xfs: add xfs_ilock_attr_map_shared
[deliverable/linux.git] / fs / xfs / xfs_inode.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include <linux/log2.h>
19
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_shared.h"
23 #include "xfs_format.h"
24 #include "xfs_log_format.h"
25 #include "xfs_trans_resv.h"
26 #include "xfs_inum.h"
27 #include "xfs_sb.h"
28 #include "xfs_ag.h"
29 #include "xfs_mount.h"
30 #include "xfs_inode.h"
31 #include "xfs_da_format.h"
32 #include "xfs_da_btree.h"
33 #include "xfs_dir2.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_attr.h"
36 #include "xfs_trans_space.h"
37 #include "xfs_trans.h"
38 #include "xfs_buf_item.h"
39 #include "xfs_inode_item.h"
40 #include "xfs_ialloc.h"
41 #include "xfs_bmap.h"
42 #include "xfs_bmap_util.h"
43 #include "xfs_error.h"
44 #include "xfs_quota.h"
45 #include "xfs_dinode.h"
46 #include "xfs_filestream.h"
47 #include "xfs_cksum.h"
48 #include "xfs_trace.h"
49 #include "xfs_icache.h"
50 #include "xfs_symlink.h"
51 #include "xfs_trans_priv.h"
52 #include "xfs_log.h"
53 #include "xfs_bmap_btree.h"
54
55 kmem_zone_t *xfs_inode_zone;
56
57 /*
58 * Used in xfs_itruncate_extents(). This is the maximum number of extents
59 * freed from a file in a single transaction.
60 */
61 #define XFS_ITRUNC_MAX_EXTENTS 2
62
63 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
64
65 /*
66 * helper function to extract extent size hint from inode
67 */
68 xfs_extlen_t
69 xfs_get_extsz_hint(
70 struct xfs_inode *ip)
71 {
72 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
73 return ip->i_d.di_extsize;
74 if (XFS_IS_REALTIME_INODE(ip))
75 return ip->i_mount->m_sb.sb_rextsize;
76 return 0;
77 }
78
79 /*
80 * These two are wrapper routines around the xfs_ilock() routine used to
81 * centralize some grungy code. They are used in places that wish to lock the
82 * inode solely for reading the extents. The reason these places can't just
83 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
84 * bringing in of the extents from disk for a file in b-tree format. If the
85 * inode is in b-tree format, then we need to lock the inode exclusively until
86 * the extents are read in. Locking it exclusively all the time would limit
87 * our parallelism unnecessarily, though. What we do instead is check to see
88 * if the extents have been read in yet, and only lock the inode exclusively
89 * if they have not.
90 *
91 * The functions return a value which should be given to the corresponding
92 * xfs_iunlock() call.
93 */
94 uint
95 xfs_ilock_data_map_shared(
96 struct xfs_inode *ip)
97 {
98 uint lock_mode = XFS_ILOCK_SHARED;
99
100 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
101 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
102 lock_mode = XFS_ILOCK_EXCL;
103 xfs_ilock(ip, lock_mode);
104 return lock_mode;
105 }
106
107 uint
108 xfs_ilock_attr_map_shared(
109 struct xfs_inode *ip)
110 {
111 uint lock_mode = XFS_ILOCK_SHARED;
112
113 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
114 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
115 lock_mode = XFS_ILOCK_EXCL;
116 xfs_ilock(ip, lock_mode);
117 return lock_mode;
118 }
119
120 /*
121 * The xfs inode contains 2 locks: a multi-reader lock called the
122 * i_iolock and a multi-reader lock called the i_lock. This routine
123 * allows either or both of the locks to be obtained.
124 *
125 * The 2 locks should always be ordered so that the IO lock is
126 * obtained first in order to prevent deadlock.
127 *
128 * ip -- the inode being locked
129 * lock_flags -- this parameter indicates the inode's locks
130 * to be locked. It can be:
131 * XFS_IOLOCK_SHARED,
132 * XFS_IOLOCK_EXCL,
133 * XFS_ILOCK_SHARED,
134 * XFS_ILOCK_EXCL,
135 * XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED,
136 * XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL,
137 * XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED,
138 * XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL
139 */
140 void
141 xfs_ilock(
142 xfs_inode_t *ip,
143 uint lock_flags)
144 {
145 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
146
147 /*
148 * You can't set both SHARED and EXCL for the same lock,
149 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
150 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
151 */
152 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
153 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
154 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
155 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
156 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
157
158 if (lock_flags & XFS_IOLOCK_EXCL)
159 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
160 else if (lock_flags & XFS_IOLOCK_SHARED)
161 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
162
163 if (lock_flags & XFS_ILOCK_EXCL)
164 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
165 else if (lock_flags & XFS_ILOCK_SHARED)
166 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
167 }
168
169 /*
170 * This is just like xfs_ilock(), except that the caller
171 * is guaranteed not to sleep. It returns 1 if it gets
172 * the requested locks and 0 otherwise. If the IO lock is
173 * obtained but the inode lock cannot be, then the IO lock
174 * is dropped before returning.
175 *
176 * ip -- the inode being locked
177 * lock_flags -- this parameter indicates the inode's locks to be
178 * to be locked. See the comment for xfs_ilock() for a list
179 * of valid values.
180 */
181 int
182 xfs_ilock_nowait(
183 xfs_inode_t *ip,
184 uint lock_flags)
185 {
186 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
187
188 /*
189 * You can't set both SHARED and EXCL for the same lock,
190 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
191 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
192 */
193 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
194 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
195 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
196 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
197 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
198
199 if (lock_flags & XFS_IOLOCK_EXCL) {
200 if (!mrtryupdate(&ip->i_iolock))
201 goto out;
202 } else if (lock_flags & XFS_IOLOCK_SHARED) {
203 if (!mrtryaccess(&ip->i_iolock))
204 goto out;
205 }
206 if (lock_flags & XFS_ILOCK_EXCL) {
207 if (!mrtryupdate(&ip->i_lock))
208 goto out_undo_iolock;
209 } else if (lock_flags & XFS_ILOCK_SHARED) {
210 if (!mrtryaccess(&ip->i_lock))
211 goto out_undo_iolock;
212 }
213 return 1;
214
215 out_undo_iolock:
216 if (lock_flags & XFS_IOLOCK_EXCL)
217 mrunlock_excl(&ip->i_iolock);
218 else if (lock_flags & XFS_IOLOCK_SHARED)
219 mrunlock_shared(&ip->i_iolock);
220 out:
221 return 0;
222 }
223
224 /*
225 * xfs_iunlock() is used to drop the inode locks acquired with
226 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
227 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
228 * that we know which locks to drop.
229 *
230 * ip -- the inode being unlocked
231 * lock_flags -- this parameter indicates the inode's locks to be
232 * to be unlocked. See the comment for xfs_ilock() for a list
233 * of valid values for this parameter.
234 *
235 */
236 void
237 xfs_iunlock(
238 xfs_inode_t *ip,
239 uint lock_flags)
240 {
241 /*
242 * You can't set both SHARED and EXCL for the same lock,
243 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
244 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
245 */
246 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
247 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
248 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
249 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
250 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
251 ASSERT(lock_flags != 0);
252
253 if (lock_flags & XFS_IOLOCK_EXCL)
254 mrunlock_excl(&ip->i_iolock);
255 else if (lock_flags & XFS_IOLOCK_SHARED)
256 mrunlock_shared(&ip->i_iolock);
257
258 if (lock_flags & XFS_ILOCK_EXCL)
259 mrunlock_excl(&ip->i_lock);
260 else if (lock_flags & XFS_ILOCK_SHARED)
261 mrunlock_shared(&ip->i_lock);
262
263 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
264 }
265
266 /*
267 * give up write locks. the i/o lock cannot be held nested
268 * if it is being demoted.
269 */
270 void
271 xfs_ilock_demote(
272 xfs_inode_t *ip,
273 uint lock_flags)
274 {
275 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL));
276 ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
277
278 if (lock_flags & XFS_ILOCK_EXCL)
279 mrdemote(&ip->i_lock);
280 if (lock_flags & XFS_IOLOCK_EXCL)
281 mrdemote(&ip->i_iolock);
282
283 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
284 }
285
286 #if defined(DEBUG) || defined(XFS_WARN)
287 int
288 xfs_isilocked(
289 xfs_inode_t *ip,
290 uint lock_flags)
291 {
292 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
293 if (!(lock_flags & XFS_ILOCK_SHARED))
294 return !!ip->i_lock.mr_writer;
295 return rwsem_is_locked(&ip->i_lock.mr_lock);
296 }
297
298 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
299 if (!(lock_flags & XFS_IOLOCK_SHARED))
300 return !!ip->i_iolock.mr_writer;
301 return rwsem_is_locked(&ip->i_iolock.mr_lock);
302 }
303
304 ASSERT(0);
305 return 0;
306 }
307 #endif
308
309 #ifdef DEBUG
310 int xfs_locked_n;
311 int xfs_small_retries;
312 int xfs_middle_retries;
313 int xfs_lots_retries;
314 int xfs_lock_delays;
315 #endif
316
317 /*
318 * Bump the subclass so xfs_lock_inodes() acquires each lock with
319 * a different value
320 */
321 static inline int
322 xfs_lock_inumorder(int lock_mode, int subclass)
323 {
324 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))
325 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_IOLOCK_SHIFT;
326 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))
327 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_ILOCK_SHIFT;
328
329 return lock_mode;
330 }
331
332 /*
333 * The following routine will lock n inodes in exclusive mode.
334 * We assume the caller calls us with the inodes in i_ino order.
335 *
336 * We need to detect deadlock where an inode that we lock
337 * is in the AIL and we start waiting for another inode that is locked
338 * by a thread in a long running transaction (such as truncate). This can
339 * result in deadlock since the long running trans might need to wait
340 * for the inode we just locked in order to push the tail and free space
341 * in the log.
342 */
343 void
344 xfs_lock_inodes(
345 xfs_inode_t **ips,
346 int inodes,
347 uint lock_mode)
348 {
349 int attempts = 0, i, j, try_lock;
350 xfs_log_item_t *lp;
351
352 ASSERT(ips && (inodes >= 2)); /* we need at least two */
353
354 try_lock = 0;
355 i = 0;
356
357 again:
358 for (; i < inodes; i++) {
359 ASSERT(ips[i]);
360
361 if (i && (ips[i] == ips[i-1])) /* Already locked */
362 continue;
363
364 /*
365 * If try_lock is not set yet, make sure all locked inodes
366 * are not in the AIL.
367 * If any are, set try_lock to be used later.
368 */
369
370 if (!try_lock) {
371 for (j = (i - 1); j >= 0 && !try_lock; j--) {
372 lp = (xfs_log_item_t *)ips[j]->i_itemp;
373 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
374 try_lock++;
375 }
376 }
377 }
378
379 /*
380 * If any of the previous locks we have locked is in the AIL,
381 * we must TRY to get the second and subsequent locks. If
382 * we can't get any, we must release all we have
383 * and try again.
384 */
385
386 if (try_lock) {
387 /* try_lock must be 0 if i is 0. */
388 /*
389 * try_lock means we have an inode locked
390 * that is in the AIL.
391 */
392 ASSERT(i != 0);
393 if (!xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) {
394 attempts++;
395
396 /*
397 * Unlock all previous guys and try again.
398 * xfs_iunlock will try to push the tail
399 * if the inode is in the AIL.
400 */
401
402 for(j = i - 1; j >= 0; j--) {
403
404 /*
405 * Check to see if we've already
406 * unlocked this one.
407 * Not the first one going back,
408 * and the inode ptr is the same.
409 */
410 if ((j != (i - 1)) && ips[j] ==
411 ips[j+1])
412 continue;
413
414 xfs_iunlock(ips[j], lock_mode);
415 }
416
417 if ((attempts % 5) == 0) {
418 delay(1); /* Don't just spin the CPU */
419 #ifdef DEBUG
420 xfs_lock_delays++;
421 #endif
422 }
423 i = 0;
424 try_lock = 0;
425 goto again;
426 }
427 } else {
428 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
429 }
430 }
431
432 #ifdef DEBUG
433 if (attempts) {
434 if (attempts < 5) xfs_small_retries++;
435 else if (attempts < 100) xfs_middle_retries++;
436 else xfs_lots_retries++;
437 } else {
438 xfs_locked_n++;
439 }
440 #endif
441 }
442
443 /*
444 * xfs_lock_two_inodes() can only be used to lock one type of lock
445 * at a time - the iolock or the ilock, but not both at once. If
446 * we lock both at once, lockdep will report false positives saying
447 * we have violated locking orders.
