Merge branch 'xfs-generic-sb-counters' into for-next
[deliverable/linux.git] / fs / xfs / xfs_inode.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include <linux/log2.h>
19
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_shared.h"
23 #include "xfs_format.h"
24 #include "xfs_log_format.h"
25 #include "xfs_trans_resv.h"
26 #include "xfs_sb.h"
27 #include "xfs_mount.h"
28 #include "xfs_inode.h"
29 #include "xfs_da_format.h"
30 #include "xfs_da_btree.h"
31 #include "xfs_dir2.h"
32 #include "xfs_attr_sf.h"
33 #include "xfs_attr.h"
34 #include "xfs_trans_space.h"
35 #include "xfs_trans.h"
36 #include "xfs_buf_item.h"
37 #include "xfs_inode_item.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_bmap.h"
40 #include "xfs_bmap_util.h"
41 #include "xfs_error.h"
42 #include "xfs_quota.h"
43 #include "xfs_filestream.h"
44 #include "xfs_cksum.h"
45 #include "xfs_trace.h"
46 #include "xfs_icache.h"
47 #include "xfs_symlink.h"
48 #include "xfs_trans_priv.h"
49 #include "xfs_log.h"
50 #include "xfs_bmap_btree.h"
51
52 kmem_zone_t *xfs_inode_zone;
53
54 /*
55 * Used in xfs_itruncate_extents(). This is the maximum number of extents
56 * freed from a file in a single transaction.
57 */
58 #define XFS_ITRUNC_MAX_EXTENTS 2
59
60 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
61
62 STATIC int xfs_iunlink_remove(xfs_trans_t *, xfs_inode_t *);
63
64 /*
65 * helper function to extract extent size hint from inode
66 */
67 xfs_extlen_t
68 xfs_get_extsz_hint(
69 struct xfs_inode *ip)
70 {
71 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
72 return ip->i_d.di_extsize;
73 if (XFS_IS_REALTIME_INODE(ip))
74 return ip->i_mount->m_sb.sb_rextsize;
75 return 0;
76 }
77
78 /*
79 * These two are wrapper routines around the xfs_ilock() routine used to
80 * centralize some grungy code. They are used in places that wish to lock the
81 * inode solely for reading the extents. The reason these places can't just
82 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
83 * bringing in of the extents from disk for a file in b-tree format. If the
84 * inode is in b-tree format, then we need to lock the inode exclusively until
85 * the extents are read in. Locking it exclusively all the time would limit
86 * our parallelism unnecessarily, though. What we do instead is check to see
87 * if the extents have been read in yet, and only lock the inode exclusively
88 * if they have not.
89 *
90 * The functions return a value which should be given to the corresponding
91 * xfs_iunlock() call.
92 */
93 uint
94 xfs_ilock_data_map_shared(
95 struct xfs_inode *ip)
96 {
97 uint lock_mode = XFS_ILOCK_SHARED;
98
99 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
100 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
101 lock_mode = XFS_ILOCK_EXCL;
102 xfs_ilock(ip, lock_mode);
103 return lock_mode;
104 }
105
106 uint
107 xfs_ilock_attr_map_shared(
108 struct xfs_inode *ip)
109 {
110 uint lock_mode = XFS_ILOCK_SHARED;
111
112 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
113 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
114 lock_mode = XFS_ILOCK_EXCL;
115 xfs_ilock(ip, lock_mode);
116 return lock_mode;
117 }
118
119 /*
120 * The xfs inode contains 2 locks: a multi-reader lock called the
121 * i_iolock and a multi-reader lock called the i_lock. This routine
122 * allows either or both of the locks to be obtained.
123 *
124 * The 2 locks should always be ordered so that the IO lock is
125 * obtained first in order to prevent deadlock.
126 *
127 * ip -- the inode being locked
128 * lock_flags -- this parameter indicates the inode's locks
129 * to be locked. It can be:
130 * XFS_IOLOCK_SHARED,
131 * XFS_IOLOCK_EXCL,
132 * XFS_ILOCK_SHARED,
133 * XFS_ILOCK_EXCL,
134 * XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED,
135 * XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL,
136 * XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED,
137 * XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL
138 */
139 void
140 xfs_ilock(
141 xfs_inode_t *ip,
142 uint lock_flags)
143 {
144 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
145
146 /*
147 * You can't set both SHARED and EXCL for the same lock,
148 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
149 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
150 */
151 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
152 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
153 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
154 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
155 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
156
157 if (lock_flags & XFS_IOLOCK_EXCL)
158 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
159 else if (lock_flags & XFS_IOLOCK_SHARED)
160 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
161
162 if (lock_flags & XFS_ILOCK_EXCL)
163 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
164 else if (lock_flags & XFS_ILOCK_SHARED)
165 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
166 }
167
168 /*
169 * This is just like xfs_ilock(), except that the caller
170 * is guaranteed not to sleep. It returns 1 if it gets
171 * the requested locks and 0 otherwise. If the IO lock is
172 * obtained but the inode lock cannot be, then the IO lock
173 * is dropped before returning.
174 *
175 * ip -- the inode being locked
176 * lock_flags -- this parameter indicates the inode's locks to be
177 * to be locked. See the comment for xfs_ilock() for a list
178 * of valid values.
179 */
180 int
181 xfs_ilock_nowait(
182 xfs_inode_t *ip,
183 uint lock_flags)
184 {
185 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
186
187 /*
188 * You can't set both SHARED and EXCL for the same lock,
189 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
190 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
191 */
192 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
193 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
194 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
195 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
196 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
197
198 if (lock_flags & XFS_IOLOCK_EXCL) {
199 if (!mrtryupdate(&ip->i_iolock))
200 goto out;
201 } else if (lock_flags & XFS_IOLOCK_SHARED) {
202 if (!mrtryaccess(&ip->i_iolock))
203 goto out;
204 }
205 if (lock_flags & XFS_ILOCK_EXCL) {
206 if (!mrtryupdate(&ip->i_lock))
207 goto out_undo_iolock;
208 } else if (lock_flags & XFS_ILOCK_SHARED) {
209 if (!mrtryaccess(&ip->i_lock))
210 goto out_undo_iolock;
211 }
212 return 1;
213
214 out_undo_iolock:
215 if (lock_flags & XFS_IOLOCK_EXCL)
216 mrunlock_excl(&ip->i_iolock);
217 else if (lock_flags & XFS_IOLOCK_SHARED)
218 mrunlock_shared(&ip->i_iolock);
219 out:
220 return 0;
221 }
222
223 /*
224 * xfs_iunlock() is used to drop the inode locks acquired with
225 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
226 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
227 * that we know which locks to drop.
228 *
229 * ip -- the inode being unlocked
230 * lock_flags -- this parameter indicates the inode's locks to be
231 * to be unlocked. See the comment for xfs_ilock() for a list
232 * of valid values for this parameter.
233 *
234 */
235 void
236 xfs_iunlock(
237 xfs_inode_t *ip,
238 uint lock_flags)
239 {
240 /*
241 * You can't set both SHARED and EXCL for the same lock,
242 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
243 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
244 */
245 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
246 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
247 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
248 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
249 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
250 ASSERT(lock_flags != 0);
251
252 if (lock_flags & XFS_IOLOCK_EXCL)
253 mrunlock_excl(&ip->i_iolock);
254 else if (lock_flags & XFS_IOLOCK_SHARED)
255 mrunlock_shared(&ip->i_iolock);
256
257 if (lock_flags & XFS_ILOCK_EXCL)
258 mrunlock_excl(&ip->i_lock);
259 else if (lock_flags & XFS_ILOCK_SHARED)
260 mrunlock_shared(&ip->i_lock);
261
262 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
263 }
264
265 /*
266 * give up write locks. the i/o lock cannot be held nested
267 * if it is being demoted.
268 */
269 void
270 xfs_ilock_demote(
271 xfs_inode_t *ip,
272 uint lock_flags)
273 {
274 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL));
275 ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
276
277 if (lock_flags & XFS_ILOCK_EXCL)
278 mrdemote(&ip->i_lock);
279 if (lock_flags & XFS_IOLOCK_EXCL)
280 mrdemote(&ip->i_iolock);
281
282 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
283 }
284
285 #if defined(DEBUG) || defined(XFS_WARN)
286 int
287 xfs_isilocked(
288 xfs_inode_t *ip,
289 uint lock_flags)
290 {
291 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
292 if (!(lock_flags & XFS_ILOCK_SHARED))
293 return !!ip->i_lock.mr_writer;
294 return rwsem_is_locked(&ip->i_lock.mr_lock);
295 }
296
297 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
298 if (!(lock_flags & XFS_IOLOCK_SHARED))
299 return !!ip->i_iolock.mr_writer;
300 return rwsem_is_locked(&ip->i_iolock.mr_lock);
301 }
302
303 ASSERT(0);
304 return 0;
305 }
306 #endif
307
308 #ifdef DEBUG
309 int xfs_locked_n;
310 int xfs_small_retries;
311 int xfs_middle_retries;
312 int xfs_lots_retries;
313 int xfs_lock_delays;
314 #endif
315
316 /*
317 * Bump the subclass so xfs_lock_inodes() acquires each lock with
318 * a different value
319 */
320 static inline int
321 xfs_lock_inumorder(int lock_mode, int subclass)
322 {
323 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))
324 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_IOLOCK_SHIFT;
325 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))
326 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_ILOCK_SHIFT;
327
328 return lock_mode;
329 }
330
331 /*
332 * The following routine will lock n inodes in exclusive mode.
333 * We assume the caller calls us with the inodes in i_ino order.
334 *
335 * We need to detect deadlock where an inode that we lock
336 * is in the AIL and we start waiting for another inode that is locked
337 * by a thread in a long running transaction (such as truncate). This can
338 * result in deadlock since the long running trans might need to wait
339 * for the inode we just locked in order to push the tail and free space
340 * in the log.
341 */
342 void
343 xfs_lock_inodes(
344 xfs_inode_t **ips,
345 int inodes,
346 uint lock_mode)
347 {
348 int attempts = 0, i, j, try_lock;
349 xfs_log_item_t *lp;
350
351 ASSERT(ips && (inodes >= 2)); /* we need at least two */
352
353 try_lock = 0;
354 i = 0;
355
356 again:
357 for (; i < inodes; i++) {
358 ASSERT(ips[i]);
359
360 if (i && (ips[i] == ips[i-1])) /* Already locked */
361 continue;
362
363 /*
364 * If try_lock is not set yet, make sure all locked inodes
365 * are not in the AIL.
366 * If any are, set try_lock to be used later.
367 */
368
369 if (!try_lock) {
370 for (j = (i - 1); j >= 0 && !try_lock; j--) {
371 lp = (xfs_log_item_t *)ips[j]->i_itemp;
372 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
373 try_lock++;
374 }
375 }
376 }
377
378 /*
379 * If any of the previous locks we have locked is in the AIL,
380 * we must TRY to get the second and subsequent locks. If
381 * we can't get any, we must release all we have
382 * and try again.
383 */
384
385 if (try_lock) {
386 /* try_lock must be 0 if i is 0. */
387 /*
388 * try_lock means we have an inode locked
389 * that is in the AIL.
390 */
391 ASSERT(i != 0);
392 if (!xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) {
393 attempts++;
394
395 /*
396 * Unlock all previous guys and try again.
397 * xfs_iunlock will try to push the tail
398 * if the inode is in the AIL.
399 */
400
401 for(j = i - 1; j >= 0; j--) {
402
403 /*
404 * Check to see if we've already
405 * unlocked this one.
406 * Not the first one going back,
407 * and the inode ptr is the same.
408 */
409 if ((j != (i - 1)) && ips[j] ==
410 ips[j+1])
411 continue;
412
413 xfs_iunlock(ips[j], lock_mode);
414 }
415
416 if ((attempts % 5) == 0) {
417 delay(1); /* Don't just spin the CPU */
418 #ifdef DEBUG
419 xfs_lock_delays++;
420 #endif
421 }
422 i = 0;
423 try_lock = 0;
424 goto again;
425 }
426 } else {
427 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
428 }
429 }
430
431 #ifdef DEBUG
432 if (attempts) {
433 if (attempts < 5) xfs_small_retries++;
434 else if (attempts < 100) xfs_middle_retries++;
435 else xfs_lots_retries++;
436 } else {
437 xfs_locked_n++;
438 }
439 #endif
440 }
441
442 /*
443 * xfs_lock_two_inodes() can only be used to lock one type of lock
444 * at a time - the iolock or the ilock, but not both at once. If
445 * we lock both at once, lockdep will report false positives saying
446 * we have violated locking orders.
447 */
448 void
449 xfs_lock_two_inodes(
450 xfs_inode_t *ip0,
451 xfs_inode_t *ip1,
452 uint lock_mode)
453 {
454 xfs_inode_t *temp;
455 int attempts = 0;
456 xfs_log_item_t *lp;
457
458 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))
459 ASSERT((lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) == 0);
460 ASSERT(ip0->i_ino != ip1->i_ino);
461
462 if (ip0->i_ino > ip1->i_ino) {
463 temp = ip0;
464 ip0 = ip1;
465 ip1 = temp;
466 }
467
468 again:
469 xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
470
471 /*
472 * If the first lock we have locked is in the AIL, we must TRY to get
473 * the second lock. If we can't get it, we must release the first one
474 * and try again.
