[XFS] Kill shouty XFS_ITOV() macro
[deliverable/linux.git] / fs / xfs / xfs_inode.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include <linux/log2.h>
19
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_types.h"
23 #include "xfs_bit.h"
24 #include "xfs_log.h"
25 #include "xfs_inum.h"
26 #include "xfs_imap.h"
27 #include "xfs_trans.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_sb.h"
30 #include "xfs_ag.h"
31 #include "xfs_dir2.h"
32 #include "xfs_dmapi.h"
33 #include "xfs_mount.h"
34 #include "xfs_bmap_btree.h"
35 #include "xfs_alloc_btree.h"
36 #include "xfs_ialloc_btree.h"
37 #include "xfs_dir2_sf.h"
38 #include "xfs_attr_sf.h"
39 #include "xfs_dinode.h"
40 #include "xfs_inode.h"
41 #include "xfs_buf_item.h"
42 #include "xfs_inode_item.h"
43 #include "xfs_btree.h"
44 #include "xfs_alloc.h"
45 #include "xfs_ialloc.h"
46 #include "xfs_bmap.h"
47 #include "xfs_rw.h"
48 #include "xfs_error.h"
49 #include "xfs_utils.h"
50 #include "xfs_dir2_trace.h"
51 #include "xfs_quota.h"
52 #include "xfs_acl.h"
53 #include "xfs_filestream.h"
54 #include "xfs_vnodeops.h"
55
56 kmem_zone_t *xfs_ifork_zone;
57 kmem_zone_t *xfs_inode_zone;
58
59 /*
60 * Used in xfs_itruncate(). This is the maximum number of extents
61 * freed from a file in a single transaction.
62 */
63 #define XFS_ITRUNC_MAX_EXTENTS 2
64
65 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
66 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
67 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
68 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
69
70 #ifdef DEBUG
71 /*
72 * Make sure that the extents in the given memory buffer
73 * are valid.
74 */
75 STATIC void
76 xfs_validate_extents(
77 xfs_ifork_t *ifp,
78 int nrecs,
79 xfs_exntfmt_t fmt)
80 {
81 xfs_bmbt_irec_t irec;
82 xfs_bmbt_rec_host_t rec;
83 int i;
84
85 for (i = 0; i < nrecs; i++) {
86 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
87 rec.l0 = get_unaligned(&ep->l0);
88 rec.l1 = get_unaligned(&ep->l1);
89 xfs_bmbt_get_all(&rec, &irec);
90 if (fmt == XFS_EXTFMT_NOSTATE)
91 ASSERT(irec.br_state == XFS_EXT_NORM);
92 }
93 }
94 #else /* DEBUG */
95 #define xfs_validate_extents(ifp, nrecs, fmt)
96 #endif /* DEBUG */
97
98 /*
99 * Check that none of the inode's in the buffer have a next
100 * unlinked field of 0.
101 */
102 #if defined(DEBUG)
103 void
104 xfs_inobp_check(
105 xfs_mount_t *mp,
106 xfs_buf_t *bp)
107 {
108 int i;
109 int j;
110 xfs_dinode_t *dip;
111
112 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
113
114 for (i = 0; i < j; i++) {
115 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
116 i * mp->m_sb.sb_inodesize);
117 if (!dip->di_next_unlinked) {
118 xfs_fs_cmn_err(CE_ALERT, mp,
119 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
120 bp);
121 ASSERT(dip->di_next_unlinked);
122 }
123 }
124 }
125 #endif
126
127 /*
128 * Find the buffer associated with the given inode map
129 * We do basic validation checks on the buffer once it has been
130 * retrieved from disk.
131 */
132 STATIC int
133 xfs_imap_to_bp(
134 xfs_mount_t *mp,
135 xfs_trans_t *tp,
136 xfs_imap_t *imap,
137 xfs_buf_t **bpp,
138 uint buf_flags,
139 uint imap_flags)
140 {
141 int error;
142 int i;
143 int ni;
144 xfs_buf_t *bp;
145
146 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
147 (int)imap->im_len, buf_flags, &bp);
148 if (error) {
149 if (error != EAGAIN) {
150 cmn_err(CE_WARN,
151 "xfs_imap_to_bp: xfs_trans_read_buf()returned "
152 "an error %d on %s. Returning error.",
153 error, mp->m_fsname);
154 } else {
155 ASSERT(buf_flags & XFS_BUF_TRYLOCK);
156 }
157 return error;
158 }
159
160 /*
161 * Validate the magic number and version of every inode in the buffer
162 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
163 */
164 #ifdef DEBUG
165 ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
166 #else /* usual case */
167 ni = 1;
168 #endif
169
170 for (i = 0; i < ni; i++) {
171 int di_ok;
172 xfs_dinode_t *dip;
173
174 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
175 (i << mp->m_sb.sb_inodelog));
176 di_ok = be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC &&
177 XFS_DINODE_GOOD_VERSION(dip->di_core.di_version);
178 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
179 XFS_ERRTAG_ITOBP_INOTOBP,
180 XFS_RANDOM_ITOBP_INOTOBP))) {
181 if (imap_flags & XFS_IMAP_BULKSTAT) {
182 xfs_trans_brelse(tp, bp);
183 return XFS_ERROR(EINVAL);
184 }
185 XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
186 XFS_ERRLEVEL_HIGH, mp, dip);
187 #ifdef DEBUG
188 cmn_err(CE_PANIC,
189 "Device %s - bad inode magic/vsn "
190 "daddr %lld #%d (magic=%x)",
191 XFS_BUFTARG_NAME(mp->m_ddev_targp),
192 (unsigned long long)imap->im_blkno, i,
193 be16_to_cpu(dip->di_core.di_magic));
194 #endif
195 xfs_trans_brelse(tp, bp);
196 return XFS_ERROR(EFSCORRUPTED);
197 }
198 }
199
200 xfs_inobp_check(mp, bp);
201
202 /*
203 * Mark the buffer as an inode buffer now that it looks good
204 */
205 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
206
207 *bpp = bp;
208 return 0;
209 }
210
211 /*
212 * This routine is called to map an inode number within a file
213 * system to the buffer containing the on-disk version of the
214 * inode. It returns a pointer to the buffer containing the
215 * on-disk inode in the bpp parameter, and in the dip parameter
216 * it returns a pointer to the on-disk inode within that buffer.
217 *
218 * If a non-zero error is returned, then the contents of bpp and
219 * dipp are undefined.
220 *
221 * Use xfs_imap() to determine the size and location of the
222 * buffer to read from disk.
223 */
224 STATIC int
225 xfs_inotobp(
226 xfs_mount_t *mp,
227 xfs_trans_t *tp,
228 xfs_ino_t ino,
229 xfs_dinode_t **dipp,
230 xfs_buf_t **bpp,
231 int *offset)
232 {
233 xfs_imap_t imap;
234 xfs_buf_t *bp;
235 int error;
236
237 imap.im_blkno = 0;
238 error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
239 if (error)
240 return error;
241
242 error = xfs_imap_to_bp(mp, tp, &imap, &bp, XFS_BUF_LOCK, 0);
243 if (error)
244 return error;
245
246 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
247 *bpp = bp;
248 *offset = imap.im_boffset;
249 return 0;
250 }
251
252
253 /*
254 * This routine is called to map an inode to the buffer containing
255 * the on-disk version of the inode. It returns a pointer to the
256 * buffer containing the on-disk inode in the bpp parameter, and in
257 * the dip parameter it returns a pointer to the on-disk inode within
258 * that buffer.
259 *
260 * If a non-zero error is returned, then the contents of bpp and
261 * dipp are undefined.
262 *
263 * If the inode is new and has not yet been initialized, use xfs_imap()
264 * to determine the size and location of the buffer to read from disk.
265 * If the inode has already been mapped to its buffer and read in once,
266 * then use the mapping information stored in the inode rather than
267 * calling xfs_imap(). This allows us to avoid the overhead of looking
268 * at the inode btree for small block file systems (see xfs_dilocate()).
269 * We can tell whether the inode has been mapped in before by comparing
270 * its disk block address to 0. Only uninitialized inodes will have
271 * 0 for the disk block address.
272 */
273 int
274 xfs_itobp(
275 xfs_mount_t *mp,
276 xfs_trans_t *tp,
277 xfs_inode_t *ip,
278 xfs_dinode_t **dipp,
279 xfs_buf_t **bpp,
280 xfs_daddr_t bno,
281 uint imap_flags,
282 uint buf_flags)
283 {
284 xfs_imap_t imap;
285 xfs_buf_t *bp;
286 int error;
287
288 if (ip->i_blkno == (xfs_daddr_t)0) {
289 imap.im_blkno = bno;
290 error = xfs_imap(mp, tp, ip->i_ino, &imap,
291 XFS_IMAP_LOOKUP | imap_flags);
292 if (error)
293 return error;
294
295 /*
296 * Fill in the fields in the inode that will be used to
297 * map the inode to its buffer from now on.
298 */
299 ip->i_blkno = imap.im_blkno;
300 ip->i_len = imap.im_len;
301 ip->i_boffset = imap.im_boffset;
302 } else {
303 /*
304 * We've already mapped the inode once, so just use the
305 * mapping that we saved the first time.
306 */
307 imap.im_blkno = ip->i_blkno;
308 imap.im_len = ip->i_len;
309 imap.im_boffset = ip->i_boffset;
310 }
311 ASSERT(bno == 0 || bno == imap.im_blkno);
312
313 error = xfs_imap_to_bp(mp, tp, &imap, &bp, buf_flags, imap_flags);
314 if (error)
315 return error;
316
317 if (!bp) {
318 ASSERT(buf_flags & XFS_BUF_TRYLOCK);
319 ASSERT(tp == NULL);
320 *bpp = NULL;
321 return EAGAIN;
322 }
323
324 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
325 *bpp = bp;
326 return 0;
327 }
328
329 /*
330 * Move inode type and inode format specific information from the
331 * on-disk inode to the in-core inode. For fifos, devs, and sockets
332 * this means set if_rdev to the proper value. For files, directories,
333 * and symlinks this means to bring in the in-line data or extent
334 * pointers. For a file in B-tree format, only the root is immediately
335 * brought in-core. The rest will be in-lined in if_extents when it
336 * is first referenced (see xfs_iread_extents()).
337 */
338 STATIC int
339 xfs_iformat(
340 xfs_inode_t *ip,
341 xfs_dinode_t *dip)
342 {
343 xfs_attr_shortform_t *atp;
344 int size;
345 int error;
346 xfs_fsize_t di_size;
347 ip->i_df.if_ext_max =
348 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
349 error = 0;
350
351 if (unlikely(be32_to_cpu(dip->di_core.di_nextents) +
352 be16_to_cpu(dip->di_core.di_anextents) >
353 be64_to_cpu(dip->di_core.di_nblocks))) {
354 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
355 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
356 (unsigned long long)ip->i_ino,
357 (int)(be32_to_cpu(dip->di_core.di_nextents) +
358 be16_to_cpu(dip->di_core.di_anextents)),
359 (unsigned long long)
360 be64_to_cpu(dip->di_core.di_nblocks));
361 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
362 ip->i_mount, dip);
363 return XFS_ERROR(EFSCORRUPTED);
364 }
365
366 if (unlikely(dip->di_core.di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
367 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
368 "corrupt dinode %Lu, forkoff = 0x%x.",
369 (unsigned long long)ip->i_ino,
370 dip->di_core.di_forkoff);
371 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
372 ip->i_mount, dip);
373 return XFS_ERROR(EFSCORRUPTED);
374 }
375
376 switch (ip->i_d.di_mode & S_IFMT) {
377 case S_IFIFO:
378 case S_IFCHR:
379 case S_IFBLK:
380 case S_IFSOCK:
381 if (unlikely(dip->di_core.di_format != XFS_DINODE_FMT_DEV)) {
382 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
383 ip->i_mount, dip);
384 return XFS_ERROR(EFSCORRUPTED);
385 }
386 ip->i_d.di_size = 0;
387 ip->i_size = 0;
388 ip->i_df.if_u2.if_rdev = be32_to_cpu(dip->di_u.di_dev);
389 break;
390
391 case S_IFREG:
392 case S_IFLNK:
393 case S_IFDIR:
394 switch (dip->di_core.di_format) {
395 case XFS_DINODE_FMT_LOCAL:
396 /*
397 * no local regular files yet
398 */
399 if (unlikely((be16_to_cpu(dip->di_core.di_mode) & S_IFMT) == S_IFREG)) {
400 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
401 "corrupt inode %Lu "
402 "(local format for regular file).",
403 (unsigned long long) ip->i_ino);
404 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
405 XFS_ERRLEVEL_LOW,
406 ip->i_mount, dip);
407 return XFS_ERROR(EFSCORRUPTED);
408 }
409
410 di_size = be64_to_cpu(dip->di_core.di_size);
411 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
412 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
413 "corrupt inode %Lu "
414 "(bad size %Ld for local inode).",
415 (unsigned long long) ip->i_ino,
416 (long long) di_size);
417 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
418 XFS_ERRLEVEL_LOW,
419 ip->i_mount, dip);
420 return XFS_ERROR(EFSCORRUPTED);
421 }
422
423 size = (int)di_size;
424 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
425 break;
426 case XFS_DINODE_FMT_EXTENTS:
427 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
428 break;
429 case XFS_DINODE_FMT_BTREE:
430 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
431 break;
432 default:
433 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
434 ip->i_mount);
435 return XFS_ERROR(EFSCORRUPTED);
436 }
437 break;
438
439 default:
440 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
441 return XFS_ERROR(EFSCORRUPTED);
442 }
443 if (error) {
444 return error;
445 }
446 if (!XFS_DFORK_Q(dip))
447 return 0;
448 ASSERT(ip->i_afp == NULL);
449 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
450 ip->i_afp->if_ext_max =
451 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
452 switch (dip->di_core.di_aformat) {
453 case XFS_DINODE_FMT_LOCAL:
454 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
455 size = be16_to_cpu(atp->hdr.totsize);
456 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
457 break;
458 case XFS_DINODE_FMT_EXTENTS:
459 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
460 break;
461 case XFS_DINODE_FMT_BTREE:
462 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
463 break;
464 default:
465 error = XFS_ERROR(EFSCORRUPTED);
466 break;
467 }
468 if (error) {
469 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
470 ip->i_afp = NULL;
471 xfs_idestroy_fork(ip, XFS_DATA_FORK);
472 }
473 return error;
474 }
475
476 /*
477 * The file is in-lined in the on-disk inode.
478 * If it fits into if_inline_data, then copy
479 * it there, otherwise allocate a buffer for it
480 * and copy the data there. Either way, set
481 * if_data to point at the data.
482 * If we allocate a buffer for the data, make
483 * sure that its size is a multiple of 4 and
484 * record the real size in i_real_bytes.
485 */
486 STATIC int
487 xfs_iformat_local(
488 xfs_inode_t *ip,
489 xfs_dinode_t *dip,
490 int whichfork,
491 int size)
492 {
493 xfs_ifork_t *ifp;
494 int real_size;
495
496 /*
497 * If the size is unreasonable, then something
498 * is wrong and we just bail out rather than crash in
499 * kmem_alloc() or memcpy() below.
500 */
501 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
502 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
503 "corrupt inode %Lu "
504 "(bad size %d for local fork, size = %d).",
505 (unsigned long long) ip->i_ino, size,
506 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
507 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
508 ip->i_mount, dip);
509 return XFS_ERROR(EFSCORRUPTED);
510 }
511 ifp = XFS_IFORK_PTR(ip, whichfork);
512 real_size = 0;
513 if (size == 0)
514 ifp->if_u1.if_data = NULL;
515 else if (size <= sizeof(ifp->if_u2.if_inline_data))
516 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
517 else {
518 real_size = roundup(size, 4);
519 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
520 }
521 ifp->if_bytes = size;
522 ifp->if_real_bytes = real_size;
523 if (size)
524 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
525 ifp->if_flags &= ~XFS_IFEXTENTS;
526 ifp->if_flags |= XFS_IFINLINE;
527 return 0;
528 }
529
530 /*
531 * The file consists of a set of extents all
532 * of which fit into the on-disk inode.
533 * If there are few enough extents to fit into
534 * the if_inline_ext, then copy them there.
535 * Otherwise allocate a buffer for them and copy
536 * them into it. Either way, set if_extents
537 * to point at the extents.
538 */
539 STATIC int
540 xfs_iformat_extents(
541 xfs_inode_t *ip,
542 xfs_dinode_t *dip,
543 int whichfork)
544 {
545 xfs_bmbt_rec_t *dp;
546 xfs_ifork_t *ifp;
547 int nex;
548 int size;
549 int i;
550
551 ifp = XFS_IFORK_PTR(ip, whichfork);
552 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
553 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
554
555 /*
556 * If the number of extents is unreasonable, then something
557 * is wrong and we just bail out rather than crash in
558 * kmem_alloc() or memcpy() below.
559 */
560 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
561 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
562 "corrupt inode %Lu ((a)extents = %d).",
563 (unsigned long long) ip->i_ino, nex);
564 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
565 ip->i_mount, dip);
566 return XFS_ERROR(EFSCORRUPTED);
567 }
568
569 ifp->if_real_bytes = 0;
570 if (nex == 0)
571 ifp->if_u1.if_extents = NULL;
572 else if (nex <= XFS_INLINE_EXTS)
573 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
574 else
575 xfs_iext_add(ifp, 0, nex);
576
577 ifp->if_bytes = size;
578 if (size) {
579 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
580 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
581 for (i = 0; i < nex; i++, dp++) {
582 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
583 ep->l0 = be64_to_cpu(get_unaligned(&dp->l0));
584 ep->l1 = be64_to_cpu(get_unaligned(&dp->l1));
585 }
586 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
587 if (whichfork != XFS_DATA_FORK ||
588 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
589 if (unlikely(xfs_check_nostate_extents(
590 ifp, 0, nex))) {
591 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
592 XFS_ERRLEVEL_LOW,
593 ip->i_mount);
594 return XFS_ERROR(EFSCORRUPTED);
595 }
596 }
597 ifp->if_flags |= XFS_IFEXTENTS;
598 return 0;
599 }
600
601 /*
602 * The file has too many extents to fit into
603 * the inode, so they are in B-tree format.
604 * Allocate a buffer for the root of the B-tree
605 * and copy the root into it. The i_extents
606 * field will remain NULL until all of the
607 * extents are read in (when they are needed).
608 */
609 STATIC int
610 xfs_iformat_btree(
611 xfs_inode_t *ip,
612 xfs_dinode_t *dip,
613 int whichfork)
614 {
615 xfs_bmdr_block_t *dfp;
616 xfs_ifork_t *ifp;
617 /* REFERENCED */
618 int nrecs;
619 int size;
620
621 ifp = XFS_IFORK_PTR(ip, whichfork);
622 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
623 size = XFS_BMAP_BROOT_SPACE(dfp);
624 nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
625
626 /*
627 * blow out if -- fork has less extents than can fit in
628 * fork (fork shouldn't be a btree format), root btree
629 * block has more records than can fit into the fork,
630 * or the number of extents is greater than the number of
631 * blocks.