448 */
449 void
450 xfs_lock_two_inodes(
451 xfs_inode_t *ip0,
452 xfs_inode_t *ip1,
453 uint lock_mode)
454 {
455 xfs_inode_t *temp;
456 int attempts = 0;
457 xfs_log_item_t *lp;
458
459 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))
460 ASSERT((lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) == 0);
461 ASSERT(ip0->i_ino != ip1->i_ino);
462
463 if (ip0->i_ino > ip1->i_ino) {
464 temp = ip0;
465 ip0 = ip1;
466 ip1 = temp;
467 }
468
469 again:
470 xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
471
472 /*
473 * If the first lock we have locked is in the AIL, we must TRY to get
474 * the second lock. If we can't get it, we must release the first one
475 * and try again.
476 */
477 lp = (xfs_log_item_t *)ip0->i_itemp;
478 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
479 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
480 xfs_iunlock(ip0, lock_mode);
481 if ((++attempts % 5) == 0)
482 delay(1); /* Don't just spin the CPU */
483 goto again;
484 }
485 } else {
486 xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
487 }
488 }
489
490
491 void
492 __xfs_iflock(
493 struct xfs_inode *ip)
494 {
495 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
496 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
497
498 do {
499 prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
500 if (xfs_isiflocked(ip))
501 io_schedule();
502 } while (!xfs_iflock_nowait(ip));
503
504 finish_wait(wq, &wait.wait);
505 }
506
507 STATIC uint
508 _xfs_dic2xflags(
509 __uint16_t di_flags)
510 {
511 uint flags = 0;
512
513 if (di_flags & XFS_DIFLAG_ANY) {
514 if (di_flags & XFS_DIFLAG_REALTIME)
515 flags |= XFS_XFLAG_REALTIME;
516 if (di_flags & XFS_DIFLAG_PREALLOC)
517 flags |= XFS_XFLAG_PREALLOC;
518 if (di_flags & XFS_DIFLAG_IMMUTABLE)
519 flags |= XFS_XFLAG_IMMUTABLE;
520 if (di_flags & XFS_DIFLAG_APPEND)
521 flags |= XFS_XFLAG_APPEND;
522 if (di_flags & XFS_DIFLAG_SYNC)
523 flags |= XFS_XFLAG_SYNC;
524 if (di_flags & XFS_DIFLAG_NOATIME)
525 flags |= XFS_XFLAG_NOATIME;
526 if (di_flags & XFS_DIFLAG_NODUMP)
527 flags |= XFS_XFLAG_NODUMP;
528 if (di_flags & XFS_DIFLAG_RTINHERIT)
529 flags |= XFS_XFLAG_RTINHERIT;
530 if (di_flags & XFS_DIFLAG_PROJINHERIT)
531 flags |= XFS_XFLAG_PROJINHERIT;
532 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
533 flags |= XFS_XFLAG_NOSYMLINKS;
534 if (di_flags & XFS_DIFLAG_EXTSIZE)
535 flags |= XFS_XFLAG_EXTSIZE;
536 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
537 flags |= XFS_XFLAG_EXTSZINHERIT;
538 if (di_flags & XFS_DIFLAG_NODEFRAG)
539 flags |= XFS_XFLAG_NODEFRAG;
540 if (di_flags & XFS_DIFLAG_FILESTREAM)
541 flags |= XFS_XFLAG_FILESTREAM;
542 }
543
544 return flags;
545 }
546
547 uint
548 xfs_ip2xflags(
549 xfs_inode_t *ip)
550 {
551 xfs_icdinode_t *dic = &ip->i_d;
552
553 return _xfs_dic2xflags(dic->di_flags) |
554 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
555 }
556
557 uint
558 xfs_dic2xflags(
559 xfs_dinode_t *dip)
560 {
561 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
562 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
563 }
564
565 /*
566 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
567 * is allowed, otherwise it has to be an exact match. If a CI match is found,
568 * ci_name->name will point to a the actual name (caller must free) or
569 * will be set to NULL if an exact match is found.
570 */
571 int
572 xfs_lookup(
573 xfs_inode_t *dp,
574 struct xfs_name *name,
575 xfs_inode_t **ipp,
576 struct xfs_name *ci_name)
577 {
578 xfs_ino_t inum;
579 int error;
580 uint lock_mode;
581
582 trace_xfs_lookup(dp, name);
583
584 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
585 return XFS_ERROR(EIO);
586
587 lock_mode = xfs_ilock_data_map_shared(dp);
588 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
589 xfs_iunlock(dp, lock_mode);
590
591 if (error)
592 goto out;
593
594 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
595 if (error)
596 goto out_free_name;
597
598 return 0;
599
600 out_free_name:
601 if (ci_name)
602 kmem_free(ci_name->name);
603 out:
604 *ipp = NULL;
605 return error;
606 }
607
608 /*
609 * Allocate an inode on disk and return a copy of its in-core version.
610 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
611 * appropriately within the inode. The uid and gid for the inode are
612 * set according to the contents of the given cred structure.
613 *
614 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
615 * has a free inode available, call xfs_iget() to obtain the in-core
616 * version of the allocated inode. Finally, fill in the inode and
617 * log its initial contents. In this case, ialloc_context would be
618 * set to NULL.
619 *
620 * If xfs_dialloc() does not have an available inode, it will replenish
621 * its supply by doing an allocation. Since we can only do one
622 * allocation within a transaction without deadlocks, we must commit
623 * the current transaction before returning the inode itself.
624 * In this case, therefore, we will set ialloc_context and return.
625 * The caller should then commit the current transaction, start a new
626 * transaction, and call xfs_ialloc() again to actually get the inode.
627 *
628 * To ensure that some other process does not grab the inode that
629 * was allocated during the first call to xfs_ialloc(), this routine
630 * also returns the [locked] bp pointing to the head of the freelist
631 * as ialloc_context. The caller should hold this buffer across
632 * the commit and pass it back into this routine on the second call.
633 *
634 * If we are allocating quota inodes, we do not have a parent inode
635 * to attach to or associate with (i.e. pip == NULL) because they
636 * are not linked into the directory structure - they are attached
637 * directly to the superblock - and so have no parent.
638 */
639 int
640 xfs_ialloc(
641 xfs_trans_t *tp,
642 xfs_inode_t *pip,
643 umode_t mode,
644 xfs_nlink_t nlink,
645 xfs_dev_t rdev,
646 prid_t prid,
647 int okalloc,
648 xfs_buf_t **ialloc_context,
649 xfs_inode_t **ipp)
650 {
651 struct xfs_mount *mp = tp->t_mountp;
652 xfs_ino_t ino;
653 xfs_inode_t *ip;
654 uint flags;
655 int error;
656 timespec_t tv;
657 int filestreams = 0;
658
659 /*
660 * Call the space management code to pick
661 * the on-disk inode to be allocated.
662 */
663 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
664 ialloc_context, &ino);
665 if (error)
666 return error;
667 if (*ialloc_context || ino == NULLFSINO) {
668 *ipp = NULL;
669 return 0;
670 }
671 ASSERT(*ialloc_context == NULL);
672
673 /*
674 * Get the in-core inode with the lock held exclusively.
675 * This is because we're setting fields here we need
676 * to prevent others from looking at until we're done.
677 */
678 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
679 XFS_ILOCK_EXCL, &ip);
680 if (error)
681 return error;
682 ASSERT(ip != NULL);
683
684 ip->i_d.di_mode = mode;
685 ip->i_d.di_onlink = 0;
686 ip->i_d.di_nlink = nlink;
687 ASSERT(ip->i_d.di_nlink == nlink);
688 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
689 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
690 xfs_set_projid(ip, prid);
691 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
692
693 /*
694 * If the superblock version is up to where we support new format
695 * inodes and this is currently an old format inode, then change
696 * the inode version number now. This way we only do the conversion
697 * here rather than here and in the flush/logging code.
698 */
699 if (xfs_sb_version_hasnlink(&mp->m_sb) &&
700 ip->i_d.di_version == 1) {
701 ip->i_d.di_version = 2;
702 /*
703 * We've already zeroed the old link count, the projid field,
704 * and the pad field.
705 */
706 }
707
708 /*
709 * Project ids won't be stored on disk if we are using a version 1 inode.
710 */
711 if ((prid != 0) && (ip->i_d.di_version == 1))
712 xfs_bump_ino_vers2(tp, ip);
713
714 if (pip && XFS_INHERIT_GID(pip)) {
715 ip->i_d.di_gid = pip->i_d.di_gid;
716 if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
717 ip->i_d.di_mode |= S_ISGID;
718 }
719 }
720
721 /*
722 * If the group ID of the new file does not match the effective group
723 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
724 * (and only if the irix_sgid_inherit compatibility variable is set).
725 */
726 if ((irix_sgid_inherit) &&
727 (ip->i_d.di_mode & S_ISGID) &&
728 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) {
729 ip->i_d.di_mode &= ~S_ISGID;
730 }
731
732 ip->i_d.di_size = 0;
733 ip->i_d.di_nextents = 0;
734 ASSERT(ip->i_d.di_nblocks == 0);
735
736 nanotime(&tv);
737 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
738 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
739 ip->i_d.di_atime = ip->i_d.di_mtime;
740 ip->i_d.di_ctime = ip->i_d.di_mtime;
741
742 /*
743 * di_gen will have been taken care of in xfs_iread.
744 */
745 ip->i_d.di_extsize = 0;
746 ip->i_d.di_dmevmask = 0;
747 ip->i_d.di_dmstate = 0;
748 ip->i_d.di_flags = 0;
749
750 if (ip->i_d.di_version == 3) {
751 ASSERT(ip->i_d.di_ino == ino);
752 ASSERT(uuid_equal(&ip->i_d.di_uuid, &mp->m_sb.sb_uuid));
753 ip->i_d.di_crc = 0;
754 ip->i_d.di_changecount = 1;
755 ip->i_d.di_lsn = 0;
756 ip->i_d.di_flags2 = 0;
757 memset(&(ip->i_d.di_pad2[0]), 0, sizeof(ip->i_d.di_pad2));
758 ip->i_d.di_crtime = ip->i_d.di_mtime;
759 }
760
761
762 flags = XFS_ILOG_CORE;
763 switch (mode & S_IFMT) {
764 case S_IFIFO:
765 case S_IFCHR:
766 case S_IFBLK:
767 case S_IFSOCK:
768 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
769 ip->i_df.if_u2.if_rdev = rdev;
770 ip->i_df.if_flags = 0;
771 flags |= XFS_ILOG_DEV;
772 break;
773 case S_IFREG:
774 /*
775 * we can't set up filestreams until after the VFS inode
776 * is set up properly.
777 */
778 if (pip && xfs_inode_is_filestream(pip))
779 filestreams = 1;
780 /* fall through */
781 case S_IFDIR:
782 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
783 uint di_flags = 0;
784
785 if (S_ISDIR(mode)) {
786 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
787 di_flags |= XFS_DIFLAG_RTINHERIT;
788 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
789 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
790 ip->i_d.di_extsize = pip->i_d.di_extsize;
791 }
792 } else if (S_ISREG(mode)) {
793 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
794 di_flags |= XFS_DIFLAG_REALTIME;
795 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
796 di_flags |= XFS_DIFLAG_EXTSIZE;
797 ip->i_d.di_extsize = pip->i_d.di_extsize;
798 }
799 }
800 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
801 xfs_inherit_noatime)
802 di_flags |= XFS_DIFLAG_NOATIME;
803 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
804 xfs_inherit_nodump)
805 di_flags |= XFS_DIFLAG_NODUMP;
806 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
807 xfs_inherit_sync)
808 di_flags |= XFS_DIFLAG_SYNC;
809 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
810 xfs_inherit_nosymlinks)
811 di_flags |= XFS_DIFLAG_NOSYMLINKS;
812 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
813 di_flags |= XFS_DIFLAG_PROJINHERIT;
814 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
815 xfs_inherit_nodefrag)
816 di_flags |= XFS_DIFLAG_NODEFRAG;
817 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
818 di_flags |= XFS_DIFLAG_FILESTREAM;
819 ip->i_d.di_flags |= di_flags;
820 }
821 /* FALLTHROUGH */
822 case S_IFLNK:
823 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
824 ip->i_df.if_flags = XFS_IFEXTENTS;
825 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
826 ip->i_df.if_u1.if_extents = NULL;
827 break;
828 default:
829 ASSERT(0);
830 }
831 /*
832 * Attribute fork settings for new inode.
833 */
834 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
835 ip->i_d.di_anextents = 0;
836
837 /*
838 * Log the new values stuffed into the inode.
839 */
840 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
841 xfs_trans_log_inode(tp, ip, flags);
842
843 /* now that we have an i_mode we can setup inode ops and unlock */
844 xfs_setup_inode(ip);
845
846 /* now we have set up the vfs inode we can associate the filestream */
847 if (filestreams) {
848 error = xfs_filestream_associate(pip, ip);
849 if (error < 0)
850 return -error;
851 if (!error)
852 xfs_iflags_set(ip, XFS_IFILESTREAM);
853 }
854
855 *ipp = ip;
856 return 0;
857 }
858
859 /*
860 * Allocates a new inode from disk and return a pointer to the
861 * incore copy. This routine will internally commit the current
862 * transaction and allocate a new one if the Space Manager needed
863 * to do an allocation to replenish the inode free-list.
