Merge branch 'xfs-efi-rework' into for-next
[deliverable/linux.git] / fs / xfs / xfs_inode.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include <linux/log2.h>
19
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_shared.h"
23 #include "xfs_format.h"
24 #include "xfs_log_format.h"
25 #include "xfs_trans_resv.h"
26 #include "xfs_sb.h"
27 #include "xfs_mount.h"
28 #include "xfs_inode.h"
29 #include "xfs_da_format.h"
30 #include "xfs_da_btree.h"
31 #include "xfs_dir2.h"
32 #include "xfs_attr_sf.h"
33 #include "xfs_attr.h"
34 #include "xfs_trans_space.h"
35 #include "xfs_trans.h"
36 #include "xfs_buf_item.h"
37 #include "xfs_inode_item.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_bmap.h"
40 #include "xfs_bmap_util.h"
41 #include "xfs_error.h"
42 #include "xfs_quota.h"
43 #include "xfs_filestream.h"
44 #include "xfs_cksum.h"
45 #include "xfs_trace.h"
46 #include "xfs_icache.h"
47 #include "xfs_symlink.h"
48 #include "xfs_trans_priv.h"
49 #include "xfs_log.h"
50 #include "xfs_bmap_btree.h"
51
52 kmem_zone_t *xfs_inode_zone;
53
54 /*
55 * Used in xfs_itruncate_extents(). This is the maximum number of extents
56 * freed from a file in a single transaction.
57 */
58 #define XFS_ITRUNC_MAX_EXTENTS 2
59
60 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
61
62 STATIC int xfs_iunlink_remove(xfs_trans_t *, xfs_inode_t *);
63
64 /*
65 * helper function to extract extent size hint from inode
66 */
67 xfs_extlen_t
68 xfs_get_extsz_hint(
69 struct xfs_inode *ip)
70 {
71 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
72 return ip->i_d.di_extsize;
73 if (XFS_IS_REALTIME_INODE(ip))
74 return ip->i_mount->m_sb.sb_rextsize;
75 return 0;
76 }
77
78 /*
79 * These two are wrapper routines around the xfs_ilock() routine used to
80 * centralize some grungy code. They are used in places that wish to lock the
81 * inode solely for reading the extents. The reason these places can't just
82 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
83 * bringing in of the extents from disk for a file in b-tree format. If the
84 * inode is in b-tree format, then we need to lock the inode exclusively until
85 * the extents are read in. Locking it exclusively all the time would limit
86 * our parallelism unnecessarily, though. What we do instead is check to see
87 * if the extents have been read in yet, and only lock the inode exclusively
88 * if they have not.
89 *
90 * The functions return a value which should be given to the corresponding
91 * xfs_iunlock() call.
92 */
93 uint
94 xfs_ilock_data_map_shared(
95 struct xfs_inode *ip)
96 {
97 uint lock_mode = XFS_ILOCK_SHARED;
98
99 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
100 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
101 lock_mode = XFS_ILOCK_EXCL;
102 xfs_ilock(ip, lock_mode);
103 return lock_mode;
104 }
105
106 uint
107 xfs_ilock_attr_map_shared(
108 struct xfs_inode *ip)
109 {
110 uint lock_mode = XFS_ILOCK_SHARED;
111
112 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
113 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
114 lock_mode = XFS_ILOCK_EXCL;
115 xfs_ilock(ip, lock_mode);
116 return lock_mode;
117 }
118
119 /*
120 * The xfs inode contains 3 multi-reader locks: the i_iolock the i_mmap_lock and
121 * the i_lock. This routine allows various combinations of the locks to be
122 * obtained.
123 *
124 * The 3 locks should always be ordered so that the IO lock is obtained first,
125 * the mmap lock second and the ilock last in order to prevent deadlock.
126 *
127 * Basic locking order:
128 *
129 * i_iolock -> i_mmap_lock -> page_lock -> i_ilock
130 *
131 * mmap_sem locking order:
132 *
133 * i_iolock -> page lock -> mmap_sem
134 * mmap_sem -> i_mmap_lock -> page_lock
135 *
136 * The difference in mmap_sem locking order mean that we cannot hold the
137 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
138 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
139 * in get_user_pages() to map the user pages into the kernel address space for
140 * direct IO. Similarly the i_iolock cannot be taken inside a page fault because
141 * page faults already hold the mmap_sem.
142 *
143 * Hence to serialise fully against both syscall and mmap based IO, we need to
144 * take both the i_iolock and the i_mmap_lock. These locks should *only* be both
145 * taken in places where we need to invalidate the page cache in a race
146 * free manner (e.g. truncate, hole punch and other extent manipulation
147 * functions).
148 */
149 void
150 xfs_ilock(
151 xfs_inode_t *ip,
152 uint lock_flags)
153 {
154 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
155
156 /*
157 * You can't set both SHARED and EXCL for the same lock,
158 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
159 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
160 */
161 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
162 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
163 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
164 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
165 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
166 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
167 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
168
169 if (lock_flags & XFS_IOLOCK_EXCL)
170 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
171 else if (lock_flags & XFS_IOLOCK_SHARED)
172 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
173
174 if (lock_flags & XFS_MMAPLOCK_EXCL)
175 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
176 else if (lock_flags & XFS_MMAPLOCK_SHARED)
177 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
178
179 if (lock_flags & XFS_ILOCK_EXCL)
180 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
181 else if (lock_flags & XFS_ILOCK_SHARED)
182 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
183 }
184
185 /*
186 * This is just like xfs_ilock(), except that the caller
187 * is guaranteed not to sleep. It returns 1 if it gets
188 * the requested locks and 0 otherwise. If the IO lock is
189 * obtained but the inode lock cannot be, then the IO lock
190 * is dropped before returning.
191 *
192 * ip -- the inode being locked
193 * lock_flags -- this parameter indicates the inode's locks to be
194 * to be locked. See the comment for xfs_ilock() for a list
195 * of valid values.
196 */
197 int
198 xfs_ilock_nowait(
199 xfs_inode_t *ip,
200 uint lock_flags)
201 {
202 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
203
204 /*
205 * You can't set both SHARED and EXCL for the same lock,
206 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
207 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
208 */
209 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
210 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
211 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
212 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
213 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
214 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
215 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
216
217 if (lock_flags & XFS_IOLOCK_EXCL) {
218 if (!mrtryupdate(&ip->i_iolock))
219 goto out;
220 } else if (lock_flags & XFS_IOLOCK_SHARED) {
221 if (!mrtryaccess(&ip->i_iolock))
222 goto out;
223 }
224
225 if (lock_flags & XFS_MMAPLOCK_EXCL) {
226 if (!mrtryupdate(&ip->i_mmaplock))
227 goto out_undo_iolock;
228 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
229 if (!mrtryaccess(&ip->i_mmaplock))
230 goto out_undo_iolock;
231 }
232
233 if (lock_flags & XFS_ILOCK_EXCL) {
234 if (!mrtryupdate(&ip->i_lock))
235 goto out_undo_mmaplock;
236 } else if (lock_flags & XFS_ILOCK_SHARED) {
237 if (!mrtryaccess(&ip->i_lock))
238 goto out_undo_mmaplock;
239 }
240 return 1;
241
242 out_undo_mmaplock:
243 if (lock_flags & XFS_MMAPLOCK_EXCL)
244 mrunlock_excl(&ip->i_mmaplock);
245 else if (lock_flags & XFS_MMAPLOCK_SHARED)
246 mrunlock_shared(&ip->i_mmaplock);
247 out_undo_iolock:
248 if (lock_flags & XFS_IOLOCK_EXCL)
249 mrunlock_excl(&ip->i_iolock);
250 else if (lock_flags & XFS_IOLOCK_SHARED)
251 mrunlock_shared(&ip->i_iolock);
252 out:
253 return 0;
254 }
255
256 /*
257 * xfs_iunlock() is used to drop the inode locks acquired with
258 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
259 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
260 * that we know which locks to drop.
261 *
262 * ip -- the inode being unlocked
263 * lock_flags -- this parameter indicates the inode's locks to be
264 * to be unlocked. See the comment for xfs_ilock() for a list
265 * of valid values for this parameter.
266 *
267 */
268 void
269 xfs_iunlock(
270 xfs_inode_t *ip,
271 uint lock_flags)
272 {
273 /*
274 * You can't set both SHARED and EXCL for the same lock,
275 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
276 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
277 */
278 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
279 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
280 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
281 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
282 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
283 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
284 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
285 ASSERT(lock_flags != 0);
286
287 if (lock_flags & XFS_IOLOCK_EXCL)
288 mrunlock_excl(&ip->i_iolock);
289 else if (lock_flags & XFS_IOLOCK_SHARED)
290 mrunlock_shared(&ip->i_iolock);
291
292 if (lock_flags & XFS_MMAPLOCK_EXCL)
293 mrunlock_excl(&ip->i_mmaplock);
294 else if (lock_flags & XFS_MMAPLOCK_SHARED)
295 mrunlock_shared(&ip->i_mmaplock);
296
297 if (lock_flags & XFS_ILOCK_EXCL)
298 mrunlock_excl(&ip->i_lock);
299 else if (lock_flags & XFS_ILOCK_SHARED)
300 mrunlock_shared(&ip->i_lock);
301
302 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
303 }
304
305 /*
306 * give up write locks. the i/o lock cannot be held nested
307 * if it is being demoted.
308 */
309 void
310 xfs_ilock_demote(
311 xfs_inode_t *ip,
312 uint lock_flags)
313 {
314 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
315 ASSERT((lock_flags &
316 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
317
318 if (lock_flags & XFS_ILOCK_EXCL)
319 mrdemote(&ip->i_lock);
320 if (lock_flags & XFS_MMAPLOCK_EXCL)
321 mrdemote(&ip->i_mmaplock);
322 if (lock_flags & XFS_IOLOCK_EXCL)
323 mrdemote(&ip->i_iolock);
324
325 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
326 }
327
328 #if defined(DEBUG) || defined(XFS_WARN)
329 int
330 xfs_isilocked(
331 xfs_inode_t *ip,
332 uint lock_flags)
333 {
334 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
335 if (!(lock_flags & XFS_ILOCK_SHARED))
336 return !!ip->i_lock.mr_writer;
337 return rwsem_is_locked(&ip->i_lock.mr_lock);
338 }
339
340 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
341 if (!(lock_flags & XFS_MMAPLOCK_SHARED))
342 return !!ip->i_mmaplock.mr_writer;
343 return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
344 }
345
346 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
347 if (!(lock_flags & XFS_IOLOCK_SHARED))
348 return !!ip->i_iolock.mr_writer;
349 return rwsem_is_locked(&ip->i_iolock.mr_lock);
350 }
351
352 ASSERT(0);
353 return 0;
354 }
355 #endif
356
357 #ifdef DEBUG
358 int xfs_locked_n;
359 int xfs_small_retries;
360 int xfs_middle_retries;
361 int xfs_lots_retries;
362 int xfs_lock_delays;
363 #endif
364
365 /*
366 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
367 * value. This shouldn't be called for page fault locking, but we also need to
368 * ensure we don't overrun the number of lockdep subclasses for the iolock or
369 * mmaplock as that is limited to 12 by the mmap lock lockdep annotations.