475 */
476 lp = (xfs_log_item_t *)ip0->i_itemp;
477 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
478 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
479 xfs_iunlock(ip0, lock_mode);
480 if ((++attempts % 5) == 0)
481 delay(1); /* Don't just spin the CPU */
482 goto again;
483 }
484 } else {
485 xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
486 }
487 }
488
489
490 void
491 __xfs_iflock(
492 struct xfs_inode *ip)
493 {
494 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
495 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
496
497 do {
498 prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
499 if (xfs_isiflocked(ip))
500 io_schedule();
501 } while (!xfs_iflock_nowait(ip));
502
503 finish_wait(wq, &wait.wait);
504 }
505
506 STATIC uint
507 _xfs_dic2xflags(
508 __uint16_t di_flags)
509 {
510 uint flags = 0;
511
512 if (di_flags & XFS_DIFLAG_ANY) {
513 if (di_flags & XFS_DIFLAG_REALTIME)
514 flags |= XFS_XFLAG_REALTIME;
515 if (di_flags & XFS_DIFLAG_PREALLOC)
516 flags |= XFS_XFLAG_PREALLOC;
517 if (di_flags & XFS_DIFLAG_IMMUTABLE)
518 flags |= XFS_XFLAG_IMMUTABLE;
519 if (di_flags & XFS_DIFLAG_APPEND)
520 flags |= XFS_XFLAG_APPEND;
521 if (di_flags & XFS_DIFLAG_SYNC)
522 flags |= XFS_XFLAG_SYNC;
523 if (di_flags & XFS_DIFLAG_NOATIME)
524 flags |= XFS_XFLAG_NOATIME;
525 if (di_flags & XFS_DIFLAG_NODUMP)
526 flags |= XFS_XFLAG_NODUMP;
527 if (di_flags & XFS_DIFLAG_RTINHERIT)
528 flags |= XFS_XFLAG_RTINHERIT;
529 if (di_flags & XFS_DIFLAG_PROJINHERIT)
530 flags |= XFS_XFLAG_PROJINHERIT;
531 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
532 flags |= XFS_XFLAG_NOSYMLINKS;
533 if (di_flags & XFS_DIFLAG_EXTSIZE)
534 flags |= XFS_XFLAG_EXTSIZE;
535 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
536 flags |= XFS_XFLAG_EXTSZINHERIT;
537 if (di_flags & XFS_DIFLAG_NODEFRAG)
538 flags |= XFS_XFLAG_NODEFRAG;
539 if (di_flags & XFS_DIFLAG_FILESTREAM)
540 flags |= XFS_XFLAG_FILESTREAM;
541 }
542
543 return flags;
544 }
545
546 uint
547 xfs_ip2xflags(
548 xfs_inode_t *ip)
549 {
550 xfs_icdinode_t *dic = &ip->i_d;
551
552 return _xfs_dic2xflags(dic->di_flags) |
553 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
554 }
555
556 uint
557 xfs_dic2xflags(
558 xfs_dinode_t *dip)
559 {
560 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
561 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
562 }
563
564 /*
565 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
566 * is allowed, otherwise it has to be an exact match. If a CI match is found,
567 * ci_name->name will point to a the actual name (caller must free) or
568 * will be set to NULL if an exact match is found.
569 */
570 int
571 xfs_lookup(
572 xfs_inode_t *dp,
573 struct xfs_name *name,
574 xfs_inode_t **ipp,
575 struct xfs_name *ci_name)
576 {
577 xfs_ino_t inum;
578 int error;
579 uint lock_mode;
580
581 trace_xfs_lookup(dp, name);
582
583 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
584 return -EIO;
585
586 lock_mode = xfs_ilock_data_map_shared(dp);
587 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
588 xfs_iunlock(dp, lock_mode);
589
590 if (error)
591 goto out;
592
593 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
594 if (error)
595 goto out_free_name;
596
597 return 0;
598
599 out_free_name:
600 if (ci_name)
601 kmem_free(ci_name->name);
602 out:
603 *ipp = NULL;
604 return error;
605 }
606
607 /*
608 * Allocate an inode on disk and return a copy of its in-core version.
609 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
610 * appropriately within the inode. The uid and gid for the inode are
611 * set according to the contents of the given cred structure.
612 *
613 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
614 * has a free inode available, call xfs_iget() to obtain the in-core
615 * version of the allocated inode. Finally, fill in the inode and
616 * log its initial contents. In this case, ialloc_context would be
617 * set to NULL.
618 *
619 * If xfs_dialloc() does not have an available inode, it will replenish
620 * its supply by doing an allocation. Since we can only do one
621 * allocation within a transaction without deadlocks, we must commit
622 * the current transaction before returning the inode itself.
623 * In this case, therefore, we will set ialloc_context and return.
624 * The caller should then commit the current transaction, start a new
625 * transaction, and call xfs_ialloc() again to actually get the inode.
626 *
627 * To ensure that some other process does not grab the inode that
628 * was allocated during the first call to xfs_ialloc(), this routine
629 * also returns the [locked] bp pointing to the head of the freelist
630 * as ialloc_context. The caller should hold this buffer across
631 * the commit and pass it back into this routine on the second call.
632 *
633 * If we are allocating quota inodes, we do not have a parent inode
634 * to attach to or associate with (i.e. pip == NULL) because they
635 * are not linked into the directory structure - they are attached
636 * directly to the superblock - and so have no parent.
637 */
638 int
639 xfs_ialloc(
640 xfs_trans_t *tp,
641 xfs_inode_t *pip,
642 umode_t mode,
643 xfs_nlink_t nlink,
644 xfs_dev_t rdev,
645 prid_t prid,
646 int okalloc,
647 xfs_buf_t **ialloc_context,
648 xfs_inode_t **ipp)
649 {
650 struct xfs_mount *mp = tp->t_mountp;
651 xfs_ino_t ino;
652 xfs_inode_t *ip;
653 uint flags;
654 int error;
655 struct timespec tv;
656
657 /*
658 * Call the space management code to pick
659 * the on-disk inode to be allocated.
660 */
661 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
662 ialloc_context, &ino);
663 if (error)
664 return error;
665 if (*ialloc_context || ino == NULLFSINO) {
666 *ipp = NULL;
667 return 0;
668 }
669 ASSERT(*ialloc_context == NULL);
670
671 /*
672 * Get the in-core inode with the lock held exclusively.
673 * This is because we're setting fields here we need
674 * to prevent others from looking at until we're done.
675 */
676 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
677 XFS_ILOCK_EXCL, &ip);
678 if (error)
679 return error;
680 ASSERT(ip != NULL);
681
682 /*
683 * We always convert v1 inodes to v2 now - we only support filesystems
684 * with >= v2 inode capability, so there is no reason for ever leaving
685 * an inode in v1 format.
686 */
687 if (ip->i_d.di_version == 1)
688 ip->i_d.di_version = 2;
689
690 ip->i_d.di_mode = mode;
691 ip->i_d.di_onlink = 0;
692 ip->i_d.di_nlink = nlink;
693 ASSERT(ip->i_d.di_nlink == nlink);
694 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
695 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
696 xfs_set_projid(ip, prid);
697 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
698
699 if (pip && XFS_INHERIT_GID(pip)) {
700 ip->i_d.di_gid = pip->i_d.di_gid;
701 if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
702 ip->i_d.di_mode |= S_ISGID;
703 }
704 }
705
706 /*
707 * If the group ID of the new file does not match the effective group
708 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
709 * (and only if the irix_sgid_inherit compatibility variable is set).
710 */
711 if ((irix_sgid_inherit) &&
712 (ip->i_d.di_mode & S_ISGID) &&
713 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) {
714 ip->i_d.di_mode &= ~S_ISGID;
715 }
716
717 ip->i_d.di_size = 0;
718 ip->i_d.di_nextents = 0;
719 ASSERT(ip->i_d.di_nblocks == 0);
720
721 tv = current_fs_time(mp->m_super);
722 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
723 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
724 ip->i_d.di_atime = ip->i_d.di_mtime;
725 ip->i_d.di_ctime = ip->i_d.di_mtime;
726
727 /*
728 * di_gen will have been taken care of in xfs_iread.
729 */
730 ip->i_d.di_extsize = 0;
731 ip->i_d.di_dmevmask = 0;
732 ip->i_d.di_dmstate = 0;
733 ip->i_d.di_flags = 0;
734
735 if (ip->i_d.di_version == 3) {
736 ASSERT(ip->i_d.di_ino == ino);
737 ASSERT(uuid_equal(&ip->i_d.di_uuid, &mp->m_sb.sb_uuid));
738 ip->i_d.di_crc = 0;
739 ip->i_d.di_changecount = 1;
740 ip->i_d.di_lsn = 0;
741 ip->i_d.di_flags2 = 0;
742 memset(&(ip->i_d.di_pad2[0]), 0, sizeof(ip->i_d.di_pad2));
743 ip->i_d.di_crtime = ip->i_d.di_mtime;
744 }
745
746
747 flags = XFS_ILOG_CORE;
748 switch (mode & S_IFMT) {
749 case S_IFIFO:
750 case S_IFCHR:
751 case S_IFBLK:
752 case S_IFSOCK:
753 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
754 ip->i_df.if_u2.if_rdev = rdev;
755 ip->i_df.if_flags = 0;
756 flags |= XFS_ILOG_DEV;
757 break;
758 case S_IFREG:
759 case S_IFDIR:
760 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
761 uint di_flags = 0;
762
763 if (S_ISDIR(mode)) {
764 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
765 di_flags |= XFS_DIFLAG_RTINHERIT;
766 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
767 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
768 ip->i_d.di_extsize = pip->i_d.di_extsize;
769 }
770 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
771 di_flags |= XFS_DIFLAG_PROJINHERIT;
772 } else if (S_ISREG(mode)) {
773 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
774 di_flags |= XFS_DIFLAG_REALTIME;
775 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
776 di_flags |= XFS_DIFLAG_EXTSIZE;
777 ip->i_d.di_extsize = pip->i_d.di_extsize;
778 }
779 }
780 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
781 xfs_inherit_noatime)
782 di_flags |= XFS_DIFLAG_NOATIME;
783 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
784 xfs_inherit_nodump)
785 di_flags |= XFS_DIFLAG_NODUMP;
786 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
787 xfs_inherit_sync)
788 di_flags |= XFS_DIFLAG_SYNC;
789 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
790 xfs_inherit_nosymlinks)
791 di_flags |= XFS_DIFLAG_NOSYMLINKS;
792 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
793 xfs_inherit_nodefrag)
794 di_flags |= XFS_DIFLAG_NODEFRAG;
795 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
796 di_flags |= XFS_DIFLAG_FILESTREAM;
797 ip->i_d.di_flags |= di_flags;
798 }
799 /* FALLTHROUGH */
800 case S_IFLNK:
801 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
802 ip->i_df.if_flags = XFS_IFEXTENTS;
803 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
804 ip->i_df.if_u1.if_extents = NULL;
805 break;
806 default:
807 ASSERT(0);
808 }
809 /*
810 * Attribute fork settings for new inode.
811 */
812 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
813 ip->i_d.di_anextents = 0;
814
815 /*
816 * Log the new values stuffed into the inode.
817 */
818 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
819 xfs_trans_log_inode(tp, ip, flags);
820
821 /* now that we have an i_mode we can setup the inode structure */
822 xfs_setup_inode(ip);
823
824 *ipp = ip;
825 return 0;
826 }
827
828 /*
829 * Allocates a new inode from disk and return a pointer to the
830 * incore copy. This routine will internally commit the current
831 * transaction and allocate a new one if the Space Manager needed
832 * to do an allocation to replenish the inode free-list.
833 *
834 * This routine is designed to be called from xfs_create and
835 * xfs_create_dir.
836 *
837 */
838 int
839 xfs_dir_ialloc(
840 xfs_trans_t **tpp, /* input: current transaction;
841 output: may be a new transaction. */
842 xfs_inode_t *dp, /* directory within whose allocate
843 the inode. */
844 umode_t mode,
845 xfs_nlink_t nlink,
846 xfs_dev_t rdev,
847 prid_t prid, /* project id */
848 int okalloc, /* ok to allocate new space */
849 xfs_inode_t **ipp, /* pointer to inode; it will be
850 locked. */
851 int *committed)
852
853 {
854 xfs_trans_t *tp;
855 xfs_trans_t *ntp;
856 xfs_inode_t *ip;
857 xfs_buf_t *ialloc_context = NULL;
858 int code;
859 void *dqinfo;
860 uint tflags;
861
862 tp = *tpp;
863 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
864
865 /*
866 * xfs_ialloc will return a pointer to an incore inode if
867 * the Space Manager has an available inode on the free
868 * list. Otherwise, it will do an allocation and replenish
869 * the freelist. Since we can only do one allocation per
870 * transaction without deadlocks, we will need to commit the
871 * current transaction and start a new one. We will then
872 * need to call xfs_ialloc again to get the inode.
873 *
874 * If xfs_ialloc did an allocation to replenish the freelist,
875 * it returns the bp containing the head of the freelist as
876 * ialloc_context. We will hold a lock on it across the
877 * transaction commit so that no other process can steal
878 * the inode(s) that we've just allocated.
879 */
880 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
881 &ialloc_context, &ip);
882
883 /*
884 * Return an error if we were unable to allocate a new inode.
885 * This should only happen if we run out of space on disk or
886 * encounter a disk error.