864 *
865 * This routine is designed to be called from xfs_create and
866 * xfs_create_dir.
867 *
868 */
869 int
870 xfs_dir_ialloc(
871 xfs_trans_t **tpp, /* input: current transaction;
872 output: may be a new transaction. */
873 xfs_inode_t *dp, /* directory within whose allocate
874 the inode. */
875 umode_t mode,
876 xfs_nlink_t nlink,
877 xfs_dev_t rdev,
878 prid_t prid, /* project id */
879 int okalloc, /* ok to allocate new space */
880 xfs_inode_t **ipp, /* pointer to inode; it will be
881 locked. */
882 int *committed)
883
884 {
885 xfs_trans_t *tp;
886 xfs_trans_t *ntp;
887 xfs_inode_t *ip;
888 xfs_buf_t *ialloc_context = NULL;
889 int code;
890 void *dqinfo;
891 uint tflags;
892
893 tp = *tpp;
894 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
895
896 /*
897 * xfs_ialloc will return a pointer to an incore inode if
898 * the Space Manager has an available inode on the free
899 * list. Otherwise, it will do an allocation and replenish
900 * the freelist. Since we can only do one allocation per
901 * transaction without deadlocks, we will need to commit the
902 * current transaction and start a new one. We will then
903 * need to call xfs_ialloc again to get the inode.
904 *
905 * If xfs_ialloc did an allocation to replenish the freelist,
906 * it returns the bp containing the head of the freelist as
907 * ialloc_context. We will hold a lock on it across the
908 * transaction commit so that no other process can steal
909 * the inode(s) that we've just allocated.
910 */
911 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
912 &ialloc_context, &ip);
913
914 /*
915 * Return an error if we were unable to allocate a new inode.
916 * This should only happen if we run out of space on disk or
917 * encounter a disk error.
918 */
919 if (code) {
920 *ipp = NULL;
921 return code;
922 }
923 if (!ialloc_context && !ip) {
924 *ipp = NULL;
925 return XFS_ERROR(ENOSPC);
926 }
927
928 /*
929 * If the AGI buffer is non-NULL, then we were unable to get an
930 * inode in one operation. We need to commit the current
931 * transaction and call xfs_ialloc() again. It is guaranteed
932 * to succeed the second time.
933 */
934 if (ialloc_context) {
935 struct xfs_trans_res tres;
936
937 /*
938 * Normally, xfs_trans_commit releases all the locks.
939 * We call bhold to hang on to the ialloc_context across
940 * the commit. Holding this buffer prevents any other
941 * processes from doing any allocations in this
942 * allocation group.
943 */
944 xfs_trans_bhold(tp, ialloc_context);
945 /*
946 * Save the log reservation so we can use
947 * them in the next transaction.
948 */
949 tres.tr_logres = xfs_trans_get_log_res(tp);
950 tres.tr_logcount = xfs_trans_get_log_count(tp);
951
952 /*
953 * We want the quota changes to be associated with the next
954 * transaction, NOT this one. So, detach the dqinfo from this
955 * and attach it to the next transaction.
956 */
957 dqinfo = NULL;
958 tflags = 0;
959 if (tp->t_dqinfo) {
960 dqinfo = (void *)tp->t_dqinfo;
961 tp->t_dqinfo = NULL;
962 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
963 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
964 }
965
966 ntp = xfs_trans_dup(tp);
967 code = xfs_trans_commit(tp, 0);
968 tp = ntp;
969 if (committed != NULL) {
970 *committed = 1;
971 }
972 /*
973 * If we get an error during the commit processing,
974 * release the buffer that is still held and return
975 * to the caller.
976 */
977 if (code) {
978 xfs_buf_relse(ialloc_context);
979 if (dqinfo) {
980 tp->t_dqinfo = dqinfo;
981 xfs_trans_free_dqinfo(tp);
982 }
983 *tpp = ntp;
984 *ipp = NULL;
985 return code;
986 }
987
988 /*
989 * transaction commit worked ok so we can drop the extra ticket
990 * reference that we gained in xfs_trans_dup()
991 */
992 xfs_log_ticket_put(tp->t_ticket);
993 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
994 code = xfs_trans_reserve(tp, &tres, 0, 0);
995
996 /*
997 * Re-attach the quota info that we detached from prev trx.
998 */
999 if (dqinfo) {
1000 tp->t_dqinfo = dqinfo;
1001 tp->t_flags |= tflags;
1002 }
1003
1004 if (code) {
1005 xfs_buf_relse(ialloc_context);
1006 *tpp = ntp;
1007 *ipp = NULL;
1008 return code;
1009 }
1010 xfs_trans_bjoin(tp, ialloc_context);
1011
1012 /*
1013 * Call ialloc again. Since we've locked out all
1014 * other allocations in this allocation group,
1015 * this call should always succeed.
1016 */
1017 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1018 okalloc, &ialloc_context, &ip);
1019
1020 /*
1021 * If we get an error at this point, return to the caller
1022 * so that the current transaction can be aborted.
1023 */
1024 if (code) {
1025 *tpp = tp;
1026 *ipp = NULL;
1027 return code;
1028 }
1029 ASSERT(!ialloc_context && ip);
1030
1031 } else {
1032 if (committed != NULL)
1033 *committed = 0;
1034 }
1035
1036 *ipp = ip;
1037 *tpp = tp;
1038
1039 return 0;
1040 }
1041
1042 /*
1043 * Decrement the link count on an inode & log the change.
1044 * If this causes the link count to go to zero, initiate the
1045 * logging activity required to truncate a file.
1046 */
1047 int /* error */
1048 xfs_droplink(
1049 xfs_trans_t *tp,
1050 xfs_inode_t *ip)
1051 {
1052 int error;
1053
1054 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1055
1056 ASSERT (ip->i_d.di_nlink > 0);
1057 ip->i_d.di_nlink--;
1058 drop_nlink(VFS_I(ip));
1059 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1060
1061 error = 0;
1062 if (ip->i_d.di_nlink == 0) {
1063 /*
1064 * We're dropping the last link to this file.
1065 * Move the on-disk inode to the AGI unlinked list.
1066 * From xfs_inactive() we will pull the inode from
1067 * the list and free it.
1068 */
1069 error = xfs_iunlink(tp, ip);
1070 }
1071 return error;
1072 }
1073
1074 /*
1075 * This gets called when the inode's version needs to be changed from 1 to 2.
1076 * Currently this happens when the nlink field overflows the old 16-bit value
1077 * or when chproj is called to change the project for the first time.
1078 * As a side effect the superblock version will also get rev'd
1079 * to contain the NLINK bit.
1080 */
1081 void
1082 xfs_bump_ino_vers2(
1083 xfs_trans_t *tp,
1084 xfs_inode_t *ip)
1085 {
1086 xfs_mount_t *mp;
1087
1088 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1089 ASSERT(ip->i_d.di_version == 1);
1090
1091 ip->i_d.di_version = 2;
1092 ip->i_d.di_onlink = 0;
1093 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1094 mp = tp->t_mountp;
1095 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
1096 spin_lock(&mp->m_sb_lock);
1097 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
1098 xfs_sb_version_addnlink(&mp->m_sb);
1099 spin_unlock(&mp->m_sb_lock);
1100 xfs_mod_sb(tp, XFS_SB_VERSIONNUM);
1101 } else {
1102 spin_unlock(&mp->m_sb_lock);
1103 }
1104 }
1105 /* Caller must log the inode */
1106 }
1107
1108 /*
1109 * Increment the link count on an inode & log the change.
1110 */
1111 int
1112 xfs_bumplink(
1113 xfs_trans_t *tp,
1114 xfs_inode_t *ip)
1115 {
1116 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1117
1118 ASSERT(ip->i_d.di_nlink > 0);
1119 ip->i_d.di_nlink++;
1120 inc_nlink(VFS_I(ip));
1121 if ((ip->i_d.di_version == 1) &&
1122 (ip->i_d.di_nlink > XFS_MAXLINK_1)) {
1123 /*
1124 * The inode has increased its number of links beyond
1125 * what can fit in an old format inode. It now needs
1126 * to be converted to a version 2 inode with a 32 bit
1127 * link count. If this is the first inode in the file
1128 * system to do this, then we need to bump the superblock
1129 * version number as well.
1130 */
1131 xfs_bump_ino_vers2(tp, ip);
1132 }
1133
1134 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1135 return 0;
1136 }
1137
1138 int
1139 xfs_create(
1140 xfs_inode_t *dp,
1141 struct xfs_name *name,
1142 umode_t mode,
1143 xfs_dev_t rdev,
1144 xfs_inode_t **ipp)
1145 {
1146 int is_dir = S_ISDIR(mode);
1147 struct xfs_mount *mp = dp->i_mount;
1148 struct xfs_inode *ip = NULL;
1149 struct xfs_trans *tp = NULL;
1150 int error;
1151 xfs_bmap_free_t free_list;
1152 xfs_fsblock_t first_block;
1153 bool unlock_dp_on_error = false;
1154 uint cancel_flags;
1155 int committed;
1156 prid_t prid;
1157 struct xfs_dquot *udqp = NULL;
1158 struct xfs_dquot *gdqp = NULL;
1159 struct xfs_dquot *pdqp = NULL;
1160 struct xfs_trans_res tres;
1161 uint resblks;
1162
1163 trace_xfs_create(dp, name);
1164
1165 if (XFS_FORCED_SHUTDOWN(mp))
1166 return XFS_ERROR(EIO);
1167
1168 if (dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1169 prid = xfs_get_projid(dp);
1170 else
1171 prid = XFS_PROJID_DEFAULT;
1172
1173 /*
1174 * Make sure that we have allocated dquot(s) on disk.
1175 */
1176 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1177 xfs_kgid_to_gid(current_fsgid()), prid,
1178 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1179 &udqp, &gdqp, &pdqp);
1180 if (error)
1181 return error;
1182
1183 if (is_dir) {
1184 rdev = 0;
1185 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1186 tres.tr_logres = M_RES(mp)->tr_mkdir.tr_logres;
1187 tres.tr_logcount = XFS_MKDIR_LOG_COUNT;
1188 tp = xfs_trans_alloc(mp, XFS_TRANS_MKDIR);
1189 } else {
1190 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1191 tres.tr_logres = M_RES(mp)->tr_create.tr_logres;
1192 tres.tr_logcount = XFS_CREATE_LOG_COUNT;
1193 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE);
1194 }
1195
1196 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1197
1198 /*
1199 * Initially assume that the file does not exist and
1200 * reserve the resources for that case. If that is not
1201 * the case we'll drop the one we have and get a more
1202 * appropriate transaction later.
1203 */
1204 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
1205 error = xfs_trans_reserve(tp, &tres, resblks, 0);
1206 if (error == ENOSPC) {
1207 /* flush outstanding delalloc blocks and retry */
1208 xfs_flush_inodes(mp);
1209 error = xfs_trans_reserve(tp, &tres, resblks, 0);
1210 }
1211 if (error == ENOSPC) {
1212 /* No space at all so try a "no-allocation" reservation */
1213 resblks = 0;
1214 error = xfs_trans_reserve(tp, &tres, 0, 0);
1215 }
1216 if (error) {
1217 cancel_flags = 0;
1218 goto out_trans_cancel;
1219 }
1220
1221 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1222 unlock_dp_on_error = true;
1223
1224 xfs_bmap_init(&free_list, &first_block);
1225
1226 /*
1227 * Reserve disk quota and the inode.
1228 */
1229 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1230 pdqp, resblks, 1, 0);
1231 if (error)
1232 goto out_trans_cancel;
1233
1234 error = xfs_dir_canenter(tp, dp, name, resblks);
1235 if (error)
1236 goto out_trans_cancel;
1237
1238 /*
1239 * A newly created regular or special file just has one directory
1240 * entry pointing to them, but a directory also the "." entry
1241 * pointing to itself.
1242 */
1243 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
1244 prid, resblks > 0, &ip, &committed);
1245 if (error) {
1246 if (error == ENOSPC)
1247 goto out_trans_cancel;
1248 goto out_trans_abort;
1249 }
1250
1251 /*
1252 * Now we join the directory inode to the transaction. We do not do it
1253 * earlier because xfs_dir_ialloc might commit the previous transaction
1254 * (and release all the locks). An error from here on will result in
1255 * the transaction cancel unlocking dp so don't do it explicitly in the
1256 * error path.
1257 */
1258 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1259 unlock_dp_on_error = false;
1260
1261 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1262 &first_block, &free_list, resblks ?
