink_remove(
1992 xfs_trans_t *tp,
1993 xfs_inode_t *ip)
1994 {
1995 xfs_ino_t next_ino;
1996 xfs_mount_t *mp;
1997 xfs_agi_t *agi;
1998 xfs_dinode_t *dip;
1999 xfs_buf_t *agibp;
2000 xfs_buf_t *ibp;
2001 xfs_agnumber_t agno;
2002 xfs_daddr_t agdaddr;
2003 xfs_agino_t agino;
2004 xfs_agino_t next_agino;
2005 xfs_buf_t *last_ibp;
2006 xfs_dinode_t *last_dip = NULL;
2007 short bucket_index;
2008 int offset, last_offset = 0;
2009 int error;
2010 int agi_ok;
2011
2012 /*
2013 * First pull the on-disk inode from the AGI unlinked list.
2014 */
2015 mp = tp->t_mountp;
2016
2017 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2018 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
2019
2020 /*
2021 * Get the agi buffer first. It ensures lock ordering
2022 * on the list.
2023 */
2024 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
2025 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
2026 if (error) {
2027 cmn_err(CE_WARN,
2028 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
2029 error, mp->m_fsname);
2030 return error;
2031 }
2032 /*
2033 * Validate the magic number of the agi block.
2034 */
2035 agi = XFS_BUF_TO_AGI(agibp);
2036 agi_ok =
2037 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
2038 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
2039 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
2040 XFS_RANDOM_IUNLINK_REMOVE))) {
2041 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
2042 mp, agi);
2043 xfs_trans_brelse(tp, agibp);
2044 cmn_err(CE_WARN,
2045 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
2046 mp->m_fsname);
2047 return XFS_ERROR(EFSCORRUPTED);
2048 }
2049 /*
2050 * Get the index into the agi hash table for the
2051 * list this inode will go on.
2052 */
2053 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2054 ASSERT(agino != 0);
2055 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2056 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
2057 ASSERT(agi->agi_unlinked[bucket_index]);
2058
2059 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2060 /*
2061 * We're at the head of the list. Get the inode's
2062 * on-disk buffer to see if there is anyone after us
2063 * on the list. Only modify our next pointer if it
2064 * is not already NULLAGINO. This saves us the overhead
2065 * of dealing with the buffer when there is no need to
2066 * change it.
2067 */
2068 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
2069 if (error) {
2070 cmn_err(CE_WARN,
2071 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2072 error, mp->m_fsname);
2073 return error;
2074 }
2075 next_agino = be32_to_cpu(dip->di_next_unlinked);
2076 ASSERT(next_agino != 0);
2077 if (next_agino != NULLAGINO) {
2078 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2079 offset = ip->i_boffset +
2080 offsetof(xfs_dinode_t, di_next_unlinked);
2081 xfs_trans_inode_buf(tp, ibp);
2082 xfs_trans_log_buf(tp, ibp, offset,
2083 (offset + sizeof(xfs_agino_t) - 1));
2084 xfs_inobp_check(mp, ibp);
2085 } else {
2086 xfs_trans_brelse(tp, ibp);
2087 }
2088 /*
2089 * Point the bucket head pointer at the next inode.
2090 */
2091 ASSERT(next_agino != 0);
2092 ASSERT(next_agino != agino);
2093 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2094 offset = offsetof(xfs_agi_t, agi_unlinked) +
2095 (sizeof(xfs_agino_t) * bucket_index);
2096 xfs_trans_log_buf(tp, agibp, offset,
2097 (offset + sizeof(xfs_agino_t) - 1));
2098 } else {
2099 /*
2100 * We need to search the list for the inode being freed.
2101 */
2102 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2103 last_ibp = NULL;
2104 while (next_agino != agino) {
2105 /*
2106 * If the last inode wasn't the one pointing to
2107 * us, then release its buffer since we're not
2108 * going to do anything with it.
2109 */
2110 if (last_ibp != NULL) {
2111 xfs_trans_brelse(tp, last_ibp);
2112 }
2113 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2114 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
2115 &last_ibp, &last_offset);
2116 if (error) {
2117 cmn_err(CE_WARN,
2118 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
2119 error, mp->m_fsname);
2120 return error;
2121 }
2122 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2123 ASSERT(next_agino != NULLAGINO);
2124 ASSERT(next_agino != 0);
2125 }
2126 /*
2127 * Now last_ibp points to the buffer previous to us on
2128 * the unlinked list. Pull us from the list.
2129 */
2130 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
2131 if (error) {
2132 cmn_err(CE_WARN,
2133 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2134 error, mp->m_fsname);
2135 return error;
2136 }
2137 next_agino = be32_to_cpu(dip->di_next_unlinked);
2138 ASSERT(next_agino != 0);
2139 ASSERT(next_agino != agino);
2140 if (next_agino != NULLAGINO) {
2141 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2142 offset = ip->i_boffset +
2143 offsetof(xfs_dinode_t, di_next_unlinked);
2144 xfs_trans_inode_buf(tp, ibp);
2145 xfs_trans_log_buf(tp, ibp, offset,
2146 (offset + sizeof(xfs_agino_t) - 1));
2147 xfs_inobp_check(mp, ibp);
2148 } else {
2149 xfs_trans_brelse(tp, ibp);
2150 }
2151 /*
2152 * Point the previous inode on the list to the next inode.
2153 */
2154 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2155 ASSERT(next_agino != 0);
2156 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2157 xfs_trans_inode_buf(tp, last_ibp);
2158 xfs_trans_log_buf(tp, last_ibp, offset,
2159 (offset + sizeof(xfs_agino_t) - 1));
2160 xfs_inobp_check(mp, last_ibp);
2161 }
2162 return 0;
2163 }
2164
2165 STATIC_INLINE int xfs_inode_clean(xfs_inode_t *ip)
2166 {
2167 return (((ip->i_itemp == NULL) ||
2168 !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
2169 (ip->i_update_core == 0));
2170 }
2171
2172 STATIC void
2173 xfs_ifree_cluster(
2174 xfs_inode_t *free_ip,
2175 xfs_trans_t *tp,
2176 xfs_ino_t inum)
2177 {
2178 xfs_mount_t *mp = free_ip->i_mount;
2179 int blks_per_cluster;
2180 int nbufs;
2181 int ninodes;
2182 int i, j, found, pre_flushed;
2183 xfs_daddr_t blkno;
2184 xfs_buf_t *bp;
2185 xfs_ihash_t *ih;
2186 xfs_inode_t *ip, **ip_found;
2187 xfs_inode_log_item_t *iip;
2188 xfs_log_item_t *lip;
2189 SPLDECL(s);
2190
2191 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2192 blks_per_cluster = 1;
2193 ninodes = mp->m_sb.sb_inopblock;
2194 nbufs = XFS_IALLOC_BLOCKS(mp);
2195 } else {
2196 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2197 mp->m_sb.sb_blocksize;
2198 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2199 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2200 }
2201
2202 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2203
2204 for (j = 0; j < nbufs; j++, inum += ninodes) {
2205 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2206 XFS_INO_TO_AGBNO(mp, inum));
2207
2208
2209 /*
2210 * Look for each inode in memory and attempt to lock it,
2211 * we can be racing with flush and tail pushing here.
2212 * any inode we get the locks on, add to an array of
2213 * inode items to process later.
2214 *
2215 * The get the buffer lock, we could beat a flush
2216 * or tail pushing thread to the lock here, in which
2217 * case they will go looking for the inode buffer
2218 * and fail, we need some other form of interlock
2219 * here.
2220 */
2221 found = 0;
2222 for (i = 0; i < ninodes; i++) {
2223 ih = XFS_IHASH(mp, inum + i);
2224 read_lock(&ih->ih_lock);
2225 for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
2226 if (ip->i_ino == inum + i)
2227 break;
2228 }
2229
2230 /* Inode not in memory or we found it already,
2231 * nothing to do
2232 */
2233 if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
2234 read_unlock(&ih->ih_lock);
2235 continue;
2236 }
2237
2238 if (xfs_inode_clean(ip)) {
2239 read_unlock(&ih->ih_lock);
2240 continue;
2241 }
2242
2243 /* If we can get the locks then add it to the
2244 * list, otherwise by the time we get the bp lock
2245 * below it will already be attached to the
2246 * inode buffer.
2247 */
2248
2249 /* This inode will already be locked - by us, lets
2250 * keep it that way.
2251 */
2252
2253 if (ip == free_ip) {
2254 if (xfs_iflock_nowait(ip)) {
2255 xfs_iflags_set(ip, XFS_ISTALE);
2256 if (xfs_inode_clean(ip)) {
2257 xfs_ifunlock(ip);
2258 } else {
2259 ip_found[found++] = ip;
2260 }
2261 }
2262 read_unlock(&ih->ih_lock);
2263 continue;
2264 }
2265
2266 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2267 if (xfs_iflock_nowait(ip)) {
2268 xfs_iflags_set(ip, XFS_ISTALE);
2269
2270 if (xfs_inode_clean(ip)) {
2271 xfs_ifunlock(ip);
2272 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2273 } else {
2274 ip_found[found++] = ip;
2275 }
2276 } else {
2277 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2278 }
2279 }
2280
2281 read_unlock(&ih->ih_lock);
2282 }
2283
2284 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2285 mp->m_bsize * blks_per_cluster,
2286 XFS_BUF_LOCK);
2287
2288 pre_flushed = 0;
2289 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2290 while (lip) {
2291 if (lip->li_type == XFS_LI_INODE) {
2292 iip = (xfs_inode_log_item_t *)lip;
2293 ASSERT(iip->ili_logged == 1);
2294 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2295 AIL_LOCK(mp,s);
2296 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2297 AIL_UNLOCK(mp, s);
2298 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2299 pre_flushed++;
2300 }
2301 lip = lip->li_bio_list;
2302 }
2303
2304 for (i = 0; i < found; i++) {
2305 ip = ip_found[i];
2306 iip = ip->i_itemp;
2307
2308 if (!iip) {
2309 ip->i_update_core = 0;
2310 xfs_ifunlock(ip);
2311 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2312 continue;
2313 }
2314
2315 iip->ili_last_fields = iip->ili_format.ilf_fields;
2316 iip->ili_format.ilf_fields = 0;
2317 iip->ili_logged = 1;
2318 AIL_LOCK(mp,s);
2319 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2320 AIL_UNLOCK(mp, s);
2321
2322 xfs_buf_attach_iodone(bp,
2323 (void(*)(xfs_buf_t*,xfs_log_item_t*))
2324 xfs_istale_done, (xfs_log_item_t *)iip);
2325 if (ip != free_ip) {
2326 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2327 }
2328 }
2329
2330 if (found || pre_flushed)
2331 xfs_trans_stale_inode_buf(tp, bp);
2332 xfs_trans_binval(tp, bp);
2333 }
2334
2335 kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
2336 }
2337
2338 /*
2339 * This is called to return an inode to the inode free list.
2340 * The inode should already be truncated to 0 length and have
2341 * no pages associated with it. This routine also assumes that
2342 * the inode is already a part of the transaction.
2343 *
2344 * The on-disk copy of the inode will have been added to the list
2345 * of unlinked inodes in the AGI. We need to remove the inode from
2346 * that list atomically with respect to freeing it here.