887 */
888 if (code) {
889 *ipp = NULL;
890 return code;
891 }
892 if (!ialloc_context && !ip) {
893 *ipp = NULL;
894 return -ENOSPC;
895 }
896
897 /*
898 * If the AGI buffer is non-NULL, then we were unable to get an
899 * inode in one operation. We need to commit the current
900 * transaction and call xfs_ialloc() again. It is guaranteed
901 * to succeed the second time.
902 */
903 if (ialloc_context) {
904 struct xfs_trans_res tres;
905
906 /*
907 * Normally, xfs_trans_commit releases all the locks.
908 * We call bhold to hang on to the ialloc_context across
909 * the commit. Holding this buffer prevents any other
910 * processes from doing any allocations in this
911 * allocation group.
912 */
913 xfs_trans_bhold(tp, ialloc_context);
914 /*
915 * Save the log reservation so we can use
916 * them in the next transaction.
917 */
918 tres.tr_logres = xfs_trans_get_log_res(tp);
919 tres.tr_logcount = xfs_trans_get_log_count(tp);
920
921 /*
922 * We want the quota changes to be associated with the next
923 * transaction, NOT this one. So, detach the dqinfo from this
924 * and attach it to the next transaction.
925 */
926 dqinfo = NULL;
927 tflags = 0;
928 if (tp->t_dqinfo) {
929 dqinfo = (void *)tp->t_dqinfo;
930 tp->t_dqinfo = NULL;
931 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
932 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
933 }
934
935 ntp = xfs_trans_dup(tp);
936 code = xfs_trans_commit(tp, 0);
937 tp = ntp;
938 if (committed != NULL) {
939 *committed = 1;
940 }
941 /*
942 * If we get an error during the commit processing,
943 * release the buffer that is still held and return
944 * to the caller.
945 */
946 if (code) {
947 xfs_buf_relse(ialloc_context);
948 if (dqinfo) {
949 tp->t_dqinfo = dqinfo;
950 xfs_trans_free_dqinfo(tp);
951 }
952 *tpp = ntp;
953 *ipp = NULL;
954 return code;
955 }
956
957 /*
958 * transaction commit worked ok so we can drop the extra ticket
959 * reference that we gained in xfs_trans_dup()
960 */
961 xfs_log_ticket_put(tp->t_ticket);
962 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
963 code = xfs_trans_reserve(tp, &tres, 0, 0);
964
965 /*
966 * Re-attach the quota info that we detached from prev trx.
967 */
968 if (dqinfo) {
969 tp->t_dqinfo = dqinfo;
970 tp->t_flags |= tflags;
971 }
972
973 if (code) {
974 xfs_buf_relse(ialloc_context);
975 *tpp = ntp;
976 *ipp = NULL;
977 return code;
978 }
979 xfs_trans_bjoin(tp, ialloc_context);
980
981 /*
982 * Call ialloc again. Since we've locked out all
983 * other allocations in this allocation group,
984 * this call should always succeed.
985 */
986 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
987 okalloc, &ialloc_context, &ip);
988
989 /*
990 * If we get an error at this point, return to the caller
991 * so that the current transaction can be aborted.
992 */
993 if (code) {
994 *tpp = tp;
995 *ipp = NULL;
996 return code;
997 }
998 ASSERT(!ialloc_context && ip);
999
1000 } else {
1001 if (committed != NULL)
1002 *committed = 0;
1003 }
1004
1005 *ipp = ip;
1006 *tpp = tp;
1007
1008 return 0;
1009 }
1010
1011 /*
1012 * Decrement the link count on an inode & log the change.
1013 * If this causes the link count to go to zero, initiate the
1014 * logging activity required to truncate a file.
1015 */
1016 int /* error */
1017 xfs_droplink(
1018 xfs_trans_t *tp,
1019 xfs_inode_t *ip)
1020 {
1021 int error;
1022
1023 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1024
1025 ASSERT (ip->i_d.di_nlink > 0);
1026 ip->i_d.di_nlink--;
1027 drop_nlink(VFS_I(ip));
1028 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1029
1030 error = 0;
1031 if (ip->i_d.di_nlink == 0) {
1032 /*
1033 * We're dropping the last link to this file.
1034 * Move the on-disk inode to the AGI unlinked list.
1035 * From xfs_inactive() we will pull the inode from
1036 * the list and free it.
1037 */
1038 error = xfs_iunlink(tp, ip);
1039 }
1040 return error;
1041 }
1042
1043 /*
1044 * Increment the link count on an inode & log the change.
1045 */
1046 int
1047 xfs_bumplink(
1048 xfs_trans_t *tp,
1049 xfs_inode_t *ip)
1050 {
1051 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1052
1053 ASSERT(ip->i_d.di_version > 1);
1054 ASSERT(ip->i_d.di_nlink > 0 || (VFS_I(ip)->i_state & I_LINKABLE));
1055 ip->i_d.di_nlink++;
1056 inc_nlink(VFS_I(ip));
1057 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1058 return 0;
1059 }
1060
1061 int
1062 xfs_create(
1063 xfs_inode_t *dp,
1064 struct xfs_name *name,
1065 umode_t mode,
1066 xfs_dev_t rdev,
1067 xfs_inode_t **ipp)
1068 {
1069 int is_dir = S_ISDIR(mode);
1070 struct xfs_mount *mp = dp->i_mount;
1071 struct xfs_inode *ip = NULL;
1072 struct xfs_trans *tp = NULL;
1073 int error;
1074 xfs_bmap_free_t free_list;
1075 xfs_fsblock_t first_block;
1076 bool unlock_dp_on_error = false;
1077 uint cancel_flags;
1078 int committed;
1079 prid_t prid;
1080 struct xfs_dquot *udqp = NULL;
1081 struct xfs_dquot *gdqp = NULL;
1082 struct xfs_dquot *pdqp = NULL;
1083 struct xfs_trans_res *tres;
1084 uint resblks;
1085
1086 trace_xfs_create(dp, name);
1087
1088 if (XFS_FORCED_SHUTDOWN(mp))
1089 return -EIO;
1090
1091 prid = xfs_get_initial_prid(dp);
1092
1093 /*
1094 * Make sure that we have allocated dquot(s) on disk.
1095 */
1096 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1097 xfs_kgid_to_gid(current_fsgid()), prid,
1098 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1099 &udqp, &gdqp, &pdqp);
1100 if (error)
1101 return error;
1102
1103 if (is_dir) {
1104 rdev = 0;
1105 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1106 tres = &M_RES(mp)->tr_mkdir;
1107 tp = xfs_trans_alloc(mp, XFS_TRANS_MKDIR);
1108 } else {
1109 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1110 tres = &M_RES(mp)->tr_create;
1111 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE);
1112 }
1113
1114 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1115
1116 /*
1117 * Initially assume that the file does not exist and
1118 * reserve the resources for that case. If that is not
1119 * the case we'll drop the one we have and get a more
1120 * appropriate transaction later.
1121 */
1122 error = xfs_trans_reserve(tp, tres, resblks, 0);
1123 if (error == -ENOSPC) {
1124 /* flush outstanding delalloc blocks and retry */
1125 xfs_flush_inodes(mp);
1126 error = xfs_trans_reserve(tp, tres, resblks, 0);
1127 }
1128 if (error == -ENOSPC) {
1129 /* No space at all so try a "no-allocation" reservation */
1130 resblks = 0;
1131 error = xfs_trans_reserve(tp, tres, 0, 0);
1132 }
1133 if (error) {
1134 cancel_flags = 0;
1135 goto out_trans_cancel;
1136 }
1137
1138 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1139 unlock_dp_on_error = true;
1140
1141 xfs_bmap_init(&free_list, &first_block);
1142
1143 /*
1144 * Reserve disk quota and the inode.
1145 */
1146 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1147 pdqp, resblks, 1, 0);
1148 if (error)
1149 goto out_trans_cancel;
1150
1151 if (!resblks) {
1152 error = xfs_dir_canenter(tp, dp, name);
1153 if (error)
1154 goto out_trans_cancel;
1155 }
1156
1157 /*
1158 * A newly created regular or special file just has one directory
1159 * entry pointing to them, but a directory also the "." entry
1160 * pointing to itself.
1161 */
1162 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
1163 prid, resblks > 0, &ip, &committed);
1164 if (error) {
1165 if (error == -ENOSPC)
1166 goto out_trans_cancel;
1167 goto out_trans_abort;
1168 }
1169
1170 /*
1171 * Now we join the directory inode to the transaction. We do not do it
1172 * earlier because xfs_dir_ialloc might commit the previous transaction
1173 * (and release all the locks). An error from here on will result in
1174 * the transaction cancel unlocking dp so don't do it explicitly in the
1175 * error path.
1176 */
1177 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1178 unlock_dp_on_error = false;
1179
1180 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1181 &first_block, &free_list, resblks ?
1182 resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1183 if (error) {
1184 ASSERT(error != -ENOSPC);
1185 goto out_trans_abort;
1186 }
1187 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1188 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1189
1190 if (is_dir) {
1191 error = xfs_dir_init(tp, ip, dp);
1192 if (error)
1193 goto out_bmap_cancel;
1194
1195 error = xfs_bumplink(tp, dp);
1196 if (error)
1197 goto out_bmap_cancel;
1198 }
1199
1200 /*
1201 * If this is a synchronous mount, make sure that the
1202 * create transaction goes to disk before returning to
1203 * the user.
1204 */
1205 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1206 xfs_trans_set_sync(tp);
1207
1208 /*
1209 * Attach the dquot(s) to the inodes and modify them incore.
1210 * These ids of the inode couldn't have changed since the new
1211 * inode has been locked ever since it was created.
1212 */
1213 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1214
1215 error = xfs_bmap_finish(&tp, &free_list, &committed);
1216 if (error)
1217 goto out_bmap_cancel;
1218
1219 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1220 if (error)
1221 goto out_release_inode;
1222
1223 xfs_qm_dqrele(udqp);
1224 xfs_qm_dqrele(gdqp);
1225 xfs_qm_dqrele(pdqp);
1226
1227 *ipp = ip;
1228 return 0;
1229
1230 out_bmap_cancel:
1231 xfs_bmap_cancel(&free_list);
1232 out_trans_abort:
1233 cancel_flags |= XFS_TRANS_ABORT;
1234 out_trans_cancel:
1235 xfs_trans_cancel(tp, cancel_flags);
1236 out_release_inode:
1237 /*
1238 * Wait until after the current transaction is aborted to finish the
1239 * setup of the inode and release the inode. This prevents recursive
1240 * transactions and deadlocks from xfs_inactive.
1241 */
1242 if (ip) {
1243 xfs_finish_inode_setup(ip);
1244 IRELE(ip);
1245 }
1246
1247 xfs_qm_dqrele(udqp);
1248 xfs_qm_dqrele(gdqp);
1249 xfs_qm_dqrele(pdqp);
1250
1251 if (unlock_dp_on_error)
1252 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1253 return error;
1254 }
1255
1256 int
1257 xfs_create_tmpfile(
1258 struct xfs_inode *dp,
1259 struct dentry *dentry,
1260 umode_t mode,
1261 struct xfs_inode **ipp)
1262 {
1263 struct xfs_mount *mp = dp->i_mount;
1264 struct xfs_inode *ip = NULL;
1265 struct xfs_trans *tp = NULL;
1266 int error;
1267 uint cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1268 prid_t prid;
1269 struct xfs_dquot *udqp = NULL;
1270 struct xfs_dquot *gdqp = NULL;
1271 struct xfs_dquot *pdqp = NULL;
1272 struct xfs_trans_res *tres;
1273 uint resblks;
1274
1275 if (XFS_FORCED_SHUTDOWN(mp))
1276 return -EIO;
1277
1278 prid = xfs_get_initial_prid(dp);
1279
1280 /*
1281 * Make sure that we have allocated dquot(s) on disk.
1282 */
1283 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1284 xfs_kgid_to_gid(current_fsgid()), prid,
1285 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1286 &udqp, &gdqp, &pdqp);
1287 if (error)
1288 return error;
1289
1290 resblks = XFS_IALLOC_SPACE_RES(mp);
1291 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE_TMPFILE);
1292
1293 tres = &M_RES(mp)->tr_create_tmpfile;
1294 error = xfs_trans_reserve(tp, tres, resblks, 0);
1295 if (error == -ENOSPC) {
1296 /* No space at all so try a "no-allocation" reservation */
1297 resblks = 0;
1298 error = xfs_trans_reserve(tp, tres, 0, 0);
1299 }
1300 if (error) {
1301 cancel_flags = 0;
1302 goto out_trans_cancel;
1303 }
1304
1305 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1306 pdqp, resblks, 1, 0);
1307 if (error)
1308 goto out_trans_cancel;
1309
1310 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0,
1311 prid, resblks > 0, &ip, NULL);
1312 if (error) {
1313 if (error == -ENOSPC)
1314 goto out_trans_cancel;
1315 goto out_trans_abort;
1316 }
1317
1318 if (mp->m_flags & XFS_MOUNT_WSYNC)
1319 xfs_trans_set_sync(tp);
1320
1321 /*
1322 * Attach the dquot(s) to the inodes and modify them incore.
1323 * These ids of the inode couldn't have changed since the new
1324 * inode has been locked ever since it was created.