370 */
371 static inline int
372 xfs_lock_inumorder(int lock_mode, int subclass)
373 {
374 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
375 ASSERT(subclass + XFS_LOCK_INUMORDER <
376 (1 << (XFS_MMAPLOCK_SHIFT - XFS_IOLOCK_SHIFT)));
377 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_IOLOCK_SHIFT;
378 }
379
380 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
381 ASSERT(subclass + XFS_LOCK_INUMORDER <
382 (1 << (XFS_ILOCK_SHIFT - XFS_MMAPLOCK_SHIFT)));
383 lock_mode |= (subclass + XFS_LOCK_INUMORDER) <<
384 XFS_MMAPLOCK_SHIFT;
385 }
386
387 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))
388 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_ILOCK_SHIFT;
389
390 return lock_mode;
391 }
392
393 /*
394 * The following routine will lock n inodes in exclusive mode. We assume the
395 * caller calls us with the inodes in i_ino order.
396 *
397 * We need to detect deadlock where an inode that we lock is in the AIL and we
398 * start waiting for another inode that is locked by a thread in a long running
399 * transaction (such as truncate). This can result in deadlock since the long
400 * running trans might need to wait for the inode we just locked in order to
401 * push the tail and free space in the log.
402 */
403 void
404 xfs_lock_inodes(
405 xfs_inode_t **ips,
406 int inodes,
407 uint lock_mode)
408 {
409 int attempts = 0, i, j, try_lock;
410 xfs_log_item_t *lp;
411
412 /* currently supports between 2 and 5 inodes */
413 ASSERT(ips && inodes >= 2 && inodes <= 5);
414
415 try_lock = 0;
416 i = 0;
417 again:
418 for (; i < inodes; i++) {
419 ASSERT(ips[i]);
420
421 if (i && (ips[i] == ips[i - 1])) /* Already locked */
422 continue;
423
424 /*
425 * If try_lock is not set yet, make sure all locked inodes are
426 * not in the AIL. If any are, set try_lock to be used later.
427 */
428 if (!try_lock) {
429 for (j = (i - 1); j >= 0 && !try_lock; j--) {
430 lp = (xfs_log_item_t *)ips[j]->i_itemp;
431 if (lp && (lp->li_flags & XFS_LI_IN_AIL))
432 try_lock++;
433 }
434 }
435
436 /*
437 * If any of the previous locks we have locked is in the AIL,
438 * we must TRY to get the second and subsequent locks. If
439 * we can't get any, we must release all we have
440 * and try again.
441 */
442 if (!try_lock) {
443 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
444 continue;
445 }
446
447 /* try_lock means we have an inode locked that is in the AIL. */
448 ASSERT(i != 0);
449 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
450 continue;
451
452 /*
453 * Unlock all previous guys and try again. xfs_iunlock will try
454 * to push the tail if the inode is in the AIL.
455 */
456 attempts++;
457 for (j = i - 1; j >= 0; j--) {
458 /*
459 * Check to see if we've already unlocked this one. Not
460 * the first one going back, and the inode ptr is the
461 * same.
462 */
463 if (j != (i - 1) && ips[j] == ips[j + 1])
464 continue;
465
466 xfs_iunlock(ips[j], lock_mode);
467 }
468
469 if ((attempts % 5) == 0) {
470 delay(1); /* Don't just spin the CPU */
471 #ifdef DEBUG
472 xfs_lock_delays++;
473 #endif
474 }
475 i = 0;
476 try_lock = 0;
477 goto again;
478 }
479
480 #ifdef DEBUG
481 if (attempts) {
482 if (attempts < 5) xfs_small_retries++;
483 else if (attempts < 100) xfs_middle_retries++;
484 else xfs_lots_retries++;
485 } else {
486 xfs_locked_n++;
487 }
488 #endif
489 }
490
491 /*
492 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
493 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
494 * lock more than one at a time, lockdep will report false positives saying we
495 * have violated locking orders.
496 */
497 void
498 xfs_lock_two_inodes(
499 xfs_inode_t *ip0,
500 xfs_inode_t *ip1,
501 uint lock_mode)
502 {
503 xfs_inode_t *temp;
504 int attempts = 0;
505 xfs_log_item_t *lp;
506
507 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
508 ASSERT(!(lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
509 ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
510 } else if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))
511 ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
512
513 ASSERT(ip0->i_ino != ip1->i_ino);
514
515 if (ip0->i_ino > ip1->i_ino) {
516 temp = ip0;
517 ip0 = ip1;
518 ip1 = temp;
519 }
520
521 again:
522 xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
523
524 /*
525 * If the first lock we have locked is in the AIL, we must TRY to get
526 * the second lock. If we can't get it, we must release the first one
527 * and try again.
528 */
529 lp = (xfs_log_item_t *)ip0->i_itemp;
530 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
531 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
532 xfs_iunlock(ip0, lock_mode);
533 if ((++attempts % 5) == 0)
534 delay(1); /* Don't just spin the CPU */
535 goto again;
536 }
537 } else {
538 xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
539 }
540 }
541
542
543 void
544 __xfs_iflock(
545 struct xfs_inode *ip)
546 {
547 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
548 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
549
550 do {
551 prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
552 if (xfs_isiflocked(ip))
553 io_schedule();
554 } while (!xfs_iflock_nowait(ip));
555
556 finish_wait(wq, &wait.wait);
557 }
558
559 STATIC uint
560 _xfs_dic2xflags(
561 __uint16_t di_flags)
562 {
563 uint flags = 0;
564
565 if (di_flags & XFS_DIFLAG_ANY) {
566 if (di_flags & XFS_DIFLAG_REALTIME)
567 flags |= XFS_XFLAG_REALTIME;
568 if (di_flags & XFS_DIFLAG_PREALLOC)
569 flags |= XFS_XFLAG_PREALLOC;
570 if (di_flags & XFS_DIFLAG_IMMUTABLE)
571 flags |= XFS_XFLAG_IMMUTABLE;
572 if (di_flags & XFS_DIFLAG_APPEND)
573 flags |= XFS_XFLAG_APPEND;
574 if (di_flags & XFS_DIFLAG_SYNC)
575 flags |= XFS_XFLAG_SYNC;
576 if (di_flags & XFS_DIFLAG_NOATIME)
577 flags |= XFS_XFLAG_NOATIME;
578 if (di_flags & XFS_DIFLAG_NODUMP)
579 flags |= XFS_XFLAG_NODUMP;
580 if (di_flags & XFS_DIFLAG_RTINHERIT)
581 flags |= XFS_XFLAG_RTINHERIT;
582 if (di_flags & XFS_DIFLAG_PROJINHERIT)
583 flags |= XFS_XFLAG_PROJINHERIT;
584 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
585 flags |= XFS_XFLAG_NOSYMLINKS;
586 if (di_flags & XFS_DIFLAG_EXTSIZE)
587 flags |= XFS_XFLAG_EXTSIZE;
588 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
589 flags |= XFS_XFLAG_EXTSZINHERIT;
590 if (di_flags & XFS_DIFLAG_NODEFRAG)
591 flags |= XFS_XFLAG_NODEFRAG;
592 if (di_flags & XFS_DIFLAG_FILESTREAM)
593 flags |= XFS_XFLAG_FILESTREAM;
594 }
595
596 return flags;
597 }
598
599 uint
600 xfs_ip2xflags(
601 xfs_inode_t *ip)
602 {
603 xfs_icdinode_t *dic = &ip->i_d;
604
605 return _xfs_dic2xflags(dic->di_flags) |
606 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
607 }
608
609 uint
610 xfs_dic2xflags(
611 xfs_dinode_t *dip)
612 {
613 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
614 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
615 }
616
617 /*
618 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
619 * is allowed, otherwise it has to be an exact match. If a CI match is found,
620 * ci_name->name will point to a the actual name (caller must free) or
621 * will be set to NULL if an exact match is found.
622 */
623 int
624 xfs_lookup(
625 xfs_inode_t *dp,
626 struct xfs_name *name,
627 xfs_inode_t **ipp,
628 struct xfs_name *ci_name)
629 {
630 xfs_ino_t inum;
631 int error;
632 uint lock_mode;
633
634 trace_xfs_lookup(dp, name);
635
636 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
637 return -EIO;
638
639 lock_mode = xfs_ilock_data_map_shared(dp);
640 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
641 xfs_iunlock(dp, lock_mode);
642
643 if (error)
644 goto out;
645
646 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
647 if (error)
648 goto out_free_name;
649
650 return 0;
651
652 out_free_name:
653 if (ci_name)
654 kmem_free(ci_name->name);
655 out:
656 *ipp = NULL;
657 return error;
658 }
659
660 /*
661 * Allocate an inode on disk and return a copy of its in-core version.
662 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
663 * appropriately within the inode. The uid and gid for the inode are
664 * set according to the contents of the given cred structure.
665 *
666 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
667 * has a free inode available, call xfs_iget() to obtain the in-core
668 * version of the allocated inode. Finally, fill in the inode and
669 * log its initial contents. In this case, ialloc_context would be
670 * set to NULL.
671 *
672 * If xfs_dialloc() does not have an available inode, it will replenish
673 * its supply by doing an allocation. Since we can only do one
674 * allocation within a transaction without deadlocks, we must commit
675 * the current transaction before returning the inode itself.
676 * In this case, therefore, we will set ialloc_context and return.
677 * The caller should then commit the current transaction, start a new
678 * transaction, and call xfs_ialloc() again to actually get the inode.
679 *
680 * To ensure that some other process does not grab the inode that
681 * was allocated during the first call to xfs_ialloc(), this routine
682 * also returns the [locked] bp pointing to the head of the freelist
683 * as ialloc_context. The caller should hold this buffer across
684 * the commit and pass it back into this routine on the second call.
685 *
686 * If we are allocating quota inodes, we do not have a parent inode
687 * to attach to or associate with (i.e. pip == NULL) because they
688 * are not linked into the directory structure - they are attached
689 * directly to the superblock - and so have no parent.
690 */
691 int
692 xfs_ialloc(
693 xfs_trans_t *tp,
694 xfs_inode_t *pip,
695 umode_t mode,
696 xfs_nlink_t nlink,
697 xfs_dev_t rdev,
698 prid_t prid,
699 int okalloc,
700 xfs_buf_t **ialloc_context,
701 xfs_inode_t **ipp)
702 {
703 struct xfs_mount *mp = tp->t_mountp;
704 xfs_ino_t ino;
705 xfs_inode_t *ip;
706 uint flags;
707 int error;
708 struct timespec tv;
709
710 /*
711 * Call the space management code to pick
712 * the on-disk inode to be allocated.
