[XFS] sanitize xfs_initialize_vnode
[deliverable/linux.git] / fs / xfs / xfs_inode.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include <linux/log2.h>
19
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_types.h"
23 #include "xfs_bit.h"
24 #include "xfs_log.h"
25 #include "xfs_inum.h"
26 #include "xfs_imap.h"
27 #include "xfs_trans.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_sb.h"
30 #include "xfs_ag.h"
31 #include "xfs_dir2.h"
32 #include "xfs_dmapi.h"
33 #include "xfs_mount.h"
34 #include "xfs_bmap_btree.h"
35 #include "xfs_alloc_btree.h"
36 #include "xfs_ialloc_btree.h"
37 #include "xfs_dir2_sf.h"
38 #include "xfs_attr_sf.h"
39 #include "xfs_dinode.h"
40 #include "xfs_inode.h"
41 #include "xfs_buf_item.h"
42 #include "xfs_inode_item.h"
43 #include "xfs_btree.h"
44 #include "xfs_alloc.h"
45 #include "xfs_ialloc.h"
46 #include "xfs_bmap.h"
47 #include "xfs_rw.h"
48 #include "xfs_error.h"
49 #include "xfs_utils.h"
50 #include "xfs_dir2_trace.h"
51 #include "xfs_quota.h"
52 #include "xfs_acl.h"
53 #include "xfs_filestream.h"
54 #include "xfs_vnodeops.h"
55
56 kmem_zone_t *xfs_ifork_zone;
57 kmem_zone_t *xfs_inode_zone;
58
59 /*
60 * Used in xfs_itruncate(). This is the maximum number of extents
61 * freed from a file in a single transaction.
62 */
63 #define XFS_ITRUNC_MAX_EXTENTS 2
64
65 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
66 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
67 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
68 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
69
70 #ifdef DEBUG
71 /*
72 * Make sure that the extents in the given memory buffer
73 * are valid.
74 */
75 STATIC void
76 xfs_validate_extents(
77 xfs_ifork_t *ifp,
78 int nrecs,
79 xfs_exntfmt_t fmt)
80 {
81 xfs_bmbt_irec_t irec;
82 xfs_bmbt_rec_host_t rec;
83 int i;
84
85 for (i = 0; i < nrecs; i++) {
86 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
87 rec.l0 = get_unaligned(&ep->l0);
88 rec.l1 = get_unaligned(&ep->l1);
89 xfs_bmbt_get_all(&rec, &irec);
90 if (fmt == XFS_EXTFMT_NOSTATE)
91 ASSERT(irec.br_state == XFS_EXT_NORM);
92 }
93 }
94 #else /* DEBUG */
95 #define xfs_validate_extents(ifp, nrecs, fmt)
96 #endif /* DEBUG */
97
98 /*
99 * Check that none of the inode's in the buffer have a next
100 * unlinked field of 0.
101 */
102 #if defined(DEBUG)
103 void
104 xfs_inobp_check(
105 xfs_mount_t *mp,
106 xfs_buf_t *bp)
107 {
108 int i;
109 int j;
110 xfs_dinode_t *dip;
111
112 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
113
114 for (i = 0; i < j; i++) {
115 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
116 i * mp->m_sb.sb_inodesize);
117 if (!dip->di_next_unlinked) {
118 xfs_fs_cmn_err(CE_ALERT, mp,
119 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
120 bp);
121 ASSERT(dip->di_next_unlinked);
122 }
123 }
124 }
125 #endif
126
127 /*
128 * Find the buffer associated with the given inode map
129 * We do basic validation checks on the buffer once it has been
130 * retrieved from disk.
131 */
132 STATIC int
133 xfs_imap_to_bp(
134 xfs_mount_t *mp,
135 xfs_trans_t *tp,
136 xfs_imap_t *imap,
137 xfs_buf_t **bpp,
138 uint buf_flags,
139 uint imap_flags)
140 {
141 int error;
142 int i;
143 int ni;
144 xfs_buf_t *bp;
145
146 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
147 (int)imap->im_len, buf_flags, &bp);
148 if (error) {
149 if (error != EAGAIN) {
150 cmn_err(CE_WARN,
151 "xfs_imap_to_bp: xfs_trans_read_buf()returned "
152 "an error %d on %s. Returning error.",
153 error, mp->m_fsname);
154 } else {
155 ASSERT(buf_flags & XFS_BUF_TRYLOCK);
156 }
157 return error;
158 }
159
160 /*
161 * Validate the magic number and version of every inode in the buffer
162 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
163 */
164 #ifdef DEBUG
165 ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
166 #else /* usual case */
167 ni = 1;
168 #endif
169
170 for (i = 0; i < ni; i++) {
171 int di_ok;
172 xfs_dinode_t *dip;
173
174 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
175 (i << mp->m_sb.sb_inodelog));
176 di_ok = be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC &&
177 XFS_DINODE_GOOD_VERSION(dip->di_core.di_version);
178 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
179 XFS_ERRTAG_ITOBP_INOTOBP,
180 XFS_RANDOM_ITOBP_INOTOBP))) {
181 if (imap_flags & XFS_IMAP_BULKSTAT) {
182 xfs_trans_brelse(tp, bp);
183 return XFS_ERROR(EINVAL);
184 }
185 XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
186 XFS_ERRLEVEL_HIGH, mp, dip);
187 #ifdef DEBUG
188 cmn_err(CE_PANIC,
189 "Device %s - bad inode magic/vsn "
190 "daddr %lld #%d (magic=%x)",
191 XFS_BUFTARG_NAME(mp->m_ddev_targp),
192 (unsigned long long)imap->im_blkno, i,
193 be16_to_cpu(dip->di_core.di_magic));
194 #endif
195 xfs_trans_brelse(tp, bp);
196 return XFS_ERROR(EFSCORRUPTED);
197 }
198 }
199
200 xfs_inobp_check(mp, bp);
201
202 /*
203 * Mark the buffer as an inode buffer now that it looks good
204 */
205 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
206
207 *bpp = bp;
208 return 0;
209 }
210
211 /*
212 * This routine is called to map an inode number within a file
213 * system to the buffer containing the on-disk version of the
214 * inode. It returns a pointer to the buffer containing the
215 * on-disk inode in the bpp parameter, and in the dip parameter
216 * it returns a pointer to the on-disk inode within that buffer.
217 *
218 * If a non-zero error is returned, then the contents of bpp and
219 * dipp are undefined.
220 *
221 * Use xfs_imap() to determine the size and location of the
222 * buffer to read from disk.
223 */
224 STATIC int
225 xfs_inotobp(
226 xfs_mount_t *mp,
227 xfs_trans_t *tp,
228 xfs_ino_t ino,
229 xfs_dinode_t **dipp,
230 xfs_buf_t **bpp,
231 int *offset)
232 {
233 xfs_imap_t imap;
234 xfs_buf_t *bp;
235 int error;
236
237 imap.im_blkno = 0;
238 error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
239 if (error)
240 return error;
241
242 error = xfs_imap_to_bp(mp, tp, &imap, &bp, XFS_BUF_LOCK, 0);
243 if (error)
244 return error;
245
246 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
247 *bpp = bp;
248 *offset = imap.im_boffset;
249 return 0;
250 }
251
252
253 /*
254 * This routine is called to map an inode to the buffer containing
255 * the on-disk version of the inode. It returns a pointer to the
256 * buffer containing the on-disk inode in the bpp parameter, and in
257 * the dip parameter it returns a pointer to the on-disk inode within
258 * that buffer.
259 *
260 * If a non-zero error is returned, then the contents of bpp and
261 * dipp are undefined.
262 *
263 * If the inode is new and has not yet been initialized, use xfs_imap()
264 * to determine the size and location of the buffer to read from disk.
265 * If the inode has already been mapped to its buffer and read in once,
266 * then use the mapping information stored in the inode rather than
267 * calling xfs_imap(). This allows us to avoid the overhead of looking
268 * at the inode btree for small block file systems (see xfs_dilocate()).
269 * We can tell whether the inode has been mapped in before by comparing
270 * its disk block address to 0. Only uninitialized inodes will have
271 * 0 for the disk block address.
272 */
273 int
274 xfs_itobp(
275 xfs_mount_t *mp,
276 xfs_trans_t *tp,
277 xfs_inode_t *ip,
278 xfs_dinode_t **dipp,
279 xfs_buf_t **bpp,
280 xfs_daddr_t bno,
281 uint imap_flags,
282 uint buf_flags)
283 {
284 xfs_imap_t imap;
285 xfs_buf_t *bp;
286 int error;
287
288 if (ip->i_blkno == (xfs_daddr_t)0) {
289 imap.im_blkno = bno;
290 error = xfs_imap(mp, tp, ip->i_ino, &imap,
291 XFS_IMAP_LOOKUP | imap_flags);
292 if (error)
293 return error;
294
295 /*
296 * Fill in the fields in the inode that will be used to
297 * map the inode to its buffer from now on.
298 */
299 ip->i_blkno = imap.im_blkno;
300 ip->i_len = imap.im_len;
301 ip->i_boffset = imap.im_boffset;
302 } else {
303 /*
304 * We've already mapped the inode once, so just use the
305 * mapping that we saved the first time.
306 */
307 imap.im_blkno = ip->i_blkno;
308 imap.im_len = ip->i_len;
309 imap.im_boffset = ip->i_boffset;
310 }
311 ASSERT(bno == 0 || bno == imap.im_blkno);
312
313 error = xfs_imap_to_bp(mp, tp, &imap, &bp, buf_flags, imap_flags);
314 if (error)
315 return error;
316
317 if (!bp) {
318 ASSERT(buf_flags & XFS_BUF_TRYLOCK);
319 ASSERT(tp == NULL);
320 *bpp = NULL;
321 return EAGAIN;
322 }
323
324 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
325 *bpp = bp;
326 return 0;
327 }
328
329 /*
330 * Move inode type and inode format specific information from the
331 * on-disk inode to the in-core inode. For fifos, devs, and sockets
332 * this means set if_rdev to the proper value. For files, directories,
333 * and symlinks this means to bring in the in-line data or extent
334 * pointers. For a file in B-tree format, only the root is immediately
335 * brought in-core. The rest will be in-lined in if_extents when it
336 * is first referenced (see xfs_iread_extents()).
337 */
338 STATIC int
339 xfs_iformat(
340 xfs_inode_t *ip,
341 xfs_dinode_t *dip)
342 {
343 xfs_attr_shortform_t *atp;
344 int size;
345 int error;
346 xfs_fsize_t di_size;
347 ip->i_df.if_ext_max =
348 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
349 error = 0;
350
351 if (unlikely(be32_to_cpu(dip->di_core.di_nextents) +
352 be16_to_cpu(dip->di_core.di_anextents) >
353 be64_to_cpu(dip->di_core.di_nblocks))) {
354 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
355 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
356 (unsigned long long)ip->i_ino,
357 (int)(be32_to_cpu(dip->di_core.di_nextents) +
358 be16_to_cpu(dip->di_core.di_anextents)),
359 (unsigned long long)
360 be64_to_cpu(dip->di_core.di_nblocks));
361 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
362 ip->i_mount, dip);
363 return XFS_ERROR(EFSCORRUPTED);
364 }
365
366 if (unlikely(dip->di_core.di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
367 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
368 "corrupt dinode %Lu, forkoff = 0x%x.",
369 (unsigned long long)ip->i_ino,
370 dip->di_core.di_forkoff);
371 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
372 ip->i_mount, dip);
373 return XFS_ERROR(EFSCORRUPTED);
374 }
375
376 switch (ip->i_d.di_mode & S_IFMT) {
377 case S_IFIFO:
378 case S_IFCHR:
379 case S_IFBLK:
380 case S_IFSOCK:
381 if (unlikely(dip->di_core.di_format != XFS_DINODE_FMT_DEV)) {
382 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
383 ip->i_mount, dip);
384 return XFS_ERROR(EFSCORRUPTED);
385 }
386 ip->i_d.di_size = 0;
387 ip->i_size = 0;
388 ip->i_df.if_u2.if_rdev = be32_to_cpu(dip->di_u.di_dev);
389 break;
390
391 case S_IFREG:
392 case S_IFLNK:
393 case S_IFDIR:
394 switch (dip->di_core.di_format) {
395 case XFS_DINODE_FMT_LOCAL:
396 /*
397 * no local regular files yet
398 */
399 if (unlikely((be16_to_cpu(dip->di_core.di_mode) & S_IFMT) == S_IFREG)) {
400 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
401 "corrupt inode %Lu "
402 "(local format for regular file).",
403 (unsigned long long) ip->i_ino);
404 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
405 XFS_ERRLEVEL_LOW,
406 ip->i_mount, dip);
407 return XFS_ERROR(EFSCORRUPTED);
408 }
409
410 di_size = be64_to_cpu(dip->di_core.di_size);
411 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
412 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
413 "corrupt inode %Lu "
414 "(bad size %Ld for local inode).",
415 (unsigned long long) ip->i_ino,
416 (long long) di_size);
417 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
418 XFS_ERRLEVEL_LOW,
419 ip->i_mount, dip);
420 return XFS_ERROR(EFSCORRUPTED);
421 }
422
423 size = (int)di_size;
424 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
425 break;
426 case XFS_DINODE_FMT_EXTENTS:
427 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
428 break;
429 case XFS_DINODE_FMT_BTREE:
430 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
431 break;
432 default:
433 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
434 ip->i_mount);
435 return XFS_ERROR(EFSCORRUPTED);
436 }
437 break;
438
439 default:
440 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
441 return XFS_ERROR(EFSCORRUPTED);
442 }
443 if (error) {
444 return error;
445 }
446 if (!XFS_DFORK_Q(dip))
447 return 0;
448 ASSERT(ip->i_afp == NULL);
449 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
450 ip->i_afp->if_ext_max =
451 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
452 switch (dip->di_core.di_aformat) {
453 case XFS_DINODE_FMT_LOCAL:
454 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
455 size = be16_to_cpu(atp->hdr.totsize);
456 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
457 break;
458 case XFS_DINODE_FMT_EXTENTS:
459 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
460 break;
461 case XFS_DINODE_FMT_BTREE:
462 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
463 break;
464 default:
465 error = XFS_ERROR(EFSCORRUPTED);
466 break;
467 }
468 if (error) {
469 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
470 ip->i_afp = NULL;
471 xfs_idestroy_fork(ip, XFS_DATA_FORK);
472 }
473 return error;
474 }
475
476 /*
477 * The file is in-lined in the on-disk inode.
478 * If it fits into if_inline_data, then copy
479 * it there, otherwise allocate a buffer for it
480 * and copy the data there. Either way, set
481 * if_data to point at the data.
482 * If we allocate a buffer for the data, make
483 * sure that its size is a multiple of 4 and
484 * record the real size in i_real_bytes.
485 */
486 STATIC int
487 xfs_iformat_local(
488 xfs_inode_t *ip,
489 xfs_dinode_t *dip,
490 int whichfork,
491 int size)
492 {
493 xfs_ifork_t *ifp;
494 int real_size;
495
496 /*
497 * If the size is unreasonable, then something
498 * is wrong and we just bail out rather than crash in
499 * kmem_alloc() or memcpy() below.
500 */
501 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
502 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
503 "corrupt inode %Lu "
504 "(bad size %d for local fork, size = %d).",
505 (unsigned long long) ip->i_ino, size,
506 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
507 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
508 ip->i_mount, dip);
509 return XFS_ERROR(EFSCORRUPTED);
510 }
511 ifp = XFS_IFORK_PTR(ip, whichfork);
512 real_size = 0;
513 if (size == 0)
514 ifp->if_u1.if_data = NULL;
515 else if (size <= sizeof(ifp->if_u2.if_inline_data))
516 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
517 else {
518 real_size = roundup(size, 4);
519 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
520 }
521 ifp->if_bytes = size;
522 ifp->if_real_bytes = real_size;
523 if (size)
524 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
525 ifp->if_flags &= ~XFS_IFEXTENTS;
526 ifp->if_flags |= XFS_IFINLINE;
527 return 0;
528 }
529
530 /*
531 * The file consists of a set of extents all
532 * of which fit into the on-disk inode.
533 * If there are few enough extents to fit into
534 * the if_inline_ext, then copy them there.
535 * Otherwise allocate a buffer for them and copy
536 * them into it. Either way, set if_extents
537 * to point at the extents.
538 */
539 STATIC int
540 xfs_iformat_extents(
541 xfs_inode_t *ip,
542 xfs_dinode_t *dip,
543 int whichfork)
544 {
545 xfs_bmbt_rec_t *dp;
546 xfs_ifork_t *ifp;
547 int nex;
548 int size;
549 int i;
550
551 ifp = XFS_IFORK_PTR(ip, whichfork);
552 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
553 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
554
555 /*
556 * If the number of extents is unreasonable, then something
557 * is wrong and we just bail out rather than crash in
558 * kmem_alloc() or memcpy() below.
559 */
560 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
561 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
562 "corrupt inode %Lu ((a)extents = %d).",
563 (unsigned long long) ip->i_ino, nex);
564 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
565 ip->i_mount, dip);
566 return XFS_ERROR(EFSCORRUPTED);
567 }
568
569 ifp->if_real_bytes = 0;
570 if (nex == 0)
571 ifp->if_u1.if_extents = NULL;
572 else if (nex <= XFS_INLINE_EXTS)
573 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
574 else
575 xfs_iext_add(ifp, 0, nex);
576
577 ifp->if_bytes = size;
578 if (size) {
579 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
580 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
581 for (i = 0; i < nex; i++, dp++) {
582 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
583 ep->l0 = be64_to_cpu(get_unaligned(&dp->l0));
584 ep->l1 = be64_to_cpu(get_unaligned(&dp->l1));
585 }
586 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
587 if (whichfork != XFS_DATA_FORK ||
588 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
589 if (unlikely(xfs_check_nostate_extents(
590 ifp, 0, nex))) {
591 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
592 XFS_ERRLEVEL_LOW,
593 ip->i_mount);
594 return XFS_ERROR(EFSCORRUPTED);
595 }
596 }
597 ifp->if_flags |= XFS_IFEXTENTS;
598 return 0;
599 }
600
601 /*
602 * The file has too many extents to fit into
603 * the inode, so they are in B-tree format.
604 * Allocate a buffer for the root of the B-tree
605 * and copy the root into it. The i_extents
606 * field will remain NULL until all of the
607 * extents are read in (when they are needed).
608 */
609 STATIC int
610 xfs_iformat_btree(
611 xfs_inode_t *ip,
612 xfs_dinode_t *dip,
613 int whichfork)
614 {
615 xfs_bmdr_block_t *dfp;
616 xfs_ifork_t *ifp;
617 /* REFERENCED */
618 int nrecs;
619 int size;
620
621 ifp = XFS_IFORK_PTR(ip, whichfork);
622 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
623 size = XFS_BMAP_BROOT_SPACE(dfp);
624 nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
625
626 /*
627 * blow out if -- fork has less extents than can fit in
628 * fork (fork shouldn't be a btree format), root btree
629 * block has more records than can fit into the fork,
630 * or the number of extents is greater than the number of
631 * blocks.