1263 resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1264 if (error) {
1265 ASSERT(error != ENOSPC);
1266 goto out_trans_abort;
1267 }
1268 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1269 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1270
1271 if (is_dir) {
1272 error = xfs_dir_init(tp, ip, dp);
1273 if (error)
1274 goto out_bmap_cancel;
1275
1276 error = xfs_bumplink(tp, dp);
1277 if (error)
1278 goto out_bmap_cancel;
1279 }
1280
1281 /*
1282 * If this is a synchronous mount, make sure that the
1283 * create transaction goes to disk before returning to
1284 * the user.
1285 */
1286 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1287 xfs_trans_set_sync(tp);
1288
1289 /*
1290 * Attach the dquot(s) to the inodes and modify them incore.
1291 * These ids of the inode couldn't have changed since the new
1292 * inode has been locked ever since it was created.
1293 */
1294 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1295
1296 error = xfs_bmap_finish(&tp, &free_list, &committed);
1297 if (error)
1298 goto out_bmap_cancel;
1299
1300 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1301 if (error)
1302 goto out_release_inode;
1303
1304 xfs_qm_dqrele(udqp);
1305 xfs_qm_dqrele(gdqp);
1306 xfs_qm_dqrele(pdqp);
1307
1308 *ipp = ip;
1309 return 0;
1310
1311 out_bmap_cancel:
1312 xfs_bmap_cancel(&free_list);
1313 out_trans_abort:
1314 cancel_flags |= XFS_TRANS_ABORT;
1315 out_trans_cancel:
1316 xfs_trans_cancel(tp, cancel_flags);
1317 out_release_inode:
1318 /*
1319 * Wait until after the current transaction is aborted to
1320 * release the inode. This prevents recursive transactions
1321 * and deadlocks from xfs_inactive.
1322 */
1323 if (ip)
1324 IRELE(ip);
1325
1326 xfs_qm_dqrele(udqp);
1327 xfs_qm_dqrele(gdqp);
1328 xfs_qm_dqrele(pdqp);
1329
1330 if (unlock_dp_on_error)
1331 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1332 return error;
1333 }
1334
1335 int
1336 xfs_link(
1337 xfs_inode_t *tdp,
1338 xfs_inode_t *sip,
1339 struct xfs_name *target_name)
1340 {
1341 xfs_mount_t *mp = tdp->i_mount;
1342 xfs_trans_t *tp;
1343 int error;
1344 xfs_bmap_free_t free_list;
1345 xfs_fsblock_t first_block;
1346 int cancel_flags;
1347 int committed;
1348 int resblks;
1349
1350 trace_xfs_link(tdp, target_name);
1351
1352 ASSERT(!S_ISDIR(sip->i_d.di_mode));
1353
1354 if (XFS_FORCED_SHUTDOWN(mp))
1355 return XFS_ERROR(EIO);
1356
1357 error = xfs_qm_dqattach(sip, 0);
1358 if (error)
1359 goto std_return;
1360
1361 error = xfs_qm_dqattach(tdp, 0);
1362 if (error)
1363 goto std_return;
1364
1365 tp = xfs_trans_alloc(mp, XFS_TRANS_LINK);
1366 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1367 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1368 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, resblks, 0);
1369 if (error == ENOSPC) {
1370 resblks = 0;
1371 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, 0, 0);
1372 }
1373 if (error) {
1374 cancel_flags = 0;
1375 goto error_return;
1376 }
1377
1378 xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1379
1380 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1381 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1382
1383 /*
1384 * If we are using project inheritance, we only allow hard link
1385 * creation in our tree when the project IDs are the same; else
1386 * the tree quota mechanism could be circumvented.
1387 */
1388 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1389 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1390 error = XFS_ERROR(EXDEV);
1391 goto error_return;
1392 }
1393
1394 error = xfs_dir_canenter(tp, tdp, target_name, resblks);
1395 if (error)
1396 goto error_return;
1397
1398 xfs_bmap_init(&free_list, &first_block);
1399
1400 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1401 &first_block, &free_list, resblks);
1402 if (error)
1403 goto abort_return;
1404 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1405 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1406
1407 error = xfs_bumplink(tp, sip);
1408 if (error)
1409 goto abort_return;
1410
1411 /*
1412 * If this is a synchronous mount, make sure that the
1413 * link transaction goes to disk before returning to
1414 * the user.
1415 */
1416 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) {
1417 xfs_trans_set_sync(tp);
1418 }
1419
1420 error = xfs_bmap_finish (&tp, &free_list, &committed);
1421 if (error) {
1422 xfs_bmap_cancel(&free_list);
1423 goto abort_return;
1424 }
1425
1426 return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1427
1428 abort_return:
1429 cancel_flags |= XFS_TRANS_ABORT;
1430 error_return:
1431 xfs_trans_cancel(tp, cancel_flags);
1432 std_return:
1433 return error;
1434 }
1435
1436 /*
1437 * Free up the underlying blocks past new_size. The new size must be smaller
1438 * than the current size. This routine can be used both for the attribute and
1439 * data fork, and does not modify the inode size, which is left to the caller.
1440 *
1441 * The transaction passed to this routine must have made a permanent log
1442 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1443 * given transaction and start new ones, so make sure everything involved in
1444 * the transaction is tidy before calling here. Some transaction will be
1445 * returned to the caller to be committed. The incoming transaction must
1446 * already include the inode, and both inode locks must be held exclusively.
1447 * The inode must also be "held" within the transaction. On return the inode
1448 * will be "held" within the returned transaction. This routine does NOT
1449 * require any disk space to be reserved for it within the transaction.
1450 *
1451 * If we get an error, we must return with the inode locked and linked into the
1452 * current transaction. This keeps things simple for the higher level code,
1453 * because it always knows that the inode is locked and held in the transaction
1454 * that returns to it whether errors occur or not. We don't mark the inode
1455 * dirty on error so that transactions can be easily aborted if possible.
1456 */
1457 int
1458 xfs_itruncate_extents(
1459 struct xfs_trans **tpp,
1460 struct xfs_inode *ip,
1461 int whichfork,
1462 xfs_fsize_t new_size)
1463 {
1464 struct xfs_mount *mp = ip->i_mount;
1465 struct xfs_trans *tp = *tpp;
1466 struct xfs_trans *ntp;
1467 xfs_bmap_free_t free_list;
1468 xfs_fsblock_t first_block;
1469 xfs_fileoff_t first_unmap_block;
1470 xfs_fileoff_t last_block;
1471 xfs_filblks_t unmap_len;
1472 int committed;
1473 int error = 0;
1474 int done = 0;
1475
1476 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1477 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1478 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1479 ASSERT(new_size <= XFS_ISIZE(ip));
1480 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1481 ASSERT(ip->i_itemp != NULL);
1482 ASSERT(ip->i_itemp->ili_lock_flags == 0);
1483 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1484
1485 trace_xfs_itruncate_extents_start(ip, new_size);
1486
1487 /*
1488 * Since it is possible for space to become allocated beyond
1489 * the end of the file (in a crash where the space is allocated
1490 * but the inode size is not yet updated), simply remove any
1491 * blocks which show up between the new EOF and the maximum
1492 * possible file size. If the first block to be removed is
1493 * beyond the maximum file size (ie it is the same as last_block),
1494 * then there is nothing to do.
1495 */
1496 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1497 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1498 if (first_unmap_block == last_block)
1499 return 0;
1500
1501 ASSERT(first_unmap_block < last_block);
1502 unmap_len = last_block - first_unmap_block + 1;
1503 while (!done) {
1504 xfs_bmap_init(&free_list, &first_block);
1505 error = xfs_bunmapi(tp, ip,
1506 first_unmap_block, unmap_len,
1507 xfs_bmapi_aflag(whichfork),
1508 XFS_ITRUNC_MAX_EXTENTS,
1509 &first_block, &free_list,
1510 &done);
1511 if (error)
1512 goto out_bmap_cancel;
1513
1514 /*
1515 * Duplicate the transaction that has the permanent
1516 * reservation and commit the old transaction.
1517 */
1518 error = xfs_bmap_finish(&tp, &free_list, &committed);
1519 if (committed)
1520 xfs_trans_ijoin(tp, ip, 0);
1521 if (error)
1522 goto out_bmap_cancel;
1523
1524 if (committed) {
1525 /*
1526 * Mark the inode dirty so it will be logged and
1527 * moved forward in the log as part of every commit.
1528 */
1529 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1530 }
1531
1532 ntp = xfs_trans_dup(tp);
1533 error = xfs_trans_commit(tp, 0);
1534 tp = ntp;
1535
1536 xfs_trans_ijoin(tp, ip, 0);
1537
1538 if (error)
1539 goto out;
1540
1541 /*
1542 * Transaction commit worked ok so we can drop the extra ticket
1543 * reference that we gained in xfs_trans_dup()
1544 */
1545 xfs_log_ticket_put(tp->t_ticket);
1546 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
1547 if (error)
1548 goto out;
1549 }
1550
1551 /*
1552 * Always re-log the inode so that our permanent transaction can keep
1553 * on rolling it forward in the log.
1554 */
1555 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1556
1557 trace_xfs_itruncate_extents_end(ip, new_size);
1558
1559 out:
1560 *tpp = tp;
1561 return error;
1562 out_bmap_cancel:
1563 /*
1564 * If the bunmapi call encounters an error, return to the caller where
1565 * the transaction can be properly aborted. We just need to make sure
1566 * we're not holding any resources that we were not when we came in.
1567 */
1568 xfs_bmap_cancel(&free_list);
1569 goto out;
1570 }
1571
1572 int
1573 xfs_release(
1574 xfs_inode_t *ip)
1575 {
1576 xfs_mount_t *mp = ip->i_mount;
1577 int error;
1578
1579 if (!S_ISREG(ip->i_d.di_mode) || (ip->i_d.di_mode == 0))
1580 return 0;
1581
1582 /* If this is a read-only mount, don't do this (would generate I/O) */
1583 if (mp->m_flags & XFS_MOUNT_RDONLY)
1584 return 0;
1585
1586 if (!XFS_FORCED_SHUTDOWN(mp)) {
1587 int truncated;
1588
1589 /*
1590 * If we are using filestreams, and we have an unlinked
1591 * file that we are processing the last close on, then nothing
1592 * will be able to reopen and write to this file. Purge this
1593 * inode from the filestreams cache so that it doesn't delay
1594 * teardown of the inode.
1595 */
1596 if ((ip->i_d.di_nlink == 0) && xfs_inode_is_filestream(ip))
1597 xfs_filestream_deassociate(ip);
1598
1599 /*
1600 * If we previously truncated this file and removed old data
1601 * in the process, we want to initiate "early" writeout on
1602 * the last close. This is an attempt to combat the notorious
1603 * NULL files problem which is particularly noticeable from a
1604 * truncate down, buffered (re-)write (delalloc), followed by
1605 * a crash. What we are effectively doing here is
1606 * significantly reducing the time window where we'd otherwise
1607 * be exposed to that problem.
1608 */
1609 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1610 if (truncated) {
1611 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1612 if (VN_DIRTY(VFS_I(ip)) && ip->i_delayed_blks > 0) {
1613 error = -filemap_flush(VFS_I(ip)->i_mapping);
1614 if (error)
1615 return error;
1616 }
1617 }
1618 }
1619
1620 if (ip->i_d.di_nlink == 0)
1621 return 0;
1622
1623 if (xfs_can_free_eofblocks(ip, false)) {
1624
1625 /*
1626 * If we can't get the iolock just skip truncating the blocks
1627 * past EOF because we could deadlock with the mmap_sem
1628 * otherwise. We'll get another chance to drop them once the
1629 * last reference to the inode is dropped, so we'll never leak
1630 * blocks permanently.
1631 *
1632 * Further, check if the inode is being opened, written and
1633 * closed frequently and we have delayed allocation blocks
1634 * outstanding (e.g. streaming writes from the NFS server),
1635 * truncating the blocks past EOF will cause fragmentation to
1636 * occur.
1637 *
1638 * In this case don't do the truncation, either, but we have to
1639 * be careful how we detect this case. Blocks beyond EOF show
1640 * up as i_delayed_blks even when the inode is clean, so we
1641 * need to truncate them away first before checking for a dirty
1642 * release. Hence on the first dirty close we will still remove
1643 * the speculative allocation, but after that we will leave it
1644 * in place.
1645 */
1646 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1647 return 0;
1648
1649 error = xfs_free_eofblocks(mp, ip, true);
1650 if (error && error != EAGAIN)
1651 return error;
1652
1653 /* delalloc blocks after truncation means it really is dirty */
1654 if (ip->i_delayed_blks)
1655 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1656 }
1657 return 0;
1658 }
1659
1660 /*
1661 * xfs_inactive_truncate
1662 *
1663 * Called to perform a truncate when an inode becomes unlinked.
