xfs: fix set-but-unused warnings
[deliverable/linux.git] / fs / xfs / xfs_inode.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include <linux/log2.h>
19
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_shared.h"
23 #include "xfs_format.h"
24 #include "xfs_log_format.h"
25 #include "xfs_trans_resv.h"
26 #include "xfs_inum.h"
27 #include "xfs_sb.h"
28 #include "xfs_ag.h"
29 #include "xfs_mount.h"
30 #include "xfs_inode.h"
31 #include "xfs_da_format.h"
32 #include "xfs_da_btree.h"
33 #include "xfs_dir2.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_attr.h"
36 #include "xfs_trans_space.h"
37 #include "xfs_trans.h"
38 #include "xfs_buf_item.h"
39 #include "xfs_inode_item.h"
40 #include "xfs_ialloc.h"
41 #include "xfs_bmap.h"
42 #include "xfs_bmap_util.h"
43 #include "xfs_error.h"
44 #include "xfs_quota.h"
45 #include "xfs_filestream.h"
46 #include "xfs_cksum.h"
47 #include "xfs_trace.h"
48 #include "xfs_icache.h"
49 #include "xfs_symlink.h"
50 #include "xfs_trans_priv.h"
51 #include "xfs_log.h"
52 #include "xfs_bmap_btree.h"
53
54 kmem_zone_t *xfs_inode_zone;
55
56 /*
57 * Used in xfs_itruncate_extents(). This is the maximum number of extents
58 * freed from a file in a single transaction.
59 */
60 #define XFS_ITRUNC_MAX_EXTENTS 2
61
62 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
63
64 STATIC int xfs_iunlink_remove(xfs_trans_t *, xfs_inode_t *);
65
66 /*
67 * helper function to extract extent size hint from inode
68 */
69 xfs_extlen_t
70 xfs_get_extsz_hint(
71 struct xfs_inode *ip)
72 {
73 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
74 return ip->i_d.di_extsize;
75 if (XFS_IS_REALTIME_INODE(ip))
76 return ip->i_mount->m_sb.sb_rextsize;
77 return 0;
78 }
79
80 /*
81 * These two are wrapper routines around the xfs_ilock() routine used to
82 * centralize some grungy code. They are used in places that wish to lock the
83 * inode solely for reading the extents. The reason these places can't just
84 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
85 * bringing in of the extents from disk for a file in b-tree format. If the
86 * inode is in b-tree format, then we need to lock the inode exclusively until
87 * the extents are read in. Locking it exclusively all the time would limit
88 * our parallelism unnecessarily, though. What we do instead is check to see
89 * if the extents have been read in yet, and only lock the inode exclusively
90 * if they have not.
91 *
92 * The functions return a value which should be given to the corresponding
93 * xfs_iunlock() call.
94 */
95 uint
96 xfs_ilock_data_map_shared(
97 struct xfs_inode *ip)
98 {
99 uint lock_mode = XFS_ILOCK_SHARED;
100
101 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
102 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
103 lock_mode = XFS_ILOCK_EXCL;
104 xfs_ilock(ip, lock_mode);
105 return lock_mode;
106 }
107
108 uint
109 xfs_ilock_attr_map_shared(
110 struct xfs_inode *ip)
111 {
112 uint lock_mode = XFS_ILOCK_SHARED;
113
114 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
115 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
116 lock_mode = XFS_ILOCK_EXCL;
117 xfs_ilock(ip, lock_mode);
118 return lock_mode;
119 }
120
121 /*
122 * The xfs inode contains 2 locks: a multi-reader lock called the
123 * i_iolock and a multi-reader lock called the i_lock. This routine
124 * allows either or both of the locks to be obtained.
125 *
126 * The 2 locks should always be ordered so that the IO lock is
127 * obtained first in order to prevent deadlock.
128 *
129 * ip -- the inode being locked
130 * lock_flags -- this parameter indicates the inode's locks
131 * to be locked. It can be:
132 * XFS_IOLOCK_SHARED,
133 * XFS_IOLOCK_EXCL,
134 * XFS_ILOCK_SHARED,
135 * XFS_ILOCK_EXCL,
136 * XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED,
137 * XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL,
138 * XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED,
139 * XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL
140 */
141 void
142 xfs_ilock(
143 xfs_inode_t *ip,
144 uint lock_flags)
145 {
146 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
147
148 /*
149 * You can't set both SHARED and EXCL for the same lock,
150 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
151 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
152 */
153 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
154 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
155 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
156 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
157 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
158
159 if (lock_flags & XFS_IOLOCK_EXCL)
160 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
161 else if (lock_flags & XFS_IOLOCK_SHARED)
162 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
163
164 if (lock_flags & XFS_ILOCK_EXCL)
165 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
166 else if (lock_flags & XFS_ILOCK_SHARED)
167 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
168 }
169
170 /*
171 * This is just like xfs_ilock(), except that the caller
172 * is guaranteed not to sleep. It returns 1 if it gets
173 * the requested locks and 0 otherwise. If the IO lock is
174 * obtained but the inode lock cannot be, then the IO lock
175 * is dropped before returning.
176 *
177 * ip -- the inode being locked
178 * lock_flags -- this parameter indicates the inode's locks to be
179 * to be locked. See the comment for xfs_ilock() for a list
180 * of valid values.
181 */
182 int
183 xfs_ilock_nowait(
184 xfs_inode_t *ip,
185 uint lock_flags)
186 {
187 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
188
189 /*
190 * You can't set both SHARED and EXCL for the same lock,
191 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
192 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
193 */
194 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
195 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
196 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
197 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
198 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
199
200 if (lock_flags & XFS_IOLOCK_EXCL) {
201 if (!mrtryupdate(&ip->i_iolock))
202 goto out;
203 } else if (lock_flags & XFS_IOLOCK_SHARED) {
204 if (!mrtryaccess(&ip->i_iolock))
205 goto out;
206 }
207 if (lock_flags & XFS_ILOCK_EXCL) {
208 if (!mrtryupdate(&ip->i_lock))
209 goto out_undo_iolock;
210 } else if (lock_flags & XFS_ILOCK_SHARED) {
211 if (!mrtryaccess(&ip->i_lock))
212 goto out_undo_iolock;
213 }
214 return 1;
215
216 out_undo_iolock:
217 if (lock_flags & XFS_IOLOCK_EXCL)
218 mrunlock_excl(&ip->i_iolock);
219 else if (lock_flags & XFS_IOLOCK_SHARED)
220 mrunlock_shared(&ip->i_iolock);
221 out:
222 return 0;
223 }
224
225 /*
226 * xfs_iunlock() is used to drop the inode locks acquired with
227 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
228 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
229 * that we know which locks to drop.
230 *
231 * ip -- the inode being unlocked
232 * lock_flags -- this parameter indicates the inode's locks to be
233 * to be unlocked. See the comment for xfs_ilock() for a list
234 * of valid values for this parameter.
235 *
236 */
237 void
238 xfs_iunlock(
239 xfs_inode_t *ip,
240 uint lock_flags)
241 {
242 /*
243 * You can't set both SHARED and EXCL for the same lock,
244 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
245 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
246 */
247 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
248 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
249 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
250 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
251 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
252 ASSERT(lock_flags != 0);
253
254 if (lock_flags & XFS_IOLOCK_EXCL)
255 mrunlock_excl(&ip->i_iolock);
256 else if (lock_flags & XFS_IOLOCK_SHARED)
257 mrunlock_shared(&ip->i_iolock);
258
259 if (lock_flags & XFS_ILOCK_EXCL)
260 mrunlock_excl(&ip->i_lock);
261 else if (lock_flags & XFS_ILOCK_SHARED)
262 mrunlock_shared(&ip->i_lock);
263
264 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
265 }
266
267 /*
268 * give up write locks. the i/o lock cannot be held nested
269 * if it is being demoted.
270 */
271 void
272 xfs_ilock_demote(
273 xfs_inode_t *ip,
274 uint lock_flags)
275 {
276 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL));
277 ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
278
279 if (lock_flags & XFS_ILOCK_EXCL)
280 mrdemote(&ip->i_lock);
281 if (lock_flags & XFS_IOLOCK_EXCL)
282 mrdemote(&ip->i_iolock);
283
284 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
285 }
286
287 #if defined(DEBUG) || defined(XFS_WARN)
288 int
289 xfs_isilocked(
290 xfs_inode_t *ip,
291 uint lock_flags)
292 {
293 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
294 if (!(lock_flags & XFS_ILOCK_SHARED))
295 return !!ip->i_lock.mr_writer;
296 return rwsem_is_locked(&ip->i_lock.mr_lock);
297 }
298
299 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
300 if (!(lock_flags & XFS_IOLOCK_SHARED))
301 return !!ip->i_iolock.mr_writer;
302 return rwsem_is_locked(&ip->i_iolock.mr_lock);
303 }
304
305 ASSERT(0);
306 return 0;
307 }
308 #endif
309
310 #ifdef DEBUG
311 int xfs_locked_n;
312 int xfs_small_retries;
313 int xfs_middle_retries;
314 int xfs_lots_retries;
315 int xfs_lock_delays;
316 #endif
317
318 /*
319 * Bump the subclass so xfs_lock_inodes() acquires each lock with
320 * a different value
321 */
322 static inline int
323 xfs_lock_inumorder(int lock_mode, int subclass)
324 {
325 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))
326 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_IOLOCK_SHIFT;
327 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))
328 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_ILOCK_SHIFT;
329
330 return lock_mode;
331 }
332
333 /*
334 * The following routine will lock n inodes in exclusive mode.
335 * We assume the caller calls us with the inodes in i_ino order.
336 *
337 * We need to detect deadlock where an inode that we lock
338 * is in the AIL and we start waiting for another inode that is locked
339 * by a thread in a long running transaction (such as truncate). This can
340 * result in deadlock since the long running trans might need to wait
341 * for the inode we just locked in order to push the tail and free space
342 * in the log.
343 */
344 void
345 xfs_lock_inodes(
346 xfs_inode_t **ips,
347 int inodes,
348 uint lock_mode)
349 {
350 int attempts = 0, i, j, try_lock;
351 xfs_log_item_t *lp;
352
353 ASSERT(ips && (inodes >= 2)); /* we need at least two */
354
355 try_lock = 0;
356 i = 0;
357
358 again:
359 for (; i < inodes; i++) {
360 ASSERT(ips[i]);
361
362 if (i && (ips[i] == ips[i-1])) /* Already locked */
363 continue;
364
365 /*
366 * If try_lock is not set yet, make sure all locked inodes
367 * are not in the AIL.
368 * If any are, set try_lock to be used later.
369 */
370
371 if (!try_lock) {
372 for (j = (i - 1); j >= 0 && !try_lock; j--) {
373 lp = (xfs_log_item_t *)ips[j]->i_itemp;
374 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
375 try_lock++;
376 }
377 }
378 }
379
380 /*
381 * If any of the previous locks we have locked is in the AIL,
382 * we must TRY to get the second and subsequent locks. If
383 * we can't get any, we must release all we have
384 * and try again.
385 */
386
387 if (try_lock) {
388 /* try_lock must be 0 if i is 0. */
389 /*
390 * try_lock means we have an inode locked
391 * that is in the AIL.
392 */
393 ASSERT(i != 0);
394 if (!xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) {
395 attempts++;
396
397 /*
398 * Unlock all previous guys and try again.
399 * xfs_iunlock will try to push the tail
400 * if the inode is in the AIL.
401 */
402
403 for(j = i - 1; j >= 0; j--) {
404
405 /*
406 * Check to see if we've already
407 * unlocked this one.
408 * Not the first one going back,
409 * and the inode ptr is the same.
410 */
411 if ((j != (i - 1)) && ips[j] ==
412 ips[j+1])
413 continue;
414
415 xfs_iunlock(ips[j], lock_mode);
416 }
417
418 if ((attempts % 5) == 0) {
419 delay(1); /* Don't just spin the CPU */
420 #ifdef DEBUG
421 xfs_lock_delays++;
422 #endif
423 }
424 i = 0;
425 try_lock = 0;
426 goto again;
427 }
428 } else {
429 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
430 }
431 }
432
433 #ifdef DEBUG
434 if (attempts) {
435 if (attempts < 5) xfs_small_retries++;
436 else if (attempts < 100) xfs_middle_retries++;
437 else xfs_lots_retries++;
438 } else {
439 xfs_locked_n++;
440 }
441 #endif
442 }
443
444 /*
445 * xfs_lock_two_inodes() can only be used to lock one type of lock
446 * at a time - the iolock or the ilock, but not both at once. If
447 * we lock both at once, lockdep will report false positives saying
448 * we have violated locking orders.