1325 */
1326 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1327
1328 ip->i_d.di_nlink--;
1329 error = xfs_iunlink(tp, ip);
1330 if (error)
1331 goto out_trans_abort;
1332
1333 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1334 if (error)
1335 goto out_release_inode;
1336
1337 xfs_qm_dqrele(udqp);
1338 xfs_qm_dqrele(gdqp);
1339 xfs_qm_dqrele(pdqp);
1340
1341 *ipp = ip;
1342 return 0;
1343
1344 out_trans_abort:
1345 cancel_flags |= XFS_TRANS_ABORT;
1346 out_trans_cancel:
1347 xfs_trans_cancel(tp, cancel_flags);
1348 out_release_inode:
1349 /*
1350 * Wait until after the current transaction is aborted to finish the
1351 * setup of the inode and release the inode. This prevents recursive
1352 * transactions and deadlocks from xfs_inactive.
1353 */
1354 if (ip) {
1355 xfs_finish_inode_setup(ip);
1356 IRELE(ip);
1357 }
1358
1359 xfs_qm_dqrele(udqp);
1360 xfs_qm_dqrele(gdqp);
1361 xfs_qm_dqrele(pdqp);
1362
1363 return error;
1364 }
1365
1366 int
1367 xfs_link(
1368 xfs_inode_t *tdp,
1369 xfs_inode_t *sip,
1370 struct xfs_name *target_name)
1371 {
1372 xfs_mount_t *mp = tdp->i_mount;
1373 xfs_trans_t *tp;
1374 int error;
1375 xfs_bmap_free_t free_list;
1376 xfs_fsblock_t first_block;
1377 int cancel_flags;
1378 int committed;
1379 int resblks;
1380
1381 trace_xfs_link(tdp, target_name);
1382
1383 ASSERT(!S_ISDIR(sip->i_d.di_mode));
1384
1385 if (XFS_FORCED_SHUTDOWN(mp))
1386 return -EIO;
1387
1388 error = xfs_qm_dqattach(sip, 0);
1389 if (error)
1390 goto std_return;
1391
1392 error = xfs_qm_dqattach(tdp, 0);
1393 if (error)
1394 goto std_return;
1395
1396 tp = xfs_trans_alloc(mp, XFS_TRANS_LINK);
1397 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1398 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1399 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, resblks, 0);
1400 if (error == -ENOSPC) {
1401 resblks = 0;
1402 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, 0, 0);
1403 }
1404 if (error) {
1405 cancel_flags = 0;
1406 goto error_return;
1407 }
1408
1409 xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1410
1411 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1412 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1413
1414 /*
1415 * If we are using project inheritance, we only allow hard link
1416 * creation in our tree when the project IDs are the same; else
1417 * the tree quota mechanism could be circumvented.
1418 */
1419 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1420 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1421 error = -EXDEV;
1422 goto error_return;
1423 }
1424
1425 if (!resblks) {
1426 error = xfs_dir_canenter(tp, tdp, target_name);
1427 if (error)
1428 goto error_return;
1429 }
1430
1431 xfs_bmap_init(&free_list, &first_block);
1432
1433 if (sip->i_d.di_nlink == 0) {
1434 error = xfs_iunlink_remove(tp, sip);
1435 if (error)
1436 goto abort_return;
1437 }
1438
1439 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1440 &first_block, &free_list, resblks);
1441 if (error)
1442 goto abort_return;
1443 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1444 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1445
1446 error = xfs_bumplink(tp, sip);
1447 if (error)
1448 goto abort_return;
1449
1450 /*
1451 * If this is a synchronous mount, make sure that the
1452 * link transaction goes to disk before returning to
1453 * the user.
1454 */
1455 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) {
1456 xfs_trans_set_sync(tp);
1457 }
1458
1459 error = xfs_bmap_finish (&tp, &free_list, &committed);
1460 if (error) {
1461 xfs_bmap_cancel(&free_list);
1462 goto abort_return;
1463 }
1464
1465 return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1466
1467 abort_return:
1468 cancel_flags |= XFS_TRANS_ABORT;
1469 error_return:
1470 xfs_trans_cancel(tp, cancel_flags);
1471 std_return:
1472 return error;
1473 }
1474
1475 /*
1476 * Free up the underlying blocks past new_size. The new size must be smaller
1477 * than the current size. This routine can be used both for the attribute and
1478 * data fork, and does not modify the inode size, which is left to the caller.
1479 *
1480 * The transaction passed to this routine must have made a permanent log
1481 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1482 * given transaction and start new ones, so make sure everything involved in
1483 * the transaction is tidy before calling here. Some transaction will be
1484 * returned to the caller to be committed. The incoming transaction must
1485 * already include the inode, and both inode locks must be held exclusively.
1486 * The inode must also be "held" within the transaction. On return the inode
1487 * will be "held" within the returned transaction. This routine does NOT
1488 * require any disk space to be reserved for it within the transaction.
1489 *
1490 * If we get an error, we must return with the inode locked and linked into the
1491 * current transaction. This keeps things simple for the higher level code,
1492 * because it always knows that the inode is locked and held in the transaction
1493 * that returns to it whether errors occur or not. We don't mark the inode
1494 * dirty on error so that transactions can be easily aborted if possible.
1495 */
1496 int
1497 xfs_itruncate_extents(
1498 struct xfs_trans **tpp,
1499 struct xfs_inode *ip,
1500 int whichfork,
1501 xfs_fsize_t new_size)
1502 {
1503 struct xfs_mount *mp = ip->i_mount;
1504 struct xfs_trans *tp = *tpp;
1505 struct xfs_trans *ntp;
1506 xfs_bmap_free_t free_list;
1507 xfs_fsblock_t first_block;
1508 xfs_fileoff_t first_unmap_block;
1509 xfs_fileoff_t last_block;
1510 xfs_filblks_t unmap_len;
1511 int committed;
1512 int error = 0;
1513 int done = 0;
1514
1515 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1516 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1517 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1518 ASSERT(new_size <= XFS_ISIZE(ip));
1519 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1520 ASSERT(ip->i_itemp != NULL);
1521 ASSERT(ip->i_itemp->ili_lock_flags == 0);
1522 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1523
1524 trace_xfs_itruncate_extents_start(ip, new_size);
1525
1526 /*
1527 * Since it is possible for space to become allocated beyond
1528 * the end of the file (in a crash where the space is allocated
1529 * but the inode size is not yet updated), simply remove any
1530 * blocks which show up between the new EOF and the maximum
1531 * possible file size. If the first block to be removed is
1532 * beyond the maximum file size (ie it is the same as last_block),
1533 * then there is nothing to do.
1534 */
1535 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1536 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1537 if (first_unmap_block == last_block)
1538 return 0;
1539
1540 ASSERT(first_unmap_block < last_block);
1541 unmap_len = last_block - first_unmap_block + 1;
1542 while (!done) {
1543 xfs_bmap_init(&free_list, &first_block);
1544 error = xfs_bunmapi(tp, ip,
1545 first_unmap_block, unmap_len,
1546 xfs_bmapi_aflag(whichfork),
1547 XFS_ITRUNC_MAX_EXTENTS,
1548 &first_block, &free_list,
1549 &done);
1550 if (error)
1551 goto out_bmap_cancel;
1552
1553 /*
1554 * Duplicate the transaction that has the permanent
1555 * reservation and commit the old transaction.
1556 */
1557 error = xfs_bmap_finish(&tp, &free_list, &committed);
1558 if (committed)
1559 xfs_trans_ijoin(tp, ip, 0);
1560 if (error)
1561 goto out_bmap_cancel;
1562
1563 if (committed) {
1564 /*
1565 * Mark the inode dirty so it will be logged and
1566 * moved forward in the log as part of every commit.
1567 */
1568 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1569 }
1570
1571 ntp = xfs_trans_dup(tp);
1572 error = xfs_trans_commit(tp, 0);
1573 tp = ntp;
1574
1575 xfs_trans_ijoin(tp, ip, 0);
1576
1577 if (error)
1578 goto out;
1579
1580 /*
1581 * Transaction commit worked ok so we can drop the extra ticket
1582 * reference that we gained in xfs_trans_dup()
1583 */
1584 xfs_log_ticket_put(tp->t_ticket);
1585 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
1586 if (error)
1587 goto out;
1588 }
1589
1590 /*
1591 * Always re-log the inode so that our permanent transaction can keep
1592 * on rolling it forward in the log.
1593 */
1594 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1595
1596 trace_xfs_itruncate_extents_end(ip, new_size);
1597
1598 out:
1599 *tpp = tp;
1600 return error;
1601 out_bmap_cancel:
1602 /*
1603 * If the bunmapi call encounters an error, return to the caller where
1604 * the transaction can be properly aborted. We just need to make sure
1605 * we're not holding any resources that we were not when we came in.
1606 */
1607 xfs_bmap_cancel(&free_list);
1608 goto out;
1609 }
1610
1611 int
1612 xfs_release(
1613 xfs_inode_t *ip)
1614 {
1615 xfs_mount_t *mp = ip->i_mount;
1616 int error;
1617
1618 if (!S_ISREG(ip->i_d.di_mode) || (ip->i_d.di_mode == 0))
1619 return 0;
1620
1621 /* If this is a read-only mount, don't do this (would generate I/O) */
1622 if (mp->m_flags & XFS_MOUNT_RDONLY)
1623 return 0;
1624
1625 if (!XFS_FORCED_SHUTDOWN(mp)) {
1626 int truncated;
1627
1628 /*
1629 * If we previously truncated this file and removed old data
1630 * in the process, we want to initiate "early" writeout on
1631 * the last close. This is an attempt to combat the notorious
1632 * NULL files problem which is particularly noticeable from a
1633 * truncate down, buffered (re-)write (delalloc), followed by
1634 * a crash. What we are effectively doing here is
1635 * significantly reducing the time window where we'd otherwise
1636 * be exposed to that problem.
1637 */
1638 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1639 if (truncated) {
1640 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1641 if (ip->i_delayed_blks > 0) {
1642 error = filemap_flush(VFS_I(ip)->i_mapping);
1643 if (error)
1644 return error;
1645 }
1646 }
1647 }
1648
1649 if (ip->i_d.di_nlink == 0)
1650 return 0;
1651
1652 if (xfs_can_free_eofblocks(ip, false)) {
1653
1654 /*
1655 * If we can't get the iolock just skip truncating the blocks
1656 * past EOF because we could deadlock with the mmap_sem
1657 * otherwise. We'll get another chance to drop them once the
1658 * last reference to the inode is dropped, so we'll never leak
1659 * blocks permanently.
1660 *
1661 * Further, check if the inode is being opened, written and
1662 * closed frequently and we have delayed allocation blocks
1663 * outstanding (e.g. streaming writes from the NFS server),
1664 * truncating the blocks past EOF will cause fragmentation to
1665 * occur.
1666 *
1667 * In this case don't do the truncation, either, but we have to
1668 * be careful how we detect this case. Blocks beyond EOF show
1669 * up as i_delayed_blks even when the inode is clean, so we
1670 * need to truncate them away first before checking for a dirty
1671 * release. Hence on the first dirty close we will still remove
1672 * the speculative allocation, but after that we will leave it
1673 * in place.
1674 */
1675 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1676 return 0;
1677
1678 error = xfs_free_eofblocks(mp, ip, true);
1679 if (error && error != -EAGAIN)
1680 return error;
1681
1682 /* delalloc blocks after truncation means it really is dirty */
1683 if (ip->i_delayed_blks)
1684 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1685 }
1686 return 0;
1687 }
1688
1689 /*
1690 * xfs_inactive_truncate
1691 *
1692 * Called to perform a truncate when an inode becomes unlinked.
1693 */
1694 STATIC int
1695 xfs_inactive_truncate(
1696 struct xfs_inode *ip)
1697 {
1698 struct xfs_mount *mp = ip->i_mount;
1699 struct xfs_trans *tp;
1700 int error;
1701
1702 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1703 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
1704 if (error) {
1705 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1706 xfs_trans_cancel(tp, 0);
1707 return error;
1708 }
1709
1710 xfs_ilock(ip, XFS_ILOCK_EXCL);
1711 xfs_trans_ijoin(tp, ip, 0);
1712
1713 /*
1714 * Log the inode size first to prevent stale data exposure in the event
1715 * of a system crash before the truncate completes. See the related
1716 * comment in xfs_setattr_size() for details.
1717 */
1718 ip->i_d.di_size = 0;
1719 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1720
1721 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1722 if (error)
1723 goto error_trans_cancel;
1724
1725 ASSERT(ip->i_d.di_nextents == 0);
1726
1727 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1728 if (error)
1729 goto error_unlock;
1730
1731 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1732 return 0;
1733
1734 error_trans_cancel:
1735 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES | XFS_TRANS_ABORT);
1736 error_unlock:
1737 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1738 return error;
1739 }
1740
1741 /*
1742 * xfs_inactive_ifree()
1743 *
1744 * Perform the inode free when an inode is unlinked.
1745 */
1746 STATIC int
1747 xfs_inactive_ifree(
1748 struct xfs_inode *ip)
1749 {
1750 xfs_bmap_free_t free_list;
1751 xfs_fsblock_t first_block;
1752 int committed;
1753 struct xfs_mount *mp = ip->i_mount;
1754 struct xfs_trans *tp;
1755 int error;
1756
1757 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1758
1759 /*
1760 * The ifree transaction might need to allocate blocks for record
1761 * insertion to the finobt. We don't want to fail here at ENOSPC, so
1762 * allow ifree to dip into the reserved block pool if necessary.