1664 */
1665 STATIC int
1666 xfs_inactive_truncate(
1667 struct xfs_inode *ip)
1668 {
1669 struct xfs_mount *mp = ip->i_mount;
1670 struct xfs_trans *tp;
1671 int error;
1672
1673 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1674 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
1675 if (error) {
1676 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1677 xfs_trans_cancel(tp, 0);
1678 return error;
1679 }
1680
1681 xfs_ilock(ip, XFS_ILOCK_EXCL);
1682 xfs_trans_ijoin(tp, ip, 0);
1683
1684 /*
1685 * Log the inode size first to prevent stale data exposure in the event
1686 * of a system crash before the truncate completes. See the related
1687 * comment in xfs_setattr_size() for details.
1688 */
1689 ip->i_d.di_size = 0;
1690 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1691
1692 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1693 if (error)
1694 goto error_trans_cancel;
1695
1696 ASSERT(ip->i_d.di_nextents == 0);
1697
1698 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1699 if (error)
1700 goto error_unlock;
1701
1702 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1703 return 0;
1704
1705 error_trans_cancel:
1706 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES | XFS_TRANS_ABORT);
1707 error_unlock:
1708 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1709 return error;
1710 }
1711
1712 /*
1713 * xfs_inactive_ifree()
1714 *
1715 * Perform the inode free when an inode is unlinked.
1716 */
1717 STATIC int
1718 xfs_inactive_ifree(
1719 struct xfs_inode *ip)
1720 {
1721 xfs_bmap_free_t free_list;
1722 xfs_fsblock_t first_block;
1723 int committed;
1724 struct xfs_mount *mp = ip->i_mount;
1725 struct xfs_trans *tp;
1726 int error;
1727
1728 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1729 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ifree, 0, 0);
1730 if (error) {
1731 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1732 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES);
1733 return error;
1734 }
1735
1736 xfs_ilock(ip, XFS_ILOCK_EXCL);
1737 xfs_trans_ijoin(tp, ip, 0);
1738
1739 xfs_bmap_init(&free_list, &first_block);
1740 error = xfs_ifree(tp, ip, &free_list);
1741 if (error) {
1742 /*
1743 * If we fail to free the inode, shut down. The cancel
1744 * might do that, we need to make sure. Otherwise the
1745 * inode might be lost for a long time or forever.
1746 */
1747 if (!XFS_FORCED_SHUTDOWN(mp)) {
1748 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1749 __func__, error);
1750 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1751 }
1752 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES|XFS_TRANS_ABORT);
1753 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1754 return error;
1755 }
1756
1757 /*
1758 * Credit the quota account(s). The inode is gone.
1759 */
1760 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1761
1762 /*
1763 * Just ignore errors at this point. There is nothing we can
1764 * do except to try to keep going. Make sure it's not a silent
1765 * error.
1766 */
1767 error = xfs_bmap_finish(&tp, &free_list, &committed);
1768 if (error)
1769 xfs_notice(mp, "%s: xfs_bmap_finish returned error %d",
1770 __func__, error);
1771 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1772 if (error)
1773 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1774 __func__, error);
1775
1776 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1777 return 0;
1778 }
1779
1780 /*
1781 * xfs_inactive
1782 *
1783 * This is called when the vnode reference count for the vnode
1784 * goes to zero. If the file has been unlinked, then it must
1785 * now be truncated. Also, we clear all of the read-ahead state
1786 * kept for the inode here since the file is now closed.
1787 */
1788 void
1789 xfs_inactive(
1790 xfs_inode_t *ip)
1791 {
1792 struct xfs_mount *mp;
1793 int error;
1794 int truncate = 0;
1795
1796 /*
1797 * If the inode is already free, then there can be nothing
1798 * to clean up here.
1799 */
1800 if (ip->i_d.di_mode == 0) {
1801 ASSERT(ip->i_df.if_real_bytes == 0);
1802 ASSERT(ip->i_df.if_broot_bytes == 0);
1803 return;
1804 }
1805
1806 mp = ip->i_mount;
1807
1808 /* If this is a read-only mount, don't do this (would generate I/O) */
1809 if (mp->m_flags & XFS_MOUNT_RDONLY)
1810 return;
1811
1812 if (ip->i_d.di_nlink != 0) {
1813 /*
1814 * force is true because we are evicting an inode from the
1815 * cache. Post-eof blocks must be freed, lest we end up with
1816 * broken free space accounting.
1817 */
1818 if (xfs_can_free_eofblocks(ip, true))
1819 xfs_free_eofblocks(mp, ip, false);
1820
1821 return;
1822 }
1823
1824 if (S_ISREG(ip->i_d.di_mode) &&
1825 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1826 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1827 truncate = 1;
1828
1829 error = xfs_qm_dqattach(ip, 0);
1830 if (error)
1831 return;
1832
1833 if (S_ISLNK(ip->i_d.di_mode))
1834 error = xfs_inactive_symlink(ip);
1835 else if (truncate)
1836 error = xfs_inactive_truncate(ip);
1837 if (error)
1838 return;
1839
1840 /*
1841 * If there are attributes associated with the file then blow them away
1842 * now. The code calls a routine that recursively deconstructs the
1843 * attribute fork. We need to just commit the current transaction
1844 * because we can't use it for xfs_attr_inactive().
1845 */
1846 if (ip->i_d.di_anextents > 0) {
1847 ASSERT(ip->i_d.di_forkoff != 0);
1848
1849 error = xfs_attr_inactive(ip);
1850 if (error)
1851 return;
1852 }
1853
1854 if (ip->i_afp)
1855 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
1856
1857 ASSERT(ip->i_d.di_anextents == 0);
1858
1859 /*
1860 * Free the inode.
1861 */
1862 error = xfs_inactive_ifree(ip);
1863 if (error)
1864 return;
1865
1866 /*
1867 * Release the dquots held by inode, if any.
1868 */
1869 xfs_qm_dqdetach(ip);
1870 }
1871
1872 /*
1873 * This is called when the inode's link count goes to 0.
1874 * We place the on-disk inode on a list in the AGI. It
1875 * will be pulled from this list when the inode is freed.
1876 */
1877 int
1878 xfs_iunlink(
1879 xfs_trans_t *tp,
1880 xfs_inode_t *ip)
1881 {
1882 xfs_mount_t *mp;
1883 xfs_agi_t *agi;
1884 xfs_dinode_t *dip;
1885 xfs_buf_t *agibp;
1886 xfs_buf_t *ibp;
1887 xfs_agino_t agino;
1888 short bucket_index;
1889 int offset;
1890 int error;
1891
1892 ASSERT(ip->i_d.di_nlink == 0);
1893 ASSERT(ip->i_d.di_mode != 0);
1894
1895 mp = tp->t_mountp;
1896
1897 /*
1898 * Get the agi buffer first. It ensures lock ordering
1899 * on the list.
1900 */
1901 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1902 if (error)
1903 return error;
1904 agi = XFS_BUF_TO_AGI(agibp);
1905
1906 /*
1907 * Get the index into the agi hash table for the
1908 * list this inode will go on.
1909 */
1910 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1911 ASSERT(agino != 0);
1912 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1913 ASSERT(agi->agi_unlinked[bucket_index]);
1914 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1915
1916 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1917 /*
1918 * There is already another inode in the bucket we need
1919 * to add ourselves to. Add us at the front of the list.
1920 * Here we put the head pointer into our next pointer,
1921 * and then we fall through to point the head at us.
1922 */
1923 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1924 0, 0);
1925 if (error)
1926 return error;
1927
1928 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1929 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1930 offset = ip->i_imap.im_boffset +
1931 offsetof(xfs_dinode_t, di_next_unlinked);
1932
1933 /* need to recalc the inode CRC if appropriate */
1934 xfs_dinode_calc_crc(mp, dip);
1935
1936 xfs_trans_inode_buf(tp, ibp);
1937 xfs_trans_log_buf(tp, ibp, offset,
1938 (offset + sizeof(xfs_agino_t) - 1));
1939 xfs_inobp_check(mp, ibp);
1940 }
1941
1942 /*
1943 * Point the bucket head pointer at the inode being inserted.
1944 */
1945 ASSERT(agino != 0);
1946 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1947 offset = offsetof(xfs_agi_t, agi_unlinked) +
1948 (sizeof(xfs_agino_t) * bucket_index);
1949 xfs_trans_log_buf(tp, agibp, offset,
1950 (offset + sizeof(xfs_agino_t) - 1));
1951 return 0;
1952 }
1953
1954 /*
1955 * Pull the on-disk inode from the AGI unlinked list.
1956 */
1957 STATIC int
1958 xfs_iunlink_remove(
1959 xfs_trans_t *tp,
1960 xfs_inode_t *ip)
1961 {
1962 xfs_ino_t next_ino;
1963 xfs_mount_t *mp;
1964 xfs_agi_t *agi;
1965 xfs_dinode_t *dip;
1966 xfs_buf_t *agibp;
1967 xfs_buf_t *ibp;
1968 xfs_agnumber_t agno;
1969 xfs_agino_t agino;
1970 xfs_agino_t next_agino;
1971 xfs_buf_t *last_ibp;
1972 xfs_dinode_t *last_dip = NULL;
1973 short bucket_index;
1974 int offset, last_offset = 0;
1975 int error;
1976
1977 mp = tp->t_mountp;
1978 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1979
1980 /*
1981 * Get the agi buffer first. It ensures lock ordering
1982 * on the list.
1983 */
1984 error = xfs_read_agi(mp, tp, agno, &agibp);
1985 if (error)
1986 return error;
1987
1988 agi = XFS_BUF_TO_AGI(agibp);
1989
1990 /*
1991 * Get the index into the agi hash table for the
1992 * list this inode will go on.
1993 */
1994 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1995 ASSERT(agino != 0);
1996 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1997 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
1998 ASSERT(agi->agi_unlinked[bucket_index]);
1999
2000 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2001 /*
2002 * We're at the head of the list. Get the inode's on-disk
2003 * buffer to see if there is anyone after us on the list.
2004 * Only modify our next pointer if it is not already NULLAGINO.
2005 * This saves us the overhead of dealing with the buffer when
2006 * there is no need to change it.
2007 */
2008 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2009 0, 0);
2010 if (error) {
2011 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2012 __func__, error);
2013 return error;
2014 }
2015 next_agino = be32_to_cpu(dip->di_next_unlinked);
2016 ASSERT(next_agino != 0);
2017 if (next_agino != NULLAGINO) {
2018 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2019 offset = ip->i_imap.im_boffset +
2020 offsetof(xfs_dinode_t, di_next_unlinked);
2021
2022 /* need to recalc the inode CRC if appropriate */
2023 xfs_dinode_calc_crc(mp, dip);
2024
2025 xfs_trans_inode_buf(tp, ibp);
2026 xfs_trans_log_buf(tp, ibp, offset,
2027 (offset + sizeof(xfs_agino_t) - 1));
2028 xfs_inobp_check(mp, ibp);
2029 } else {
2030 xfs_trans_brelse(tp, ibp);
2031 }
2032 /*
2033 * Point the bucket head pointer at the next inode.
2034 */
2035 ASSERT(next_agino != 0);
2036 ASSERT(next_agino != agino);
2037 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2038 offset = offsetof(xfs_agi_t, agi_unlinked) +
2039 (sizeof(xfs_agino_t) * bucket_index);
2040 xfs_trans_log_buf(tp, agibp, offset,
2041 (offset + sizeof(xfs_agino_t) - 1));
2042 } else {
2043 /*
2044 * We need to search the list for the inode being freed.
2045 */
2046 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2047 last_ibp = NULL;
2048 while (next_agino != agino) {
2049 struct xfs_imap imap;
2050
2051 if (last_ibp)
2052 xfs_trans_brelse(tp, last_ibp);
2053
2054 imap.im_blkno = 0;
2055 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2056
2057 error = xfs_imap(mp, tp, next_ino, &imap, 0);
2058 if (error) {
2059 xfs_warn(mp,
2060 "%s: xfs_imap returned error %d.",
2061 __func__, error);
2062 return error;
2063 }
2064
2065 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2066 &last_ibp, 0, 0);
2067 if (error) {
2068 xfs_warn(mp,
2069 "%s: xfs_imap_to_bp returned error %d.",
2070 __func__, error);
2071 return error;
2072 }
2073
2074 last_offset = imap.im_boffset;
2075 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2076 ASSERT(next_agino != NULLAGINO);
2077 ASSERT(next_agino != 0);
2078 }
2079
2080 /*
2081 * Now last_ibp points to the buffer previous to us on the
2082 * unlinked list. Pull us from the list.
2083 */
2084 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2085 0, 0);
2086 if (error) {
2087 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
2088 __func__, error);
2089 return error;
2090 }
2091 next_agino = be32_to_cpu(dip->di_next_unlinked);
2092 ASSERT(next_agino != 0);
2093 ASSERT(next_agino != agino);
2094 if (next_agino != NULLAGINO) {
2095 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2096 offset = ip->i_imap.im_boffset +
2097 offsetof(xfs_dinode_t, di_next_unlinked);
2098
2099 /* need to recalc the inode CRC if appropriate */
2100 xfs_dinode_calc_crc(mp, dip);
2101
2102 xfs_trans_inode_buf(tp, ibp);
2103 xfs_trans_log_buf(tp, ibp, offset,
2104 (offset + sizeof(xfs_agino_t) - 1));
2105 xfs_inobp_check(mp, ibp);
2106 } else {
2107 xfs_trans_brelse(tp, ibp);
2108 }
2109 /*
2110 * Point the previous inode on the list to the next inode.