449 */
450 void
451 xfs_lock_two_inodes(
452 xfs_inode_t *ip0,
453 xfs_inode_t *ip1,
454 uint lock_mode)
455 {
456 xfs_inode_t *temp;
457 int attempts = 0;
458 xfs_log_item_t *lp;
459
460 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))
461 ASSERT((lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) == 0);
462 ASSERT(ip0->i_ino != ip1->i_ino);
463
464 if (ip0->i_ino > ip1->i_ino) {
465 temp = ip0;
466 ip0 = ip1;
467 ip1 = temp;
468 }
469
470 again:
471 xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
472
473 /*
474 * If the first lock we have locked is in the AIL, we must TRY to get
475 * the second lock. If we can't get it, we must release the first one
476 * and try again.
477 */
478 lp = (xfs_log_item_t *)ip0->i_itemp;
479 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
480 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
481 xfs_iunlock(ip0, lock_mode);
482 if ((++attempts % 5) == 0)
483 delay(1); /* Don't just spin the CPU */
484 goto again;
485 }
486 } else {
487 xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
488 }
489 }
490
491
492 void
493 __xfs_iflock(
494 struct xfs_inode *ip)
495 {
496 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
497 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
498
499 do {
500 prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
501 if (xfs_isiflocked(ip))
502 io_schedule();
503 } while (!xfs_iflock_nowait(ip));
504
505 finish_wait(wq, &wait.wait);
506 }
507
508 STATIC uint
509 _xfs_dic2xflags(
510 __uint16_t di_flags)
511 {
512 uint flags = 0;
513
514 if (di_flags & XFS_DIFLAG_ANY) {
515 if (di_flags & XFS_DIFLAG_REALTIME)
516 flags |= XFS_XFLAG_REALTIME;
517 if (di_flags & XFS_DIFLAG_PREALLOC)
518 flags |= XFS_XFLAG_PREALLOC;
519 if (di_flags & XFS_DIFLAG_IMMUTABLE)
520 flags |= XFS_XFLAG_IMMUTABLE;
521 if (di_flags & XFS_DIFLAG_APPEND)
522 flags |= XFS_XFLAG_APPEND;
523 if (di_flags & XFS_DIFLAG_SYNC)
524 flags |= XFS_XFLAG_SYNC;
525 if (di_flags & XFS_DIFLAG_NOATIME)
526 flags |= XFS_XFLAG_NOATIME;
527 if (di_flags & XFS_DIFLAG_NODUMP)
528 flags |= XFS_XFLAG_NODUMP;
529 if (di_flags & XFS_DIFLAG_RTINHERIT)
530 flags |= XFS_XFLAG_RTINHERIT;
531 if (di_flags & XFS_DIFLAG_PROJINHERIT)
532 flags |= XFS_XFLAG_PROJINHERIT;
533 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
534 flags |= XFS_XFLAG_NOSYMLINKS;
535 if (di_flags & XFS_DIFLAG_EXTSIZE)
536 flags |= XFS_XFLAG_EXTSIZE;
537 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
538 flags |= XFS_XFLAG_EXTSZINHERIT;
539 if (di_flags & XFS_DIFLAG_NODEFRAG)
540 flags |= XFS_XFLAG_NODEFRAG;
541 if (di_flags & XFS_DIFLAG_FILESTREAM)
542 flags |= XFS_XFLAG_FILESTREAM;
543 }
544
545 return flags;
546 }
547
548 uint
549 xfs_ip2xflags(
550 xfs_inode_t *ip)
551 {
552 xfs_icdinode_t *dic = &ip->i_d;
553
554 return _xfs_dic2xflags(dic->di_flags) |
555 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
556 }
557
558 uint
559 xfs_dic2xflags(
560 xfs_dinode_t *dip)
561 {
562 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
563 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
564 }
565
566 /*
567 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
568 * is allowed, otherwise it has to be an exact match. If a CI match is found,
569 * ci_name->name will point to a the actual name (caller must free) or
570 * will be set to NULL if an exact match is found.
571 */
572 int
573 xfs_lookup(
574 xfs_inode_t *dp,
575 struct xfs_name *name,
576 xfs_inode_t **ipp,
577 struct xfs_name *ci_name)
578 {
579 xfs_ino_t inum;
580 int error;
581 uint lock_mode;
582
583 trace_xfs_lookup(dp, name);
584
585 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
586 return -EIO;
587
588 lock_mode = xfs_ilock_data_map_shared(dp);
589 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
590 xfs_iunlock(dp, lock_mode);
591
592 if (error)
593 goto out;
594
595 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
596 if (error)
597 goto out_free_name;
598
599 return 0;
600
601 out_free_name:
602 if (ci_name)
603 kmem_free(ci_name->name);
604 out:
605 *ipp = NULL;
606 return error;
607 }
608
609 /*
610 * Allocate an inode on disk and return a copy of its in-core version.
611 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
612 * appropriately within the inode. The uid and gid for the inode are
613 * set according to the contents of the given cred structure.
614 *
615 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
616 * has a free inode available, call xfs_iget() to obtain the in-core
617 * version of the allocated inode. Finally, fill in the inode and
618 * log its initial contents. In this case, ialloc_context would be
619 * set to NULL.
620 *
621 * If xfs_dialloc() does not have an available inode, it will replenish
622 * its supply by doing an allocation. Since we can only do one
623 * allocation within a transaction without deadlocks, we must commit
624 * the current transaction before returning the inode itself.
625 * In this case, therefore, we will set ialloc_context and return.
626 * The caller should then commit the current transaction, start a new
627 * transaction, and call xfs_ialloc() again to actually get the inode.
628 *
629 * To ensure that some other process does not grab the inode that
630 * was allocated during the first call to xfs_ialloc(), this routine
631 * also returns the [locked] bp pointing to the head of the freelist
632 * as ialloc_context. The caller should hold this buffer across
633 * the commit and pass it back into this routine on the second call.
634 *
635 * If we are allocating quota inodes, we do not have a parent inode
636 * to attach to or associate with (i.e. pip == NULL) because they
637 * are not linked into the directory structure - they are attached
638 * directly to the superblock - and so have no parent.
639 */
640 int
641 xfs_ialloc(
642 xfs_trans_t *tp,
643 xfs_inode_t *pip,
644 umode_t mode,
645 xfs_nlink_t nlink,
646 xfs_dev_t rdev,
647 prid_t prid,
648 int okalloc,
649 xfs_buf_t **ialloc_context,
650 xfs_inode_t **ipp)
651 {
652 struct xfs_mount *mp = tp->t_mountp;
653 xfs_ino_t ino;
654 xfs_inode_t *ip;
655 uint flags;
656 int error;
657 struct timespec tv;
658
659 /*
660 * Call the space management code to pick
661 * the on-disk inode to be allocated.
662 */
663 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
664 ialloc_context, &ino);
665 if (error)
666 return error;
667 if (*ialloc_context || ino == NULLFSINO) {
668 *ipp = NULL;
669 return 0;
670 }
671 ASSERT(*ialloc_context == NULL);
672
673 /*
674 * Get the in-core inode with the lock held exclusively.
675 * This is because we're setting fields here we need
676 * to prevent others from looking at until we're done.
677 */
678 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
679 XFS_ILOCK_EXCL, &ip);
680 if (error)
681 return error;
682 ASSERT(ip != NULL);
683
684 /*
685 * We always convert v1 inodes to v2 now - we only support filesystems
686 * with >= v2 inode capability, so there is no reason for ever leaving
687 * an inode in v1 format.
688 */
689 if (ip->i_d.di_version == 1)
690 ip->i_d.di_version = 2;
691
692 ip->i_d.di_mode = mode;
693 ip->i_d.di_onlink = 0;
694 ip->i_d.di_nlink = nlink;
695 ASSERT(ip->i_d.di_nlink == nlink);
696 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
697 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
698 xfs_set_projid(ip, prid);
699 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
700
701 if (pip && XFS_INHERIT_GID(pip)) {
702 ip->i_d.di_gid = pip->i_d.di_gid;
703 if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
704 ip->i_d.di_mode |= S_ISGID;
705 }
706 }
707
708 /*
709 * If the group ID of the new file does not match the effective group
710 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
711 * (and only if the irix_sgid_inherit compatibility variable is set).
712 */
713 if ((irix_sgid_inherit) &&
714 (ip->i_d.di_mode & S_ISGID) &&
715 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) {
716 ip->i_d.di_mode &= ~S_ISGID;
717 }
718
719 ip->i_d.di_size = 0;
720 ip->i_d.di_nextents = 0;
721 ASSERT(ip->i_d.di_nblocks == 0);
722
723 tv = current_fs_time(mp->m_super);
724 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
725 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
726 ip->i_d.di_atime = ip->i_d.di_mtime;
727 ip->i_d.di_ctime = ip->i_d.di_mtime;
728
729 /*
730 * di_gen will have been taken care of in xfs_iread.
731 */
732 ip->i_d.di_extsize = 0;
733 ip->i_d.di_dmevmask = 0;
734 ip->i_d.di_dmstate = 0;
735 ip->i_d.di_flags = 0;
736
737 if (ip->i_d.di_version == 3) {
738 ASSERT(ip->i_d.di_ino == ino);
739 ASSERT(uuid_equal(&ip->i_d.di_uuid, &mp->m_sb.sb_uuid));
740 ip->i_d.di_crc = 0;
741 ip->i_d.di_changecount = 1;
742 ip->i_d.di_lsn = 0;
743 ip->i_d.di_flags2 = 0;
744 memset(&(ip->i_d.di_pad2[0]), 0, sizeof(ip->i_d.di_pad2));
745 ip->i_d.di_crtime = ip->i_d.di_mtime;
746 }
747
748
749 flags = XFS_ILOG_CORE;
750 switch (mode & S_IFMT) {
751 case S_IFIFO:
752 case S_IFCHR:
753 case S_IFBLK:
754 case S_IFSOCK:
755 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
756 ip->i_df.if_u2.if_rdev = rdev;
757 ip->i_df.if_flags = 0;
758 flags |= XFS_ILOG_DEV;
759 break;
760 case S_IFREG:
761 case S_IFDIR:
762 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
763 uint di_flags = 0;
764
765 if (S_ISDIR(mode)) {
766 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
767 di_flags |= XFS_DIFLAG_RTINHERIT;
768 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
769 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
770 ip->i_d.di_extsize = pip->i_d.di_extsize;
771 }
772 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
773 di_flags |= XFS_DIFLAG_PROJINHERIT;
774 } else if (S_ISREG(mode)) {
775 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
776 di_flags |= XFS_DIFLAG_REALTIME;
777 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
778 di_flags |= XFS_DIFLAG_EXTSIZE;
779 ip->i_d.di_extsize = pip->i_d.di_extsize;
780 }
781 }
782 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
783 xfs_inherit_noatime)
784 di_flags |= XFS_DIFLAG_NOATIME;
785 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
786 xfs_inherit_nodump)
787 di_flags |= XFS_DIFLAG_NODUMP;
788 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
789 xfs_inherit_sync)
790 di_flags |= XFS_DIFLAG_SYNC;
791 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
792 xfs_inherit_nosymlinks)
793 di_flags |= XFS_DIFLAG_NOSYMLINKS;
794 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
795 xfs_inherit_nodefrag)
796 di_flags |= XFS_DIFLAG_NODEFRAG;
797 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
798 di_flags |= XFS_DIFLAG_FILESTREAM;
799 ip->i_d.di_flags |= di_flags;
800 }
801 /* FALLTHROUGH */
802 case S_IFLNK:
803 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
804 ip->i_df.if_flags = XFS_IFEXTENTS;
805 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
806 ip->i_df.if_u1.if_extents = NULL;
807 break;
808 default:
809 ASSERT(0);
810 }
811 /*
812 * Attribute fork settings for new inode.
813 */
814 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
815 ip->i_d.di_anextents = 0;
816
817 /*
818 * Log the new values stuffed into the inode.
819 */
820 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
821 xfs_trans_log_inode(tp, ip, flags);
822
823 /* now that we have an i_mode we can setup inode ops and unlock */
824 xfs_setup_inode(ip);
825
826 *ipp = ip;
827 return 0;
828 }
829
830 /*
831 * Allocates a new inode from disk and return a pointer to the
832 * incore copy. This routine will internally commit the current
833 * transaction and allocate a new one if the Space Manager needed
834 * to do an allocation to replenish the inode free-list.
835 *
836 * This routine is designed to be called from xfs_create and
837 * xfs_create_dir.