632 */
633 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
634 || XFS_BMDR_SPACE_CALC(nrecs) >
635 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
636 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
637 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
638 "corrupt inode %Lu (btree).",
639 (unsigned long long) ip->i_ino);
640 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
641 ip->i_mount);
642 return XFS_ERROR(EFSCORRUPTED);
643 }
644
645 ifp->if_broot_bytes = size;
646 ifp->if_broot = kmem_alloc(size, KM_SLEEP);
647 ASSERT(ifp->if_broot != NULL);
648 /*
649 * Copy and convert from the on-disk structure
650 * to the in-memory structure.
651 */
652 xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
653 ifp->if_broot, size);
654 ifp->if_flags &= ~XFS_IFEXTENTS;
655 ifp->if_flags |= XFS_IFBROOT;
656
657 return 0;
658 }
659
660 void
661 xfs_dinode_from_disk(
662 xfs_icdinode_t *to,
663 xfs_dinode_core_t *from)
664 {
665 to->di_magic = be16_to_cpu(from->di_magic);
666 to->di_mode = be16_to_cpu(from->di_mode);
667 to->di_version = from ->di_version;
668 to->di_format = from->di_format;
669 to->di_onlink = be16_to_cpu(from->di_onlink);
670 to->di_uid = be32_to_cpu(from->di_uid);
671 to->di_gid = be32_to_cpu(from->di_gid);
672 to->di_nlink = be32_to_cpu(from->di_nlink);
673 to->di_projid = be16_to_cpu(from->di_projid);
674 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
675 to->di_flushiter = be16_to_cpu(from->di_flushiter);
676 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
677 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
678 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
679 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
680 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
681 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
682 to->di_size = be64_to_cpu(from->di_size);
683 to->di_nblocks = be64_to_cpu(from->di_nblocks);
684 to->di_extsize = be32_to_cpu(from->di_extsize);
685 to->di_nextents = be32_to_cpu(from->di_nextents);
686 to->di_anextents = be16_to_cpu(from->di_anextents);
687 to->di_forkoff = from->di_forkoff;
688 to->di_aformat = from->di_aformat;
689 to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
690 to->di_dmstate = be16_to_cpu(from->di_dmstate);
691 to->di_flags = be16_to_cpu(from->di_flags);
692 to->di_gen = be32_to_cpu(from->di_gen);
693 }
694
695 void
696 xfs_dinode_to_disk(
697 xfs_dinode_core_t *to,
698 xfs_icdinode_t *from)
699 {
700 to->di_magic = cpu_to_be16(from->di_magic);
701 to->di_mode = cpu_to_be16(from->di_mode);
702 to->di_version = from ->di_version;
703 to->di_format = from->di_format;
704 to->di_onlink = cpu_to_be16(from->di_onlink);
705 to->di_uid = cpu_to_be32(from->di_uid);
706 to->di_gid = cpu_to_be32(from->di_gid);
707 to->di_nlink = cpu_to_be32(from->di_nlink);
708 to->di_projid = cpu_to_be16(from->di_projid);
709 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
710 to->di_flushiter = cpu_to_be16(from->di_flushiter);
711 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
712 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
713 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
714 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
715 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
716 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
717 to->di_size = cpu_to_be64(from->di_size);
718 to->di_nblocks = cpu_to_be64(from->di_nblocks);
719 to->di_extsize = cpu_to_be32(from->di_extsize);
720 to->di_nextents = cpu_to_be32(from->di_nextents);
721 to->di_anextents = cpu_to_be16(from->di_anextents);
722 to->di_forkoff = from->di_forkoff;
723 to->di_aformat = from->di_aformat;
724 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
725 to->di_dmstate = cpu_to_be16(from->di_dmstate);
726 to->di_flags = cpu_to_be16(from->di_flags);
727 to->di_gen = cpu_to_be32(from->di_gen);
728 }
729
730 STATIC uint
731 _xfs_dic2xflags(
732 __uint16_t di_flags)
733 {
734 uint flags = 0;
735
736 if (di_flags & XFS_DIFLAG_ANY) {
737 if (di_flags & XFS_DIFLAG_REALTIME)
738 flags |= XFS_XFLAG_REALTIME;
739 if (di_flags & XFS_DIFLAG_PREALLOC)
740 flags |= XFS_XFLAG_PREALLOC;
741 if (di_flags & XFS_DIFLAG_IMMUTABLE)
742 flags |= XFS_XFLAG_IMMUTABLE;
743 if (di_flags & XFS_DIFLAG_APPEND)
744 flags |= XFS_XFLAG_APPEND;
745 if (di_flags & XFS_DIFLAG_SYNC)
746 flags |= XFS_XFLAG_SYNC;
747 if (di_flags & XFS_DIFLAG_NOATIME)
748 flags |= XFS_XFLAG_NOATIME;
749 if (di_flags & XFS_DIFLAG_NODUMP)
750 flags |= XFS_XFLAG_NODUMP;
751 if (di_flags & XFS_DIFLAG_RTINHERIT)
752 flags |= XFS_XFLAG_RTINHERIT;
753 if (di_flags & XFS_DIFLAG_PROJINHERIT)
754 flags |= XFS_XFLAG_PROJINHERIT;
755 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
756 flags |= XFS_XFLAG_NOSYMLINKS;
757 if (di_flags & XFS_DIFLAG_EXTSIZE)
758 flags |= XFS_XFLAG_EXTSIZE;
759 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
760 flags |= XFS_XFLAG_EXTSZINHERIT;
761 if (di_flags & XFS_DIFLAG_NODEFRAG)
762 flags |= XFS_XFLAG_NODEFRAG;
763 if (di_flags & XFS_DIFLAG_FILESTREAM)
764 flags |= XFS_XFLAG_FILESTREAM;
765 }
766
767 return flags;
768 }
769
770 uint
771 xfs_ip2xflags(
772 xfs_inode_t *ip)
773 {
774 xfs_icdinode_t *dic = &ip->i_d;
775
776 return _xfs_dic2xflags(dic->di_flags) |
777 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
778 }
779
780 uint
781 xfs_dic2xflags(
782 xfs_dinode_t *dip)
783 {
784 xfs_dinode_core_t *dic = &dip->di_core;
785
786 return _xfs_dic2xflags(be16_to_cpu(dic->di_flags)) |
787 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
788 }
789
790 /*
791 * Given a mount structure and an inode number, return a pointer
792 * to a newly allocated in-core inode corresponding to the given
793 * inode number.
794 *
795 * Initialize the inode's attributes and extent pointers if it
796 * already has them (it will not if the inode has no links).
797 */
798 int
799 xfs_iread(
800 xfs_mount_t *mp,
801 xfs_trans_t *tp,
802 xfs_ino_t ino,
803 xfs_inode_t **ipp,
804 xfs_daddr_t bno,
805 uint imap_flags)
806 {
807 xfs_buf_t *bp;
808 xfs_dinode_t *dip;
809 xfs_inode_t *ip;
810 int error;
811
812 ASSERT(xfs_inode_zone != NULL);
813
814 ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
815 ip->i_ino = ino;
816 ip->i_mount = mp;
817 atomic_set(&ip->i_iocount, 0);
818 spin_lock_init(&ip->i_flags_lock);
819
820 /*
821 * Get pointer's to the on-disk inode and the buffer containing it.
822 * If the inode number refers to a block outside the file system
823 * then xfs_itobp() will return NULL. In this case we should
824 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
825 * know that this is a new incore inode.
826 */
827 error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags, XFS_BUF_LOCK);
828 if (error) {
829 kmem_zone_free(xfs_inode_zone, ip);
830 return error;
831 }
832
833 /*
834 * Initialize inode's trace buffers.
835 * Do this before xfs_iformat in case it adds entries.
836 */
837 #ifdef XFS_INODE_TRACE
838 ip->i_trace = ktrace_alloc(INODE_TRACE_SIZE, KM_SLEEP);
839 #endif
840 #ifdef XFS_BMAP_TRACE
841 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
842 #endif
843 #ifdef XFS_BMBT_TRACE
844 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
845 #endif
846 #ifdef XFS_RW_TRACE
847 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
848 #endif
849 #ifdef XFS_ILOCK_TRACE
850 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
851 #endif
852 #ifdef XFS_DIR2_TRACE
853 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
854 #endif
855
856 /*
857 * If we got something that isn't an inode it means someone
858 * (nfs or dmi) has a stale handle.
859 */
860 if (be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC) {
861 kmem_zone_free(xfs_inode_zone, ip);
862 xfs_trans_brelse(tp, bp);
863 #ifdef DEBUG
864 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
865 "dip->di_core.di_magic (0x%x) != "
866 "XFS_DINODE_MAGIC (0x%x)",
867 be16_to_cpu(dip->di_core.di_magic),
868 XFS_DINODE_MAGIC);
869 #endif /* DEBUG */
870 return XFS_ERROR(EINVAL);
871 }
872
873 /*
874 * If the on-disk inode is already linked to a directory
875 * entry, copy all of the inode into the in-core inode.
876 * xfs_iformat() handles copying in the inode format
877 * specific information.
878 * Otherwise, just get the truly permanent information.
879 */
880 if (dip->di_core.di_mode) {
881 xfs_dinode_from_disk(&ip->i_d, &dip->di_core);
882 error = xfs_iformat(ip, dip);
883 if (error) {
884 kmem_zone_free(xfs_inode_zone, ip);
885 xfs_trans_brelse(tp, bp);
886 #ifdef DEBUG
887 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
888 "xfs_iformat() returned error %d",
889 error);
890 #endif /* DEBUG */
891 return error;
892 }
893 } else {
894 ip->i_d.di_magic = be16_to_cpu(dip->di_core.di_magic);
895 ip->i_d.di_version = dip->di_core.di_version;
896 ip->i_d.di_gen = be32_to_cpu(dip->di_core.di_gen);
897 ip->i_d.di_flushiter = be16_to_cpu(dip->di_core.di_flushiter);
898 /*
899 * Make sure to pull in the mode here as well in
900 * case the inode is released without being used.
901 * This ensures that xfs_inactive() will see that
902 * the inode is already free and not try to mess
903 * with the uninitialized part of it.
904 */
905 ip->i_d.di_mode = 0;
906 /*
907 * Initialize the per-fork minima and maxima for a new
908 * inode here. xfs_iformat will do it for old inodes.
909 */
910 ip->i_df.if_ext_max =
911 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
912 }
913
914 INIT_LIST_HEAD(&ip->i_reclaim);
915
916 /*
917 * The inode format changed when we moved the link count and
918 * made it 32 bits long. If this is an old format inode,
919 * convert it in memory to look like a new one. If it gets
920 * flushed to disk we will convert back before flushing or
921 * logging it. We zero out the new projid field and the old link
922 * count field. We'll handle clearing the pad field (the remains
923 * of the old uuid field) when we actually convert the inode to
924 * the new format. We don't change the version number so that we
925 * can distinguish this from a real new format inode.
926 */
927 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
928 ip->i_d.di_nlink = ip->i_d.di_onlink;
929 ip->i_d.di_onlink = 0;
930 ip->i_d.di_projid = 0;
931 }
932
933 ip->i_delayed_blks = 0;
934 ip->i_size = ip->i_d.di_size;
935
936 /*
937 * Mark the buffer containing the inode as something to keep
938 * around for a while. This helps to keep recently accessed
939 * meta-data in-core longer.
940 */
941 XFS_BUF_SET_REF(bp, XFS_INO_REF);
942
943 /*
944 * Use xfs_trans_brelse() to release the buffer containing the
945 * on-disk inode, because it was acquired with xfs_trans_read_buf()
946 * in xfs_itobp() above. If tp is NULL, this is just a normal
947 * brelse(). If we're within a transaction, then xfs_trans_brelse()
948 * will only release the buffer if it is not dirty within the
949 * transaction. It will be OK to release the buffer in this case,
950 * because inodes on disk are never destroyed and we will be
951 * locking the new in-core inode before putting it in the hash
952 * table where other processes can find it. Thus we don't have
953 * to worry about the inode being changed just because we released
954 * the buffer.
955 */
956 xfs_trans_brelse(tp, bp);
957 *ipp = ip;
958 return 0;
959 }
960
961 /*
962 * Read in extents from a btree-format inode.
963 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
964 */
965 int
966 xfs_iread_extents(
967 xfs_trans_t *tp,
968 xfs_inode_t *ip,
969 int whichfork)
970 {
971 int error;
972 xfs_ifork_t *ifp;
973 xfs_extnum_t nextents;
974 size_t size;
975
976 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
977 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
978 ip->i_mount);
979 return XFS_ERROR(EFSCORRUPTED);
980 }
981 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
982 size = nextents * sizeof(xfs_bmbt_rec_t);
983 ifp = XFS_IFORK_PTR(ip, whichfork);
984
985 /*
986 * We know that the size is valid (it's checked in iformat_btree)
987 */
988 ifp->if_lastex = NULLEXTNUM;
989 ifp->if_bytes = ifp->if_real_bytes = 0;
990 ifp->if_flags |= XFS_IFEXTENTS;
991 xfs_iext_add(ifp, 0, nextents);
992 error = xfs_bmap_read_extents(tp, ip, whichfork);
993 if (error) {
994 xfs_iext_destroy(ifp);
995 ifp->if_flags &= ~XFS_IFEXTENTS;
996 return error;
997 }
998 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
999 return 0;
1000 }
1001
1002 /*
1003 * Allocate an inode on disk and return a copy of its in-core version.
1004 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1005 * appropriately within the inode. The uid and gid for the inode are
1006 * set according to the contents of the given cred structure.
1007 *
1008 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1009 * has a free inode available, call xfs_iget()
1010 * to obtain the in-core version of the allocated inode. Finally,
1011 * fill in the inode and log its initial contents. In this case,
1012 * ialloc_context would be set to NULL and call_again set to false.
1013 *
1014 * If xfs_dialloc() does not have an available inode,
1015 * it will replenish its supply by doing an allocation. Since we can
1016 * only do one allocation within a transaction without deadlocks, we
1017 * must commit the current transaction before returning the inode itself.
1018 * In this case, therefore, we will set call_again to true and return.
1019 * The caller should then commit the current transaction, start a new
1020 * transaction, and call xfs_ialloc() again to actually get the inode.
1021 *
1022 * To ensure that some other process does not grab the inode that
1023 * was allocated during the first call to xfs_ialloc(), this routine
1024 * also returns the [locked] bp pointing to the head of the freelist
1025 * as ialloc_context. The caller should hold this buffer across
1026 * the commit and pass it back into this routine on the second call.
1027 *
1028 * If we are allocating quota inodes, we do not have a parent inode
1029 * to attach to or associate with (i.e. pip == NULL) because they
1030 * are not linked into the directory structure - they are attached
1031 * directly to the superblock - and so have no parent.
1032 */
1033 int
1034 xfs_ialloc(
1035 xfs_trans_t *tp,
1036 xfs_inode_t *pip,
1037 mode_t mode,
1038 xfs_nlink_t nlink,
1039 xfs_dev_t rdev,
1040 cred_t *cr,
1041 xfs_prid_t prid,
1042 int okalloc,
1043 xfs_buf_t **ialloc_context,
1044 boolean_t *call_again,
1045 xfs_inode_t **ipp)
1046 {
1047 xfs_ino_t ino;
1048 xfs_inode_t *ip;
1049 uint flags;
1050 int error;
1051
1052 /*
1053 * Call the space management code to pick
1054 * the on-disk inode to be allocated.
1055 */
1056 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1057 ialloc_context, call_again, &ino);
1058 if (error != 0) {
1059 return error;
1060 }
1061 if (*call_again || ino == NULLFSINO) {
1062 *ipp = NULL;
1063 return 0;
1064 }
1065 ASSERT(*ialloc_context == NULL);
1066
1067 /*
1068 * Get the in-core inode with the lock held exclusively.
1069 * This is because we're setting fields here we need
1070 * to prevent others from looking at until we're done.
1071 */
1072 error = xfs_trans_iget(tp->t_mountp, tp, ino,
1073 XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1074 if (error != 0) {
1075 return error;
1076 }
1077 ASSERT(ip != NULL);
1078
1079 ip->i_d.di_mode = (__uint16_t)mode;
1080 ip->i_d.di_onlink = 0;
1081 ip->i_d.di_nlink = nlink;
1082 ASSERT(ip->i_d.di_nlink == nlink);
1083 ip->i_d.di_uid = current_fsuid(cr);
1084 ip->i_d.di_gid = current_fsgid(cr);
1085 ip->i_d.di_projid = prid;
1086 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1087
1088 /*
1089 * If the superblock version is up to where we support new format
1090 * inodes and this is currently an old format inode, then change
1091 * the inode version number now. This way we only do the conversion
1092 * here rather than here and in the flush/logging code.
1093 */
1094 if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
1095 ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1096 ip->i_d.di_version = XFS_DINODE_VERSION_2;
1097 /*
1098 * We've already zeroed the old link count, the projid field,
1099 * and the pad field.
1100 */
1101 }
1102
1103 /*
1104 * Project ids won't be stored on disk if we are using a version 1 inode.
1105 */
1106 if ((prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
1107 xfs_bump_ino_vers2(tp, ip);
1108
1109 if (pip && XFS_INHERIT_GID(pip)) {
1110 ip->i_d.di_gid = pip->i_d.di_gid;
1111 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1112 ip->i_d.di_mode |= S_ISGID;
1113 }
1114 }
1115
1116 /*
1117 * If the group ID of the new file does not match the effective group
1118 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1119 * (and only if the irix_sgid_inherit compatibility variable is set).
1120 */
1121 if ((irix_sgid_inherit) &&
1122 (ip->i_d.di_mode & S_ISGID) &&
1123 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1124 ip->i_d.di_mode &= ~S_ISGID;
1125 }
1126
1127 ip->i_d.di_size = 0;
1128 ip->i_size = 0;
1129 ip->i_d.di_nextents = 0;
1130 ASSERT(ip->i_d.di_nblocks == 0);
1131 xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
1132 /*
1133 * di_gen will have been taken care of in xfs_iread.