632 */
633 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
634 || XFS_BMDR_SPACE_CALC(nrecs) >
635 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
636 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
637 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
638 "corrupt inode %Lu (btree).",
639 (unsigned long long) ip->i_ino);
640 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
641 ip->i_mount);
642 return XFS_ERROR(EFSCORRUPTED);
643 }
644
645 ifp->if_broot_bytes = size;
646 ifp->if_broot = kmem_alloc(size, KM_SLEEP);
647 ASSERT(ifp->if_broot != NULL);
648 /*
649 * Copy and convert from the on-disk structure
650 * to the in-memory structure.
651 */
652 xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
653 ifp->if_broot, size);
654 ifp->if_flags &= ~XFS_IFEXTENTS;
655 ifp->if_flags |= XFS_IFBROOT;
656
657 return 0;
658 }
659
660 void
661 xfs_dinode_from_disk(
662 xfs_icdinode_t *to,
663 xfs_dinode_core_t *from)
664 {
665 to->di_magic = be16_to_cpu(from->di_magic);
666 to->di_mode = be16_to_cpu(from->di_mode);
667 to->di_version = from ->di_version;
668 to->di_format = from->di_format;
669 to->di_onlink = be16_to_cpu(from->di_onlink);
670 to->di_uid = be32_to_cpu(from->di_uid);
671 to->di_gid = be32_to_cpu(from->di_gid);
672 to->di_nlink = be32_to_cpu(from->di_nlink);
673 to->di_projid = be16_to_cpu(from->di_projid);
674 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
675 to->di_flushiter = be16_to_cpu(from->di_flushiter);
676 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
677 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
678 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
679 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
680 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
681 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
682 to->di_size = be64_to_cpu(from->di_size);
683 to->di_nblocks = be64_to_cpu(from->di_nblocks);
684 to->di_extsize = be32_to_cpu(from->di_extsize);
685 to->di_nextents = be32_to_cpu(from->di_nextents);
686 to->di_anextents = be16_to_cpu(from->di_anextents);
687 to->di_forkoff = from->di_forkoff;
688 to->di_aformat = from->di_aformat;
689 to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
690 to->di_dmstate = be16_to_cpu(from->di_dmstate);
691 to->di_flags = be16_to_cpu(from->di_flags);
692 to->di_gen = be32_to_cpu(from->di_gen);
693 }
694
695 void
696 xfs_dinode_to_disk(
697 xfs_dinode_core_t *to,
698 xfs_icdinode_t *from)
699 {
700 to->di_magic = cpu_to_be16(from->di_magic);
701 to->di_mode = cpu_to_be16(from->di_mode);
702 to->di_version = from ->di_version;
703 to->di_format = from->di_format;
704 to->di_onlink = cpu_to_be16(from->di_onlink);
705 to->di_uid = cpu_to_be32(from->di_uid);
706 to->di_gid = cpu_to_be32(from->di_gid);
707 to->di_nlink = cpu_to_be32(from->di_nlink);
708 to->di_projid = cpu_to_be16(from->di_projid);
709 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
710 to->di_flushiter = cpu_to_be16(from->di_flushiter);
711 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
712 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
713 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
714 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
715 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
716 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
717 to->di_size = cpu_to_be64(from->di_size);
718 to->di_nblocks = cpu_to_be64(from->di_nblocks);
719 to->di_extsize = cpu_to_be32(from->di_extsize);
720 to->di_nextents = cpu_to_be32(from->di_nextents);
721 to->di_anextents = cpu_to_be16(from->di_anextents);
722 to->di_forkoff = from->di_forkoff;
723 to->di_aformat = from->di_aformat;
724 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
725 to->di_dmstate = cpu_to_be16(from->di_dmstate);
726 to->di_flags = cpu_to_be16(from->di_flags);
727 to->di_gen = cpu_to_be32(from->di_gen);
728 }
729
730 STATIC uint
731 _xfs_dic2xflags(
732 __uint16_t di_flags)
733 {
734 uint flags = 0;
735
736 if (di_flags & XFS_DIFLAG_ANY) {
737 if (di_flags & XFS_DIFLAG_REALTIME)
738 flags |= XFS_XFLAG_REALTIME;
739 if (di_flags & XFS_DIFLAG_PREALLOC)
740 flags |= XFS_XFLAG_PREALLOC;
741 if (di_flags & XFS_DIFLAG_IMMUTABLE)
742 flags |= XFS_XFLAG_IMMUTABLE;
743 if (di_flags & XFS_DIFLAG_APPEND)
744 flags |= XFS_XFLAG_APPEND;
745 if (di_flags & XFS_DIFLAG_SYNC)
746 flags |= XFS_XFLAG_SYNC;
747 if (di_flags & XFS_DIFLAG_NOATIME)
748 flags |= XFS_XFLAG_NOATIME;
749 if (di_flags & XFS_DIFLAG_NODUMP)
750 flags |= XFS_XFLAG_NODUMP;
751 if (di_flags & XFS_DIFLAG_RTINHERIT)
752 flags |= XFS_XFLAG_RTINHERIT;
753 if (di_flags & XFS_DIFLAG_PROJINHERIT)
754 flags |= XFS_XFLAG_PROJINHERIT;
755 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
756 flags |= XFS_XFLAG_NOSYMLINKS;
757 if (di_flags & XFS_DIFLAG_EXTSIZE)
758 flags |= XFS_XFLAG_EXTSIZE;
759 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
760 flags |= XFS_XFLAG_EXTSZINHERIT;
761 if (di_flags & XFS_DIFLAG_NODEFRAG)
762 flags |= XFS_XFLAG_NODEFRAG;
763 if (di_flags & XFS_DIFLAG_FILESTREAM)
764 flags |= XFS_XFLAG_FILESTREAM;
765 }
766
767 return flags;
768 }
769
770 uint
771 xfs_ip2xflags(
772 xfs_inode_t *ip)
773 {
774 xfs_icdinode_t *dic = &ip->i_d;
775
776 return _xfs_dic2xflags(dic->di_flags) |
777 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
778 }
779
780 uint
781 xfs_dic2xflags(
782 xfs_dinode_t *dip)
783 {
784 xfs_dinode_core_t *dic = &dip->di_core;
785
786 return _xfs_dic2xflags(be16_to_cpu(dic->di_flags)) |
787 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
788 }
789
790 /*
791 * Given a mount structure and an inode number, return a pointer
792 * to a newly allocated in-core inode corresponding to the given
793 * inode number.
794 *
795 * Initialize the inode's attributes and extent pointers if it
796 * already has them (it will not if the inode has no links).
797 */
798 int
799 xfs_iread(
800 xfs_mount_t *mp,
801 xfs_trans_t *tp,
802 xfs_ino_t ino,
803 xfs_inode_t **ipp,
804 xfs_daddr_t bno,
805 uint imap_flags)
806 {
807 xfs_buf_t *bp;
808 xfs_dinode_t *dip;
809 xfs_inode_t *ip;
810 int error;
811
812 ASSERT(xfs_inode_zone != NULL);
813
814 ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
815 ip->i_ino = ino;
816 ip->i_mount = mp;
817 atomic_set(&ip->i_iocount, 0);
818 spin_lock_init(&ip->i_flags_lock);
819
820 /*
821 * Get pointer's to the on-disk inode and the buffer containing it.
822 * If the inode number refers to a block outside the file system
823 * then xfs_itobp() will return NULL. In this case we should
824 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
825 * know that this is a new incore inode.
826 */
827 error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags, XFS_BUF_LOCK);
828 if (error) {
829 kmem_zone_free(xfs_inode_zone, ip);
830 return error;
831 }
832
833 /*
834 * Initialize inode's trace buffers.
835 * Do this before xfs_iformat in case it adds entries.
836 */
837 #ifdef XFS_INODE_TRACE
838 ip->i_trace = ktrace_alloc(INODE_TRACE_SIZE, KM_SLEEP);
839 #endif
840 #ifdef XFS_BMAP_TRACE
841 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
842 #endif
843 #ifdef XFS_BMBT_TRACE
844 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
845 #endif
846 #ifdef XFS_RW_TRACE
847 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
848 #endif
849 #ifdef XFS_ILOCK_TRACE
850 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
851 #endif
852 #ifdef XFS_DIR2_TRACE
853 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
854 #endif
855
856 /*
857 * If we got something that isn't an inode it means someone
858 * (nfs or dmi) has a stale handle.
859 */
860 if (be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC) {
861 kmem_zone_free(xfs_inode_zone, ip);
862 xfs_trans_brelse(tp, bp);
863 #ifdef DEBUG
864 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
865 "dip->di_core.di_magic (0x%x) != "
866 "XFS_DINODE_MAGIC (0x%x)",
867 be16_to_cpu(dip->di_core.di_magic),
868 XFS_DINODE_MAGIC);
869 #endif /* DEBUG */
870 return XFS_ERROR(EINVAL);
871 }
872
873 /*
874 * If the on-disk inode is already linked to a directory
875 * entry, copy all of the inode into the in-core inode.
876 * xfs_iformat() handles copying in the inode format
877 * specific information.
878 * Otherwise, just get the truly permanent information.
879 */
880 if (dip->di_core.di_mode) {
881 xfs_dinode_from_disk(&ip->i_d, &dip->di_core);
882 error = xfs_iformat(ip, dip);
883 if (error) {
884 kmem_zone_free(xfs_inode_zone, ip);
885 xfs_trans_brelse(tp, bp);
886 #ifdef DEBUG
887 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
888 "xfs_iformat() returned error %d",
889 error);
890 #endif /* DEBUG */
891 return error;
892 }
893 } else {
894 ip->i_d.di_magic = be16_to_cpu(dip->di_core.di_magic);
895 ip->i_d.di_version = dip->di_core.di_version;
896 ip->i_d.di_gen = be32_to_cpu(dip->di_core.di_gen);
897 ip->i_d.di_flushiter = be16_to_cpu(dip->di_core.di_flushiter);
898 /*
899 * Make sure to pull in the mode here as well in
900 * case the inode is released without being used.
901 * This ensures that xfs_inactive() will see that
902 * the inode is already free and not try to mess
903 * with the uninitialized part of it.
904 */
905 ip->i_d.di_mode = 0;
906 /*
907 * Initialize the per-fork minima and maxima for a new
908 * inode here. xfs_iformat will do it for old inodes.
909 */
910 ip->i_df.if_ext_max =
911 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
912 }
913
914 INIT_LIST_HEAD(&ip->i_reclaim);
915
916 /*
917 * The inode format changed when we moved the link count and
918 * made it 32 bits long. If this is an old format inode,
919 * convert it in memory to look like a new one. If it gets
920 * flushed to disk we will convert back before flushing or
921 * logging it. We zero out the new projid field and the old link
922 * count field. We'll handle clearing the pad field (the remains
923 * of the old uuid field) when we actually convert the inode to
924 * the new format. We don't change the version number so that we
925 * can distinguish this from a real new format inode.
926 */
927 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
928 ip->i_d.di_nlink = ip->i_d.di_onlink;
929 ip->i_d.di_onlink = 0;
930 ip->i_d.di_projid = 0;
931 }
932
933 ip->i_delayed_blks = 0;
934 ip->i_size = ip->i_d.di_size;
935
936 /*
937 * Mark the buffer containing the inode as something to keep
938 * around for a while. This helps to keep recently accessed
939 * meta-data in-core longer.
940 */
941 XFS_BUF_SET_REF(bp, XFS_INO_REF);
942
943 /*
944 * Use xfs_trans_brelse() to release the buffer containing the
945 * on-disk inode, because it was acquired with xfs_trans_read_buf()
946 * in xfs_itobp() above. If tp is NULL, this is just a normal
947 * brelse(). If we're within a transaction, then xfs_trans_brelse()
948 * will only release the buffer if it is not dirty within the
949 * transaction. It will be OK to release the buffer in this case,
950 * because inodes on disk are never destroyed and we will be
951 * locking the new in-core inode before putting it in the hash
952 * table where other processes can find it. Thus we don't have
953 * to worry about the inode being changed just because we released
954 * the buffer.
955 */
956 xfs_trans_brelse(tp, bp);
957 *ipp = ip;
958 return 0;
959 }
960
961 /*
962 * Read in extents from a btree-format inode.
963 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
964 */
965 int
966 xfs_iread_extents(
967 xfs_trans_t *tp,
968 xfs_inode_t *ip,
969 int whichfork)
970 {
971 int error;
972 xfs_ifork_t *ifp;
973 xfs_extnum_t nextents;
974 size_t size;
975
976 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
977 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
978 ip->i_mount);
979 return XFS_ERROR(EFSCORRUPTED);
980 }
981 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
982 size = nextents * sizeof(xfs_bmbt_rec_t);
983 ifp = XFS_IFORK_PTR(ip, whichfork);
984
985 /*
986 * We know that the size is valid (it's checked in iformat_btree)
987 */
988 ifp->if_lastex = NULLEXTNUM;
989 ifp->if_bytes = ifp->if_real_bytes = 0;
990 ifp->if_flags |= XFS_IFEXTENTS;
991 xfs_iext_add(ifp, 0, nextents);
992 error = xfs_bmap_read_extents(tp, ip, whichfork);
993 if (error) {
994 xfs_iext_destroy(ifp);
995 ifp->if_flags &= ~XFS_IFEXTENTS;
996 return error;
997 }
998 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
999 return 0;
1000 }
1001
1002 /*
1003 * Allocate an inode on disk and return a copy of its in-core version.
1004 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1005 * appropriately within the inode. The uid and gid for the inode are
1006 * set according to the contents of the given cred structure.
1007 *
1008 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1009 * has a free inode available, call xfs_iget()
1010 * to obtain the in-core version of the allocated inode. Finally,
1011 * fill in the inode and log its initial contents. In this case,
1012 * ialloc_context would be set to NULL and call_again set to false.
1013 *
1014 * If xfs_dialloc() does not have an available inode,
1015 * it will replenish its supply by doing an allocation. Since we can
1016 * only do one allocation within a transaction without deadlocks, we
1017 * must commit the current transaction before returning the inode itself.
1018 * In this case, therefore, we will set call_again to true and return.
1019 * The caller should then commit the current transaction, start a new
1020 * transaction, and call xfs_ialloc() again to actually get the inode.
1021 *
1022 * To ensure that some other process does not grab the inode that
1023 * was allocated during the first call to xfs_ialloc(), this routine
1024 * also returns the [locked] bp pointing to the head of the freelist
1025 * as ialloc_context. The caller should hold this buffer across
1026 * the commit and pass it back into this routine on the second call.
1027 *
1028 * If we are allocating quota inodes, we do not have a parent inode
1029 * to attach to or associate with (i.e. pip == NULL) because they
1030 * are not linked into the directory structure - they are attached
1031 * directly to the superblock - and so have no parent.
1032 */
1033 int
1034 xfs_ialloc(
1035 xfs_trans_t *tp,
1036 xfs_inode_t *pip,
1037 mode_t mode,
1038 xfs_nlink_t nlink,
1039 xfs_dev_t rdev,
1040 cred_t *cr,
1041 xfs_prid_t prid,
1042 int okalloc,
1043 xfs_buf_t **ialloc_context,
1044 boolean_t *call_again,
1045 xfs_inode_t **ipp)
1046 {
1047 xfs_ino_t ino;
1048 xfs_inode_t *ip;
1049 bhv_vnode_t *vp;
1050 uint flags;
1051 int error;
1052
1053 /*
1054 * Call the space management code to pick
1055 * the on-disk inode to be allocated.
1056 */
1057 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1058 ialloc_context, call_again, &ino);
1059 if (error != 0) {
1060 return error;
1061 }
1062 if (*call_again || ino == NULLFSINO) {
1063 *ipp = NULL;
1064 return 0;
1065 }
1066 ASSERT(*ialloc_context == NULL);
1067
1068 /*
1069 * Get the in-core inode with the lock held exclusively.
1070 * This is because we're setting fields here we need
1071 * to prevent others from looking at until we're done.
1072 */
1073 error = xfs_trans_iget(tp->t_mountp, tp, ino,
1074 XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1075 if (error != 0) {
1076 return error;
1077 }
1078 ASSERT(ip != NULL);
1079
1080 vp = VFS_I(ip);
1081 ip->i_d.di_mode = (__uint16_t)mode;
1082 ip->i_d.di_onlink = 0;
1083 ip->i_d.di_nlink = nlink;
1084 ASSERT(ip->i_d.di_nlink == nlink);
1085 ip->i_d.di_uid = current_fsuid(cr);
1086 ip->i_d.di_gid = current_fsgid(cr);
1087 ip->i_d.di_projid = prid;
1088 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1089
1090 /*
1091 * If the superblock version is up to where we support new format
1092 * inodes and this is currently an old format inode, then change
1093 * the inode version number now. This way we only do the conversion
1094 * here rather than here and in the flush/logging code.
1095 */
1096 if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
1097 ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1098 ip->i_d.di_version = XFS_DINODE_VERSION_2;
1099 /*
1100 * We've already zeroed the old link count, the projid field,
1101 * and the pad field.
1102 */
1103 }
1104
1105 /*
1106 * Project ids won't be stored on disk if we are using a version 1 inode.
1107 */
1108 if ((prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
1109 xfs_bump_ino_vers2(tp, ip);
1110
1111 if (pip && XFS_INHERIT_GID(pip)) {
1112 ip->i_d.di_gid = pip->i_d.di_gid;
1113 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1114 ip->i_d.di_mode |= S_ISGID;
1115 }
1116 }
1117
1118 /*
1119 * If the group ID of the new file does not match the effective group
1120 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1121 * (and only if the irix_sgid_inherit compatibility variable is set).
1122 */
1123 if ((irix_sgid_inherit) &&
1124 (ip->i_d.di_mode & S_ISGID) &&
1125 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1126 ip->i_d.di_mode &= ~S_ISGID;
1127 }
1128
1129 ip->i_d.di_size = 0;
1130 ip->i_size = 0;
1131 ip->i_d.di_nextents = 0;
1132 ASSERT(ip->i_d.di_nblocks == 0);
1133 xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
1134 /*
1135 * di_gen will have been taken care of in xfs_iread.