713 */
714 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
715 ialloc_context, &ino);
716 if (error)
717 return error;
718 if (*ialloc_context || ino == NULLFSINO) {
719 *ipp = NULL;
720 return 0;
721 }
722 ASSERT(*ialloc_context == NULL);
723
724 /*
725 * Get the in-core inode with the lock held exclusively.
726 * This is because we're setting fields here we need
727 * to prevent others from looking at until we're done.
728 */
729 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
730 XFS_ILOCK_EXCL, &ip);
731 if (error)
732 return error;
733 ASSERT(ip != NULL);
734
735 /*
736 * We always convert v1 inodes to v2 now - we only support filesystems
737 * with >= v2 inode capability, so there is no reason for ever leaving
738 * an inode in v1 format.
739 */
740 if (ip->i_d.di_version == 1)
741 ip->i_d.di_version = 2;
742
743 ip->i_d.di_mode = mode;
744 ip->i_d.di_onlink = 0;
745 ip->i_d.di_nlink = nlink;
746 ASSERT(ip->i_d.di_nlink == nlink);
747 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
748 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
749 xfs_set_projid(ip, prid);
750 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
751
752 if (pip && XFS_INHERIT_GID(pip)) {
753 ip->i_d.di_gid = pip->i_d.di_gid;
754 if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
755 ip->i_d.di_mode |= S_ISGID;
756 }
757 }
758
759 /*
760 * If the group ID of the new file does not match the effective group
761 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
762 * (and only if the irix_sgid_inherit compatibility variable is set).
763 */
764 if ((irix_sgid_inherit) &&
765 (ip->i_d.di_mode & S_ISGID) &&
766 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) {
767 ip->i_d.di_mode &= ~S_ISGID;
768 }
769
770 ip->i_d.di_size = 0;
771 ip->i_d.di_nextents = 0;
772 ASSERT(ip->i_d.di_nblocks == 0);
773
774 tv = current_fs_time(mp->m_super);
775 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
776 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
777 ip->i_d.di_atime = ip->i_d.di_mtime;
778 ip->i_d.di_ctime = ip->i_d.di_mtime;
779
780 /*
781 * di_gen will have been taken care of in xfs_iread.
782 */
783 ip->i_d.di_extsize = 0;
784 ip->i_d.di_dmevmask = 0;
785 ip->i_d.di_dmstate = 0;
786 ip->i_d.di_flags = 0;
787
788 if (ip->i_d.di_version == 3) {
789 ASSERT(ip->i_d.di_ino == ino);
790 ASSERT(uuid_equal(&ip->i_d.di_uuid, &mp->m_sb.sb_uuid));
791 ip->i_d.di_crc = 0;
792 ip->i_d.di_changecount = 1;
793 ip->i_d.di_lsn = 0;
794 ip->i_d.di_flags2 = 0;
795 memset(&(ip->i_d.di_pad2[0]), 0, sizeof(ip->i_d.di_pad2));
796 ip->i_d.di_crtime = ip->i_d.di_mtime;
797 }
798
799
800 flags = XFS_ILOG_CORE;
801 switch (mode & S_IFMT) {
802 case S_IFIFO:
803 case S_IFCHR:
804 case S_IFBLK:
805 case S_IFSOCK:
806 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
807 ip->i_df.if_u2.if_rdev = rdev;
808 ip->i_df.if_flags = 0;
809 flags |= XFS_ILOG_DEV;
810 break;
811 case S_IFREG:
812 case S_IFDIR:
813 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
814 uint di_flags = 0;
815
816 if (S_ISDIR(mode)) {
817 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
818 di_flags |= XFS_DIFLAG_RTINHERIT;
819 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
820 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
821 ip->i_d.di_extsize = pip->i_d.di_extsize;
822 }
823 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
824 di_flags |= XFS_DIFLAG_PROJINHERIT;
825 } else if (S_ISREG(mode)) {
826 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
827 di_flags |= XFS_DIFLAG_REALTIME;
828 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
829 di_flags |= XFS_DIFLAG_EXTSIZE;
830 ip->i_d.di_extsize = pip->i_d.di_extsize;
831 }
832 }
833 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
834 xfs_inherit_noatime)
835 di_flags |= XFS_DIFLAG_NOATIME;
836 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
837 xfs_inherit_nodump)
838 di_flags |= XFS_DIFLAG_NODUMP;
839 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
840 xfs_inherit_sync)
841 di_flags |= XFS_DIFLAG_SYNC;
842 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
843 xfs_inherit_nosymlinks)
844 di_flags |= XFS_DIFLAG_NOSYMLINKS;
845 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
846 xfs_inherit_nodefrag)
847 di_flags |= XFS_DIFLAG_NODEFRAG;
848 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
849 di_flags |= XFS_DIFLAG_FILESTREAM;
850 ip->i_d.di_flags |= di_flags;
851 }
852 /* FALLTHROUGH */
853 case S_IFLNK:
854 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
855 ip->i_df.if_flags = XFS_IFEXTENTS;
856 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
857 ip->i_df.if_u1.if_extents = NULL;
858 break;
859 default:
860 ASSERT(0);
861 }
862 /*
863 * Attribute fork settings for new inode.
864 */
865 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
866 ip->i_d.di_anextents = 0;
867
868 /*
869 * Log the new values stuffed into the inode.
870 */
871 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
872 xfs_trans_log_inode(tp, ip, flags);
873
874 /* now that we have an i_mode we can setup the inode structure */
875 xfs_setup_inode(ip);
876
877 *ipp = ip;
878 return 0;
879 }
880
881 /*
882 * Allocates a new inode from disk and return a pointer to the
883 * incore copy. This routine will internally commit the current
884 * transaction and allocate a new one if the Space Manager needed
885 * to do an allocation to replenish the inode free-list.
886 *
887 * This routine is designed to be called from xfs_create and
888 * xfs_create_dir.
889 *
890 */
891 int
892 xfs_dir_ialloc(
893 xfs_trans_t **tpp, /* input: current transaction;
894 output: may be a new transaction. */
895 xfs_inode_t *dp, /* directory within whose allocate
896 the inode. */
897 umode_t mode,
898 xfs_nlink_t nlink,
899 xfs_dev_t rdev,
900 prid_t prid, /* project id */
901 int okalloc, /* ok to allocate new space */
902 xfs_inode_t **ipp, /* pointer to inode; it will be
903 locked. */
904 int *committed)
905
906 {
907 xfs_trans_t *tp;
908 xfs_inode_t *ip;
909 xfs_buf_t *ialloc_context = NULL;
910 int code;
911 void *dqinfo;
912 uint tflags;
913
914 tp = *tpp;
915 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
916
917 /*
918 * xfs_ialloc will return a pointer to an incore inode if
919 * the Space Manager has an available inode on the free
920 * list. Otherwise, it will do an allocation and replenish
921 * the freelist. Since we can only do one allocation per
922 * transaction without deadlocks, we will need to commit the
923 * current transaction and start a new one. We will then
924 * need to call xfs_ialloc again to get the inode.
925 *
926 * If xfs_ialloc did an allocation to replenish the freelist,
927 * it returns the bp containing the head of the freelist as
928 * ialloc_context. We will hold a lock on it across the
929 * transaction commit so that no other process can steal
930 * the inode(s) that we've just allocated.
931 */
932 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
933 &ialloc_context, &ip);
934
935 /*
936 * Return an error if we were unable to allocate a new inode.
937 * This should only happen if we run out of space on disk or
938 * encounter a disk error.
939 */
940 if (code) {
941 *ipp = NULL;
942 return code;
943 }
944 if (!ialloc_context && !ip) {
945 *ipp = NULL;
946 return -ENOSPC;
947 }
948
949 /*
950 * If the AGI buffer is non-NULL, then we were unable to get an
951 * inode in one operation. We need to commit the current
952 * transaction and call xfs_ialloc() again. It is guaranteed
953 * to succeed the second time.
954 */
955 if (ialloc_context) {
956 /*
957 * Normally, xfs_trans_commit releases all the locks.
958 * We call bhold to hang on to the ialloc_context across
959 * the commit. Holding this buffer prevents any other
960 * processes from doing any allocations in this
961 * allocation group.
962 */
963 xfs_trans_bhold(tp, ialloc_context);
964
965 /*
966 * We want the quota changes to be associated with the next
967 * transaction, NOT this one. So, detach the dqinfo from this
968 * and attach it to the next transaction.
969 */
970 dqinfo = NULL;
971 tflags = 0;
972 if (tp->t_dqinfo) {
973 dqinfo = (void *)tp->t_dqinfo;
974 tp->t_dqinfo = NULL;
975 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
976 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
977 }
978
979 code = xfs_trans_roll(&tp, 0);
980 if (committed != NULL)
981 *committed = 1;
982
983 /*
984 * Re-attach the quota info that we detached from prev trx.
985 */
986 if (dqinfo) {
987 tp->t_dqinfo = dqinfo;
988 tp->t_flags |= tflags;
989 }
990
991 if (code) {
992 xfs_buf_relse(ialloc_context);
993 *tpp = tp;
994 *ipp = NULL;
995 return code;
996 }
997 xfs_trans_bjoin(tp, ialloc_context);
998
999 /*
1000 * Call ialloc again. Since we've locked out all
1001 * other allocations in this allocation group,
1002 * this call should always succeed.
1003 */
1004 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1005 okalloc, &ialloc_context, &ip);
1006
1007 /*
1008 * If we get an error at this point, return to the caller
1009 * so that the current transaction can be aborted.
1010 */
1011 if (code) {
1012 *tpp = tp;
1013 *ipp = NULL;
1014 return code;
1015 }
1016 ASSERT(!ialloc_context && ip);
1017
1018 } else {
1019 if (committed != NULL)
1020 *committed = 0;
1021 }
1022
1023 *ipp = ip;
1024 *tpp = tp;
1025
1026 return 0;
1027 }
1028
1029 /*
1030 * Decrement the link count on an inode & log the change.
1031 * If this causes the link count to go to zero, initiate the
1032 * logging activity required to truncate a file.
1033 */
1034 int /* error */
1035 xfs_droplink(
1036 xfs_trans_t *tp,
1037 xfs_inode_t *ip)
1038 {
1039 int error;
1040
1041 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1042
1043 ASSERT (ip->i_d.di_nlink > 0);
1044 ip->i_d.di_nlink--;
1045 drop_nlink(VFS_I(ip));
1046 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1047
1048 error = 0;
1049 if (ip->i_d.di_nlink == 0) {
1050 /*
1051 * We're dropping the last link to this file.
1052 * Move the on-disk inode to the AGI unlinked list.
1053 * From xfs_inactive() we will pull the inode from
1054 * the list and free it.
1055 */
1056 error = xfs_iunlink(tp, ip);
1057 }
1058 return error;
1059 }
1060
1061 /*
1062 * Increment the link count on an inode & log the change.