1134 */
1135 ip->i_d.di_extsize = 0;
1136 ip->i_d.di_dmevmask = 0;
1137 ip->i_d.di_dmstate = 0;
1138 ip->i_d.di_flags = 0;
1139 flags = XFS_ILOG_CORE;
1140 switch (mode & S_IFMT) {
1141 case S_IFIFO:
1142 case S_IFCHR:
1143 case S_IFBLK:
1144 case S_IFSOCK:
1145 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1146 ip->i_df.if_u2.if_rdev = rdev;
1147 ip->i_df.if_flags = 0;
1148 flags |= XFS_ILOG_DEV;
1149 break;
1150 case S_IFREG:
1151 if (pip && xfs_inode_is_filestream(pip)) {
1152 error = xfs_filestream_associate(pip, ip);
1153 if (error < 0)
1154 return -error;
1155 if (!error)
1156 xfs_iflags_set(ip, XFS_IFILESTREAM);
1157 }
1158 /* fall through */
1159 case S_IFDIR:
1160 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1161 uint di_flags = 0;
1162
1163 if ((mode & S_IFMT) == S_IFDIR) {
1164 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1165 di_flags |= XFS_DIFLAG_RTINHERIT;
1166 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1167 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1168 ip->i_d.di_extsize = pip->i_d.di_extsize;
1169 }
1170 } else if ((mode & S_IFMT) == S_IFREG) {
1171 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1172 di_flags |= XFS_DIFLAG_REALTIME;
1173 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1174 di_flags |= XFS_DIFLAG_EXTSIZE;
1175 ip->i_d.di_extsize = pip->i_d.di_extsize;
1176 }
1177 }
1178 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1179 xfs_inherit_noatime)
1180 di_flags |= XFS_DIFLAG_NOATIME;
1181 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1182 xfs_inherit_nodump)
1183 di_flags |= XFS_DIFLAG_NODUMP;
1184 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1185 xfs_inherit_sync)
1186 di_flags |= XFS_DIFLAG_SYNC;
1187 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1188 xfs_inherit_nosymlinks)
1189 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1190 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1191 di_flags |= XFS_DIFLAG_PROJINHERIT;
1192 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1193 xfs_inherit_nodefrag)
1194 di_flags |= XFS_DIFLAG_NODEFRAG;
1195 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1196 di_flags |= XFS_DIFLAG_FILESTREAM;
1197 ip->i_d.di_flags |= di_flags;
1198 }
1199 /* FALLTHROUGH */
1200 case S_IFLNK:
1201 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1202 ip->i_df.if_flags = XFS_IFEXTENTS;
1203 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1204 ip->i_df.if_u1.if_extents = NULL;
1205 break;
1206 default:
1207 ASSERT(0);
1208 }
1209 /*
1210 * Attribute fork settings for new inode.
1211 */
1212 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1213 ip->i_d.di_anextents = 0;
1214
1215 /*
1216 * Log the new values stuffed into the inode.
1217 */
1218 xfs_trans_log_inode(tp, ip, flags);
1219
1220 /* now that we have an i_mode we can setup inode ops and unlock */
1221 xfs_setup_inode(ip);
1222
1223 *ipp = ip;
1224 return 0;
1225 }
1226
1227 /*
1228 * Check to make sure that there are no blocks allocated to the
1229 * file beyond the size of the file. We don't check this for
1230 * files with fixed size extents or real time extents, but we
1231 * at least do it for regular files.
1232 */
1233 #ifdef DEBUG
1234 void
1235 xfs_isize_check(
1236 xfs_mount_t *mp,
1237 xfs_inode_t *ip,
1238 xfs_fsize_t isize)
1239 {
1240 xfs_fileoff_t map_first;
1241 int nimaps;
1242 xfs_bmbt_irec_t imaps[2];
1243
1244 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1245 return;
1246
1247 if (XFS_IS_REALTIME_INODE(ip))
1248 return;
1249
1250 if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
1251 return;
1252
1253 nimaps = 2;
1254 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1255 /*
1256 * The filesystem could be shutting down, so bmapi may return
1257 * an error.
1258 */
1259 if (xfs_bmapi(NULL, ip, map_first,
1260 (XFS_B_TO_FSB(mp,
1261 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1262 map_first),
1263 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1264 NULL, NULL))
1265 return;
1266 ASSERT(nimaps == 1);
1267 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1268 }
1269 #endif /* DEBUG */
1270
1271 /*
1272 * Calculate the last possible buffered byte in a file. This must
1273 * include data that was buffered beyond the EOF by the write code.
1274 * This also needs to deal with overflowing the xfs_fsize_t type
1275 * which can happen for sizes near the limit.
1276 *
1277 * We also need to take into account any blocks beyond the EOF. It
1278 * may be the case that they were buffered by a write which failed.
1279 * In that case the pages will still be in memory, but the inode size
1280 * will never have been updated.
1281 */
1282 xfs_fsize_t
1283 xfs_file_last_byte(
1284 xfs_inode_t *ip)
1285 {
1286 xfs_mount_t *mp;
1287 xfs_fsize_t last_byte;
1288 xfs_fileoff_t last_block;
1289 xfs_fileoff_t size_last_block;
1290 int error;
1291
1292 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED));
1293
1294 mp = ip->i_mount;
1295 /*
1296 * Only check for blocks beyond the EOF if the extents have
1297 * been read in. This eliminates the need for the inode lock,
1298 * and it also saves us from looking when it really isn't
1299 * necessary.
1300 */
1301 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1302 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1303 XFS_DATA_FORK);
1304 if (error) {
1305 last_block = 0;
1306 }
1307 } else {
1308 last_block = 0;
1309 }
1310 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
1311 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1312
1313 last_byte = XFS_FSB_TO_B(mp, last_block);
1314 if (last_byte < 0) {
1315 return XFS_MAXIOFFSET(mp);
1316 }
1317 last_byte += (1 << mp->m_writeio_log);
1318 if (last_byte < 0) {
1319 return XFS_MAXIOFFSET(mp);
1320 }
1321 return last_byte;
1322 }
1323
1324 #if defined(XFS_RW_TRACE)
1325 STATIC void
1326 xfs_itrunc_trace(
1327 int tag,
1328 xfs_inode_t *ip,
1329 int flag,
1330 xfs_fsize_t new_size,
1331 xfs_off_t toss_start,
1332 xfs_off_t toss_finish)
1333 {
1334 if (ip->i_rwtrace == NULL) {
1335 return;
1336 }
1337
1338 ktrace_enter(ip->i_rwtrace,
1339 (void*)((long)tag),
1340 (void*)ip,
1341 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1342 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1343 (void*)((long)flag),
1344 (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1345 (void*)(unsigned long)(new_size & 0xffffffff),
1346 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1347 (void*)(unsigned long)(toss_start & 0xffffffff),
1348 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1349 (void*)(unsigned long)(toss_finish & 0xffffffff),
1350 (void*)(unsigned long)current_cpu(),
1351 (void*)(unsigned long)current_pid(),
1352 (void*)NULL,
1353 (void*)NULL,
1354 (void*)NULL);
1355 }
1356 #else
1357 #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1358 #endif
1359
1360 /*
1361 * Start the truncation of the file to new_size. The new size
1362 * must be smaller than the current size. This routine will
1363 * clear the buffer and page caches of file data in the removed
1364 * range, and xfs_itruncate_finish() will remove the underlying
1365 * disk blocks.
1366 *
1367 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1368 * must NOT have the inode lock held at all. This is because we're
1369 * calling into the buffer/page cache code and we can't hold the
1370 * inode lock when we do so.
1371 *
1372 * We need to wait for any direct I/Os in flight to complete before we
1373 * proceed with the truncate. This is needed to prevent the extents
1374 * being read or written by the direct I/Os from being removed while the
1375 * I/O is in flight as there is no other method of synchronising
1376 * direct I/O with the truncate operation. Also, because we hold
1377 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1378 * started until the truncate completes and drops the lock. Essentially,
1379 * the vn_iowait() call forms an I/O barrier that provides strict ordering
1380 * between direct I/Os and the truncate operation.
1381 *
1382 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1383 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1384 * in the case that the caller is locking things out of order and
1385 * may not be able to call xfs_itruncate_finish() with the inode lock
1386 * held without dropping the I/O lock. If the caller must drop the
1387 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1388 * must be called again with all the same restrictions as the initial
1389 * call.
1390 */
1391 int
1392 xfs_itruncate_start(
1393 xfs_inode_t *ip,
1394 uint flags,
1395 xfs_fsize_t new_size)
1396 {
1397 xfs_fsize_t last_byte;
1398 xfs_off_t toss_start;
1399 xfs_mount_t *mp;
1400 int error = 0;
1401
1402 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1403 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1404 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1405 (flags == XFS_ITRUNC_MAYBE));
1406
1407 mp = ip->i_mount;
1408
1409 /* wait for the completion of any pending DIOs */
1410 if (new_size < ip->i_size)
1411 vn_iowait(ip);
1412
1413 /*
1414 * Call toss_pages or flushinval_pages to get rid of pages
1415 * overlapping the region being removed. We have to use
1416 * the less efficient flushinval_pages in the case that the
1417 * caller may not be able to finish the truncate without
1418 * dropping the inode's I/O lock. Make sure
1419 * to catch any pages brought in by buffers overlapping
1420 * the EOF by searching out beyond the isize by our
1421 * block size. We round new_size up to a block boundary
1422 * so that we don't toss things on the same block as
1423 * new_size but before it.
1424 *
1425 * Before calling toss_page or flushinval_pages, make sure to
1426 * call remapf() over the same region if the file is mapped.
1427 * This frees up mapped file references to the pages in the
1428 * given range and for the flushinval_pages case it ensures
1429 * that we get the latest mapped changes flushed out.
1430 */
1431 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1432 toss_start = XFS_FSB_TO_B(mp, toss_start);
1433 if (toss_start < 0) {
1434 /*
1435 * The place to start tossing is beyond our maximum
1436 * file size, so there is no way that the data extended
1437 * out there.
1438 */
1439 return 0;
1440 }
1441 last_byte = xfs_file_last_byte(ip);
1442 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1443 last_byte);
1444 if (last_byte > toss_start) {
1445 if (flags & XFS_ITRUNC_DEFINITE) {
1446 xfs_tosspages(ip, toss_start,
1447 -1, FI_REMAPF_LOCKED);
1448 } else {
1449 error = xfs_flushinval_pages(ip, toss_start,
1450 -1, FI_REMAPF_LOCKED);
1451 }
1452 }
1453
1454 #ifdef DEBUG
1455 if (new_size == 0) {
1456 ASSERT(VN_CACHED(VFS_I(ip)) == 0);
1457 }
1458 #endif
1459 return error;
1460 }
1461
1462 /*
1463 * Shrink the file to the given new_size. The new size must be smaller than
1464 * the current size. This will free up the underlying blocks in the removed
1465 * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
1466 *
1467 * The transaction passed to this routine must have made a permanent log
1468 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1469 * given transaction and start new ones, so make sure everything involved in
1470 * the transaction is tidy before calling here. Some transaction will be
1471 * returned to the caller to be committed. The incoming transaction must
1472 * already include the inode, and both inode locks must be held exclusively.
1473 * The inode must also be "held" within the transaction. On return the inode
1474 * will be "held" within the returned transaction. This routine does NOT
1475 * require any disk space to be reserved for it within the transaction.
1476 *
1477 * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
1478 * indicates the fork which is to be truncated. For the attribute fork we only
1479 * support truncation to size 0.
1480 *
1481 * We use the sync parameter to indicate whether or not the first transaction
1482 * we perform might have to be synchronous. For the attr fork, it needs to be
1483 * so if the unlink of the inode is not yet known to be permanent in the log.
1484 * This keeps us from freeing and reusing the blocks of the attribute fork
1485 * before the unlink of the inode becomes permanent.
1486 *
1487 * For the data fork, we normally have to run synchronously if we're being
1488 * called out of the inactive path or we're being called out of the create path
1489 * where we're truncating an existing file. Either way, the truncate needs to
1490 * be sync so blocks don't reappear in the file with altered data in case of a
1491 * crash. wsync filesystems can run the first case async because anything that
1492 * shrinks the inode has to run sync so by the time we're called here from
1493 * inactive, the inode size is permanently set to 0.
1494 *
1495 * Calls from the truncate path always need to be sync unless we're in a wsync
1496 * filesystem and the file has already been unlinked.
1497 *
1498 * The caller is responsible for correctly setting the sync parameter. It gets
1499 * too hard for us to guess here which path we're being called out of just
1500 * based on inode state.
1501 *
1502 * If we get an error, we must return with the inode locked and linked into the
1503 * current transaction. This keeps things simple for the higher level code,
1504 * because it always knows that the inode is locked and held in the transaction
1505 * that returns to it whether errors occur or not. We don't mark the inode
1506 * dirty on error so that transactions can be easily aborted if possible.
1507 */
1508 int
1509 xfs_itruncate_finish(
1510 xfs_trans_t **tp,
1511 xfs_inode_t *ip,
1512 xfs_fsize_t new_size,
1513 int fork,
1514 int sync)
1515 {
1516 xfs_fsblock_t first_block;
1517 xfs_fileoff_t first_unmap_block;
1518 xfs_fileoff_t last_block;
1519 xfs_filblks_t unmap_len=0;
1520 xfs_mount_t *mp;
1521 xfs_trans_t *ntp;
1522 int done;
1523 int committed;
1524 xfs_bmap_free_t free_list;
1525 int error;
1526
1527 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
1528 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1529 ASSERT(*tp != NULL);
1530 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1531 ASSERT(ip->i_transp == *tp);
1532 ASSERT(ip->i_itemp != NULL);
1533 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1534
1535
1536 ntp = *tp;
1537 mp = (ntp)->t_mountp;
1538 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1539
1540 /*
1541 * We only support truncating the entire attribute fork.
1542 */
1543 if (fork == XFS_ATTR_FORK) {
1544 new_size = 0LL;
1545 }
1546 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1547 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1548 /*
1549 * The first thing we do is set the size to new_size permanently
1550 * on disk. This way we don't have to worry about anyone ever
1551 * being able to look at the data being freed even in the face
1552 * of a crash. What we're getting around here is the case where
1553 * we free a block, it is allocated to another file, it is written
1554 * to, and then we crash. If the new data gets written to the
1555 * file but the log buffers containing the free and reallocation
1556 * don't, then we'd end up with garbage in the blocks being freed.
1557 * As long as we make the new_size permanent before actually
1558 * freeing any blocks it doesn't matter if they get writtten to.
1559 *
1560 * The callers must signal into us whether or not the size
1561 * setting here must be synchronous. There are a few cases
1562 * where it doesn't have to be synchronous. Those cases
1563 * occur if the file is unlinked and we know the unlink is
1564 * permanent or if the blocks being truncated are guaranteed
1565 * to be beyond the inode eof (regardless of the link count)
1566 * and the eof value is permanent. Both of these cases occur
1567 * only on wsync-mounted filesystems. In those cases, we're
1568 * guaranteed that no user will ever see the data in the blocks
1569 * that are being truncated so the truncate can run async.
1570 * In the free beyond eof case, the file may wind up with
1571 * more blocks allocated to it than it needs if we crash
1572 * and that won't get fixed until the next time the file
1573 * is re-opened and closed but that's ok as that shouldn't
1574 * be too many blocks.
1575 *
1576 * However, we can't just make all wsync xactions run async
1577 * because there's one call out of the create path that needs
1578 * to run sync where it's truncating an existing file to size
1579 * 0 whose size is > 0.
1580 *
1581 * It's probably possible to come up with a test in this
1582 * routine that would correctly distinguish all the above
1583 * cases from the values of the function parameters and the
1584 * inode state but for sanity's sake, I've decided to let the
1585 * layers above just tell us. It's simpler to correctly figure
1586 * out in the layer above exactly under what conditions we
1587 * can run async and I think it's easier for others read and
1588 * follow the logic in case something has to be changed.
1589 * cscope is your friend -- rcc.
1590 *
1591 * The attribute fork is much simpler.
1592 *
1593 * For the attribute fork we allow the caller to tell us whether
1594 * the unlink of the inode that led to this call is yet permanent
1595 * in the on disk log. If it is not and we will be freeing extents
1596 * in this inode then we make the first transaction synchronous
1597 * to make sure that the unlink is permanent by the time we free
1598 * the blocks.
1599 */
1600 if (fork == XFS_DATA_FORK) {
1601 if (ip->i_d.di_nextents > 0) {
1602 /*
1603 * If we are not changing the file size then do
1604 * not update the on-disk file size - we may be
1605 * called from xfs_inactive_free_eofblocks(). If we
1606 * update the on-disk file size and then the system
1607 * crashes before the contents of the file are
1608 * flushed to disk then the files may be full of
1609 * holes (ie NULL files bug).
1610 */
1611 if (ip->i_size != new_size) {
1612 ip->i_d.di_size = new_size;
1613 ip->i_size = new_size;
1614 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1615 }
1616 }
1617 } else if (sync) {
1618 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1619 if (ip->i_d.di_anextents > 0)
1620 xfs_trans_set_sync(ntp);
1621 }
1622 ASSERT(fork == XFS_DATA_FORK ||
1623 (fork == XFS_ATTR_FORK &&
1624 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1625 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1626
1627 /*
1628 * Since it is possible for space to become allocated beyond
1629 * the end of the file (in a crash where the space is allocated
1630 * but the inode size is not yet updated), simply remove any
1631 * blocks which show up between the new EOF and the maximum
1632 * possible file size. If the first block to be removed is
1633 * beyond the maximum file size (ie it is the same as last_block),
1634 * then there is nothing to do.
1635 */
1636 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1637 ASSERT(first_unmap_block <= last_block);
1638 done = 0;
1639 if (last_block == first_unmap_block) {
1640 done = 1;
1641 } else {
1642 unmap_len = last_block - first_unmap_block + 1;
1643 }
1644 while (!done) {
1645 /*
1646 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1647 * will tell us whether it freed the entire range or
1648 * not. If this is a synchronous mount (wsync),
1649 * then we can tell bunmapi to keep all the
1650 * transactions asynchronous since the unlink
1651 * transaction that made this inode inactive has
1652 * already hit the disk. There's no danger of
1653 * the freed blocks being reused, there being a
1654 * crash, and the reused blocks suddenly reappearing
1655 * in this file with garbage in them once recovery
1656 * runs.
1657 */
1658 XFS_BMAP_INIT(&free_list, &first_block);
1659 error = xfs_bunmapi(ntp, ip,
1660 first_unmap_block, unmap_len,
1661 XFS_BMAPI_AFLAG(fork) |
1662 (sync ? 0 : XFS_BMAPI_ASYNC),
1663 XFS_ITRUNC_MAX_EXTENTS,
1664 &first_block, &free_list,
1665 NULL, &done);
1666 if (error) {
1667 /*
1668 * If the bunmapi call encounters an error,
1669 * return to the caller where the transaction
1670 * can be properly aborted. We just need to
1671 * make sure we're not holding any resources
1672 * that we were not when we came in.
1673 */
1674 xfs_bmap_cancel(&free_list);
1675 return error;
1676 }
1677
1678 /*
1679 * Duplicate the transaction that has the permanent
1680 * reservation and commit the old transaction.