838 *
839 */
840 int
841 xfs_dir_ialloc(
842 xfs_trans_t **tpp, /* input: current transaction;
843 output: may be a new transaction. */
844 xfs_inode_t *dp, /* directory within whose allocate
845 the inode. */
846 umode_t mode,
847 xfs_nlink_t nlink,
848 xfs_dev_t rdev,
849 prid_t prid, /* project id */
850 int okalloc, /* ok to allocate new space */
851 xfs_inode_t **ipp, /* pointer to inode; it will be
852 locked. */
853 int *committed)
854
855 {
856 xfs_trans_t *tp;
857 xfs_trans_t *ntp;
858 xfs_inode_t *ip;
859 xfs_buf_t *ialloc_context = NULL;
860 int code;
861 void *dqinfo;
862 uint tflags;
863
864 tp = *tpp;
865 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
866
867 /*
868 * xfs_ialloc will return a pointer to an incore inode if
869 * the Space Manager has an available inode on the free
870 * list. Otherwise, it will do an allocation and replenish
871 * the freelist. Since we can only do one allocation per
872 * transaction without deadlocks, we will need to commit the
873 * current transaction and start a new one. We will then
874 * need to call xfs_ialloc again to get the inode.
875 *
876 * If xfs_ialloc did an allocation to replenish the freelist,
877 * it returns the bp containing the head of the freelist as
878 * ialloc_context. We will hold a lock on it across the
879 * transaction commit so that no other process can steal
880 * the inode(s) that we've just allocated.
881 */
882 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
883 &ialloc_context, &ip);
884
885 /*
886 * Return an error if we were unable to allocate a new inode.
887 * This should only happen if we run out of space on disk or
888 * encounter a disk error.
889 */
890 if (code) {
891 *ipp = NULL;
892 return code;
893 }
894 if (!ialloc_context && !ip) {
895 *ipp = NULL;
896 return -ENOSPC;
897 }
898
899 /*
900 * If the AGI buffer is non-NULL, then we were unable to get an
901 * inode in one operation. We need to commit the current
902 * transaction and call xfs_ialloc() again. It is guaranteed
903 * to succeed the second time.
904 */
905 if (ialloc_context) {
906 struct xfs_trans_res tres;
907
908 /*
909 * Normally, xfs_trans_commit releases all the locks.
910 * We call bhold to hang on to the ialloc_context across
911 * the commit. Holding this buffer prevents any other
912 * processes from doing any allocations in this
913 * allocation group.
914 */
915 xfs_trans_bhold(tp, ialloc_context);
916 /*
917 * Save the log reservation so we can use
918 * them in the next transaction.
919 */
920 tres.tr_logres = xfs_trans_get_log_res(tp);
921 tres.tr_logcount = xfs_trans_get_log_count(tp);
922
923 /*
924 * We want the quota changes to be associated with the next
925 * transaction, NOT this one. So, detach the dqinfo from this
926 * and attach it to the next transaction.
927 */
928 dqinfo = NULL;
929 tflags = 0;
930 if (tp->t_dqinfo) {
931 dqinfo = (void *)tp->t_dqinfo;
932 tp->t_dqinfo = NULL;
933 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
934 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
935 }
936
937 ntp = xfs_trans_dup(tp);
938 code = xfs_trans_commit(tp, 0);
939 tp = ntp;
940 if (committed != NULL) {
941 *committed = 1;
942 }
943 /*
944 * If we get an error during the commit processing,
945 * release the buffer that is still held and return
946 * to the caller.
947 */
948 if (code) {
949 xfs_buf_relse(ialloc_context);
950 if (dqinfo) {
951 tp->t_dqinfo = dqinfo;
952 xfs_trans_free_dqinfo(tp);
953 }
954 *tpp = ntp;
955 *ipp = NULL;
956 return code;
957 }
958
959 /*
960 * transaction commit worked ok so we can drop the extra ticket
961 * reference that we gained in xfs_trans_dup()
962 */
963 xfs_log_ticket_put(tp->t_ticket);
964 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
965 code = xfs_trans_reserve(tp, &tres, 0, 0);
966
967 /*
968 * Re-attach the quota info that we detached from prev trx.
969 */
970 if (dqinfo) {
971 tp->t_dqinfo = dqinfo;
972 tp->t_flags |= tflags;
973 }
974
975 if (code) {
976 xfs_buf_relse(ialloc_context);
977 *tpp = ntp;
978 *ipp = NULL;
979 return code;
980 }
981 xfs_trans_bjoin(tp, ialloc_context);
982
983 /*
984 * Call ialloc again. Since we've locked out all
985 * other allocations in this allocation group,
986 * this call should always succeed.
987 */
988 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
989 okalloc, &ialloc_context, &ip);
990
991 /*
992 * If we get an error at this point, return to the caller
993 * so that the current transaction can be aborted.
994 */
995 if (code) {
996 *tpp = tp;
997 *ipp = NULL;
998 return code;
999 }
1000 ASSERT(!ialloc_context && ip);
1001
1002 } else {
1003 if (committed != NULL)
1004 *committed = 0;
1005 }
1006
1007 *ipp = ip;
1008 *tpp = tp;
1009
1010 return 0;
1011 }
1012
1013 /*
1014 * Decrement the link count on an inode & log the change.
1015 * If this causes the link count to go to zero, initiate the
1016 * logging activity required to truncate a file.
1017 */
1018 int /* error */
1019 xfs_droplink(
1020 xfs_trans_t *tp,
1021 xfs_inode_t *ip)
1022 {
1023 int error;
1024
1025 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1026
1027 ASSERT (ip->i_d.di_nlink > 0);
1028 ip->i_d.di_nlink--;
1029 drop_nlink(VFS_I(ip));
1030 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1031
1032 error = 0;
1033 if (ip->i_d.di_nlink == 0) {
1034 /*
1035 * We're dropping the last link to this file.
1036 * Move the on-disk inode to the AGI unlinked list.
1037 * From xfs_inactive() we will pull the inode from
1038 * the list and free it.
1039 */
1040 error = xfs_iunlink(tp, ip);
1041 }
1042 return error;
1043 }
1044
1045 /*
1046 * Increment the link count on an inode & log the change.
1047 */
1048 int
1049 xfs_bumplink(
1050 xfs_trans_t *tp,
1051 xfs_inode_t *ip)
1052 {
1053 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1054
1055 ASSERT(ip->i_d.di_version > 1);
1056 ASSERT(ip->i_d.di_nlink > 0 || (VFS_I(ip)->i_state & I_LINKABLE));
1057 ip->i_d.di_nlink++;
1058 inc_nlink(VFS_I(ip));
1059 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1060 return 0;
1061 }
1062
1063 int
1064 xfs_create(
1065 xfs_inode_t *dp,
1066 struct xfs_name *name,
1067 umode_t mode,
1068 xfs_dev_t rdev,
1069 xfs_inode_t **ipp)
1070 {
1071 int is_dir = S_ISDIR(mode);
1072 struct xfs_mount *mp = dp->i_mount;
1073 struct xfs_inode *ip = NULL;
1074 struct xfs_trans *tp = NULL;
1075 int error;
1076 xfs_bmap_free_t free_list;
1077 xfs_fsblock_t first_block;
1078 bool unlock_dp_on_error = false;
1079 uint cancel_flags;
1080 int committed;
1081 prid_t prid;
1082 struct xfs_dquot *udqp = NULL;
1083 struct xfs_dquot *gdqp = NULL;
1084 struct xfs_dquot *pdqp = NULL;
1085 struct xfs_trans_res *tres;
1086 uint resblks;
1087
1088 trace_xfs_create(dp, name);
1089
1090 if (XFS_FORCED_SHUTDOWN(mp))
1091 return -EIO;
1092
1093 prid = xfs_get_initial_prid(dp);
1094
1095 /*
1096 * Make sure that we have allocated dquot(s) on disk.
1097 */
1098 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1099 xfs_kgid_to_gid(current_fsgid()), prid,
1100 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1101 &udqp, &gdqp, &pdqp);
1102 if (error)
1103 return error;
1104
1105 if (is_dir) {
1106 rdev = 0;
1107 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1108 tres = &M_RES(mp)->tr_mkdir;
1109 tp = xfs_trans_alloc(mp, XFS_TRANS_MKDIR);
1110 } else {
1111 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1112 tres = &M_RES(mp)->tr_create;
1113 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE);
1114 }
1115
1116 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1117
1118 /*
1119 * Initially assume that the file does not exist and
1120 * reserve the resources for that case. If that is not
1121 * the case we'll drop the one we have and get a more
1122 * appropriate transaction later.
1123 */
1124 error = xfs_trans_reserve(tp, tres, resblks, 0);
1125 if (error == -ENOSPC) {
1126 /* flush outstanding delalloc blocks and retry */
1127 xfs_flush_inodes(mp);
1128 error = xfs_trans_reserve(tp, tres, resblks, 0);
1129 }
1130 if (error == -ENOSPC) {
1131 /* No space at all so try a "no-allocation" reservation */
1132 resblks = 0;
1133 error = xfs_trans_reserve(tp, tres, 0, 0);
1134 }
1135 if (error) {
1136 cancel_flags = 0;
1137 goto out_trans_cancel;
1138 }
1139
1140 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1141 unlock_dp_on_error = true;
1142
1143 xfs_bmap_init(&free_list, &first_block);
1144
1145 /*
1146 * Reserve disk quota and the inode.
1147 */
1148 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1149 pdqp, resblks, 1, 0);
1150 if (error)
1151 goto out_trans_cancel;
1152
1153 if (!resblks) {
1154 error = xfs_dir_canenter(tp, dp, name);
1155 if (error)
1156 goto out_trans_cancel;
1157 }
1158
1159 /*
1160 * A newly created regular or special file just has one directory
1161 * entry pointing to them, but a directory also the "." entry
1162 * pointing to itself.
1163 */
1164 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
1165 prid, resblks > 0, &ip, &committed);
1166 if (error) {
1167 if (error == -ENOSPC)
1168 goto out_trans_cancel;
1169 goto out_trans_abort;
1170 }
1171
1172 /*
1173 * Now we join the directory inode to the transaction. We do not do it
1174 * earlier because xfs_dir_ialloc might commit the previous transaction
1175 * (and release all the locks). An error from here on will result in
1176 * the transaction cancel unlocking dp so don't do it explicitly in the
1177 * error path.
1178 */
1179 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1180 unlock_dp_on_error = false;
1181
1182 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1183 &first_block, &free_list, resblks ?
1184 resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1185 if (error) {
1186 ASSERT(error != -ENOSPC);
1187 goto out_trans_abort;
1188 }
1189 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1190 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1191
1192 if (is_dir) {
1193 error = xfs_dir_init(tp, ip, dp);
1194 if (error)
1195 goto out_bmap_cancel;
1196
1197 error = xfs_bumplink(tp, dp);
1198 if (error)
1199 goto out_bmap_cancel;
1200 }
1201
1202 /*
1203 * If this is a synchronous mount, make sure that the
1204 * create transaction goes to disk before returning to
1205 * the user.
1206 */
1207 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1208 xfs_trans_set_sync(tp);
1209
1210 /*
1211 * Attach the dquot(s) to the inodes and modify them incore.
1212 * These ids of the inode couldn't have changed since the new
1213 * inode has been locked ever since it was created.
1214 */
1215 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1216
1217 error = xfs_bmap_finish(&tp, &free_list, &committed);
1218 if (error)
1219 goto out_bmap_cancel;
1220
1221 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1222 if (error)
1223 goto out_release_inode;
1224
1225 xfs_qm_dqrele(udqp);
1226 xfs_qm_dqrele(gdqp);
1227 xfs_qm_dqrele(pdqp);
1228
1229 *ipp = ip;
1230 return 0;
1231
1232 out_bmap_cancel:
1233 xfs_bmap_cancel(&free_list);
1234 out_trans_abort:
1235 cancel_flags |= XFS_TRANS_ABORT;
1236 out_trans_cancel:
1237 xfs_trans_cancel(tp, cancel_flags);
1238 out_release_inode:
1239 /*
1240 * Wait until after the current transaction is aborted to
1241 * release the inode. This prevents recursive transactions
1242 * and deadlocks from xfs_inactive.
1243 */
1244 if (ip)
1245 IRELE(ip);
1246
1247 xfs_qm_dqrele(udqp);
1248 xfs_qm_dqrele(gdqp);
1249 xfs_qm_dqrele(pdqp);
1250
1251 if (unlock_dp_on_error)
1252 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1253 return error;
1254 }
1255
1256 int
1257 xfs_create_tmpfile(
1258 struct xfs_inode *dp,
1259 struct dentry *dentry,
1260 umode_t mode,
1261 struct xfs_inode **ipp)
1262 {
1263 struct xfs_mount *mp = dp->i_mount;
1264 struct xfs_inode *ip = NULL;
1265 struct xfs_trans *tp = NULL;
1266 int error;
1267 uint cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1268 prid_t prid;
1269 struct xfs_dquot *udqp = NULL;
1270 struct xfs_dquot *gdqp = NULL;
1271 struct xfs_dquot *pdqp = NULL;
1272 struct xfs_trans_res *tres;
1273 uint resblks;
1274
1275 if (XFS_FORCED_SHUTDOWN(mp))
1276 return -EIO;
1277
1278 prid = xfs_get_initial_prid(dp);
1279
1280 /*
1281 * Make sure that we have allocated dquot(s) on disk.