2347 */
2348 int
2349 xfs_ifree(
2350 xfs_trans_t *tp,
2351 xfs_inode_t *ip,
2352 xfs_bmap_free_t *flist)
2353 {
2354 int error;
2355 int delete;
2356 xfs_ino_t first_ino;
2357
2358 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2359 ASSERT(ip->i_transp == tp);
2360 ASSERT(ip->i_d.di_nlink == 0);
2361 ASSERT(ip->i_d.di_nextents == 0);
2362 ASSERT(ip->i_d.di_anextents == 0);
2363 ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
2364 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2365 ASSERT(ip->i_d.di_nblocks == 0);
2366
2367 /*
2368 * Pull the on-disk inode from the AGI unlinked list.
2369 */
2370 error = xfs_iunlink_remove(tp, ip);
2371 if (error != 0) {
2372 return error;
2373 }
2374
2375 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2376 if (error != 0) {
2377 return error;
2378 }
2379 ip->i_d.di_mode = 0; /* mark incore inode as free */
2380 ip->i_d.di_flags = 0;
2381 ip->i_d.di_dmevmask = 0;
2382 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2383 ip->i_df.if_ext_max =
2384 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2385 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2386 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2387 /*
2388 * Bump the generation count so no one will be confused
2389 * by reincarnations of this inode.
2390 */
2391 ip->i_d.di_gen++;
2392 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2393
2394 if (delete) {
2395 xfs_ifree_cluster(ip, tp, first_ino);
2396 }
2397
2398 return 0;
2399 }
2400
2401 /*
2402 * Reallocate the space for if_broot based on the number of records
2403 * being added or deleted as indicated in rec_diff. Move the records
2404 * and pointers in if_broot to fit the new size. When shrinking this
2405 * will eliminate holes between the records and pointers created by
2406 * the caller. When growing this will create holes to be filled in
2407 * by the caller.
2408 *
2409 * The caller must not request to add more records than would fit in
2410 * the on-disk inode root. If the if_broot is currently NULL, then
2411 * if we adding records one will be allocated. The caller must also
2412 * not request that the number of records go below zero, although
2413 * it can go to zero.
2414 *
2415 * ip -- the inode whose if_broot area is changing
2416 * ext_diff -- the change in the number of records, positive or negative,
2417 * requested for the if_broot array.
2418 */
2419 void
2420 xfs_iroot_realloc(
2421 xfs_inode_t *ip,
2422 int rec_diff,
2423 int whichfork)
2424 {
2425 int cur_max;
2426 xfs_ifork_t *ifp;
2427 xfs_bmbt_block_t *new_broot;
2428 int new_max;
2429 size_t new_size;
2430 char *np;
2431 char *op;
2432
2433 /*
2434 * Handle the degenerate case quietly.
2435 */
2436 if (rec_diff == 0) {
2437 return;
2438 }
2439
2440 ifp = XFS_IFORK_PTR(ip, whichfork);
2441 if (rec_diff > 0) {
2442 /*
2443 * If there wasn't any memory allocated before, just
2444 * allocate it now and get out.
2445 */
2446 if (ifp->if_broot_bytes == 0) {
2447 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2448 ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
2449 KM_SLEEP);
2450 ifp->if_broot_bytes = (int)new_size;
2451 return;
2452 }
2453
2454 /*
2455 * If there is already an existing if_broot, then we need
2456 * to realloc() it and shift the pointers to their new
2457 * location. The records don't change location because
2458 * they are kept butted up against the btree block header.
2459 */
2460 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2461 new_max = cur_max + rec_diff;
2462 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2463 ifp->if_broot = (xfs_bmbt_block_t *)
2464 kmem_realloc(ifp->if_broot,
2465 new_size,
2466 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2467 KM_SLEEP);
2468 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2469 ifp->if_broot_bytes);
2470 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2471 (int)new_size);
2472 ifp->if_broot_bytes = (int)new_size;
2473 ASSERT(ifp->if_broot_bytes <=
2474 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2475 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2476 return;
2477 }
2478
2479 /*
2480 * rec_diff is less than 0. In this case, we are shrinking the
2481 * if_broot buffer. It must already exist. If we go to zero
2482 * records, just get rid of the root and clear the status bit.
2483 */
2484 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2485 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2486 new_max = cur_max + rec_diff;
2487 ASSERT(new_max >= 0);
2488 if (new_max > 0)
2489 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2490 else
2491 new_size = 0;
2492 if (new_size > 0) {
2493 new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
2494 /*
2495 * First copy over the btree block header.
2496 */
2497 memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
2498 } else {
2499 new_broot = NULL;
2500 ifp->if_flags &= ~XFS_IFBROOT;
2501 }
2502
2503 /*
2504 * Only copy the records and pointers if there are any.
2505 */
2506 if (new_max > 0) {
2507 /*
2508 * First copy the records.
2509 */
2510 op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
2511 ifp->if_broot_bytes);
2512 np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
2513 (int)new_size);
2514 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2515
2516 /*
2517 * Then copy the pointers.
2518 */
2519 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2520 ifp->if_broot_bytes);
2521 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
2522 (int)new_size);
2523 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2524 }
2525 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2526 ifp->if_broot = new_broot;
2527 ifp->if_broot_bytes = (int)new_size;
2528 ASSERT(ifp->if_broot_bytes <=
2529 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2530 return;
2531 }
2532
2533
2534 /*
2535 * This is called when the amount of space needed for if_data
2536 * is increased or decreased. The change in size is indicated by
2537 * the number of bytes that need to be added or deleted in the
2538 * byte_diff parameter.
2539 *
2540 * If the amount of space needed has decreased below the size of the
2541 * inline buffer, then switch to using the inline buffer. Otherwise,
2542 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2543 * to what is needed.
2544 *
2545 * ip -- the inode whose if_data area is changing
2546 * byte_diff -- the change in the number of bytes, positive or negative,
2547 * requested for the if_data array.
2548 */
2549 void
2550 xfs_idata_realloc(
2551 xfs_inode_t *ip,
2552 int byte_diff,
2553 int whichfork)
2554 {
2555 xfs_ifork_t *ifp;
2556 int new_size;
2557 int real_size;
2558
2559 if (byte_diff == 0) {
2560 return;
2561 }
2562
2563 ifp = XFS_IFORK_PTR(ip, whichfork);
2564 new_size = (int)ifp->if_bytes + byte_diff;
2565 ASSERT(new_size >= 0);
2566
2567 if (new_size == 0) {
2568 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2569 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2570 }
2571 ifp->if_u1.if_data = NULL;
2572 real_size = 0;
2573 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2574 /*
2575 * If the valid extents/data can fit in if_inline_ext/data,
2576 * copy them from the malloc'd vector and free it.
2577 */
2578 if (ifp->if_u1.if_data == NULL) {
2579 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2580 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2581 ASSERT(ifp->if_real_bytes != 0);
2582 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2583 new_size);
2584 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2585 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2586 }
2587 real_size = 0;
2588 } else {
2589 /*
2590 * Stuck with malloc/realloc.
2591 * For inline data, the underlying buffer must be
2592 * a multiple of 4 bytes in size so that it can be
2593 * logged and stay on word boundaries. We enforce
2594 * that here.
2595 */
2596 real_size = roundup(new_size, 4);
2597 if (ifp->if_u1.if_data == NULL) {
2598 ASSERT(ifp->if_real_bytes == 0);
2599 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2600 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2601 /*
2602 * Only do the realloc if the underlying size
2603 * is really changing.
2604 */
2605 if (ifp->if_real_bytes != real_size) {
2606 ifp->if_u1.if_data =
2607 kmem_realloc(ifp->if_u1.if_data,
2608 real_size,
2609 ifp->if_real_bytes,
2610 KM_SLEEP);
2611 }
2612 } else {
2613 ASSERT(ifp->if_real_bytes == 0);
2614 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2615 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2616 ifp->if_bytes);
2617 }
2618 }
2619 ifp->if_real_bytes = real_size;
2620 ifp->if_bytes = new_size;
2621 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2622 }
2623
2624
2625
2626
2627 /*
2628 * Map inode to disk block and offset.
2629 *
2630 * mp -- the mount point structure for the current file system
2631 * tp -- the current transaction
2632 * ino -- the inode number of the inode to be located
2633 * imap -- this structure is filled in with the information necessary
2634 * to retrieve the given inode from disk
2635 * flags -- flags to pass to xfs_dilocate indicating whether or not
2636 * lookups in the inode btree were OK or not
2637 */
2638 int
2639 xfs_imap(
2640 xfs_mount_t *mp,
2641 xfs_trans_t *tp,
2642 xfs_ino_t ino,
2643 xfs_imap_t *imap,
2644 uint flags)
2645 {
2646 xfs_fsblock_t fsbno;
2647 int len;
2648 int off;
2649 int error;
2650
2651 fsbno = imap->im_blkno ?
2652 XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
2653 error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
2654 if (error != 0) {
2655 return error;
2656 }
2657 imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
2658 imap->im_len = XFS_FSB_TO_BB(mp, len);
2659 imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
2660 imap->im_ioffset = (ushort)off;
2661 imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
2662 return 0;
2663 }
2664
2665 void
2666 xfs_idestroy_fork(
2667 xfs_inode_t *ip,
2668 int whichfork)
2669 {
2670 xfs_ifork_t *ifp;
2671
2672 ifp = XFS_IFORK_PTR(ip, whichfork);
2673 if (ifp->if_broot != NULL) {
2674 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2675 ifp->if_broot = NULL;
2676 }
2677
2678 /*
2679 * If the format is local, then we can't have an extents
2680 * array so just look for an inline data array. If we're
2681 * not local then we may or may not have an extents list,
2682 * so check and free it up if we do.
2683 */
2684 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2685 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2686 (ifp->if_u1.if_data != NULL)) {
2687 ASSERT(ifp->if_real_bytes != 0);
2688 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2689 ifp->if_u1.if_data = NULL;
2690 ifp->if_real_bytes = 0;
2691 }
2692 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2693 ((ifp->if_flags & XFS_IFEXTIREC) ||
2694 ((ifp->if_u1.if_extents != NULL) &&
2695 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2696 ASSERT(ifp->if_real_bytes != 0);
2697 xfs_iext_destroy(ifp);
2698 }
2699 ASSERT(ifp->if_u1.if_extents == NULL ||
2700 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2701 ASSERT(ifp->if_real_bytes == 0);
2702 if (whichfork == XFS_ATTR_FORK) {
2703 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2704 ip->i_afp = NULL;
2705 }
2706 }
2707
2708 /*
2709 * This is called free all the memory associated with an inode.
2710 * It must free the inode itself and any buffers allocated for
2711 * if_extents/if_data and if_broot. It must also free the lock
2712 * associated with the inode.