1681 */
1682 error = xfs_bmap_finish(tp, &free_list, &committed);
1683 ntp = *tp;
1684 if (committed) {
1685 /* link the inode into the next xact in the chain */
1686 xfs_trans_ijoin(ntp, ip,
1687 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1688 xfs_trans_ihold(ntp, ip);
1689 }
1690
1691 if (error) {
1692 /*
1693 * If the bmap finish call encounters an error, return
1694 * to the caller where the transaction can be properly
1695 * aborted. We just need to make sure we're not
1696 * holding any resources that we were not when we came
1697 * in.
1698 *
1699 * Aborting from this point might lose some blocks in
1700 * the file system, but oh well.
1701 */
1702 xfs_bmap_cancel(&free_list);
1703 return error;
1704 }
1705
1706 if (committed) {
1707 /*
1708 * Mark the inode dirty so it will be logged and
1709 * moved forward in the log as part of every commit.
1710 */
1711 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1712 }
1713
1714 ntp = xfs_trans_dup(ntp);
1715 error = xfs_trans_commit(*tp, 0);
1716 *tp = ntp;
1717
1718 /* link the inode into the next transaction in the chain */
1719 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1720 xfs_trans_ihold(ntp, ip);
1721
1722 if (!error)
1723 error = xfs_trans_reserve(ntp, 0,
1724 XFS_ITRUNCATE_LOG_RES(mp), 0,
1725 XFS_TRANS_PERM_LOG_RES,
1726 XFS_ITRUNCATE_LOG_COUNT);
1727 if (error)
1728 return error;
1729 }
1730 /*
1731 * Only update the size in the case of the data fork, but
1732 * always re-log the inode so that our permanent transaction
1733 * can keep on rolling it forward in the log.
1734 */
1735 if (fork == XFS_DATA_FORK) {
1736 xfs_isize_check(mp, ip, new_size);
1737 /*
1738 * If we are not changing the file size then do
1739 * not update the on-disk file size - we may be
1740 * called from xfs_inactive_free_eofblocks(). If we
1741 * update the on-disk file size and then the system
1742 * crashes before the contents of the file are
1743 * flushed to disk then the files may be full of
1744 * holes (ie NULL files bug).
1745 */
1746 if (ip->i_size != new_size) {
1747 ip->i_d.di_size = new_size;
1748 ip->i_size = new_size;
1749 }
1750 }
1751 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1752 ASSERT((new_size != 0) ||
1753 (fork == XFS_ATTR_FORK) ||
1754 (ip->i_delayed_blks == 0));
1755 ASSERT((new_size != 0) ||
1756 (fork == XFS_ATTR_FORK) ||
1757 (ip->i_d.di_nextents == 0));
1758 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1759 return 0;
1760 }
1761
1762 /*
1763 * This is called when the inode's link count goes to 0.
1764 * We place the on-disk inode on a list in the AGI. It
1765 * will be pulled from this list when the inode is freed.
1766 */
1767 int
1768 xfs_iunlink(
1769 xfs_trans_t *tp,
1770 xfs_inode_t *ip)
1771 {
1772 xfs_mount_t *mp;
1773 xfs_agi_t *agi;
1774 xfs_dinode_t *dip;
1775 xfs_buf_t *agibp;
1776 xfs_buf_t *ibp;
1777 xfs_agnumber_t agno;
1778 xfs_daddr_t agdaddr;
1779 xfs_agino_t agino;
1780 short bucket_index;
1781 int offset;
1782 int error;
1783 int agi_ok;
1784
1785 ASSERT(ip->i_d.di_nlink == 0);
1786 ASSERT(ip->i_d.di_mode != 0);
1787 ASSERT(ip->i_transp == tp);
1788
1789 mp = tp->t_mountp;
1790
1791 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1792 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1793
1794 /*
1795 * Get the agi buffer first. It ensures lock ordering
1796 * on the list.
1797 */
1798 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1799 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1800 if (error)
1801 return error;
1802
1803 /*
1804 * Validate the magic number of the agi block.
1805 */
1806 agi = XFS_BUF_TO_AGI(agibp);
1807 agi_ok =
1808 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1809 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1810 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
1811 XFS_RANDOM_IUNLINK))) {
1812 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
1813 xfs_trans_brelse(tp, agibp);
1814 return XFS_ERROR(EFSCORRUPTED);
1815 }
1816 /*
1817 * Get the index into the agi hash table for the
1818 * list this inode will go on.
1819 */
1820 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1821 ASSERT(agino != 0);
1822 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1823 ASSERT(agi->agi_unlinked[bucket_index]);
1824 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1825
1826 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1827 /*
1828 * There is already another inode in the bucket we need
1829 * to add ourselves to. Add us at the front of the list.
1830 * Here we put the head pointer into our next pointer,
1831 * and then we fall through to point the head at us.
1832 */
1833 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
1834 if (error)
1835 return error;
1836
1837 ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
1838 /* both on-disk, don't endian flip twice */
1839 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1840 offset = ip->i_boffset +
1841 offsetof(xfs_dinode_t, di_next_unlinked);
1842 xfs_trans_inode_buf(tp, ibp);
1843 xfs_trans_log_buf(tp, ibp, offset,
1844 (offset + sizeof(xfs_agino_t) - 1));
1845 xfs_inobp_check(mp, ibp);
1846 }
1847
1848 /*
1849 * Point the bucket head pointer at the inode being inserted.
1850 */
1851 ASSERT(agino != 0);
1852 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1853 offset = offsetof(xfs_agi_t, agi_unlinked) +
1854 (sizeof(xfs_agino_t) * bucket_index);
1855 xfs_trans_log_buf(tp, agibp, offset,
1856 (offset + sizeof(xfs_agino_t) - 1));
1857 return 0;
1858 }
1859
1860 /*
1861 * Pull the on-disk inode from the AGI unlinked list.
1862 */
1863 STATIC int
1864 xfs_iunlink_remove(
1865 xfs_trans_t *tp,
1866 xfs_inode_t *ip)
1867 {
1868 xfs_ino_t next_ino;
1869 xfs_mount_t *mp;
1870 xfs_agi_t *agi;
1871 xfs_dinode_t *dip;
1872 xfs_buf_t *agibp;
1873 xfs_buf_t *ibp;
1874 xfs_agnumber_t agno;
1875 xfs_daddr_t agdaddr;
1876 xfs_agino_t agino;
1877 xfs_agino_t next_agino;
1878 xfs_buf_t *last_ibp;
1879 xfs_dinode_t *last_dip = NULL;
1880 short bucket_index;
1881 int offset, last_offset = 0;
1882 int error;
1883 int agi_ok;
1884
1885 /*
1886 * First pull the on-disk inode from the AGI unlinked list.
1887 */
1888 mp = tp->t_mountp;
1889
1890 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1891 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1892
1893 /*
1894 * Get the agi buffer first. It ensures lock ordering
1895 * on the list.
1896 */
1897 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1898 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1899 if (error) {
1900 cmn_err(CE_WARN,
1901 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
1902 error, mp->m_fsname);
1903 return error;
1904 }
1905 /*
1906 * Validate the magic number of the agi block.
1907 */
1908 agi = XFS_BUF_TO_AGI(agibp);
1909 agi_ok =
1910 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1911 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1912 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
1913 XFS_RANDOM_IUNLINK_REMOVE))) {
1914 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
1915 mp, agi);
1916 xfs_trans_brelse(tp, agibp);
1917 cmn_err(CE_WARN,
1918 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
1919 mp->m_fsname);
1920 return XFS_ERROR(EFSCORRUPTED);
1921 }
1922 /*
1923 * Get the index into the agi hash table for the
1924 * list this inode will go on.
1925 */
1926 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1927 ASSERT(agino != 0);
1928 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1929 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
1930 ASSERT(agi->agi_unlinked[bucket_index]);
1931
1932 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1933 /*
1934 * We're at the head of the list. Get the inode's
1935 * on-disk buffer to see if there is anyone after us
1936 * on the list. Only modify our next pointer if it
1937 * is not already NULLAGINO. This saves us the overhead
1938 * of dealing with the buffer when there is no need to
1939 * change it.
1940 */
1941 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
1942 if (error) {
1943 cmn_err(CE_WARN,
1944 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
1945 error, mp->m_fsname);
1946 return error;
1947 }
1948 next_agino = be32_to_cpu(dip->di_next_unlinked);
1949 ASSERT(next_agino != 0);
1950 if (next_agino != NULLAGINO) {
1951 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1952 offset = ip->i_boffset +
1953 offsetof(xfs_dinode_t, di_next_unlinked);
1954 xfs_trans_inode_buf(tp, ibp);
1955 xfs_trans_log_buf(tp, ibp, offset,
1956 (offset + sizeof(xfs_agino_t) - 1));
1957 xfs_inobp_check(mp, ibp);
1958 } else {
1959 xfs_trans_brelse(tp, ibp);
1960 }
1961 /*
1962 * Point the bucket head pointer at the next inode.
1963 */
1964 ASSERT(next_agino != 0);
1965 ASSERT(next_agino != agino);
1966 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1967 offset = offsetof(xfs_agi_t, agi_unlinked) +
1968 (sizeof(xfs_agino_t) * bucket_index);
1969 xfs_trans_log_buf(tp, agibp, offset,
1970 (offset + sizeof(xfs_agino_t) - 1));
1971 } else {
1972 /*
1973 * We need to search the list for the inode being freed.
1974 */
1975 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1976 last_ibp = NULL;
1977 while (next_agino != agino) {
1978 /*
1979 * If the last inode wasn't the one pointing to
1980 * us, then release its buffer since we're not
1981 * going to do anything with it.
1982 */
1983 if (last_ibp != NULL) {
1984 xfs_trans_brelse(tp, last_ibp);
1985 }
1986 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
1987 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
1988 &last_ibp, &last_offset);
1989 if (error) {
1990 cmn_err(CE_WARN,
1991 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
1992 error, mp->m_fsname);
1993 return error;
1994 }
1995 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1996 ASSERT(next_agino != NULLAGINO);
1997 ASSERT(next_agino != 0);
1998 }
1999 /*
2000 * Now last_ibp points to the buffer previous to us on
2001 * the unlinked list. Pull us from the list.
2002 */
2003 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
2004 if (error) {
2005 cmn_err(CE_WARN,
2006 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2007 error, mp->m_fsname);
2008 return error;
2009 }
2010 next_agino = be32_to_cpu(dip->di_next_unlinked);
2011 ASSERT(next_agino != 0);
2012 ASSERT(next_agino != agino);
2013 if (next_agino != NULLAGINO) {
2014 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2015 offset = ip->i_boffset +
2016 offsetof(xfs_dinode_t, di_next_unlinked);
2017 xfs_trans_inode_buf(tp, ibp);
2018 xfs_trans_log_buf(tp, ibp, offset,
2019 (offset + sizeof(xfs_agino_t) - 1));
2020 xfs_inobp_check(mp, ibp);
2021 } else {
2022 xfs_trans_brelse(tp, ibp);
2023 }
2024 /*
2025 * Point the previous inode on the list to the next inode.
2026 */
2027 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2028 ASSERT(next_agino != 0);
2029 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2030 xfs_trans_inode_buf(tp, last_ibp);
2031 xfs_trans_log_buf(tp, last_ibp, offset,
2032 (offset + sizeof(xfs_agino_t) - 1));
2033 xfs_inobp_check(mp, last_ibp);
2034 }
2035 return 0;
2036 }
2037
2038 STATIC void
2039 xfs_ifree_cluster(
2040 xfs_inode_t *free_ip,
2041 xfs_trans_t *tp,
2042 xfs_ino_t inum)
2043 {
2044 xfs_mount_t *mp = free_ip->i_mount;
2045 int blks_per_cluster;
2046 int nbufs;
2047 int ninodes;
2048 int i, j, found, pre_flushed;
2049 xfs_daddr_t blkno;
2050 xfs_buf_t *bp;
2051 xfs_inode_t *ip, **ip_found;
2052 xfs_inode_log_item_t *iip;
2053 xfs_log_item_t *lip;
2054 xfs_perag_t *pag = xfs_get_perag(mp, inum);
2055
2056 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2057 blks_per_cluster = 1;
2058 ninodes = mp->m_sb.sb_inopblock;
2059 nbufs = XFS_IALLOC_BLOCKS(mp);
2060 } else {
2061 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2062 mp->m_sb.sb_blocksize;
2063 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2064 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2065 }
2066
2067 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2068
2069 for (j = 0; j < nbufs; j++, inum += ninodes) {
2070 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2071 XFS_INO_TO_AGBNO(mp, inum));
2072
2073
2074 /*
2075 * Look for each inode in memory and attempt to lock it,
2076 * we can be racing with flush and tail pushing here.
2077 * any inode we get the locks on, add to an array of
2078 * inode items to process later.
2079 *
2080 * The get the buffer lock, we could beat a flush
2081 * or tail pushing thread to the lock here, in which
2082 * case they will go looking for the inode buffer
2083 * and fail, we need some other form of interlock
2084 * here.
2085 */
2086 found = 0;
2087 for (i = 0; i < ninodes; i++) {
2088 read_lock(&pag->pag_ici_lock);
2089 ip = radix_tree_lookup(&pag->pag_ici_root,
2090 XFS_INO_TO_AGINO(mp, (inum + i)));
2091
2092 /* Inode not in memory or we found it already,
2093 * nothing to do
2094 */
2095 if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
2096 read_unlock(&pag->pag_ici_lock);
2097 continue;
2098 }
2099
2100 if (xfs_inode_clean(ip)) {
2101 read_unlock(&pag->pag_ici_lock);
2102 continue;
2103 }
2104
2105 /* If we can get the locks then add it to the
2106 * list, otherwise by the time we get the bp lock
2107 * below it will already be attached to the
2108 * inode buffer.
2109 */
2110
2111 /* This inode will already be locked - by us, lets
2112 * keep it that way.
2113 */
2114
2115 if (ip == free_ip) {
2116 if (xfs_iflock_nowait(ip)) {
2117 xfs_iflags_set(ip, XFS_ISTALE);
2118 if (xfs_inode_clean(ip)) {
2119 xfs_ifunlock(ip);
2120 } else {
2121 ip_found[found++] = ip;
2122 }
2123 }
2124 read_unlock(&pag->pag_ici_lock);
2125 continue;
2126 }
2127
2128 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2129 if (xfs_iflock_nowait(ip)) {
2130 xfs_iflags_set(ip, XFS_ISTALE);
2131
2132 if (xfs_inode_clean(ip)) {
2133 xfs_ifunlock(ip);
2134 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2135 } else {
2136 ip_found[found++] = ip;
2137 }
2138 } else {
2139 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2140 }
2141 }
2142 read_unlock(&pag->pag_ici_lock);
2143 }
2144
2145 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2146 mp->m_bsize * blks_per_cluster,
2147 XFS_BUF_LOCK);
2148
2149 pre_flushed = 0;
2150 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2151 while (lip) {
2152 if (lip->li_type == XFS_LI_INODE) {
2153 iip = (xfs_inode_log_item_t *)lip;
2154 ASSERT(iip->ili_logged == 1);
2155 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2156 spin_lock(&mp->m_ail_lock);
2157 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2158 spin_unlock(&mp->m_ail_lock);
2159 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2160 pre_flushed++;
2161 }
2162 lip = lip->li_bio_list;
2163 }
2164
2165 for (i = 0; i < found; i++) {
2166 ip = ip_found[i];
2167 iip = ip->i_itemp;
2168
2169 if (!iip) {
2170 ip->i_update_core = 0;
2171 xfs_ifunlock(ip);
2172 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2173 continue;
2174 }
2175
2176 iip->ili_last_fields = iip->ili_format.ilf_fields;
2177 iip->ili_format.ilf_fields = 0;
2178 iip->ili_logged = 1;
2179 spin_lock(&mp->m_ail_lock);
2180 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2181 spin_unlock(&mp->m_ail_lock);
2182
2183 xfs_buf_attach_iodone(bp,
2184 (void(*)(xfs_buf_t*,xfs_log_item_t*))
2185 xfs_istale_done, (xfs_log_item_t *)iip);
2186 if (ip != free_ip) {
2187 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2188 }
2189 }
2190
2191 if (found || pre_flushed)
2192 xfs_trans_stale_inode_buf(tp, bp);
2193 xfs_trans_binval(tp, bp);
2194 }
2195
2196 kmem_free(ip_found);
2197 xfs_put_perag(mp, pag);
2198 }
2199
2200 /*
2201 * This is called to return an inode to the inode free list.
2202 * The inode should already be truncated to 0 length and have
2203 * no pages associated with it. This routine also assumes that
2204 * the inode is already a part of the transaction.
2205 *
2206 * The on-disk copy of the inode will have been added to the list
2207 * of unlinked inodes in the AGI. We need to remove the inode from
2208 * that list atomically with respect to freeing it here.
2209 */
2210 int
2211 xfs_ifree(
2212 xfs_trans_t *tp,
2213 xfs_inode_t *ip,
2214 xfs_bmap_free_t *flist)
2215 {
2216 int error;
2217 int delete;
2218 xfs_ino_t first_ino;
2219 xfs_dinode_t *dip;
2220 xfs_buf_t *ibp;
2221
2222 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2223 ASSERT(ip->i_transp == tp);
2224 ASSERT(ip->i_d.di_nlink == 0);
2225 ASSERT(ip->i_d.di_nextents == 0);
2226 ASSERT(ip->i_d.di_anextents == 0);
2227 ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
2228 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2229 ASSERT(ip->i_d.di_nblocks == 0);
2230
2231 /*
2232 * Pull the on-disk inode from the AGI unlinked list.
2233 */
2234 error = xfs_iunlink_remove(tp, ip);
2235 if (error != 0) {
2236 return error;
2237 }
2238
2239 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2240 if (error != 0) {
2241 return error;
2242 }
2243 ip->i_d.di_mode = 0; /* mark incore inode as free */
2244 ip->i_d.di_flags = 0;
2245 ip->i_d.di_dmevmask = 0;
2246 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2247 ip->i_df.if_ext_max =
2248 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2249 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2250 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2251 /*
2252 * Bump the generation count so no one will be confused
2253 * by reincarnations of this inode.
2254 */
2255 ip->i_d.di_gen++;
2256
2257 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2258
2259 error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
2260 if (error)
2261 return error;
2262
2263 /*
2264 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
2265 * from picking up this inode when it is reclaimed (its incore state
2266 * initialzed but not flushed to disk yet). The in-core di_mode is
2267 * already cleared and a corresponding transaction logged.
2268 * The hack here just synchronizes the in-core to on-disk
2269 * di_mode value in advance before the actual inode sync to disk.
2270 * This is OK because the inode is already unlinked and would never
2271 * change its di_mode again for this inode generation.
2272 * This is a temporary hack that would require a proper fix
2273 * in the future.