1282 */
1283 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1284 xfs_kgid_to_gid(current_fsgid()), prid,
1285 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1286 &udqp, &gdqp, &pdqp);
1287 if (error)
1288 return error;
1289
1290 resblks = XFS_IALLOC_SPACE_RES(mp);
1291 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE_TMPFILE);
1292
1293 tres = &M_RES(mp)->tr_create_tmpfile;
1294 error = xfs_trans_reserve(tp, tres, resblks, 0);
1295 if (error == -ENOSPC) {
1296 /* No space at all so try a "no-allocation" reservation */
1297 resblks = 0;
1298 error = xfs_trans_reserve(tp, tres, 0, 0);
1299 }
1300 if (error) {
1301 cancel_flags = 0;
1302 goto out_trans_cancel;
1303 }
1304
1305 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1306 pdqp, resblks, 1, 0);
1307 if (error)
1308 goto out_trans_cancel;
1309
1310 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0,
1311 prid, resblks > 0, &ip, NULL);
1312 if (error) {
1313 if (error == -ENOSPC)
1314 goto out_trans_cancel;
1315 goto out_trans_abort;
1316 }
1317
1318 if (mp->m_flags & XFS_MOUNT_WSYNC)
1319 xfs_trans_set_sync(tp);
1320
1321 /*
1322 * Attach the dquot(s) to the inodes and modify them incore.
1323 * These ids of the inode couldn't have changed since the new
1324 * inode has been locked ever since it was created.
1325 */
1326 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1327
1328 ip->i_d.di_nlink--;
1329 error = xfs_iunlink(tp, ip);
1330 if (error)
1331 goto out_trans_abort;
1332
1333 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1334 if (error)
1335 goto out_release_inode;
1336
1337 xfs_qm_dqrele(udqp);
1338 xfs_qm_dqrele(gdqp);
1339 xfs_qm_dqrele(pdqp);
1340
1341 *ipp = ip;
1342 return 0;
1343
1344 out_trans_abort:
1345 cancel_flags |= XFS_TRANS_ABORT;
1346 out_trans_cancel:
1347 xfs_trans_cancel(tp, cancel_flags);
1348 out_release_inode:
1349 /*
1350 * Wait until after the current transaction is aborted to
1351 * release the inode. This prevents recursive transactions
1352 * and deadlocks from xfs_inactive.
1353 */
1354 if (ip)
1355 IRELE(ip);
1356
1357 xfs_qm_dqrele(udqp);
1358 xfs_qm_dqrele(gdqp);
1359 xfs_qm_dqrele(pdqp);
1360
1361 return error;
1362 }
1363
1364 int
1365 xfs_link(
1366 xfs_inode_t *tdp,
1367 xfs_inode_t *sip,
1368 struct xfs_name *target_name)
1369 {
1370 xfs_mount_t *mp = tdp->i_mount;
1371 xfs_trans_t *tp;
1372 int error;
1373 xfs_bmap_free_t free_list;
1374 xfs_fsblock_t first_block;
1375 int cancel_flags;
1376 int committed;
1377 int resblks;
1378
1379 trace_xfs_link(tdp, target_name);
1380
1381 ASSERT(!S_ISDIR(sip->i_d.di_mode));
1382
1383 if (XFS_FORCED_SHUTDOWN(mp))
1384 return -EIO;
1385
1386 error = xfs_qm_dqattach(sip, 0);
1387 if (error)
1388 goto std_return;
1389
1390 error = xfs_qm_dqattach(tdp, 0);
1391 if (error)
1392 goto std_return;
1393
1394 tp = xfs_trans_alloc(mp, XFS_TRANS_LINK);
1395 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1396 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1397 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, resblks, 0);
1398 if (error == -ENOSPC) {
1399 resblks = 0;
1400 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, 0, 0);
1401 }
1402 if (error) {
1403 cancel_flags = 0;
1404 goto error_return;
1405 }
1406
1407 xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1408
1409 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1410 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1411
1412 /*
1413 * If we are using project inheritance, we only allow hard link
1414 * creation in our tree when the project IDs are the same; else
1415 * the tree quota mechanism could be circumvented.
1416 */
1417 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1418 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1419 error = -EXDEV;
1420 goto error_return;
1421 }
1422
1423 if (!resblks) {
1424 error = xfs_dir_canenter(tp, tdp, target_name);
1425 if (error)
1426 goto error_return;
1427 }
1428
1429 xfs_bmap_init(&free_list, &first_block);
1430
1431 if (sip->i_d.di_nlink == 0) {
1432 error = xfs_iunlink_remove(tp, sip);
1433 if (error)
1434 goto abort_return;
1435 }
1436
1437 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1438 &first_block, &free_list, resblks);
1439 if (error)
1440 goto abort_return;
1441 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1442 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1443
1444 error = xfs_bumplink(tp, sip);
1445 if (error)
1446 goto abort_return;
1447
1448 /*
1449 * If this is a synchronous mount, make sure that the
1450 * link transaction goes to disk before returning to
1451 * the user.
1452 */
1453 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) {
1454 xfs_trans_set_sync(tp);
1455 }
1456
1457 error = xfs_bmap_finish (&tp, &free_list, &committed);
1458 if (error) {
1459 xfs_bmap_cancel(&free_list);
1460 goto abort_return;
1461 }
1462
1463 return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1464
1465 abort_return:
1466 cancel_flags |= XFS_TRANS_ABORT;
1467 error_return:
1468 xfs_trans_cancel(tp, cancel_flags);
1469 std_return:
1470 return error;
1471 }
1472
1473 /*
1474 * Free up the underlying blocks past new_size. The new size must be smaller
1475 * than the current size. This routine can be used both for the attribute and
1476 * data fork, and does not modify the inode size, which is left to the caller.
1477 *
1478 * The transaction passed to this routine must have made a permanent log
1479 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1480 * given transaction and start new ones, so make sure everything involved in
1481 * the transaction is tidy before calling here. Some transaction will be
1482 * returned to the caller to be committed. The incoming transaction must
1483 * already include the inode, and both inode locks must be held exclusively.
1484 * The inode must also be "held" within the transaction. On return the inode
1485 * will be "held" within the returned transaction. This routine does NOT
1486 * require any disk space to be reserved for it within the transaction.
1487 *
1488 * If we get an error, we must return with the inode locked and linked into the
1489 * current transaction. This keeps things simple for the higher level code,
1490 * because it always knows that the inode is locked and held in the transaction
1491 * that returns to it whether errors occur or not. We don't mark the inode
1492 * dirty on error so that transactions can be easily aborted if possible.
1493 */
1494 int
1495 xfs_itruncate_extents(
1496 struct xfs_trans **tpp,
1497 struct xfs_inode *ip,
1498 int whichfork,
1499 xfs_fsize_t new_size)
1500 {
1501 struct xfs_mount *mp = ip->i_mount;
1502 struct xfs_trans *tp = *tpp;
1503 struct xfs_trans *ntp;
1504 xfs_bmap_free_t free_list;
1505 xfs_fsblock_t first_block;
1506 xfs_fileoff_t first_unmap_block;
1507 xfs_fileoff_t last_block;
1508 xfs_filblks_t unmap_len;
1509 int committed;
1510 int error = 0;
1511 int done = 0;
1512
1513 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1514 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1515 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1516 ASSERT(new_size <= XFS_ISIZE(ip));
1517 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1518 ASSERT(ip->i_itemp != NULL);
1519 ASSERT(ip->i_itemp->ili_lock_flags == 0);
1520 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1521
1522 trace_xfs_itruncate_extents_start(ip, new_size);
1523
1524 /*
1525 * Since it is possible for space to become allocated beyond
1526 * the end of the file (in a crash where the space is allocated
1527 * but the inode size is not yet updated), simply remove any
1528 * blocks which show up between the new EOF and the maximum
1529 * possible file size. If the first block to be removed is
1530 * beyond the maximum file size (ie it is the same as last_block),
1531 * then there is nothing to do.
1532 */
1533 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1534 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1535 if (first_unmap_block == last_block)
1536 return 0;
1537
1538 ASSERT(first_unmap_block < last_block);
1539 unmap_len = last_block - first_unmap_block + 1;
1540 while (!done) {
1541 xfs_bmap_init(&free_list, &first_block);
1542 error = xfs_bunmapi(tp, ip,
1543 first_unmap_block, unmap_len,
1544 xfs_bmapi_aflag(whichfork),
1545 XFS_ITRUNC_MAX_EXTENTS,
1546 &first_block, &free_list,
1547 &done);
1548 if (error)
1549 goto out_bmap_cancel;
1550
1551 /*
1552 * Duplicate the transaction that has the permanent
1553 * reservation and commit the old transaction.
1554 */
1555 error = xfs_bmap_finish(&tp, &free_list, &committed);
1556 if (committed)
1557 xfs_trans_ijoin(tp, ip, 0);
1558 if (error)
1559 goto out_bmap_cancel;
1560
1561 if (committed) {
1562 /*
1563 * Mark the inode dirty so it will be logged and
1564 * moved forward in the log as part of every commit.
1565 */
1566 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1567 }
1568
1569 ntp = xfs_trans_dup(tp);
1570 error = xfs_trans_commit(tp, 0);
1571 tp = ntp;
1572
1573 xfs_trans_ijoin(tp, ip, 0);
1574
1575 if (error)
1576 goto out;
1577
1578 /*
1579 * Transaction commit worked ok so we can drop the extra ticket
1580 * reference that we gained in xfs_trans_dup()
1581 */
1582 xfs_log_ticket_put(tp->t_ticket);
1583 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
1584 if (error)
1585 goto out;
1586 }
1587
1588 /*
1589 * Always re-log the inode so that our permanent transaction can keep
1590 * on rolling it forward in the log.
1591 */
1592 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1593
1594 trace_xfs_itruncate_extents_end(ip, new_size);
1595
1596 out:
1597 *tpp = tp;
1598 return error;
1599 out_bmap_cancel:
1600 /*
1601 * If the bunmapi call encounters an error, return to the caller where
1602 * the transaction can be properly aborted. We just need to make sure
1603 * we're not holding any resources that we were not when we came in.
1604 */
1605 xfs_bmap_cancel(&free_list);
1606 goto out;
1607 }
1608
1609 int
1610 xfs_release(
1611 xfs_inode_t *ip)
1612 {
1613 xfs_mount_t *mp = ip->i_mount;
1614 int error;
1615
1616 if (!S_ISREG(ip->i_d.di_mode) || (ip->i_d.di_mode == 0))
1617 return 0;
1618
1619 /* If this is a read-only mount, don't do this (would generate I/O) */
1620 if (mp->m_flags & XFS_MOUNT_RDONLY)
1621 return 0;
1622
1623 if (!XFS_FORCED_SHUTDOWN(mp)) {
1624 int truncated;
1625
1626 /*
1627 * If we previously truncated this file and removed old data
1628 * in the process, we want to initiate "early" writeout on
1629 * the last close. This is an attempt to combat the notorious
1630 * NULL files problem which is particularly noticeable from a
1631 * truncate down, buffered (re-)write (delalloc), followed by
1632 * a crash. What we are effectively doing here is
1633 * significantly reducing the time window where we'd otherwise
1634 * be exposed to that problem.
1635 */
1636 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1637 if (truncated) {
1638 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1639 if (ip->i_delayed_blks > 0) {
1640 error = filemap_flush(VFS_I(ip)->i_mapping);
1641 if (error)
1642 return error;
1643 }
1644 }
1645 }
1646
1647 if (ip->i_d.di_nlink == 0)
1648 return 0;
1649
1650 if (xfs_can_free_eofblocks(ip, false)) {
1651
1652 /*
1653 * If we can't get the iolock just skip truncating the blocks
1654 * past EOF because we could deadlock with the mmap_sem
1655 * otherwise. We'll get another chance to drop them once the
1656 * last reference to the inode is dropped, so we'll never leak
1657 * blocks permanently.
1658 *
1659 * Further, check if the inode is being opened, written and
1660 * closed frequently and we have delayed allocation blocks
1661 * outstanding (e.g. streaming writes from the NFS server),
1662 * truncating the blocks past EOF will cause fragmentation to
1663 * occur.
1664 *
1665 * In this case don't do the truncation, either, but we have to
1666 * be careful how we detect this case. Blocks beyond EOF show
1667 * up as i_delayed_blks even when the inode is clean, so we
1668 * need to truncate them away first before checking for a dirty
1669 * release. Hence on the first dirty close we will still remove
1670 * the speculative allocation, but after that we will leave it
1671 * in place.
1672 */
1673 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1674 return 0;
1675
1676 error = xfs_free_eofblocks(mp, ip, true);
1677 if (error && error != -EAGAIN)
1678 return error;
1679
1680 /* delalloc blocks after truncation means it really is dirty */
1681 if (ip->i_delayed_blks)
1682 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1683 }
1684 return 0;
1685 }
1686
1687 /*
1688 * xfs_inactive_truncate
1689 *
1690 * Called to perform a truncate when an inode becomes unlinked.