2713 */
2714 void
2715 xfs_idestroy(
2716 xfs_inode_t *ip)
2717 {
2718
2719 switch (ip->i_d.di_mode & S_IFMT) {
2720 case S_IFREG:
2721 case S_IFDIR:
2722 case S_IFLNK:
2723 xfs_idestroy_fork(ip, XFS_DATA_FORK);
2724 break;
2725 }
2726 if (ip->i_afp)
2727 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
2728 mrfree(&ip->i_lock);
2729 mrfree(&ip->i_iolock);
2730 freesema(&ip->i_flock);
2731 #ifdef XFS_BMAP_TRACE
2732 ktrace_free(ip->i_xtrace);
2733 #endif
2734 #ifdef XFS_BMBT_TRACE
2735 ktrace_free(ip->i_btrace);
2736 #endif
2737 #ifdef XFS_RW_TRACE
2738 ktrace_free(ip->i_rwtrace);
2739 #endif
2740 #ifdef XFS_ILOCK_TRACE
2741 ktrace_free(ip->i_lock_trace);
2742 #endif
2743 #ifdef XFS_DIR2_TRACE
2744 ktrace_free(ip->i_dir_trace);
2745 #endif
2746 if (ip->i_itemp) {
2747 /*
2748 * Only if we are shutting down the fs will we see an
2749 * inode still in the AIL. If it is there, we should remove
2750 * it to prevent a use-after-free from occurring.
2751 */
2752 xfs_mount_t *mp = ip->i_mount;
2753 xfs_log_item_t *lip = &ip->i_itemp->ili_item;
2754 int s;
2755
2756 ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
2757 XFS_FORCED_SHUTDOWN(ip->i_mount));
2758 if (lip->li_flags & XFS_LI_IN_AIL) {
2759 AIL_LOCK(mp, s);
2760 if (lip->li_flags & XFS_LI_IN_AIL)
2761 xfs_trans_delete_ail(mp, lip, s);
2762 else
2763 AIL_UNLOCK(mp, s);
2764 }
2765 xfs_inode_item_destroy(ip);
2766 }
2767 kmem_zone_free(xfs_inode_zone, ip);
2768 }
2769
2770
2771 /*
2772 * Increment the pin count of the given buffer.
2773 * This value is protected by ipinlock spinlock in the mount structure.
2774 */
2775 void
2776 xfs_ipin(
2777 xfs_inode_t *ip)
2778 {
2779 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2780
2781 atomic_inc(&ip->i_pincount);
2782 }
2783
2784 /*
2785 * Decrement the pin count of the given inode, and wake up
2786 * anyone in xfs_iwait_unpin() if the count goes to 0. The
2787 * inode must have been previously pinned with a call to xfs_ipin().
2788 */
2789 void
2790 xfs_iunpin(
2791 xfs_inode_t *ip)
2792 {
2793 ASSERT(atomic_read(&ip->i_pincount) > 0);
2794
2795 if (atomic_dec_and_lock(&ip->i_pincount, &ip->i_flags_lock)) {
2796
2797 /*
2798 * If the inode is currently being reclaimed, the link between
2799 * the bhv_vnode and the xfs_inode will be broken after the
2800 * XFS_IRECLAIM* flag is set. Hence, if these flags are not
2801 * set, then we can move forward and mark the linux inode dirty
2802 * knowing that it is still valid as it won't freed until after
2803 * the bhv_vnode<->xfs_inode link is broken in xfs_reclaim. The
2804 * i_flags_lock is used to synchronise the setting of the
2805 * XFS_IRECLAIM* flags and the breaking of the link, and so we
2806 * can execute atomically w.r.t to reclaim by holding this lock
2807 * here.
2808 *
2809 * However, we still need to issue the unpin wakeup call as the
2810 * inode reclaim may be blocked waiting for the inode to become
2811 * unpinned.
2812 */
2813
2814 if (!__xfs_iflags_test(ip, XFS_IRECLAIM|XFS_IRECLAIMABLE)) {
2815 bhv_vnode_t *vp = XFS_ITOV_NULL(ip);
2816 struct inode *inode = NULL;
2817
2818 BUG_ON(vp == NULL);
2819 inode = vn_to_inode(vp);
2820 BUG_ON(inode->i_state & I_CLEAR);
2821
2822 /* make sync come back and flush this inode */
2823 if (!(inode->i_state & (I_NEW|I_FREEING)))
2824 mark_inode_dirty_sync(inode);
2825 }
2826 spin_unlock(&ip->i_flags_lock);
2827 wake_up(&ip->i_ipin_wait);
2828 }
2829 }
2830
2831 /*
2832 * This is called to wait for the given inode to be unpinned.
2833 * It will sleep until this happens. The caller must have the
2834 * inode locked in at least shared mode so that the buffer cannot
2835 * be subsequently pinned once someone is waiting for it to be
2836 * unpinned.
2837 */
2838 STATIC void
2839 xfs_iunpin_wait(
2840 xfs_inode_t *ip)
2841 {
2842 xfs_inode_log_item_t *iip;
2843 xfs_lsn_t lsn;
2844
2845 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
2846
2847 if (atomic_read(&ip->i_pincount) == 0) {
2848 return;
2849 }
2850
2851 iip = ip->i_itemp;
2852 if (iip && iip->ili_last_lsn) {
2853 lsn = iip->ili_last_lsn;
2854 } else {
2855 lsn = (xfs_lsn_t)0;
2856 }
2857
2858 /*
2859 * Give the log a push so we don't wait here too long.
2860 */
2861 xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
2862
2863 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2864 }
2865
2866
2867 /*
2868 * xfs_iextents_copy()
2869 *
2870 * This is called to copy the REAL extents (as opposed to the delayed
2871 * allocation extents) from the inode into the given buffer. It
2872 * returns the number of bytes copied into the buffer.
2873 *
2874 * If there are no delayed allocation extents, then we can just
2875 * memcpy() the extents into the buffer. Otherwise, we need to
2876 * examine each extent in turn and skip those which are delayed.
2877 */
2878 int
2879 xfs_iextents_copy(
2880 xfs_inode_t *ip,
2881 xfs_bmbt_rec_t *dp,
2882 int whichfork)
2883 {
2884 int copied;
2885 int i;
2886 xfs_ifork_t *ifp;
2887 int nrecs;
2888 xfs_fsblock_t start_block;
2889
2890 ifp = XFS_IFORK_PTR(ip, whichfork);
2891 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
2892 ASSERT(ifp->if_bytes > 0);
2893
2894 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2895 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
2896 ASSERT(nrecs > 0);
2897
2898 /*
2899 * There are some delayed allocation extents in the
2900 * inode, so copy the extents one at a time and skip
2901 * the delayed ones. There must be at least one
2902 * non-delayed extent.
2903 */
2904 copied = 0;
2905 for (i = 0; i < nrecs; i++) {
2906 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
2907 start_block = xfs_bmbt_get_startblock(ep);
2908 if (ISNULLSTARTBLOCK(start_block)) {
2909 /*
2910 * It's a delayed allocation extent, so skip it.
2911 */
2912 continue;
2913 }
2914
2915 /* Translate to on disk format */
2916 put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2917 put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
2918 dp++;
2919 copied++;
2920 }
2921 ASSERT(copied != 0);
2922 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
2923
2924 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2925 }
2926
2927 /*
2928 * Each of the following cases stores data into the same region
2929 * of the on-disk inode, so only one of them can be valid at
2930 * any given time. While it is possible to have conflicting formats
2931 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2932 * in EXTENTS format, this can only happen when the fork has
2933 * changed formats after being modified but before being flushed.
2934 * In these cases, the format always takes precedence, because the
2935 * format indicates the current state of the fork.
2936 */
2937 /*ARGSUSED*/
2938 STATIC int
2939 xfs_iflush_fork(
2940 xfs_inode_t *ip,
2941 xfs_dinode_t *dip,
2942 xfs_inode_log_item_t *iip,
2943 int whichfork,
2944 xfs_buf_t *bp)
2945 {
2946 char *cp;
2947 xfs_ifork_t *ifp;
2948 xfs_mount_t *mp;
2949 #ifdef XFS_TRANS_DEBUG
2950 int first;
2951 #endif
2952 static const short brootflag[2] =
2953 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2954 static const short dataflag[2] =
2955 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2956 static const short extflag[2] =
2957 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2958
2959 if (iip == NULL)
2960 return 0;
2961 ifp = XFS_IFORK_PTR(ip, whichfork);
2962 /*
2963 * This can happen if we gave up in iformat in an error path,
2964 * for the attribute fork.
2965 */
2966 if (ifp == NULL) {
2967 ASSERT(whichfork == XFS_ATTR_FORK);
2968 return 0;
2969 }
2970 cp = XFS_DFORK_PTR(dip, whichfork);
2971 mp = ip->i_mount;
2972 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2973 case XFS_DINODE_FMT_LOCAL:
2974 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2975 (ifp->if_bytes > 0)) {
2976 ASSERT(ifp->if_u1.if_data != NULL);
2977 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2978 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2979 }
2980 break;
2981
2982 case XFS_DINODE_FMT_EXTENTS:
2983 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2984 !(iip->ili_format.ilf_fields & extflag[whichfork]));
2985 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2986 (ifp->if_bytes == 0));
2987 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2988 (ifp->if_bytes > 0));
2989 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2990 (ifp->if_bytes > 0)) {
2991 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2992 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2993 whichfork);
2994 }
2995 break;
2996
2997 case XFS_DINODE_FMT_BTREE:
2998 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2999 (ifp->if_broot_bytes > 0)) {
3000 ASSERT(ifp->if_broot != NULL);
3001 ASSERT(ifp->if_broot_bytes <=
3002 (XFS_IFORK_SIZE(ip, whichfork) +
3003 XFS_BROOT_SIZE_ADJ));
3004 xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
3005 (xfs_bmdr_block_t *)cp,
3006 XFS_DFORK_SIZE(dip, mp, whichfork));
3007 }
3008 break;
3009
3010 case XFS_DINODE_FMT_DEV:
3011 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
3012 ASSERT(whichfork == XFS_DATA_FORK);
3013 dip->di_u.di_dev = cpu_to_be32(ip->i_df.if_u2.if_rdev);
3014 }
3015 break;
3016
3017 case XFS_DINODE_FMT_UUID:
3018 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
3019 ASSERT(whichfork == XFS_DATA_FORK);
3020 memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
3021 sizeof(uuid_t));
3022 }
3023 break;
3024
3025 default:
3026 ASSERT(0);
3027 break;
3028 }
3029
3030 return 0;
3031 }
3032
3033 /*
3034 * xfs_iflush() will write a modified inode's changes out to the
3035 * inode's on disk home. The caller must have the inode lock held
3036 * in at least shared mode and the inode flush semaphore must be
3037 * held as well. The inode lock will still be held upon return from
3038 * the call and the caller is free to unlock it.
3039 * The inode flush lock will be unlocked when the inode reaches the disk.
3040 * The flags indicate how the inode's buffer should be written out.
3041 */
3042 int
3043 xfs_iflush(
3044 xfs_inode_t *ip,
3045 uint flags)
3046 {
3047 xfs_inode_log_item_t *iip;
3048 xfs_buf_t *bp;
3049 xfs_dinode_t *dip;
3050 xfs_mount_t *mp;
3051 int error;
3052 /* REFERENCED */
3053 xfs_chash_t *ch;
3054 xfs_inode_t *iq;
3055 int clcount; /* count of inodes clustered */
3056 int bufwasdelwri;
3057 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
3058 SPLDECL(s);
3059
3060 XFS_STATS_INC(xs_iflush_count);
3061
3062 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3063 ASSERT(issemalocked(&(ip->i_flock)));
3064 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3065 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3066
3067 iip = ip->i_itemp;
3068 mp = ip->i_mount;
3069
3070 /*
3071 * If the inode isn't dirty, then just release the inode
3072 * flush lock and do nothing.