2111 */
2112 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2113 ASSERT(next_agino != 0);
2114 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2115
2116 /* need to recalc the inode CRC if appropriate */
2117 xfs_dinode_calc_crc(mp, last_dip);
2118
2119 xfs_trans_inode_buf(tp, last_ibp);
2120 xfs_trans_log_buf(tp, last_ibp, offset,
2121 (offset + sizeof(xfs_agino_t) - 1));
2122 xfs_inobp_check(mp, last_ibp);
2123 }
2124 return 0;
2125 }
2126
2127 /*
2128 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2129 * inodes that are in memory - they all must be marked stale and attached to
2130 * the cluster buffer.
2131 */
2132 STATIC int
2133 xfs_ifree_cluster(
2134 xfs_inode_t *free_ip,
2135 xfs_trans_t *tp,
2136 xfs_ino_t inum)
2137 {
2138 xfs_mount_t *mp = free_ip->i_mount;
2139 int blks_per_cluster;
2140 int nbufs;
2141 int ninodes;
2142 int i, j;
2143 xfs_daddr_t blkno;
2144 xfs_buf_t *bp;
2145 xfs_inode_t *ip;
2146 xfs_inode_log_item_t *iip;
2147 xfs_log_item_t *lip;
2148 struct xfs_perag *pag;
2149
2150 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2151 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2152 blks_per_cluster = 1;
2153 ninodes = mp->m_sb.sb_inopblock;
2154 nbufs = XFS_IALLOC_BLOCKS(mp);
2155 } else {
2156 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2157 mp->m_sb.sb_blocksize;
2158 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2159 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2160 }
2161
2162 for (j = 0; j < nbufs; j++, inum += ninodes) {
2163 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2164 XFS_INO_TO_AGBNO(mp, inum));
2165
2166 /*
2167 * We obtain and lock the backing buffer first in the process
2168 * here, as we have to ensure that any dirty inode that we
2169 * can't get the flush lock on is attached to the buffer.
2170 * If we scan the in-memory inodes first, then buffer IO can
2171 * complete before we get a lock on it, and hence we may fail
2172 * to mark all the active inodes on the buffer stale.
2173 */
2174 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2175 mp->m_bsize * blks_per_cluster,
2176 XBF_UNMAPPED);
2177
2178 if (!bp)
2179 return ENOMEM;
2180
2181 /*
2182 * This buffer may not have been correctly initialised as we
2183 * didn't read it from disk. That's not important because we are
2184 * only using to mark the buffer as stale in the log, and to
2185 * attach stale cached inodes on it. That means it will never be
2186 * dispatched for IO. If it is, we want to know about it, and we
2187 * want it to fail. We can acheive this by adding a write
2188 * verifier to the buffer.
2189 */
2190 bp->b_ops = &xfs_inode_buf_ops;
2191
2192 /*
2193 * Walk the inodes already attached to the buffer and mark them
2194 * stale. These will all have the flush locks held, so an
2195 * in-memory inode walk can't lock them. By marking them all
2196 * stale first, we will not attempt to lock them in the loop
2197 * below as the XFS_ISTALE flag will be set.
2198 */
2199 lip = bp->b_fspriv;
2200 while (lip) {
2201 if (lip->li_type == XFS_LI_INODE) {
2202 iip = (xfs_inode_log_item_t *)lip;
2203 ASSERT(iip->ili_logged == 1);
2204 lip->li_cb = xfs_istale_done;
2205 xfs_trans_ail_copy_lsn(mp->m_ail,
2206 &iip->ili_flush_lsn,
2207 &iip->ili_item.li_lsn);
2208 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2209 }
2210 lip = lip->li_bio_list;
2211 }
2212
2213
2214 /*
2215 * For each inode in memory attempt to add it to the inode
2216 * buffer and set it up for being staled on buffer IO
2217 * completion. This is safe as we've locked out tail pushing
2218 * and flushing by locking the buffer.
2219 *
2220 * We have already marked every inode that was part of a
2221 * transaction stale above, which means there is no point in
2222 * even trying to lock them.
2223 */
2224 for (i = 0; i < ninodes; i++) {
2225 retry:
2226 rcu_read_lock();
2227 ip = radix_tree_lookup(&pag->pag_ici_root,
2228 XFS_INO_TO_AGINO(mp, (inum + i)));
2229
2230 /* Inode not in memory, nothing to do */
2231 if (!ip) {
2232 rcu_read_unlock();
2233 continue;
2234 }
2235
2236 /*
2237 * because this is an RCU protected lookup, we could
2238 * find a recently freed or even reallocated inode
2239 * during the lookup. We need to check under the
2240 * i_flags_lock for a valid inode here. Skip it if it
2241 * is not valid, the wrong inode or stale.
2242 */
2243 spin_lock(&ip->i_flags_lock);
2244 if (ip->i_ino != inum + i ||
2245 __xfs_iflags_test(ip, XFS_ISTALE)) {
2246 spin_unlock(&ip->i_flags_lock);
2247 rcu_read_unlock();
2248 continue;
2249 }
2250 spin_unlock(&ip->i_flags_lock);
2251
2252 /*
2253 * Don't try to lock/unlock the current inode, but we
2254 * _cannot_ skip the other inodes that we did not find
2255 * in the list attached to the buffer and are not
2256 * already marked stale. If we can't lock it, back off
2257 * and retry.
2258 */
2259 if (ip != free_ip &&
2260 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2261 rcu_read_unlock();
2262 delay(1);
2263 goto retry;
2264 }
2265 rcu_read_unlock();
2266
2267 xfs_iflock(ip);
2268 xfs_iflags_set(ip, XFS_ISTALE);
2269
2270 /*
2271 * we don't need to attach clean inodes or those only
2272 * with unlogged changes (which we throw away, anyway).
2273 */
2274 iip = ip->i_itemp;
2275 if (!iip || xfs_inode_clean(ip)) {
2276 ASSERT(ip != free_ip);
2277 xfs_ifunlock(ip);
2278 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2279 continue;
2280 }
2281
2282 iip->ili_last_fields = iip->ili_fields;
2283 iip->ili_fields = 0;
2284 iip->ili_logged = 1;
2285 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2286 &iip->ili_item.li_lsn);
2287
2288 xfs_buf_attach_iodone(bp, xfs_istale_done,
2289 &iip->ili_item);
2290
2291 if (ip != free_ip)
2292 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2293 }
2294
2295 xfs_trans_stale_inode_buf(tp, bp);
2296 xfs_trans_binval(tp, bp);
2297 }
2298
2299 xfs_perag_put(pag);
2300 return 0;
2301 }
2302
2303 /*
2304 * This is called to return an inode to the inode free list.
2305 * The inode should already be truncated to 0 length and have
2306 * no pages associated with it. This routine also assumes that
2307 * the inode is already a part of the transaction.
2308 *
2309 * The on-disk copy of the inode will have been added to the list
2310 * of unlinked inodes in the AGI. We need to remove the inode from
2311 * that list atomically with respect to freeing it here.
2312 */
2313 int
2314 xfs_ifree(
2315 xfs_trans_t *tp,
2316 xfs_inode_t *ip,
2317 xfs_bmap_free_t *flist)
2318 {
2319 int error;
2320 int delete;
2321 xfs_ino_t first_ino;
2322
2323 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2324 ASSERT(ip->i_d.di_nlink == 0);
2325 ASSERT(ip->i_d.di_nextents == 0);
2326 ASSERT(ip->i_d.di_anextents == 0);
2327 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
2328 ASSERT(ip->i_d.di_nblocks == 0);
2329
2330 /*
2331 * Pull the on-disk inode from the AGI unlinked list.
2332 */
2333 error = xfs_iunlink_remove(tp, ip);
2334 if (error)
2335 return error;
2336
2337 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2338 if (error)
2339 return error;
2340
2341 ip->i_d.di_mode = 0; /* mark incore inode as free */
2342 ip->i_d.di_flags = 0;
2343 ip->i_d.di_dmevmask = 0;
2344 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2345 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2346 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2347 /*
2348 * Bump the generation count so no one will be confused
2349 * by reincarnations of this inode.
2350 */
2351 ip->i_d.di_gen++;
2352 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2353
2354 if (delete)
2355 error = xfs_ifree_cluster(ip, tp, first_ino);
2356
2357 return error;
2358 }
2359
2360 /*
2361 * This is called to unpin an inode. The caller must have the inode locked
2362 * in at least shared mode so that the buffer cannot be subsequently pinned
2363 * once someone is waiting for it to be unpinned.
2364 */
2365 static void
2366 xfs_iunpin(
2367 struct xfs_inode *ip)
2368 {
2369 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2370
2371 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2372
2373 /* Give the log a push to start the unpinning I/O */
2374 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2375
2376 }
2377
2378 static void
2379 __xfs_iunpin_wait(
2380 struct xfs_inode *ip)
2381 {
2382 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2383 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2384
2385 xfs_iunpin(ip);
2386
2387 do {
2388 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2389 if (xfs_ipincount(ip))
2390 io_schedule();
2391 } while (xfs_ipincount(ip));
2392 finish_wait(wq, &wait.wait);
2393 }
2394
2395 void
2396 xfs_iunpin_wait(
2397 struct xfs_inode *ip)
2398 {
2399 if (xfs_ipincount(ip))
2400 __xfs_iunpin_wait(ip);
2401 }
2402
2403 /*
2404 * Removing an inode from the namespace involves removing the directory entry
2405 * and dropping the link count on the inode. Removing the directory entry can
2406 * result in locking an AGF (directory blocks were freed) and removing a link
2407 * count can result in placing the inode on an unlinked list which results in
2408 * locking an AGI.
2409 *
2410 * The big problem here is that we have an ordering constraint on AGF and AGI
2411 * locking - inode allocation locks the AGI, then can allocate a new extent for
2412 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2413 * removes the inode from the unlinked list, requiring that we lock the AGI
2414 * first, and then freeing the inode can result in an inode chunk being freed
2415 * and hence freeing disk space requiring that we lock an AGF.
2416 *
2417 * Hence the ordering that is imposed by other parts of the code is AGI before
2418 * AGF. This means we cannot remove the directory entry before we drop the inode
2419 * reference count and put it on the unlinked list as this results in a lock
2420 * order of AGF then AGI, and this can deadlock against inode allocation and
2421 * freeing. Therefore we must drop the link counts before we remove the
2422 * directory entry.
2423 *
2424 * This is still safe from a transactional point of view - it is not until we
2425 * get to xfs_bmap_finish() that we have the possibility of multiple
2426 * transactions in this operation. Hence as long as we remove the directory
2427 * entry and drop the link count in the first transaction of the remove
2428 * operation, there are no transactional constraints on the ordering here.
2429 */
2430 int
2431 xfs_remove(
2432 xfs_inode_t *dp,
2433 struct xfs_name *name,
2434 xfs_inode_t *ip)
2435 {
2436 xfs_mount_t *mp = dp->i_mount;
2437 xfs_trans_t *tp = NULL;
2438 int is_dir = S_ISDIR(ip->i_d.di_mode);
2439 int error = 0;
2440 xfs_bmap_free_t free_list;
2441 xfs_fsblock_t first_block;
2442 int cancel_flags;
2443 int committed;
2444 int link_zero;
2445 uint resblks;
2446 uint log_count;
2447
2448 trace_xfs_remove(dp, name);
2449
2450 if (XFS_FORCED_SHUTDOWN(mp))
2451 return XFS_ERROR(EIO);
2452
2453 error = xfs_qm_dqattach(dp, 0);
2454 if (error)
2455 goto std_return;
2456
2457 error = xfs_qm_dqattach(ip, 0);
2458 if (error)
2459 goto std_return;
2460
2461 if (is_dir) {
2462 tp = xfs_trans_alloc(mp, XFS_TRANS_RMDIR);
2463 log_count = XFS_DEFAULT_LOG_COUNT;
2464 } else {
2465 tp = xfs_trans_alloc(mp, XFS_TRANS_REMOVE);
2466 log_count = XFS_REMOVE_LOG_COUNT;
2467 }
2468 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
2469
2470 /*
2471 * We try to get the real space reservation first,
2472 * allowing for directory btree deletion(s) implying
2473 * possible bmap insert(s). If we can't get the space
2474 * reservation then we use 0 instead, and avoid the bmap
2475 * btree insert(s) in the directory code by, if the bmap
2476 * insert tries to happen, instead trimming the LAST
2477 * block from the directory.