2274 */
2275 dip->di_core.di_mode = 0;
2276
2277 if (delete) {
2278 xfs_ifree_cluster(ip, tp, first_ino);
2279 }
2280
2281 return 0;
2282 }
2283
2284 /*
2285 * Reallocate the space for if_broot based on the number of records
2286 * being added or deleted as indicated in rec_diff. Move the records
2287 * and pointers in if_broot to fit the new size. When shrinking this
2288 * will eliminate holes between the records and pointers created by
2289 * the caller. When growing this will create holes to be filled in
2290 * by the caller.
2291 *
2292 * The caller must not request to add more records than would fit in
2293 * the on-disk inode root. If the if_broot is currently NULL, then
2294 * if we adding records one will be allocated. The caller must also
2295 * not request that the number of records go below zero, although
2296 * it can go to zero.
2297 *
2298 * ip -- the inode whose if_broot area is changing
2299 * ext_diff -- the change in the number of records, positive or negative,
2300 * requested for the if_broot array.
2301 */
2302 void
2303 xfs_iroot_realloc(
2304 xfs_inode_t *ip,
2305 int rec_diff,
2306 int whichfork)
2307 {
2308 int cur_max;
2309 xfs_ifork_t *ifp;
2310 xfs_bmbt_block_t *new_broot;
2311 int new_max;
2312 size_t new_size;
2313 char *np;
2314 char *op;
2315
2316 /*
2317 * Handle the degenerate case quietly.
2318 */
2319 if (rec_diff == 0) {
2320 return;
2321 }
2322
2323 ifp = XFS_IFORK_PTR(ip, whichfork);
2324 if (rec_diff > 0) {
2325 /*
2326 * If there wasn't any memory allocated before, just
2327 * allocate it now and get out.
2328 */
2329 if (ifp->if_broot_bytes == 0) {
2330 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2331 ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
2332 KM_SLEEP);
2333 ifp->if_broot_bytes = (int)new_size;
2334 return;
2335 }
2336
2337 /*
2338 * If there is already an existing if_broot, then we need
2339 * to realloc() it and shift the pointers to their new
2340 * location. The records don't change location because
2341 * they are kept butted up against the btree block header.
2342 */
2343 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2344 new_max = cur_max + rec_diff;
2345 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2346 ifp->if_broot = (xfs_bmbt_block_t *)
2347 kmem_realloc(ifp->if_broot,
2348 new_size,
2349 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2350 KM_SLEEP);
2351 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2352 ifp->if_broot_bytes);
2353 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2354 (int)new_size);
2355 ifp->if_broot_bytes = (int)new_size;
2356 ASSERT(ifp->if_broot_bytes <=
2357 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2358 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2359 return;
2360 }
2361
2362 /*
2363 * rec_diff is less than 0. In this case, we are shrinking the
2364 * if_broot buffer. It must already exist. If we go to zero
2365 * records, just get rid of the root and clear the status bit.
2366 */
2367 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2368 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2369 new_max = cur_max + rec_diff;
2370 ASSERT(new_max >= 0);
2371 if (new_max > 0)
2372 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2373 else
2374 new_size = 0;
2375 if (new_size > 0) {
2376 new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
2377 /*
2378 * First copy over the btree block header.
2379 */
2380 memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
2381 } else {
2382 new_broot = NULL;
2383 ifp->if_flags &= ~XFS_IFBROOT;
2384 }
2385
2386 /*
2387 * Only copy the records and pointers if there are any.
2388 */
2389 if (new_max > 0) {
2390 /*
2391 * First copy the records.
2392 */
2393 op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
2394 ifp->if_broot_bytes);
2395 np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
2396 (int)new_size);
2397 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2398
2399 /*
2400 * Then copy the pointers.
2401 */
2402 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2403 ifp->if_broot_bytes);
2404 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
2405 (int)new_size);
2406 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2407 }
2408 kmem_free(ifp->if_broot);
2409 ifp->if_broot = new_broot;
2410 ifp->if_broot_bytes = (int)new_size;
2411 ASSERT(ifp->if_broot_bytes <=
2412 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2413 return;
2414 }
2415
2416
2417 /*
2418 * This is called when the amount of space needed for if_data
2419 * is increased or decreased. The change in size is indicated by
2420 * the number of bytes that need to be added or deleted in the
2421 * byte_diff parameter.
2422 *
2423 * If the amount of space needed has decreased below the size of the
2424 * inline buffer, then switch to using the inline buffer. Otherwise,
2425 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2426 * to what is needed.
2427 *
2428 * ip -- the inode whose if_data area is changing
2429 * byte_diff -- the change in the number of bytes, positive or negative,
2430 * requested for the if_data array.
2431 */
2432 void
2433 xfs_idata_realloc(
2434 xfs_inode_t *ip,
2435 int byte_diff,
2436 int whichfork)
2437 {
2438 xfs_ifork_t *ifp;
2439 int new_size;
2440 int real_size;
2441
2442 if (byte_diff == 0) {
2443 return;
2444 }
2445
2446 ifp = XFS_IFORK_PTR(ip, whichfork);
2447 new_size = (int)ifp->if_bytes + byte_diff;
2448 ASSERT(new_size >= 0);
2449
2450 if (new_size == 0) {
2451 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2452 kmem_free(ifp->if_u1.if_data);
2453 }
2454 ifp->if_u1.if_data = NULL;
2455 real_size = 0;
2456 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2457 /*
2458 * If the valid extents/data can fit in if_inline_ext/data,
2459 * copy them from the malloc'd vector and free it.
2460 */
2461 if (ifp->if_u1.if_data == NULL) {
2462 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2463 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2464 ASSERT(ifp->if_real_bytes != 0);
2465 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2466 new_size);
2467 kmem_free(ifp->if_u1.if_data);
2468 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2469 }
2470 real_size = 0;
2471 } else {
2472 /*
2473 * Stuck with malloc/realloc.
2474 * For inline data, the underlying buffer must be
2475 * a multiple of 4 bytes in size so that it can be
2476 * logged and stay on word boundaries. We enforce
2477 * that here.
2478 */
2479 real_size = roundup(new_size, 4);
2480 if (ifp->if_u1.if_data == NULL) {
2481 ASSERT(ifp->if_real_bytes == 0);
2482 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2483 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2484 /*
2485 * Only do the realloc if the underlying size
2486 * is really changing.
2487 */
2488 if (ifp->if_real_bytes != real_size) {
2489 ifp->if_u1.if_data =
2490 kmem_realloc(ifp->if_u1.if_data,
2491 real_size,
2492 ifp->if_real_bytes,
2493 KM_SLEEP);
2494 }
2495 } else {
2496 ASSERT(ifp->if_real_bytes == 0);
2497 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2498 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2499 ifp->if_bytes);
2500 }
2501 }
2502 ifp->if_real_bytes = real_size;
2503 ifp->if_bytes = new_size;
2504 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2505 }
2506
2507
2508
2509
2510 /*
2511 * Map inode to disk block and offset.
2512 *
2513 * mp -- the mount point structure for the current file system
2514 * tp -- the current transaction
2515 * ino -- the inode number of the inode to be located
2516 * imap -- this structure is filled in with the information necessary
2517 * to retrieve the given inode from disk
2518 * flags -- flags to pass to xfs_dilocate indicating whether or not
2519 * lookups in the inode btree were OK or not
2520 */
2521 int
2522 xfs_imap(
2523 xfs_mount_t *mp,
2524 xfs_trans_t *tp,
2525 xfs_ino_t ino,
2526 xfs_imap_t *imap,
2527 uint flags)
2528 {
2529 xfs_fsblock_t fsbno;
2530 int len;
2531 int off;
2532 int error;
2533
2534 fsbno = imap->im_blkno ?
2535 XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
2536 error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
2537 if (error)
2538 return error;
2539
2540 imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
2541 imap->im_len = XFS_FSB_TO_BB(mp, len);
2542 imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
2543 imap->im_ioffset = (ushort)off;
2544 imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
2545
2546 /*
2547 * If the inode number maps to a block outside the bounds
2548 * of the file system then return NULL rather than calling
2549 * read_buf and panicing when we get an error from the
2550 * driver.
2551 */
2552 if ((imap->im_blkno + imap->im_len) >
2553 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2554 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_imap: "
2555 "(imap->im_blkno (0x%llx) + imap->im_len (0x%llx)) > "
2556 " XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks) (0x%llx)",
2557 (unsigned long long) imap->im_blkno,
2558 (unsigned long long) imap->im_len,
2559 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2560 return EINVAL;
2561 }
2562 return 0;
2563 }
2564
2565 void
2566 xfs_idestroy_fork(
2567 xfs_inode_t *ip,
2568 int whichfork)
2569 {
2570 xfs_ifork_t *ifp;
2571
2572 ifp = XFS_IFORK_PTR(ip, whichfork);
2573 if (ifp->if_broot != NULL) {
2574 kmem_free(ifp->if_broot);
2575 ifp->if_broot = NULL;
2576 }
2577
2578 /*
2579 * If the format is local, then we can't have an extents
2580 * array so just look for an inline data array. If we're
2581 * not local then we may or may not have an extents list,
2582 * so check and free it up if we do.
2583 */
2584 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2585 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2586 (ifp->if_u1.if_data != NULL)) {
2587 ASSERT(ifp->if_real_bytes != 0);
2588 kmem_free(ifp->if_u1.if_data);
2589 ifp->if_u1.if_data = NULL;
2590 ifp->if_real_bytes = 0;
2591 }
2592 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2593 ((ifp->if_flags & XFS_IFEXTIREC) ||
2594 ((ifp->if_u1.if_extents != NULL) &&
2595 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2596 ASSERT(ifp->if_real_bytes != 0);
2597 xfs_iext_destroy(ifp);
2598 }
2599 ASSERT(ifp->if_u1.if_extents == NULL ||
2600 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2601 ASSERT(ifp->if_real_bytes == 0);
2602 if (whichfork == XFS_ATTR_FORK) {
2603 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2604 ip->i_afp = NULL;
2605 }
2606 }
2607
2608 /*
2609 * This is called free all the memory associated with an inode.
2610 * It must free the inode itself and any buffers allocated for
2611 * if_extents/if_data and if_broot. It must also free the lock
2612 * associated with the inode.
2613 */
2614 void
2615 xfs_idestroy(
2616 xfs_inode_t *ip)
2617 {
2618 switch (ip->i_d.di_mode & S_IFMT) {
2619 case S_IFREG:
2620 case S_IFDIR:
2621 case S_IFLNK:
2622 xfs_idestroy_fork(ip, XFS_DATA_FORK);
2623 break;
2624 }
2625 if (ip->i_afp)
2626 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
2627 mrfree(&ip->i_lock);
2628 mrfree(&ip->i_iolock);
2629 freesema(&ip->i_flock);
2630
2631 #ifdef XFS_INODE_TRACE
2632 ktrace_free(ip->i_trace);
2633 #endif
2634 #ifdef XFS_BMAP_TRACE
2635 ktrace_free(ip->i_xtrace);
2636 #endif
2637 #ifdef XFS_BMBT_TRACE
2638 ktrace_free(ip->i_btrace);
2639 #endif
2640 #ifdef XFS_RW_TRACE
2641 ktrace_free(ip->i_rwtrace);
2642 #endif
2643 #ifdef XFS_ILOCK_TRACE
2644 ktrace_free(ip->i_lock_trace);
2645 #endif
2646 #ifdef XFS_DIR2_TRACE
2647 ktrace_free(ip->i_dir_trace);
2648 #endif
2649 if (ip->i_itemp) {
2650 /*
2651 * Only if we are shutting down the fs will we see an
2652 * inode still in the AIL. If it is there, we should remove
2653 * it to prevent a use-after-free from occurring.
2654 */
2655 xfs_mount_t *mp = ip->i_mount;
2656 xfs_log_item_t *lip = &ip->i_itemp->ili_item;
2657
2658 ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
2659 XFS_FORCED_SHUTDOWN(ip->i_mount));
2660 if (lip->li_flags & XFS_LI_IN_AIL) {
2661 spin_lock(&mp->m_ail_lock);
2662 if (lip->li_flags & XFS_LI_IN_AIL)
2663 xfs_trans_delete_ail(mp, lip);
2664 else
2665 spin_unlock(&mp->m_ail_lock);
2666 }
2667 xfs_inode_item_destroy(ip);
2668 }
2669 kmem_zone_free(xfs_inode_zone, ip);
2670 }
2671
2672
2673 /*
2674 * Increment the pin count of the given buffer.
2675 * This value is protected by ipinlock spinlock in the mount structure.
2676 */
2677 void
2678 xfs_ipin(
2679 xfs_inode_t *ip)
2680 {
2681 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2682
2683 atomic_inc(&ip->i_pincount);
2684 }
2685
2686 /*
2687 * Decrement the pin count of the given inode, and wake up
2688 * anyone in xfs_iwait_unpin() if the count goes to 0. The
2689 * inode must have been previously pinned with a call to xfs_ipin().
2690 */
2691 void
2692 xfs_iunpin(
2693 xfs_inode_t *ip)
2694 {
2695 ASSERT(atomic_read(&ip->i_pincount) > 0);
2696
2697 if (atomic_dec_and_test(&ip->i_pincount))
2698 wake_up(&ip->i_ipin_wait);
2699 }
2700
2701 /*
2702 * This is called to unpin an inode. It can be directed to wait or to return
2703 * immediately without waiting for the inode to be unpinned. The caller must
2704 * have the inode locked in at least shared mode so that the buffer cannot be
2705 * subsequently pinned once someone is waiting for it to be unpinned.
2706 */
2707 STATIC void
2708 __xfs_iunpin_wait(
2709 xfs_inode_t *ip,
2710 int wait)
2711 {
2712 xfs_inode_log_item_t *iip = ip->i_itemp;
2713
2714 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2715 if (atomic_read(&ip->i_pincount) == 0)
2716 return;
2717
2718 /* Give the log a push to start the unpinning I/O */
2719 xfs_log_force(ip->i_mount, (iip && iip->ili_last_lsn) ?
2720 iip->ili_last_lsn : 0, XFS_LOG_FORCE);
2721 if (wait)
2722 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2723 }
2724
2725 static inline void
2726 xfs_iunpin_wait(
2727 xfs_inode_t *ip)
2728 {
2729 __xfs_iunpin_wait(ip, 1);
2730 }
2731
2732 static inline void
2733 xfs_iunpin_nowait(
2734 xfs_inode_t *ip)
2735 {
2736 __xfs_iunpin_wait(ip, 0);
2737 }
2738
2739
2740 /*
2741 * xfs_iextents_copy()
2742 *
2743 * This is called to copy the REAL extents (as opposed to the delayed
2744 * allocation extents) from the inode into the given buffer. It
2745 * returns the number of bytes copied into the buffer.
2746 *
2747 * If there are no delayed allocation extents, then we can just
2748 * memcpy() the extents into the buffer. Otherwise, we need to
2749 * examine each extent in turn and skip those which are delayed.
2750 */
2751 int
2752 xfs_iextents_copy(
2753 xfs_inode_t *ip,
2754 xfs_bmbt_rec_t *dp,
2755 int whichfork)
2756 {
2757 int copied;
2758 int i;
2759 xfs_ifork_t *ifp;
2760 int nrecs;
2761 xfs_fsblock_t start_block;
2762
2763 ifp = XFS_IFORK_PTR(ip, whichfork);
2764 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2765 ASSERT(ifp->if_bytes > 0);
2766
2767 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2768 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
2769 ASSERT(nrecs > 0);
2770
2771 /*
2772 * There are some delayed allocation extents in the
2773 * inode, so copy the extents one at a time and skip
2774 * the delayed ones. There must be at least one
2775 * non-delayed extent.
2776 */
2777 copied = 0;
2778 for (i = 0; i < nrecs; i++) {
2779 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
2780 start_block = xfs_bmbt_get_startblock(ep);
2781 if (ISNULLSTARTBLOCK(start_block)) {
2782 /*
2783 * It's a delayed allocation extent, so skip it.
2784 */
2785 continue;
2786 }
2787
2788 /* Translate to on disk format */
2789 put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2790 put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
2791 dp++;
2792 copied++;
2793 }
2794 ASSERT(copied != 0);
2795 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
2796
2797 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2798 }
2799
2800 /*
2801 * Each of the following cases stores data into the same region
2802 * of the on-disk inode, so only one of them can be valid at
2803 * any given time. While it is possible to have conflicting formats
2804 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2805 * in EXTENTS format, this can only happen when the fork has
2806 * changed formats after being modified but before being flushed.
2807 * In these cases, the format always takes precedence, because the
2808 * format indicates the current state of the fork.
2809 */
2810 /*ARGSUSED*/
2811 STATIC void
2812 xfs_iflush_fork(
2813 xfs_inode_t *ip,
2814 xfs_dinode_t *dip,
2815 xfs_inode_log_item_t *iip,
2816 int whichfork,
2817 xfs_buf_t *bp)
2818 {
2819 char *cp;
2820 xfs_ifork_t *ifp;
2821 xfs_mount_t *mp;
2822 #ifdef XFS_TRANS_DEBUG
2823 int first;
2824 #endif
2825 static const short brootflag[2] =
2826 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2827 static const short dataflag[2] =
2828 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2829 static const short extflag[2] =
2830 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2831
2832 if (!iip)
2833 return;
2834 ifp = XFS_IFORK_PTR(ip, whichfork);
2835 /*
2836 * This can happen if we gave up in iformat in an error path,
2837 * for the attribute fork.