1063 */
1064 int
1065 xfs_bumplink(
1066 xfs_trans_t *tp,
1067 xfs_inode_t *ip)
1068 {
1069 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1070
1071 ASSERT(ip->i_d.di_version > 1);
1072 ASSERT(ip->i_d.di_nlink > 0 || (VFS_I(ip)->i_state & I_LINKABLE));
1073 ip->i_d.di_nlink++;
1074 inc_nlink(VFS_I(ip));
1075 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1076 return 0;
1077 }
1078
1079 int
1080 xfs_create(
1081 xfs_inode_t *dp,
1082 struct xfs_name *name,
1083 umode_t mode,
1084 xfs_dev_t rdev,
1085 xfs_inode_t **ipp)
1086 {
1087 int is_dir = S_ISDIR(mode);
1088 struct xfs_mount *mp = dp->i_mount;
1089 struct xfs_inode *ip = NULL;
1090 struct xfs_trans *tp = NULL;
1091 int error;
1092 xfs_bmap_free_t free_list;
1093 xfs_fsblock_t first_block;
1094 bool unlock_dp_on_error = false;
1095 int committed;
1096 prid_t prid;
1097 struct xfs_dquot *udqp = NULL;
1098 struct xfs_dquot *gdqp = NULL;
1099 struct xfs_dquot *pdqp = NULL;
1100 struct xfs_trans_res *tres;
1101 uint resblks;
1102
1103 trace_xfs_create(dp, name);
1104
1105 if (XFS_FORCED_SHUTDOWN(mp))
1106 return -EIO;
1107
1108 prid = xfs_get_initial_prid(dp);
1109
1110 /*
1111 * Make sure that we have allocated dquot(s) on disk.
1112 */
1113 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1114 xfs_kgid_to_gid(current_fsgid()), prid,
1115 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1116 &udqp, &gdqp, &pdqp);
1117 if (error)
1118 return error;
1119
1120 if (is_dir) {
1121 rdev = 0;
1122 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1123 tres = &M_RES(mp)->tr_mkdir;
1124 tp = xfs_trans_alloc(mp, XFS_TRANS_MKDIR);
1125 } else {
1126 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1127 tres = &M_RES(mp)->tr_create;
1128 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE);
1129 }
1130
1131 /*
1132 * Initially assume that the file does not exist and
1133 * reserve the resources for that case. If that is not
1134 * the case we'll drop the one we have and get a more
1135 * appropriate transaction later.
1136 */
1137 error = xfs_trans_reserve(tp, tres, resblks, 0);
1138 if (error == -ENOSPC) {
1139 /* flush outstanding delalloc blocks and retry */
1140 xfs_flush_inodes(mp);
1141 error = xfs_trans_reserve(tp, tres, resblks, 0);
1142 }
1143 if (error == -ENOSPC) {
1144 /* No space at all so try a "no-allocation" reservation */
1145 resblks = 0;
1146 error = xfs_trans_reserve(tp, tres, 0, 0);
1147 }
1148 if (error)
1149 goto out_trans_cancel;
1150
1151
1152 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1153 unlock_dp_on_error = true;
1154
1155 xfs_bmap_init(&free_list, &first_block);
1156
1157 /*
1158 * Reserve disk quota and the inode.
1159 */
1160 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1161 pdqp, resblks, 1, 0);
1162 if (error)
1163 goto out_trans_cancel;
1164
1165 if (!resblks) {
1166 error = xfs_dir_canenter(tp, dp, name);
1167 if (error)
1168 goto out_trans_cancel;
1169 }
1170
1171 /*
1172 * A newly created regular or special file just has one directory
1173 * entry pointing to them, but a directory also the "." entry
1174 * pointing to itself.
1175 */
1176 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
1177 prid, resblks > 0, &ip, &committed);
1178 if (error)
1179 goto out_trans_cancel;
1180
1181 /*
1182 * Now we join the directory inode to the transaction. We do not do it
1183 * earlier because xfs_dir_ialloc might commit the previous transaction
1184 * (and release all the locks). An error from here on will result in
1185 * the transaction cancel unlocking dp so don't do it explicitly in the
1186 * error path.
1187 */
1188 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1189 unlock_dp_on_error = false;
1190
1191 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1192 &first_block, &free_list, resblks ?
1193 resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1194 if (error) {
1195 ASSERT(error != -ENOSPC);
1196 goto out_trans_cancel;
1197 }
1198 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1199 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1200
1201 if (is_dir) {
1202 error = xfs_dir_init(tp, ip, dp);
1203 if (error)
1204 goto out_bmap_cancel;
1205
1206 error = xfs_bumplink(tp, dp);
1207 if (error)
1208 goto out_bmap_cancel;
1209 }
1210
1211 /*
1212 * If this is a synchronous mount, make sure that the
1213 * create transaction goes to disk before returning to
1214 * the user.
1215 */
1216 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1217 xfs_trans_set_sync(tp);
1218
1219 /*
1220 * Attach the dquot(s) to the inodes and modify them incore.
1221 * These ids of the inode couldn't have changed since the new
1222 * inode has been locked ever since it was created.
1223 */
1224 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1225
1226 error = xfs_bmap_finish(&tp, &free_list, &committed);
1227 if (error)
1228 goto out_bmap_cancel;
1229
1230 error = xfs_trans_commit(tp);
1231 if (error)
1232 goto out_release_inode;
1233
1234 xfs_qm_dqrele(udqp);
1235 xfs_qm_dqrele(gdqp);
1236 xfs_qm_dqrele(pdqp);
1237
1238 *ipp = ip;
1239 return 0;
1240
1241 out_bmap_cancel:
1242 xfs_bmap_cancel(&free_list);
1243 out_trans_cancel:
1244 xfs_trans_cancel(tp);
1245 out_release_inode:
1246 /*
1247 * Wait until after the current transaction is aborted to finish the
1248 * setup of the inode and release the inode. This prevents recursive
1249 * transactions and deadlocks from xfs_inactive.
1250 */
1251 if (ip) {
1252 xfs_finish_inode_setup(ip);
1253 IRELE(ip);
1254 }
1255
1256 xfs_qm_dqrele(udqp);
1257 xfs_qm_dqrele(gdqp);
1258 xfs_qm_dqrele(pdqp);
1259
1260 if (unlock_dp_on_error)
1261 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1262 return error;
1263 }
1264
1265 int
1266 xfs_create_tmpfile(
1267 struct xfs_inode *dp,
1268 struct dentry *dentry,
1269 umode_t mode,
1270 struct xfs_inode **ipp)
1271 {
1272 struct xfs_mount *mp = dp->i_mount;
1273 struct xfs_inode *ip = NULL;
1274 struct xfs_trans *tp = NULL;
1275 int error;
1276 prid_t prid;
1277 struct xfs_dquot *udqp = NULL;
1278 struct xfs_dquot *gdqp = NULL;
1279 struct xfs_dquot *pdqp = NULL;
1280 struct xfs_trans_res *tres;
1281 uint resblks;
1282
1283 if (XFS_FORCED_SHUTDOWN(mp))
1284 return -EIO;
1285
1286 prid = xfs_get_initial_prid(dp);
1287
1288 /*
1289 * Make sure that we have allocated dquot(s) on disk.
1290 */
1291 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1292 xfs_kgid_to_gid(current_fsgid()), prid,
1293 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1294 &udqp, &gdqp, &pdqp);
1295 if (error)
1296 return error;
1297
1298 resblks = XFS_IALLOC_SPACE_RES(mp);
1299 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE_TMPFILE);
1300
1301 tres = &M_RES(mp)->tr_create_tmpfile;
1302 error = xfs_trans_reserve(tp, tres, resblks, 0);
1303 if (error == -ENOSPC) {
1304 /* No space at all so try a "no-allocation" reservation */
1305 resblks = 0;
1306 error = xfs_trans_reserve(tp, tres, 0, 0);
1307 }
1308 if (error)
1309 goto out_trans_cancel;
1310
1311 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1312 pdqp, resblks, 1, 0);
1313 if (error)
1314 goto out_trans_cancel;
1315
1316 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0,
1317 prid, resblks > 0, &ip, NULL);
1318 if (error)
1319 goto out_trans_cancel;
1320
1321 if (mp->m_flags & XFS_MOUNT_WSYNC)
1322 xfs_trans_set_sync(tp);
1323
1324 /*
1325 * Attach the dquot(s) to the inodes and modify them incore.
1326 * These ids of the inode couldn't have changed since the new
1327 * inode has been locked ever since it was created.
1328 */
1329 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1330
1331 ip->i_d.di_nlink--;
1332 error = xfs_iunlink(tp, ip);
1333 if (error)
1334 goto out_trans_cancel;
1335
1336 error = xfs_trans_commit(tp);
1337 if (error)
1338 goto out_release_inode;
1339
1340 xfs_qm_dqrele(udqp);
1341 xfs_qm_dqrele(gdqp);
1342 xfs_qm_dqrele(pdqp);
1343
1344 *ipp = ip;
1345 return 0;
1346
1347 out_trans_cancel:
1348 xfs_trans_cancel(tp);
1349 out_release_inode:
1350 /*
1351 * Wait until after the current transaction is aborted to finish the
1352 * setup of the inode and release the inode. This prevents recursive
1353 * transactions and deadlocks from xfs_inactive.
1354 */
1355 if (ip) {
1356 xfs_finish_inode_setup(ip);
1357 IRELE(ip);
1358 }
1359
1360 xfs_qm_dqrele(udqp);
1361 xfs_qm_dqrele(gdqp);
1362 xfs_qm_dqrele(pdqp);
1363
1364 return error;
1365 }
1366
1367 int
1368 xfs_link(
1369 xfs_inode_t *tdp,
1370 xfs_inode_t *sip,
1371 struct xfs_name *target_name)
1372 {
1373 xfs_mount_t *mp = tdp->i_mount;
1374 xfs_trans_t *tp;
1375 int error;
1376 xfs_bmap_free_t free_list;
1377 xfs_fsblock_t first_block;
1378 int committed;
1379 int resblks;
1380
1381 trace_xfs_link(tdp, target_name);
1382
1383 ASSERT(!S_ISDIR(sip->i_d.di_mode));
1384
1385 if (XFS_FORCED_SHUTDOWN(mp))
1386 return -EIO;
1387
1388 error = xfs_qm_dqattach(sip, 0);
1389 if (error)
1390 goto std_return;
1391
1392 error = xfs_qm_dqattach(tdp, 0);
1393 if (error)
1394 goto std_return;
1395
1396 tp = xfs_trans_alloc(mp, XFS_TRANS_LINK);
1397 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1398 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, resblks, 0);
1399 if (error == -ENOSPC) {
1400 resblks = 0;
1401 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, 0, 0);
1402 }
1403 if (error)
1404 goto error_return;
1405
1406 xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1407
1408 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1409 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1410
1411 /*
1412 * If we are using project inheritance, we only allow hard link
1413 * creation in our tree when the project IDs are the same; else
1414 * the tree quota mechanism could be circumvented.