1136 */
1137 ip->i_d.di_extsize = 0;
1138 ip->i_d.di_dmevmask = 0;
1139 ip->i_d.di_dmstate = 0;
1140 ip->i_d.di_flags = 0;
1141 flags = XFS_ILOG_CORE;
1142 switch (mode & S_IFMT) {
1143 case S_IFIFO:
1144 case S_IFCHR:
1145 case S_IFBLK:
1146 case S_IFSOCK:
1147 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1148 ip->i_df.if_u2.if_rdev = rdev;
1149 ip->i_df.if_flags = 0;
1150 flags |= XFS_ILOG_DEV;
1151 break;
1152 case S_IFREG:
1153 if (pip && xfs_inode_is_filestream(pip)) {
1154 error = xfs_filestream_associate(pip, ip);
1155 if (error < 0)
1156 return -error;
1157 if (!error)
1158 xfs_iflags_set(ip, XFS_IFILESTREAM);
1159 }
1160 /* fall through */
1161 case S_IFDIR:
1162 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1163 uint di_flags = 0;
1164
1165 if ((mode & S_IFMT) == S_IFDIR) {
1166 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1167 di_flags |= XFS_DIFLAG_RTINHERIT;
1168 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1169 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1170 ip->i_d.di_extsize = pip->i_d.di_extsize;
1171 }
1172 } else if ((mode & S_IFMT) == S_IFREG) {
1173 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1174 di_flags |= XFS_DIFLAG_REALTIME;
1175 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1176 di_flags |= XFS_DIFLAG_EXTSIZE;
1177 ip->i_d.di_extsize = pip->i_d.di_extsize;
1178 }
1179 }
1180 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1181 xfs_inherit_noatime)
1182 di_flags |= XFS_DIFLAG_NOATIME;
1183 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1184 xfs_inherit_nodump)
1185 di_flags |= XFS_DIFLAG_NODUMP;
1186 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1187 xfs_inherit_sync)
1188 di_flags |= XFS_DIFLAG_SYNC;
1189 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1190 xfs_inherit_nosymlinks)
1191 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1192 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1193 di_flags |= XFS_DIFLAG_PROJINHERIT;
1194 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1195 xfs_inherit_nodefrag)
1196 di_flags |= XFS_DIFLAG_NODEFRAG;
1197 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1198 di_flags |= XFS_DIFLAG_FILESTREAM;
1199 ip->i_d.di_flags |= di_flags;
1200 }
1201 /* FALLTHROUGH */
1202 case S_IFLNK:
1203 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1204 ip->i_df.if_flags = XFS_IFEXTENTS;
1205 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1206 ip->i_df.if_u1.if_extents = NULL;
1207 break;
1208 default:
1209 ASSERT(0);
1210 }
1211 /*
1212 * Attribute fork settings for new inode.
1213 */
1214 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1215 ip->i_d.di_anextents = 0;
1216
1217 /*
1218 * Log the new values stuffed into the inode.
1219 */
1220 xfs_trans_log_inode(tp, ip, flags);
1221
1222 /* now that we have an i_mode we can setup inode ops and unlock */
1223 xfs_initialize_vnode(tp->t_mountp, vp, ip);
1224
1225 *ipp = ip;
1226 return 0;
1227 }
1228
1229 /*
1230 * Check to make sure that there are no blocks allocated to the
1231 * file beyond the size of the file. We don't check this for
1232 * files with fixed size extents or real time extents, but we
1233 * at least do it for regular files.
1234 */
1235 #ifdef DEBUG
1236 void
1237 xfs_isize_check(
1238 xfs_mount_t *mp,
1239 xfs_inode_t *ip,
1240 xfs_fsize_t isize)
1241 {
1242 xfs_fileoff_t map_first;
1243 int nimaps;
1244 xfs_bmbt_irec_t imaps[2];
1245
1246 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1247 return;
1248
1249 if (XFS_IS_REALTIME_INODE(ip))
1250 return;
1251
1252 if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
1253 return;
1254
1255 nimaps = 2;
1256 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1257 /*
1258 * The filesystem could be shutting down, so bmapi may return
1259 * an error.
1260 */
1261 if (xfs_bmapi(NULL, ip, map_first,
1262 (XFS_B_TO_FSB(mp,
1263 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1264 map_first),
1265 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1266 NULL, NULL))
1267 return;
1268 ASSERT(nimaps == 1);
1269 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1270 }
1271 #endif /* DEBUG */
1272
1273 /*
1274 * Calculate the last possible buffered byte in a file. This must
1275 * include data that was buffered beyond the EOF by the write code.
1276 * This also needs to deal with overflowing the xfs_fsize_t type
1277 * which can happen for sizes near the limit.
1278 *
1279 * We also need to take into account any blocks beyond the EOF. It
1280 * may be the case that they were buffered by a write which failed.
1281 * In that case the pages will still be in memory, but the inode size
1282 * will never have been updated.
1283 */
1284 xfs_fsize_t
1285 xfs_file_last_byte(
1286 xfs_inode_t *ip)
1287 {
1288 xfs_mount_t *mp;
1289 xfs_fsize_t last_byte;
1290 xfs_fileoff_t last_block;
1291 xfs_fileoff_t size_last_block;
1292 int error;
1293
1294 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED));
1295
1296 mp = ip->i_mount;
1297 /*
1298 * Only check for blocks beyond the EOF if the extents have
1299 * been read in. This eliminates the need for the inode lock,
1300 * and it also saves us from looking when it really isn't
1301 * necessary.
1302 */
1303 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1304 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1305 XFS_DATA_FORK);
1306 if (error) {
1307 last_block = 0;
1308 }
1309 } else {
1310 last_block = 0;
1311 }
1312 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
1313 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1314
1315 last_byte = XFS_FSB_TO_B(mp, last_block);
1316 if (last_byte < 0) {
1317 return XFS_MAXIOFFSET(mp);
1318 }
1319 last_byte += (1 << mp->m_writeio_log);
1320 if (last_byte < 0) {
1321 return XFS_MAXIOFFSET(mp);
1322 }
1323 return last_byte;
1324 }
1325
1326 #if defined(XFS_RW_TRACE)
1327 STATIC void
1328 xfs_itrunc_trace(
1329 int tag,
1330 xfs_inode_t *ip,
1331 int flag,
1332 xfs_fsize_t new_size,
1333 xfs_off_t toss_start,
1334 xfs_off_t toss_finish)
1335 {
1336 if (ip->i_rwtrace == NULL) {
1337 return;
1338 }
1339
1340 ktrace_enter(ip->i_rwtrace,
1341 (void*)((long)tag),
1342 (void*)ip,
1343 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1344 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1345 (void*)((long)flag),
1346 (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1347 (void*)(unsigned long)(new_size & 0xffffffff),
1348 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1349 (void*)(unsigned long)(toss_start & 0xffffffff),
1350 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1351 (void*)(unsigned long)(toss_finish & 0xffffffff),
1352 (void*)(unsigned long)current_cpu(),
1353 (void*)(unsigned long)current_pid(),
1354 (void*)NULL,
1355 (void*)NULL,
1356 (void*)NULL);
1357 }
1358 #else
1359 #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1360 #endif
1361
1362 /*
1363 * Start the truncation of the file to new_size. The new size
1364 * must be smaller than the current size. This routine will
1365 * clear the buffer and page caches of file data in the removed
1366 * range, and xfs_itruncate_finish() will remove the underlying
1367 * disk blocks.
1368 *
1369 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1370 * must NOT have the inode lock held at all. This is because we're
1371 * calling into the buffer/page cache code and we can't hold the
1372 * inode lock when we do so.
1373 *
1374 * We need to wait for any direct I/Os in flight to complete before we
1375 * proceed with the truncate. This is needed to prevent the extents
1376 * being read or written by the direct I/Os from being removed while the
1377 * I/O is in flight as there is no other method of synchronising
1378 * direct I/O with the truncate operation. Also, because we hold
1379 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1380 * started until the truncate completes and drops the lock. Essentially,
1381 * the vn_iowait() call forms an I/O barrier that provides strict ordering
1382 * between direct I/Os and the truncate operation.
1383 *
1384 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1385 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1386 * in the case that the caller is locking things out of order and
1387 * may not be able to call xfs_itruncate_finish() with the inode lock
1388 * held without dropping the I/O lock. If the caller must drop the
1389 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1390 * must be called again with all the same restrictions as the initial
1391 * call.
1392 */
1393 int
1394 xfs_itruncate_start(
1395 xfs_inode_t *ip,
1396 uint flags,
1397 xfs_fsize_t new_size)
1398 {
1399 xfs_fsize_t last_byte;
1400 xfs_off_t toss_start;
1401 xfs_mount_t *mp;
1402 bhv_vnode_t *vp;
1403 int error = 0;
1404
1405 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1406 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1407 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1408 (flags == XFS_ITRUNC_MAYBE));
1409
1410 mp = ip->i_mount;
1411 vp = VFS_I(ip);
1412
1413 /* wait for the completion of any pending DIOs */
1414 if (new_size < ip->i_size)
1415 vn_iowait(ip);
1416
1417 /*
1418 * Call toss_pages or flushinval_pages to get rid of pages
1419 * overlapping the region being removed. We have to use
1420 * the less efficient flushinval_pages in the case that the
1421 * caller may not be able to finish the truncate without
1422 * dropping the inode's I/O lock. Make sure
1423 * to catch any pages brought in by buffers overlapping
1424 * the EOF by searching out beyond the isize by our
1425 * block size. We round new_size up to a block boundary
1426 * so that we don't toss things on the same block as
1427 * new_size but before it.
1428 *
1429 * Before calling toss_page or flushinval_pages, make sure to
1430 * call remapf() over the same region if the file is mapped.
1431 * This frees up mapped file references to the pages in the
1432 * given range and for the flushinval_pages case it ensures
1433 * that we get the latest mapped changes flushed out.
1434 */
1435 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1436 toss_start = XFS_FSB_TO_B(mp, toss_start);
1437 if (toss_start < 0) {
1438 /*
1439 * The place to start tossing is beyond our maximum
1440 * file size, so there is no way that the data extended
1441 * out there.
1442 */
1443 return 0;
1444 }
1445 last_byte = xfs_file_last_byte(ip);
1446 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1447 last_byte);
1448 if (last_byte > toss_start) {
1449 if (flags & XFS_ITRUNC_DEFINITE) {
1450 xfs_tosspages(ip, toss_start,
1451 -1, FI_REMAPF_LOCKED);
1452 } else {
1453 error = xfs_flushinval_pages(ip, toss_start,
1454 -1, FI_REMAPF_LOCKED);
1455 }
1456 }
1457
1458 #ifdef DEBUG
1459 if (new_size == 0) {
1460 ASSERT(VN_CACHED(vp) == 0);
1461 }
1462 #endif
1463 return error;
1464 }
1465
1466 /*
1467 * Shrink the file to the given new_size. The new size must be smaller than
1468 * the current size. This will free up the underlying blocks in the removed
1469 * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
1470 *
1471 * The transaction passed to this routine must have made a permanent log
1472 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1473 * given transaction and start new ones, so make sure everything involved in
1474 * the transaction is tidy before calling here. Some transaction will be
1475 * returned to the caller to be committed. The incoming transaction must
1476 * already include the inode, and both inode locks must be held exclusively.
1477 * The inode must also be "held" within the transaction. On return the inode
1478 * will be "held" within the returned transaction. This routine does NOT
1479 * require any disk space to be reserved for it within the transaction.
1480 *
1481 * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
1482 * indicates the fork which is to be truncated. For the attribute fork we only
1483 * support truncation to size 0.
1484 *
1485 * We use the sync parameter to indicate whether or not the first transaction
1486 * we perform might have to be synchronous. For the attr fork, it needs to be
1487 * so if the unlink of the inode is not yet known to be permanent in the log.
1488 * This keeps us from freeing and reusing the blocks of the attribute fork
1489 * before the unlink of the inode becomes permanent.
1490 *
1491 * For the data fork, we normally have to run synchronously if we're being
1492 * called out of the inactive path or we're being called out of the create path
1493 * where we're truncating an existing file. Either way, the truncate needs to
1494 * be sync so blocks don't reappear in the file with altered data in case of a
1495 * crash. wsync filesystems can run the first case async because anything that
1496 * shrinks the inode has to run sync so by the time we're called here from
1497 * inactive, the inode size is permanently set to 0.
1498 *
1499 * Calls from the truncate path always need to be sync unless we're in a wsync
1500 * filesystem and the file has already been unlinked.
1501 *
1502 * The caller is responsible for correctly setting the sync parameter. It gets
1503 * too hard for us to guess here which path we're being called out of just
1504 * based on inode state.
1505 *
1506 * If we get an error, we must return with the inode locked and linked into the
1507 * current transaction. This keeps things simple for the higher level code,
1508 * because it always knows that the inode is locked and held in the transaction
1509 * that returns to it whether errors occur or not. We don't mark the inode
1510 * dirty on error so that transactions can be easily aborted if possible.
1511 */
1512 int
1513 xfs_itruncate_finish(
1514 xfs_trans_t **tp,
1515 xfs_inode_t *ip,
1516 xfs_fsize_t new_size,
1517 int fork,
1518 int sync)
1519 {
1520 xfs_fsblock_t first_block;
1521 xfs_fileoff_t first_unmap_block;
1522 xfs_fileoff_t last_block;
1523 xfs_filblks_t unmap_len=0;
1524 xfs_mount_t *mp;
1525 xfs_trans_t *ntp;
1526 int done;
1527 int committed;
1528 xfs_bmap_free_t free_list;
1529 int error;
1530
1531 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
1532 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1533 ASSERT(*tp != NULL);
1534 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1535 ASSERT(ip->i_transp == *tp);
1536 ASSERT(ip->i_itemp != NULL);
1537 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1538
1539
1540 ntp = *tp;
1541 mp = (ntp)->t_mountp;
1542 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1543
1544 /*
1545 * We only support truncating the entire attribute fork.
1546 */
1547 if (fork == XFS_ATTR_FORK) {
1548 new_size = 0LL;
1549 }
1550 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1551 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1552 /*
1553 * The first thing we do is set the size to new_size permanently
1554 * on disk. This way we don't have to worry about anyone ever
1555 * being able to look at the data being freed even in the face
1556 * of a crash. What we're getting around here is the case where
1557 * we free a block, it is allocated to another file, it is written
1558 * to, and then we crash. If the new data gets written to the
1559 * file but the log buffers containing the free and reallocation
1560 * don't, then we'd end up with garbage in the blocks being freed.
1561 * As long as we make the new_size permanent before actually
1562 * freeing any blocks it doesn't matter if they get writtten to.
1563 *
1564 * The callers must signal into us whether or not the size
1565 * setting here must be synchronous. There are a few cases
1566 * where it doesn't have to be synchronous. Those cases
1567 * occur if the file is unlinked and we know the unlink is
1568 * permanent or if the blocks being truncated are guaranteed
1569 * to be beyond the inode eof (regardless of the link count)
1570 * and the eof value is permanent. Both of these cases occur
1571 * only on wsync-mounted filesystems. In those cases, we're
1572 * guaranteed that no user will ever see the data in the blocks
1573 * that are being truncated so the truncate can run async.
1574 * In the free beyond eof case, the file may wind up with
1575 * more blocks allocated to it than it needs if we crash
1576 * and that won't get fixed until the next time the file
1577 * is re-opened and closed but that's ok as that shouldn't
1578 * be too many blocks.
1579 *
1580 * However, we can't just make all wsync xactions run async
1581 * because there's one call out of the create path that needs
1582 * to run sync where it's truncating an existing file to size
1583 * 0 whose size is > 0.
1584 *
1585 * It's probably possible to come up with a test in this
1586 * routine that would correctly distinguish all the above
1587 * cases from the values of the function parameters and the
1588 * inode state but for sanity's sake, I've decided to let the
1589 * layers above just tell us. It's simpler to correctly figure
1590 * out in the layer above exactly under what conditions we
1591 * can run async and I think it's easier for others read and
1592 * follow the logic in case something has to be changed.
1593 * cscope is your friend -- rcc.
1594 *
1595 * The attribute fork is much simpler.
1596 *
1597 * For the attribute fork we allow the caller to tell us whether
1598 * the unlink of the inode that led to this call is yet permanent
1599 * in the on disk log. If it is not and we will be freeing extents
1600 * in this inode then we make the first transaction synchronous
1601 * to make sure that the unlink is permanent by the time we free
1602 * the blocks.
1603 */
1604 if (fork == XFS_DATA_FORK) {
1605 if (ip->i_d.di_nextents > 0) {
1606 /*
1607 * If we are not changing the file size then do
1608 * not update the on-disk file size - we may be
1609 * called from xfs_inactive_free_eofblocks(). If we
1610 * update the on-disk file size and then the system
1611 * crashes before the contents of the file are
1612 * flushed to disk then the files may be full of
1613 * holes (ie NULL files bug).
1614 */
1615 if (ip->i_size != new_size) {
1616 ip->i_d.di_size = new_size;
1617 ip->i_size = new_size;
1618 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1619 }
1620 }
1621 } else if (sync) {
1622 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1623 if (ip->i_d.di_anextents > 0)
1624 xfs_trans_set_sync(ntp);
1625 }
1626 ASSERT(fork == XFS_DATA_FORK ||
1627 (fork == XFS_ATTR_FORK &&
1628 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1629 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1630
1631 /*
1632 * Since it is possible for space to become allocated beyond
1633 * the end of the file (in a crash where the space is allocated
1634 * but the inode size is not yet updated), simply remove any
1635 * blocks which show up between the new EOF and the maximum
1636 * possible file size. If the first block to be removed is
1637 * beyond the maximum file size (ie it is the same as last_block),
1638 * then there is nothing to do.
1639 */
1640 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1641 ASSERT(first_unmap_block <= last_block);
1642 done = 0;
1643 if (last_block == first_unmap_block) {
1644 done = 1;
1645 } else {
1646 unmap_len = last_block - first_unmap_block + 1;
1647 }
1648 while (!done) {
1649 /*
1650 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1651 * will tell us whether it freed the entire range or
1652 * not. If this is a synchronous mount (wsync),
1653 * then we can tell bunmapi to keep all the
1654 * transactions asynchronous since the unlink
1655 * transaction that made this inode inactive has
1656 * already hit the disk. There's no danger of
1657 * the freed blocks being reused, there being a
1658 * crash, and the reused blocks suddenly reappearing
1659 * in this file with garbage in them once recovery
1660 * runs.
1661 */
1662 XFS_BMAP_INIT(&free_list, &first_block);
1663 error = xfs_bunmapi(ntp, ip,
1664 first_unmap_block, unmap_len,
1665 XFS_BMAPI_AFLAG(fork) |
1666 (sync ? 0 : XFS_BMAPI_ASYNC),
1667 XFS_ITRUNC_MAX_EXTENTS,
1668 &first_block, &free_list,
1669 NULL, &done);
1670 if (error) {
1671 /*
1672 * If the bunmapi call encounters an error,
1673 * return to the caller where the transaction
1674 * can be properly aborted. We just need to
1675 * make sure we're not holding any resources
1676 * that we were not when we came in.
1677 */
1678 xfs_bmap_cancel(&free_list);
1679 return error;
1680 }
1681
1682 /*
1683 * Duplicate the transaction that has the permanent
1684 * reservation and commit the old transaction.