2838 */
2839 if (!ifp) {
2840 ASSERT(whichfork == XFS_ATTR_FORK);
2841 return;
2842 }
2843 cp = XFS_DFORK_PTR(dip, whichfork);
2844 mp = ip->i_mount;
2845 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2846 case XFS_DINODE_FMT_LOCAL:
2847 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2848 (ifp->if_bytes > 0)) {
2849 ASSERT(ifp->if_u1.if_data != NULL);
2850 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2851 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2852 }
2853 break;
2854
2855 case XFS_DINODE_FMT_EXTENTS:
2856 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2857 !(iip->ili_format.ilf_fields & extflag[whichfork]));
2858 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2859 (ifp->if_bytes == 0));
2860 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2861 (ifp->if_bytes > 0));
2862 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2863 (ifp->if_bytes > 0)) {
2864 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2865 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2866 whichfork);
2867 }
2868 break;
2869
2870 case XFS_DINODE_FMT_BTREE:
2871 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2872 (ifp->if_broot_bytes > 0)) {
2873 ASSERT(ifp->if_broot != NULL);
2874 ASSERT(ifp->if_broot_bytes <=
2875 (XFS_IFORK_SIZE(ip, whichfork) +
2876 XFS_BROOT_SIZE_ADJ));
2877 xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
2878 (xfs_bmdr_block_t *)cp,
2879 XFS_DFORK_SIZE(dip, mp, whichfork));
2880 }
2881 break;
2882
2883 case XFS_DINODE_FMT_DEV:
2884 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2885 ASSERT(whichfork == XFS_DATA_FORK);
2886 dip->di_u.di_dev = cpu_to_be32(ip->i_df.if_u2.if_rdev);
2887 }
2888 break;
2889
2890 case XFS_DINODE_FMT_UUID:
2891 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2892 ASSERT(whichfork == XFS_DATA_FORK);
2893 memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
2894 sizeof(uuid_t));
2895 }
2896 break;
2897
2898 default:
2899 ASSERT(0);
2900 break;
2901 }
2902 }
2903
2904 STATIC int
2905 xfs_iflush_cluster(
2906 xfs_inode_t *ip,
2907 xfs_buf_t *bp)
2908 {
2909 xfs_mount_t *mp = ip->i_mount;
2910 xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino);
2911 unsigned long first_index, mask;
2912 unsigned long inodes_per_cluster;
2913 int ilist_size;
2914 xfs_inode_t **ilist;
2915 xfs_inode_t *iq;
2916 int nr_found;
2917 int clcount = 0;
2918 int bufwasdelwri;
2919 int i;
2920
2921 ASSERT(pag->pagi_inodeok);
2922 ASSERT(pag->pag_ici_init);
2923
2924 inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2925 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2926 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2927 if (!ilist)
2928 return 0;
2929
2930 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2931 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2932 read_lock(&pag->pag_ici_lock);
2933 /* really need a gang lookup range call here */
2934 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2935 first_index, inodes_per_cluster);
2936 if (nr_found == 0)
2937 goto out_free;
2938
2939 for (i = 0; i < nr_found; i++) {
2940 iq = ilist[i];
2941 if (iq == ip)
2942 continue;
2943 /* if the inode lies outside this cluster, we're done. */
2944 if ((XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index)
2945 break;
2946 /*
2947 * Do an un-protected check to see if the inode is dirty and
2948 * is a candidate for flushing. These checks will be repeated
2949 * later after the appropriate locks are acquired.
2950 */
2951 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
2952 continue;
2953
2954 /*
2955 * Try to get locks. If any are unavailable or it is pinned,
2956 * then this inode cannot be flushed and is skipped.
2957 */
2958
2959 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2960 continue;
2961 if (!xfs_iflock_nowait(iq)) {
2962 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2963 continue;
2964 }
2965 if (xfs_ipincount(iq)) {
2966 xfs_ifunlock(iq);
2967 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2968 continue;
2969 }
2970
2971 /*
2972 * arriving here means that this inode can be flushed. First
2973 * re-check that it's dirty before flushing.
2974 */
2975 if (!xfs_inode_clean(iq)) {
2976 int error;
2977 error = xfs_iflush_int(iq, bp);
2978 if (error) {
2979 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2980 goto cluster_corrupt_out;
2981 }
2982 clcount++;
2983 } else {
2984 xfs_ifunlock(iq);
2985 }
2986 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2987 }
2988
2989 if (clcount) {
2990 XFS_STATS_INC(xs_icluster_flushcnt);
2991 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2992 }
2993
2994 out_free:
2995 read_unlock(&pag->pag_ici_lock);
2996 kmem_free(ilist);
2997 return 0;
2998
2999
3000 cluster_corrupt_out:
3001 /*
3002 * Corruption detected in the clustering loop. Invalidate the
3003 * inode buffer and shut down the filesystem.
3004 */
3005 read_unlock(&pag->pag_ici_lock);
3006 /*
3007 * Clean up the buffer. If it was B_DELWRI, just release it --
3008 * brelse can handle it with no problems. If not, shut down the
3009 * filesystem before releasing the buffer.
3010 */
3011 bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
3012 if (bufwasdelwri)
3013 xfs_buf_relse(bp);
3014
3015 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3016
3017 if (!bufwasdelwri) {
3018 /*
3019 * Just like incore_relse: if we have b_iodone functions,
3020 * mark the buffer as an error and call them. Otherwise
3021 * mark it as stale and brelse.
3022 */
3023 if (XFS_BUF_IODONE_FUNC(bp)) {
3024 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
3025 XFS_BUF_UNDONE(bp);
3026 XFS_BUF_STALE(bp);
3027 XFS_BUF_SHUT(bp);
3028 XFS_BUF_ERROR(bp,EIO);
3029 xfs_biodone(bp);
3030 } else {
3031 XFS_BUF_STALE(bp);
3032 xfs_buf_relse(bp);
3033 }
3034 }
3035
3036 /*
3037 * Unlocks the flush lock
3038 */
3039 xfs_iflush_abort(iq);
3040 kmem_free(ilist);
3041 return XFS_ERROR(EFSCORRUPTED);
3042 }
3043
3044 /*
3045 * xfs_iflush() will write a modified inode's changes out to the
3046 * inode's on disk home. The caller must have the inode lock held
3047 * in at least shared mode and the inode flush semaphore must be
3048 * held as well. The inode lock will still be held upon return from
3049 * the call and the caller is free to unlock it.
3050 * The inode flush lock will be unlocked when the inode reaches the disk.
3051 * The flags indicate how the inode's buffer should be written out.
3052 */
3053 int
3054 xfs_iflush(
3055 xfs_inode_t *ip,
3056 uint flags)
3057 {
3058 xfs_inode_log_item_t *iip;
3059 xfs_buf_t *bp;
3060 xfs_dinode_t *dip;
3061 xfs_mount_t *mp;
3062 int error;
3063 int noblock = (flags == XFS_IFLUSH_ASYNC_NOBLOCK);
3064 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
3065
3066 XFS_STATS_INC(xs_iflush_count);
3067
3068 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3069 ASSERT(issemalocked(&(ip->i_flock)));
3070 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3071 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3072
3073 iip = ip->i_itemp;
3074 mp = ip->i_mount;
3075
3076 /*
3077 * If the inode isn't dirty, then just release the inode
3078 * flush lock and do nothing.
3079 */
3080 if (xfs_inode_clean(ip)) {
3081 xfs_ifunlock(ip);
3082 return 0;
3083 }
3084
3085 /*
3086 * We can't flush the inode until it is unpinned, so wait for it if we
3087 * are allowed to block. We know noone new can pin it, because we are
3088 * holding the inode lock shared and you need to hold it exclusively to
3089 * pin the inode.
3090 *
3091 * If we are not allowed to block, force the log out asynchronously so
3092 * that when we come back the inode will be unpinned. If other inodes
3093 * in the same cluster are dirty, they will probably write the inode
3094 * out for us if they occur after the log force completes.
3095 */
3096 if (noblock && xfs_ipincount(ip)) {
3097 xfs_iunpin_nowait(ip);
3098 xfs_ifunlock(ip);
3099 return EAGAIN;
3100 }
3101 xfs_iunpin_wait(ip);
3102
3103 /*
3104 * This may have been unpinned because the filesystem is shutting
3105 * down forcibly. If that's the case we must not write this inode
3106 * to disk, because the log record didn't make it to disk!
3107 */
3108 if (XFS_FORCED_SHUTDOWN(mp)) {
3109 ip->i_update_core = 0;
3110 if (iip)
3111 iip->ili_format.ilf_fields = 0;
3112 xfs_ifunlock(ip);
3113 return XFS_ERROR(EIO);
3114 }
3115
3116 /*
3117 * Decide how buffer will be flushed out. This is done before
3118 * the call to xfs_iflush_int because this field is zeroed by it.
3119 */
3120 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3121 /*
3122 * Flush out the inode buffer according to the directions
3123 * of the caller. In the cases where the caller has given
3124 * us a choice choose the non-delwri case. This is because
3125 * the inode is in the AIL and we need to get it out soon.
3126 */
3127 switch (flags) {
3128 case XFS_IFLUSH_SYNC:
3129 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3130 flags = 0;
3131 break;
3132 case XFS_IFLUSH_ASYNC_NOBLOCK:
3133 case XFS_IFLUSH_ASYNC:
3134 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3135 flags = INT_ASYNC;
3136 break;
3137 case XFS_IFLUSH_DELWRI:
3138 flags = INT_DELWRI;
3139 break;
3140 default:
3141 ASSERT(0);
3142 flags = 0;
3143 break;
3144 }
3145 } else {
3146 switch (flags) {
3147 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3148 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3149 case XFS_IFLUSH_DELWRI:
3150 flags = INT_DELWRI;
3151 break;
3152 case XFS_IFLUSH_ASYNC_NOBLOCK:
3153 case XFS_IFLUSH_ASYNC:
3154 flags = INT_ASYNC;
3155 break;
3156 case XFS_IFLUSH_SYNC:
3157 flags = 0;
3158 break;
3159 default:
3160 ASSERT(0);
3161 flags = 0;
3162 break;
3163 }
3164 }
3165
3166 /*
3167 * Get the buffer containing the on-disk inode.
3168 */
3169 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0,
3170 noblock ? XFS_BUF_TRYLOCK : XFS_BUF_LOCK);
3171 if (error || !bp) {
3172 xfs_ifunlock(ip);
3173 return error;
3174 }
3175
3176 /*
3177 * First flush out the inode that xfs_iflush was called with.
3178 */
3179 error = xfs_iflush_int(ip, bp);
3180 if (error)
3181 goto corrupt_out;
3182
3183 /*
3184 * If the buffer is pinned then push on the log now so we won't
3185 * get stuck waiting in the write for too long.
3186 */
3187 if (XFS_BUF_ISPINNED(bp))
3188 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3189
3190 /*
3191 * inode clustering:
3192 * see if other inodes can be gathered into this write
3193 */
3194 error = xfs_iflush_cluster(ip, bp);
3195 if (error)
3196 goto cluster_corrupt_out;
3197
3198 if (flags & INT_DELWRI) {
3199 xfs_bdwrite(mp, bp);
3200 } else if (flags & INT_ASYNC) {
3201 error = xfs_bawrite(mp, bp);
3202 } else {
3203 error = xfs_bwrite(mp, bp);
3204 }
3205 return error;
3206
3207 corrupt_out:
3208 xfs_buf_relse(bp);
3209 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3210 cluster_corrupt_out:
3211 /*
3212 * Unlocks the flush lock
3213 */
3214 xfs_iflush_abort(ip);
3215 return XFS_ERROR(EFSCORRUPTED);
3216 }
3217
3218
3219 STATIC int
3220 xfs_iflush_int(
3221 xfs_inode_t *ip,
3222 xfs_buf_t *bp)
3223 {
3224 xfs_inode_log_item_t *iip;
3225 xfs_dinode_t *dip;
3226 xfs_mount_t *mp;
3227 #ifdef XFS_TRANS_DEBUG
3228 int first;
3229 #endif
3230
3231 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3232 ASSERT(issemalocked(&(ip->i_flock)));
3233 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3234 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3235
3236 iip = ip->i_itemp;
3237 mp = ip->i_mount;
3238
3239
3240 /*
3241 * If the inode isn't dirty, then just release the inode
3242 * flush lock and do nothing.
3243 */
3244 if (xfs_inode_clean(ip)) {
3245 xfs_ifunlock(ip);
3246 return 0;
3247 }
3248
3249 /* set *dip = inode's place in the buffer */
3250 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
3251
3252 /*
3253 * Clear i_update_core before copying out the data.
3254 * This is for coordination with our timestamp updates
3255 * that don't hold the inode lock. They will always
3256 * update the timestamps BEFORE setting i_update_core,
3257 * so if we clear i_update_core after they set it we
3258 * are guaranteed to see their updates to the timestamps.
3259 * I believe that this depends on strongly ordered memory
3260 * semantics, but we have that. We use the SYNCHRONIZE
3261 * macro to make sure that the compiler does not reorder
3262 * the i_update_core access below the data copy below.
3263 */
3264 ip->i_update_core = 0;
3265 SYNCHRONIZE();
3266
3267 /*
3268 * Make sure to get the latest atime from the Linux inode.
3269 */
3270 xfs_synchronize_atime(ip);
3271
3272 if (XFS_TEST_ERROR(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC,
3273 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3274 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3275 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3276 ip->i_ino, be16_to_cpu(dip->di_core.di_magic), dip);
3277 goto corrupt_out;
3278 }
3279 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3280 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3281 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3282 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3283 ip->i_ino, ip, ip->i_d.di_magic);
3284 goto corrupt_out;
3285 }
3286 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3287 if (XFS_TEST_ERROR(
3288 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3289 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3290 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3291 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3292 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3293 ip->i_ino, ip);
3294 goto corrupt_out;
3295 }
3296 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3297 if (XFS_TEST_ERROR(
3298 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3299 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3300 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3301 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3302 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3303 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3304 ip->i_ino, ip);
3305 goto corrupt_out;
3306 }
3307 }
3308 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3309 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3310 XFS_RANDOM_IFLUSH_5)) {
3311 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3312 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3313 ip->i_ino,
3314 ip->i_d.di_nextents + ip->i_d.di_anextents,
3315 ip->i_d.di_nblocks,
3316 ip);
3317 goto corrupt_out;
3318 }
3319 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3320 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3321 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3322 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3323 ip->i_ino, ip->i_d.di_forkoff, ip);
3324 goto corrupt_out;
3325 }
3326 /*
3327 * bump the flush iteration count, used to detect flushes which
3328 * postdate a log record during recovery.
3329 */
3330
3331 ip->i_d.di_flushiter++;
3332
3333 /*
3334 * Copy the dirty parts of the inode into the on-disk
3335 * inode. We always copy out the core of the inode,
3336 * because if the inode is dirty at all the core must
3337 * be.
3338 */
3339 xfs_dinode_to_disk(&dip->di_core, &ip->i_d);
3340
3341 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3342 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3343 ip->i_d.di_flushiter = 0;
3344
3345 /*
3346 * If this is really an old format inode and the superblock version
3347 * has not been updated to support only new format inodes, then
3348 * convert back to the old inode format. If the superblock version
3349 * has been updated, then make the conversion permanent.
3350 */
3351 ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
3352 xfs_sb_version_hasnlink(&mp->m_sb));
3353 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
3354 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
3355 /*
3356 * Convert it back.
3357 */
3358 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3359 dip->di_core.di_onlink = cpu_to_be16(ip->i_d.di_nlink);
3360 } else {
3361 /*
3362 * The superblock version has already been bumped,
3363 * so just make the conversion to the new inode
3364 * format permanent.
3365 */
3366 ip->i_d.di_version = XFS_DINODE_VERSION_2;
3367 dip->di_core.di_version = XFS_DINODE_VERSION_2;
3368 ip->i_d.di_onlink = 0;
3369 dip->di_core.di_onlink = 0;
3370 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3371 memset(&(dip->di_core.di_pad[0]), 0,
3372 sizeof(dip->di_core.di_pad));
3373 ASSERT(ip->i_d.di_projid == 0);
3374 }
3375 }
3376
3377 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
3378 if (XFS_IFORK_Q(ip))
3379 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3380 xfs_inobp_check(mp, bp);
3381
3382 /*
3383 * We've recorded everything logged in the inode, so we'd
3384 * like to clear the ilf_fields bits so we don't log and
3385 * flush things unnecessarily. However, we can't stop
3386 * logging all this information until the data we've copied
3387 * into the disk buffer is written to disk. If we did we might
3388 * overwrite the copy of the inode in the log with all the
3389 * data after re-logging only part of it, and in the face of
3390 * a crash we wouldn't have all the data we need to recover.
3391 *
3392 * What we do is move the bits to the ili_last_fields field.
3393 * When logging the inode, these bits are moved back to the
3394 * ilf_fields field. In the xfs_iflush_done() routine we
3395 * clear ili_last_fields, since we know that the information
3396 * those bits represent is permanently on disk. As long as
3397 * the flush completes before the inode is logged again, then
3398 * both ilf_fields and ili_last_fields will be cleared.
3399 *
3400 * We can play with the ilf_fields bits here, because the inode
3401 * lock must be held exclusively in order to set bits there
3402 * and the flush lock protects the ili_last_fields bits.
3403 * Set ili_logged so the flush done
3404 * routine can tell whether or not to look in the AIL.
3405 * Also, store the current LSN of the inode so that we can tell
3406 * whether the item has moved in the AIL from xfs_iflush_done().
3407 * In order to read the lsn we need the AIL lock, because
3408 * it is a 64 bit value that cannot be read atomically.
3409 */
3410 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3411 iip->ili_last_fields = iip->ili_format.ilf_fields;
3412 iip->ili_format.ilf_fields = 0;
3413 iip->ili_logged = 1;
3414
3415 ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
3416 spin_lock(&mp->m_ail_lock);
3417 iip->ili_flush_lsn = iip->ili_item.li_lsn;
3418 spin_unlock(&mp->m_ail_lock);
3419
3420 /*
3421 * Attach the function xfs_iflush_done to the inode's
3422 * buffer. This will remove the inode from the AIL
3423 * and unlock the inode's flush lock when the inode is
3424 * completely written to disk.
3425 */
3426 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3427 xfs_iflush_done, (xfs_log_item_t *)iip);
3428
3429 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3430 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3431 } else {
3432 /*
3433 * We're flushing an inode which is not in the AIL and has
3434 * not been logged but has i_update_core set. For this
3435 * case we can use a B_DELWRI flush and immediately drop
3436 * the inode flush lock because we can avoid the whole
3437 * AIL state thing. It's OK to drop the flush lock now,
3438 * because we've already locked the buffer and to do anything
3439 * you really need both.
3440 */
3441 if (iip != NULL) {
3442 ASSERT(iip->ili_logged == 0);
3443 ASSERT(iip->ili_last_fields == 0);
3444 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3445 }
3446 xfs_ifunlock(ip);
3447 }
3448
3449 return 0;
3450
3451 corrupt_out:
3452 return XFS_ERROR(EFSCORRUPTED);
3453 }
3454
3455
3456 /*
3457 * Flush all inactive inodes in mp.
3458 */
3459 void
3460 xfs_iflush_all(
3461 xfs_mount_t *mp)
3462 {
3463 xfs_inode_t *ip;
3464
3465 again:
3466 XFS_MOUNT_ILOCK(mp);
3467 ip = mp->m_inodes;
3468 if (ip == NULL)
3469 goto out;
3470
3471 do {
3472 /* Make sure we skip markers inserted by sync */
3473 if (ip->i_mount == NULL) {
3474 ip = ip->i_mnext;
3475 continue;
3476 }
3477
3478 if (!VFS_I(ip)) {
3479 XFS_MOUNT_IUNLOCK(mp);
3480 xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
3481 goto again;
3482 }
3483
3484 ASSERT(vn_count(VFS_I(ip)) == 0);
3485
3486 ip = ip->i_mnext;
3487 } while (ip != mp->m_inodes);
3488 out:
3489 XFS_MOUNT_IUNLOCK(mp);
3490 }
3491
3492 #ifdef XFS_ILOCK_TRACE
3493 ktrace_t *xfs_ilock_trace_buf;
3494
3495 void
3496 xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3497 {
3498 ktrace_enter(ip->i_lock_trace,
3499 (void *)ip,
3500 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3501 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3502 (void *)ra, /* caller of ilock */
3503 (void *)(unsigned long)current_cpu(),
3504 (void *)(unsigned long)current_pid(),
3505 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3506 }
3507 #endif
3508
3509 /*
3510 * Return a pointer to the extent record at file index idx.