1415 */
1416 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1417 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1418 error = -EXDEV;
1419 goto error_return;
1420 }
1421
1422 if (!resblks) {
1423 error = xfs_dir_canenter(tp, tdp, target_name);
1424 if (error)
1425 goto error_return;
1426 }
1427
1428 xfs_bmap_init(&free_list, &first_block);
1429
1430 if (sip->i_d.di_nlink == 0) {
1431 error = xfs_iunlink_remove(tp, sip);
1432 if (error)
1433 goto error_return;
1434 }
1435
1436 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1437 &first_block, &free_list, resblks);
1438 if (error)
1439 goto error_return;
1440 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1441 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1442
1443 error = xfs_bumplink(tp, sip);
1444 if (error)
1445 goto error_return;
1446
1447 /*
1448 * If this is a synchronous mount, make sure that the
1449 * link transaction goes to disk before returning to
1450 * the user.
1451 */
1452 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) {
1453 xfs_trans_set_sync(tp);
1454 }
1455
1456 error = xfs_bmap_finish (&tp, &free_list, &committed);
1457 if (error) {
1458 xfs_bmap_cancel(&free_list);
1459 goto error_return;
1460 }
1461
1462 return xfs_trans_commit(tp);
1463
1464 error_return:
1465 xfs_trans_cancel(tp);
1466 std_return:
1467 return error;
1468 }
1469
1470 /*
1471 * Free up the underlying blocks past new_size. The new size must be smaller
1472 * than the current size. This routine can be used both for the attribute and
1473 * data fork, and does not modify the inode size, which is left to the caller.
1474 *
1475 * The transaction passed to this routine must have made a permanent log
1476 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1477 * given transaction and start new ones, so make sure everything involved in
1478 * the transaction is tidy before calling here. Some transaction will be
1479 * returned to the caller to be committed. The incoming transaction must
1480 * already include the inode, and both inode locks must be held exclusively.
1481 * The inode must also be "held" within the transaction. On return the inode
1482 * will be "held" within the returned transaction. This routine does NOT
1483 * require any disk space to be reserved for it within the transaction.
1484 *
1485 * If we get an error, we must return with the inode locked and linked into the
1486 * current transaction. This keeps things simple for the higher level code,
1487 * because it always knows that the inode is locked and held in the transaction
1488 * that returns to it whether errors occur or not. We don't mark the inode
1489 * dirty on error so that transactions can be easily aborted if possible.
1490 */
1491 int
1492 xfs_itruncate_extents(
1493 struct xfs_trans **tpp,
1494 struct xfs_inode *ip,
1495 int whichfork,
1496 xfs_fsize_t new_size)
1497 {
1498 struct xfs_mount *mp = ip->i_mount;
1499 struct xfs_trans *tp = *tpp;
1500 xfs_bmap_free_t free_list;
1501 xfs_fsblock_t first_block;
1502 xfs_fileoff_t first_unmap_block;
1503 xfs_fileoff_t last_block;
1504 xfs_filblks_t unmap_len;
1505 int committed;
1506 int error = 0;
1507 int done = 0;
1508
1509 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1510 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1511 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1512 ASSERT(new_size <= XFS_ISIZE(ip));
1513 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1514 ASSERT(ip->i_itemp != NULL);
1515 ASSERT(ip->i_itemp->ili_lock_flags == 0);
1516 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1517
1518 trace_xfs_itruncate_extents_start(ip, new_size);
1519
1520 /*
1521 * Since it is possible for space to become allocated beyond
1522 * the end of the file (in a crash where the space is allocated
1523 * but the inode size is not yet updated), simply remove any
1524 * blocks which show up between the new EOF and the maximum
1525 * possible file size. If the first block to be removed is
1526 * beyond the maximum file size (ie it is the same as last_block),
1527 * then there is nothing to do.
1528 */
1529 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1530 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1531 if (first_unmap_block == last_block)
1532 return 0;
1533
1534 ASSERT(first_unmap_block < last_block);
1535 unmap_len = last_block - first_unmap_block + 1;
1536 while (!done) {
1537 xfs_bmap_init(&free_list, &first_block);
1538 error = xfs_bunmapi(tp, ip,
1539 first_unmap_block, unmap_len,
1540 xfs_bmapi_aflag(whichfork),
1541 XFS_ITRUNC_MAX_EXTENTS,
1542 &first_block, &free_list,
1543 &done);
1544 if (error)
1545 goto out_bmap_cancel;
1546
1547 /*
1548 * Duplicate the transaction that has the permanent
1549 * reservation and commit the old transaction.
1550 */
1551 error = xfs_bmap_finish(&tp, &free_list, &committed);
1552 if (committed)
1553 xfs_trans_ijoin(tp, ip, 0);
1554 if (error)
1555 goto out_bmap_cancel;
1556
1557 error = xfs_trans_roll(&tp, ip);
1558 if (error)
1559 goto out;
1560 }
1561
1562 /*
1563 * Always re-log the inode so that our permanent transaction can keep
1564 * on rolling it forward in the log.
1565 */
1566 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1567
1568 trace_xfs_itruncate_extents_end(ip, new_size);
1569
1570 out:
1571 *tpp = tp;
1572 return error;
1573 out_bmap_cancel:
1574 /*
1575 * If the bunmapi call encounters an error, return to the caller where
1576 * the transaction can be properly aborted. We just need to make sure
1577 * we're not holding any resources that we were not when we came in.
1578 */
1579 xfs_bmap_cancel(&free_list);
1580 goto out;
1581 }
1582
1583 int
1584 xfs_release(
1585 xfs_inode_t *ip)
1586 {
1587 xfs_mount_t *mp = ip->i_mount;
1588 int error;
1589
1590 if (!S_ISREG(ip->i_d.di_mode) || (ip->i_d.di_mode == 0))
1591 return 0;
1592
1593 /* If this is a read-only mount, don't do this (would generate I/O) */
1594 if (mp->m_flags & XFS_MOUNT_RDONLY)
1595 return 0;
1596
1597 if (!XFS_FORCED_SHUTDOWN(mp)) {
1598 int truncated;
1599
1600 /*
1601 * If we previously truncated this file and removed old data
1602 * in the process, we want to initiate "early" writeout on
1603 * the last close. This is an attempt to combat the notorious
1604 * NULL files problem which is particularly noticeable from a
1605 * truncate down, buffered (re-)write (delalloc), followed by
1606 * a crash. What we are effectively doing here is
1607 * significantly reducing the time window where we'd otherwise
1608 * be exposed to that problem.
1609 */
1610 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1611 if (truncated) {
1612 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1613 if (ip->i_delayed_blks > 0) {
1614 error = filemap_flush(VFS_I(ip)->i_mapping);
1615 if (error)
1616 return error;
1617 }
1618 }
1619 }
1620
1621 if (ip->i_d.di_nlink == 0)
1622 return 0;
1623
1624 if (xfs_can_free_eofblocks(ip, false)) {
1625
1626 /*
1627 * If we can't get the iolock just skip truncating the blocks
1628 * past EOF because we could deadlock with the mmap_sem
1629 * otherwise. We'll get another chance to drop them once the
1630 * last reference to the inode is dropped, so we'll never leak
1631 * blocks permanently.
1632 *
1633 * Further, check if the inode is being opened, written and
1634 * closed frequently and we have delayed allocation blocks
1635 * outstanding (e.g. streaming writes from the NFS server),
1636 * truncating the blocks past EOF will cause fragmentation to
1637 * occur.
1638 *
1639 * In this case don't do the truncation, either, but we have to
1640 * be careful how we detect this case. Blocks beyond EOF show
1641 * up as i_delayed_blks even when the inode is clean, so we
1642 * need to truncate them away first before checking for a dirty
1643 * release. Hence on the first dirty close we will still remove
1644 * the speculative allocation, but after that we will leave it
1645 * in place.
1646 */
1647 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1648 return 0;
1649
1650 error = xfs_free_eofblocks(mp, ip, true);
1651 if (error && error != -EAGAIN)
1652 return error;
1653
1654 /* delalloc blocks after truncation means it really is dirty */
1655 if (ip->i_delayed_blks)
1656 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1657 }
1658 return 0;
1659 }
1660
1661 /*
1662 * xfs_inactive_truncate
1663 *
1664 * Called to perform a truncate when an inode becomes unlinked.
1665 */
1666 STATIC int
1667 xfs_inactive_truncate(
1668 struct xfs_inode *ip)
1669 {
1670 struct xfs_mount *mp = ip->i_mount;
1671 struct xfs_trans *tp;
1672 int error;
1673
1674 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1675 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
1676 if (error) {
1677 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1678 xfs_trans_cancel(tp);
1679 return error;
1680 }
1681
1682 xfs_ilock(ip, XFS_ILOCK_EXCL);
1683 xfs_trans_ijoin(tp, ip, 0);
1684
1685 /*
1686 * Log the inode size first to prevent stale data exposure in the event
1687 * of a system crash before the truncate completes. See the related
1688 * comment in xfs_setattr_size() for details.
1689 */
1690 ip->i_d.di_size = 0;
1691 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1692
1693 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1694 if (error)
1695 goto error_trans_cancel;
1696
1697 ASSERT(ip->i_d.di_nextents == 0);
1698
1699 error = xfs_trans_commit(tp);
1700 if (error)
1701 goto error_unlock;
1702
1703 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1704 return 0;
1705
1706 error_trans_cancel:
1707 xfs_trans_cancel(tp);
1708 error_unlock:
1709 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1710 return error;
1711 }
1712
1713 /*
1714 * xfs_inactive_ifree()
1715 *
1716 * Perform the inode free when an inode is unlinked.
1717 */
1718 STATIC int
1719 xfs_inactive_ifree(
1720 struct xfs_inode *ip)
1721 {
1722 xfs_bmap_free_t free_list;
1723 xfs_fsblock_t first_block;
1724 int committed;
1725 struct xfs_mount *mp = ip->i_mount;
1726 struct xfs_trans *tp;
1727 int error;
1728
1729 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1730
1731 /*
1732 * The ifree transaction might need to allocate blocks for record
1733 * insertion to the finobt. We don't want to fail here at ENOSPC, so
1734 * allow ifree to dip into the reserved block pool if necessary.
1735 *
1736 * Freeing large sets of inodes generally means freeing inode chunks,
1737 * directory and file data blocks, so this should be relatively safe.
1738 * Only under severe circumstances should it be possible to free enough
1739 * inodes to exhaust the reserve block pool via finobt expansion while
1740 * at the same time not creating free space in the filesystem.
1741 *
1742 * Send a warning if the reservation does happen to fail, as the inode
1743 * now remains allocated and sits on the unlinked list until the fs is
1744 * repaired.
1745 */
1746 tp->t_flags |= XFS_TRANS_RESERVE;
1747 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ifree,
1748 XFS_IFREE_SPACE_RES(mp), 0);
1749 if (error) {
1750 if (error == -ENOSPC) {
1751 xfs_warn_ratelimited(mp,
1752 "Failed to remove inode(s) from unlinked list. "
1753 "Please free space, unmount and run xfs_repair.");
1754 } else {
1755 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1756 }
1757 xfs_trans_cancel(tp);
1758 return error;
1759 }
1760
1761 xfs_ilock(ip, XFS_ILOCK_EXCL);
1762 xfs_trans_ijoin(tp, ip, 0);
1763
1764 xfs_bmap_init(&free_list, &first_block);
1765 error = xfs_ifree(tp, ip, &free_list);
1766 if (error) {
1767 /*
1768 * If we fail to free the inode, shut down. The cancel
1769 * might do that, we need to make sure. Otherwise the
1770 * inode might be lost for a long time or forever.