1685 */
1686 error = xfs_bmap_finish(tp, &free_list, &committed);
1687 ntp = *tp;
1688 if (committed) {
1689 /* link the inode into the next xact in the chain */
1690 xfs_trans_ijoin(ntp, ip,
1691 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1692 xfs_trans_ihold(ntp, ip);
1693 }
1694
1695 if (error) {
1696 /*
1697 * If the bmap finish call encounters an error, return
1698 * to the caller where the transaction can be properly
1699 * aborted. We just need to make sure we're not
1700 * holding any resources that we were not when we came
1701 * in.
1702 *
1703 * Aborting from this point might lose some blocks in
1704 * the file system, but oh well.
1705 */
1706 xfs_bmap_cancel(&free_list);
1707 return error;
1708 }
1709
1710 if (committed) {
1711 /*
1712 * Mark the inode dirty so it will be logged and
1713 * moved forward in the log as part of every commit.
1714 */
1715 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1716 }
1717
1718 ntp = xfs_trans_dup(ntp);
1719 error = xfs_trans_commit(*tp, 0);
1720 *tp = ntp;
1721
1722 /* link the inode into the next transaction in the chain */
1723 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1724 xfs_trans_ihold(ntp, ip);
1725
1726 if (!error)
1727 error = xfs_trans_reserve(ntp, 0,
1728 XFS_ITRUNCATE_LOG_RES(mp), 0,
1729 XFS_TRANS_PERM_LOG_RES,
1730 XFS_ITRUNCATE_LOG_COUNT);
1731 if (error)
1732 return error;
1733 }
1734 /*
1735 * Only update the size in the case of the data fork, but
1736 * always re-log the inode so that our permanent transaction
1737 * can keep on rolling it forward in the log.
1738 */
1739 if (fork == XFS_DATA_FORK) {
1740 xfs_isize_check(mp, ip, new_size);
1741 /*
1742 * If we are not changing the file size then do
1743 * not update the on-disk file size - we may be
1744 * called from xfs_inactive_free_eofblocks(). If we
1745 * update the on-disk file size and then the system
1746 * crashes before the contents of the file are
1747 * flushed to disk then the files may be full of
1748 * holes (ie NULL files bug).
1749 */
1750 if (ip->i_size != new_size) {
1751 ip->i_d.di_size = new_size;
1752 ip->i_size = new_size;
1753 }
1754 }
1755 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1756 ASSERT((new_size != 0) ||
1757 (fork == XFS_ATTR_FORK) ||
1758 (ip->i_delayed_blks == 0));
1759 ASSERT((new_size != 0) ||
1760 (fork == XFS_ATTR_FORK) ||
1761 (ip->i_d.di_nextents == 0));
1762 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1763 return 0;
1764 }
1765
1766 /*
1767 * This is called when the inode's link count goes to 0.
1768 * We place the on-disk inode on a list in the AGI. It
1769 * will be pulled from this list when the inode is freed.
1770 */
1771 int
1772 xfs_iunlink(
1773 xfs_trans_t *tp,
1774 xfs_inode_t *ip)
1775 {
1776 xfs_mount_t *mp;
1777 xfs_agi_t *agi;
1778 xfs_dinode_t *dip;
1779 xfs_buf_t *agibp;
1780 xfs_buf_t *ibp;
1781 xfs_agnumber_t agno;
1782 xfs_daddr_t agdaddr;
1783 xfs_agino_t agino;
1784 short bucket_index;
1785 int offset;
1786 int error;
1787 int agi_ok;
1788
1789 ASSERT(ip->i_d.di_nlink == 0);
1790 ASSERT(ip->i_d.di_mode != 0);
1791 ASSERT(ip->i_transp == tp);
1792
1793 mp = tp->t_mountp;
1794
1795 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1796 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1797
1798 /*
1799 * Get the agi buffer first. It ensures lock ordering
1800 * on the list.
1801 */
1802 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1803 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1804 if (error)
1805 return error;
1806
1807 /*
1808 * Validate the magic number of the agi block.
1809 */
1810 agi = XFS_BUF_TO_AGI(agibp);
1811 agi_ok =
1812 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1813 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1814 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
1815 XFS_RANDOM_IUNLINK))) {
1816 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
1817 xfs_trans_brelse(tp, agibp);
1818 return XFS_ERROR(EFSCORRUPTED);
1819 }
1820 /*
1821 * Get the index into the agi hash table for the
1822 * list this inode will go on.
1823 */
1824 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1825 ASSERT(agino != 0);
1826 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1827 ASSERT(agi->agi_unlinked[bucket_index]);
1828 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1829
1830 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1831 /*
1832 * There is already another inode in the bucket we need
1833 * to add ourselves to. Add us at the front of the list.
1834 * Here we put the head pointer into our next pointer,
1835 * and then we fall through to point the head at us.
1836 */
1837 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
1838 if (error)
1839 return error;
1840
1841 ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
1842 /* both on-disk, don't endian flip twice */
1843 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1844 offset = ip->i_boffset +
1845 offsetof(xfs_dinode_t, di_next_unlinked);
1846 xfs_trans_inode_buf(tp, ibp);
1847 xfs_trans_log_buf(tp, ibp, offset,
1848 (offset + sizeof(xfs_agino_t) - 1));
1849 xfs_inobp_check(mp, ibp);
1850 }
1851
1852 /*
1853 * Point the bucket head pointer at the inode being inserted.
1854 */
1855 ASSERT(agino != 0);
1856 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1857 offset = offsetof(xfs_agi_t, agi_unlinked) +
1858 (sizeof(xfs_agino_t) * bucket_index);
1859 xfs_trans_log_buf(tp, agibp, offset,
1860 (offset + sizeof(xfs_agino_t) - 1));
1861 return 0;
1862 }
1863
1864 /*
1865 * Pull the on-disk inode from the AGI unlinked list.
1866 */
1867 STATIC int
1868 xfs_iunlink_remove(
1869 xfs_trans_t *tp,
1870 xfs_inode_t *ip)
1871 {
1872 xfs_ino_t next_ino;
1873 xfs_mount_t *mp;
1874 xfs_agi_t *agi;
1875 xfs_dinode_t *dip;
1876 xfs_buf_t *agibp;
1877 xfs_buf_t *ibp;
1878 xfs_agnumber_t agno;
1879 xfs_daddr_t agdaddr;
1880 xfs_agino_t agino;
1881 xfs_agino_t next_agino;
1882 xfs_buf_t *last_ibp;
1883 xfs_dinode_t *last_dip = NULL;
1884 short bucket_index;
1885 int offset, last_offset = 0;
1886 int error;
1887 int agi_ok;
1888
1889 /*
1890 * First pull the on-disk inode from the AGI unlinked list.
1891 */
1892 mp = tp->t_mountp;
1893
1894 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1895 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1896
1897 /*
1898 * Get the agi buffer first. It ensures lock ordering
1899 * on the list.
1900 */
1901 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1902 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1903 if (error) {
1904 cmn_err(CE_WARN,
1905 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
1906 error, mp->m_fsname);
1907 return error;
1908 }
1909 /*
1910 * Validate the magic number of the agi block.
1911 */
1912 agi = XFS_BUF_TO_AGI(agibp);
1913 agi_ok =
1914 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1915 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1916 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
1917 XFS_RANDOM_IUNLINK_REMOVE))) {
1918 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
1919 mp, agi);
1920 xfs_trans_brelse(tp, agibp);
1921 cmn_err(CE_WARN,
1922 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
1923 mp->m_fsname);
1924 return XFS_ERROR(EFSCORRUPTED);
1925 }
1926 /*
1927 * Get the index into the agi hash table for the
1928 * list this inode will go on.
1929 */
1930 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1931 ASSERT(agino != 0);
1932 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1933 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
1934 ASSERT(agi->agi_unlinked[bucket_index]);
1935
1936 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1937 /*
1938 * We're at the head of the list. Get the inode's
1939 * on-disk buffer to see if there is anyone after us
1940 * on the list. Only modify our next pointer if it
1941 * is not already NULLAGINO. This saves us the overhead
1942 * of dealing with the buffer when there is no need to
1943 * change it.
1944 */
1945 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
1946 if (error) {
1947 cmn_err(CE_WARN,
1948 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
1949 error, mp->m_fsname);
1950 return error;
1951 }
1952 next_agino = be32_to_cpu(dip->di_next_unlinked);
1953 ASSERT(next_agino != 0);
1954 if (next_agino != NULLAGINO) {
1955 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1956 offset = ip->i_boffset +
1957 offsetof(xfs_dinode_t, di_next_unlinked);
1958 xfs_trans_inode_buf(tp, ibp);
1959 xfs_trans_log_buf(tp, ibp, offset,
1960 (offset + sizeof(xfs_agino_t) - 1));
1961 xfs_inobp_check(mp, ibp);
1962 } else {
1963 xfs_trans_brelse(tp, ibp);
1964 }
1965 /*
1966 * Point the bucket head pointer at the next inode.
1967 */
1968 ASSERT(next_agino != 0);
1969 ASSERT(next_agino != agino);
1970 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1971 offset = offsetof(xfs_agi_t, agi_unlinked) +
1972 (sizeof(xfs_agino_t) * bucket_index);
1973 xfs_trans_log_buf(tp, agibp, offset,
1974 (offset + sizeof(xfs_agino_t) - 1));
1975 } else {
1976 /*
1977 * We need to search the list for the inode being freed.
1978 */
1979 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1980 last_ibp = NULL;
1981 while (next_agino != agino) {
1982 /*
1983 * If the last inode wasn't the one pointing to
1984 * us, then release its buffer since we're not
1985 * going to do anything with it.
1986 */
1987 if (last_ibp != NULL) {
1988 xfs_trans_brelse(tp, last_ibp);
1989 }
1990 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
1991 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
1992 &last_ibp, &last_offset);
1993 if (error) {
1994 cmn_err(CE_WARN,
1995 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
1996 error, mp->m_fsname);
1997 return error;
1998 }
1999 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2000 ASSERT(next_agino != NULLAGINO);
2001 ASSERT(next_agino != 0);
2002 }
2003 /*
2004 * Now last_ibp points to the buffer previous to us on
2005 * the unlinked list. Pull us from the list.
2006 */
2007 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
2008 if (error) {
2009 cmn_err(CE_WARN,
2010 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2011 error, mp->m_fsname);
2012 return error;
2013 }
2014 next_agino = be32_to_cpu(dip->di_next_unlinked);
2015 ASSERT(next_agino != 0);
2016 ASSERT(next_agino != agino);
2017 if (next_agino != NULLAGINO) {
2018 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2019 offset = ip->i_boffset +
2020 offsetof(xfs_dinode_t, di_next_unlinked);
2021 xfs_trans_inode_buf(tp, ibp);
2022 xfs_trans_log_buf(tp, ibp, offset,
2023 (offset + sizeof(xfs_agino_t) - 1));
2024 xfs_inobp_check(mp, ibp);
2025 } else {
2026 xfs_trans_brelse(tp, ibp);
2027 }
2028 /*
2029 * Point the previous inode on the list to the next inode.
2030 */
2031 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2032 ASSERT(next_agino != 0);
2033 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2034 xfs_trans_inode_buf(tp, last_ibp);
2035 xfs_trans_log_buf(tp, last_ibp, offset,
2036 (offset + sizeof(xfs_agino_t) - 1));
2037 xfs_inobp_check(mp, last_ibp);
2038 }
2039 return 0;
2040 }
2041
2042 STATIC void
2043 xfs_ifree_cluster(
2044 xfs_inode_t *free_ip,
2045 xfs_trans_t *tp,
2046 xfs_ino_t inum)
2047 {
2048 xfs_mount_t *mp = free_ip->i_mount;
2049 int blks_per_cluster;
2050 int nbufs;
2051 int ninodes;
2052 int i, j, found, pre_flushed;
2053 xfs_daddr_t blkno;
2054 xfs_buf_t *bp;
2055 xfs_inode_t *ip, **ip_found;
2056 xfs_inode_log_item_t *iip;
2057 xfs_log_item_t *lip;
2058 xfs_perag_t *pag = xfs_get_perag(mp, inum);
2059
2060 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2061 blks_per_cluster = 1;
2062 ninodes = mp->m_sb.sb_inopblock;
2063 nbufs = XFS_IALLOC_BLOCKS(mp);
2064 } else {
2065 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2066 mp->m_sb.sb_blocksize;
2067 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2068 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2069 }
2070
2071 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2072
2073 for (j = 0; j < nbufs; j++, inum += ninodes) {
2074 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2075 XFS_INO_TO_AGBNO(mp, inum));
2076
2077
2078 /*
2079 * Look for each inode in memory and attempt to lock it,
2080 * we can be racing with flush and tail pushing here.
2081 * any inode we get the locks on, add to an array of
2082 * inode items to process later.
2083 *
2084 * The get the buffer lock, we could beat a flush
2085 * or tail pushing thread to the lock here, in which
2086 * case they will go looking for the inode buffer
2087 * and fail, we need some other form of interlock
2088 * here.
2089 */
2090 found = 0;
2091 for (i = 0; i < ninodes; i++) {
2092 read_lock(&pag->pag_ici_lock);
2093 ip = radix_tree_lookup(&pag->pag_ici_root,
2094 XFS_INO_TO_AGINO(mp, (inum + i)));
2095
2096 /* Inode not in memory or we found it already,
2097 * nothing to do
2098 */
2099 if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
2100 read_unlock(&pag->pag_ici_lock);
2101 continue;
2102 }
2103
2104 if (xfs_inode_clean(ip)) {
2105 read_unlock(&pag->pag_ici_lock);
2106 continue;
2107 }
2108
2109 /* If we can get the locks then add it to the
2110 * list, otherwise by the time we get the bp lock
2111 * below it will already be attached to the
2112 * inode buffer.
2113 */
2114
2115 /* This inode will already be locked - by us, lets
2116 * keep it that way.
2117 */
2118
2119 if (ip == free_ip) {
2120 if (xfs_iflock_nowait(ip)) {
2121 xfs_iflags_set(ip, XFS_ISTALE);
2122 if (xfs_inode_clean(ip)) {
2123 xfs_ifunlock(ip);
2124 } else {
2125 ip_found[found++] = ip;
2126 }
2127 }
2128 read_unlock(&pag->pag_ici_lock);
2129 continue;
2130 }
2131
2132 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2133 if (xfs_iflock_nowait(ip)) {
2134 xfs_iflags_set(ip, XFS_ISTALE);
2135
2136 if (xfs_inode_clean(ip)) {
2137 xfs_ifunlock(ip);
2138 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2139 } else {
2140 ip_found[found++] = ip;
2141 }
2142 } else {
2143 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2144 }
2145 }
2146 read_unlock(&pag->pag_ici_lock);
2147 }
2148
2149 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2150 mp->m_bsize * blks_per_cluster,
2151 XFS_BUF_LOCK);
2152
2153 pre_flushed = 0;
2154 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2155 while (lip) {
2156 if (lip->li_type == XFS_LI_INODE) {
2157 iip = (xfs_inode_log_item_t *)lip;
2158 ASSERT(iip->ili_logged == 1);
2159 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2160 spin_lock(&mp->m_ail_lock);
2161 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2162 spin_unlock(&mp->m_ail_lock);
2163 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2164 pre_flushed++;
2165 }
2166 lip = lip->li_bio_list;
2167 }
2168
2169 for (i = 0; i < found; i++) {
2170 ip = ip_found[i];
2171 iip = ip->i_itemp;
2172
2173 if (!iip) {
2174 ip->i_update_core = 0;
2175 xfs_ifunlock(ip);
2176 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2177 continue;
2178 }
2179
2180 iip->ili_last_fields = iip->ili_format.ilf_fields;
2181 iip->ili_format.ilf_fields = 0;
2182 iip->ili_logged = 1;
2183 spin_lock(&mp->m_ail_lock);
2184 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2185 spin_unlock(&mp->m_ail_lock);
2186
2187 xfs_buf_attach_iodone(bp,
2188 (void(*)(xfs_buf_t*,xfs_log_item_t*))
2189 xfs_istale_done, (xfs_log_item_t *)iip);
2190 if (ip != free_ip) {
2191 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2192 }
2193 }
2194
2195 if (found || pre_flushed)
2196 xfs_trans_stale_inode_buf(tp, bp);
2197 xfs_trans_binval(tp, bp);
2198 }
2199
2200 kmem_free(ip_found);
2201 xfs_put_perag(mp, pag);
2202 }
2203
2204 /*
2205 * This is called to return an inode to the inode free list.
2206 * The inode should already be truncated to 0 length and have
2207 * no pages associated with it. This routine also assumes that
2208 * the inode is already a part of the transaction.
2209 *
2210 * The on-disk copy of the inode will have been added to the list
2211 * of unlinked inodes in the AGI. We need to remove the inode from
2212 * that list atomically with respect to freeing it here.
2213 */
2214 int
2215 xfs_ifree(
2216 xfs_trans_t *tp,
2217 xfs_inode_t *ip,
2218 xfs_bmap_free_t *flist)
2219 {
2220 int error;
2221 int delete;
2222 xfs_ino_t first_ino;
2223 xfs_dinode_t *dip;
2224 xfs_buf_t *ibp;
2225
2226 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2227 ASSERT(ip->i_transp == tp);
2228 ASSERT(ip->i_d.di_nlink == 0);
2229 ASSERT(ip->i_d.di_nextents == 0);
2230 ASSERT(ip->i_d.di_anextents == 0);
2231 ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
2232 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2233 ASSERT(ip->i_d.di_nblocks == 0);
2234
2235 /*
2236 * Pull the on-disk inode from the AGI unlinked list.
2237 */
2238 error = xfs_iunlink_remove(tp, ip);
2239 if (error != 0) {
2240 return error;
2241 }
2242
2243 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2244 if (error != 0) {
2245 return error;
2246 }
2247 ip->i_d.di_mode = 0; /* mark incore inode as free */
2248 ip->i_d.di_flags = 0;
2249 ip->i_d.di_dmevmask = 0;
2250 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2251 ip->i_df.if_ext_max =
2252 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2253 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2254 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2255 /*
2256 * Bump the generation count so no one will be confused
2257 * by reincarnations of this inode.
2258 */
2259 ip->i_d.di_gen++;
2260
2261 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2262
2263 error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
2264 if (error)
2265 return error;
2266
2267 /*
2268 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
2269 * from picking up this inode when it is reclaimed (its incore state
2270 * initialzed but not flushed to disk yet). The in-core di_mode is
2271 * already cleared and a corresponding transaction logged.
2272 * The hack here just synchronizes the in-core to on-disk
2273 * di_mode value in advance before the actual inode sync to disk.
2274 * This is OK because the inode is already unlinked and would never
2275 * change its di_mode again for this inode generation.
2276 * This is a temporary hack that would require a proper fix
2277 * in the future.