3511 */
3512 xfs_bmbt_rec_host_t *
3513 xfs_iext_get_ext(
3514 xfs_ifork_t *ifp, /* inode fork pointer */
3515 xfs_extnum_t idx) /* index of target extent */
3516 {
3517 ASSERT(idx >= 0);
3518 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3519 return ifp->if_u1.if_ext_irec->er_extbuf;
3520 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3521 xfs_ext_irec_t *erp; /* irec pointer */
3522 int erp_idx = 0; /* irec index */
3523 xfs_extnum_t page_idx = idx; /* ext index in target list */
3524
3525 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3526 return &erp->er_extbuf[page_idx];
3527 } else if (ifp->if_bytes) {
3528 return &ifp->if_u1.if_extents[idx];
3529 } else {
3530 return NULL;
3531 }
3532 }
3533
3534 /*
3535 * Insert new item(s) into the extent records for incore inode
3536 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3537 */
3538 void
3539 xfs_iext_insert(
3540 xfs_ifork_t *ifp, /* inode fork pointer */
3541 xfs_extnum_t idx, /* starting index of new items */
3542 xfs_extnum_t count, /* number of inserted items */
3543 xfs_bmbt_irec_t *new) /* items to insert */
3544 {
3545 xfs_extnum_t i; /* extent record index */
3546
3547 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3548 xfs_iext_add(ifp, idx, count);
3549 for (i = idx; i < idx + count; i++, new++)
3550 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
3551 }
3552
3553 /*
3554 * This is called when the amount of space required for incore file
3555 * extents needs to be increased. The ext_diff parameter stores the
3556 * number of new extents being added and the idx parameter contains
3557 * the extent index where the new extents will be added. If the new
3558 * extents are being appended, then we just need to (re)allocate and
3559 * initialize the space. Otherwise, if the new extents are being
3560 * inserted into the middle of the existing entries, a bit more work
3561 * is required to make room for the new extents to be inserted. The
3562 * caller is responsible for filling in the new extent entries upon
3563 * return.
3564 */
3565 void
3566 xfs_iext_add(
3567 xfs_ifork_t *ifp, /* inode fork pointer */
3568 xfs_extnum_t idx, /* index to begin adding exts */
3569 int ext_diff) /* number of extents to add */
3570 {
3571 int byte_diff; /* new bytes being added */
3572 int new_size; /* size of extents after adding */
3573 xfs_extnum_t nextents; /* number of extents in file */
3574
3575 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3576 ASSERT((idx >= 0) && (idx <= nextents));
3577 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3578 new_size = ifp->if_bytes + byte_diff;
3579 /*
3580 * If the new number of extents (nextents + ext_diff)
3581 * fits inside the inode, then continue to use the inline
3582 * extent buffer.
3583 */
3584 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3585 if (idx < nextents) {
3586 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3587 &ifp->if_u2.if_inline_ext[idx],
3588 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3589 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3590 }
3591 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3592 ifp->if_real_bytes = 0;
3593 ifp->if_lastex = nextents + ext_diff;
3594 }
3595 /*
3596 * Otherwise use a linear (direct) extent list.
3597 * If the extents are currently inside the inode,
3598 * xfs_iext_realloc_direct will switch us from
3599 * inline to direct extent allocation mode.
3600 */
3601 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
3602 xfs_iext_realloc_direct(ifp, new_size);
3603 if (idx < nextents) {
3604 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3605 &ifp->if_u1.if_extents[idx],
3606 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3607 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3608 }
3609 }
3610 /* Indirection array */
3611 else {
3612 xfs_ext_irec_t *erp;
3613 int erp_idx = 0;
3614 int page_idx = idx;
3615
3616 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3617 if (ifp->if_flags & XFS_IFEXTIREC) {
3618 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3619 } else {
3620 xfs_iext_irec_init(ifp);
3621 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3622 erp = ifp->if_u1.if_ext_irec;
3623 }
3624 /* Extents fit in target extent page */
3625 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3626 if (page_idx < erp->er_extcount) {
3627 memmove(&erp->er_extbuf[page_idx + ext_diff],
3628 &erp->er_extbuf[page_idx],
3629 (erp->er_extcount - page_idx) *
3630 sizeof(xfs_bmbt_rec_t));
3631 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3632 }
3633 erp->er_extcount += ext_diff;
3634 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3635 }
3636 /* Insert a new extent page */
3637 else if (erp) {
3638 xfs_iext_add_indirect_multi(ifp,
3639 erp_idx, page_idx, ext_diff);
3640 }
3641 /*
3642 * If extent(s) are being appended to the last page in
3643 * the indirection array and the new extent(s) don't fit
3644 * in the page, then erp is NULL and erp_idx is set to
3645 * the next index needed in the indirection array.
3646 */
3647 else {
3648 int count = ext_diff;
3649
3650 while (count) {
3651 erp = xfs_iext_irec_new(ifp, erp_idx);
3652 erp->er_extcount = count;
3653 count -= MIN(count, (int)XFS_LINEAR_EXTS);
3654 if (count) {
3655 erp_idx++;
3656 }
3657 }
3658 }
3659 }
3660 ifp->if_bytes = new_size;
3661 }
3662
3663 /*
3664 * This is called when incore extents are being added to the indirection
3665 * array and the new extents do not fit in the target extent list. The
3666 * erp_idx parameter contains the irec index for the target extent list
3667 * in the indirection array, and the idx parameter contains the extent
3668 * index within the list. The number of extents being added is stored
3669 * in the count parameter.
3670 *
3671 * |-------| |-------|
3672 * | | | | idx - number of extents before idx
3673 * | idx | | count |
3674 * | | | | count - number of extents being inserted at idx
3675 * |-------| |-------|
3676 * | count | | nex2 | nex2 - number of extents after idx + count
3677 * |-------| |-------|
3678 */
3679 void
3680 xfs_iext_add_indirect_multi(
3681 xfs_ifork_t *ifp, /* inode fork pointer */
3682 int erp_idx, /* target extent irec index */
3683 xfs_extnum_t idx, /* index within target list */
3684 int count) /* new extents being added */
3685 {
3686 int byte_diff; /* new bytes being added */
3687 xfs_ext_irec_t *erp; /* pointer to irec entry */
3688 xfs_extnum_t ext_diff; /* number of extents to add */
3689 xfs_extnum_t ext_cnt; /* new extents still needed */
3690 xfs_extnum_t nex2; /* extents after idx + count */
3691 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3692 int nlists; /* number of irec's (lists) */
3693
3694 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3695 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3696 nex2 = erp->er_extcount - idx;
3697 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3698
3699 /*
3700 * Save second part of target extent list
3701 * (all extents past */
3702 if (nex2) {
3703 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3704 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
3705 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3706 erp->er_extcount -= nex2;
3707 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3708 memset(&erp->er_extbuf[idx], 0, byte_diff);
3709 }
3710
3711 /*
3712 * Add the new extents to the end of the target
3713 * list, then allocate new irec record(s) and
3714 * extent buffer(s) as needed to store the rest
3715 * of the new extents.
3716 */
3717 ext_cnt = count;
3718 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3719 if (ext_diff) {
3720 erp->er_extcount += ext_diff;
3721 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3722 ext_cnt -= ext_diff;
3723 }
3724 while (ext_cnt) {
3725 erp_idx++;
3726 erp = xfs_iext_irec_new(ifp, erp_idx);
3727 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3728 erp->er_extcount = ext_diff;
3729 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3730 ext_cnt -= ext_diff;
3731 }
3732
3733 /* Add nex2 extents back to indirection array */
3734 if (nex2) {
3735 xfs_extnum_t ext_avail;
3736 int i;
3737
3738 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3739 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3740 i = 0;
3741 /*
3742 * If nex2 extents fit in the current page, append
3743 * nex2_ep after the new extents.
3744 */
3745 if (nex2 <= ext_avail) {
3746 i = erp->er_extcount;
3747 }
3748 /*
3749 * Otherwise, check if space is available in the
3750 * next page.
3751 */
3752 else if ((erp_idx < nlists - 1) &&
3753 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3754 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3755 erp_idx++;
3756 erp++;
3757 /* Create a hole for nex2 extents */
3758 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3759 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3760 }
3761 /*
3762 * Final choice, create a new extent page for
3763 * nex2 extents.
3764 */
3765 else {
3766 erp_idx++;
3767 erp = xfs_iext_irec_new(ifp, erp_idx);
3768 }
3769 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3770 kmem_free(nex2_ep);
3771 erp->er_extcount += nex2;
3772 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3773 }
3774 }
3775
3776 /*
3777 * This is called when the amount of space required for incore file
3778 * extents needs to be decreased. The ext_diff parameter stores the
3779 * number of extents to be removed and the idx parameter contains
3780 * the extent index where the extents will be removed from.
3781 *
3782 * If the amount of space needed has decreased below the linear
3783 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3784 * extent array. Otherwise, use kmem_realloc() to adjust the
3785 * size to what is needed.
3786 */
3787 void
3788 xfs_iext_remove(
3789 xfs_ifork_t *ifp, /* inode fork pointer */
3790 xfs_extnum_t idx, /* index to begin removing exts */
3791 int ext_diff) /* number of extents to remove */
3792 {
3793 xfs_extnum_t nextents; /* number of extents in file */
3794 int new_size; /* size of extents after removal */
3795
3796 ASSERT(ext_diff > 0);
3797 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3798 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3799
3800 if (new_size == 0) {
3801 xfs_iext_destroy(ifp);
3802 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3803 xfs_iext_remove_indirect(ifp, idx, ext_diff);
3804 } else if (ifp->if_real_bytes) {
3805 xfs_iext_remove_direct(ifp, idx, ext_diff);
3806 } else {
3807 xfs_iext_remove_inline(ifp, idx, ext_diff);
3808 }
3809 ifp->if_bytes = new_size;
3810 }
3811
3812 /*
3813 * This removes ext_diff extents from the inline buffer, beginning
3814 * at extent index idx.
3815 */
3816 void
3817 xfs_iext_remove_inline(
3818 xfs_ifork_t *ifp, /* inode fork pointer */
3819 xfs_extnum_t idx, /* index to begin removing exts */
3820 int ext_diff) /* number of extents to remove */
3821 {
3822 int nextents; /* number of extents in file */
3823
3824 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3825 ASSERT(idx < XFS_INLINE_EXTS);
3826 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3827 ASSERT(((nextents - ext_diff) > 0) &&
3828 (nextents - ext_diff) < XFS_INLINE_EXTS);
3829
3830 if (idx + ext_diff < nextents) {
3831 memmove(&ifp->if_u2.if_inline_ext[idx],
3832 &ifp->if_u2.if_inline_ext[idx + ext_diff],
3833 (nextents - (idx + ext_diff)) *
3834 sizeof(xfs_bmbt_rec_t));
3835 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3836 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3837 } else {
3838 memset(&ifp->if_u2.if_inline_ext[idx], 0,
3839 ext_diff * sizeof(xfs_bmbt_rec_t));
3840 }
3841 }
3842
3843 /*
3844 * This removes ext_diff extents from a linear (direct) extent list,
3845 * beginning at extent index idx. If the extents are being removed
3846 * from the end of the list (ie. truncate) then we just need to re-
3847 * allocate the list to remove the extra space. Otherwise, if the
3848 * extents are being removed from the middle of the existing extent
3849 * entries, then we first need to move the extent records beginning
3850 * at idx + ext_diff up in the list to overwrite the records being
3851 * removed, then remove the extra space via kmem_realloc.
3852 */
3853 void
3854 xfs_iext_remove_direct(
3855 xfs_ifork_t *ifp, /* inode fork pointer */
3856 xfs_extnum_t idx, /* index to begin removing exts */
3857 int ext_diff) /* number of extents to remove */
3858 {
3859 xfs_extnum_t nextents; /* number of extents in file */
3860 int new_size; /* size of extents after removal */
3861
3862 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3863 new_size = ifp->if_bytes -
3864 (ext_diff * sizeof(xfs_bmbt_rec_t));
3865 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3866
3867 if (new_size == 0) {
3868 xfs_iext_destroy(ifp);
3869 return;
3870 }
3871 /* Move extents up in the list (if needed) */
3872 if (idx + ext_diff < nextents) {
3873 memmove(&ifp->if_u1.if_extents[idx],
3874 &ifp->if_u1.if_extents[idx + ext_diff],
3875 (nextents - (idx + ext_diff)) *
3876 sizeof(xfs_bmbt_rec_t));
3877 }
3878 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3879 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3880 /*
3881 * Reallocate the direct extent list. If the extents
3882 * will fit inside the inode then xfs_iext_realloc_direct
3883 * will switch from direct to inline extent allocation
3884 * mode for us.
3885 */
3886 xfs_iext_realloc_direct(ifp, new_size);
3887 ifp->if_bytes = new_size;
3888 }
3889
3890 /*
3891 * This is called when incore extents are being removed from the
3892 * indirection array and the extents being removed span multiple extent
3893 * buffers. The idx parameter contains the file extent index where we
3894 * want to begin removing extents, and the count parameter contains
3895 * how many extents need to be removed.
3896 *
3897 * |-------| |-------|
3898 * | nex1 | | | nex1 - number of extents before idx
3899 * |-------| | count |
3900 * | | | | count - number of extents being removed at idx
3901 * | count | |-------|
3902 * | | | nex2 | nex2 - number of extents after idx + count
3903 * |-------| |-------|
3904 */
3905 void
3906 xfs_iext_remove_indirect(
3907 xfs_ifork_t *ifp, /* inode fork pointer */
3908 xfs_extnum_t idx, /* index to begin removing extents */
3909 int count) /* number of extents to remove */
3910 {
3911 xfs_ext_irec_t *erp; /* indirection array pointer */
3912 int erp_idx = 0; /* indirection array index */
3913 xfs_extnum_t ext_cnt; /* extents left to remove */
3914 xfs_extnum_t ext_diff; /* extents to remove in current list */
3915 xfs_extnum_t nex1; /* number of extents before idx */
3916 xfs_extnum_t nex2; /* extents after idx + count */
3917 int nlists; /* entries in indirection array */
3918 int page_idx = idx; /* index in target extent list */
3919
3920 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3921 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3922 ASSERT(erp != NULL);
3923 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3924 nex1 = page_idx;
3925 ext_cnt = count;
3926 while (ext_cnt) {
3927 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3928 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3929 /*
3930 * Check for deletion of entire list;
3931 * xfs_iext_irec_remove() updates extent offsets.
3932 */
3933 if (ext_diff == erp->er_extcount) {
3934 xfs_iext_irec_remove(ifp, erp_idx);
3935 ext_cnt -= ext_diff;
3936 nex1 = 0;
3937 if (ext_cnt) {
3938 ASSERT(erp_idx < ifp->if_real_bytes /
3939 XFS_IEXT_BUFSZ);
3940 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3941 nex1 = 0;
3942 continue;
3943 } else {
3944 break;
3945 }
3946 }
3947 /* Move extents up (if needed) */
3948 if (nex2) {
3949 memmove(&erp->er_extbuf[nex1],
3950 &erp->er_extbuf[nex1 + ext_diff],
3951 nex2 * sizeof(xfs_bmbt_rec_t));
3952 }
3953 /* Zero out rest of page */
3954 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3955 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3956 /* Update remaining counters */
3957 erp->er_extcount -= ext_diff;
3958 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3959 ext_cnt -= ext_diff;
3960 nex1 = 0;
3961 erp_idx++;
3962 erp++;
3963 }
3964 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3965 xfs_iext_irec_compact(ifp);
3966 }
3967
3968 /*
3969 * Create, destroy, or resize a linear (direct) block of extents.
3970 */
3971 void
3972 xfs_iext_realloc_direct(
3973 xfs_ifork_t *ifp, /* inode fork pointer */
3974 int new_size) /* new size of extents */
3975 {
3976 int rnew_size; /* real new size of extents */
3977
3978 rnew_size = new_size;
3979
3980 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
3981 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
3982 (new_size != ifp->if_real_bytes)));
3983
3984 /* Free extent records */
3985 if (new_size == 0) {
3986 xfs_iext_destroy(ifp);
3987 }
3988 /* Resize direct extent list and zero any new bytes */
3989 else if (ifp->if_real_bytes) {
3990 /* Check if extents will fit inside the inode */
3991 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
3992 xfs_iext_direct_to_inline(ifp, new_size /
3993 (uint)sizeof(xfs_bmbt_rec_t));
3994 ifp->if_bytes = new_size;
3995 return;
3996 }
3997 if (!is_power_of_2(new_size)){
3998 rnew_size = roundup_pow_of_two(new_size);
3999 }
4000 if (rnew_size != ifp->if_real_bytes) {
4001 ifp->if_u1.if_extents =
4002 kmem_realloc(ifp->if_u1.if_extents,
4003 rnew_size,
4004 ifp->if_real_bytes, KM_NOFS);
4005 }
4006 if (rnew_size > ifp->if_real_bytes) {
4007 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
4008 (uint)sizeof(xfs_bmbt_rec_t)], 0,
4009 rnew_size - ifp->if_real_bytes);
4010 }
4011 }
4012 /*
4013 * Switch from the inline extent buffer to a direct
4014 * extent list. Be sure to include the inline extent
4015 * bytes in new_size.
4016 */
4017 else {
4018 new_size += ifp->if_bytes;
4019 if (!is_power_of_2(new_size)) {
4020 rnew_size = roundup_pow_of_two(new_size);
4021 }
4022 xfs_iext_inline_to_direct(ifp, rnew_size);
4023 }
4024 ifp->if_real_bytes = rnew_size;
4025 ifp->if_bytes = new_size;
4026 }
4027
4028 /*
4029 * Switch from linear (direct) extent records to inline buffer.
4030 */
4031 void
4032 xfs_iext_direct_to_inline(
4033 xfs_ifork_t *ifp, /* inode fork pointer */
4034 xfs_extnum_t nextents) /* number of extents in file */
4035 {
4036 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
4037 ASSERT(nextents <= XFS_INLINE_EXTS);
4038 /*
4039 * The inline buffer was zeroed when we switched
4040 * from inline to direct extent allocation mode,
4041 * so we don't need to clear it here.
4042 */
4043 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
4044 nextents * sizeof(xfs_bmbt_rec_t));
4045 kmem_free(ifp->if_u1.if_extents);
4046 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4047 ifp->if_real_bytes = 0;
4048 }
4049
4050 /*
4051 * Switch from inline buffer to linear (direct) extent records.
4052 * new_size should already be rounded up to the next power of 2
4053 * by the caller (when appropriate), so use new_size as it is.
4054 * However, since new_size may be rounded up, we can't update
4055 * if_bytes here. It is the caller's responsibility to update
4056 * if_bytes upon return.