2478 */
2479 resblks = XFS_REMOVE_SPACE_RES(mp);
2480 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, resblks, 0);
2481 if (error == ENOSPC) {
2482 resblks = 0;
2483 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, 0, 0);
2484 }
2485 if (error) {
2486 ASSERT(error != ENOSPC);
2487 cancel_flags = 0;
2488 goto out_trans_cancel;
2489 }
2490
2491 xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2492
2493 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2494 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2495
2496 /*
2497 * If we're removing a directory perform some additional validation.
2498 */
2499 cancel_flags |= XFS_TRANS_ABORT;
2500 if (is_dir) {
2501 ASSERT(ip->i_d.di_nlink >= 2);
2502 if (ip->i_d.di_nlink != 2) {
2503 error = XFS_ERROR(ENOTEMPTY);
2504 goto out_trans_cancel;
2505 }
2506 if (!xfs_dir_isempty(ip)) {
2507 error = XFS_ERROR(ENOTEMPTY);
2508 goto out_trans_cancel;
2509 }
2510
2511 /* Drop the link from ip's "..". */
2512 error = xfs_droplink(tp, dp);
2513 if (error)
2514 goto out_trans_cancel;
2515
2516 /* Drop the "." link from ip to self. */
2517 error = xfs_droplink(tp, ip);
2518 if (error)
2519 goto out_trans_cancel;
2520 } else {
2521 /*
2522 * When removing a non-directory we need to log the parent
2523 * inode here. For a directory this is done implicitly
2524 * by the xfs_droplink call for the ".." entry.
2525 */
2526 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2527 }
2528 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2529
2530 /* Drop the link from dp to ip. */
2531 error = xfs_droplink(tp, ip);
2532 if (error)
2533 goto out_trans_cancel;
2534
2535 /* Determine if this is the last link while the inode is locked */
2536 link_zero = (ip->i_d.di_nlink == 0);
2537
2538 xfs_bmap_init(&free_list, &first_block);
2539 error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2540 &first_block, &free_list, resblks);
2541 if (error) {
2542 ASSERT(error != ENOENT);
2543 goto out_bmap_cancel;
2544 }
2545
2546 /*
2547 * If this is a synchronous mount, make sure that the
2548 * remove transaction goes to disk before returning to
2549 * the user.
2550 */
2551 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2552 xfs_trans_set_sync(tp);
2553
2554 error = xfs_bmap_finish(&tp, &free_list, &committed);
2555 if (error)
2556 goto out_bmap_cancel;
2557
2558 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
2559 if (error)
2560 goto std_return;
2561
2562 /*
2563 * If we are using filestreams, kill the stream association.
2564 * If the file is still open it may get a new one but that
2565 * will get killed on last close in xfs_close() so we don't
2566 * have to worry about that.
2567 */
2568 if (!is_dir && link_zero && xfs_inode_is_filestream(ip))
2569 xfs_filestream_deassociate(ip);
2570
2571 return 0;
2572
2573 out_bmap_cancel:
2574 xfs_bmap_cancel(&free_list);
2575 out_trans_cancel:
2576 xfs_trans_cancel(tp, cancel_flags);
2577 std_return:
2578 return error;
2579 }
2580
2581 /*
2582 * Enter all inodes for a rename transaction into a sorted array.
2583 */
2584 STATIC void
2585 xfs_sort_for_rename(
2586 xfs_inode_t *dp1, /* in: old (source) directory inode */
2587 xfs_inode_t *dp2, /* in: new (target) directory inode */
2588 xfs_inode_t *ip1, /* in: inode of old entry */
2589 xfs_inode_t *ip2, /* in: inode of new entry, if it
2590 already exists, NULL otherwise. */
2591 xfs_inode_t **i_tab,/* out: array of inode returned, sorted */
2592 int *num_inodes) /* out: number of inodes in array */
2593 {
2594 xfs_inode_t *temp;
2595 int i, j;
2596
2597 /*
2598 * i_tab contains a list of pointers to inodes. We initialize
2599 * the table here & we'll sort it. We will then use it to
2600 * order the acquisition of the inode locks.
2601 *
2602 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2603 */
2604 i_tab[0] = dp1;
2605 i_tab[1] = dp2;
2606 i_tab[2] = ip1;
2607 if (ip2) {
2608 *num_inodes = 4;
2609 i_tab[3] = ip2;
2610 } else {
2611 *num_inodes = 3;
2612 i_tab[3] = NULL;
2613 }
2614
2615 /*
2616 * Sort the elements via bubble sort. (Remember, there are at
2617 * most 4 elements to sort, so this is adequate.)
2618 */
2619 for (i = 0; i < *num_inodes; i++) {
2620 for (j = 1; j < *num_inodes; j++) {
2621 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2622 temp = i_tab[j];
2623 i_tab[j] = i_tab[j-1];
2624 i_tab[j-1] = temp;
2625 }
2626 }
2627 }
2628 }
2629
2630 /*
2631 * xfs_rename
2632 */
2633 int
2634 xfs_rename(
2635 xfs_inode_t *src_dp,
2636 struct xfs_name *src_name,
2637 xfs_inode_t *src_ip,
2638 xfs_inode_t *target_dp,
2639 struct xfs_name *target_name,
2640 xfs_inode_t *target_ip)
2641 {
2642 xfs_trans_t *tp = NULL;
2643 xfs_mount_t *mp = src_dp->i_mount;
2644 int new_parent; /* moving to a new dir */
2645 int src_is_directory; /* src_name is a directory */
2646 int error;
2647 xfs_bmap_free_t free_list;
2648 xfs_fsblock_t first_block;
2649 int cancel_flags;
2650 int committed;
2651 xfs_inode_t *inodes[4];
2652 int spaceres;
2653 int num_inodes;
2654
2655 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2656
2657 new_parent = (src_dp != target_dp);
2658 src_is_directory = S_ISDIR(src_ip->i_d.di_mode);
2659
2660 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip,
2661 inodes, &num_inodes);
2662
2663 xfs_bmap_init(&free_list, &first_block);
2664 tp = xfs_trans_alloc(mp, XFS_TRANS_RENAME);
2665 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
2666 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2667 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, spaceres, 0);
2668 if (error == ENOSPC) {
2669 spaceres = 0;
2670 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, 0, 0);
2671 }
2672 if (error) {
2673 xfs_trans_cancel(tp, 0);
2674 goto std_return;
2675 }
2676
2677 /*
2678 * Attach the dquots to the inodes
2679 */
2680 error = xfs_qm_vop_rename_dqattach(inodes);
2681 if (error) {
2682 xfs_trans_cancel(tp, cancel_flags);
2683 goto std_return;
2684 }
2685
2686 /*
2687 * Lock all the participating inodes. Depending upon whether
2688 * the target_name exists in the target directory, and
2689 * whether the target directory is the same as the source
2690 * directory, we can lock from 2 to 4 inodes.
2691 */
2692 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2693
2694 /*
2695 * Join all the inodes to the transaction. From this point on,
2696 * we can rely on either trans_commit or trans_cancel to unlock
2697 * them.
2698 */
2699 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
2700 if (new_parent)
2701 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
2702 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2703 if (target_ip)
2704 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2705
2706 /*
2707 * If we are using project inheritance, we only allow renames
2708 * into our tree when the project IDs are the same; else the
2709 * tree quota mechanism would be circumvented.
2710 */
2711 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2712 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2713 error = XFS_ERROR(EXDEV);
2714 goto error_return;
2715 }
2716
2717 /*
2718 * Set up the target.
2719 */
2720 if (target_ip == NULL) {
2721 /*
2722 * If there's no space reservation, check the entry will
2723 * fit before actually inserting it.
2724 */
2725 error = xfs_dir_canenter(tp, target_dp, target_name, spaceres);
2726 if (error)
2727 goto error_return;
2728 /*
2729 * If target does not exist and the rename crosses
2730 * directories, adjust the target directory link count
2731 * to account for the ".." reference from the new entry.
2732 */
2733 error = xfs_dir_createname(tp, target_dp, target_name,
2734 src_ip->i_ino, &first_block,
2735 &free_list, spaceres);
2736 if (error == ENOSPC)
2737 goto error_return;
2738 if (error)
2739 goto abort_return;
2740
2741 xfs_trans_ichgtime(tp, target_dp,
2742 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2743
2744 if (new_parent && src_is_directory) {
2745 error = xfs_bumplink(tp, target_dp);
2746 if (error)
2747 goto abort_return;
2748 }
2749 } else { /* target_ip != NULL */
2750 /*
2751 * If target exists and it's a directory, check that both
2752 * target and source are directories and that target can be
2753 * destroyed, or that neither is a directory.
2754 */
2755 if (S_ISDIR(target_ip->i_d.di_mode)) {
2756 /*
2757 * Make sure target dir is empty.
2758 */
2759 if (!(xfs_dir_isempty(target_ip)) ||
2760 (target_ip->i_d.di_nlink > 2)) {
2761 error = XFS_ERROR(EEXIST);
2762 goto error_return;
2763 }
2764 }
2765
2766 /*
2767 * Link the source inode under the target name.
2768 * If the source inode is a directory and we are moving
2769 * it across directories, its ".." entry will be
2770 * inconsistent until we replace that down below.
2771 *
2772 * In case there is already an entry with the same
2773 * name at the destination directory, remove it first.
2774 */
2775 error = xfs_dir_replace(tp, target_dp, target_name,
2776 src_ip->i_ino,
2777 &first_block, &free_list, spaceres);
2778 if (error)
2779 goto abort_return;
2780
2781 xfs_trans_ichgtime(tp, target_dp,
2782 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2783
2784 /*
2785 * Decrement the link count on the target since the target
2786 * dir no longer points to it.
2787 */
2788 error = xfs_droplink(tp, target_ip);
2789 if (error)
2790 goto abort_return;
2791
2792 if (src_is_directory) {
2793 /*
2794 * Drop the link from the old "." entry.
2795 */
2796 error = xfs_droplink(tp, target_ip);
2797 if (error)
2798 goto abort_return;
2799 }
2800 } /* target_ip != NULL */
2801
2802 /*
2803 * Remove the source.
2804 */
2805 if (new_parent && src_is_directory) {
2806 /*
2807 * Rewrite the ".." entry to point to the new
2808 * directory.
2809 */
2810 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
2811 target_dp->i_ino,
2812 &first_block, &free_list, spaceres);
2813 ASSERT(error != EEXIST);
2814 if (error)
2815 goto abort_return;
2816 }
2817
2818 /*
2819 * We always want to hit the ctime on the source inode.
2820 *
2821 * This isn't strictly required by the standards since the source
2822 * inode isn't really being changed, but old unix file systems did
2823 * it and some incremental backup programs won't work without it.
2824 */
2825 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
2826 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
2827
2828 /*
2829 * Adjust the link count on src_dp. This is necessary when
2830 * renaming a directory, either within one parent when
2831 * the target existed, or across two parent directories.
2832 */
2833 if (src_is_directory && (new_parent || target_ip != NULL)) {
2834
2835 /*
2836 * Decrement link count on src_directory since the
2837 * entry that's moved no longer points to it.
2838 */
2839 error = xfs_droplink(tp, src_dp);
2840 if (error)
2841 goto abort_return;
2842 }
2843
2844 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
2845 &first_block, &free_list, spaceres);
2846 if (error)
2847 goto abort_return;
2848
2849 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2850 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
2851 if (new_parent)
2852 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
2853
2854 /*
2855 * If this is a synchronous mount, make sure that the
2856 * rename transaction goes to disk before returning to
2857 * the user.
2858 */
2859 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) {
2860 xfs_trans_set_sync(tp);
2861 }
2862
2863 error = xfs_bmap_finish(&tp, &free_list, &committed);
2864 if (error) {
2865 xfs_bmap_cancel(&free_list);
2866 xfs_trans_cancel(tp, (XFS_TRANS_RELEASE_LOG_RES |
2867 XFS_TRANS_ABORT));
2868 goto std_return;
2869 }
2870
2871 /*
2872 * trans_commit will unlock src_ip, target_ip & decrement
2873 * the vnode references.
2874 */
2875 return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
2876
2877 abort_return:
2878 cancel_flags |= XFS_TRANS_ABORT;
2879 error_return:
2880 xfs_bmap_cancel(&free_list);
2881 xfs_trans_cancel(tp, cancel_flags);
2882 std_return:
2883 return error;
2884 }
2885
2886 STATIC int
2887 xfs_iflush_cluster(
2888 xfs_inode_t *ip,
2889 xfs_buf_t *bp)
2890 {
2891 xfs_mount_t *mp = ip->i_mount;
2892 struct xfs_perag *pag;
2893 unsigned long first_index, mask;
2894 unsigned long inodes_per_cluster;
2895 int ilist_size;
2896 xfs_inode_t **ilist;
2897 xfs_inode_t *iq;
2898 int nr_found;
2899 int clcount = 0;
2900 int bufwasdelwri;
2901 int i;
2902
2903 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2904
2905 inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2906 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2907 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2908 if (!ilist)
2909 goto out_put;
2910
2911 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2912 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2913 rcu_read_lock();
2914 /* really need a gang lookup range call here */
2915 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2916 first_index, inodes_per_cluster);
2917 if (nr_found == 0)
2918 goto out_free;
2919
2920 for (i = 0; i < nr_found; i++) {
2921 iq = ilist[i];
2922 if (iq == ip)
2923 continue;
2924
2925 /*
2926 * because this is an RCU protected lookup, we could find a
2927 * recently freed or even reallocated inode during the lookup.