2278 */
2279 dip->di_core.di_mode = 0;
2280
2281 if (delete) {
2282 xfs_ifree_cluster(ip, tp, first_ino);
2283 }
2284
2285 return 0;
2286 }
2287
2288 /*
2289 * Reallocate the space for if_broot based on the number of records
2290 * being added or deleted as indicated in rec_diff. Move the records
2291 * and pointers in if_broot to fit the new size. When shrinking this
2292 * will eliminate holes between the records and pointers created by
2293 * the caller. When growing this will create holes to be filled in
2294 * by the caller.
2295 *
2296 * The caller must not request to add more records than would fit in
2297 * the on-disk inode root. If the if_broot is currently NULL, then
2298 * if we adding records one will be allocated. The caller must also
2299 * not request that the number of records go below zero, although
2300 * it can go to zero.
2301 *
2302 * ip -- the inode whose if_broot area is changing
2303 * ext_diff -- the change in the number of records, positive or negative,
2304 * requested for the if_broot array.
2305 */
2306 void
2307 xfs_iroot_realloc(
2308 xfs_inode_t *ip,
2309 int rec_diff,
2310 int whichfork)
2311 {
2312 int cur_max;
2313 xfs_ifork_t *ifp;
2314 xfs_bmbt_block_t *new_broot;
2315 int new_max;
2316 size_t new_size;
2317 char *np;
2318 char *op;
2319
2320 /*
2321 * Handle the degenerate case quietly.
2322 */
2323 if (rec_diff == 0) {
2324 return;
2325 }
2326
2327 ifp = XFS_IFORK_PTR(ip, whichfork);
2328 if (rec_diff > 0) {
2329 /*
2330 * If there wasn't any memory allocated before, just
2331 * allocate it now and get out.
2332 */
2333 if (ifp->if_broot_bytes == 0) {
2334 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2335 ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
2336 KM_SLEEP);
2337 ifp->if_broot_bytes = (int)new_size;
2338 return;
2339 }
2340
2341 /*
2342 * If there is already an existing if_broot, then we need
2343 * to realloc() it and shift the pointers to their new
2344 * location. The records don't change location because
2345 * they are kept butted up against the btree block header.
2346 */
2347 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2348 new_max = cur_max + rec_diff;
2349 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2350 ifp->if_broot = (xfs_bmbt_block_t *)
2351 kmem_realloc(ifp->if_broot,
2352 new_size,
2353 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2354 KM_SLEEP);
2355 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2356 ifp->if_broot_bytes);
2357 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2358 (int)new_size);
2359 ifp->if_broot_bytes = (int)new_size;
2360 ASSERT(ifp->if_broot_bytes <=
2361 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2362 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2363 return;
2364 }
2365
2366 /*
2367 * rec_diff is less than 0. In this case, we are shrinking the
2368 * if_broot buffer. It must already exist. If we go to zero
2369 * records, just get rid of the root and clear the status bit.
2370 */
2371 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2372 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2373 new_max = cur_max + rec_diff;
2374 ASSERT(new_max >= 0);
2375 if (new_max > 0)
2376 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2377 else
2378 new_size = 0;
2379 if (new_size > 0) {
2380 new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
2381 /*
2382 * First copy over the btree block header.
2383 */
2384 memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
2385 } else {
2386 new_broot = NULL;
2387 ifp->if_flags &= ~XFS_IFBROOT;
2388 }
2389
2390 /*
2391 * Only copy the records and pointers if there are any.
2392 */
2393 if (new_max > 0) {
2394 /*
2395 * First copy the records.
2396 */
2397 op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
2398 ifp->if_broot_bytes);
2399 np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
2400 (int)new_size);
2401 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2402
2403 /*
2404 * Then copy the pointers.
2405 */
2406 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2407 ifp->if_broot_bytes);
2408 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
2409 (int)new_size);
2410 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2411 }
2412 kmem_free(ifp->if_broot);
2413 ifp->if_broot = new_broot;
2414 ifp->if_broot_bytes = (int)new_size;
2415 ASSERT(ifp->if_broot_bytes <=
2416 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2417 return;
2418 }
2419
2420
2421 /*
2422 * This is called when the amount of space needed for if_data
2423 * is increased or decreased. The change in size is indicated by
2424 * the number of bytes that need to be added or deleted in the
2425 * byte_diff parameter.
2426 *
2427 * If the amount of space needed has decreased below the size of the
2428 * inline buffer, then switch to using the inline buffer. Otherwise,
2429 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2430 * to what is needed.
2431 *
2432 * ip -- the inode whose if_data area is changing
2433 * byte_diff -- the change in the number of bytes, positive or negative,
2434 * requested for the if_data array.
2435 */
2436 void
2437 xfs_idata_realloc(
2438 xfs_inode_t *ip,
2439 int byte_diff,
2440 int whichfork)
2441 {
2442 xfs_ifork_t *ifp;
2443 int new_size;
2444 int real_size;
2445
2446 if (byte_diff == 0) {
2447 return;
2448 }
2449
2450 ifp = XFS_IFORK_PTR(ip, whichfork);
2451 new_size = (int)ifp->if_bytes + byte_diff;
2452 ASSERT(new_size >= 0);
2453
2454 if (new_size == 0) {
2455 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2456 kmem_free(ifp->if_u1.if_data);
2457 }
2458 ifp->if_u1.if_data = NULL;
2459 real_size = 0;
2460 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2461 /*
2462 * If the valid extents/data can fit in if_inline_ext/data,
2463 * copy them from the malloc'd vector and free it.
2464 */
2465 if (ifp->if_u1.if_data == NULL) {
2466 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2467 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2468 ASSERT(ifp->if_real_bytes != 0);
2469 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2470 new_size);
2471 kmem_free(ifp->if_u1.if_data);
2472 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2473 }
2474 real_size = 0;
2475 } else {
2476 /*
2477 * Stuck with malloc/realloc.
2478 * For inline data, the underlying buffer must be
2479 * a multiple of 4 bytes in size so that it can be
2480 * logged and stay on word boundaries. We enforce
2481 * that here.
2482 */
2483 real_size = roundup(new_size, 4);
2484 if (ifp->if_u1.if_data == NULL) {
2485 ASSERT(ifp->if_real_bytes == 0);
2486 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2487 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2488 /*
2489 * Only do the realloc if the underlying size
2490 * is really changing.
2491 */
2492 if (ifp->if_real_bytes != real_size) {
2493 ifp->if_u1.if_data =
2494 kmem_realloc(ifp->if_u1.if_data,
2495 real_size,
2496 ifp->if_real_bytes,
2497 KM_SLEEP);
2498 }
2499 } else {
2500 ASSERT(ifp->if_real_bytes == 0);
2501 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2502 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2503 ifp->if_bytes);
2504 }
2505 }
2506 ifp->if_real_bytes = real_size;
2507 ifp->if_bytes = new_size;
2508 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2509 }
2510
2511
2512
2513
2514 /*
2515 * Map inode to disk block and offset.
2516 *
2517 * mp -- the mount point structure for the current file system
2518 * tp -- the current transaction
2519 * ino -- the inode number of the inode to be located
2520 * imap -- this structure is filled in with the information necessary
2521 * to retrieve the given inode from disk
2522 * flags -- flags to pass to xfs_dilocate indicating whether or not
2523 * lookups in the inode btree were OK or not
2524 */
2525 int
2526 xfs_imap(
2527 xfs_mount_t *mp,
2528 xfs_trans_t *tp,
2529 xfs_ino_t ino,
2530 xfs_imap_t *imap,
2531 uint flags)
2532 {
2533 xfs_fsblock_t fsbno;
2534 int len;
2535 int off;
2536 int error;
2537
2538 fsbno = imap->im_blkno ?
2539 XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
2540 error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
2541 if (error)
2542 return error;
2543
2544 imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
2545 imap->im_len = XFS_FSB_TO_BB(mp, len);
2546 imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
2547 imap->im_ioffset = (ushort)off;
2548 imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
2549
2550 /*
2551 * If the inode number maps to a block outside the bounds
2552 * of the file system then return NULL rather than calling
2553 * read_buf and panicing when we get an error from the
2554 * driver.
2555 */
2556 if ((imap->im_blkno + imap->im_len) >
2557 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2558 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_imap: "
2559 "(imap->im_blkno (0x%llx) + imap->im_len (0x%llx)) > "
2560 " XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks) (0x%llx)",
2561 (unsigned long long) imap->im_blkno,
2562 (unsigned long long) imap->im_len,
2563 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2564 return EINVAL;
2565 }
2566 return 0;
2567 }
2568
2569 void
2570 xfs_idestroy_fork(
2571 xfs_inode_t *ip,
2572 int whichfork)
2573 {
2574 xfs_ifork_t *ifp;
2575
2576 ifp = XFS_IFORK_PTR(ip, whichfork);
2577 if (ifp->if_broot != NULL) {
2578 kmem_free(ifp->if_broot);
2579 ifp->if_broot = NULL;
2580 }
2581
2582 /*
2583 * If the format is local, then we can't have an extents
2584 * array so just look for an inline data array. If we're
2585 * not local then we may or may not have an extents list,
2586 * so check and free it up if we do.
2587 */
2588 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2589 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2590 (ifp->if_u1.if_data != NULL)) {
2591 ASSERT(ifp->if_real_bytes != 0);
2592 kmem_free(ifp->if_u1.if_data);
2593 ifp->if_u1.if_data = NULL;
2594 ifp->if_real_bytes = 0;
2595 }
2596 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2597 ((ifp->if_flags & XFS_IFEXTIREC) ||
2598 ((ifp->if_u1.if_extents != NULL) &&
2599 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2600 ASSERT(ifp->if_real_bytes != 0);
2601 xfs_iext_destroy(ifp);
2602 }
2603 ASSERT(ifp->if_u1.if_extents == NULL ||
2604 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2605 ASSERT(ifp->if_real_bytes == 0);
2606 if (whichfork == XFS_ATTR_FORK) {
2607 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2608 ip->i_afp = NULL;
2609 }
2610 }
2611
2612 /*
2613 * This is called free all the memory associated with an inode.
2614 * It must free the inode itself and any buffers allocated for
2615 * if_extents/if_data and if_broot. It must also free the lock
2616 * associated with the inode.
2617 */
2618 void
2619 xfs_idestroy(
2620 xfs_inode_t *ip)
2621 {
2622 switch (ip->i_d.di_mode & S_IFMT) {
2623 case S_IFREG:
2624 case S_IFDIR:
2625 case S_IFLNK:
2626 xfs_idestroy_fork(ip, XFS_DATA_FORK);
2627 break;
2628 }
2629 if (ip->i_afp)
2630 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
2631 mrfree(&ip->i_lock);
2632 mrfree(&ip->i_iolock);
2633 freesema(&ip->i_flock);
2634
2635 #ifdef XFS_INODE_TRACE
2636 ktrace_free(ip->i_trace);
2637 #endif
2638 #ifdef XFS_BMAP_TRACE
2639 ktrace_free(ip->i_xtrace);
2640 #endif
2641 #ifdef XFS_BMBT_TRACE
2642 ktrace_free(ip->i_btrace);
2643 #endif
2644 #ifdef XFS_RW_TRACE
2645 ktrace_free(ip->i_rwtrace);
2646 #endif
2647 #ifdef XFS_ILOCK_TRACE
2648 ktrace_free(ip->i_lock_trace);
2649 #endif
2650 #ifdef XFS_DIR2_TRACE
2651 ktrace_free(ip->i_dir_trace);
2652 #endif
2653 if (ip->i_itemp) {
2654 /*
2655 * Only if we are shutting down the fs will we see an
2656 * inode still in the AIL. If it is there, we should remove
2657 * it to prevent a use-after-free from occurring.
2658 */
2659 xfs_mount_t *mp = ip->i_mount;
2660 xfs_log_item_t *lip = &ip->i_itemp->ili_item;
2661
2662 ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
2663 XFS_FORCED_SHUTDOWN(ip->i_mount));
2664 if (lip->li_flags & XFS_LI_IN_AIL) {
2665 spin_lock(&mp->m_ail_lock);
2666 if (lip->li_flags & XFS_LI_IN_AIL)
2667 xfs_trans_delete_ail(mp, lip);
2668 else
2669 spin_unlock(&mp->m_ail_lock);
2670 }
2671 xfs_inode_item_destroy(ip);
2672 }
2673 kmem_zone_free(xfs_inode_zone, ip);
2674 }
2675
2676
2677 /*
2678 * Increment the pin count of the given buffer.
2679 * This value is protected by ipinlock spinlock in the mount structure.
2680 */
2681 void
2682 xfs_ipin(
2683 xfs_inode_t *ip)
2684 {
2685 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2686
2687 atomic_inc(&ip->i_pincount);
2688 }
2689
2690 /*
2691 * Decrement the pin count of the given inode, and wake up
2692 * anyone in xfs_iwait_unpin() if the count goes to 0. The
2693 * inode must have been previously pinned with a call to xfs_ipin().
2694 */
2695 void
2696 xfs_iunpin(
2697 xfs_inode_t *ip)
2698 {
2699 ASSERT(atomic_read(&ip->i_pincount) > 0);
2700
2701 if (atomic_dec_and_test(&ip->i_pincount))
2702 wake_up(&ip->i_ipin_wait);
2703 }
2704
2705 /*
2706 * This is called to unpin an inode. It can be directed to wait or to return
2707 * immediately without waiting for the inode to be unpinned. The caller must
2708 * have the inode locked in at least shared mode so that the buffer cannot be
2709 * subsequently pinned once someone is waiting for it to be unpinned.
2710 */
2711 STATIC void
2712 __xfs_iunpin_wait(
2713 xfs_inode_t *ip,
2714 int wait)
2715 {
2716 xfs_inode_log_item_t *iip = ip->i_itemp;
2717
2718 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2719 if (atomic_read(&ip->i_pincount) == 0)
2720 return;
2721
2722 /* Give the log a push to start the unpinning I/O */
2723 xfs_log_force(ip->i_mount, (iip && iip->ili_last_lsn) ?
2724 iip->ili_last_lsn : 0, XFS_LOG_FORCE);
2725 if (wait)
2726 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2727 }
2728
2729 static inline void
2730 xfs_iunpin_wait(
2731 xfs_inode_t *ip)
2732 {
2733 __xfs_iunpin_wait(ip, 1);
2734 }
2735
2736 static inline void
2737 xfs_iunpin_nowait(
2738 xfs_inode_t *ip)
2739 {
2740 __xfs_iunpin_wait(ip, 0);
2741 }
2742
2743
2744 /*
2745 * xfs_iextents_copy()
2746 *
2747 * This is called to copy the REAL extents (as opposed to the delayed
2748 * allocation extents) from the inode into the given buffer. It
2749 * returns the number of bytes copied into the buffer.
2750 *
2751 * If there are no delayed allocation extents, then we can just
2752 * memcpy() the extents into the buffer. Otherwise, we need to
2753 * examine each extent in turn and skip those which are delayed.
2754 */
2755 int
2756 xfs_iextents_copy(
2757 xfs_inode_t *ip,
2758 xfs_bmbt_rec_t *dp,
2759 int whichfork)
2760 {
2761 int copied;
2762 int i;
2763 xfs_ifork_t *ifp;
2764 int nrecs;
2765 xfs_fsblock_t start_block;
2766
2767 ifp = XFS_IFORK_PTR(ip, whichfork);
2768 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2769 ASSERT(ifp->if_bytes > 0);
2770
2771 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2772 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
2773 ASSERT(nrecs > 0);
2774
2775 /*
2776 * There are some delayed allocation extents in the
2777 * inode, so copy the extents one at a time and skip
2778 * the delayed ones. There must be at least one
2779 * non-delayed extent.
2780 */
2781 copied = 0;
2782 for (i = 0; i < nrecs; i++) {
2783 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
2784 start_block = xfs_bmbt_get_startblock(ep);
2785 if (ISNULLSTARTBLOCK(start_block)) {
2786 /*
2787 * It's a delayed allocation extent, so skip it.
2788 */
2789 continue;
2790 }
2791
2792 /* Translate to on disk format */
2793 put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2794 put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
2795 dp++;
2796 copied++;
2797 }
2798 ASSERT(copied != 0);
2799 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
2800
2801 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2802 }
2803
2804 /*
2805 * Each of the following cases stores data into the same region
2806 * of the on-disk inode, so only one of them can be valid at
2807 * any given time. While it is possible to have conflicting formats
2808 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2809 * in EXTENTS format, this can only happen when the fork has
2810 * changed formats after being modified but before being flushed.
2811 * In these cases, the format always takes precedence, because the
2812 * format indicates the current state of the fork.
2813 */
2814 /*ARGSUSED*/
2815 STATIC void
2816 xfs_iflush_fork(
2817 xfs_inode_t *ip,
2818 xfs_dinode_t *dip,
2819 xfs_inode_log_item_t *iip,
2820 int whichfork,
2821 xfs_buf_t *bp)
2822 {
2823 char *cp;
2824 xfs_ifork_t *ifp;
2825 xfs_mount_t *mp;
2826 #ifdef XFS_TRANS_DEBUG
2827 int first;
2828 #endif
2829 static const short brootflag[2] =
2830 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2831 static const short dataflag[2] =
2832 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2833 static const short extflag[2] =
2834 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2835
2836 if (!iip)
2837 return;
2838 ifp = XFS_IFORK_PTR(ip, whichfork);
2839 /*
2840 * This can happen if we gave up in iformat in an error path,
2841 * for the attribute fork.