1763 *
1764 * Freeing large sets of inodes generally means freeing inode chunks,
1765 * directory and file data blocks, so this should be relatively safe.
1766 * Only under severe circumstances should it be possible to free enough
1767 * inodes to exhaust the reserve block pool via finobt expansion while
1768 * at the same time not creating free space in the filesystem.
1769 *
1770 * Send a warning if the reservation does happen to fail, as the inode
1771 * now remains allocated and sits on the unlinked list until the fs is
1772 * repaired.
1773 */
1774 tp->t_flags |= XFS_TRANS_RESERVE;
1775 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ifree,
1776 XFS_IFREE_SPACE_RES(mp), 0);
1777 if (error) {
1778 if (error == -ENOSPC) {
1779 xfs_warn_ratelimited(mp,
1780 "Failed to remove inode(s) from unlinked list. "
1781 "Please free space, unmount and run xfs_repair.");
1782 } else {
1783 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1784 }
1785 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES);
1786 return error;
1787 }
1788
1789 xfs_ilock(ip, XFS_ILOCK_EXCL);
1790 xfs_trans_ijoin(tp, ip, 0);
1791
1792 xfs_bmap_init(&free_list, &first_block);
1793 error = xfs_ifree(tp, ip, &free_list);
1794 if (error) {
1795 /*
1796 * If we fail to free the inode, shut down. The cancel
1797 * might do that, we need to make sure. Otherwise the
1798 * inode might be lost for a long time or forever.
1799 */
1800 if (!XFS_FORCED_SHUTDOWN(mp)) {
1801 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1802 __func__, error);
1803 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1804 }
1805 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES|XFS_TRANS_ABORT);
1806 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1807 return error;
1808 }
1809
1810 /*
1811 * Credit the quota account(s). The inode is gone.
1812 */
1813 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1814
1815 /*
1816 * Just ignore errors at this point. There is nothing we can
1817 * do except to try to keep going. Make sure it's not a silent
1818 * error.
1819 */
1820 error = xfs_bmap_finish(&tp, &free_list, &committed);
1821 if (error)
1822 xfs_notice(mp, "%s: xfs_bmap_finish returned error %d",
1823 __func__, error);
1824 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1825 if (error)
1826 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1827 __func__, error);
1828
1829 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1830 return 0;
1831 }
1832
1833 /*
1834 * xfs_inactive
1835 *
1836 * This is called when the vnode reference count for the vnode
1837 * goes to zero. If the file has been unlinked, then it must
1838 * now be truncated. Also, we clear all of the read-ahead state
1839 * kept for the inode here since the file is now closed.
1840 */
1841 void
1842 xfs_inactive(
1843 xfs_inode_t *ip)
1844 {
1845 struct xfs_mount *mp;
1846 int error;
1847 int truncate = 0;
1848
1849 /*
1850 * If the inode is already free, then there can be nothing
1851 * to clean up here.
1852 */
1853 if (ip->i_d.di_mode == 0) {
1854 ASSERT(ip->i_df.if_real_bytes == 0);
1855 ASSERT(ip->i_df.if_broot_bytes == 0);
1856 return;
1857 }
1858
1859 mp = ip->i_mount;
1860
1861 /* If this is a read-only mount, don't do this (would generate I/O) */
1862 if (mp->m_flags & XFS_MOUNT_RDONLY)
1863 return;
1864
1865 if (ip->i_d.di_nlink != 0) {
1866 /*
1867 * force is true because we are evicting an inode from the
1868 * cache. Post-eof blocks must be freed, lest we end up with
1869 * broken free space accounting.
1870 */
1871 if (xfs_can_free_eofblocks(ip, true))
1872 xfs_free_eofblocks(mp, ip, false);
1873
1874 return;
1875 }
1876
1877 if (S_ISREG(ip->i_d.di_mode) &&
1878 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1879 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1880 truncate = 1;
1881
1882 error = xfs_qm_dqattach(ip, 0);
1883 if (error)
1884 return;
1885
1886 if (S_ISLNK(ip->i_d.di_mode))
1887 error = xfs_inactive_symlink(ip);
1888 else if (truncate)
1889 error = xfs_inactive_truncate(ip);
1890 if (error)
1891 return;
1892
1893 /*
1894 * If there are attributes associated with the file then blow them away
1895 * now. The code calls a routine that recursively deconstructs the
1896 * attribute fork. We need to just commit the current transaction
1897 * because we can't use it for xfs_attr_inactive().
1898 */
1899 if (ip->i_d.di_anextents > 0) {
1900 ASSERT(ip->i_d.di_forkoff != 0);
1901
1902 error = xfs_attr_inactive(ip);
1903 if (error)
1904 return;
1905 }
1906
1907 if (ip->i_afp)
1908 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
1909
1910 ASSERT(ip->i_d.di_anextents == 0);
1911
1912 /*
1913 * Free the inode.
1914 */
1915 error = xfs_inactive_ifree(ip);
1916 if (error)
1917 return;
1918
1919 /*
1920 * Release the dquots held by inode, if any.
1921 */
1922 xfs_qm_dqdetach(ip);
1923 }
1924
1925 /*
1926 * This is called when the inode's link count goes to 0.
1927 * We place the on-disk inode on a list in the AGI. It
1928 * will be pulled from this list when the inode is freed.
1929 */
1930 int
1931 xfs_iunlink(
1932 xfs_trans_t *tp,
1933 xfs_inode_t *ip)
1934 {
1935 xfs_mount_t *mp;
1936 xfs_agi_t *agi;
1937 xfs_dinode_t *dip;
1938 xfs_buf_t *agibp;
1939 xfs_buf_t *ibp;
1940 xfs_agino_t agino;
1941 short bucket_index;
1942 int offset;
1943 int error;
1944
1945 ASSERT(ip->i_d.di_nlink == 0);
1946 ASSERT(ip->i_d.di_mode != 0);
1947
1948 mp = tp->t_mountp;
1949
1950 /*
1951 * Get the agi buffer first. It ensures lock ordering
1952 * on the list.
1953 */
1954 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1955 if (error)
1956 return error;
1957 agi = XFS_BUF_TO_AGI(agibp);
1958
1959 /*
1960 * Get the index into the agi hash table for the
1961 * list this inode will go on.
1962 */
1963 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1964 ASSERT(agino != 0);
1965 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1966 ASSERT(agi->agi_unlinked[bucket_index]);
1967 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1968
1969 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1970 /*
1971 * There is already another inode in the bucket we need
1972 * to add ourselves to. Add us at the front of the list.
1973 * Here we put the head pointer into our next pointer,
1974 * and then we fall through to point the head at us.
1975 */
1976 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1977 0, 0);
1978 if (error)
1979 return error;
1980
1981 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1982 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1983 offset = ip->i_imap.im_boffset +
1984 offsetof(xfs_dinode_t, di_next_unlinked);
1985
1986 /* need to recalc the inode CRC if appropriate */
1987 xfs_dinode_calc_crc(mp, dip);
1988
1989 xfs_trans_inode_buf(tp, ibp);
1990 xfs_trans_log_buf(tp, ibp, offset,
1991 (offset + sizeof(xfs_agino_t) - 1));
1992 xfs_inobp_check(mp, ibp);
1993 }
1994
1995 /*
1996 * Point the bucket head pointer at the inode being inserted.
1997 */
1998 ASSERT(agino != 0);
1999 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
2000 offset = offsetof(xfs_agi_t, agi_unlinked) +
2001 (sizeof(xfs_agino_t) * bucket_index);
2002 xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
2003 xfs_trans_log_buf(tp, agibp, offset,
2004 (offset + sizeof(xfs_agino_t) - 1));
2005 return 0;
2006 }
2007
2008 /*
2009 * Pull the on-disk inode from the AGI unlinked list.
2010 */
2011 STATIC int
2012 xfs_iunlink_remove(
2013 xfs_trans_t *tp,
2014 xfs_inode_t *ip)
2015 {
2016 xfs_ino_t next_ino;
2017 xfs_mount_t *mp;
2018 xfs_agi_t *agi;
2019 xfs_dinode_t *dip;
2020 xfs_buf_t *agibp;
2021 xfs_buf_t *ibp;
2022 xfs_agnumber_t agno;
2023 xfs_agino_t agino;
2024 xfs_agino_t next_agino;
2025 xfs_buf_t *last_ibp;
2026 xfs_dinode_t *last_dip = NULL;
2027 short bucket_index;
2028 int offset, last_offset = 0;
2029 int error;
2030
2031 mp = tp->t_mountp;
2032 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2033
2034 /*
2035 * Get the agi buffer first. It ensures lock ordering
2036 * on the list.
2037 */
2038 error = xfs_read_agi(mp, tp, agno, &agibp);
2039 if (error)
2040 return error;
2041
2042 agi = XFS_BUF_TO_AGI(agibp);
2043
2044 /*
2045 * Get the index into the agi hash table for the
2046 * list this inode will go on.
2047 */
2048 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2049 ASSERT(agino != 0);
2050 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2051 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
2052 ASSERT(agi->agi_unlinked[bucket_index]);
2053
2054 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2055 /*
2056 * We're at the head of the list. Get the inode's on-disk
2057 * buffer to see if there is anyone after us on the list.
2058 * Only modify our next pointer if it is not already NULLAGINO.
2059 * This saves us the overhead of dealing with the buffer when
2060 * there is no need to change it.
2061 */
2062 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2063 0, 0);
2064 if (error) {
2065 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2066 __func__, error);
2067 return error;
2068 }
2069 next_agino = be32_to_cpu(dip->di_next_unlinked);
2070 ASSERT(next_agino != 0);
2071 if (next_agino != NULLAGINO) {
2072 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2073 offset = ip->i_imap.im_boffset +
2074 offsetof(xfs_dinode_t, di_next_unlinked);
2075
2076 /* need to recalc the inode CRC if appropriate */
2077 xfs_dinode_calc_crc(mp, dip);
2078
2079 xfs_trans_inode_buf(tp, ibp);
2080 xfs_trans_log_buf(tp, ibp, offset,
2081 (offset + sizeof(xfs_agino_t) - 1));
2082 xfs_inobp_check(mp, ibp);
2083 } else {
2084 xfs_trans_brelse(tp, ibp);
2085 }
2086 /*
2087 * Point the bucket head pointer at the next inode.
2088 */
2089 ASSERT(next_agino != 0);
2090 ASSERT(next_agino != agino);
2091 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2092 offset = offsetof(xfs_agi_t, agi_unlinked) +
2093 (sizeof(xfs_agino_t) * bucket_index);
2094 xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
2095 xfs_trans_log_buf(tp, agibp, offset,
2096 (offset + sizeof(xfs_agino_t) - 1));
2097 } else {
2098 /*
2099 * We need to search the list for the inode being freed.
2100 */
2101 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2102 last_ibp = NULL;
2103 while (next_agino != agino) {
2104 struct xfs_imap imap;
2105
2106 if (last_ibp)
2107 xfs_trans_brelse(tp, last_ibp);
2108
2109 imap.im_blkno = 0;
2110 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2111
2112 error = xfs_imap(mp, tp, next_ino, &imap, 0);
2113 if (error) {
2114 xfs_warn(mp,
2115 "%s: xfs_imap returned error %d.",
2116 __func__, error);
2117 return error;
2118 }
2119
2120 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2121 &last_ibp, 0, 0);
2122 if (error) {
2123 xfs_warn(mp,
2124 "%s: xfs_imap_to_bp returned error %d.",
2125 __func__, error);
2126 return error;
2127 }
2128
2129 last_offset = imap.im_boffset;
2130 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2131 ASSERT(next_agino != NULLAGINO);
2132 ASSERT(next_agino != 0);
2133 }
2134
2135 /*
2136 * Now last_ibp points to the buffer previous to us on the
2137 * unlinked list. Pull us from the list.
2138 */
2139 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2140 0, 0);
2141 if (error) {
2142 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
2143 __func__, error);
2144 return error;
2145 }
2146 next_agino = be32_to_cpu(dip->di_next_unlinked);
2147 ASSERT(next_agino != 0);
2148 ASSERT(next_agino != agino);
2149 if (next_agino != NULLAGINO) {
2150 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2151 offset = ip->i_imap.im_boffset +
2152 offsetof(xfs_dinode_t, di_next_unlinked);
2153
2154 /* need to recalc the inode CRC if appropriate */
2155 xfs_dinode_calc_crc(mp, dip);
2156
2157 xfs_trans_inode_buf(tp, ibp);
2158 xfs_trans_log_buf(tp, ibp, offset,
2159 (offset + sizeof(xfs_agino_t) - 1));
2160 xfs_inobp_check(mp, ibp);
2161 } else {
2162 xfs_trans_brelse(tp, ibp);
2163 }
2164 /*
2165 * Point the previous inode on the list to the next inode.
2166 */
2167 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2168 ASSERT(next_agino != 0);
2169 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2170
2171 /* need to recalc the inode CRC if appropriate */
2172 xfs_dinode_calc_crc(mp, last_dip);
2173
2174 xfs_trans_inode_buf(tp, last_ibp);
2175 xfs_trans_log_buf(tp, last_ibp, offset,
2176 (offset + sizeof(xfs_agino_t) - 1));
2177 xfs_inobp_check(mp, last_ibp);
2178 }
2179 return 0;
2180 }
2181
2182 /*
2183 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2184 * inodes that are in memory - they all must be marked stale and attached to
2185 * the cluster buffer.