2928 * We need to check under the i_flags_lock for a valid inode
2929 * here. Skip it if it is not valid or the wrong inode.
2930 */
2931 spin_lock(&ip->i_flags_lock);
2932 if (!ip->i_ino ||
2933 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
2934 spin_unlock(&ip->i_flags_lock);
2935 continue;
2936 }
2937 spin_unlock(&ip->i_flags_lock);
2938
2939 /*
2940 * Do an un-protected check to see if the inode is dirty and
2941 * is a candidate for flushing. These checks will be repeated
2942 * later after the appropriate locks are acquired.
2943 */
2944 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
2945 continue;
2946
2947 /*
2948 * Try to get locks. If any are unavailable or it is pinned,
2949 * then this inode cannot be flushed and is skipped.
2950 */
2951
2952 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2953 continue;
2954 if (!xfs_iflock_nowait(iq)) {
2955 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2956 continue;
2957 }
2958 if (xfs_ipincount(iq)) {
2959 xfs_ifunlock(iq);
2960 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2961 continue;
2962 }
2963
2964 /*
2965 * arriving here means that this inode can be flushed. First
2966 * re-check that it's dirty before flushing.
2967 */
2968 if (!xfs_inode_clean(iq)) {
2969 int error;
2970 error = xfs_iflush_int(iq, bp);
2971 if (error) {
2972 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2973 goto cluster_corrupt_out;
2974 }
2975 clcount++;
2976 } else {
2977 xfs_ifunlock(iq);
2978 }
2979 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2980 }
2981
2982 if (clcount) {
2983 XFS_STATS_INC(xs_icluster_flushcnt);
2984 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2985 }
2986
2987 out_free:
2988 rcu_read_unlock();
2989 kmem_free(ilist);
2990 out_put:
2991 xfs_perag_put(pag);
2992 return 0;
2993
2994
2995 cluster_corrupt_out:
2996 /*
2997 * Corruption detected in the clustering loop. Invalidate the
2998 * inode buffer and shut down the filesystem.
2999 */
3000 rcu_read_unlock();
3001 /*
3002 * Clean up the buffer. If it was delwri, just release it --
3003 * brelse can handle it with no problems. If not, shut down the
3004 * filesystem before releasing the buffer.
3005 */
3006 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
3007 if (bufwasdelwri)
3008 xfs_buf_relse(bp);
3009
3010 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3011
3012 if (!bufwasdelwri) {
3013 /*
3014 * Just like incore_relse: if we have b_iodone functions,
3015 * mark the buffer as an error and call them. Otherwise
3016 * mark it as stale and brelse.
3017 */
3018 if (bp->b_iodone) {
3019 XFS_BUF_UNDONE(bp);
3020 xfs_buf_stale(bp);
3021 xfs_buf_ioerror(bp, EIO);
3022 xfs_buf_ioend(bp, 0);
3023 } else {
3024 xfs_buf_stale(bp);
3025 xfs_buf_relse(bp);
3026 }
3027 }
3028
3029 /*
3030 * Unlocks the flush lock
3031 */
3032 xfs_iflush_abort(iq, false);
3033 kmem_free(ilist);
3034 xfs_perag_put(pag);
3035 return XFS_ERROR(EFSCORRUPTED);
3036 }
3037
3038 /*
3039 * Flush dirty inode metadata into the backing buffer.
3040 *
3041 * The caller must have the inode lock and the inode flush lock held. The
3042 * inode lock will still be held upon return to the caller, and the inode
3043 * flush lock will be released after the inode has reached the disk.
3044 *
3045 * The caller must write out the buffer returned in *bpp and release it.
3046 */
3047 int
3048 xfs_iflush(
3049 struct xfs_inode *ip,
3050 struct xfs_buf **bpp)
3051 {
3052 struct xfs_mount *mp = ip->i_mount;
3053 struct xfs_buf *bp;
3054 struct xfs_dinode *dip;
3055 int error;
3056
3057 XFS_STATS_INC(xs_iflush_count);
3058
3059 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3060 ASSERT(xfs_isiflocked(ip));
3061 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3062 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3063
3064 *bpp = NULL;
3065
3066 xfs_iunpin_wait(ip);
3067
3068 /*
3069 * For stale inodes we cannot rely on the backing buffer remaining
3070 * stale in cache for the remaining life of the stale inode and so
3071 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3072 * inodes below. We have to check this after ensuring the inode is
3073 * unpinned so that it is safe to reclaim the stale inode after the
3074 * flush call.
3075 */
3076 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3077 xfs_ifunlock(ip);
3078 return 0;
3079 }
3080
3081 /*
3082 * This may have been unpinned because the filesystem is shutting
3083 * down forcibly. If that's the case we must not write this inode
3084 * to disk, because the log record didn't make it to disk.
3085 *
3086 * We also have to remove the log item from the AIL in this case,
3087 * as we wait for an empty AIL as part of the unmount process.
3088 */
3089 if (XFS_FORCED_SHUTDOWN(mp)) {
3090 error = XFS_ERROR(EIO);
3091 goto abort_out;
3092 }
3093
3094 /*
3095 * Get the buffer containing the on-disk inode.
3096 */
3097 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3098 0);
3099 if (error || !bp) {
3100 xfs_ifunlock(ip);
3101 return error;
3102 }
3103
3104 /*
3105 * First flush out the inode that xfs_iflush was called with.
3106 */
3107 error = xfs_iflush_int(ip, bp);
3108 if (error)
3109 goto corrupt_out;
3110
3111 /*
3112 * If the buffer is pinned then push on the log now so we won't
3113 * get stuck waiting in the write for too long.
3114 */
3115 if (xfs_buf_ispinned(bp))
3116 xfs_log_force(mp, 0);
3117
3118 /*
3119 * inode clustering:
3120 * see if other inodes can be gathered into this write
3121 */
3122 error = xfs_iflush_cluster(ip, bp);
3123 if (error)
3124 goto cluster_corrupt_out;
3125
3126 *bpp = bp;
3127 return 0;
3128
3129 corrupt_out:
3130 xfs_buf_relse(bp);
3131 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3132 cluster_corrupt_out:
3133 error = XFS_ERROR(EFSCORRUPTED);
3134 abort_out:
3135 /*
3136 * Unlocks the flush lock
3137 */
3138 xfs_iflush_abort(ip, false);
3139 return error;
3140 }
3141
3142 STATIC int
3143 xfs_iflush_int(
3144 struct xfs_inode *ip,
3145 struct xfs_buf *bp)
3146 {
3147 struct xfs_inode_log_item *iip = ip->i_itemp;
3148 struct xfs_dinode *dip;
3149 struct xfs_mount *mp = ip->i_mount;
3150
3151 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3152 ASSERT(xfs_isiflocked(ip));
3153 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3154 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3155 ASSERT(iip != NULL && iip->ili_fields != 0);
3156
3157 /* set *dip = inode's place in the buffer */
3158 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
3159
3160 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3161 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3162 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3163 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3164 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3165 goto corrupt_out;
3166 }
3167 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3168 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3169 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3170 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3171 __func__, ip->i_ino, ip, ip->i_d.di_magic);
3172 goto corrupt_out;
3173 }
3174 if (S_ISREG(ip->i_d.di_mode)) {
3175 if (XFS_TEST_ERROR(
3176 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3177 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3178 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3179 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3180 "%s: Bad regular inode %Lu, ptr 0x%p",
3181 __func__, ip->i_ino, ip);
3182 goto corrupt_out;
3183 }
3184 } else if (S_ISDIR(ip->i_d.di_mode)) {
3185 if (XFS_TEST_ERROR(
3186 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3187 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3188 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3189 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3190 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3191 "%s: Bad directory inode %Lu, ptr 0x%p",
3192 __func__, ip->i_ino, ip);
3193 goto corrupt_out;
3194 }
3195 }
3196 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3197 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3198 XFS_RANDOM_IFLUSH_5)) {
3199 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3200 "%s: detected corrupt incore inode %Lu, "
3201 "total extents = %d, nblocks = %Ld, ptr 0x%p",
3202 __func__, ip->i_ino,
3203 ip->i_d.di_nextents + ip->i_d.di_anextents,
3204 ip->i_d.di_nblocks, ip);
3205 goto corrupt_out;
3206 }
3207 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3208 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3209 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3210 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3211 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3212 goto corrupt_out;
3213 }
3214
3215 /*
3216 * Inode item log recovery for v1/v2 inodes are dependent on the
3217 * di_flushiter count for correct sequencing. We bump the flush
3218 * iteration count so we can detect flushes which postdate a log record
3219 * during recovery. This is redundant as we now log every change and
3220 * hence this can't happen but we need to still do it to ensure
3221 * backwards compatibility with old kernels that predate logging all
3222 * inode changes.
3223 */
3224 if (ip->i_d.di_version < 3)
3225 ip->i_d.di_flushiter++;
3226
3227 /*
3228 * Copy the dirty parts of the inode into the on-disk
3229 * inode. We always copy out the core of the inode,
3230 * because if the inode is dirty at all the core must
3231 * be.
3232 */
3233 xfs_dinode_to_disk(dip, &ip->i_d);
3234
3235 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3236 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3237 ip->i_d.di_flushiter = 0;
3238
3239 /*
3240 * If this is really an old format inode and the superblock version
3241 * has not been updated to support only new format inodes, then
3242 * convert back to the old inode format. If the superblock version
3243 * has been updated, then make the conversion permanent.
3244 */
3245 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
3246 if (ip->i_d.di_version == 1) {
3247 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
3248 /*
3249 * Convert it back.
3250 */
3251 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3252 dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
3253 } else {
3254 /*
3255 * The superblock version has already been bumped,
3256 * so just make the conversion to the new inode
3257 * format permanent.
3258 */
3259 ip->i_d.di_version = 2;
3260 dip->di_version = 2;
3261 ip->i_d.di_onlink = 0;
3262 dip->di_onlink = 0;
3263 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3264 memset(&(dip->di_pad[0]), 0,
3265 sizeof(dip->di_pad));
3266 ASSERT(xfs_get_projid(ip) == 0);
3267 }
3268 }
3269
3270 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
3271 if (XFS_IFORK_Q(ip))
3272 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3273 xfs_inobp_check(mp, bp);
3274
3275 /*
3276 * We've recorded everything logged in the inode, so we'd like to clear
3277 * the ili_fields bits so we don't log and flush things unnecessarily.
3278 * However, we can't stop logging all this information until the data
3279 * we've copied into the disk buffer is written to disk. If we did we
3280 * might overwrite the copy of the inode in the log with all the data
3281 * after re-logging only part of it, and in the face of a crash we
3282 * wouldn't have all the data we need to recover.
3283 *
3284 * What we do is move the bits to the ili_last_fields field. When
3285 * logging the inode, these bits are moved back to the ili_fields field.
3286 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3287 * know that the information those bits represent is permanently on
3288 * disk. As long as the flush completes before the inode is logged
3289 * again, then both ili_fields and ili_last_fields will be cleared.
3290 *
3291 * We can play with the ili_fields bits here, because the inode lock
3292 * must be held exclusively in order to set bits there and the flush
3293 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3294 * done routine can tell whether or not to look in the AIL. Also, store
3295 * the current LSN of the inode so that we can tell whether the item has
3296 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3297 * need the AIL lock, because it is a 64 bit value that cannot be read
3298 * atomically.
3299 */
3300 iip->ili_last_fields = iip->ili_fields;
3301 iip->ili_fields = 0;
3302 iip->ili_logged = 1;
3303
3304 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3305 &iip->ili_item.li_lsn);
3306
3307 /*
3308 * Attach the function xfs_iflush_done to the inode's
3309 * buffer. This will remove the inode from the AIL
3310 * and unlock the inode's flush lock when the inode is
3311 * completely written to disk.
3312 */
3313 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3314
3315 /* update the lsn in the on disk inode if required */
3316 if (ip->i_d.di_version == 3)
3317 dip->di_lsn = cpu_to_be64(iip->ili_item.li_lsn);
3318
3319 /* generate the checksum. */
3320 xfs_dinode_calc_crc(mp, dip);
3321
3322 ASSERT(bp->b_fspriv != NULL);
3323 ASSERT(bp->b_iodone != NULL);
3324 return 0;
3325
3326 corrupt_out:
3327 return XFS_ERROR(EFSCORRUPTED);
3328 }
This page took 0.115804 seconds and 5 git commands to generate.