3073 */
3074 if ((ip->i_update_core == 0) &&
3075 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3076 ASSERT((iip != NULL) ?
3077 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
3078 xfs_ifunlock(ip);
3079 return 0;
3080 }
3081
3082 /*
3083 * We can't flush the inode until it is unpinned, so
3084 * wait for it. We know noone new can pin it, because
3085 * we are holding the inode lock shared and you need
3086 * to hold it exclusively to pin the inode.
3087 */
3088 xfs_iunpin_wait(ip);
3089
3090 /*
3091 * This may have been unpinned because the filesystem is shutting
3092 * down forcibly. If that's the case we must not write this inode
3093 * to disk, because the log record didn't make it to disk!
3094 */
3095 if (XFS_FORCED_SHUTDOWN(mp)) {
3096 ip->i_update_core = 0;
3097 if (iip)
3098 iip->ili_format.ilf_fields = 0;
3099 xfs_ifunlock(ip);
3100 return XFS_ERROR(EIO);
3101 }
3102
3103 /*
3104 * Get the buffer containing the on-disk inode.
3105 */
3106 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0);
3107 if (error) {
3108 xfs_ifunlock(ip);
3109 return error;
3110 }
3111
3112 /*
3113 * Decide how buffer will be flushed out. This is done before
3114 * the call to xfs_iflush_int because this field is zeroed by it.
3115 */
3116 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3117 /*
3118 * Flush out the inode buffer according to the directions
3119 * of the caller. In the cases where the caller has given
3120 * us a choice choose the non-delwri case. This is because
3121 * the inode is in the AIL and we need to get it out soon.
3122 */
3123 switch (flags) {
3124 case XFS_IFLUSH_SYNC:
3125 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3126 flags = 0;
3127 break;
3128 case XFS_IFLUSH_ASYNC:
3129 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3130 flags = INT_ASYNC;
3131 break;
3132 case XFS_IFLUSH_DELWRI:
3133 flags = INT_DELWRI;
3134 break;
3135 default:
3136 ASSERT(0);
3137 flags = 0;
3138 break;
3139 }
3140 } else {
3141 switch (flags) {
3142 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3143 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3144 case XFS_IFLUSH_DELWRI:
3145 flags = INT_DELWRI;
3146 break;
3147 case XFS_IFLUSH_ASYNC:
3148 flags = INT_ASYNC;
3149 break;
3150 case XFS_IFLUSH_SYNC:
3151 flags = 0;
3152 break;
3153 default:
3154 ASSERT(0);
3155 flags = 0;
3156 break;
3157 }
3158 }
3159
3160 /*
3161 * First flush out the inode that xfs_iflush was called with.
3162 */
3163 error = xfs_iflush_int(ip, bp);
3164 if (error) {
3165 goto corrupt_out;
3166 }
3167
3168 /*
3169 * inode clustering:
3170 * see if other inodes can be gathered into this write
3171 */
3172
3173 ip->i_chash->chl_buf = bp;
3174
3175 ch = XFS_CHASH(mp, ip->i_blkno);
3176 s = mutex_spinlock(&ch->ch_lock);
3177
3178 clcount = 0;
3179 for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) {
3180 /*
3181 * Do an un-protected check to see if the inode is dirty and
3182 * is a candidate for flushing. These checks will be repeated
3183 * later after the appropriate locks are acquired.
3184 */
3185 iip = iq->i_itemp;
3186 if ((iq->i_update_core == 0) &&
3187 ((iip == NULL) ||
3188 !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
3189 xfs_ipincount(iq) == 0) {
3190 continue;
3191 }
3192
3193 /*
3194 * Try to get locks. If any are unavailable,
3195 * then this inode cannot be flushed and is skipped.
3196 */
3197
3198 /* get inode locks (just i_lock) */
3199 if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
3200 /* get inode flush lock */
3201 if (xfs_iflock_nowait(iq)) {
3202 /* check if pinned */
3203 if (xfs_ipincount(iq) == 0) {
3204 /* arriving here means that
3205 * this inode can be flushed.
3206 * first re-check that it's
3207 * dirty
3208 */
3209 iip = iq->i_itemp;
3210 if ((iq->i_update_core != 0)||
3211 ((iip != NULL) &&
3212 (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3213 clcount++;
3214 error = xfs_iflush_int(iq, bp);
3215 if (error) {
3216 xfs_iunlock(iq,
3217 XFS_ILOCK_SHARED);
3218 goto cluster_corrupt_out;
3219 }
3220 } else {
3221 xfs_ifunlock(iq);
3222 }
3223 } else {
3224 xfs_ifunlock(iq);
3225 }
3226 }
3227 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3228 }
3229 }
3230 mutex_spinunlock(&ch->ch_lock, s);
3231
3232 if (clcount) {
3233 XFS_STATS_INC(xs_icluster_flushcnt);
3234 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3235 }
3236
3237 /*
3238 * If the buffer is pinned then push on the log so we won't
3239 * get stuck waiting in the write for too long.
3240 */
3241 if (XFS_BUF_ISPINNED(bp)){
3242 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3243 }
3244
3245 if (flags & INT_DELWRI) {
3246 xfs_bdwrite(mp, bp);
3247 } else if (flags & INT_ASYNC) {
3248 xfs_bawrite(mp, bp);
3249 } else {
3250 error = xfs_bwrite(mp, bp);
3251 }
3252 return error;
3253
3254 corrupt_out:
3255 xfs_buf_relse(bp);
3256 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3257 xfs_iflush_abort(ip);
3258 /*
3259 * Unlocks the flush lock
3260 */
3261 return XFS_ERROR(EFSCORRUPTED);
3262
3263 cluster_corrupt_out:
3264 /* Corruption detected in the clustering loop. Invalidate the
3265 * inode buffer and shut down the filesystem.
3266 */
3267 mutex_spinunlock(&ch->ch_lock, s);
3268
3269 /*
3270 * Clean up the buffer. If it was B_DELWRI, just release it --
3271 * brelse can handle it with no problems. If not, shut down the
3272 * filesystem before releasing the buffer.
3273 */
3274 if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
3275 xfs_buf_relse(bp);
3276 }
3277
3278 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3279
3280 if(!bufwasdelwri) {
3281 /*
3282 * Just like incore_relse: if we have b_iodone functions,
3283 * mark the buffer as an error and call them. Otherwise
3284 * mark it as stale and brelse.
3285 */
3286 if (XFS_BUF_IODONE_FUNC(bp)) {
3287 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
3288 XFS_BUF_UNDONE(bp);
3289 XFS_BUF_STALE(bp);
3290 XFS_BUF_SHUT(bp);
3291 XFS_BUF_ERROR(bp,EIO);
3292 xfs_biodone(bp);
3293 } else {
3294 XFS_BUF_STALE(bp);
3295 xfs_buf_relse(bp);
3296 }
3297 }
3298
3299 xfs_iflush_abort(iq);
3300 /*
3301 * Unlocks the flush lock
3302 */
3303 return XFS_ERROR(EFSCORRUPTED);
3304 }
3305
3306
3307 STATIC int
3308 xfs_iflush_int(
3309 xfs_inode_t *ip,
3310 xfs_buf_t *bp)
3311 {
3312 xfs_inode_log_item_t *iip;
3313 xfs_dinode_t *dip;
3314 xfs_mount_t *mp;
3315 #ifdef XFS_TRANS_DEBUG
3316 int first;
3317 #endif
3318 SPLDECL(s);
3319
3320 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3321 ASSERT(issemalocked(&(ip->i_flock)));
3322 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3323 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3324
3325 iip = ip->i_itemp;
3326 mp = ip->i_mount;
3327
3328
3329 /*
3330 * If the inode isn't dirty, then just release the inode
3331 * flush lock and do nothing.
3332 */
3333 if ((ip->i_update_core == 0) &&
3334 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3335 xfs_ifunlock(ip);
3336 return 0;
3337 }
3338
3339 /* set *dip = inode's place in the buffer */
3340 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
3341
3342 /*
3343 * Clear i_update_core before copying out the data.
3344 * This is for coordination with our timestamp updates
3345 * that don't hold the inode lock. They will always
3346 * update the timestamps BEFORE setting i_update_core,
3347 * so if we clear i_update_core after they set it we
3348 * are guaranteed to see their updates to the timestamps.
3349 * I believe that this depends on strongly ordered memory
3350 * semantics, but we have that. We use the SYNCHRONIZE
3351 * macro to make sure that the compiler does not reorder
3352 * the i_update_core access below the data copy below.
3353 */
3354 ip->i_update_core = 0;
3355 SYNCHRONIZE();
3356
3357 /*
3358 * Make sure to get the latest atime from the Linux inode.
3359 */
3360 xfs_synchronize_atime(ip);
3361
3362 if (XFS_TEST_ERROR(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC,
3363 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3364 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3365 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3366 ip->i_ino, be16_to_cpu(dip->di_core.di_magic), dip);
3367 goto corrupt_out;
3368 }
3369 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3370 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3371 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3372 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3373 ip->i_ino, ip, ip->i_d.di_magic);
3374 goto corrupt_out;
3375 }
3376 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3377 if (XFS_TEST_ERROR(
3378 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3379 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3380 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3381 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3382 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3383 ip->i_ino, ip);
3384 goto corrupt_out;
3385 }
3386 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3387 if (XFS_TEST_ERROR(
3388 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3389 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3390 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3391 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3392 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3393 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3394 ip->i_ino, ip);
3395 goto corrupt_out;
3396 }
3397 }
3398 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3399 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3400 XFS_RANDOM_IFLUSH_5)) {
3401 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3402 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3403 ip->i_ino,
3404 ip->i_d.di_nextents + ip->i_d.di_anextents,
3405 ip->i_d.di_nblocks,
3406 ip);
3407 goto corrupt_out;
3408 }
3409 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3410 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3411 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3412 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3413 ip->i_ino, ip->i_d.di_forkoff, ip);
3414 goto corrupt_out;
3415 }
3416 /*
3417 * bump the flush iteration count, used to detect flushes which
3418 * postdate a log record during recovery.
3419 */
3420
3421 ip->i_d.di_flushiter++;
3422
3423 /*
3424 * Copy the dirty parts of the inode into the on-disk
3425 * inode. We always copy out the core of the inode,
3426 * because if the inode is dirty at all the core must
3427 * be.
3428 */
3429 xfs_dinode_to_disk(&dip->di_core, &ip->i_d);
3430
3431 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3432 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3433 ip->i_d.di_flushiter = 0;
3434
3435 /*
3436 * If this is really an old format inode and the superblock version
3437 * has not been updated to support only new format inodes, then
3438 * convert back to the old inode format. If the superblock version
3439 * has been updated, then make the conversion permanent.
3440 */
3441 ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
3442 XFS_SB_VERSION_HASNLINK(&mp->m_sb));
3443 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
3444 if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
3445 /*
3446 * Convert it back.
3447 */
3448 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3449 dip->di_core.di_onlink = cpu_to_be16(ip->i_d.di_nlink);
3450 } else {
3451 /*
3452 * The superblock version has already been bumped,
3453 * so just make the conversion to the new inode
3454 * format permanent.