1691 */
1692 STATIC int
1693 xfs_inactive_truncate(
1694 struct xfs_inode *ip)
1695 {
1696 struct xfs_mount *mp = ip->i_mount;
1697 struct xfs_trans *tp;
1698 int error;
1699
1700 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1701 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
1702 if (error) {
1703 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1704 xfs_trans_cancel(tp, 0);
1705 return error;
1706 }
1707
1708 xfs_ilock(ip, XFS_ILOCK_EXCL);
1709 xfs_trans_ijoin(tp, ip, 0);
1710
1711 /*
1712 * Log the inode size first to prevent stale data exposure in the event
1713 * of a system crash before the truncate completes. See the related
1714 * comment in xfs_setattr_size() for details.
1715 */
1716 ip->i_d.di_size = 0;
1717 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1718
1719 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1720 if (error)
1721 goto error_trans_cancel;
1722
1723 ASSERT(ip->i_d.di_nextents == 0);
1724
1725 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1726 if (error)
1727 goto error_unlock;
1728
1729 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1730 return 0;
1731
1732 error_trans_cancel:
1733 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES | XFS_TRANS_ABORT);
1734 error_unlock:
1735 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1736 return error;
1737 }
1738
1739 /*
1740 * xfs_inactive_ifree()
1741 *
1742 * Perform the inode free when an inode is unlinked.
1743 */
1744 STATIC int
1745 xfs_inactive_ifree(
1746 struct xfs_inode *ip)
1747 {
1748 xfs_bmap_free_t free_list;
1749 xfs_fsblock_t first_block;
1750 int committed;
1751 struct xfs_mount *mp = ip->i_mount;
1752 struct xfs_trans *tp;
1753 int error;
1754
1755 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1756
1757 /*
1758 * The ifree transaction might need to allocate blocks for record
1759 * insertion to the finobt. We don't want to fail here at ENOSPC, so
1760 * allow ifree to dip into the reserved block pool if necessary.
1761 *
1762 * Freeing large sets of inodes generally means freeing inode chunks,
1763 * directory and file data blocks, so this should be relatively safe.
1764 * Only under severe circumstances should it be possible to free enough
1765 * inodes to exhaust the reserve block pool via finobt expansion while
1766 * at the same time not creating free space in the filesystem.
1767 *
1768 * Send a warning if the reservation does happen to fail, as the inode
1769 * now remains allocated and sits on the unlinked list until the fs is
1770 * repaired.
1771 */
1772 tp->t_flags |= XFS_TRANS_RESERVE;
1773 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ifree,
1774 XFS_IFREE_SPACE_RES(mp), 0);
1775 if (error) {
1776 if (error == -ENOSPC) {
1777 xfs_warn_ratelimited(mp,
1778 "Failed to remove inode(s) from unlinked list. "
1779 "Please free space, unmount and run xfs_repair.");
1780 } else {
1781 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1782 }
1783 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES);
1784 return error;
1785 }
1786
1787 xfs_ilock(ip, XFS_ILOCK_EXCL);
1788 xfs_trans_ijoin(tp, ip, 0);
1789
1790 xfs_bmap_init(&free_list, &first_block);
1791 error = xfs_ifree(tp, ip, &free_list);
1792 if (error) {
1793 /*
1794 * If we fail to free the inode, shut down. The cancel
1795 * might do that, we need to make sure. Otherwise the
1796 * inode might be lost for a long time or forever.
1797 */
1798 if (!XFS_FORCED_SHUTDOWN(mp)) {
1799 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1800 __func__, error);
1801 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1802 }
1803 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES|XFS_TRANS_ABORT);
1804 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1805 return error;
1806 }
1807
1808 /*
1809 * Credit the quota account(s). The inode is gone.
1810 */
1811 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1812
1813 /*
1814 * Just ignore errors at this point. There is nothing we can
1815 * do except to try to keep going. Make sure it's not a silent
1816 * error.
1817 */
1818 error = xfs_bmap_finish(&tp, &free_list, &committed);
1819 if (error)
1820 xfs_notice(mp, "%s: xfs_bmap_finish returned error %d",
1821 __func__, error);
1822 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1823 if (error)
1824 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1825 __func__, error);
1826
1827 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1828 return 0;
1829 }
1830
1831 /*
1832 * xfs_inactive
1833 *
1834 * This is called when the vnode reference count for the vnode
1835 * goes to zero. If the file has been unlinked, then it must
1836 * now be truncated. Also, we clear all of the read-ahead state
1837 * kept for the inode here since the file is now closed.
1838 */
1839 void
1840 xfs_inactive(
1841 xfs_inode_t *ip)
1842 {
1843 struct xfs_mount *mp;
1844 int error;
1845 int truncate = 0;
1846
1847 /*
1848 * If the inode is already free, then there can be nothing
1849 * to clean up here.
1850 */
1851 if (ip->i_d.di_mode == 0) {
1852 ASSERT(ip->i_df.if_real_bytes == 0);
1853 ASSERT(ip->i_df.if_broot_bytes == 0);
1854 return;
1855 }
1856
1857 mp = ip->i_mount;
1858
1859 /* If this is a read-only mount, don't do this (would generate I/O) */
1860 if (mp->m_flags & XFS_MOUNT_RDONLY)
1861 return;
1862
1863 if (ip->i_d.di_nlink != 0) {
1864 /*
1865 * force is true because we are evicting an inode from the
1866 * cache. Post-eof blocks must be freed, lest we end up with
1867 * broken free space accounting.
1868 */
1869 if (xfs_can_free_eofblocks(ip, true))
1870 xfs_free_eofblocks(mp, ip, false);
1871
1872 return;
1873 }
1874
1875 if (S_ISREG(ip->i_d.di_mode) &&
1876 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1877 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1878 truncate = 1;
1879
1880 error = xfs_qm_dqattach(ip, 0);
1881 if (error)
1882 return;
1883
1884 if (S_ISLNK(ip->i_d.di_mode))
1885 error = xfs_inactive_symlink(ip);
1886 else if (truncate)
1887 error = xfs_inactive_truncate(ip);
1888 if (error)
1889 return;
1890
1891 /*
1892 * If there are attributes associated with the file then blow them away
1893 * now. The code calls a routine that recursively deconstructs the
1894 * attribute fork. We need to just commit the current transaction
1895 * because we can't use it for xfs_attr_inactive().
1896 */
1897 if (ip->i_d.di_anextents > 0) {
1898 ASSERT(ip->i_d.di_forkoff != 0);
1899
1900 error = xfs_attr_inactive(ip);
1901 if (error)
1902 return;
1903 }
1904
1905 if (ip->i_afp)
1906 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
1907
1908 ASSERT(ip->i_d.di_anextents == 0);
1909
1910 /*
1911 * Free the inode.
1912 */
1913 error = xfs_inactive_ifree(ip);
1914 if (error)
1915 return;
1916
1917 /*
1918 * Release the dquots held by inode, if any.
1919 */
1920 xfs_qm_dqdetach(ip);
1921 }
1922
1923 /*
1924 * This is called when the inode's link count goes to 0.
1925 * We place the on-disk inode on a list in the AGI. It
1926 * will be pulled from this list when the inode is freed.
1927 */
1928 int
1929 xfs_iunlink(
1930 xfs_trans_t *tp,
1931 xfs_inode_t *ip)
1932 {
1933 xfs_mount_t *mp;
1934 xfs_agi_t *agi;
1935 xfs_dinode_t *dip;
1936 xfs_buf_t *agibp;
1937 xfs_buf_t *ibp;
1938 xfs_agino_t agino;
1939 short bucket_index;
1940 int offset;
1941 int error;
1942
1943 ASSERT(ip->i_d.di_nlink == 0);
1944 ASSERT(ip->i_d.di_mode != 0);
1945
1946 mp = tp->t_mountp;
1947
1948 /*
1949 * Get the agi buffer first. It ensures lock ordering
1950 * on the list.
1951 */
1952 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1953 if (error)
1954 return error;
1955 agi = XFS_BUF_TO_AGI(agibp);
1956
1957 /*
1958 * Get the index into the agi hash table for the
1959 * list this inode will go on.
1960 */
1961 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1962 ASSERT(agino != 0);
1963 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1964 ASSERT(agi->agi_unlinked[bucket_index]);
1965 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1966
1967 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1968 /*
1969 * There is already another inode in the bucket we need
1970 * to add ourselves to. Add us at the front of the list.
1971 * Here we put the head pointer into our next pointer,
1972 * and then we fall through to point the head at us.
1973 */
1974 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1975 0, 0);
1976 if (error)
1977 return error;
1978
1979 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1980 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1981 offset = ip->i_imap.im_boffset +
1982 offsetof(xfs_dinode_t, di_next_unlinked);
1983
1984 /* need to recalc the inode CRC if appropriate */
1985 xfs_dinode_calc_crc(mp, dip);
1986
1987 xfs_trans_inode_buf(tp, ibp);
1988 xfs_trans_log_buf(tp, ibp, offset,
1989 (offset + sizeof(xfs_agino_t) - 1));
1990 xfs_inobp_check(mp, ibp);
1991 }
1992
1993 /*
1994 * Point the bucket head pointer at the inode being inserted.
1995 */
1996 ASSERT(agino != 0);
1997 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1998 offset = offsetof(xfs_agi_t, agi_unlinked) +
1999 (sizeof(xfs_agino_t) * bucket_index);
2000 xfs_trans_log_buf(tp, agibp, offset,
2001 (offset + sizeof(xfs_agino_t) - 1));
2002 return 0;
2003 }
2004
2005 /*
2006 * Pull the on-disk inode from the AGI unlinked list.
2007 */
2008 STATIC int
2009 xfs_iunlink_remove(
2010 xfs_trans_t *tp,
2011 xfs_inode_t *ip)
2012 {
2013 xfs_ino_t next_ino;
2014 xfs_mount_t *mp;
2015 xfs_agi_t *agi;
2016 xfs_dinode_t *dip;
2017 xfs_buf_t *agibp;
2018 xfs_buf_t *ibp;
2019 xfs_agnumber_t agno;
2020 xfs_agino_t agino;
2021 xfs_agino_t next_agino;
2022 xfs_buf_t *last_ibp;
2023 xfs_dinode_t *last_dip = NULL;
2024 short bucket_index;
2025 int offset, last_offset = 0;
2026 int error;
2027
2028 mp = tp->t_mountp;
2029 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2030
2031 /*
2032 * Get the agi buffer first. It ensures lock ordering
2033 * on the list.
2034 */
2035 error = xfs_read_agi(mp, tp, agno, &agibp);
2036 if (error)
2037 return error;
2038
2039 agi = XFS_BUF_TO_AGI(agibp);
2040
2041 /*
2042 * Get the index into the agi hash table for the
2043 * list this inode will go on.
2044 */
2045 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2046 ASSERT(agino != 0);
2047 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2048 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
2049 ASSERT(agi->agi_unlinked[bucket_index]);
2050
2051 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2052 /*
2053 * We're at the head of the list. Get the inode's on-disk
2054 * buffer to see if there is anyone after us on the list.
2055 * Only modify our next pointer if it is not already NULLAGINO.
2056 * This saves us the overhead of dealing with the buffer when
2057 * there is no need to change it.
2058 */
2059 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2060 0, 0);
2061 if (error) {
2062 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2063 __func__, error);
2064 return error;
2065 }
2066 next_agino = be32_to_cpu(dip->di_next_unlinked);
2067 ASSERT(next_agino != 0);
2068 if (next_agino != NULLAGINO) {
2069 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2070 offset = ip->i_imap.im_boffset +
2071 offsetof(xfs_dinode_t, di_next_unlinked);
2072
2073 /* need to recalc the inode CRC if appropriate */
2074 xfs_dinode_calc_crc(mp, dip);
2075
2076 xfs_trans_inode_buf(tp, ibp);
2077 xfs_trans_log_buf(tp, ibp, offset,
2078 (offset + sizeof(xfs_agino_t) - 1));
2079 xfs_inobp_check(mp, ibp);
2080 } else {
2081 xfs_trans_brelse(tp, ibp);
2082 }
2083 /*
2084 * Point the bucket head pointer at the next inode.
2085 */
2086 ASSERT(next_agino != 0);
2087 ASSERT(next_agino != agino);
2088 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2089 offset = offsetof(xfs_agi_t, agi_unlinked) +
2090 (sizeof(xfs_agino_t) * bucket_index);
2091 xfs_trans_log_buf(tp, agibp, offset,
2092 (offset + sizeof(xfs_agino_t) - 1));
2093 } else {
2094 /*
2095 * We need to search the list for the inode being freed.