4057 */
4058 void
4059 xfs_iext_inline_to_direct(
4060 xfs_ifork_t *ifp, /* inode fork pointer */
4061 int new_size) /* number of extents in file */
4062 {
4063 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
4064 memset(ifp->if_u1.if_extents, 0, new_size);
4065 if (ifp->if_bytes) {
4066 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
4067 ifp->if_bytes);
4068 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4069 sizeof(xfs_bmbt_rec_t));
4070 }
4071 ifp->if_real_bytes = new_size;
4072 }
4073
4074 /*
4075 * Resize an extent indirection array to new_size bytes.
4076 */
4077 void
4078 xfs_iext_realloc_indirect(
4079 xfs_ifork_t *ifp, /* inode fork pointer */
4080 int new_size) /* new indirection array size */
4081 {
4082 int nlists; /* number of irec's (ex lists) */
4083 int size; /* current indirection array size */
4084
4085 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4086 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4087 size = nlists * sizeof(xfs_ext_irec_t);
4088 ASSERT(ifp->if_real_bytes);
4089 ASSERT((new_size >= 0) && (new_size != size));
4090 if (new_size == 0) {
4091 xfs_iext_destroy(ifp);
4092 } else {
4093 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
4094 kmem_realloc(ifp->if_u1.if_ext_irec,
4095 new_size, size, KM_NOFS);
4096 }
4097 }
4098
4099 /*
4100 * Switch from indirection array to linear (direct) extent allocations.
4101 */
4102 void
4103 xfs_iext_indirect_to_direct(
4104 xfs_ifork_t *ifp) /* inode fork pointer */
4105 {
4106 xfs_bmbt_rec_host_t *ep; /* extent record pointer */
4107 xfs_extnum_t nextents; /* number of extents in file */
4108 int size; /* size of file extents */
4109
4110 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4111 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4112 ASSERT(nextents <= XFS_LINEAR_EXTS);
4113 size = nextents * sizeof(xfs_bmbt_rec_t);
4114
4115 xfs_iext_irec_compact_full(ifp);
4116 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
4117
4118 ep = ifp->if_u1.if_ext_irec->er_extbuf;
4119 kmem_free(ifp->if_u1.if_ext_irec);
4120 ifp->if_flags &= ~XFS_IFEXTIREC;
4121 ifp->if_u1.if_extents = ep;
4122 ifp->if_bytes = size;
4123 if (nextents < XFS_LINEAR_EXTS) {
4124 xfs_iext_realloc_direct(ifp, size);
4125 }
4126 }
4127
4128 /*
4129 * Free incore file extents.
4130 */
4131 void
4132 xfs_iext_destroy(
4133 xfs_ifork_t *ifp) /* inode fork pointer */
4134 {
4135 if (ifp->if_flags & XFS_IFEXTIREC) {
4136 int erp_idx;
4137 int nlists;
4138
4139 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4140 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
4141 xfs_iext_irec_remove(ifp, erp_idx);
4142 }
4143 ifp->if_flags &= ~XFS_IFEXTIREC;
4144 } else if (ifp->if_real_bytes) {
4145 kmem_free(ifp->if_u1.if_extents);
4146 } else if (ifp->if_bytes) {
4147 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4148 sizeof(xfs_bmbt_rec_t));
4149 }
4150 ifp->if_u1.if_extents = NULL;
4151 ifp->if_real_bytes = 0;
4152 ifp->if_bytes = 0;
4153 }
4154
4155 /*
4156 * Return a pointer to the extent record for file system block bno.
4157 */
4158 xfs_bmbt_rec_host_t * /* pointer to found extent record */
4159 xfs_iext_bno_to_ext(
4160 xfs_ifork_t *ifp, /* inode fork pointer */
4161 xfs_fileoff_t bno, /* block number to search for */
4162 xfs_extnum_t *idxp) /* index of target extent */
4163 {
4164 xfs_bmbt_rec_host_t *base; /* pointer to first extent */
4165 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
4166 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
4167 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
4168 int high; /* upper boundary in search */
4169 xfs_extnum_t idx = 0; /* index of target extent */
4170 int low; /* lower boundary in search */
4171 xfs_extnum_t nextents; /* number of file extents */
4172 xfs_fileoff_t startoff = 0; /* start offset of extent */
4173
4174 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4175 if (nextents == 0) {
4176 *idxp = 0;
4177 return NULL;
4178 }
4179 low = 0;
4180 if (ifp->if_flags & XFS_IFEXTIREC) {
4181 /* Find target extent list */
4182 int erp_idx = 0;
4183 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
4184 base = erp->er_extbuf;
4185 high = erp->er_extcount - 1;
4186 } else {
4187 base = ifp->if_u1.if_extents;
4188 high = nextents - 1;
4189 }
4190 /* Binary search extent records */
4191 while (low <= high) {
4192 idx = (low + high) >> 1;
4193 ep = base + idx;
4194 startoff = xfs_bmbt_get_startoff(ep);
4195 blockcount = xfs_bmbt_get_blockcount(ep);
4196 if (bno < startoff) {
4197 high = idx - 1;
4198 } else if (bno >= startoff + blockcount) {
4199 low = idx + 1;
4200 } else {
4201 /* Convert back to file-based extent index */
4202 if (ifp->if_flags & XFS_IFEXTIREC) {
4203 idx += erp->er_extoff;
4204 }
4205 *idxp = idx;
4206 return ep;
4207 }
4208 }
4209 /* Convert back to file-based extent index */
4210 if (ifp->if_flags & XFS_IFEXTIREC) {
4211 idx += erp->er_extoff;
4212 }
4213 if (bno >= startoff + blockcount) {
4214 if (++idx == nextents) {
4215 ep = NULL;
4216 } else {
4217 ep = xfs_iext_get_ext(ifp, idx);
4218 }
4219 }
4220 *idxp = idx;
4221 return ep;
4222 }
4223
4224 /*
4225 * Return a pointer to the indirection array entry containing the
4226 * extent record for filesystem block bno. Store the index of the
4227 * target irec in *erp_idxp.
4228 */
4229 xfs_ext_irec_t * /* pointer to found extent record */
4230 xfs_iext_bno_to_irec(
4231 xfs_ifork_t *ifp, /* inode fork pointer */
4232 xfs_fileoff_t bno, /* block number to search for */
4233 int *erp_idxp) /* irec index of target ext list */
4234 {
4235 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
4236 xfs_ext_irec_t *erp_next; /* next indirection array entry */
4237 int erp_idx; /* indirection array index */
4238 int nlists; /* number of extent irec's (lists) */
4239 int high; /* binary search upper limit */
4240 int low; /* binary search lower limit */
4241
4242 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4243 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4244 erp_idx = 0;
4245 low = 0;
4246 high = nlists - 1;
4247 while (low <= high) {
4248 erp_idx = (low + high) >> 1;
4249 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4250 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
4251 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
4252 high = erp_idx - 1;
4253 } else if (erp_next && bno >=
4254 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
4255 low = erp_idx + 1;
4256 } else {
4257 break;
4258 }
4259 }
4260 *erp_idxp = erp_idx;
4261 return erp;
4262 }
4263
4264 /*
4265 * Return a pointer to the indirection array entry containing the
4266 * extent record at file extent index *idxp. Store the index of the
4267 * target irec in *erp_idxp and store the page index of the target
4268 * extent record in *idxp.
4269 */
4270 xfs_ext_irec_t *
4271 xfs_iext_idx_to_irec(
4272 xfs_ifork_t *ifp, /* inode fork pointer */
4273 xfs_extnum_t *idxp, /* extent index (file -> page) */
4274 int *erp_idxp, /* pointer to target irec */
4275 int realloc) /* new bytes were just added */
4276 {
4277 xfs_ext_irec_t *prev; /* pointer to previous irec */
4278 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
4279 int erp_idx; /* indirection array index */
4280 int nlists; /* number of irec's (ex lists) */
4281 int high; /* binary search upper limit */
4282 int low; /* binary search lower limit */
4283 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
4284
4285 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4286 ASSERT(page_idx >= 0 && page_idx <=
4287 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
4288 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4289 erp_idx = 0;
4290 low = 0;
4291 high = nlists - 1;
4292
4293 /* Binary search extent irec's */
4294 while (low <= high) {
4295 erp_idx = (low + high) >> 1;
4296 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4297 prev = erp_idx > 0 ? erp - 1 : NULL;
4298 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
4299 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
4300 high = erp_idx - 1;
4301 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
4302 (page_idx == erp->er_extoff + erp->er_extcount &&
4303 !realloc)) {
4304 low = erp_idx + 1;
4305 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
4306 erp->er_extcount == XFS_LINEAR_EXTS) {
4307 ASSERT(realloc);
4308 page_idx = 0;
4309 erp_idx++;
4310 erp = erp_idx < nlists ? erp + 1 : NULL;
4311 break;
4312 } else {
4313 page_idx -= erp->er_extoff;
4314 break;
4315 }
4316 }
4317 *idxp = page_idx;
4318 *erp_idxp = erp_idx;
4319 return(erp);
4320 }
4321
4322 /*
4323 * Allocate and initialize an indirection array once the space needed
4324 * for incore extents increases above XFS_IEXT_BUFSZ.
4325 */
4326 void
4327 xfs_iext_irec_init(
4328 xfs_ifork_t *ifp) /* inode fork pointer */
4329 {
4330 xfs_ext_irec_t *erp; /* indirection array pointer */
4331 xfs_extnum_t nextents; /* number of extents in file */
4332
4333 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4334 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4335 ASSERT(nextents <= XFS_LINEAR_EXTS);
4336
4337 erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
4338
4339 if (nextents == 0) {
4340 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
4341 } else if (!ifp->if_real_bytes) {
4342 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
4343 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
4344 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
4345 }
4346 erp->er_extbuf = ifp->if_u1.if_extents;
4347 erp->er_extcount = nextents;
4348 erp->er_extoff = 0;
4349
4350 ifp->if_flags |= XFS_IFEXTIREC;
4351 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
4352 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
4353 ifp->if_u1.if_ext_irec = erp;
4354
4355 return;
4356 }
4357
4358 /*
4359 * Allocate and initialize a new entry in the indirection array.
4360 */
4361 xfs_ext_irec_t *
4362 xfs_iext_irec_new(
4363 xfs_ifork_t *ifp, /* inode fork pointer */
4364 int erp_idx) /* index for new irec */
4365 {
4366 xfs_ext_irec_t *erp; /* indirection array pointer */
4367 int i; /* loop counter */
4368 int nlists; /* number of irec's (ex lists) */
4369
4370 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4371 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4372
4373 /* Resize indirection array */
4374 xfs_iext_realloc_indirect(ifp, ++nlists *
4375 sizeof(xfs_ext_irec_t));
4376 /*
4377 * Move records down in the array so the
4378 * new page can use erp_idx.
4379 */
4380 erp = ifp->if_u1.if_ext_irec;
4381 for (i = nlists - 1; i > erp_idx; i--) {
4382 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4383 }
4384 ASSERT(i == erp_idx);
4385
4386 /* Initialize new extent record */
4387 erp = ifp->if_u1.if_ext_irec;
4388 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
4389 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4390 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4391 erp[erp_idx].er_extcount = 0;
4392 erp[erp_idx].er_extoff = erp_idx > 0 ?
4393 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4394 return (&erp[erp_idx]);
4395 }
4396
4397 /*
4398 * Remove a record from the indirection array.
4399 */
4400 void
4401 xfs_iext_irec_remove(
4402 xfs_ifork_t *ifp, /* inode fork pointer */
4403 int erp_idx) /* irec index to remove */
4404 {
4405 xfs_ext_irec_t *erp; /* indirection array pointer */
4406 int i; /* loop counter */
4407 int nlists; /* number of irec's (ex lists) */
4408
4409 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4410 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4411 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4412 if (erp->er_extbuf) {
4413 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4414 -erp->er_extcount);
4415 kmem_free(erp->er_extbuf);
4416 }
4417 /* Compact extent records */
4418 erp = ifp->if_u1.if_ext_irec;
4419 for (i = erp_idx; i < nlists - 1; i++) {
4420 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4421 }
4422 /*
4423 * Manually free the last extent record from the indirection
4424 * array. A call to xfs_iext_realloc_indirect() with a size
4425 * of zero would result in a call to xfs_iext_destroy() which
4426 * would in turn call this function again, creating a nasty
4427 * infinite loop.
4428 */
4429 if (--nlists) {
4430 xfs_iext_realloc_indirect(ifp,
4431 nlists * sizeof(xfs_ext_irec_t));
4432 } else {
4433 kmem_free(ifp->if_u1.if_ext_irec);
4434 }
4435 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4436 }
4437
4438 /*
4439 * This is called to clean up large amounts of unused memory allocated
4440 * by the indirection array. Before compacting anything though, verify
4441 * that the indirection array is still needed and switch back to the
4442 * linear extent list (or even the inline buffer) if possible. The
4443 * compaction policy is as follows:
4444 *
4445 * Full Compaction: Extents fit into a single page (or inline buffer)
4446 * Full Compaction: Extents occupy less than 10% of allocated space
4447 * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
4448 * No Compaction: Extents occupy at least 50% of allocated space
4449 */
4450 void
4451 xfs_iext_irec_compact(
4452 xfs_ifork_t *ifp) /* inode fork pointer */
4453 {
4454 xfs_extnum_t nextents; /* number of extents in file */
4455 int nlists; /* number of irec's (ex lists) */
4456
4457 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4458 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4459 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4460
4461 if (nextents == 0) {
4462 xfs_iext_destroy(ifp);
4463 } else if (nextents <= XFS_INLINE_EXTS) {
4464 xfs_iext_indirect_to_direct(ifp);
4465 xfs_iext_direct_to_inline(ifp, nextents);
4466 } else if (nextents <= XFS_LINEAR_EXTS) {
4467 xfs_iext_indirect_to_direct(ifp);
4468 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
4469 xfs_iext_irec_compact_full(ifp);
4470 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4471 xfs_iext_irec_compact_pages(ifp);
4472 }
4473 }
4474
4475 /*
4476 * Combine extents from neighboring extent pages.
4477 */
4478 void
4479 xfs_iext_irec_compact_pages(
4480 xfs_ifork_t *ifp) /* inode fork pointer */
4481 {
4482 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
4483 int erp_idx = 0; /* indirection array index */
4484 int nlists; /* number of irec's (ex lists) */
4485
4486 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4487 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4488 while (erp_idx < nlists - 1) {
4489 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4490 erp_next = erp + 1;
4491 if (erp_next->er_extcount <=
4492 (XFS_LINEAR_EXTS - erp->er_extcount)) {
4493 memmove(&erp->er_extbuf[erp->er_extcount],
4494 erp_next->er_extbuf, erp_next->er_extcount *
4495 sizeof(xfs_bmbt_rec_t));
4496 erp->er_extcount += erp_next->er_extcount;
4497 /*
4498 * Free page before removing extent record
4499 * so er_extoffs don't get modified in
4500 * xfs_iext_irec_remove.
4501 */
4502 kmem_free(erp_next->er_extbuf);
4503 erp_next->er_extbuf = NULL;
4504 xfs_iext_irec_remove(ifp, erp_idx + 1);
4505 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4506 } else {
4507 erp_idx++;
4508 }
4509 }
4510 }
4511
4512 /*
4513 * Fully compact the extent records managed by the indirection array.
4514 */
4515 void
4516 xfs_iext_irec_compact_full(
4517 xfs_ifork_t *ifp) /* inode fork pointer */
4518 {
4519 xfs_bmbt_rec_host_t *ep, *ep_next; /* extent record pointers */
4520 xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */
4521 int erp_idx = 0; /* extent irec index */
4522 int ext_avail; /* empty entries in ex list */
4523 int ext_diff; /* number of exts to add */
4524 int nlists; /* number of irec's (ex lists) */
4525
4526 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4527
4528 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4529 erp = ifp->if_u1.if_ext_irec;
4530 ep = &erp->er_extbuf[erp->er_extcount];
4531 erp_next = erp + 1;
4532 ep_next = erp_next->er_extbuf;
4533
4534 while (erp_idx < nlists - 1) {
4535 /*
4536 * Check how many extent records are available in this irec.
4537 * If there is none skip the whole exercise.
4538 */
4539 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
4540 if (ext_avail) {
4541
4542 /*
4543 * Copy over as many as possible extent records into
4544 * the previous page.
4545 */
4546 ext_diff = MIN(ext_avail, erp_next->er_extcount);
4547 memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
4548 erp->er_extcount += ext_diff;
4549 erp_next->er_extcount -= ext_diff;
4550
4551 /*
4552 * If the next irec is empty now we can simply
4553 * remove it.
4554 */
4555 if (erp_next->er_extcount == 0) {
4556 /*
4557 * Free page before removing extent record
4558 * so er_extoffs don't get modified in
4559 * xfs_iext_irec_remove.
4560 */
4561 kmem_free(erp_next->er_extbuf);
4562 erp_next->er_extbuf = NULL;
4563 xfs_iext_irec_remove(ifp, erp_idx + 1);
4564 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4565 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4566
4567 /*
4568 * If the next irec is not empty move up the content
4569 * that has not been copied to the previous page to
4570 * the beggining of this one.
4571 */
4572 } else {
4573 memmove(erp_next->er_extbuf, &ep_next[ext_diff],
4574 erp_next->er_extcount *
4575 sizeof(xfs_bmbt_rec_t));
4576 ep_next = erp_next->er_extbuf;
4577 memset(&ep_next[erp_next->er_extcount], 0,
4578 (XFS_LINEAR_EXTS -
4579 erp_next->er_extcount) *
4580 sizeof(xfs_bmbt_rec_t));
4581 }
4582 }
4583
4584 if (erp->er_extcount == XFS_LINEAR_EXTS) {
4585 erp_idx++;
4586 if (erp_idx < nlists)
4587 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4588 else
4589 break;
4590 }
4591 ep = &erp->er_extbuf[erp->er_extcount];
4592 erp_next = erp + 1;
4593 ep_next = erp_next->er_extbuf;
4594 }
4595 }
4596
4597 /*
4598 * This is called to update the er_extoff field in the indirection
4599 * array when extents have been added or removed from one of the
4600 * extent lists. erp_idx contains the irec index to begin updating
4601 * at and ext_diff contains the number of extents that were added
4602 * or removed.
4603 */
4604 void
4605 xfs_iext_irec_update_extoffs(
4606 xfs_ifork_t *ifp, /* inode fork pointer */
4607 int erp_idx, /* irec index to update */
4608 int ext_diff) /* number of new extents */
4609 {
4610 int i; /* loop counter */
4611 int nlists; /* number of irec's (ex lists */
4612
4613 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4614 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4615 for (i = erp_idx; i < nlists; i++) {
4616 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
4617 }
4618 }
This page took 0.127007 seconds and 5 git commands to generate.