3455 */
3456 ip->i_d.di_version = XFS_DINODE_VERSION_2;
3457 dip->di_core.di_version = XFS_DINODE_VERSION_2;
3458 ip->i_d.di_onlink = 0;
3459 dip->di_core.di_onlink = 0;
3460 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3461 memset(&(dip->di_core.di_pad[0]), 0,
3462 sizeof(dip->di_core.di_pad));
3463 ASSERT(ip->i_d.di_projid == 0);
3464 }
3465 }
3466
3467 if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
3468 goto corrupt_out;
3469 }
3470
3471 if (XFS_IFORK_Q(ip)) {
3472 /*
3473 * The only error from xfs_iflush_fork is on the data fork.
3474 */
3475 (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3476 }
3477 xfs_inobp_check(mp, bp);
3478
3479 /*
3480 * We've recorded everything logged in the inode, so we'd
3481 * like to clear the ilf_fields bits so we don't log and
3482 * flush things unnecessarily. However, we can't stop
3483 * logging all this information until the data we've copied
3484 * into the disk buffer is written to disk. If we did we might
3485 * overwrite the copy of the inode in the log with all the
3486 * data after re-logging only part of it, and in the face of
3487 * a crash we wouldn't have all the data we need to recover.
3488 *
3489 * What we do is move the bits to the ili_last_fields field.
3490 * When logging the inode, these bits are moved back to the
3491 * ilf_fields field. In the xfs_iflush_done() routine we
3492 * clear ili_last_fields, since we know that the information
3493 * those bits represent is permanently on disk. As long as
3494 * the flush completes before the inode is logged again, then
3495 * both ilf_fields and ili_last_fields will be cleared.
3496 *
3497 * We can play with the ilf_fields bits here, because the inode
3498 * lock must be held exclusively in order to set bits there
3499 * and the flush lock protects the ili_last_fields bits.
3500 * Set ili_logged so the flush done
3501 * routine can tell whether or not to look in the AIL.
3502 * Also, store the current LSN of the inode so that we can tell
3503 * whether the item has moved in the AIL from xfs_iflush_done().
3504 * In order to read the lsn we need the AIL lock, because
3505 * it is a 64 bit value that cannot be read atomically.
3506 */
3507 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3508 iip->ili_last_fields = iip->ili_format.ilf_fields;
3509 iip->ili_format.ilf_fields = 0;
3510 iip->ili_logged = 1;
3511
3512 ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
3513 AIL_LOCK(mp,s);
3514 iip->ili_flush_lsn = iip->ili_item.li_lsn;
3515 AIL_UNLOCK(mp, s);
3516
3517 /*
3518 * Attach the function xfs_iflush_done to the inode's
3519 * buffer. This will remove the inode from the AIL
3520 * and unlock the inode's flush lock when the inode is
3521 * completely written to disk.
3522 */
3523 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3524 xfs_iflush_done, (xfs_log_item_t *)iip);
3525
3526 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3527 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3528 } else {
3529 /*
3530 * We're flushing an inode which is not in the AIL and has
3531 * not been logged but has i_update_core set. For this
3532 * case we can use a B_DELWRI flush and immediately drop
3533 * the inode flush lock because we can avoid the whole
3534 * AIL state thing. It's OK to drop the flush lock now,
3535 * because we've already locked the buffer and to do anything
3536 * you really need both.
3537 */
3538 if (iip != NULL) {
3539 ASSERT(iip->ili_logged == 0);
3540 ASSERT(iip->ili_last_fields == 0);
3541 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3542 }
3543 xfs_ifunlock(ip);
3544 }
3545
3546 return 0;
3547
3548 corrupt_out:
3549 return XFS_ERROR(EFSCORRUPTED);
3550 }
3551
3552
3553 /*
3554 * Flush all inactive inodes in mp.
3555 */
3556 void
3557 xfs_iflush_all(
3558 xfs_mount_t *mp)
3559 {
3560 xfs_inode_t *ip;
3561 bhv_vnode_t *vp;
3562
3563 again:
3564 XFS_MOUNT_ILOCK(mp);
3565 ip = mp->m_inodes;
3566 if (ip == NULL)
3567 goto out;
3568
3569 do {
3570 /* Make sure we skip markers inserted by sync */
3571 if (ip->i_mount == NULL) {
3572 ip = ip->i_mnext;
3573 continue;
3574 }
3575
3576 vp = XFS_ITOV_NULL(ip);
3577 if (!vp) {
3578 XFS_MOUNT_IUNLOCK(mp);
3579 xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
3580 goto again;
3581 }
3582
3583 ASSERT(vn_count(vp) == 0);
3584
3585 ip = ip->i_mnext;
3586 } while (ip != mp->m_inodes);
3587 out:
3588 XFS_MOUNT_IUNLOCK(mp);
3589 }
3590
3591 /*
3592 * xfs_iaccess: check accessibility of inode for mode.
3593 */
3594 int
3595 xfs_iaccess(
3596 xfs_inode_t *ip,
3597 mode_t mode,
3598 cred_t *cr)
3599 {
3600 int error;
3601 mode_t orgmode = mode;
3602 struct inode *inode = vn_to_inode(XFS_ITOV(ip));
3603
3604 if (mode & S_IWUSR) {
3605 umode_t imode = inode->i_mode;
3606
3607 if (IS_RDONLY(inode) &&
3608 (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
3609 return XFS_ERROR(EROFS);
3610
3611 if (IS_IMMUTABLE(inode))
3612 return XFS_ERROR(EACCES);
3613 }
3614
3615 /*
3616 * If there's an Access Control List it's used instead of
3617 * the mode bits.
3618 */
3619 if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
3620 return error ? XFS_ERROR(error) : 0;
3621
3622 if (current_fsuid(cr) != ip->i_d.di_uid) {
3623 mode >>= 3;
3624 if (!in_group_p((gid_t)ip->i_d.di_gid))
3625 mode >>= 3;
3626 }
3627
3628 /*
3629 * If the DACs are ok we don't need any capability check.
3630 */
3631 if ((ip->i_d.di_mode & mode) == mode)
3632 return 0;
3633 /*
3634 * Read/write DACs are always overridable.
3635 * Executable DACs are overridable if at least one exec bit is set.
3636 */
3637 if (!(orgmode & S_IXUSR) ||
3638 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
3639 if (capable_cred(cr, CAP_DAC_OVERRIDE))
3640 return 0;
3641
3642 if ((orgmode == S_IRUSR) ||
3643 (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
3644 if (capable_cred(cr, CAP_DAC_READ_SEARCH))
3645 return 0;
3646 #ifdef NOISE
3647 cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
3648 #endif /* NOISE */
3649 return XFS_ERROR(EACCES);
3650 }
3651 return XFS_ERROR(EACCES);
3652 }
3653
3654 /*
3655 * xfs_iroundup: round up argument to next power of two
3656 */
3657 uint
3658 xfs_iroundup(
3659 uint v)
3660 {
3661 int i;
3662 uint m;
3663
3664 if ((v & (v - 1)) == 0)
3665 return v;
3666 ASSERT((v & 0x80000000) == 0);
3667 if ((v & (v + 1)) == 0)
3668 return v + 1;
3669 for (i = 0, m = 1; i < 31; i++, m <<= 1) {
3670 if (v & m)
3671 continue;
3672 v |= m;
3673 if ((v & (v + 1)) == 0)
3674 return v + 1;
3675 }
3676 ASSERT(0);
3677 return( 0 );
3678 }
3679
3680 #ifdef XFS_ILOCK_TRACE
3681 ktrace_t *xfs_ilock_trace_buf;
3682
3683 void
3684 xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3685 {
3686 ktrace_enter(ip->i_lock_trace,
3687 (void *)ip,
3688 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3689 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3690 (void *)ra, /* caller of ilock */
3691 (void *)(unsigned long)current_cpu(),
3692 (void *)(unsigned long)current_pid(),
3693 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3694 }
3695 #endif
3696
3697 /*
3698 * Return a pointer to the extent record at file index idx.
3699 */
3700 xfs_bmbt_rec_host_t *
3701 xfs_iext_get_ext(
3702 xfs_ifork_t *ifp, /* inode fork pointer */
3703 xfs_extnum_t idx) /* index of target extent */
3704 {
3705 ASSERT(idx >= 0);
3706 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3707 return ifp->if_u1.if_ext_irec->er_extbuf;
3708 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3709 xfs_ext_irec_t *erp; /* irec pointer */
3710 int erp_idx = 0; /* irec index */
3711 xfs_extnum_t page_idx = idx; /* ext index in target list */
3712
3713 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3714 return &erp->er_extbuf[page_idx];
3715 } else if (ifp->if_bytes) {
3716 return &ifp->if_u1.if_extents[idx];
3717 } else {
3718 return NULL;
3719 }
3720 }
3721
3722 /*
3723 * Insert new item(s) into the extent records for incore inode
3724 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3725 */
3726 void
3727 xfs_iext_insert(
3728 xfs_ifork_t *ifp, /* inode fork pointer */
3729 xfs_extnum_t idx, /* starting index of new items */
3730 xfs_extnum_t count, /* number of inserted items */
3731 xfs_bmbt_irec_t *new) /* items to insert */
3732 {
3733 xfs_extnum_t i; /* extent record index */
3734
3735 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3736 xfs_iext_add(ifp, idx, count);
3737 for (i = idx; i < idx + count; i++, new++)
3738 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
3739 }
3740
3741 /*
3742 * This is called when the amount of space required for incore file
3743 * extents needs to be increased. The ext_diff parameter stores the
3744 * number of new extents being added and the idx parameter contains
3745 * the extent index where the new extents will be added. If the new
3746 * extents are being appended, then we just need to (re)allocate and
3747 * initialize the space. Otherwise, if the new extents are being
3748 * inserted into the middle of the existing entries, a bit more work
3749 * is required to make room for the new extents to be inserted. The
3750 * caller is responsible for filling in the new extent entries upon
3751 * return.
3752 */
3753 void
3754 xfs_iext_add(
3755 xfs_ifork_t *ifp, /* inode fork pointer */
3756 xfs_extnum_t idx, /* index to begin adding exts */
3757 int ext_diff) /* number of extents to add */
3758 {
3759 int byte_diff; /* new bytes being added */
3760 int new_size; /* size of extents after adding */
3761 xfs_extnum_t nextents; /* number of extents in file */
3762
3763 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3764 ASSERT((idx >= 0) && (idx <= nextents));
3765 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3766 new_size = ifp->if_bytes + byte_diff;
3767 /*
3768 * If the new number of extents (nextents + ext_diff)
3769 * fits inside the inode, then continue to use the inline
3770 * extent buffer.
3771 */
3772 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3773 if (idx < nextents) {
3774 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3775 &ifp->if_u2.if_inline_ext[idx],
3776 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3777 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3778 }
3779 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3780 ifp->if_real_bytes = 0;
3781 ifp->if_lastex = nextents + ext_diff;
3782 }
3783 /*
3784 * Otherwise use a linear (direct) extent list.
3785 * If the extents are currently inside the inode,
3786 * xfs_iext_realloc_direct will switch us from
3787 * inline to direct extent allocation mode.