2842 */
2843 if (!ifp) {
2844 ASSERT(whichfork == XFS_ATTR_FORK);
2845 return;
2846 }
2847 cp = XFS_DFORK_PTR(dip, whichfork);
2848 mp = ip->i_mount;
2849 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2850 case XFS_DINODE_FMT_LOCAL:
2851 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2852 (ifp->if_bytes > 0)) {
2853 ASSERT(ifp->if_u1.if_data != NULL);
2854 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2855 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2856 }
2857 break;
2858
2859 case XFS_DINODE_FMT_EXTENTS:
2860 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2861 !(iip->ili_format.ilf_fields & extflag[whichfork]));
2862 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2863 (ifp->if_bytes == 0));
2864 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2865 (ifp->if_bytes > 0));
2866 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2867 (ifp->if_bytes > 0)) {
2868 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2869 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2870 whichfork);
2871 }
2872 break;
2873
2874 case XFS_DINODE_FMT_BTREE:
2875 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2876 (ifp->if_broot_bytes > 0)) {
2877 ASSERT(ifp->if_broot != NULL);
2878 ASSERT(ifp->if_broot_bytes <=
2879 (XFS_IFORK_SIZE(ip, whichfork) +
2880 XFS_BROOT_SIZE_ADJ));
2881 xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
2882 (xfs_bmdr_block_t *)cp,
2883 XFS_DFORK_SIZE(dip, mp, whichfork));
2884 }
2885 break;
2886
2887 case XFS_DINODE_FMT_DEV:
2888 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2889 ASSERT(whichfork == XFS_DATA_FORK);
2890 dip->di_u.di_dev = cpu_to_be32(ip->i_df.if_u2.if_rdev);
2891 }
2892 break;
2893
2894 case XFS_DINODE_FMT_UUID:
2895 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2896 ASSERT(whichfork == XFS_DATA_FORK);
2897 memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
2898 sizeof(uuid_t));
2899 }
2900 break;
2901
2902 default:
2903 ASSERT(0);
2904 break;
2905 }
2906 }
2907
2908 STATIC int
2909 xfs_iflush_cluster(
2910 xfs_inode_t *ip,
2911 xfs_buf_t *bp)
2912 {
2913 xfs_mount_t *mp = ip->i_mount;
2914 xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino);
2915 unsigned long first_index, mask;
2916 unsigned long inodes_per_cluster;
2917 int ilist_size;
2918 xfs_inode_t **ilist;
2919 xfs_inode_t *iq;
2920 int nr_found;
2921 int clcount = 0;
2922 int bufwasdelwri;
2923 int i;
2924
2925 ASSERT(pag->pagi_inodeok);
2926 ASSERT(pag->pag_ici_init);
2927
2928 inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2929 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2930 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2931 if (!ilist)
2932 return 0;
2933
2934 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2935 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2936 read_lock(&pag->pag_ici_lock);
2937 /* really need a gang lookup range call here */
2938 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2939 first_index, inodes_per_cluster);
2940 if (nr_found == 0)
2941 goto out_free;
2942
2943 for (i = 0; i < nr_found; i++) {
2944 iq = ilist[i];
2945 if (iq == ip)
2946 continue;
2947 /* if the inode lies outside this cluster, we're done. */
2948 if ((XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index)
2949 break;
2950 /*
2951 * Do an un-protected check to see if the inode is dirty and
2952 * is a candidate for flushing. These checks will be repeated
2953 * later after the appropriate locks are acquired.
2954 */
2955 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
2956 continue;
2957
2958 /*
2959 * Try to get locks. If any are unavailable or it is pinned,
2960 * then this inode cannot be flushed and is skipped.
2961 */
2962
2963 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2964 continue;
2965 if (!xfs_iflock_nowait(iq)) {
2966 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2967 continue;
2968 }
2969 if (xfs_ipincount(iq)) {
2970 xfs_ifunlock(iq);
2971 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2972 continue;
2973 }
2974
2975 /*
2976 * arriving here means that this inode can be flushed. First
2977 * re-check that it's dirty before flushing.
2978 */
2979 if (!xfs_inode_clean(iq)) {
2980 int error;
2981 error = xfs_iflush_int(iq, bp);
2982 if (error) {
2983 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2984 goto cluster_corrupt_out;
2985 }
2986 clcount++;
2987 } else {
2988 xfs_ifunlock(iq);
2989 }
2990 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2991 }
2992
2993 if (clcount) {
2994 XFS_STATS_INC(xs_icluster_flushcnt);
2995 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2996 }
2997
2998 out_free:
2999 read_unlock(&pag->pag_ici_lock);
3000 kmem_free(ilist);
3001 return 0;
3002
3003
3004 cluster_corrupt_out:
3005 /*
3006 * Corruption detected in the clustering loop. Invalidate the
3007 * inode buffer and shut down the filesystem.
3008 */
3009 read_unlock(&pag->pag_ici_lock);
3010 /*
3011 * Clean up the buffer. If it was B_DELWRI, just release it --
3012 * brelse can handle it with no problems. If not, shut down the
3013 * filesystem before releasing the buffer.
3014 */
3015 bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
3016 if (bufwasdelwri)
3017 xfs_buf_relse(bp);
3018
3019 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3020
3021 if (!bufwasdelwri) {
3022 /*
3023 * Just like incore_relse: if we have b_iodone functions,
3024 * mark the buffer as an error and call them. Otherwise
3025 * mark it as stale and brelse.
3026 */
3027 if (XFS_BUF_IODONE_FUNC(bp)) {
3028 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
3029 XFS_BUF_UNDONE(bp);
3030 XFS_BUF_STALE(bp);
3031 XFS_BUF_SHUT(bp);
3032 XFS_BUF_ERROR(bp,EIO);
3033 xfs_biodone(bp);
3034 } else {
3035 XFS_BUF_STALE(bp);
3036 xfs_buf_relse(bp);
3037 }
3038 }
3039
3040 /*
3041 * Unlocks the flush lock
3042 */
3043 xfs_iflush_abort(iq);
3044 kmem_free(ilist);
3045 return XFS_ERROR(EFSCORRUPTED);
3046 }
3047
3048 /*
3049 * xfs_iflush() will write a modified inode's changes out to the
3050 * inode's on disk home. The caller must have the inode lock held
3051 * in at least shared mode and the inode flush semaphore must be
3052 * held as well. The inode lock will still be held upon return from
3053 * the call and the caller is free to unlock it.
3054 * The inode flush lock will be unlocked when the inode reaches the disk.
3055 * The flags indicate how the inode's buffer should be written out.
3056 */
3057 int
3058 xfs_iflush(
3059 xfs_inode_t *ip,
3060 uint flags)
3061 {
3062 xfs_inode_log_item_t *iip;
3063 xfs_buf_t *bp;
3064 xfs_dinode_t *dip;
3065 xfs_mount_t *mp;
3066 int error;
3067 int noblock = (flags == XFS_IFLUSH_ASYNC_NOBLOCK);
3068 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
3069
3070 XFS_STATS_INC(xs_iflush_count);
3071
3072 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3073 ASSERT(issemalocked(&(ip->i_flock)));
3074 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3075 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3076
3077 iip = ip->i_itemp;
3078 mp = ip->i_mount;
3079
3080 /*
3081 * If the inode isn't dirty, then just release the inode
3082 * flush lock and do nothing.
3083 */
3084 if (xfs_inode_clean(ip)) {
3085 xfs_ifunlock(ip);
3086 return 0;
3087 }
3088
3089 /*
3090 * We can't flush the inode until it is unpinned, so wait for it if we
3091 * are allowed to block. We know noone new can pin it, because we are
3092 * holding the inode lock shared and you need to hold it exclusively to
3093 * pin the inode.
3094 *
3095 * If we are not allowed to block, force the log out asynchronously so
3096 * that when we come back the inode will be unpinned. If other inodes
3097 * in the same cluster are dirty, they will probably write the inode
3098 * out for us if they occur after the log force completes.
3099 */
3100 if (noblock && xfs_ipincount(ip)) {
3101 xfs_iunpin_nowait(ip);
3102 xfs_ifunlock(ip);
3103 return EAGAIN;
3104 }
3105 xfs_iunpin_wait(ip);
3106
3107 /*
3108 * This may have been unpinned because the filesystem is shutting
3109 * down forcibly. If that's the case we must not write this inode
3110 * to disk, because the log record didn't make it to disk!
3111 */
3112 if (XFS_FORCED_SHUTDOWN(mp)) {
3113 ip->i_update_core = 0;
3114 if (iip)
3115 iip->ili_format.ilf_fields = 0;
3116 xfs_ifunlock(ip);
3117 return XFS_ERROR(EIO);
3118 }
3119
3120 /*
3121 * Decide how buffer will be flushed out. This is done before
3122 * the call to xfs_iflush_int because this field is zeroed by it.
3123 */
3124 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3125 /*
3126 * Flush out the inode buffer according to the directions
3127 * of the caller. In the cases where the caller has given
3128 * us a choice choose the non-delwri case. This is because
3129 * the inode is in the AIL and we need to get it out soon.
3130 */
3131 switch (flags) {
3132 case XFS_IFLUSH_SYNC:
3133 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3134 flags = 0;
3135 break;
3136 case XFS_IFLUSH_ASYNC_NOBLOCK:
3137 case XFS_IFLUSH_ASYNC:
3138 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3139 flags = INT_ASYNC;
3140 break;
3141 case XFS_IFLUSH_DELWRI:
3142 flags = INT_DELWRI;
3143 break;
3144 default:
3145 ASSERT(0);
3146 flags = 0;
3147 break;
3148 }
3149 } else {
3150 switch (flags) {
3151 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3152 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3153 case XFS_IFLUSH_DELWRI:
3154 flags = INT_DELWRI;
3155 break;
3156 case XFS_IFLUSH_ASYNC_NOBLOCK:
3157 case XFS_IFLUSH_ASYNC:
3158 flags = INT_ASYNC;
3159 break;
3160 case XFS_IFLUSH_SYNC:
3161 flags = 0;
3162 break;
3163 default:
3164 ASSERT(0);
3165 flags = 0;
3166 break;
3167 }
3168 }
3169
3170 /*
3171 * Get the buffer containing the on-disk inode.
3172 */
3173 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0,
3174 noblock ? XFS_BUF_TRYLOCK : XFS_BUF_LOCK);
3175 if (error || !bp) {
3176 xfs_ifunlock(ip);
3177 return error;
3178 }
3179
3180 /*
3181 * First flush out the inode that xfs_iflush was called with.
3182 */
3183 error = xfs_iflush_int(ip, bp);
3184 if (error)
3185 goto corrupt_out;
3186
3187 /*
3188 * If the buffer is pinned then push on the log now so we won't
3189 * get stuck waiting in the write for too long.
3190 */
3191 if (XFS_BUF_ISPINNED(bp))
3192 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3193
3194 /*
3195 * inode clustering:
3196 * see if other inodes can be gathered into this write
3197 */
3198 error = xfs_iflush_cluster(ip, bp);
3199 if (error)
3200 goto cluster_corrupt_out;
3201
3202 if (flags & INT_DELWRI) {
3203 xfs_bdwrite(mp, bp);
3204 } else if (flags & INT_ASYNC) {
3205 error = xfs_bawrite(mp, bp);
3206 } else {
3207 error = xfs_bwrite(mp, bp);
3208 }
3209 return error;
3210
3211 corrupt_out:
3212 xfs_buf_relse(bp);
3213 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3214 cluster_corrupt_out:
3215 /*
3216 * Unlocks the flush lock
3217 */
3218 xfs_iflush_abort(ip);
3219 return XFS_ERROR(EFSCORRUPTED);
3220 }
3221
3222
3223 STATIC int
3224 xfs_iflush_int(
3225 xfs_inode_t *ip,
3226 xfs_buf_t *bp)
3227 {
3228 xfs_inode_log_item_t *iip;
3229 xfs_dinode_t *dip;
3230 xfs_mount_t *mp;
3231 #ifdef XFS_TRANS_DEBUG
3232 int first;
3233 #endif
3234
3235 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3236 ASSERT(issemalocked(&(ip->i_flock)));
3237 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3238 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3239
3240 iip = ip->i_itemp;
3241 mp = ip->i_mount;
3242
3243
3244 /*
3245 * If the inode isn't dirty, then just release the inode
3246 * flush lock and do nothing.
3247 */
3248 if (xfs_inode_clean(ip)) {
3249 xfs_ifunlock(ip);
3250 return 0;
3251 }
3252
3253 /* set *dip = inode's place in the buffer */
3254 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
3255
3256 /*
3257 * Clear i_update_core before copying out the data.
3258 * This is for coordination with our timestamp updates
3259 * that don't hold the inode lock. They will always
3260 * update the timestamps BEFORE setting i_update_core,
3261 * so if we clear i_update_core after they set it we
3262 * are guaranteed to see their updates to the timestamps.
3263 * I believe that this depends on strongly ordered memory
3264 * semantics, but we have that. We use the SYNCHRONIZE
3265 * macro to make sure that the compiler does not reorder
3266 * the i_update_core access below the data copy below.
3267 */
3268 ip->i_update_core = 0;
3269 SYNCHRONIZE();
3270
3271 /*
3272 * Make sure to get the latest atime from the Linux inode.
3273 */
3274 xfs_synchronize_atime(ip);
3275
3276 if (XFS_TEST_ERROR(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC,
3277 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3278 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3279 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3280 ip->i_ino, be16_to_cpu(dip->di_core.di_magic), dip);
3281 goto corrupt_out;
3282 }
3283 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3284 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3285 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3286 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3287 ip->i_ino, ip, ip->i_d.di_magic);
3288 goto corrupt_out;
3289 }
3290 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3291 if (XFS_TEST_ERROR(
3292 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3293 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3294 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3295 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3296 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3297 ip->i_ino, ip);
3298 goto corrupt_out;
3299 }
3300 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3301 if (XFS_TEST_ERROR(
3302 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3303 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3304 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3305 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3306 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3307 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3308 ip->i_ino, ip);
3309 goto corrupt_out;
3310 }
3311 }
3312 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3313 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3314 XFS_RANDOM_IFLUSH_5)) {
3315 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3316 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3317 ip->i_ino,
3318 ip->i_d.di_nextents + ip->i_d.di_anextents,
3319 ip->i_d.di_nblocks,
3320 ip);
3321 goto corrupt_out;
3322 }
3323 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3324 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3325 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3326 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3327 ip->i_ino, ip->i_d.di_forkoff, ip);
3328 goto corrupt_out;
3329 }
3330 /*
3331 * bump the flush iteration count, used to detect flushes which
3332 * postdate a log record during recovery.
3333 */
3334
3335 ip->i_d.di_flushiter++;
3336
3337 /*
3338 * Copy the dirty parts of the inode into the on-disk
3339 * inode. We always copy out the core of the inode,
3340 * because if the inode is dirty at all the core must
3341 * be.
3342 */
3343 xfs_dinode_to_disk(&dip->di_core, &ip->i_d);
3344
3345 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3346 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3347 ip->i_d.di_flushiter = 0;
3348
3349 /*
3350 * If this is really an old format inode and the superblock version
3351 * has not been updated to support only new format inodes, then
3352 * convert back to the old inode format. If the superblock version
3353 * has been updated, then make the conversion permanent.
3354 */
3355 ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
3356 xfs_sb_version_hasnlink(&mp->m_sb));
3357 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
3358 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
3359 /*
3360 * Convert it back.
3361 */
3362 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3363 dip->di_core.di_onlink = cpu_to_be16(ip->i_d.di_nlink);
3364 } else {
3365 /*
3366 * The superblock version has already been bumped,
3367 * so just make the conversion to the new inode
3368 * format permanent.
3369 */
3370 ip->i_d.di_version = XFS_DINODE_VERSION_2;
3371 dip->di_core.di_version = XFS_DINODE_VERSION_2;
3372 ip->i_d.di_onlink = 0;
3373 dip->di_core.di_onlink = 0;
3374 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3375 memset(&(dip->di_core.di_pad[0]), 0,
3376 sizeof(dip->di_core.di_pad));
3377 ASSERT(ip->i_d.di_projid == 0);
3378 }
3379 }
3380
3381 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
3382 if (XFS_IFORK_Q(ip))
3383 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3384 xfs_inobp_check(mp, bp);
3385
3386 /*
3387 * We've recorded everything logged in the inode, so we'd
3388 * like to clear the ilf_fields bits so we don't log and
3389 * flush things unnecessarily. However, we can't stop
3390 * logging all this information until the data we've copied
3391 * into the disk buffer is written to disk. If we did we might
3392 * overwrite the copy of the inode in the log with all the
3393 * data after re-logging only part of it, and in the face of
3394 * a crash we wouldn't have all the data we need to recover.
3395 *
3396 * What we do is move the bits to the ili_last_fields field.
3397 * When logging the inode, these bits are moved back to the
3398 * ilf_fields field. In the xfs_iflush_done() routine we
3399 * clear ili_last_fields, since we know that the information
3400 * those bits represent is permanently on disk. As long as
3401 * the flush completes before the inode is logged again, then
3402 * both ilf_fields and ili_last_fields will be cleared.
3403 *
3404 * We can play with the ilf_fields bits here, because the inode
3405 * lock must be held exclusively in order to set bits there
3406 * and the flush lock protects the ili_last_fields bits.
3407 * Set ili_logged so the flush done
3408 * routine can tell whether or not to look in the AIL.
3409 * Also, store the current LSN of the inode so that we can tell
3410 * whether the item has moved in the AIL from xfs_iflush_done().
3411 * In order to read the lsn we need the AIL lock, because
3412 * it is a 64 bit value that cannot be read atomically.
3413 */
3414 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3415 iip->ili_last_fields = iip->ili_format.ilf_fields;
3416 iip->ili_format.ilf_fields = 0;
3417 iip->ili_logged = 1;
3418
3419 ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
3420 spin_lock(&mp->m_ail_lock);
3421 iip->ili_flush_lsn = iip->ili_item.li_lsn;
3422 spin_unlock(&mp->m_ail_lock);
3423
3424 /*
3425 * Attach the function xfs_iflush_done to the inode's
3426 * buffer. This will remove the inode from the AIL
3427 * and unlock the inode's flush lock when the inode is
3428 * completely written to disk.
3429 */
3430 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3431 xfs_iflush_done, (xfs_log_item_t *)iip);
3432
3433 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3434 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3435 } else {
3436 /*
3437 * We're flushing an inode which is not in the AIL and has
3438 * not been logged but has i_update_core set. For this
3439 * case we can use a B_DELWRI flush and immediately drop
3440 * the inode flush lock because we can avoid the whole
3441 * AIL state thing. It's OK to drop the flush lock now,
3442 * because we've already locked the buffer and to do anything
3443 * you really need both.
3444 */
3445 if (iip != NULL) {
3446 ASSERT(iip->ili_logged == 0);
3447 ASSERT(iip->ili_last_fields == 0);
3448 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3449 }
3450 xfs_ifunlock(ip);
3451 }
3452
3453 return 0;
3454
3455 corrupt_out:
3456 return XFS_ERROR(EFSCORRUPTED);
3457 }
3458
3459
3460 /*
3461 * Flush all inactive inodes in mp.
3462 */
3463 void
3464 xfs_iflush_all(
3465 xfs_mount_t *mp)
3466 {
3467 xfs_inode_t *ip;
3468 bhv_vnode_t *vp;
3469
3470 again:
3471 XFS_MOUNT_ILOCK(mp);
3472 ip = mp->m_inodes;
3473 if (ip == NULL)
3474 goto out;
3475
3476 do {
3477 /* Make sure we skip markers inserted by sync */
3478 if (ip->i_mount == NULL) {
3479 ip = ip->i_mnext;
3480 continue;
3481 }
3482
3483 vp = VFS_I(ip);
3484 if (!vp) {
3485 XFS_MOUNT_IUNLOCK(mp);
3486 xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
3487 goto again;
3488 }
3489
3490 ASSERT(vn_count(vp) == 0);
3491
3492 ip = ip->i_mnext;
3493 } while (ip != mp->m_inodes);
3494 out:
3495 XFS_MOUNT_IUNLOCK(mp);
3496 }
3497
3498 #ifdef XFS_ILOCK_TRACE
3499 ktrace_t *xfs_ilock_trace_buf;
3500
3501 void
3502 xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3503 {
3504 ktrace_enter(ip->i_lock_trace,
3505 (void *)ip,
3506 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3507 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3508 (void *)ra, /* caller of ilock */
3509 (void *)(unsigned long)current_cpu(),
3510 (void *)(unsigned long)current_pid(),
3511 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3512 }
3513 #endif
3514
3515 /*
3516 * Return a pointer to the extent record at file index idx.