1771 */
1772 if (!XFS_FORCED_SHUTDOWN(mp)) {
1773 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1774 __func__, error);
1775 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1776 }
1777 xfs_trans_cancel(tp);
1778 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1779 return error;
1780 }
1781
1782 /*
1783 * Credit the quota account(s). The inode is gone.
1784 */
1785 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1786
1787 /*
1788 * Just ignore errors at this point. There is nothing we can do except
1789 * to try to keep going. Make sure it's not a silent error.
1790 */
1791 error = xfs_bmap_finish(&tp, &free_list, &committed);
1792 if (error) {
1793 xfs_notice(mp, "%s: xfs_bmap_finish returned error %d",
1794 __func__, error);
1795 xfs_bmap_cancel(&free_list);
1796 }
1797 error = xfs_trans_commit(tp);
1798 if (error)
1799 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1800 __func__, error);
1801
1802 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1803 return 0;
1804 }
1805
1806 /*
1807 * xfs_inactive
1808 *
1809 * This is called when the vnode reference count for the vnode
1810 * goes to zero. If the file has been unlinked, then it must
1811 * now be truncated. Also, we clear all of the read-ahead state
1812 * kept for the inode here since the file is now closed.
1813 */
1814 void
1815 xfs_inactive(
1816 xfs_inode_t *ip)
1817 {
1818 struct xfs_mount *mp;
1819 int error;
1820 int truncate = 0;
1821
1822 /*
1823 * If the inode is already free, then there can be nothing
1824 * to clean up here.
1825 */
1826 if (ip->i_d.di_mode == 0) {
1827 ASSERT(ip->i_df.if_real_bytes == 0);
1828 ASSERT(ip->i_df.if_broot_bytes == 0);
1829 return;
1830 }
1831
1832 mp = ip->i_mount;
1833
1834 /* If this is a read-only mount, don't do this (would generate I/O) */
1835 if (mp->m_flags & XFS_MOUNT_RDONLY)
1836 return;
1837
1838 if (ip->i_d.di_nlink != 0) {
1839 /*
1840 * force is true because we are evicting an inode from the
1841 * cache. Post-eof blocks must be freed, lest we end up with
1842 * broken free space accounting.
1843 */
1844 if (xfs_can_free_eofblocks(ip, true))
1845 xfs_free_eofblocks(mp, ip, false);
1846
1847 return;
1848 }
1849
1850 if (S_ISREG(ip->i_d.di_mode) &&
1851 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1852 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1853 truncate = 1;
1854
1855 error = xfs_qm_dqattach(ip, 0);
1856 if (error)
1857 return;
1858
1859 if (S_ISLNK(ip->i_d.di_mode))
1860 error = xfs_inactive_symlink(ip);
1861 else if (truncate)
1862 error = xfs_inactive_truncate(ip);
1863 if (error)
1864 return;
1865
1866 /*
1867 * If there are attributes associated with the file then blow them away
1868 * now. The code calls a routine that recursively deconstructs the
1869 * attribute fork. If also blows away the in-core attribute fork.
1870 */
1871 if (XFS_IFORK_Q(ip)) {
1872 error = xfs_attr_inactive(ip);
1873 if (error)
1874 return;
1875 }
1876
1877 ASSERT(!ip->i_afp);
1878 ASSERT(ip->i_d.di_anextents == 0);
1879 ASSERT(ip->i_d.di_forkoff == 0);
1880
1881 /*
1882 * Free the inode.
1883 */
1884 error = xfs_inactive_ifree(ip);
1885 if (error)
1886 return;
1887
1888 /*
1889 * Release the dquots held by inode, if any.
1890 */
1891 xfs_qm_dqdetach(ip);
1892 }
1893
1894 /*
1895 * This is called when the inode's link count goes to 0.
1896 * We place the on-disk inode on a list in the AGI. It
1897 * will be pulled from this list when the inode is freed.
1898 */
1899 int
1900 xfs_iunlink(
1901 xfs_trans_t *tp,
1902 xfs_inode_t *ip)
1903 {
1904 xfs_mount_t *mp;
1905 xfs_agi_t *agi;
1906 xfs_dinode_t *dip;
1907 xfs_buf_t *agibp;
1908 xfs_buf_t *ibp;
1909 xfs_agino_t agino;
1910 short bucket_index;
1911 int offset;
1912 int error;
1913
1914 ASSERT(ip->i_d.di_nlink == 0);
1915 ASSERT(ip->i_d.di_mode != 0);
1916
1917 mp = tp->t_mountp;
1918
1919 /*
1920 * Get the agi buffer first. It ensures lock ordering
1921 * on the list.
1922 */
1923 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1924 if (error)
1925 return error;
1926 agi = XFS_BUF_TO_AGI(agibp);
1927
1928 /*
1929 * Get the index into the agi hash table for the
1930 * list this inode will go on.
1931 */
1932 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1933 ASSERT(agino != 0);
1934 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1935 ASSERT(agi->agi_unlinked[bucket_index]);
1936 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1937
1938 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1939 /*
1940 * There is already another inode in the bucket we need
1941 * to add ourselves to. Add us at the front of the list.
1942 * Here we put the head pointer into our next pointer,
1943 * and then we fall through to point the head at us.
1944 */
1945 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1946 0, 0);
1947 if (error)
1948 return error;
1949
1950 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1951 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1952 offset = ip->i_imap.im_boffset +
1953 offsetof(xfs_dinode_t, di_next_unlinked);
1954
1955 /* need to recalc the inode CRC if appropriate */
1956 xfs_dinode_calc_crc(mp, dip);
1957
1958 xfs_trans_inode_buf(tp, ibp);
1959 xfs_trans_log_buf(tp, ibp, offset,
1960 (offset + sizeof(xfs_agino_t) - 1));
1961 xfs_inobp_check(mp, ibp);
1962 }
1963
1964 /*
1965 * Point the bucket head pointer at the inode being inserted.
1966 */
1967 ASSERT(agino != 0);
1968 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1969 offset = offsetof(xfs_agi_t, agi_unlinked) +
1970 (sizeof(xfs_agino_t) * bucket_index);
1971 xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
1972 xfs_trans_log_buf(tp, agibp, offset,
1973 (offset + sizeof(xfs_agino_t) - 1));
1974 return 0;
1975 }
1976
1977 /*
1978 * Pull the on-disk inode from the AGI unlinked list.
1979 */
1980 STATIC int
1981 xfs_iunlink_remove(
1982 xfs_trans_t *tp,
1983 xfs_inode_t *ip)
1984 {
1985 xfs_ino_t next_ino;
1986 xfs_mount_t *mp;
1987 xfs_agi_t *agi;
1988 xfs_dinode_t *dip;
1989 xfs_buf_t *agibp;
1990 xfs_buf_t *ibp;
1991 xfs_agnumber_t agno;
1992 xfs_agino_t agino;
1993 xfs_agino_t next_agino;
1994 xfs_buf_t *last_ibp;
1995 xfs_dinode_t *last_dip = NULL;
1996 short bucket_index;
1997 int offset, last_offset = 0;
1998 int error;
1999
2000 mp = tp->t_mountp;
2001 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2002
2003 /*
2004 * Get the agi buffer first. It ensures lock ordering
2005 * on the list.
2006 */
2007 error = xfs_read_agi(mp, tp, agno, &agibp);
2008 if (error)
2009 return error;
2010
2011 agi = XFS_BUF_TO_AGI(agibp);
2012
2013 /*
2014 * Get the index into the agi hash table for the
2015 * list this inode will go on.
2016 */
2017 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2018 ASSERT(agino != 0);
2019 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2020 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
2021 ASSERT(agi->agi_unlinked[bucket_index]);
2022
2023 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2024 /*
2025 * We're at the head of the list. Get the inode's on-disk
2026 * buffer to see if there is anyone after us on the list.
2027 * Only modify our next pointer if it is not already NULLAGINO.
2028 * This saves us the overhead of dealing with the buffer when
2029 * there is no need to change it.
2030 */
2031 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2032 0, 0);
2033 if (error) {
2034 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2035 __func__, error);
2036 return error;
2037 }
2038 next_agino = be32_to_cpu(dip->di_next_unlinked);
2039 ASSERT(next_agino != 0);
2040 if (next_agino != NULLAGINO) {
2041 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2042 offset = ip->i_imap.im_boffset +
2043 offsetof(xfs_dinode_t, di_next_unlinked);
2044
2045 /* need to recalc the inode CRC if appropriate */
2046 xfs_dinode_calc_crc(mp, dip);
2047
2048 xfs_trans_inode_buf(tp, ibp);
2049 xfs_trans_log_buf(tp, ibp, offset,
2050 (offset + sizeof(xfs_agino_t) - 1));
2051 xfs_inobp_check(mp, ibp);
2052 } else {
2053 xfs_trans_brelse(tp, ibp);
2054 }
2055 /*
2056 * Point the bucket head pointer at the next inode.
2057 */
2058 ASSERT(next_agino != 0);
2059 ASSERT(next_agino != agino);
2060 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2061 offset = offsetof(xfs_agi_t, agi_unlinked) +
2062 (sizeof(xfs_agino_t) * bucket_index);
2063 xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
2064 xfs_trans_log_buf(tp, agibp, offset,
2065 (offset + sizeof(xfs_agino_t) - 1));
2066 } else {
2067 /*
2068 * We need to search the list for the inode being freed.
2069 */
2070 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2071 last_ibp = NULL;
2072 while (next_agino != agino) {
2073 struct xfs_imap imap;
2074
2075 if (last_ibp)
2076 xfs_trans_brelse(tp, last_ibp);
2077
2078 imap.im_blkno = 0;
2079 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2080
2081 error = xfs_imap(mp, tp, next_ino, &imap, 0);
2082 if (error) {
2083 xfs_warn(mp,
2084 "%s: xfs_imap returned error %d.",
2085 __func__, error);
2086 return error;
2087 }
2088
2089 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2090 &last_ibp, 0, 0);
2091 if (error) {
2092 xfs_warn(mp,
2093 "%s: xfs_imap_to_bp returned error %d.",
2094 __func__, error);
2095 return error;
2096 }
2097
2098 last_offset = imap.im_boffset;
2099 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2100 ASSERT(next_agino != NULLAGINO);
2101 ASSERT(next_agino != 0);
2102 }
2103
2104 /*
2105 * Now last_ibp points to the buffer previous to us on the
2106 * unlinked list. Pull us from the list.