3788 */
3789 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
3790 xfs_iext_realloc_direct(ifp, new_size);
3791 if (idx < nextents) {
3792 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3793 &ifp->if_u1.if_extents[idx],
3794 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3795 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3796 }
3797 }
3798 /* Indirection array */
3799 else {
3800 xfs_ext_irec_t *erp;
3801 int erp_idx = 0;
3802 int page_idx = idx;
3803
3804 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3805 if (ifp->if_flags & XFS_IFEXTIREC) {
3806 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3807 } else {
3808 xfs_iext_irec_init(ifp);
3809 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3810 erp = ifp->if_u1.if_ext_irec;
3811 }
3812 /* Extents fit in target extent page */
3813 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3814 if (page_idx < erp->er_extcount) {
3815 memmove(&erp->er_extbuf[page_idx + ext_diff],
3816 &erp->er_extbuf[page_idx],
3817 (erp->er_extcount - page_idx) *
3818 sizeof(xfs_bmbt_rec_t));
3819 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3820 }
3821 erp->er_extcount += ext_diff;
3822 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3823 }
3824 /* Insert a new extent page */
3825 else if (erp) {
3826 xfs_iext_add_indirect_multi(ifp,
3827 erp_idx, page_idx, ext_diff);
3828 }
3829 /*
3830 * If extent(s) are being appended to the last page in
3831 * the indirection array and the new extent(s) don't fit
3832 * in the page, then erp is NULL and erp_idx is set to
3833 * the next index needed in the indirection array.
3834 */
3835 else {
3836 int count = ext_diff;
3837
3838 while (count) {
3839 erp = xfs_iext_irec_new(ifp, erp_idx);
3840 erp->er_extcount = count;
3841 count -= MIN(count, (int)XFS_LINEAR_EXTS);
3842 if (count) {
3843 erp_idx++;
3844 }
3845 }
3846 }
3847 }
3848 ifp->if_bytes = new_size;
3849 }
3850
3851 /*
3852 * This is called when incore extents are being added to the indirection
3853 * array and the new extents do not fit in the target extent list. The
3854 * erp_idx parameter contains the irec index for the target extent list
3855 * in the indirection array, and the idx parameter contains the extent
3856 * index within the list. The number of extents being added is stored
3857 * in the count parameter.
3858 *
3859 * |-------| |-------|
3860 * | | | | idx - number of extents before idx
3861 * | idx | | count |
3862 * | | | | count - number of extents being inserted at idx
3863 * |-------| |-------|
3864 * | count | | nex2 | nex2 - number of extents after idx + count
3865 * |-------| |-------|
3866 */
3867 void
3868 xfs_iext_add_indirect_multi(
3869 xfs_ifork_t *ifp, /* inode fork pointer */
3870 int erp_idx, /* target extent irec index */
3871 xfs_extnum_t idx, /* index within target list */
3872 int count) /* new extents being added */
3873 {
3874 int byte_diff; /* new bytes being added */
3875 xfs_ext_irec_t *erp; /* pointer to irec entry */
3876 xfs_extnum_t ext_diff; /* number of extents to add */
3877 xfs_extnum_t ext_cnt; /* new extents still needed */
3878 xfs_extnum_t nex2; /* extents after idx + count */
3879 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3880 int nlists; /* number of irec's (lists) */
3881
3882 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3883 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3884 nex2 = erp->er_extcount - idx;
3885 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3886
3887 /*
3888 * Save second part of target extent list
3889 * (all extents past */
3890 if (nex2) {
3891 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3892 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
3893 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3894 erp->er_extcount -= nex2;
3895 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3896 memset(&erp->er_extbuf[idx], 0, byte_diff);
3897 }
3898
3899 /*
3900 * Add the new extents to the end of the target
3901 * list, then allocate new irec record(s) and
3902 * extent buffer(s) as needed to store the rest
3903 * of the new extents.
3904 */
3905 ext_cnt = count;
3906 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3907 if (ext_diff) {
3908 erp->er_extcount += ext_diff;
3909 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3910 ext_cnt -= ext_diff;
3911 }
3912 while (ext_cnt) {
3913 erp_idx++;
3914 erp = xfs_iext_irec_new(ifp, erp_idx);
3915 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3916 erp->er_extcount = ext_diff;
3917 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3918 ext_cnt -= ext_diff;
3919 }
3920
3921 /* Add nex2 extents back to indirection array */
3922 if (nex2) {
3923 xfs_extnum_t ext_avail;
3924 int i;
3925
3926 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3927 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3928 i = 0;
3929 /*
3930 * If nex2 extents fit in the current page, append
3931 * nex2_ep after the new extents.
3932 */
3933 if (nex2 <= ext_avail) {
3934 i = erp->er_extcount;
3935 }
3936 /*
3937 * Otherwise, check if space is available in the
3938 * next page.
3939 */
3940 else if ((erp_idx < nlists - 1) &&
3941 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3942 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3943 erp_idx++;
3944 erp++;
3945 /* Create a hole for nex2 extents */
3946 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3947 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3948 }
3949 /*
3950 * Final choice, create a new extent page for
3951 * nex2 extents.
3952 */
3953 else {
3954 erp_idx++;
3955 erp = xfs_iext_irec_new(ifp, erp_idx);
3956 }
3957 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3958 kmem_free(nex2_ep, byte_diff);
3959 erp->er_extcount += nex2;
3960 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3961 }
3962 }
3963
3964 /*
3965 * This is called when the amount of space required for incore file
3966 * extents needs to be decreased. The ext_diff parameter stores the
3967 * number of extents to be removed and the idx parameter contains
3968 * the extent index where the extents will be removed from.
3969 *
3970 * If the amount of space needed has decreased below the linear
3971 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3972 * extent array. Otherwise, use kmem_realloc() to adjust the
3973 * size to what is needed.
3974 */
3975 void
3976 xfs_iext_remove(
3977 xfs_ifork_t *ifp, /* inode fork pointer */
3978 xfs_extnum_t idx, /* index to begin removing exts */
3979 int ext_diff) /* number of extents to remove */
3980 {
3981 xfs_extnum_t nextents; /* number of extents in file */
3982 int new_size; /* size of extents after removal */
3983
3984 ASSERT(ext_diff > 0);
3985 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3986 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3987
3988 if (new_size == 0) {
3989 xfs_iext_destroy(ifp);
3990 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3991 xfs_iext_remove_indirect(ifp, idx, ext_diff);
3992 } else if (ifp->if_real_bytes) {
3993 xfs_iext_remove_direct(ifp, idx, ext_diff);
3994 } else {
3995 xfs_iext_remove_inline(ifp, idx, ext_diff);
3996 }
3997 ifp->if_bytes = new_size;
3998 }
3999
4000 /*
4001 * This removes ext_diff extents from the inline buffer, beginning
4002 * at extent index idx.
4003 */
4004 void
4005 xfs_iext_remove_inline(
4006 xfs_ifork_t *ifp, /* inode fork pointer */
4007 xfs_extnum_t idx, /* index to begin removing exts */
4008 int ext_diff) /* number of extents to remove */
4009 {
4010 int nextents; /* number of extents in file */
4011
4012 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4013 ASSERT(idx < XFS_INLINE_EXTS);
4014 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4015 ASSERT(((nextents - ext_diff) > 0) &&
4016 (nextents - ext_diff) < XFS_INLINE_EXTS);
4017
4018 if (idx + ext_diff < nextents) {
4019 memmove(&ifp->if_u2.if_inline_ext[idx],
4020 &ifp->if_u2.if_inline_ext[idx + ext_diff],
4021 (nextents - (idx + ext_diff)) *
4022 sizeof(xfs_bmbt_rec_t));
4023 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
4024 0, ext_diff * sizeof(xfs_bmbt_rec_t));
4025 } else {
4026 memset(&ifp->if_u2.if_inline_ext[idx], 0,
4027 ext_diff * sizeof(xfs_bmbt_rec_t));
4028 }
4029 }
4030
4031 /*
4032 * This removes ext_diff extents from a linear (direct) extent list,
4033 * beginning at extent index idx. If the extents are being removed
4034 * from the end of the list (ie. truncate) then we just need to re-
4035 * allocate the list to remove the extra space. Otherwise, if the
4036 * extents are being removed from the middle of the existing extent
4037 * entries, then we first need to move the extent records beginning
4038 * at idx + ext_diff up in the list to overwrite the records being
4039 * removed, then remove the extra space via kmem_realloc.
4040 */
4041 void
4042 xfs_iext_remove_direct(
4043 xfs_ifork_t *ifp, /* inode fork pointer */
4044 xfs_extnum_t idx, /* index to begin removing exts */
4045 int ext_diff) /* number of extents to remove */
4046 {
4047 xfs_extnum_t nextents; /* number of extents in file */
4048 int new_size; /* size of extents after removal */
4049
4050 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4051 new_size = ifp->if_bytes -
4052 (ext_diff * sizeof(xfs_bmbt_rec_t));
4053 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4054
4055 if (new_size == 0) {
4056 xfs_iext_destroy(ifp);
4057 return;
4058 }
4059 /* Move extents up in the list (if needed) */
4060 if (idx + ext_diff < nextents) {
4061 memmove(&ifp->if_u1.if_extents[idx],
4062 &ifp->if_u1.if_extents[idx + ext_diff],
4063 (nextents - (idx + ext_diff)) *
4064 sizeof(xfs_bmbt_rec_t));
4065 }
4066 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
4067 0, ext_diff * sizeof(xfs_bmbt_rec_t));
4068 /*
4069 * Reallocate the direct extent list. If the extents
4070 * will fit inside the inode then xfs_iext_realloc_direct
4071 * will switch from direct to inline extent allocation
4072 * mode for us.
4073 */
4074 xfs_iext_realloc_direct(ifp, new_size);
4075 ifp->if_bytes = new_size;
4076 }
4077
4078 /*
4079 * This is called when incore extents are being removed from the
4080 * indirection array and the extents being removed span multiple extent
4081 * buffers. The idx parameter contains the file extent index where we
4082 * want to begin removing extents, and the count parameter contains
4083 * how many extents need to be removed.
4084 *
4085 * |-------| |-------|
4086 * | nex1 | | | nex1 - number of extents before idx
4087 * |-------| | count |
4088 * | | | | count - number of extents being removed at idx
4089 * | count | |-------|
4090 * | | | nex2 | nex2 - number of extents after idx + count
4091 * |-------| |-------|
4092 */
4093 void
4094 xfs_iext_remove_indirect(
4095 xfs_ifork_t *ifp, /* inode fork pointer */
4096 xfs_extnum_t idx, /* index to begin removing extents */
4097 int count) /* number of extents to remove */
4098 {
4099 xfs_ext_irec_t *erp; /* indirection array pointer */
4100 int erp_idx = 0; /* indirection array index */
4101 xfs_extnum_t ext_cnt; /* extents left to remove */
4102 xfs_extnum_t ext_diff; /* extents to remove in current list */
4103 xfs_extnum_t nex1; /* number of extents before idx */
4104 xfs_extnum_t nex2; /* extents after idx + count */
4105 int nlists; /* entries in indirection array */
4106 int page_idx = idx; /* index in target extent list */
4107
4108 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4109 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
4110 ASSERT(erp != NULL);
4111 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4112 nex1 = page_idx;
4113 ext_cnt = count;
4114 while (ext_cnt) {
4115 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
4116 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
4117 /*
4118 * Check for deletion of entire list;
4119 * xfs_iext_irec_remove() updates extent offsets.