3517 */
3518 xfs_bmbt_rec_host_t *
3519 xfs_iext_get_ext(
3520 xfs_ifork_t *ifp, /* inode fork pointer */
3521 xfs_extnum_t idx) /* index of target extent */
3522 {
3523 ASSERT(idx >= 0);
3524 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3525 return ifp->if_u1.if_ext_irec->er_extbuf;
3526 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3527 xfs_ext_irec_t *erp; /* irec pointer */
3528 int erp_idx = 0; /* irec index */
3529 xfs_extnum_t page_idx = idx; /* ext index in target list */
3530
3531 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3532 return &erp->er_extbuf[page_idx];
3533 } else if (ifp->if_bytes) {
3534 return &ifp->if_u1.if_extents[idx];
3535 } else {
3536 return NULL;
3537 }
3538 }
3539
3540 /*
3541 * Insert new item(s) into the extent records for incore inode
3542 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3543 */
3544 void
3545 xfs_iext_insert(
3546 xfs_ifork_t *ifp, /* inode fork pointer */
3547 xfs_extnum_t idx, /* starting index of new items */
3548 xfs_extnum_t count, /* number of inserted items */
3549 xfs_bmbt_irec_t *new) /* items to insert */
3550 {
3551 xfs_extnum_t i; /* extent record index */
3552
3553 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3554 xfs_iext_add(ifp, idx, count);
3555 for (i = idx; i < idx + count; i++, new++)
3556 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
3557 }
3558
3559 /*
3560 * This is called when the amount of space required for incore file
3561 * extents needs to be increased. The ext_diff parameter stores the
3562 * number of new extents being added and the idx parameter contains
3563 * the extent index where the new extents will be added. If the new
3564 * extents are being appended, then we just need to (re)allocate and
3565 * initialize the space. Otherwise, if the new extents are being
3566 * inserted into the middle of the existing entries, a bit more work
3567 * is required to make room for the new extents to be inserted. The
3568 * caller is responsible for filling in the new extent entries upon
3569 * return.
3570 */
3571 void
3572 xfs_iext_add(
3573 xfs_ifork_t *ifp, /* inode fork pointer */
3574 xfs_extnum_t idx, /* index to begin adding exts */
3575 int ext_diff) /* number of extents to add */
3576 {
3577 int byte_diff; /* new bytes being added */
3578 int new_size; /* size of extents after adding */
3579 xfs_extnum_t nextents; /* number of extents in file */
3580
3581 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3582 ASSERT((idx >= 0) && (idx <= nextents));
3583 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3584 new_size = ifp->if_bytes + byte_diff;
3585 /*
3586 * If the new number of extents (nextents + ext_diff)
3587 * fits inside the inode, then continue to use the inline
3588 * extent buffer.
3589 */
3590 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3591 if (idx < nextents) {
3592 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3593 &ifp->if_u2.if_inline_ext[idx],
3594 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3595 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3596 }
3597 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3598 ifp->if_real_bytes = 0;
3599 ifp->if_lastex = nextents + ext_diff;
3600 }
3601 /*
3602 * Otherwise use a linear (direct) extent list.
3603 * If the extents are currently inside the inode,
3604 * xfs_iext_realloc_direct will switch us from
3605 * inline to direct extent allocation mode.
3606 */
3607 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
3608 xfs_iext_realloc_direct(ifp, new_size);
3609 if (idx < nextents) {
3610 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3611 &ifp->if_u1.if_extents[idx],
3612 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3613 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3614 }
3615 }
3616 /* Indirection array */
3617 else {
3618 xfs_ext_irec_t *erp;
3619 int erp_idx = 0;
3620 int page_idx = idx;
3621
3622 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3623 if (ifp->if_flags & XFS_IFEXTIREC) {
3624 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3625 } else {
3626 xfs_iext_irec_init(ifp);
3627 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3628 erp = ifp->if_u1.if_ext_irec;
3629 }
3630 /* Extents fit in target extent page */
3631 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3632 if (page_idx < erp->er_extcount) {
3633 memmove(&erp->er_extbuf[page_idx + ext_diff],
3634 &erp->er_extbuf[page_idx],
3635 (erp->er_extcount - page_idx) *
3636 sizeof(xfs_bmbt_rec_t));
3637 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3638 }
3639 erp->er_extcount += ext_diff;
3640 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3641 }
3642 /* Insert a new extent page */
3643 else if (erp) {
3644 xfs_iext_add_indirect_multi(ifp,
3645 erp_idx, page_idx, ext_diff);
3646 }
3647 /*
3648 * If extent(s) are being appended to the last page in
3649 * the indirection array and the new extent(s) don't fit
3650 * in the page, then erp is NULL and erp_idx is set to
3651 * the next index needed in the indirection array.
3652 */
3653 else {
3654 int count = ext_diff;
3655
3656 while (count) {
3657 erp = xfs_iext_irec_new(ifp, erp_idx);
3658 erp->er_extcount = count;
3659 count -= MIN(count, (int)XFS_LINEAR_EXTS);
3660 if (count) {
3661 erp_idx++;
3662 }
3663 }
3664 }
3665 }
3666 ifp->if_bytes = new_size;
3667 }
3668
3669 /*
3670 * This is called when incore extents are being added to the indirection
3671 * array and the new extents do not fit in the target extent list. The
3672 * erp_idx parameter contains the irec index for the target extent list
3673 * in the indirection array, and the idx parameter contains the extent
3674 * index within the list. The number of extents being added is stored
3675 * in the count parameter.
3676 *
3677 * |-------| |-------|
3678 * | | | | idx - number of extents before idx
3679 * | idx | | count |
3680 * | | | | count - number of extents being inserted at idx
3681 * |-------| |-------|
3682 * | count | | nex2 | nex2 - number of extents after idx + count
3683 * |-------| |-------|
3684 */
3685 void
3686 xfs_iext_add_indirect_multi(
3687 xfs_ifork_t *ifp, /* inode fork pointer */
3688 int erp_idx, /* target extent irec index */
3689 xfs_extnum_t idx, /* index within target list */
3690 int count) /* new extents being added */
3691 {
3692 int byte_diff; /* new bytes being added */
3693 xfs_ext_irec_t *erp; /* pointer to irec entry */
3694 xfs_extnum_t ext_diff; /* number of extents to add */
3695 xfs_extnum_t ext_cnt; /* new extents still needed */
3696 xfs_extnum_t nex2; /* extents after idx + count */
3697 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3698 int nlists; /* number of irec's (lists) */
3699
3700 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3701 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3702 nex2 = erp->er_extcount - idx;
3703 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3704
3705 /*
3706 * Save second part of target extent list
3707 * (all extents past */
3708 if (nex2) {
3709 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3710 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
3711 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3712 erp->er_extcount -= nex2;
3713 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3714 memset(&erp->er_extbuf[idx], 0, byte_diff);
3715 }
3716
3717 /*
3718 * Add the new extents to the end of the target
3719 * list, then allocate new irec record(s) and
3720 * extent buffer(s) as needed to store the rest
3721 * of the new extents.
3722 */
3723 ext_cnt = count;
3724 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3725 if (ext_diff) {
3726 erp->er_extcount += ext_diff;
3727 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3728 ext_cnt -= ext_diff;
3729 }
3730 while (ext_cnt) {
3731 erp_idx++;
3732 erp = xfs_iext_irec_new(ifp, erp_idx);
3733 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3734 erp->er_extcount = ext_diff;
3735 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3736 ext_cnt -= ext_diff;
3737 }
3738
3739 /* Add nex2 extents back to indirection array */
3740 if (nex2) {
3741 xfs_extnum_t ext_avail;
3742 int i;
3743
3744 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3745 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3746 i = 0;
3747 /*
3748 * If nex2 extents fit in the current page, append
3749 * nex2_ep after the new extents.
3750 */
3751 if (nex2 <= ext_avail) {
3752 i = erp->er_extcount;
3753 }
3754 /*
3755 * Otherwise, check if space is available in the
3756 * next page.
3757 */
3758 else if ((erp_idx < nlists - 1) &&
3759 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3760 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3761 erp_idx++;
3762 erp++;
3763 /* Create a hole for nex2 extents */
3764 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3765 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3766 }
3767 /*
3768 * Final choice, create a new extent page for
3769 * nex2 extents.
3770 */
3771 else {
3772 erp_idx++;
3773 erp = xfs_iext_irec_new(ifp, erp_idx);
3774 }
3775 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3776 kmem_free(nex2_ep);
3777 erp->er_extcount += nex2;
3778 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3779 }
3780 }
3781
3782 /*
3783 * This is called when the amount of space required for incore file
3784 * extents needs to be decreased. The ext_diff parameter stores the
3785 * number of extents to be removed and the idx parameter contains
3786 * the extent index where the extents will be removed from.
3787 *
3788 * If the amount of space needed has decreased below the linear
3789 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3790 * extent array. Otherwise, use kmem_realloc() to adjust the
3791 * size to what is needed.
3792 */
3793 void
3794 xfs_iext_remove(
3795 xfs_ifork_t *ifp, /* inode fork pointer */
3796 xfs_extnum_t idx, /* index to begin removing exts */
3797 int ext_diff) /* number of extents to remove */
3798 {
3799 xfs_extnum_t nextents; /* number of extents in file */
3800 int new_size; /* size of extents after removal */
3801
3802 ASSERT(ext_diff > 0);
3803 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3804 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3805
3806 if (new_size == 0) {
3807 xfs_iext_destroy(ifp);
3808 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3809 xfs_iext_remove_indirect(ifp, idx, ext_diff);
3810 } else if (ifp->if_real_bytes) {
3811 xfs_iext_remove_direct(ifp, idx, ext_diff);
3812 } else {
3813 xfs_iext_remove_inline(ifp, idx, ext_diff);
3814 }
3815 ifp->if_bytes = new_size;
3816 }
3817
3818 /*
3819 * This removes ext_diff extents from the inline buffer, beginning
3820 * at extent index idx.
3821 */
3822 void
3823 xfs_iext_remove_inline(
3824 xfs_ifork_t *ifp, /* inode fork pointer */
3825 xfs_extnum_t idx, /* index to begin removing exts */
3826 int ext_diff) /* number of extents to remove */
3827 {
3828 int nextents; /* number of extents in file */
3829
3830 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3831 ASSERT(idx < XFS_INLINE_EXTS);
3832 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3833 ASSERT(((nextents - ext_diff) > 0) &&
3834 (nextents - ext_diff) < XFS_INLINE_EXTS);
3835
3836 if (idx + ext_diff < nextents) {
3837 memmove(&ifp->if_u2.if_inline_ext[idx],
3838 &ifp->if_u2.if_inline_ext[idx + ext_diff],
3839 (nextents - (idx + ext_diff)) *
3840 sizeof(xfs_bmbt_rec_t));
3841 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3842 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3843 } else {
3844 memset(&ifp->if_u2.if_inline_ext[idx], 0,
3845 ext_diff * sizeof(xfs_bmbt_rec_t));
3846 }
3847 }
3848
3849 /*
3850 * This removes ext_diff extents from a linear (direct) extent list,
3851 * beginning at extent index idx. If the extents are being removed
3852 * from the end of the list (ie. truncate) then we just need to re-
3853 * allocate the list to remove the extra space. Otherwise, if the
3854 * extents are being removed from the middle of the existing extent
3855 * entries, then we first need to move the extent records beginning
3856 * at idx + ext_diff up in the list to overwrite the records being
3857 * removed, then remove the extra space via kmem_realloc.
3858 */
3859 void
3860 xfs_iext_remove_direct(
3861 xfs_ifork_t *ifp, /* inode fork pointer */
3862 xfs_extnum_t idx, /* index to begin removing exts */
3863 int ext_diff) /* number of extents to remove */
3864 {
3865 xfs_extnum_t nextents; /* number of extents in file */
3866 int new_size; /* size of extents after removal */
3867
3868 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3869 new_size = ifp->if_bytes -
3870 (ext_diff * sizeof(xfs_bmbt_rec_t));
3871 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3872
3873 if (new_size == 0) {
3874 xfs_iext_destroy(ifp);
3875 return;
3876 }
3877 /* Move extents up in the list (if needed) */
3878 if (idx + ext_diff < nextents) {
3879 memmove(&ifp->if_u1.if_extents[idx],
3880 &ifp->if_u1.if_extents[idx + ext_diff],
3881 (nextents - (idx + ext_diff)) *
3882 sizeof(xfs_bmbt_rec_t));
3883 }
3884 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3885 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3886 /*
3887 * Reallocate the direct extent list. If the extents
3888 * will fit inside the inode then xfs_iext_realloc_direct
3889 * will switch from direct to inline extent allocation
3890 * mode for us.
3891 */
3892 xfs_iext_realloc_direct(ifp, new_size);
3893 ifp->if_bytes = new_size;
3894 }
3895
3896 /*
3897 * This is called when incore extents are being removed from the
3898 * indirection array and the extents being removed span multiple extent
3899 * buffers. The idx parameter contains the file extent index where we
3900 * want to begin removing extents, and the count parameter contains
3901 * how many extents need to be removed.
3902 *
3903 * |-------| |-------|
3904 * | nex1 | | | nex1 - number of extents before idx
3905 * |-------| | count |
3906 * | | | | count - number of extents being removed at idx
3907 * | count | |-------|
3908 * | | | nex2 | nex2 - number of extents after idx + count
3909 * |-------| |-------|
3910 */
3911 void
3912 xfs_iext_remove_indirect(
3913 xfs_ifork_t *ifp, /* inode fork pointer */
3914 xfs_extnum_t idx, /* index to begin removing extents */
3915 int count) /* number of extents to remove */
3916 {
3917 xfs_ext_irec_t *erp; /* indirection array pointer */
3918 int erp_idx = 0; /* indirection array index */
3919 xfs_extnum_t ext_cnt; /* extents left to remove */
3920 xfs_extnum_t ext_diff; /* extents to remove in current list */
3921 xfs_extnum_t nex1; /* number of extents before idx */
3922 xfs_extnum_t nex2; /* extents after idx + count */
3923 int nlists; /* entries in indirection array */
3924 int page_idx = idx; /* index in target extent list */
3925
3926 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3927 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3928 ASSERT(erp != NULL);
3929 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3930 nex1 = page_idx;
3931 ext_cnt = count;
3932 while (ext_cnt) {
3933 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3934 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3935 /*
3936 * Check for deletion of entire list;
3937 * xfs_iext_irec_remove() updates extent offsets.
3938 */
3939 if (ext_diff == erp->er_extcount) {
3940 xfs_iext_irec_remove(ifp, erp_idx);
3941 ext_cnt -= ext_diff;
3942 nex1 = 0;
3943 if (ext_cnt) {
3944 ASSERT(erp_idx < ifp->if_real_bytes /
3945 XFS_IEXT_BUFSZ);
3946 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3947 nex1 = 0;
3948 continue;
3949 } else {
3950 break;
3951 }
3952 }
3953 /* Move extents up (if needed) */
3954 if (nex2) {
3955 memmove(&erp->er_extbuf[nex1],
3956 &erp->er_extbuf[nex1 + ext_diff],
3957 nex2 * sizeof(xfs_bmbt_rec_t));
3958 }
3959 /* Zero out rest of page */
3960 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3961 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3962 /* Update remaining counters */
3963 erp->er_extcount -= ext_diff;
3964 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3965 ext_cnt -= ext_diff;
3966 nex1 = 0;
3967 erp_idx++;
3968 erp++;
3969 }
3970 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3971 xfs_iext_irec_compact(ifp);
3972 }
3973
3974 /*
3975 * Create, destroy, or resize a linear (direct) block of extents.
3976 */
3977 void
3978 xfs_iext_realloc_direct(
3979 xfs_ifork_t *ifp, /* inode fork pointer */
3980 int new_size) /* new size of extents */
3981 {
3982 int rnew_size; /* real new size of extents */
3983
3984 rnew_size = new_size;
3985
3986 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
3987 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
3988 (new_size != ifp->if_real_bytes)));
3989
3990 /* Free extent records */
3991 if (new_size == 0) {
3992 xfs_iext_destroy(ifp);
3993 }
3994 /* Resize direct extent list and zero any new bytes */
3995 else if (ifp->if_real_bytes) {
3996 /* Check if extents will fit inside the inode */
3997 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
3998 xfs_iext_direct_to_inline(ifp, new_size /
3999 (uint)sizeof(xfs_bmbt_rec_t));
4000 ifp->if_bytes = new_size;
4001 return;
4002 }
4003 if (!is_power_of_2(new_size)){
4004 rnew_size = roundup_pow_of_two(new_size);
4005 }
4006 if (rnew_size != ifp->if_real_bytes) {
4007 ifp->if_u1.if_extents =
4008 kmem_realloc(ifp->if_u1.if_extents,
4009 rnew_size,
4010 ifp->if_real_bytes,
4011 KM_SLEEP);
4012 }
4013 if (rnew_size > ifp->if_real_bytes) {
4014 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
4015 (uint)sizeof(xfs_bmbt_rec_t)], 0,
4016 rnew_size - ifp->if_real_bytes);
4017 }
4018 }
4019 /*
4020 * Switch from the inline extent buffer to a direct
4021 * extent list. Be sure to include the inline extent
4022 * bytes in new_size.
4023 */
4024 else {
4025 new_size += ifp->if_bytes;
4026 if (!is_power_of_2(new_size)) {
4027 rnew_size = roundup_pow_of_two(new_size);
4028 }
4029 xfs_iext_inline_to_direct(ifp, rnew_size);
4030 }
4031 ifp->if_real_bytes = rnew_size;
4032 ifp->if_bytes = new_size;
4033 }
4034
4035 /*
4036 * Switch from linear (direct) extent records to inline buffer.
4037 */
4038 void
4039 xfs_iext_direct_to_inline(
4040 xfs_ifork_t *ifp, /* inode fork pointer */
4041 xfs_extnum_t nextents) /* number of extents in file */
4042 {
4043 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
4044 ASSERT(nextents <= XFS_INLINE_EXTS);
4045 /*
4046 * The inline buffer was zeroed when we switched
4047 * from inline to direct extent allocation mode,
4048 * so we don't need to clear it here.
4049 */
4050 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
4051 nextents * sizeof(xfs_bmbt_rec_t));
4052 kmem_free(ifp->if_u1.if_extents);
4053 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4054 ifp->if_real_bytes = 0;
4055 }
4056
4057 /*
4058 * Switch from inline buffer to linear (direct) extent records.
4059 * new_size should already be rounded up to the next power of 2
4060 * by the caller (when appropriate), so use new_size as it is.
4061 * However, since new_size may be rounded up, we can't update
4062 * if_bytes here. It is the caller's responsibility to update
4063 * if_bytes upon return.