2107 */
2108 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2109 0, 0);
2110 if (error) {
2111 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
2112 __func__, error);
2113 return error;
2114 }
2115 next_agino = be32_to_cpu(dip->di_next_unlinked);
2116 ASSERT(next_agino != 0);
2117 ASSERT(next_agino != agino);
2118 if (next_agino != NULLAGINO) {
2119 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2120 offset = ip->i_imap.im_boffset +
2121 offsetof(xfs_dinode_t, di_next_unlinked);
2122
2123 /* need to recalc the inode CRC if appropriate */
2124 xfs_dinode_calc_crc(mp, dip);
2125
2126 xfs_trans_inode_buf(tp, ibp);
2127 xfs_trans_log_buf(tp, ibp, offset,
2128 (offset + sizeof(xfs_agino_t) - 1));
2129 xfs_inobp_check(mp, ibp);
2130 } else {
2131 xfs_trans_brelse(tp, ibp);
2132 }
2133 /*
2134 * Point the previous inode on the list to the next inode.
2135 */
2136 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2137 ASSERT(next_agino != 0);
2138 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2139
2140 /* need to recalc the inode CRC if appropriate */
2141 xfs_dinode_calc_crc(mp, last_dip);
2142
2143 xfs_trans_inode_buf(tp, last_ibp);
2144 xfs_trans_log_buf(tp, last_ibp, offset,
2145 (offset + sizeof(xfs_agino_t) - 1));
2146 xfs_inobp_check(mp, last_ibp);
2147 }
2148 return 0;
2149 }
2150
2151 /*
2152 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2153 * inodes that are in memory - they all must be marked stale and attached to
2154 * the cluster buffer.
2155 */
2156 STATIC int
2157 xfs_ifree_cluster(
2158 xfs_inode_t *free_ip,
2159 xfs_trans_t *tp,
2160 struct xfs_icluster *xic)
2161 {
2162 xfs_mount_t *mp = free_ip->i_mount;
2163 int blks_per_cluster;
2164 int inodes_per_cluster;
2165 int nbufs;
2166 int i, j;
2167 int ioffset;
2168 xfs_daddr_t blkno;
2169 xfs_buf_t *bp;
2170 xfs_inode_t *ip;
2171 xfs_inode_log_item_t *iip;
2172 xfs_log_item_t *lip;
2173 struct xfs_perag *pag;
2174 xfs_ino_t inum;
2175
2176 inum = xic->first_ino;
2177 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2178 blks_per_cluster = xfs_icluster_size_fsb(mp);
2179 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2180 nbufs = mp->m_ialloc_blks / blks_per_cluster;
2181
2182 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
2183 /*
2184 * The allocation bitmap tells us which inodes of the chunk were
2185 * physically allocated. Skip the cluster if an inode falls into
2186 * a sparse region.
2187 */
2188 ioffset = inum - xic->first_ino;
2189 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2190 ASSERT(do_mod(ioffset, inodes_per_cluster) == 0);
2191 continue;
2192 }
2193
2194 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2195 XFS_INO_TO_AGBNO(mp, inum));
2196
2197 /*
2198 * We obtain and lock the backing buffer first in the process
2199 * here, as we have to ensure that any dirty inode that we
2200 * can't get the flush lock on is attached to the buffer.
2201 * If we scan the in-memory inodes first, then buffer IO can
2202 * complete before we get a lock on it, and hence we may fail
2203 * to mark all the active inodes on the buffer stale.
2204 */
2205 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2206 mp->m_bsize * blks_per_cluster,
2207 XBF_UNMAPPED);
2208
2209 if (!bp)
2210 return -ENOMEM;
2211
2212 /*
2213 * This buffer may not have been correctly initialised as we
2214 * didn't read it from disk. That's not important because we are
2215 * only using to mark the buffer as stale in the log, and to
2216 * attach stale cached inodes on it. That means it will never be
2217 * dispatched for IO. If it is, we want to know about it, and we
2218 * want it to fail. We can acheive this by adding a write
2219 * verifier to the buffer.
2220 */
2221 bp->b_ops = &xfs_inode_buf_ops;
2222
2223 /*
2224 * Walk the inodes already attached to the buffer and mark them
2225 * stale. These will all have the flush locks held, so an
2226 * in-memory inode walk can't lock them. By marking them all
2227 * stale first, we will not attempt to lock them in the loop
2228 * below as the XFS_ISTALE flag will be set.
2229 */
2230 lip = bp->b_fspriv;
2231 while (lip) {
2232 if (lip->li_type == XFS_LI_INODE) {
2233 iip = (xfs_inode_log_item_t *)lip;
2234 ASSERT(iip->ili_logged == 1);
2235 lip->li_cb = xfs_istale_done;
2236 xfs_trans_ail_copy_lsn(mp->m_ail,
2237 &iip->ili_flush_lsn,
2238 &iip->ili_item.li_lsn);
2239 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2240 }
2241 lip = lip->li_bio_list;
2242 }
2243
2244
2245 /*
2246 * For each inode in memory attempt to add it to the inode
2247 * buffer and set it up for being staled on buffer IO
2248 * completion. This is safe as we've locked out tail pushing
2249 * and flushing by locking the buffer.
2250 *
2251 * We have already marked every inode that was part of a
2252 * transaction stale above, which means there is no point in
2253 * even trying to lock them.
2254 */
2255 for (i = 0; i < inodes_per_cluster; i++) {
2256 retry:
2257 rcu_read_lock();
2258 ip = radix_tree_lookup(&pag->pag_ici_root,
2259 XFS_INO_TO_AGINO(mp, (inum + i)));
2260
2261 /* Inode not in memory, nothing to do */
2262 if (!ip) {
2263 rcu_read_unlock();
2264 continue;
2265 }
2266
2267 /*
2268 * because this is an RCU protected lookup, we could
2269 * find a recently freed or even reallocated inode
2270 * during the lookup. We need to check under the
2271 * i_flags_lock for a valid inode here. Skip it if it
2272 * is not valid, the wrong inode or stale.
2273 */
2274 spin_lock(&ip->i_flags_lock);
2275 if (ip->i_ino != inum + i ||
2276 __xfs_iflags_test(ip, XFS_ISTALE)) {
2277 spin_unlock(&ip->i_flags_lock);
2278 rcu_read_unlock();
2279 continue;
2280 }
2281 spin_unlock(&ip->i_flags_lock);
2282
2283 /*
2284 * Don't try to lock/unlock the current inode, but we
2285 * _cannot_ skip the other inodes that we did not find
2286 * in the list attached to the buffer and are not
2287 * already marked stale. If we can't lock it, back off
2288 * and retry.
2289 */
2290 if (ip != free_ip &&
2291 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2292 rcu_read_unlock();
2293 delay(1);
2294 goto retry;
2295 }
2296 rcu_read_unlock();
2297
2298 xfs_iflock(ip);
2299 xfs_iflags_set(ip, XFS_ISTALE);
2300
2301 /*
2302 * we don't need to attach clean inodes or those only
2303 * with unlogged changes (which we throw away, anyway).
2304 */
2305 iip = ip->i_itemp;
2306 if (!iip || xfs_inode_clean(ip)) {
2307 ASSERT(ip != free_ip);
2308 xfs_ifunlock(ip);
2309 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2310 continue;
2311 }
2312
2313 iip->ili_last_fields = iip->ili_fields;
2314 iip->ili_fields = 0;
2315 iip->ili_logged = 1;
2316 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2317 &iip->ili_item.li_lsn);
2318
2319 xfs_buf_attach_iodone(bp, xfs_istale_done,
2320 &iip->ili_item);
2321
2322 if (ip != free_ip)
2323 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2324 }
2325
2326 xfs_trans_stale_inode_buf(tp, bp);
2327 xfs_trans_binval(tp, bp);
2328 }
2329
2330 xfs_perag_put(pag);
2331 return 0;
2332 }
2333
2334 /*
2335 * This is called to return an inode to the inode free list.
2336 * The inode should already be truncated to 0 length and have
2337 * no pages associated with it. This routine also assumes that
2338 * the inode is already a part of the transaction.
2339 *
2340 * The on-disk copy of the inode will have been added to the list
2341 * of unlinked inodes in the AGI. We need to remove the inode from
2342 * that list atomically with respect to freeing it here.
2343 */
2344 int
2345 xfs_ifree(
2346 xfs_trans_t *tp,
2347 xfs_inode_t *ip,
2348 xfs_bmap_free_t *flist)
2349 {
2350 int error;
2351 struct xfs_icluster xic = { 0 };
2352
2353 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2354 ASSERT(ip->i_d.di_nlink == 0);
2355 ASSERT(ip->i_d.di_nextents == 0);
2356 ASSERT(ip->i_d.di_anextents == 0);
2357 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
2358 ASSERT(ip->i_d.di_nblocks == 0);
2359
2360 /*
2361 * Pull the on-disk inode from the AGI unlinked list.
2362 */
2363 error = xfs_iunlink_remove(tp, ip);
2364 if (error)
2365 return error;
2366
2367 error = xfs_difree(tp, ip->i_ino, flist, &xic);
2368 if (error)
2369 return error;
2370
2371 ip->i_d.di_mode = 0; /* mark incore inode as free */
2372 ip->i_d.di_flags = 0;
2373 ip->i_d.di_dmevmask = 0;
2374 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2375 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2376 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2377 /*
2378 * Bump the generation count so no one will be confused
2379 * by reincarnations of this inode.
2380 */
2381 ip->i_d.di_gen++;
2382 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2383
2384 if (xic.deleted)
2385 error = xfs_ifree_cluster(ip, tp, &xic);
2386
2387 return error;
2388 }
2389
2390 /*
2391 * This is called to unpin an inode. The caller must have the inode locked
2392 * in at least shared mode so that the buffer cannot be subsequently pinned
2393 * once someone is waiting for it to be unpinned.
2394 */
2395 static void
2396 xfs_iunpin(
2397 struct xfs_inode *ip)
2398 {
2399 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2400
2401 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2402
2403 /* Give the log a push to start the unpinning I/O */
2404 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2405
2406 }
2407
2408 static void
2409 __xfs_iunpin_wait(
2410 struct xfs_inode *ip)
2411 {
2412 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2413 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2414
2415 xfs_iunpin(ip);
2416
2417 do {
2418 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2419 if (xfs_ipincount(ip))
2420 io_schedule();
2421 } while (xfs_ipincount(ip));
2422 finish_wait(wq, &wait.wait);
2423 }
2424
2425 void
2426 xfs_iunpin_wait(
2427 struct xfs_inode *ip)
2428 {
2429 if (xfs_ipincount(ip))
2430 __xfs_iunpin_wait(ip);
2431 }
2432
2433 /*
2434 * Removing an inode from the namespace involves removing the directory entry
2435 * and dropping the link count on the inode. Removing the directory entry can
2436 * result in locking an AGF (directory blocks were freed) and removing a link
2437 * count can result in placing the inode on an unlinked list which results in
2438 * locking an AGI.
2439 *
2440 * The big problem here is that we have an ordering constraint on AGF and AGI
2441 * locking - inode allocation locks the AGI, then can allocate a new extent for
2442 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2443 * removes the inode from the unlinked list, requiring that we lock the AGI
2444 * first, and then freeing the inode can result in an inode chunk being freed
2445 * and hence freeing disk space requiring that we lock an AGF.