4120 */
4121 if (ext_diff == erp->er_extcount) {
4122 xfs_iext_irec_remove(ifp, erp_idx);
4123 ext_cnt -= ext_diff;
4124 nex1 = 0;
4125 if (ext_cnt) {
4126 ASSERT(erp_idx < ifp->if_real_bytes /
4127 XFS_IEXT_BUFSZ);
4128 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4129 nex1 = 0;
4130 continue;
4131 } else {
4132 break;
4133 }
4134 }
4135 /* Move extents up (if needed) */
4136 if (nex2) {
4137 memmove(&erp->er_extbuf[nex1],
4138 &erp->er_extbuf[nex1 + ext_diff],
4139 nex2 * sizeof(xfs_bmbt_rec_t));
4140 }
4141 /* Zero out rest of page */
4142 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
4143 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
4144 /* Update remaining counters */
4145 erp->er_extcount -= ext_diff;
4146 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
4147 ext_cnt -= ext_diff;
4148 nex1 = 0;
4149 erp_idx++;
4150 erp++;
4151 }
4152 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
4153 xfs_iext_irec_compact(ifp);
4154 }
4155
4156 /*
4157 * Create, destroy, or resize a linear (direct) block of extents.
4158 */
4159 void
4160 xfs_iext_realloc_direct(
4161 xfs_ifork_t *ifp, /* inode fork pointer */
4162 int new_size) /* new size of extents */
4163 {
4164 int rnew_size; /* real new size of extents */
4165
4166 rnew_size = new_size;
4167
4168 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
4169 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
4170 (new_size != ifp->if_real_bytes)));
4171
4172 /* Free extent records */
4173 if (new_size == 0) {
4174 xfs_iext_destroy(ifp);
4175 }
4176 /* Resize direct extent list and zero any new bytes */
4177 else if (ifp->if_real_bytes) {
4178 /* Check if extents will fit inside the inode */
4179 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
4180 xfs_iext_direct_to_inline(ifp, new_size /
4181 (uint)sizeof(xfs_bmbt_rec_t));
4182 ifp->if_bytes = new_size;
4183 return;
4184 }
4185 if (!is_power_of_2(new_size)){
4186 rnew_size = xfs_iroundup(new_size);
4187 }
4188 if (rnew_size != ifp->if_real_bytes) {
4189 ifp->if_u1.if_extents =
4190 kmem_realloc(ifp->if_u1.if_extents,
4191 rnew_size,
4192 ifp->if_real_bytes,
4193 KM_SLEEP);
4194 }
4195 if (rnew_size > ifp->if_real_bytes) {
4196 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
4197 (uint)sizeof(xfs_bmbt_rec_t)], 0,
4198 rnew_size - ifp->if_real_bytes);
4199 }
4200 }
4201 /*
4202 * Switch from the inline extent buffer to a direct
4203 * extent list. Be sure to include the inline extent
4204 * bytes in new_size.
4205 */
4206 else {
4207 new_size += ifp->if_bytes;
4208 if (!is_power_of_2(new_size)) {
4209 rnew_size = xfs_iroundup(new_size);
4210 }
4211 xfs_iext_inline_to_direct(ifp, rnew_size);
4212 }
4213 ifp->if_real_bytes = rnew_size;
4214 ifp->if_bytes = new_size;
4215 }
4216
4217 /*
4218 * Switch from linear (direct) extent records to inline buffer.
4219 */
4220 void
4221 xfs_iext_direct_to_inline(
4222 xfs_ifork_t *ifp, /* inode fork pointer */
4223 xfs_extnum_t nextents) /* number of extents in file */
4224 {
4225 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
4226 ASSERT(nextents <= XFS_INLINE_EXTS);
4227 /*
4228 * The inline buffer was zeroed when we switched
4229 * from inline to direct extent allocation mode,
4230 * so we don't need to clear it here.
4231 */
4232 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
4233 nextents * sizeof(xfs_bmbt_rec_t));
4234 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4235 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4236 ifp->if_real_bytes = 0;
4237 }
4238
4239 /*
4240 * Switch from inline buffer to linear (direct) extent records.
4241 * new_size should already be rounded up to the next power of 2
4242 * by the caller (when appropriate), so use new_size as it is.
4243 * However, since new_size may be rounded up, we can't update
4244 * if_bytes here. It is the caller's responsibility to update
4245 * if_bytes upon return.
4246 */
4247 void
4248 xfs_iext_inline_to_direct(
4249 xfs_ifork_t *ifp, /* inode fork pointer */
4250 int new_size) /* number of extents in file */
4251 {
4252 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_SLEEP);
4253 memset(ifp->if_u1.if_extents, 0, new_size);
4254 if (ifp->if_bytes) {
4255 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
4256 ifp->if_bytes);
4257 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4258 sizeof(xfs_bmbt_rec_t));
4259 }
4260 ifp->if_real_bytes = new_size;
4261 }
4262
4263 /*
4264 * Resize an extent indirection array to new_size bytes.
4265 */
4266 void
4267 xfs_iext_realloc_indirect(
4268 xfs_ifork_t *ifp, /* inode fork pointer */
4269 int new_size) /* new indirection array size */
4270 {
4271 int nlists; /* number of irec's (ex lists) */
4272 int size; /* current indirection array size */
4273
4274 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4275 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4276 size = nlists * sizeof(xfs_ext_irec_t);
4277 ASSERT(ifp->if_real_bytes);
4278 ASSERT((new_size >= 0) && (new_size != size));
4279 if (new_size == 0) {
4280 xfs_iext_destroy(ifp);
4281 } else {
4282 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
4283 kmem_realloc(ifp->if_u1.if_ext_irec,
4284 new_size, size, KM_SLEEP);
4285 }
4286 }
4287
4288 /*
4289 * Switch from indirection array to linear (direct) extent allocations.
4290 */
4291 void
4292 xfs_iext_indirect_to_direct(
4293 xfs_ifork_t *ifp) /* inode fork pointer */
4294 {
4295 xfs_bmbt_rec_host_t *ep; /* extent record pointer */
4296 xfs_extnum_t nextents; /* number of extents in file */
4297 int size; /* size of file extents */
4298
4299 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4300 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4301 ASSERT(nextents <= XFS_LINEAR_EXTS);
4302 size = nextents * sizeof(xfs_bmbt_rec_t);
4303
4304 xfs_iext_irec_compact_full(ifp);
4305 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
4306
4307 ep = ifp->if_u1.if_ext_irec->er_extbuf;
4308 kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t));
4309 ifp->if_flags &= ~XFS_IFEXTIREC;
4310 ifp->if_u1.if_extents = ep;
4311 ifp->if_bytes = size;
4312 if (nextents < XFS_LINEAR_EXTS) {
4313 xfs_iext_realloc_direct(ifp, size);
4314 }
4315 }
4316
4317 /*
4318 * Free incore file extents.
4319 */
4320 void
4321 xfs_iext_destroy(
4322 xfs_ifork_t *ifp) /* inode fork pointer */
4323 {
4324 if (ifp->if_flags & XFS_IFEXTIREC) {
4325 int erp_idx;
4326 int nlists;
4327
4328 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4329 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
4330 xfs_iext_irec_remove(ifp, erp_idx);
4331 }
4332 ifp->if_flags &= ~XFS_IFEXTIREC;
4333 } else if (ifp->if_real_bytes) {
4334 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4335 } else if (ifp->if_bytes) {
4336 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4337 sizeof(xfs_bmbt_rec_t));
4338 }
4339 ifp->if_u1.if_extents = NULL;
4340 ifp->if_real_bytes = 0;
4341 ifp->if_bytes = 0;
4342 }
4343
4344 /*
4345 * Return a pointer to the extent record for file system block bno.
4346 */
4347 xfs_bmbt_rec_host_t * /* pointer to found extent record */
4348 xfs_iext_bno_to_ext(
4349 xfs_ifork_t *ifp, /* inode fork pointer */
4350 xfs_fileoff_t bno, /* block number to search for */
4351 xfs_extnum_t *idxp) /* index of target extent */
4352 {
4353 xfs_bmbt_rec_host_t *base; /* pointer to first extent */
4354 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
4355 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
4356 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
4357 int high; /* upper boundary in search */
4358 xfs_extnum_t idx = 0; /* index of target extent */
4359 int low; /* lower boundary in search */
4360 xfs_extnum_t nextents; /* number of file extents */
4361 xfs_fileoff_t startoff = 0; /* start offset of extent */
4362
4363 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4364 if (nextents == 0) {
4365 *idxp = 0;
4366 return NULL;
4367 }
4368 low = 0;
4369 if (ifp->if_flags & XFS_IFEXTIREC) {
4370 /* Find target extent list */
4371 int erp_idx = 0;
4372 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
4373 base = erp->er_extbuf;
4374 high = erp->er_extcount - 1;
4375 } else {
4376 base = ifp->if_u1.if_extents;
4377 high = nextents - 1;
4378 }
4379 /* Binary search extent records */
4380 while (low <= high) {
4381 idx = (low + high) >> 1;
4382 ep = base + idx;
4383 startoff = xfs_bmbt_get_startoff(ep);
4384 blockcount = xfs_bmbt_get_blockcount(ep);
4385 if (bno < startoff) {
4386 high = idx - 1;
4387 } else if (bno >= startoff + blockcount) {
4388 low = idx + 1;
4389 } else {
4390 /* Convert back to file-based extent index */
4391 if (ifp->if_flags & XFS_IFEXTIREC) {
4392 idx += erp->er_extoff;
4393 }
4394 *idxp = idx;
4395 return ep;
4396 }
4397 }
4398 /* Convert back to file-based extent index */
4399 if (ifp->if_flags & XFS_IFEXTIREC) {
4400 idx += erp->er_extoff;
4401 }
4402 if (bno >= startoff + blockcount) {
4403 if (++idx == nextents) {
4404 ep = NULL;
4405 } else {
4406 ep = xfs_iext_get_ext(ifp, idx);
4407 }
4408 }
4409 *idxp = idx;
4410 return ep;
4411 }
4412
4413 /*
4414 * Return a pointer to the indirection array entry containing the
4415 * extent record for filesystem block bno. Store the index of the
4416 * target irec in *erp_idxp.
4417 */
4418 xfs_ext_irec_t * /* pointer to found extent record */
4419 xfs_iext_bno_to_irec(
4420 xfs_ifork_t *ifp, /* inode fork pointer */
4421 xfs_fileoff_t bno, /* block number to search for */
4422 int *erp_idxp) /* irec index of target ext list */
4423 {
4424 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
4425 xfs_ext_irec_t *erp_next; /* next indirection array entry */
4426 int erp_idx; /* indirection array index */
4427 int nlists; /* number of extent irec's (lists) */
4428 int high; /* binary search upper limit */
4429 int low; /* binary search lower limit */
4430
4431 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4432 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4433 erp_idx = 0;
4434 low = 0;
4435 high = nlists - 1;
4436 while (low <= high) {
4437 erp_idx = (low + high) >> 1;
4438 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4439 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
4440 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
4441 high = erp_idx - 1;
4442 } else if (erp_next && bno >=
4443 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
4444 low = erp_idx + 1;
4445 } else {
4446 break;
4447 }
4448 }
4449 *erp_idxp = erp_idx;
4450 return erp;
4451 }
4452
4453 /*
4454 * Return a pointer to the indirection array entry containing the
4455 * extent record at file extent index *idxp. Store the index of the
4456 * target irec in *erp_idxp and store the page index of the target
4457 * extent record in *idxp.