2186 */
2187 STATIC int
2188 xfs_ifree_cluster(
2189 xfs_inode_t *free_ip,
2190 xfs_trans_t *tp,
2191 xfs_ino_t inum)
2192 {
2193 xfs_mount_t *mp = free_ip->i_mount;
2194 int blks_per_cluster;
2195 int inodes_per_cluster;
2196 int nbufs;
2197 int i, j;
2198 xfs_daddr_t blkno;
2199 xfs_buf_t *bp;
2200 xfs_inode_t *ip;
2201 xfs_inode_log_item_t *iip;
2202 xfs_log_item_t *lip;
2203 struct xfs_perag *pag;
2204
2205 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2206 blks_per_cluster = xfs_icluster_size_fsb(mp);
2207 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2208 nbufs = mp->m_ialloc_blks / blks_per_cluster;
2209
2210 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
2211 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2212 XFS_INO_TO_AGBNO(mp, inum));
2213
2214 /*
2215 * We obtain and lock the backing buffer first in the process
2216 * here, as we have to ensure that any dirty inode that we
2217 * can't get the flush lock on is attached to the buffer.
2218 * If we scan the in-memory inodes first, then buffer IO can
2219 * complete before we get a lock on it, and hence we may fail
2220 * to mark all the active inodes on the buffer stale.
2221 */
2222 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2223 mp->m_bsize * blks_per_cluster,
2224 XBF_UNMAPPED);
2225
2226 if (!bp)
2227 return -ENOMEM;
2228
2229 /*
2230 * This buffer may not have been correctly initialised as we
2231 * didn't read it from disk. That's not important because we are
2232 * only using to mark the buffer as stale in the log, and to
2233 * attach stale cached inodes on it. That means it will never be
2234 * dispatched for IO. If it is, we want to know about it, and we
2235 * want it to fail. We can acheive this by adding a write
2236 * verifier to the buffer.
2237 */
2238 bp->b_ops = &xfs_inode_buf_ops;
2239
2240 /*
2241 * Walk the inodes already attached to the buffer and mark them
2242 * stale. These will all have the flush locks held, so an
2243 * in-memory inode walk can't lock them. By marking them all
2244 * stale first, we will not attempt to lock them in the loop
2245 * below as the XFS_ISTALE flag will be set.
2246 */
2247 lip = bp->b_fspriv;
2248 while (lip) {
2249 if (lip->li_type == XFS_LI_INODE) {
2250 iip = (xfs_inode_log_item_t *)lip;
2251 ASSERT(iip->ili_logged == 1);
2252 lip->li_cb = xfs_istale_done;
2253 xfs_trans_ail_copy_lsn(mp->m_ail,
2254 &iip->ili_flush_lsn,
2255 &iip->ili_item.li_lsn);
2256 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2257 }
2258 lip = lip->li_bio_list;
2259 }
2260
2261
2262 /*
2263 * For each inode in memory attempt to add it to the inode
2264 * buffer and set it up for being staled on buffer IO
2265 * completion. This is safe as we've locked out tail pushing
2266 * and flushing by locking the buffer.
2267 *
2268 * We have already marked every inode that was part of a
2269 * transaction stale above, which means there is no point in
2270 * even trying to lock them.
2271 */
2272 for (i = 0; i < inodes_per_cluster; i++) {
2273 retry:
2274 rcu_read_lock();
2275 ip = radix_tree_lookup(&pag->pag_ici_root,
2276 XFS_INO_TO_AGINO(mp, (inum + i)));
2277
2278 /* Inode not in memory, nothing to do */
2279 if (!ip) {
2280 rcu_read_unlock();
2281 continue;
2282 }
2283
2284 /*
2285 * because this is an RCU protected lookup, we could
2286 * find a recently freed or even reallocated inode
2287 * during the lookup. We need to check under the
2288 * i_flags_lock for a valid inode here. Skip it if it
2289 * is not valid, the wrong inode or stale.
2290 */
2291 spin_lock(&ip->i_flags_lock);
2292 if (ip->i_ino != inum + i ||
2293 __xfs_iflags_test(ip, XFS_ISTALE)) {
2294 spin_unlock(&ip->i_flags_lock);
2295 rcu_read_unlock();
2296 continue;
2297 }
2298 spin_unlock(&ip->i_flags_lock);
2299
2300 /*
2301 * Don't try to lock/unlock the current inode, but we
2302 * _cannot_ skip the other inodes that we did not find
2303 * in the list attached to the buffer and are not
2304 * already marked stale. If we can't lock it, back off
2305 * and retry.
2306 */
2307 if (ip != free_ip &&
2308 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2309 rcu_read_unlock();
2310 delay(1);
2311 goto retry;
2312 }
2313 rcu_read_unlock();
2314
2315 xfs_iflock(ip);
2316 xfs_iflags_set(ip, XFS_ISTALE);
2317
2318 /*
2319 * we don't need to attach clean inodes or those only
2320 * with unlogged changes (which we throw away, anyway).
2321 */
2322 iip = ip->i_itemp;
2323 if (!iip || xfs_inode_clean(ip)) {
2324 ASSERT(ip != free_ip);
2325 xfs_ifunlock(ip);
2326 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2327 continue;
2328 }
2329
2330 iip->ili_last_fields = iip->ili_fields;
2331 iip->ili_fields = 0;
2332 iip->ili_logged = 1;
2333 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2334 &iip->ili_item.li_lsn);
2335
2336 xfs_buf_attach_iodone(bp, xfs_istale_done,
2337 &iip->ili_item);
2338
2339 if (ip != free_ip)
2340 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2341 }
2342
2343 xfs_trans_stale_inode_buf(tp, bp);
2344 xfs_trans_binval(tp, bp);
2345 }
2346
2347 xfs_perag_put(pag);
2348 return 0;
2349 }
2350
2351 /*
2352 * This is called to return an inode to the inode free list.
2353 * The inode should already be truncated to 0 length and have
2354 * no pages associated with it. This routine also assumes that
2355 * the inode is already a part of the transaction.
2356 *
2357 * The on-disk copy of the inode will have been added to the list
2358 * of unlinked inodes in the AGI. We need to remove the inode from
2359 * that list atomically with respect to freeing it here.
2360 */
2361 int
2362 xfs_ifree(
2363 xfs_trans_t *tp,
2364 xfs_inode_t *ip,
2365 xfs_bmap_free_t *flist)
2366 {
2367 int error;
2368 int delete;
2369 xfs_ino_t first_ino;
2370
2371 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2372 ASSERT(ip->i_d.di_nlink == 0);
2373 ASSERT(ip->i_d.di_nextents == 0);
2374 ASSERT(ip->i_d.di_anextents == 0);
2375 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
2376 ASSERT(ip->i_d.di_nblocks == 0);
2377
2378 /*
2379 * Pull the on-disk inode from the AGI unlinked list.
2380 */
2381 error = xfs_iunlink_remove(tp, ip);
2382 if (error)
2383 return error;
2384
2385 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2386 if (error)
2387 return error;
2388
2389 ip->i_d.di_mode = 0; /* mark incore inode as free */
2390 ip->i_d.di_flags = 0;
2391 ip->i_d.di_dmevmask = 0;
2392 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2393 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2394 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2395 /*
2396 * Bump the generation count so no one will be confused
2397 * by reincarnations of this inode.
2398 */
2399 ip->i_d.di_gen++;
2400 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2401
2402 if (delete)
2403 error = xfs_ifree_cluster(ip, tp, first_ino);
2404
2405 return error;
2406 }
2407
2408 /*
2409 * This is called to unpin an inode. The caller must have the inode locked
2410 * in at least shared mode so that the buffer cannot be subsequently pinned
2411 * once someone is waiting for it to be unpinned.
2412 */
2413 static void
2414 xfs_iunpin(
2415 struct xfs_inode *ip)
2416 {
2417 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2418
2419 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2420
2421 /* Give the log a push to start the unpinning I/O */
2422 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2423
2424 }
2425
2426 static void
2427 __xfs_iunpin_wait(
2428 struct xfs_inode *ip)
2429 {
2430 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2431 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2432
2433 xfs_iunpin(ip);
2434
2435 do {
2436 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2437 if (xfs_ipincount(ip))
2438 io_schedule();
2439 } while (xfs_ipincount(ip));
2440 finish_wait(wq, &wait.wait);
2441 }
2442
2443 void
2444 xfs_iunpin_wait(
2445 struct xfs_inode *ip)
2446 {
2447 if (xfs_ipincount(ip))
2448 __xfs_iunpin_wait(ip);
2449 }
2450
2451 /*
2452 * Removing an inode from the namespace involves removing the directory entry
2453 * and dropping the link count on the inode. Removing the directory entry can
2454 * result in locking an AGF (directory blocks were freed) and removing a link
2455 * count can result in placing the inode on an unlinked list which results in
2456 * locking an AGI.
2457 *
2458 * The big problem here is that we have an ordering constraint on AGF and AGI
2459 * locking - inode allocation locks the AGI, then can allocate a new extent for
2460 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2461 * removes the inode from the unlinked list, requiring that we lock the AGI
2462 * first, and then freeing the inode can result in an inode chunk being freed
2463 * and hence freeing disk space requiring that we lock an AGF.
2464 *
2465 * Hence the ordering that is imposed by other parts of the code is AGI before
2466 * AGF. This means we cannot remove the directory entry before we drop the inode
2467 * reference count and put it on the unlinked list as this results in a lock
2468 * order of AGF then AGI, and this can deadlock against inode allocation and
2469 * freeing. Therefore we must drop the link counts before we remove the
2470 * directory entry.
2471 *
2472 * This is still safe from a transactional point of view - it is not until we
2473 * get to xfs_bmap_finish() that we have the possibility of multiple
2474 * transactions in this operation. Hence as long as we remove the directory
2475 * entry and drop the link count in the first transaction of the remove
2476 * operation, there are no transactional constraints on the ordering here.
2477 */
2478 int
2479 xfs_remove(
2480 xfs_inode_t *dp,
2481 struct xfs_name *name,
2482 xfs_inode_t *ip)
2483 {
2484 xfs_mount_t *mp = dp->i_mount;
2485 xfs_trans_t *tp = NULL;
2486 int is_dir = S_ISDIR(ip->i_d.di_mode);
2487 int error = 0;
2488 xfs_bmap_free_t free_list;
2489 xfs_fsblock_t first_block;
2490 int cancel_flags;
2491 int committed;
2492 uint resblks;
2493
2494 trace_xfs_remove(dp, name);
2495
2496 if (XFS_FORCED_SHUTDOWN(mp))
2497 return -EIO;
2498
2499 error = xfs_qm_dqattach(dp, 0);
2500 if (error)
2501 goto std_return;
2502
2503 error = xfs_qm_dqattach(ip, 0);
2504 if (error)
2505 goto std_return;
2506
2507 if (is_dir)
2508 tp = xfs_trans_alloc(mp, XFS_TRANS_RMDIR);
2509 else
2510 tp = xfs_trans_alloc(mp, XFS_TRANS_REMOVE);
2511 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
2512
2513 /*
2514 * We try to get the real space reservation first,
2515 * allowing for directory btree deletion(s) implying
2516 * possible bmap insert(s). If we can't get the space
2517 * reservation then we use 0 instead, and avoid the bmap
2518 * btree insert(s) in the directory code by, if the bmap
2519 * insert tries to happen, instead trimming the LAST
2520 * block from the directory.
2521 */
2522 resblks = XFS_REMOVE_SPACE_RES(mp);
2523 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, resblks, 0);
2524 if (error == -ENOSPC) {
2525 resblks = 0;
2526 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, 0, 0);
2527 }
2528 if (error) {
2529 ASSERT(error != -ENOSPC);
2530 cancel_flags = 0;
2531 goto out_trans_cancel;
2532 }
2533
2534 xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2535
2536 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2537 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2538
2539 /*
2540 * If we're removing a directory perform some additional validation.
2541 */
2542 cancel_flags |= XFS_TRANS_ABORT;
2543 if (is_dir) {
2544 ASSERT(ip->i_d.di_nlink >= 2);
2545 if (ip->i_d.di_nlink != 2) {
2546 error = -ENOTEMPTY;
2547 goto out_trans_cancel;
2548 }
2549 if (!xfs_dir_isempty(ip)) {
2550 error = -ENOTEMPTY;
2551 goto out_trans_cancel;
2552 }
2553
2554 /* Drop the link from ip's "..". */
2555 error = xfs_droplink(tp, dp);
2556 if (error)
2557 goto out_trans_cancel;
2558
2559 /* Drop the "." link from ip to self. */
2560 error = xfs_droplink(tp, ip);
2561 if (error)
2562 goto out_trans_cancel;
2563 } else {
2564 /*
2565 * When removing a non-directory we need to log the parent
2566 * inode here. For a directory this is done implicitly
2567 * by the xfs_droplink call for the ".." entry.
2568 */
2569 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2570 }
2571 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2572
2573 /* Drop the link from dp to ip. */
2574 error = xfs_droplink(tp, ip);
2575 if (error)
2576 goto out_trans_cancel;
2577
2578 xfs_bmap_init(&free_list, &first_block);
2579 error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2580 &first_block, &free_list, resblks);
2581 if (error) {
2582 ASSERT(error != -ENOENT);
2583 goto out_bmap_cancel;
2584 }
2585
2586 /*
2587 * If this is a synchronous mount, make sure that the
2588 * remove transaction goes to disk before returning to
2589 * the user.