2096 */
2097 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2098 last_ibp = NULL;
2099 while (next_agino != agino) {
2100 struct xfs_imap imap;
2101
2102 if (last_ibp)
2103 xfs_trans_brelse(tp, last_ibp);
2104
2105 imap.im_blkno = 0;
2106 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2107
2108 error = xfs_imap(mp, tp, next_ino, &imap, 0);
2109 if (error) {
2110 xfs_warn(mp,
2111 "%s: xfs_imap returned error %d.",
2112 __func__, error);
2113 return error;
2114 }
2115
2116 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2117 &last_ibp, 0, 0);
2118 if (error) {
2119 xfs_warn(mp,
2120 "%s: xfs_imap_to_bp returned error %d.",
2121 __func__, error);
2122 return error;
2123 }
2124
2125 last_offset = imap.im_boffset;
2126 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2127 ASSERT(next_agino != NULLAGINO);
2128 ASSERT(next_agino != 0);
2129 }
2130
2131 /*
2132 * Now last_ibp points to the buffer previous to us on the
2133 * unlinked list. Pull us from the list.
2134 */
2135 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2136 0, 0);
2137 if (error) {
2138 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
2139 __func__, error);
2140 return error;
2141 }
2142 next_agino = be32_to_cpu(dip->di_next_unlinked);
2143 ASSERT(next_agino != 0);
2144 ASSERT(next_agino != agino);
2145 if (next_agino != NULLAGINO) {
2146 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2147 offset = ip->i_imap.im_boffset +
2148 offsetof(xfs_dinode_t, di_next_unlinked);
2149
2150 /* need to recalc the inode CRC if appropriate */
2151 xfs_dinode_calc_crc(mp, dip);
2152
2153 xfs_trans_inode_buf(tp, ibp);
2154 xfs_trans_log_buf(tp, ibp, offset,
2155 (offset + sizeof(xfs_agino_t) - 1));
2156 xfs_inobp_check(mp, ibp);
2157 } else {
2158 xfs_trans_brelse(tp, ibp);
2159 }
2160 /*
2161 * Point the previous inode on the list to the next inode.
2162 */
2163 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2164 ASSERT(next_agino != 0);
2165 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2166
2167 /* need to recalc the inode CRC if appropriate */
2168 xfs_dinode_calc_crc(mp, last_dip);
2169
2170 xfs_trans_inode_buf(tp, last_ibp);
2171 xfs_trans_log_buf(tp, last_ibp, offset,
2172 (offset + sizeof(xfs_agino_t) - 1));
2173 xfs_inobp_check(mp, last_ibp);
2174 }
2175 return 0;
2176 }
2177
2178 /*
2179 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2180 * inodes that are in memory - they all must be marked stale and attached to
2181 * the cluster buffer.
2182 */
2183 STATIC int
2184 xfs_ifree_cluster(
2185 xfs_inode_t *free_ip,
2186 xfs_trans_t *tp,
2187 xfs_ino_t inum)
2188 {
2189 xfs_mount_t *mp = free_ip->i_mount;
2190 int blks_per_cluster;
2191 int inodes_per_cluster;
2192 int nbufs;
2193 int i, j;
2194 xfs_daddr_t blkno;
2195 xfs_buf_t *bp;
2196 xfs_inode_t *ip;
2197 xfs_inode_log_item_t *iip;
2198 xfs_log_item_t *lip;
2199 struct xfs_perag *pag;
2200
2201 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2202 blks_per_cluster = xfs_icluster_size_fsb(mp);
2203 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2204 nbufs = mp->m_ialloc_blks / blks_per_cluster;
2205
2206 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
2207 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2208 XFS_INO_TO_AGBNO(mp, inum));
2209
2210 /*
2211 * We obtain and lock the backing buffer first in the process
2212 * here, as we have to ensure that any dirty inode that we
2213 * can't get the flush lock on is attached to the buffer.
2214 * If we scan the in-memory inodes first, then buffer IO can
2215 * complete before we get a lock on it, and hence we may fail
2216 * to mark all the active inodes on the buffer stale.
2217 */
2218 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2219 mp->m_bsize * blks_per_cluster,
2220 XBF_UNMAPPED);
2221
2222 if (!bp)
2223 return -ENOMEM;
2224
2225 /*
2226 * This buffer may not have been correctly initialised as we
2227 * didn't read it from disk. That's not important because we are
2228 * only using to mark the buffer as stale in the log, and to
2229 * attach stale cached inodes on it. That means it will never be
2230 * dispatched for IO. If it is, we want to know about it, and we
2231 * want it to fail. We can acheive this by adding a write
2232 * verifier to the buffer.
2233 */
2234 bp->b_ops = &xfs_inode_buf_ops;
2235
2236 /*
2237 * Walk the inodes already attached to the buffer and mark them
2238 * stale. These will all have the flush locks held, so an
2239 * in-memory inode walk can't lock them. By marking them all
2240 * stale first, we will not attempt to lock them in the loop
2241 * below as the XFS_ISTALE flag will be set.
2242 */
2243 lip = bp->b_fspriv;
2244 while (lip) {
2245 if (lip->li_type == XFS_LI_INODE) {
2246 iip = (xfs_inode_log_item_t *)lip;
2247 ASSERT(iip->ili_logged == 1);
2248 lip->li_cb = xfs_istale_done;
2249 xfs_trans_ail_copy_lsn(mp->m_ail,
2250 &iip->ili_flush_lsn,
2251 &iip->ili_item.li_lsn);
2252 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2253 }
2254 lip = lip->li_bio_list;
2255 }
2256
2257
2258 /*
2259 * For each inode in memory attempt to add it to the inode
2260 * buffer and set it up for being staled on buffer IO
2261 * completion. This is safe as we've locked out tail pushing
2262 * and flushing by locking the buffer.
2263 *
2264 * We have already marked every inode that was part of a
2265 * transaction stale above, which means there is no point in
2266 * even trying to lock them.
2267 */
2268 for (i = 0; i < inodes_per_cluster; i++) {
2269 retry:
2270 rcu_read_lock();
2271 ip = radix_tree_lookup(&pag->pag_ici_root,
2272 XFS_INO_TO_AGINO(mp, (inum + i)));
2273
2274 /* Inode not in memory, nothing to do */
2275 if (!ip) {
2276 rcu_read_unlock();
2277 continue;
2278 }
2279
2280 /*
2281 * because this is an RCU protected lookup, we could
2282 * find a recently freed or even reallocated inode
2283 * during the lookup. We need to check under the
2284 * i_flags_lock for a valid inode here. Skip it if it
2285 * is not valid, the wrong inode or stale.
2286 */
2287 spin_lock(&ip->i_flags_lock);
2288 if (ip->i_ino != inum + i ||
2289 __xfs_iflags_test(ip, XFS_ISTALE)) {
2290 spin_unlock(&ip->i_flags_lock);
2291 rcu_read_unlock();
2292 continue;
2293 }
2294 spin_unlock(&ip->i_flags_lock);
2295
2296 /*
2297 * Don't try to lock/unlock the current inode, but we
2298 * _cannot_ skip the other inodes that we did not find
2299 * in the list attached to the buffer and are not
2300 * already marked stale. If we can't lock it, back off
2301 * and retry.
2302 */
2303 if (ip != free_ip &&
2304 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2305 rcu_read_unlock();
2306 delay(1);
2307 goto retry;
2308 }
2309 rcu_read_unlock();
2310
2311 xfs_iflock(ip);
2312 xfs_iflags_set(ip, XFS_ISTALE);
2313
2314 /*
2315 * we don't need to attach clean inodes or those only
2316 * with unlogged changes (which we throw away, anyway).
2317 */
2318 iip = ip->i_itemp;
2319 if (!iip || xfs_inode_clean(ip)) {
2320 ASSERT(ip != free_ip);
2321 xfs_ifunlock(ip);
2322 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2323 continue;
2324 }
2325
2326 iip->ili_last_fields = iip->ili_fields;
2327 iip->ili_fields = 0;
2328 iip->ili_logged = 1;
2329 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2330 &iip->ili_item.li_lsn);
2331
2332 xfs_buf_attach_iodone(bp, xfs_istale_done,
2333 &iip->ili_item);
2334
2335 if (ip != free_ip)
2336 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2337 }
2338
2339 xfs_trans_stale_inode_buf(tp, bp);
2340 xfs_trans_binval(tp, bp);
2341 }
2342
2343 xfs_perag_put(pag);
2344 return 0;
2345 }
2346
2347 /*
2348 * This is called to return an inode to the inode free list.
2349 * The inode should already be truncated to 0 length and have
2350 * no pages associated with it. This routine also assumes that
2351 * the inode is already a part of the transaction.
2352 *
2353 * The on-disk copy of the inode will have been added to the list
2354 * of unlinked inodes in the AGI. We need to remove the inode from
2355 * that list atomically with respect to freeing it here.
2356 */
2357 int
2358 xfs_ifree(
2359 xfs_trans_t *tp,
2360 xfs_inode_t *ip,
2361 xfs_bmap_free_t *flist)
2362 {
2363 int error;
2364 int delete;
2365 xfs_ino_t first_ino;
2366
2367 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2368 ASSERT(ip->i_d.di_nlink == 0);
2369 ASSERT(ip->i_d.di_nextents == 0);
2370 ASSERT(ip->i_d.di_anextents == 0);
2371 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
2372 ASSERT(ip->i_d.di_nblocks == 0);
2373
2374 /*
2375 * Pull the on-disk inode from the AGI unlinked list.
2376 */
2377 error = xfs_iunlink_remove(tp, ip);
2378 if (error)
2379 return error;
2380
2381 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2382 if (error)
2383 return error;
2384
2385 ip->i_d.di_mode = 0; /* mark incore inode as free */
2386 ip->i_d.di_flags = 0;
2387 ip->i_d.di_dmevmask = 0;
2388 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2389 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2390 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2391 /*
2392 * Bump the generation count so no one will be confused
2393 * by reincarnations of this inode.
2394 */
2395 ip->i_d.di_gen++;
2396 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2397
2398 if (delete)
2399 error = xfs_ifree_cluster(ip, tp, first_ino);
2400
2401 return error;
2402 }
2403
2404 /*
2405 * This is called to unpin an inode. The caller must have the inode locked
2406 * in at least shared mode so that the buffer cannot be subsequently pinned
2407 * once someone is waiting for it to be unpinned.
2408 */
2409 static void
2410 xfs_iunpin(
2411 struct xfs_inode *ip)
2412 {
2413 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2414
2415 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2416
2417 /* Give the log a push to start the unpinning I/O */
2418 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2419
2420 }
2421
2422 static void
2423 __xfs_iunpin_wait(
2424 struct xfs_inode *ip)
2425 {
2426 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2427 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2428
2429 xfs_iunpin(ip);
2430
2431 do {
2432 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2433 if (xfs_ipincount(ip))
2434 io_schedule();
2435 } while (xfs_ipincount(ip));
2436 finish_wait(wq, &wait.wait);
2437 }
2438
2439 void
2440 xfs_iunpin_wait(
2441 struct xfs_inode *ip)
2442 {
2443 if (xfs_ipincount(ip))
2444 __xfs_iunpin_wait(ip);
2445 }
2446
2447 /*
2448 * Removing an inode from the namespace involves removing the directory entry
2449 * and dropping the link count on the inode. Removing the directory entry can
2450 * result in locking an AGF (directory blocks were freed) and removing a link
2451 * count can result in placing the inode on an unlinked list which results in
2452 * locking an AGI.
2453 *
2454 * The big problem here is that we have an ordering constraint on AGF and AGI
2455 * locking - inode allocation locks the AGI, then can allocate a new extent for
2456 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2457 * removes the inode from the unlinked list, requiring that we lock the AGI
2458 * first, and then freeing the inode can result in an inode chunk being freed
2459 * and hence freeing disk space requiring that we lock an AGF.
2460 *
2461 * Hence the ordering that is imposed by other parts of the code is AGI before
2462 * AGF. This means we cannot remove the directory entry before we drop the inode
2463 * reference count and put it on the unlinked list as this results in a lock
2464 * order of AGF then AGI, and this can deadlock against inode allocation and
2465 * freeing. Therefore we must drop the link counts before we remove the
2466 * directory entry.
2467 *
2468 * This is still safe from a transactional point of view - it is not until we
2469 * get to xfs_bmap_finish() that we have the possibility of multiple
2470 * transactions in this operation. Hence as long as we remove the directory
2471 * entry and drop the link count in the first transaction of the remove
2472 * operation, there are no transactional constraints on the ordering here.