4458 */
4459 xfs_ext_irec_t *
4460 xfs_iext_idx_to_irec(
4461 xfs_ifork_t *ifp, /* inode fork pointer */
4462 xfs_extnum_t *idxp, /* extent index (file -> page) */
4463 int *erp_idxp, /* pointer to target irec */
4464 int realloc) /* new bytes were just added */
4465 {
4466 xfs_ext_irec_t *prev; /* pointer to previous irec */
4467 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
4468 int erp_idx; /* indirection array index */
4469 int nlists; /* number of irec's (ex lists) */
4470 int high; /* binary search upper limit */
4471 int low; /* binary search lower limit */
4472 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
4473
4474 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4475 ASSERT(page_idx >= 0 && page_idx <=
4476 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
4477 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4478 erp_idx = 0;
4479 low = 0;
4480 high = nlists - 1;
4481
4482 /* Binary search extent irec's */
4483 while (low <= high) {
4484 erp_idx = (low + high) >> 1;
4485 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4486 prev = erp_idx > 0 ? erp - 1 : NULL;
4487 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
4488 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
4489 high = erp_idx - 1;
4490 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
4491 (page_idx == erp->er_extoff + erp->er_extcount &&
4492 !realloc)) {
4493 low = erp_idx + 1;
4494 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
4495 erp->er_extcount == XFS_LINEAR_EXTS) {
4496 ASSERT(realloc);
4497 page_idx = 0;
4498 erp_idx++;
4499 erp = erp_idx < nlists ? erp + 1 : NULL;
4500 break;
4501 } else {
4502 page_idx -= erp->er_extoff;
4503 break;
4504 }
4505 }
4506 *idxp = page_idx;
4507 *erp_idxp = erp_idx;
4508 return(erp);
4509 }
4510
4511 /*
4512 * Allocate and initialize an indirection array once the space needed
4513 * for incore extents increases above XFS_IEXT_BUFSZ.
4514 */
4515 void
4516 xfs_iext_irec_init(
4517 xfs_ifork_t *ifp) /* inode fork pointer */
4518 {
4519 xfs_ext_irec_t *erp; /* indirection array pointer */
4520 xfs_extnum_t nextents; /* number of extents in file */
4521
4522 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4523 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4524 ASSERT(nextents <= XFS_LINEAR_EXTS);
4525
4526 erp = (xfs_ext_irec_t *)
4527 kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);
4528
4529 if (nextents == 0) {
4530 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4531 } else if (!ifp->if_real_bytes) {
4532 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
4533 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
4534 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
4535 }
4536 erp->er_extbuf = ifp->if_u1.if_extents;
4537 erp->er_extcount = nextents;
4538 erp->er_extoff = 0;
4539
4540 ifp->if_flags |= XFS_IFEXTIREC;
4541 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
4542 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
4543 ifp->if_u1.if_ext_irec = erp;
4544
4545 return;
4546 }
4547
4548 /*
4549 * Allocate and initialize a new entry in the indirection array.
4550 */
4551 xfs_ext_irec_t *
4552 xfs_iext_irec_new(
4553 xfs_ifork_t *ifp, /* inode fork pointer */
4554 int erp_idx) /* index for new irec */
4555 {
4556 xfs_ext_irec_t *erp; /* indirection array pointer */
4557 int i; /* loop counter */
4558 int nlists; /* number of irec's (ex lists) */
4559
4560 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4561 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4562
4563 /* Resize indirection array */
4564 xfs_iext_realloc_indirect(ifp, ++nlists *
4565 sizeof(xfs_ext_irec_t));
4566 /*
4567 * Move records down in the array so the
4568 * new page can use erp_idx.
4569 */
4570 erp = ifp->if_u1.if_ext_irec;
4571 for (i = nlists - 1; i > erp_idx; i--) {
4572 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4573 }
4574 ASSERT(i == erp_idx);
4575
4576 /* Initialize new extent record */
4577 erp = ifp->if_u1.if_ext_irec;
4578 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4579 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4580 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4581 erp[erp_idx].er_extcount = 0;
4582 erp[erp_idx].er_extoff = erp_idx > 0 ?
4583 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4584 return (&erp[erp_idx]);
4585 }
4586
4587 /*
4588 * Remove a record from the indirection array.
4589 */
4590 void
4591 xfs_iext_irec_remove(
4592 xfs_ifork_t *ifp, /* inode fork pointer */
4593 int erp_idx) /* irec index to remove */
4594 {
4595 xfs_ext_irec_t *erp; /* indirection array pointer */
4596 int i; /* loop counter */
4597 int nlists; /* number of irec's (ex lists) */
4598
4599 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4600 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4601 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4602 if (erp->er_extbuf) {
4603 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4604 -erp->er_extcount);
4605 kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ);
4606 }
4607 /* Compact extent records */
4608 erp = ifp->if_u1.if_ext_irec;
4609 for (i = erp_idx; i < nlists - 1; i++) {
4610 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4611 }
4612 /*
4613 * Manually free the last extent record from the indirection
4614 * array. A call to xfs_iext_realloc_indirect() with a size
4615 * of zero would result in a call to xfs_iext_destroy() which
4616 * would in turn call this function again, creating a nasty
4617 * infinite loop.
4618 */
4619 if (--nlists) {
4620 xfs_iext_realloc_indirect(ifp,
4621 nlists * sizeof(xfs_ext_irec_t));
4622 } else {
4623 kmem_free(ifp->if_u1.if_ext_irec,
4624 sizeof(xfs_ext_irec_t));
4625 }
4626 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4627 }
4628
4629 /*
4630 * This is called to clean up large amounts of unused memory allocated
4631 * by the indirection array. Before compacting anything though, verify
4632 * that the indirection array is still needed and switch back to the
4633 * linear extent list (or even the inline buffer) if possible. The
4634 * compaction policy is as follows:
4635 *
4636 * Full Compaction: Extents fit into a single page (or inline buffer)
4637 * Full Compaction: Extents occupy less than 10% of allocated space
4638 * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
4639 * No Compaction: Extents occupy at least 50% of allocated space
4640 */
4641 void
4642 xfs_iext_irec_compact(
4643 xfs_ifork_t *ifp) /* inode fork pointer */
4644 {
4645 xfs_extnum_t nextents; /* number of extents in file */
4646 int nlists; /* number of irec's (ex lists) */
4647
4648 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4649 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4650 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4651
4652 if (nextents == 0) {
4653 xfs_iext_destroy(ifp);
4654 } else if (nextents <= XFS_INLINE_EXTS) {
4655 xfs_iext_indirect_to_direct(ifp);
4656 xfs_iext_direct_to_inline(ifp, nextents);
4657 } else if (nextents <= XFS_LINEAR_EXTS) {
4658 xfs_iext_indirect_to_direct(ifp);
4659 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
4660 xfs_iext_irec_compact_full(ifp);
4661 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4662 xfs_iext_irec_compact_pages(ifp);
4663 }
4664 }
4665
4666 /*
4667 * Combine extents from neighboring extent pages.
4668 */
4669 void
4670 xfs_iext_irec_compact_pages(
4671 xfs_ifork_t *ifp) /* inode fork pointer */
4672 {
4673 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
4674 int erp_idx = 0; /* indirection array index */
4675 int nlists; /* number of irec's (ex lists) */
4676
4677 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4678 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4679 while (erp_idx < nlists - 1) {
4680 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4681 erp_next = erp + 1;
4682 if (erp_next->er_extcount <=
4683 (XFS_LINEAR_EXTS - erp->er_extcount)) {
4684 memmove(&erp->er_extbuf[erp->er_extcount],
4685 erp_next->er_extbuf, erp_next->er_extcount *
4686 sizeof(xfs_bmbt_rec_t));
4687 erp->er_extcount += erp_next->er_extcount;
4688 /*
4689 * Free page before removing extent record
4690 * so er_extoffs don't get modified in
4691 * xfs_iext_irec_remove.
4692 */
4693 kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ);
4694 erp_next->er_extbuf = NULL;
4695 xfs_iext_irec_remove(ifp, erp_idx + 1);
4696 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4697 } else {
4698 erp_idx++;
4699 }
4700 }
4701 }
4702
4703 /*
4704 * Fully compact the extent records managed by the indirection array.
4705 */
4706 void
4707 xfs_iext_irec_compact_full(
4708 xfs_ifork_t *ifp) /* inode fork pointer */
4709 {
4710 xfs_bmbt_rec_host_t *ep, *ep_next; /* extent record pointers */
4711 xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */
4712 int erp_idx = 0; /* extent irec index */
4713 int ext_avail; /* empty entries in ex list */
4714 int ext_diff; /* number of exts to add */
4715 int nlists; /* number of irec's (ex lists) */
4716
4717 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4718 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4719 erp = ifp->if_u1.if_ext_irec;
4720 ep = &erp->er_extbuf[erp->er_extcount];
4721 erp_next = erp + 1;
4722 ep_next = erp_next->er_extbuf;
4723 while (erp_idx < nlists - 1) {
4724 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
4725 ext_diff = MIN(ext_avail, erp_next->er_extcount);
4726 memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
4727 erp->er_extcount += ext_diff;
4728 erp_next->er_extcount -= ext_diff;
4729 /* Remove next page */
4730 if (erp_next->er_extcount == 0) {
4731 /*
4732 * Free page before removing extent record
4733 * so er_extoffs don't get modified in
4734 * xfs_iext_irec_remove.
4735 */
4736 kmem_free(erp_next->er_extbuf,
4737 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4738 erp_next->er_extbuf = NULL;
4739 xfs_iext_irec_remove(ifp, erp_idx + 1);
4740 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4741 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4742 /* Update next page */
4743 } else {
4744 /* Move rest of page up to become next new page */
4745 memmove(erp_next->er_extbuf, ep_next,
4746 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4747 ep_next = erp_next->er_extbuf;
4748 memset(&ep_next[erp_next->er_extcount], 0,
4749 (XFS_LINEAR_EXTS - erp_next->er_extcount) *
4750 sizeof(xfs_bmbt_rec_t));
4751 }
4752 if (erp->er_extcount == XFS_LINEAR_EXTS) {
4753 erp_idx++;
4754 if (erp_idx < nlists)
4755 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4756 else
4757 break;
4758 }
4759 ep = &erp->er_extbuf[erp->er_extcount];
4760 erp_next = erp + 1;
4761 ep_next = erp_next->er_extbuf;
4762 }
4763 }
4764
4765 /*
4766 * This is called to update the er_extoff field in the indirection
4767 * array when extents have been added or removed from one of the
4768 * extent lists. erp_idx contains the irec index to begin updating
4769 * at and ext_diff contains the number of extents that were added
4770 * or removed.
4771 */
4772 void
4773 xfs_iext_irec_update_extoffs(
4774 xfs_ifork_t *ifp, /* inode fork pointer */
4775 int erp_idx, /* irec index to update */
4776 int ext_diff) /* number of new extents */
4777 {
4778 int i; /* loop counter */
4779 int nlists; /* number of irec's (ex lists */
4780
4781 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4782 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4783 for (i = erp_idx; i < nlists; i++) {
4784 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
4785 }
4786 }
This page took 0.150438 seconds and 5 git commands to generate.