2590 */
2591 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2592 xfs_trans_set_sync(tp);
2593
2594 error = xfs_bmap_finish(&tp, &free_list, &committed);
2595 if (error)
2596 goto out_bmap_cancel;
2597
2598 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
2599 if (error)
2600 goto std_return;
2601
2602 if (is_dir && xfs_inode_is_filestream(ip))
2603 xfs_filestream_deassociate(ip);
2604
2605 return 0;
2606
2607 out_bmap_cancel:
2608 xfs_bmap_cancel(&free_list);
2609 out_trans_cancel:
2610 xfs_trans_cancel(tp, cancel_flags);
2611 std_return:
2612 return error;
2613 }
2614
2615 /*
2616 * Enter all inodes for a rename transaction into a sorted array.
2617 */
2618 STATIC void
2619 xfs_sort_for_rename(
2620 xfs_inode_t *dp1, /* in: old (source) directory inode */
2621 xfs_inode_t *dp2, /* in: new (target) directory inode */
2622 xfs_inode_t *ip1, /* in: inode of old entry */
2623 xfs_inode_t *ip2, /* in: inode of new entry, if it
2624 already exists, NULL otherwise. */
2625 xfs_inode_t **i_tab,/* out: array of inode returned, sorted */
2626 int *num_inodes) /* out: number of inodes in array */
2627 {
2628 xfs_inode_t *temp;
2629 int i, j;
2630
2631 /*
2632 * i_tab contains a list of pointers to inodes. We initialize
2633 * the table here & we'll sort it. We will then use it to
2634 * order the acquisition of the inode locks.
2635 *
2636 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2637 */
2638 i_tab[0] = dp1;
2639 i_tab[1] = dp2;
2640 i_tab[2] = ip1;
2641 if (ip2) {
2642 *num_inodes = 4;
2643 i_tab[3] = ip2;
2644 } else {
2645 *num_inodes = 3;
2646 i_tab[3] = NULL;
2647 }
2648
2649 /*
2650 * Sort the elements via bubble sort. (Remember, there are at
2651 * most 4 elements to sort, so this is adequate.)
2652 */
2653 for (i = 0; i < *num_inodes; i++) {
2654 for (j = 1; j < *num_inodes; j++) {
2655 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2656 temp = i_tab[j];
2657 i_tab[j] = i_tab[j-1];
2658 i_tab[j-1] = temp;
2659 }
2660 }
2661 }
2662 }
2663
2664 /*
2665 * xfs_cross_rename()
2666 *
2667 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2668 */
2669 STATIC int
2670 xfs_cross_rename(
2671 struct xfs_trans *tp,
2672 struct xfs_inode *dp1,
2673 struct xfs_name *name1,
2674 struct xfs_inode *ip1,
2675 struct xfs_inode *dp2,
2676 struct xfs_name *name2,
2677 struct xfs_inode *ip2,
2678 struct xfs_bmap_free *free_list,
2679 xfs_fsblock_t *first_block,
2680 int spaceres)
2681 {
2682 int error = 0;
2683 int ip1_flags = 0;
2684 int ip2_flags = 0;
2685 int dp2_flags = 0;
2686
2687 /* Swap inode number for dirent in first parent */
2688 error = xfs_dir_replace(tp, dp1, name1,
2689 ip2->i_ino,
2690 first_block, free_list, spaceres);
2691 if (error)
2692 goto out;
2693
2694 /* Swap inode number for dirent in second parent */
2695 error = xfs_dir_replace(tp, dp2, name2,
2696 ip1->i_ino,
2697 first_block, free_list, spaceres);
2698 if (error)
2699 goto out;
2700
2701 /*
2702 * If we're renaming one or more directories across different parents,
2703 * update the respective ".." entries (and link counts) to match the new
2704 * parents.
2705 */
2706 if (dp1 != dp2) {
2707 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2708
2709 if (S_ISDIR(ip2->i_d.di_mode)) {
2710 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2711 dp1->i_ino, first_block,
2712 free_list, spaceres);
2713 if (error)
2714 goto out;
2715
2716 /* transfer ip2 ".." reference to dp1 */
2717 if (!S_ISDIR(ip1->i_d.di_mode)) {
2718 error = xfs_droplink(tp, dp2);
2719 if (error)
2720 goto out;
2721 error = xfs_bumplink(tp, dp1);
2722 if (error)
2723 goto out;
2724 }
2725
2726 /*
2727 * Although ip1 isn't changed here, userspace needs
2728 * to be warned about the change, so that applications
2729 * relying on it (like backup ones), will properly
2730 * notify the change
2731 */
2732 ip1_flags |= XFS_ICHGTIME_CHG;
2733 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2734 }
2735
2736 if (S_ISDIR(ip1->i_d.di_mode)) {
2737 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2738 dp2->i_ino, first_block,
2739 free_list, spaceres);
2740 if (error)
2741 goto out;
2742
2743 /* transfer ip1 ".." reference to dp2 */
2744 if (!S_ISDIR(ip2->i_d.di_mode)) {
2745 error = xfs_droplink(tp, dp1);
2746 if (error)
2747 goto out;
2748 error = xfs_bumplink(tp, dp2);
2749 if (error)
2750 goto out;
2751 }
2752
2753 /*
2754 * Although ip2 isn't changed here, userspace needs
2755 * to be warned about the change, so that applications
2756 * relying on it (like backup ones), will properly
2757 * notify the change
2758 */
2759 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2760 ip2_flags |= XFS_ICHGTIME_CHG;
2761 }
2762 }
2763
2764 if (ip1_flags) {
2765 xfs_trans_ichgtime(tp, ip1, ip1_flags);
2766 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2767 }
2768 if (ip2_flags) {
2769 xfs_trans_ichgtime(tp, ip2, ip2_flags);
2770 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2771 }
2772 if (dp2_flags) {
2773 xfs_trans_ichgtime(tp, dp2, dp2_flags);
2774 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2775 }
2776 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2777 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2778 out:
2779 return error;
2780 }
2781
2782 /*
2783 * xfs_rename
2784 */
2785 int
2786 xfs_rename(
2787 xfs_inode_t *src_dp,
2788 struct xfs_name *src_name,
2789 xfs_inode_t *src_ip,
2790 xfs_inode_t *target_dp,
2791 struct xfs_name *target_name,
2792 xfs_inode_t *target_ip,
2793 unsigned int flags)
2794 {
2795 xfs_trans_t *tp = NULL;
2796 xfs_mount_t *mp = src_dp->i_mount;
2797 int new_parent; /* moving to a new dir */
2798 int src_is_directory; /* src_name is a directory */
2799 int error;
2800 xfs_bmap_free_t free_list;
2801 xfs_fsblock_t first_block;
2802 int cancel_flags;
2803 int committed;
2804 xfs_inode_t *inodes[4];
2805 int spaceres;
2806 int num_inodes;
2807
2808 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2809
2810 new_parent = (src_dp != target_dp);
2811 src_is_directory = S_ISDIR(src_ip->i_d.di_mode);
2812
2813 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip,
2814 inodes, &num_inodes);
2815
2816 xfs_bmap_init(&free_list, &first_block);
2817 tp = xfs_trans_alloc(mp, XFS_TRANS_RENAME);
2818 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
2819 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2820 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, spaceres, 0);
2821 if (error == -ENOSPC) {
2822 spaceres = 0;
2823 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, 0, 0);
2824 }
2825 if (error) {
2826 xfs_trans_cancel(tp, 0);
2827 goto std_return;
2828 }
2829
2830 /*
2831 * Attach the dquots to the inodes
2832 */
2833 error = xfs_qm_vop_rename_dqattach(inodes);
2834 if (error) {
2835 xfs_trans_cancel(tp, cancel_flags);
2836 goto std_return;
2837 }
2838
2839 /*
2840 * Lock all the participating inodes. Depending upon whether
2841 * the target_name exists in the target directory, and
2842 * whether the target directory is the same as the source
2843 * directory, we can lock from 2 to 4 inodes.
2844 */
2845 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2846
2847 /*
2848 * Join all the inodes to the transaction. From this point on,
2849 * we can rely on either trans_commit or trans_cancel to unlock
2850 * them.
2851 */
2852 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
2853 if (new_parent)
2854 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
2855 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2856 if (target_ip)
2857 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2858
2859 /*
2860 * If we are using project inheritance, we only allow renames
2861 * into our tree when the project IDs are the same; else the
2862 * tree quota mechanism would be circumvented.
2863 */
2864 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2865 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2866 error = -EXDEV;
2867 goto error_return;
2868 }
2869
2870 /*
2871 * Handle RENAME_EXCHANGE flags
2872 */
2873 if (flags & RENAME_EXCHANGE) {
2874 if (target_ip == NULL) {
2875 error = -EINVAL;
2876 goto error_return;
2877 }
2878 error = xfs_cross_rename(tp, src_dp, src_name, src_ip,
2879 target_dp, target_name, target_ip,
2880 &free_list, &first_block, spaceres);
2881 if (error)
2882 goto abort_return;
2883 goto finish_rename;
2884 }
2885
2886 /*
2887 * Set up the target.
2888 */
2889 if (target_ip == NULL) {
2890 /*
2891 * If there's no space reservation, check the entry will
2892 * fit before actually inserting it.
2893 */
2894 if (!spaceres) {
2895 error = xfs_dir_canenter(tp, target_dp, target_name);
2896 if (error)
2897 goto error_return;
2898 }
2899 /*
2900 * If target does not exist and the rename crosses
2901 * directories, adjust the target directory link count
2902 * to account for the ".." reference from the new entry.
2903 */
2904 error = xfs_dir_createname(tp, target_dp, target_name,
2905 src_ip->i_ino, &first_block,
2906 &free_list, spaceres);
2907 if (error == -ENOSPC)
2908 goto error_return;
2909 if (error)
2910 goto abort_return;
2911
2912 xfs_trans_ichgtime(tp, target_dp,
2913 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2914
2915 if (new_parent && src_is_directory) {
2916 error = xfs_bumplink(tp, target_dp);
2917 if (error)
2918 goto abort_return;
2919 }
2920 } else { /* target_ip != NULL */
2921 /*
2922 * If target exists and it's a directory, check that both
2923 * target and source are directories and that target can be
2924 * destroyed, or that neither is a directory.
2925 */
2926 if (S_ISDIR(target_ip->i_d.di_mode)) {
2927 /*
2928 * Make sure target dir is empty.
2929 */
2930 if (!(xfs_dir_isempty(target_ip)) ||
2931 (target_ip->i_d.di_nlink > 2)) {
2932 error = -EEXIST;
2933 goto error_return;
2934 }
2935 }
2936
2937 /*
2938 * Link the source inode under the target name.
2939 * If the source inode is a directory and we are moving
2940 * it across directories, its ".." entry will be
2941 * inconsistent until we replace that down below.
2942 *
2943 * In case there is already an entry with the same
2944 * name at the destination directory, remove it first.
2945 */
2946 error = xfs_dir_replace(tp, target_dp, target_name,
2947 src_ip->i_ino,
2948 &first_block, &free_list, spaceres);
2949 if (error)
2950 goto abort_return;
2951
2952 xfs_trans_ichgtime(tp, target_dp,
2953 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2954
2955 /*
2956 * Decrement the link count on the target since the target
2957 * dir no longer points to it.
2958 */
2959 error = xfs_droplink(tp, target_ip);
2960 if (error)
2961 goto abort_return;
2962
2963 if (src_is_directory) {
2964 /*
2965 * Drop the link from the old "." entry.
2966 */
2967 error = xfs_droplink(tp, target_ip);
2968 if (error)
2969 goto abort_return;
2970 }
2971 } /* target_ip != NULL */
2972
2973 /*
2974 * Remove the source.
2975 */
2976 if (new_parent && src_is_directory) {
2977 /*
2978 * Rewrite the ".." entry to point to the new
2979 * directory.
2980 */
2981 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
2982 target_dp->i_ino,
2983 &first_block, &free_list, spaceres);
2984 ASSERT(error != -EEXIST);
2985 if (error)
2986 goto abort_return;
2987 }
2988
2989 /*
2990 * We always want to hit the ctime on the source inode.
2991 *
2992 * This isn't strictly required by the standards since the source
2993 * inode isn't really being changed, but old unix file systems did
2994 * it and some incremental backup programs won't work without it.
2995 */
2996 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
2997 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
2998
2999 /*
3000 * Adjust the link count on src_dp. This is necessary when
3001 * renaming a directory, either within one parent when
3002 * the target existed, or across two parent directories.
3003 */
3004 if (src_is_directory && (new_parent || target_ip != NULL)) {
3005
3006 /*
3007 * Decrement link count on src_directory since the
3008 * entry that's moved no longer points to it.
3009 */
3010 error = xfs_droplink(tp, src_dp);
3011 if (error)
3012 goto abort_return;
3013 }
3014
3015 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3016 &first_block, &free_list, spaceres);
3017 if (error)
3018 goto abort_return;
3019
3020 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3021 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3022 if (new_parent)
3023 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3024
3025 finish_rename:
3026 /*
3027 * If this is a synchronous mount, make sure that the
3028 * rename transaction goes to disk before returning to
3029 * the user.