2473 */
2474 int
2475 xfs_remove(
2476 xfs_inode_t *dp,
2477 struct xfs_name *name,
2478 xfs_inode_t *ip)
2479 {
2480 xfs_mount_t *mp = dp->i_mount;
2481 xfs_trans_t *tp = NULL;
2482 int is_dir = S_ISDIR(ip->i_d.di_mode);
2483 int error = 0;
2484 xfs_bmap_free_t free_list;
2485 xfs_fsblock_t first_block;
2486 int cancel_flags;
2487 int committed;
2488 uint resblks;
2489
2490 trace_xfs_remove(dp, name);
2491
2492 if (XFS_FORCED_SHUTDOWN(mp))
2493 return -EIO;
2494
2495 error = xfs_qm_dqattach(dp, 0);
2496 if (error)
2497 goto std_return;
2498
2499 error = xfs_qm_dqattach(ip, 0);
2500 if (error)
2501 goto std_return;
2502
2503 if (is_dir)
2504 tp = xfs_trans_alloc(mp, XFS_TRANS_RMDIR);
2505 else
2506 tp = xfs_trans_alloc(mp, XFS_TRANS_REMOVE);
2507 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
2508
2509 /*
2510 * We try to get the real space reservation first,
2511 * allowing for directory btree deletion(s) implying
2512 * possible bmap insert(s). If we can't get the space
2513 * reservation then we use 0 instead, and avoid the bmap
2514 * btree insert(s) in the directory code by, if the bmap
2515 * insert tries to happen, instead trimming the LAST
2516 * block from the directory.
2517 */
2518 resblks = XFS_REMOVE_SPACE_RES(mp);
2519 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, resblks, 0);
2520 if (error == -ENOSPC) {
2521 resblks = 0;
2522 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, 0, 0);
2523 }
2524 if (error) {
2525 ASSERT(error != -ENOSPC);
2526 cancel_flags = 0;
2527 goto out_trans_cancel;
2528 }
2529
2530 xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2531
2532 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2533 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2534
2535 /*
2536 * If we're removing a directory perform some additional validation.
2537 */
2538 cancel_flags |= XFS_TRANS_ABORT;
2539 if (is_dir) {
2540 ASSERT(ip->i_d.di_nlink >= 2);
2541 if (ip->i_d.di_nlink != 2) {
2542 error = -ENOTEMPTY;
2543 goto out_trans_cancel;
2544 }
2545 if (!xfs_dir_isempty(ip)) {
2546 error = -ENOTEMPTY;
2547 goto out_trans_cancel;
2548 }
2549
2550 /* Drop the link from ip's "..". */
2551 error = xfs_droplink(tp, dp);
2552 if (error)
2553 goto out_trans_cancel;
2554
2555 /* Drop the "." link from ip to self. */
2556 error = xfs_droplink(tp, ip);
2557 if (error)
2558 goto out_trans_cancel;
2559 } else {
2560 /*
2561 * When removing a non-directory we need to log the parent
2562 * inode here. For a directory this is done implicitly
2563 * by the xfs_droplink call for the ".." entry.
2564 */
2565 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2566 }
2567 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2568
2569 /* Drop the link from dp to ip. */
2570 error = xfs_droplink(tp, ip);
2571 if (error)
2572 goto out_trans_cancel;
2573
2574 xfs_bmap_init(&free_list, &first_block);
2575 error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2576 &first_block, &free_list, resblks);
2577 if (error) {
2578 ASSERT(error != -ENOENT);
2579 goto out_bmap_cancel;
2580 }
2581
2582 /*
2583 * If this is a synchronous mount, make sure that the
2584 * remove transaction goes to disk before returning to
2585 * the user.
2586 */
2587 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2588 xfs_trans_set_sync(tp);
2589
2590 error = xfs_bmap_finish(&tp, &free_list, &committed);
2591 if (error)
2592 goto out_bmap_cancel;
2593
2594 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
2595 if (error)
2596 goto std_return;
2597
2598 if (is_dir && xfs_inode_is_filestream(ip))
2599 xfs_filestream_deassociate(ip);
2600
2601 return 0;
2602
2603 out_bmap_cancel:
2604 xfs_bmap_cancel(&free_list);
2605 out_trans_cancel:
2606 xfs_trans_cancel(tp, cancel_flags);
2607 std_return:
2608 return error;
2609 }
2610
2611 /*
2612 * Enter all inodes for a rename transaction into a sorted array.
2613 */
2614 STATIC void
2615 xfs_sort_for_rename(
2616 xfs_inode_t *dp1, /* in: old (source) directory inode */
2617 xfs_inode_t *dp2, /* in: new (target) directory inode */
2618 xfs_inode_t *ip1, /* in: inode of old entry */
2619 xfs_inode_t *ip2, /* in: inode of new entry, if it
2620 already exists, NULL otherwise. */
2621 xfs_inode_t **i_tab,/* out: array of inode returned, sorted */
2622 int *num_inodes) /* out: number of inodes in array */
2623 {
2624 xfs_inode_t *temp;
2625 int i, j;
2626
2627 /*
2628 * i_tab contains a list of pointers to inodes. We initialize
2629 * the table here & we'll sort it. We will then use it to
2630 * order the acquisition of the inode locks.
2631 *
2632 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2633 */
2634 i_tab[0] = dp1;
2635 i_tab[1] = dp2;
2636 i_tab[2] = ip1;
2637 if (ip2) {
2638 *num_inodes = 4;
2639 i_tab[3] = ip2;
2640 } else {
2641 *num_inodes = 3;
2642 i_tab[3] = NULL;
2643 }
2644
2645 /*
2646 * Sort the elements via bubble sort. (Remember, there are at
2647 * most 4 elements to sort, so this is adequate.)
2648 */
2649 for (i = 0; i < *num_inodes; i++) {
2650 for (j = 1; j < *num_inodes; j++) {
2651 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2652 temp = i_tab[j];
2653 i_tab[j] = i_tab[j-1];
2654 i_tab[j-1] = temp;
2655 }
2656 }
2657 }
2658 }
2659
2660 /*
2661 * xfs_rename
2662 */
2663 int
2664 xfs_rename(
2665 xfs_inode_t *src_dp,
2666 struct xfs_name *src_name,
2667 xfs_inode_t *src_ip,
2668 xfs_inode_t *target_dp,
2669 struct xfs_name *target_name,
2670 xfs_inode_t *target_ip)
2671 {
2672 xfs_trans_t *tp = NULL;
2673 xfs_mount_t *mp = src_dp->i_mount;
2674 int new_parent; /* moving to a new dir */
2675 int src_is_directory; /* src_name is a directory */
2676 int error;
2677 xfs_bmap_free_t free_list;
2678 xfs_fsblock_t first_block;
2679 int cancel_flags;
2680 int committed;
2681 xfs_inode_t *inodes[4];
2682 int spaceres;
2683 int num_inodes;
2684
2685 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2686
2687 new_parent = (src_dp != target_dp);
2688 src_is_directory = S_ISDIR(src_ip->i_d.di_mode);
2689
2690 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip,
2691 inodes, &num_inodes);
2692
2693 xfs_bmap_init(&free_list, &first_block);
2694 tp = xfs_trans_alloc(mp, XFS_TRANS_RENAME);
2695 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
2696 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2697 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, spaceres, 0);
2698 if (error == -ENOSPC) {
2699 spaceres = 0;
2700 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, 0, 0);
2701 }
2702 if (error) {
2703 xfs_trans_cancel(tp, 0);
2704 goto std_return;
2705 }
2706
2707 /*
2708 * Attach the dquots to the inodes
2709 */
2710 error = xfs_qm_vop_rename_dqattach(inodes);
2711 if (error) {
2712 xfs_trans_cancel(tp, cancel_flags);
2713 goto std_return;
2714 }
2715
2716 /*
2717 * Lock all the participating inodes. Depending upon whether
2718 * the target_name exists in the target directory, and
2719 * whether the target directory is the same as the source
2720 * directory, we can lock from 2 to 4 inodes.
2721 */
2722 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2723
2724 /*
2725 * Join all the inodes to the transaction. From this point on,
2726 * we can rely on either trans_commit or trans_cancel to unlock
2727 * them.
2728 */
2729 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
2730 if (new_parent)
2731 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
2732 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2733 if (target_ip)
2734 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2735
2736 /*
2737 * If we are using project inheritance, we only allow renames
2738 * into our tree when the project IDs are the same; else the
2739 * tree quota mechanism would be circumvented.
2740 */
2741 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2742 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2743 error = -EXDEV;
2744 goto error_return;
2745 }
2746
2747 /*
2748 * Set up the target.
2749 */
2750 if (target_ip == NULL) {
2751 /*
2752 * If there's no space reservation, check the entry will
2753 * fit before actually inserting it.
2754 */
2755 if (!spaceres) {
2756 error = xfs_dir_canenter(tp, target_dp, target_name);
2757 if (error)
2758 goto error_return;
2759 }
2760 /*
2761 * If target does not exist and the rename crosses
2762 * directories, adjust the target directory link count
2763 * to account for the ".." reference from the new entry.
2764 */
2765 error = xfs_dir_createname(tp, target_dp, target_name,
2766 src_ip->i_ino, &first_block,
2767 &free_list, spaceres);
2768 if (error == -ENOSPC)
2769 goto error_return;
2770 if (error)
2771 goto abort_return;
2772
2773 xfs_trans_ichgtime(tp, target_dp,
2774 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2775
2776 if (new_parent && src_is_directory) {
2777 error = xfs_bumplink(tp, target_dp);
2778 if (error)
2779 goto abort_return;
2780 }
2781 } else { /* target_ip != NULL */
2782 /*
2783 * If target exists and it's a directory, check that both
2784 * target and source are directories and that target can be
2785 * destroyed, or that neither is a directory.
2786 */
2787 if (S_ISDIR(target_ip->i_d.di_mode)) {
2788 /*
2789 * Make sure target dir is empty.
2790 */
2791 if (!(xfs_dir_isempty(target_ip)) ||
2792 (target_ip->i_d.di_nlink > 2)) {
2793 error = -EEXIST;
2794 goto error_return;
2795 }
2796 }
2797
2798 /*
2799 * Link the source inode under the target name.
2800 * If the source inode is a directory and we are moving
2801 * it across directories, its ".." entry will be
2802 * inconsistent until we replace that down below.
2803 *
2804 * In case there is already an entry with the same
2805 * name at the destination directory, remove it first.
2806 */
2807 error = xfs_dir_replace(tp, target_dp, target_name,
2808 src_ip->i_ino,
2809 &first_block, &free_list, spaceres);
2810 if (error)
2811 goto abort_return;
2812
2813 xfs_trans_ichgtime(tp, target_dp,
2814 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2815
2816 /*
2817 * Decrement the link count on the target since the target
2818 * dir no longer points to it.
2819 */
2820 error = xfs_droplink(tp, target_ip);
2821 if (error)
2822 goto abort_return;
2823
2824 if (src_is_directory) {
2825 /*
2826 * Drop the link from the old "." entry.
2827 */
2828 error = xfs_droplink(tp, target_ip);
2829 if (error)
2830 goto abort_return;
2831 }
2832 } /* target_ip != NULL */
2833
2834 /*
2835 * Remove the source.
2836 */
2837 if (new_parent && src_is_directory) {
2838 /*
2839 * Rewrite the ".." entry to point to the new
2840 * directory.
2841 */
2842 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
2843 target_dp->i_ino,
2844 &first_block, &free_list, spaceres);
2845 ASSERT(error != -EEXIST);
2846 if (error)
2847 goto abort_return;
2848 }
2849
2850 /*
2851 * We always want to hit the ctime on the source inode.
2852 *
2853 * This isn't strictly required by the standards since the source
2854 * inode isn't really being changed, but old unix file systems did
2855 * it and some incremental backup programs won't work without it.
2856 */
2857 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
2858 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
2859
2860 /*
2861 * Adjust the link count on src_dp. This is necessary when
2862 * renaming a directory, either within one parent when
2863 * the target existed, or across two parent directories.
2864 */
2865 if (src_is_directory && (new_parent || target_ip != NULL)) {
2866
2867 /*
2868 * Decrement link count on src_directory since the
2869 * entry that's moved no longer points to it.
2870 */
2871 error = xfs_droplink(tp, src_dp);
2872 if (error)
2873 goto abort_return;
2874 }
2875
2876 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
2877 &first_block, &free_list, spaceres);
2878 if (error)
2879 goto abort_return;
2880
2881 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2882 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
2883 if (new_parent)
2884 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
2885
2886 /*
2887 * If this is a synchronous mount, make sure that the
2888 * rename transaction goes to disk before returning to
2889 * the user.
2890 */
2891 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) {
2892 xfs_trans_set_sync(tp);
2893 }
2894
2895 error = xfs_bmap_finish(&tp, &free_list, &committed);
2896 if (error) {
2897 xfs_bmap_cancel(&free_list);
2898 xfs_trans_cancel(tp, (XFS_TRANS_RELEASE_LOG_RES |
2899 XFS_TRANS_ABORT));
2900 goto std_return;
2901 }
2902
2903 /*
2904 * trans_commit will unlock src_ip, target_ip & decrement
2905 * the vnode references.