4064 */
4065 void
4066 xfs_iext_inline_to_direct(
4067 xfs_ifork_t *ifp, /* inode fork pointer */
4068 int new_size) /* number of extents in file */
4069 {
4070 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_SLEEP);
4071 memset(ifp->if_u1.if_extents, 0, new_size);
4072 if (ifp->if_bytes) {
4073 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
4074 ifp->if_bytes);
4075 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4076 sizeof(xfs_bmbt_rec_t));
4077 }
4078 ifp->if_real_bytes = new_size;
4079 }
4080
4081 /*
4082 * Resize an extent indirection array to new_size bytes.
4083 */
4084 void
4085 xfs_iext_realloc_indirect(
4086 xfs_ifork_t *ifp, /* inode fork pointer */
4087 int new_size) /* new indirection array size */
4088 {
4089 int nlists; /* number of irec's (ex lists) */
4090 int size; /* current indirection array size */
4091
4092 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4093 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4094 size = nlists * sizeof(xfs_ext_irec_t);
4095 ASSERT(ifp->if_real_bytes);
4096 ASSERT((new_size >= 0) && (new_size != size));
4097 if (new_size == 0) {
4098 xfs_iext_destroy(ifp);
4099 } else {
4100 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
4101 kmem_realloc(ifp->if_u1.if_ext_irec,
4102 new_size, size, KM_SLEEP);
4103 }
4104 }
4105
4106 /*
4107 * Switch from indirection array to linear (direct) extent allocations.
4108 */
4109 void
4110 xfs_iext_indirect_to_direct(
4111 xfs_ifork_t *ifp) /* inode fork pointer */
4112 {
4113 xfs_bmbt_rec_host_t *ep; /* extent record pointer */
4114 xfs_extnum_t nextents; /* number of extents in file */
4115 int size; /* size of file extents */
4116
4117 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4118 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4119 ASSERT(nextents <= XFS_LINEAR_EXTS);
4120 size = nextents * sizeof(xfs_bmbt_rec_t);
4121
4122 xfs_iext_irec_compact_full(ifp);
4123 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
4124
4125 ep = ifp->if_u1.if_ext_irec->er_extbuf;
4126 kmem_free(ifp->if_u1.if_ext_irec);
4127 ifp->if_flags &= ~XFS_IFEXTIREC;
4128 ifp->if_u1.if_extents = ep;
4129 ifp->if_bytes = size;
4130 if (nextents < XFS_LINEAR_EXTS) {
4131 xfs_iext_realloc_direct(ifp, size);
4132 }
4133 }
4134
4135 /*
4136 * Free incore file extents.
4137 */
4138 void
4139 xfs_iext_destroy(
4140 xfs_ifork_t *ifp) /* inode fork pointer */
4141 {
4142 if (ifp->if_flags & XFS_IFEXTIREC) {
4143 int erp_idx;
4144 int nlists;
4145
4146 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4147 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
4148 xfs_iext_irec_remove(ifp, erp_idx);
4149 }
4150 ifp->if_flags &= ~XFS_IFEXTIREC;
4151 } else if (ifp->if_real_bytes) {
4152 kmem_free(ifp->if_u1.if_extents);
4153 } else if (ifp->if_bytes) {
4154 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4155 sizeof(xfs_bmbt_rec_t));
4156 }
4157 ifp->if_u1.if_extents = NULL;
4158 ifp->if_real_bytes = 0;
4159 ifp->if_bytes = 0;
4160 }
4161
4162 /*
4163 * Return a pointer to the extent record for file system block bno.
4164 */
4165 xfs_bmbt_rec_host_t * /* pointer to found extent record */
4166 xfs_iext_bno_to_ext(
4167 xfs_ifork_t *ifp, /* inode fork pointer */
4168 xfs_fileoff_t bno, /* block number to search for */
4169 xfs_extnum_t *idxp) /* index of target extent */
4170 {
4171 xfs_bmbt_rec_host_t *base; /* pointer to first extent */
4172 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
4173 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
4174 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
4175 int high; /* upper boundary in search */
4176 xfs_extnum_t idx = 0; /* index of target extent */
4177 int low; /* lower boundary in search */
4178 xfs_extnum_t nextents; /* number of file extents */
4179 xfs_fileoff_t startoff = 0; /* start offset of extent */
4180
4181 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4182 if (nextents == 0) {
4183 *idxp = 0;
4184 return NULL;
4185 }
4186 low = 0;
4187 if (ifp->if_flags & XFS_IFEXTIREC) {
4188 /* Find target extent list */
4189 int erp_idx = 0;
4190 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
4191 base = erp->er_extbuf;
4192 high = erp->er_extcount - 1;
4193 } else {
4194 base = ifp->if_u1.if_extents;
4195 high = nextents - 1;
4196 }
4197 /* Binary search extent records */
4198 while (low <= high) {
4199 idx = (low + high) >> 1;
4200 ep = base + idx;
4201 startoff = xfs_bmbt_get_startoff(ep);
4202 blockcount = xfs_bmbt_get_blockcount(ep);
4203 if (bno < startoff) {
4204 high = idx - 1;
4205 } else if (bno >= startoff + blockcount) {
4206 low = idx + 1;
4207 } else {
4208 /* Convert back to file-based extent index */
4209 if (ifp->if_flags & XFS_IFEXTIREC) {
4210 idx += erp->er_extoff;
4211 }
4212 *idxp = idx;
4213 return ep;
4214 }
4215 }
4216 /* Convert back to file-based extent index */
4217 if (ifp->if_flags & XFS_IFEXTIREC) {
4218 idx += erp->er_extoff;
4219 }
4220 if (bno >= startoff + blockcount) {
4221 if (++idx == nextents) {
4222 ep = NULL;
4223 } else {
4224 ep = xfs_iext_get_ext(ifp, idx);
4225 }
4226 }
4227 *idxp = idx;
4228 return ep;
4229 }
4230
4231 /*
4232 * Return a pointer to the indirection array entry containing the
4233 * extent record for filesystem block bno. Store the index of the
4234 * target irec in *erp_idxp.
4235 */
4236 xfs_ext_irec_t * /* pointer to found extent record */
4237 xfs_iext_bno_to_irec(
4238 xfs_ifork_t *ifp, /* inode fork pointer */
4239 xfs_fileoff_t bno, /* block number to search for */
4240 int *erp_idxp) /* irec index of target ext list */
4241 {
4242 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
4243 xfs_ext_irec_t *erp_next; /* next indirection array entry */
4244 int erp_idx; /* indirection array index */
4245 int nlists; /* number of extent irec's (lists) */
4246 int high; /* binary search upper limit */
4247 int low; /* binary search lower limit */
4248
4249 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4250 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4251 erp_idx = 0;
4252 low = 0;
4253 high = nlists - 1;
4254 while (low <= high) {
4255 erp_idx = (low + high) >> 1;
4256 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4257 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
4258 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
4259 high = erp_idx - 1;
4260 } else if (erp_next && bno >=
4261 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
4262 low = erp_idx + 1;
4263 } else {
4264 break;
4265 }
4266 }
4267 *erp_idxp = erp_idx;
4268 return erp;
4269 }
4270
4271 /*
4272 * Return a pointer to the indirection array entry containing the
4273 * extent record at file extent index *idxp. Store the index of the
4274 * target irec in *erp_idxp and store the page index of the target
4275 * extent record in *idxp.
4276 */
4277 xfs_ext_irec_t *
4278 xfs_iext_idx_to_irec(
4279 xfs_ifork_t *ifp, /* inode fork pointer */
4280 xfs_extnum_t *idxp, /* extent index (file -> page) */
4281 int *erp_idxp, /* pointer to target irec */
4282 int realloc) /* new bytes were just added */
4283 {
4284 xfs_ext_irec_t *prev; /* pointer to previous irec */
4285 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
4286 int erp_idx; /* indirection array index */
4287 int nlists; /* number of irec's (ex lists) */
4288 int high; /* binary search upper limit */
4289 int low; /* binary search lower limit */
4290 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
4291
4292 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4293 ASSERT(page_idx >= 0 && page_idx <=
4294 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
4295 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4296 erp_idx = 0;
4297 low = 0;
4298 high = nlists - 1;
4299
4300 /* Binary search extent irec's */
4301 while (low <= high) {
4302 erp_idx = (low + high) >> 1;
4303 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4304 prev = erp_idx > 0 ? erp - 1 : NULL;
4305 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
4306 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
4307 high = erp_idx - 1;
4308 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
4309 (page_idx == erp->er_extoff + erp->er_extcount &&
4310 !realloc)) {
4311 low = erp_idx + 1;
4312 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
4313 erp->er_extcount == XFS_LINEAR_EXTS) {
4314 ASSERT(realloc);
4315 page_idx = 0;
4316 erp_idx++;
4317 erp = erp_idx < nlists ? erp + 1 : NULL;
4318 break;
4319 } else {
4320 page_idx -= erp->er_extoff;
4321 break;
4322 }
4323 }
4324 *idxp = page_idx;
4325 *erp_idxp = erp_idx;
4326 return(erp);
4327 }
4328
4329 /*
4330 * Allocate and initialize an indirection array once the space needed
4331 * for incore extents increases above XFS_IEXT_BUFSZ.
4332 */
4333 void
4334 xfs_iext_irec_init(
4335 xfs_ifork_t *ifp) /* inode fork pointer */
4336 {
4337 xfs_ext_irec_t *erp; /* indirection array pointer */
4338 xfs_extnum_t nextents; /* number of extents in file */
4339
4340 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4341 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4342 ASSERT(nextents <= XFS_LINEAR_EXTS);
4343
4344 erp = (xfs_ext_irec_t *)
4345 kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);
4346
4347 if (nextents == 0) {
4348 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4349 } else if (!ifp->if_real_bytes) {
4350 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
4351 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
4352 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
4353 }
4354 erp->er_extbuf = ifp->if_u1.if_extents;
4355 erp->er_extcount = nextents;
4356 erp->er_extoff = 0;
4357
4358 ifp->if_flags |= XFS_IFEXTIREC;
4359 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
4360 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
4361 ifp->if_u1.if_ext_irec = erp;
4362
4363 return;
4364 }
4365
4366 /*
4367 * Allocate and initialize a new entry in the indirection array.
4368 */
4369 xfs_ext_irec_t *
4370 xfs_iext_irec_new(
4371 xfs_ifork_t *ifp, /* inode fork pointer */
4372 int erp_idx) /* index for new irec */
4373 {
4374 xfs_ext_irec_t *erp; /* indirection array pointer */
4375 int i; /* loop counter */
4376 int nlists; /* number of irec's (ex lists) */
4377
4378 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4379 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4380
4381 /* Resize indirection array */
4382 xfs_iext_realloc_indirect(ifp, ++nlists *
4383 sizeof(xfs_ext_irec_t));
4384 /*
4385 * Move records down in the array so the
4386 * new page can use erp_idx.
4387 */
4388 erp = ifp->if_u1.if_ext_irec;
4389 for (i = nlists - 1; i > erp_idx; i--) {
4390 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4391 }
4392 ASSERT(i == erp_idx);
4393
4394 /* Initialize new extent record */
4395 erp = ifp->if_u1.if_ext_irec;
4396 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4397 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4398 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4399 erp[erp_idx].er_extcount = 0;
4400 erp[erp_idx].er_extoff = erp_idx > 0 ?
4401 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4402 return (&erp[erp_idx]);
4403 }
4404
4405 /*
4406 * Remove a record from the indirection array.
4407 */
4408 void
4409 xfs_iext_irec_remove(
4410 xfs_ifork_t *ifp, /* inode fork pointer */
4411 int erp_idx) /* irec index to remove */
4412 {
4413 xfs_ext_irec_t *erp; /* indirection array pointer */
4414 int i; /* loop counter */
4415 int nlists; /* number of irec's (ex lists) */
4416
4417 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4418 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4419 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4420 if (erp->er_extbuf) {
4421 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4422 -erp->er_extcount);
4423 kmem_free(erp->er_extbuf);
4424 }
4425 /* Compact extent records */
4426 erp = ifp->if_u1.if_ext_irec;
4427 for (i = erp_idx; i < nlists - 1; i++) {
4428 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4429 }
4430 /*
4431 * Manually free the last extent record from the indirection
4432 * array. A call to xfs_iext_realloc_indirect() with a size
4433 * of zero would result in a call to xfs_iext_destroy() which
4434 * would in turn call this function again, creating a nasty
4435 * infinite loop.
4436 */
4437 if (--nlists) {
4438 xfs_iext_realloc_indirect(ifp,
4439 nlists * sizeof(xfs_ext_irec_t));
4440 } else {
4441 kmem_free(ifp->if_u1.if_ext_irec);
4442 }
4443 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4444 }
4445
4446 /*
4447 * This is called to clean up large amounts of unused memory allocated
4448 * by the indirection array. Before compacting anything though, verify
4449 * that the indirection array is still needed and switch back to the
4450 * linear extent list (or even the inline buffer) if possible. The
4451 * compaction policy is as follows:
4452 *
4453 * Full Compaction: Extents fit into a single page (or inline buffer)
4454 * Full Compaction: Extents occupy less than 10% of allocated space
4455 * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
4456 * No Compaction: Extents occupy at least 50% of allocated space
4457 */
4458 void
4459 xfs_iext_irec_compact(
4460 xfs_ifork_t *ifp) /* inode fork pointer */
4461 {
4462 xfs_extnum_t nextents; /* number of extents in file */
4463 int nlists; /* number of irec's (ex lists) */
4464
4465 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4466 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4467 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4468
4469 if (nextents == 0) {
4470 xfs_iext_destroy(ifp);
4471 } else if (nextents <= XFS_INLINE_EXTS) {
4472 xfs_iext_indirect_to_direct(ifp);
4473 xfs_iext_direct_to_inline(ifp, nextents);
4474 } else if (nextents <= XFS_LINEAR_EXTS) {
4475 xfs_iext_indirect_to_direct(ifp);
4476 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
4477 xfs_iext_irec_compact_full(ifp);
4478 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4479 xfs_iext_irec_compact_pages(ifp);
4480 }
4481 }
4482
4483 /*
4484 * Combine extents from neighboring extent pages.
4485 */
4486 void
4487 xfs_iext_irec_compact_pages(
4488 xfs_ifork_t *ifp) /* inode fork pointer */
4489 {
4490 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
4491 int erp_idx = 0; /* indirection array index */
4492 int nlists; /* number of irec's (ex lists) */
4493
4494 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4495 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4496 while (erp_idx < nlists - 1) {
4497 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4498 erp_next = erp + 1;
4499 if (erp_next->er_extcount <=
4500 (XFS_LINEAR_EXTS - erp->er_extcount)) {
4501 memmove(&erp->er_extbuf[erp->er_extcount],
4502 erp_next->er_extbuf, erp_next->er_extcount *
4503 sizeof(xfs_bmbt_rec_t));
4504 erp->er_extcount += erp_next->er_extcount;
4505 /*
4506 * Free page before removing extent record
4507 * so er_extoffs don't get modified in
4508 * xfs_iext_irec_remove.
4509 */
4510 kmem_free(erp_next->er_extbuf);
4511 erp_next->er_extbuf = NULL;
4512 xfs_iext_irec_remove(ifp, erp_idx + 1);
4513 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4514 } else {
4515 erp_idx++;
4516 }
4517 }
4518 }
4519
4520 /*
4521 * Fully compact the extent records managed by the indirection array.
4522 */
4523 void
4524 xfs_iext_irec_compact_full(
4525 xfs_ifork_t *ifp) /* inode fork pointer */
4526 {
4527 xfs_bmbt_rec_host_t *ep, *ep_next; /* extent record pointers */
4528 xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */
4529 int erp_idx = 0; /* extent irec index */
4530 int ext_avail; /* empty entries in ex list */
4531 int ext_diff; /* number of exts to add */
4532 int nlists; /* number of irec's (ex lists) */
4533
4534 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4535
4536 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4537 erp = ifp->if_u1.if_ext_irec;
4538 ep = &erp->er_extbuf[erp->er_extcount];
4539 erp_next = erp + 1;
4540 ep_next = erp_next->er_extbuf;
4541
4542 while (erp_idx < nlists - 1) {
4543 /*
4544 * Check how many extent records are available in this irec.
4545 * If there is none skip the whole exercise.
4546 */
4547 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
4548 if (ext_avail) {
4549
4550 /*
4551 * Copy over as many as possible extent records into
4552 * the previous page.
4553 */
4554 ext_diff = MIN(ext_avail, erp_next->er_extcount);
4555 memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
4556 erp->er_extcount += ext_diff;
4557 erp_next->er_extcount -= ext_diff;
4558
4559 /*
4560 * If the next irec is empty now we can simply
4561 * remove it.
4562 */
4563 if (erp_next->er_extcount == 0) {
4564 /*
4565 * Free page before removing extent record
4566 * so er_extoffs don't get modified in
4567 * xfs_iext_irec_remove.
4568 */
4569 kmem_free(erp_next->er_extbuf);
4570 erp_next->er_extbuf = NULL;
4571 xfs_iext_irec_remove(ifp, erp_idx + 1);
4572 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4573 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4574
4575 /*
4576 * If the next irec is not empty move up the content
4577 * that has not been copied to the previous page to
4578 * the beggining of this one.
4579 */
4580 } else {
4581 memmove(erp_next->er_extbuf, &ep_next[ext_diff],
4582 erp_next->er_extcount *
4583 sizeof(xfs_bmbt_rec_t));
4584 ep_next = erp_next->er_extbuf;
4585 memset(&ep_next[erp_next->er_extcount], 0,
4586 (XFS_LINEAR_EXTS -
4587 erp_next->er_extcount) *
4588 sizeof(xfs_bmbt_rec_t));
4589 }
4590 }
4591
4592 if (erp->er_extcount == XFS_LINEAR_EXTS) {
4593 erp_idx++;
4594 if (erp_idx < nlists)
4595 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4596 else
4597 break;
4598 }
4599 ep = &erp->er_extbuf[erp->er_extcount];
4600 erp_next = erp + 1;
4601 ep_next = erp_next->er_extbuf;
4602 }
4603 }
4604
4605 /*
4606 * This is called to update the er_extoff field in the indirection
4607 * array when extents have been added or removed from one of the
4608 * extent lists. erp_idx contains the irec index to begin updating
4609 * at and ext_diff contains the number of extents that were added
4610 * or removed.
4611 */
4612 void
4613 xfs_iext_irec_update_extoffs(
4614 xfs_ifork_t *ifp, /* inode fork pointer */
4615 int erp_idx, /* irec index to update */
4616 int ext_diff) /* number of new extents */
4617 {
4618 int i; /* loop counter */
4619 int nlists; /* number of irec's (ex lists */
4620
4621 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4622 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4623 for (i = erp_idx; i < nlists; i++) {
4624 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
4625 }
4626 }
This page took 0.173588 seconds and 5 git commands to generate.