3030 */
3031 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) {
3032 xfs_trans_set_sync(tp);
3033 }
3034
3035 error = xfs_bmap_finish(&tp, &free_list, &committed);
3036 if (error) {
3037 xfs_bmap_cancel(&free_list);
3038 xfs_trans_cancel(tp, (XFS_TRANS_RELEASE_LOG_RES |
3039 XFS_TRANS_ABORT));
3040 goto std_return;
3041 }
3042
3043 /*
3044 * trans_commit will unlock src_ip, target_ip & decrement
3045 * the vnode references.
3046 */
3047 return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
3048
3049 abort_return:
3050 cancel_flags |= XFS_TRANS_ABORT;
3051 error_return:
3052 xfs_bmap_cancel(&free_list);
3053 xfs_trans_cancel(tp, cancel_flags);
3054 std_return:
3055 return error;
3056 }
3057
3058 STATIC int
3059 xfs_iflush_cluster(
3060 xfs_inode_t *ip,
3061 xfs_buf_t *bp)
3062 {
3063 xfs_mount_t *mp = ip->i_mount;
3064 struct xfs_perag *pag;
3065 unsigned long first_index, mask;
3066 unsigned long inodes_per_cluster;
3067 int ilist_size;
3068 xfs_inode_t **ilist;
3069 xfs_inode_t *iq;
3070 int nr_found;
3071 int clcount = 0;
3072 int bufwasdelwri;
3073 int i;
3074
3075 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
3076
3077 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
3078 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3079 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
3080 if (!ilist)
3081 goto out_put;
3082
3083 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
3084 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3085 rcu_read_lock();
3086 /* really need a gang lookup range call here */
3087 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
3088 first_index, inodes_per_cluster);
3089 if (nr_found == 0)
3090 goto out_free;
3091
3092 for (i = 0; i < nr_found; i++) {
3093 iq = ilist[i];
3094 if (iq == ip)
3095 continue;
3096
3097 /*
3098 * because this is an RCU protected lookup, we could find a
3099 * recently freed or even reallocated inode during the lookup.
3100 * We need to check under the i_flags_lock for a valid inode
3101 * here. Skip it if it is not valid or the wrong inode.
3102 */
3103 spin_lock(&ip->i_flags_lock);
3104 if (!ip->i_ino ||
3105 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
3106 spin_unlock(&ip->i_flags_lock);
3107 continue;
3108 }
3109 spin_unlock(&ip->i_flags_lock);
3110
3111 /*
3112 * Do an un-protected check to see if the inode is dirty and
3113 * is a candidate for flushing. These checks will be repeated
3114 * later after the appropriate locks are acquired.
3115 */
3116 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
3117 continue;
3118
3119 /*
3120 * Try to get locks. If any are unavailable or it is pinned,
3121 * then this inode cannot be flushed and is skipped.
3122 */
3123
3124 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
3125 continue;
3126 if (!xfs_iflock_nowait(iq)) {
3127 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3128 continue;
3129 }
3130 if (xfs_ipincount(iq)) {
3131 xfs_ifunlock(iq);
3132 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3133 continue;
3134 }
3135
3136 /*
3137 * arriving here means that this inode can be flushed. First
3138 * re-check that it's dirty before flushing.
3139 */
3140 if (!xfs_inode_clean(iq)) {
3141 int error;
3142 error = xfs_iflush_int(iq, bp);
3143 if (error) {
3144 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3145 goto cluster_corrupt_out;
3146 }
3147 clcount++;
3148 } else {
3149 xfs_ifunlock(iq);
3150 }
3151 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3152 }
3153
3154 if (clcount) {
3155 XFS_STATS_INC(xs_icluster_flushcnt);
3156 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3157 }
3158
3159 out_free:
3160 rcu_read_unlock();
3161 kmem_free(ilist);
3162 out_put:
3163 xfs_perag_put(pag);
3164 return 0;
3165
3166
3167 cluster_corrupt_out:
3168 /*
3169 * Corruption detected in the clustering loop. Invalidate the
3170 * inode buffer and shut down the filesystem.
3171 */
3172 rcu_read_unlock();
3173 /*
3174 * Clean up the buffer. If it was delwri, just release it --
3175 * brelse can handle it with no problems. If not, shut down the
3176 * filesystem before releasing the buffer.
3177 */
3178 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
3179 if (bufwasdelwri)
3180 xfs_buf_relse(bp);
3181
3182 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3183
3184 if (!bufwasdelwri) {
3185 /*
3186 * Just like incore_relse: if we have b_iodone functions,
3187 * mark the buffer as an error and call them. Otherwise
3188 * mark it as stale and brelse.
3189 */
3190 if (bp->b_iodone) {
3191 XFS_BUF_UNDONE(bp);
3192 xfs_buf_stale(bp);
3193 xfs_buf_ioerror(bp, -EIO);
3194 xfs_buf_ioend(bp);
3195 } else {
3196 xfs_buf_stale(bp);
3197 xfs_buf_relse(bp);
3198 }
3199 }
3200
3201 /*
3202 * Unlocks the flush lock
3203 */
3204 xfs_iflush_abort(iq, false);
3205 kmem_free(ilist);
3206 xfs_perag_put(pag);
3207 return -EFSCORRUPTED;
3208 }
3209
3210 /*
3211 * Flush dirty inode metadata into the backing buffer.
3212 *
3213 * The caller must have the inode lock and the inode flush lock held. The
3214 * inode lock will still be held upon return to the caller, and the inode
3215 * flush lock will be released after the inode has reached the disk.
3216 *
3217 * The caller must write out the buffer returned in *bpp and release it.
3218 */
3219 int
3220 xfs_iflush(
3221 struct xfs_inode *ip,
3222 struct xfs_buf **bpp)
3223 {
3224 struct xfs_mount *mp = ip->i_mount;
3225 struct xfs_buf *bp;
3226 struct xfs_dinode *dip;
3227 int error;
3228
3229 XFS_STATS_INC(xs_iflush_count);
3230
3231 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3232 ASSERT(xfs_isiflocked(ip));
3233 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3234 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3235
3236 *bpp = NULL;
3237
3238 xfs_iunpin_wait(ip);
3239
3240 /*
3241 * For stale inodes we cannot rely on the backing buffer remaining
3242 * stale in cache for the remaining life of the stale inode and so
3243 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3244 * inodes below. We have to check this after ensuring the inode is
3245 * unpinned so that it is safe to reclaim the stale inode after the
3246 * flush call.
3247 */
3248 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3249 xfs_ifunlock(ip);
3250 return 0;
3251 }
3252
3253 /*
3254 * This may have been unpinned because the filesystem is shutting
3255 * down forcibly. If that's the case we must not write this inode
3256 * to disk, because the log record didn't make it to disk.
3257 *
3258 * We also have to remove the log item from the AIL in this case,
3259 * as we wait for an empty AIL as part of the unmount process.
3260 */
3261 if (XFS_FORCED_SHUTDOWN(mp)) {
3262 error = -EIO;
3263 goto abort_out;
3264 }
3265
3266 /*
3267 * Get the buffer containing the on-disk inode.
3268 */
3269 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3270 0);
3271 if (error || !bp) {
3272 xfs_ifunlock(ip);
3273 return error;
3274 }
3275
3276 /*
3277 * First flush out the inode that xfs_iflush was called with.
3278 */
3279 error = xfs_iflush_int(ip, bp);
3280 if (error)
3281 goto corrupt_out;
3282
3283 /*
3284 * If the buffer is pinned then push on the log now so we won't
3285 * get stuck waiting in the write for too long.
3286 */
3287 if (xfs_buf_ispinned(bp))
3288 xfs_log_force(mp, 0);
3289
3290 /*
3291 * inode clustering:
3292 * see if other inodes can be gathered into this write
3293 */
3294 error = xfs_iflush_cluster(ip, bp);
3295 if (error)
3296 goto cluster_corrupt_out;
3297
3298 *bpp = bp;
3299 return 0;
3300
3301 corrupt_out:
3302 xfs_buf_relse(bp);
3303 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3304 cluster_corrupt_out:
3305 error = -EFSCORRUPTED;
3306 abort_out:
3307 /*
3308 * Unlocks the flush lock
3309 */
3310 xfs_iflush_abort(ip, false);
3311 return error;
3312 }
3313
3314 STATIC int
3315 xfs_iflush_int(
3316 struct xfs_inode *ip,
3317 struct xfs_buf *bp)
3318 {
3319 struct xfs_inode_log_item *iip = ip->i_itemp;
3320 struct xfs_dinode *dip;
3321 struct xfs_mount *mp = ip->i_mount;
3322
3323 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3324 ASSERT(xfs_isiflocked(ip));
3325 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3326 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3327 ASSERT(iip != NULL && iip->ili_fields != 0);
3328 ASSERT(ip->i_d.di_version > 1);
3329
3330 /* set *dip = inode's place in the buffer */
3331 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
3332
3333 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3334 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3335 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3336 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3337 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3338 goto corrupt_out;
3339 }
3340 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3341 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3342 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3343 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3344 __func__, ip->i_ino, ip, ip->i_d.di_magic);
3345 goto corrupt_out;
3346 }
3347 if (S_ISREG(ip->i_d.di_mode)) {
3348 if (XFS_TEST_ERROR(
3349 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3350 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3351 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3352 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3353 "%s: Bad regular inode %Lu, ptr 0x%p",
3354 __func__, ip->i_ino, ip);
3355 goto corrupt_out;
3356 }
3357 } else if (S_ISDIR(ip->i_d.di_mode)) {
3358 if (XFS_TEST_ERROR(
3359 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3360 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3361 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3362 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3363 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3364 "%s: Bad directory inode %Lu, ptr 0x%p",
3365 __func__, ip->i_ino, ip);
3366 goto corrupt_out;
3367 }
3368 }
3369 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3370 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3371 XFS_RANDOM_IFLUSH_5)) {
3372 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3373 "%s: detected corrupt incore inode %Lu, "
3374 "total extents = %d, nblocks = %Ld, ptr 0x%p",
3375 __func__, ip->i_ino,
3376 ip->i_d.di_nextents + ip->i_d.di_anextents,
3377 ip->i_d.di_nblocks, ip);
3378 goto corrupt_out;
3379 }
3380 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3381 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3382 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3383 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3384 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3385 goto corrupt_out;
3386 }
3387
3388 /*
3389 * Inode item log recovery for v2 inodes are dependent on the
3390 * di_flushiter count for correct sequencing. We bump the flush
3391 * iteration count so we can detect flushes which postdate a log record
3392 * during recovery. This is redundant as we now log every change and
3393 * hence this can't happen but we need to still do it to ensure
3394 * backwards compatibility with old kernels that predate logging all
3395 * inode changes.
3396 */
3397 if (ip->i_d.di_version < 3)
3398 ip->i_d.di_flushiter++;
3399
3400 /*
3401 * Copy the dirty parts of the inode into the on-disk
3402 * inode. We always copy out the core of the inode,
3403 * because if the inode is dirty at all the core must
3404 * be.
3405 */
3406 xfs_dinode_to_disk(dip, &ip->i_d);
3407
3408 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3409 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3410 ip->i_d.di_flushiter = 0;
3411
3412 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3413 if (XFS_IFORK_Q(ip))
3414 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3415 xfs_inobp_check(mp, bp);
3416
3417 /*
3418 * We've recorded everything logged in the inode, so we'd like to clear
3419 * the ili_fields bits so we don't log and flush things unnecessarily.
3420 * However, we can't stop logging all this information until the data
3421 * we've copied into the disk buffer is written to disk. If we did we
3422 * might overwrite the copy of the inode in the log with all the data
3423 * after re-logging only part of it, and in the face of a crash we
3424 * wouldn't have all the data we need to recover.
3425 *
3426 * What we do is move the bits to the ili_last_fields field. When
3427 * logging the inode, these bits are moved back to the ili_fields field.
3428 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3429 * know that the information those bits represent is permanently on
3430 * disk. As long as the flush completes before the inode is logged
3431 * again, then both ili_fields and ili_last_fields will be cleared.
3432 *
3433 * We can play with the ili_fields bits here, because the inode lock
3434 * must be held exclusively in order to set bits there and the flush
3435 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3436 * done routine can tell whether or not to look in the AIL. Also, store
3437 * the current LSN of the inode so that we can tell whether the item has
3438 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3439 * need the AIL lock, because it is a 64 bit value that cannot be read
3440 * atomically.
3441 */
3442 iip->ili_last_fields = iip->ili_fields;
3443 iip->ili_fields = 0;
3444 iip->ili_logged = 1;
3445
3446 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3447 &iip->ili_item.li_lsn);
3448
3449 /*
3450 * Attach the function xfs_iflush_done to the inode's
3451 * buffer. This will remove the inode from the AIL
3452 * and unlock the inode's flush lock when the inode is
3453 * completely written to disk.
3454 */
3455 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3456
3457 /* update the lsn in the on disk inode if required */
3458 if (ip->i_d.di_version == 3)
3459 dip->di_lsn = cpu_to_be64(iip->ili_item.li_lsn);
3460
3461 /* generate the checksum. */
3462 xfs_dinode_calc_crc(mp, dip);
3463
3464 ASSERT(bp->b_fspriv != NULL);
3465 ASSERT(bp->b_iodone != NULL);
3466 return 0;
3467
3468 corrupt_out:
3469 return -EFSCORRUPTED;
3470 }
This page took 0.103779 seconds and 5 git commands to generate.