2906 */
2907 return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
2908
2909 abort_return:
2910 cancel_flags |= XFS_TRANS_ABORT;
2911 error_return:
2912 xfs_bmap_cancel(&free_list);
2913 xfs_trans_cancel(tp, cancel_flags);
2914 std_return:
2915 return error;
2916 }
2917
2918 STATIC int
2919 xfs_iflush_cluster(
2920 xfs_inode_t *ip,
2921 xfs_buf_t *bp)
2922 {
2923 xfs_mount_t *mp = ip->i_mount;
2924 struct xfs_perag *pag;
2925 unsigned long first_index, mask;
2926 unsigned long inodes_per_cluster;
2927 int ilist_size;
2928 xfs_inode_t **ilist;
2929 xfs_inode_t *iq;
2930 int nr_found;
2931 int clcount = 0;
2932 int bufwasdelwri;
2933 int i;
2934
2935 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2936
2937 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
2938 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2939 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2940 if (!ilist)
2941 goto out_put;
2942
2943 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
2944 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2945 rcu_read_lock();
2946 /* really need a gang lookup range call here */
2947 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2948 first_index, inodes_per_cluster);
2949 if (nr_found == 0)
2950 goto out_free;
2951
2952 for (i = 0; i < nr_found; i++) {
2953 iq = ilist[i];
2954 if (iq == ip)
2955 continue;
2956
2957 /*
2958 * because this is an RCU protected lookup, we could find a
2959 * recently freed or even reallocated inode during the lookup.
2960 * We need to check under the i_flags_lock for a valid inode
2961 * here. Skip it if it is not valid or the wrong inode.
2962 */
2963 spin_lock(&ip->i_flags_lock);
2964 if (!ip->i_ino ||
2965 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
2966 spin_unlock(&ip->i_flags_lock);
2967 continue;
2968 }
2969 spin_unlock(&ip->i_flags_lock);
2970
2971 /*
2972 * Do an un-protected check to see if the inode is dirty and
2973 * is a candidate for flushing. These checks will be repeated
2974 * later after the appropriate locks are acquired.
2975 */
2976 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
2977 continue;
2978
2979 /*
2980 * Try to get locks. If any are unavailable or it is pinned,
2981 * then this inode cannot be flushed and is skipped.
2982 */
2983
2984 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2985 continue;
2986 if (!xfs_iflock_nowait(iq)) {
2987 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2988 continue;
2989 }
2990 if (xfs_ipincount(iq)) {
2991 xfs_ifunlock(iq);
2992 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2993 continue;
2994 }
2995
2996 /*
2997 * arriving here means that this inode can be flushed. First
2998 * re-check that it's dirty before flushing.
2999 */
3000 if (!xfs_inode_clean(iq)) {
3001 int error;
3002 error = xfs_iflush_int(iq, bp);
3003 if (error) {
3004 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3005 goto cluster_corrupt_out;
3006 }
3007 clcount++;
3008 } else {
3009 xfs_ifunlock(iq);
3010 }
3011 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3012 }
3013
3014 if (clcount) {
3015 XFS_STATS_INC(xs_icluster_flushcnt);
3016 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3017 }
3018
3019 out_free:
3020 rcu_read_unlock();
3021 kmem_free(ilist);
3022 out_put:
3023 xfs_perag_put(pag);
3024 return 0;
3025
3026
3027 cluster_corrupt_out:
3028 /*
3029 * Corruption detected in the clustering loop. Invalidate the
3030 * inode buffer and shut down the filesystem.
3031 */
3032 rcu_read_unlock();
3033 /*
3034 * Clean up the buffer. If it was delwri, just release it --
3035 * brelse can handle it with no problems. If not, shut down the
3036 * filesystem before releasing the buffer.
3037 */
3038 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
3039 if (bufwasdelwri)
3040 xfs_buf_relse(bp);
3041
3042 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3043
3044 if (!bufwasdelwri) {
3045 /*
3046 * Just like incore_relse: if we have b_iodone functions,
3047 * mark the buffer as an error and call them. Otherwise
3048 * mark it as stale and brelse.
3049 */
3050 if (bp->b_iodone) {
3051 XFS_BUF_UNDONE(bp);
3052 xfs_buf_stale(bp);
3053 xfs_buf_ioerror(bp, -EIO);
3054 xfs_buf_ioend(bp);
3055 } else {
3056 xfs_buf_stale(bp);
3057 xfs_buf_relse(bp);
3058 }
3059 }
3060
3061 /*
3062 * Unlocks the flush lock
3063 */
3064 xfs_iflush_abort(iq, false);
3065 kmem_free(ilist);
3066 xfs_perag_put(pag);
3067 return -EFSCORRUPTED;
3068 }
3069
3070 /*
3071 * Flush dirty inode metadata into the backing buffer.
3072 *
3073 * The caller must have the inode lock and the inode flush lock held. The
3074 * inode lock will still be held upon return to the caller, and the inode
3075 * flush lock will be released after the inode has reached the disk.
3076 *
3077 * The caller must write out the buffer returned in *bpp and release it.
3078 */
3079 int
3080 xfs_iflush(
3081 struct xfs_inode *ip,
3082 struct xfs_buf **bpp)
3083 {
3084 struct xfs_mount *mp = ip->i_mount;
3085 struct xfs_buf *bp;
3086 struct xfs_dinode *dip;
3087 int error;
3088
3089 XFS_STATS_INC(xs_iflush_count);
3090
3091 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3092 ASSERT(xfs_isiflocked(ip));
3093 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3094 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3095
3096 *bpp = NULL;
3097
3098 xfs_iunpin_wait(ip);
3099
3100 /*
3101 * For stale inodes we cannot rely on the backing buffer remaining
3102 * stale in cache for the remaining life of the stale inode and so
3103 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3104 * inodes below. We have to check this after ensuring the inode is
3105 * unpinned so that it is safe to reclaim the stale inode after the
3106 * flush call.
3107 */
3108 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3109 xfs_ifunlock(ip);
3110 return 0;
3111 }
3112
3113 /*
3114 * This may have been unpinned because the filesystem is shutting
3115 * down forcibly. If that's the case we must not write this inode
3116 * to disk, because the log record didn't make it to disk.
3117 *
3118 * We also have to remove the log item from the AIL in this case,
3119 * as we wait for an empty AIL as part of the unmount process.
3120 */
3121 if (XFS_FORCED_SHUTDOWN(mp)) {
3122 error = -EIO;
3123 goto abort_out;
3124 }
3125
3126 /*
3127 * Get the buffer containing the on-disk inode.
3128 */
3129 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3130 0);
3131 if (error || !bp) {
3132 xfs_ifunlock(ip);
3133 return error;
3134 }
3135
3136 /*
3137 * First flush out the inode that xfs_iflush was called with.
3138 */
3139 error = xfs_iflush_int(ip, bp);
3140 if (error)
3141 goto corrupt_out;
3142
3143 /*
3144 * If the buffer is pinned then push on the log now so we won't
3145 * get stuck waiting in the write for too long.
3146 */
3147 if (xfs_buf_ispinned(bp))
3148 xfs_log_force(mp, 0);
3149
3150 /*
3151 * inode clustering:
3152 * see if other inodes can be gathered into this write
3153 */
3154 error = xfs_iflush_cluster(ip, bp);
3155 if (error)
3156 goto cluster_corrupt_out;
3157
3158 *bpp = bp;
3159 return 0;
3160
3161 corrupt_out:
3162 xfs_buf_relse(bp);
3163 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3164 cluster_corrupt_out:
3165 error = -EFSCORRUPTED;
3166 abort_out:
3167 /*
3168 * Unlocks the flush lock
3169 */
3170 xfs_iflush_abort(ip, false);
3171 return error;
3172 }
3173
3174 STATIC int
3175 xfs_iflush_int(
3176 struct xfs_inode *ip,
3177 struct xfs_buf *bp)
3178 {
3179 struct xfs_inode_log_item *iip = ip->i_itemp;
3180 struct xfs_dinode *dip;
3181 struct xfs_mount *mp = ip->i_mount;
3182
3183 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3184 ASSERT(xfs_isiflocked(ip));
3185 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3186 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3187 ASSERT(iip != NULL && iip->ili_fields != 0);
3188 ASSERT(ip->i_d.di_version > 1);
3189
3190 /* set *dip = inode's place in the buffer */
3191 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
3192
3193 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3194 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3195 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3196 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3197 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3198 goto corrupt_out;
3199 }
3200 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3201 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3202 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3203 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3204 __func__, ip->i_ino, ip, ip->i_d.di_magic);
3205 goto corrupt_out;
3206 }
3207 if (S_ISREG(ip->i_d.di_mode)) {
3208 if (XFS_TEST_ERROR(
3209 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3210 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3211 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3212 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3213 "%s: Bad regular inode %Lu, ptr 0x%p",
3214 __func__, ip->i_ino, ip);
3215 goto corrupt_out;
3216 }
3217 } else if (S_ISDIR(ip->i_d.di_mode)) {
3218 if (XFS_TEST_ERROR(
3219 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3220 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3221 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3222 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3223 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3224 "%s: Bad directory inode %Lu, ptr 0x%p",
3225 __func__, ip->i_ino, ip);
3226 goto corrupt_out;
3227 }
3228 }
3229 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3230 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3231 XFS_RANDOM_IFLUSH_5)) {
3232 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3233 "%s: detected corrupt incore inode %Lu, "
3234 "total extents = %d, nblocks = %Ld, ptr 0x%p",
3235 __func__, ip->i_ino,
3236 ip->i_d.di_nextents + ip->i_d.di_anextents,
3237 ip->i_d.di_nblocks, ip);
3238 goto corrupt_out;
3239 }
3240 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3241 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3242 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3243 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3244 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3245 goto corrupt_out;
3246 }
3247
3248 /*
3249 * Inode item log recovery for v2 inodes are dependent on the
3250 * di_flushiter count for correct sequencing. We bump the flush
3251 * iteration count so we can detect flushes which postdate a log record
3252 * during recovery. This is redundant as we now log every change and
3253 * hence this can't happen but we need to still do it to ensure
3254 * backwards compatibility with old kernels that predate logging all
3255 * inode changes.
3256 */
3257 if (ip->i_d.di_version < 3)
3258 ip->i_d.di_flushiter++;
3259
3260 /*
3261 * Copy the dirty parts of the inode into the on-disk
3262 * inode. We always copy out the core of the inode,
3263 * because if the inode is dirty at all the core must
3264 * be.
3265 */
3266 xfs_dinode_to_disk(dip, &ip->i_d);
3267
3268 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3269 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3270 ip->i_d.di_flushiter = 0;
3271
3272 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3273 if (XFS_IFORK_Q(ip))
3274 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3275 xfs_inobp_check(mp, bp);
3276
3277 /*
3278 * We've recorded everything logged in the inode, so we'd like to clear
3279 * the ili_fields bits so we don't log and flush things unnecessarily.
3280 * However, we can't stop logging all this information until the data
3281 * we've copied into the disk buffer is written to disk. If we did we
3282 * might overwrite the copy of the inode in the log with all the data
3283 * after re-logging only part of it, and in the face of a crash we
3284 * wouldn't have all the data we need to recover.
3285 *
3286 * What we do is move the bits to the ili_last_fields field. When
3287 * logging the inode, these bits are moved back to the ili_fields field.
3288 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3289 * know that the information those bits represent is permanently on
3290 * disk. As long as the flush completes before the inode is logged
3291 * again, then both ili_fields and ili_last_fields will be cleared.
3292 *
3293 * We can play with the ili_fields bits here, because the inode lock
3294 * must be held exclusively in order to set bits there and the flush
3295 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3296 * done routine can tell whether or not to look in the AIL. Also, store
3297 * the current LSN of the inode so that we can tell whether the item has
3298 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3299 * need the AIL lock, because it is a 64 bit value that cannot be read
3300 * atomically.
3301 */
3302 iip->ili_last_fields = iip->ili_fields;
3303 iip->ili_fields = 0;
3304 iip->ili_logged = 1;
3305
3306 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3307 &iip->ili_item.li_lsn);
3308
3309 /*
3310 * Attach the function xfs_iflush_done to the inode's
3311 * buffer. This will remove the inode from the AIL
3312 * and unlock the inode's flush lock when the inode is
3313 * completely written to disk.
3314 */
3315 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3316
3317 /* update the lsn in the on disk inode if required */
3318 if (ip->i_d.di_version == 3)
3319 dip->di_lsn = cpu_to_be64(iip->ili_item.li_lsn);
3320
3321 /* generate the checksum. */
3322 xfs_dinode_calc_crc(mp, dip);
3323
3324 ASSERT(bp->b_fspriv != NULL);
3325 ASSERT(bp->b_iodone != NULL);
3326 return 0;
3327
3328 corrupt_out:
3329 return -EFSCORRUPTED;
3330 }
This page took 0.107954 seconds and 5 git commands to generate.