2446 *
2447 * Hence the ordering that is imposed by other parts of the code is AGI before
2448 * AGF. This means we cannot remove the directory entry before we drop the inode
2449 * reference count and put it on the unlinked list as this results in a lock
2450 * order of AGF then AGI, and this can deadlock against inode allocation and
2451 * freeing. Therefore we must drop the link counts before we remove the
2452 * directory entry.
2453 *
2454 * This is still safe from a transactional point of view - it is not until we
2455 * get to xfs_bmap_finish() that we have the possibility of multiple
2456 * transactions in this operation. Hence as long as we remove the directory
2457 * entry and drop the link count in the first transaction of the remove
2458 * operation, there are no transactional constraints on the ordering here.
2459 */
2460 int
2461 xfs_remove(
2462 xfs_inode_t *dp,
2463 struct xfs_name *name,
2464 xfs_inode_t *ip)
2465 {
2466 xfs_mount_t *mp = dp->i_mount;
2467 xfs_trans_t *tp = NULL;
2468 int is_dir = S_ISDIR(ip->i_d.di_mode);
2469 int error = 0;
2470 xfs_bmap_free_t free_list;
2471 xfs_fsblock_t first_block;
2472 int committed;
2473 uint resblks;
2474
2475 trace_xfs_remove(dp, name);
2476
2477 if (XFS_FORCED_SHUTDOWN(mp))
2478 return -EIO;
2479
2480 error = xfs_qm_dqattach(dp, 0);
2481 if (error)
2482 goto std_return;
2483
2484 error = xfs_qm_dqattach(ip, 0);
2485 if (error)
2486 goto std_return;
2487
2488 if (is_dir)
2489 tp = xfs_trans_alloc(mp, XFS_TRANS_RMDIR);
2490 else
2491 tp = xfs_trans_alloc(mp, XFS_TRANS_REMOVE);
2492
2493 /*
2494 * We try to get the real space reservation first,
2495 * allowing for directory btree deletion(s) implying
2496 * possible bmap insert(s). If we can't get the space
2497 * reservation then we use 0 instead, and avoid the bmap
2498 * btree insert(s) in the directory code by, if the bmap
2499 * insert tries to happen, instead trimming the LAST
2500 * block from the directory.
2501 */
2502 resblks = XFS_REMOVE_SPACE_RES(mp);
2503 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, resblks, 0);
2504 if (error == -ENOSPC) {
2505 resblks = 0;
2506 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, 0, 0);
2507 }
2508 if (error) {
2509 ASSERT(error != -ENOSPC);
2510 goto out_trans_cancel;
2511 }
2512
2513 xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2514
2515 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2516 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2517
2518 /*
2519 * If we're removing a directory perform some additional validation.
2520 */
2521 if (is_dir) {
2522 ASSERT(ip->i_d.di_nlink >= 2);
2523 if (ip->i_d.di_nlink != 2) {
2524 error = -ENOTEMPTY;
2525 goto out_trans_cancel;
2526 }
2527 if (!xfs_dir_isempty(ip)) {
2528 error = -ENOTEMPTY;
2529 goto out_trans_cancel;
2530 }
2531
2532 /* Drop the link from ip's "..". */
2533 error = xfs_droplink(tp, dp);
2534 if (error)
2535 goto out_trans_cancel;
2536
2537 /* Drop the "." link from ip to self. */
2538 error = xfs_droplink(tp, ip);
2539 if (error)
2540 goto out_trans_cancel;
2541 } else {
2542 /*
2543 * When removing a non-directory we need to log the parent
2544 * inode here. For a directory this is done implicitly
2545 * by the xfs_droplink call for the ".." entry.
2546 */
2547 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2548 }
2549 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2550
2551 /* Drop the link from dp to ip. */
2552 error = xfs_droplink(tp, ip);
2553 if (error)
2554 goto out_trans_cancel;
2555
2556 xfs_bmap_init(&free_list, &first_block);
2557 error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2558 &first_block, &free_list, resblks);
2559 if (error) {
2560 ASSERT(error != -ENOENT);
2561 goto out_bmap_cancel;
2562 }
2563
2564 /*
2565 * If this is a synchronous mount, make sure that the
2566 * remove transaction goes to disk before returning to
2567 * the user.
2568 */
2569 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2570 xfs_trans_set_sync(tp);
2571
2572 error = xfs_bmap_finish(&tp, &free_list, &committed);
2573 if (error)
2574 goto out_bmap_cancel;
2575
2576 error = xfs_trans_commit(tp);
2577 if (error)
2578 goto std_return;
2579
2580 if (is_dir && xfs_inode_is_filestream(ip))
2581 xfs_filestream_deassociate(ip);
2582
2583 return 0;
2584
2585 out_bmap_cancel:
2586 xfs_bmap_cancel(&free_list);
2587 out_trans_cancel:
2588 xfs_trans_cancel(tp);
2589 std_return:
2590 return error;
2591 }
2592
2593 /*
2594 * Enter all inodes for a rename transaction into a sorted array.
2595 */
2596 #define __XFS_SORT_INODES 5
2597 STATIC void
2598 xfs_sort_for_rename(
2599 struct xfs_inode *dp1, /* in: old (source) directory inode */
2600 struct xfs_inode *dp2, /* in: new (target) directory inode */
2601 struct xfs_inode *ip1, /* in: inode of old entry */
2602 struct xfs_inode *ip2, /* in: inode of new entry */
2603 struct xfs_inode *wip, /* in: whiteout inode */
2604 struct xfs_inode **i_tab,/* out: sorted array of inodes */
2605 int *num_inodes) /* in/out: inodes in array */
2606 {
2607 int i, j;
2608
2609 ASSERT(*num_inodes == __XFS_SORT_INODES);
2610 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2611
2612 /*
2613 * i_tab contains a list of pointers to inodes. We initialize
2614 * the table here & we'll sort it. We will then use it to
2615 * order the acquisition of the inode locks.
2616 *
2617 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2618 */
2619 i = 0;
2620 i_tab[i++] = dp1;
2621 i_tab[i++] = dp2;
2622 i_tab[i++] = ip1;
2623 if (ip2)
2624 i_tab[i++] = ip2;
2625 if (wip)
2626 i_tab[i++] = wip;
2627 *num_inodes = i;
2628
2629 /*
2630 * Sort the elements via bubble sort. (Remember, there are at
2631 * most 5 elements to sort, so this is adequate.)
2632 */
2633 for (i = 0; i < *num_inodes; i++) {
2634 for (j = 1; j < *num_inodes; j++) {
2635 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2636 struct xfs_inode *temp = i_tab[j];
2637 i_tab[j] = i_tab[j-1];
2638 i_tab[j-1] = temp;
2639 }
2640 }
2641 }
2642 }
2643
2644 static int
2645 xfs_finish_rename(
2646 struct xfs_trans *tp,
2647 struct xfs_bmap_free *free_list)
2648 {
2649 int committed = 0;
2650 int error;
2651
2652 /*
2653 * If this is a synchronous mount, make sure that the rename transaction
2654 * goes to disk before returning to the user.
2655 */
2656 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2657 xfs_trans_set_sync(tp);
2658
2659 error = xfs_bmap_finish(&tp, free_list, &committed);
2660 if (error) {
2661 xfs_bmap_cancel(free_list);
2662 xfs_trans_cancel(tp);
2663 return error;
2664 }
2665
2666 return xfs_trans_commit(tp);
2667 }
2668
2669 /*
2670 * xfs_cross_rename()
2671 *
2672 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2673 */
2674 STATIC int
2675 xfs_cross_rename(
2676 struct xfs_trans *tp,
2677 struct xfs_inode *dp1,
2678 struct xfs_name *name1,
2679 struct xfs_inode *ip1,
2680 struct xfs_inode *dp2,
2681 struct xfs_name *name2,
2682 struct xfs_inode *ip2,
2683 struct xfs_bmap_free *free_list,
2684 xfs_fsblock_t *first_block,
2685 int spaceres)
2686 {
2687 int error = 0;
2688 int ip1_flags = 0;
2689 int ip2_flags = 0;
2690 int dp2_flags = 0;
2691
2692 /* Swap inode number for dirent in first parent */
2693 error = xfs_dir_replace(tp, dp1, name1,
2694 ip2->i_ino,
2695 first_block, free_list, spaceres);
2696 if (error)
2697 goto out_trans_abort;
2698
2699 /* Swap inode number for dirent in second parent */
2700 error = xfs_dir_replace(tp, dp2, name2,
2701 ip1->i_ino,
2702 first_block, free_list, spaceres);
2703 if (error)
2704 goto out_trans_abort;
2705
2706 /*
2707 * If we're renaming one or more directories across different parents,
2708 * update the respective ".." entries (and link counts) to match the new
2709 * parents.
2710 */
2711 if (dp1 != dp2) {
2712 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2713
2714 if (S_ISDIR(ip2->i_d.di_mode)) {
2715 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2716 dp1->i_ino, first_block,
2717 free_list, spaceres);
2718 if (error)
2719 goto out_trans_abort;
2720
2721 /* transfer ip2 ".." reference to dp1 */
2722 if (!S_ISDIR(ip1->i_d.di_mode)) {
2723 error = xfs_droplink(tp, dp2);
2724 if (error)
2725 goto out_trans_abort;
2726 error = xfs_bumplink(tp, dp1);
2727 if (error)
2728 goto out_trans_abort;
2729 }
2730
2731 /*
2732 * Although ip1 isn't changed here, userspace needs
2733 * to be warned about the change, so that applications
2734 * relying on it (like backup ones), will properly
2735 * notify the change
2736 */
2737 ip1_flags |= XFS_ICHGTIME_CHG;
2738 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2739 }
2740
2741 if (S_ISDIR(ip1->i_d.di_mode)) {
2742 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2743 dp2->i_ino, first_block,
2744 free_list, spaceres);
2745 if (error)
2746 goto out_trans_abort;
2747
2748 /* transfer ip1 ".." reference to dp2 */
2749 if (!S_ISDIR(ip2->i_d.di_mode)) {
2750 error = xfs_droplink(tp, dp1);
2751 if (error)
2752 goto out_trans_abort;
2753 error = xfs_bumplink(tp, dp2);
2754 if (error)
2755 goto out_trans_abort;
2756 }
2757
2758 /*
2759 * Although ip2 isn't changed here, userspace needs
2760 * to be warned about the change, so that applications
2761 * relying on it (like backup ones), will properly
2762 * notify the change
2763 */
2764 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2765 ip2_flags |= XFS_ICHGTIME_CHG;
2766 }
2767 }
2768
2769 if (ip1_flags) {
2770 xfs_trans_ichgtime(tp, ip1, ip1_flags);
2771 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2772 }
2773 if (ip2_flags) {
2774 xfs_trans_ichgtime(tp, ip2, ip2_flags);
2775 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2776 }
2777 if (dp2_flags) {
2778 xfs_trans_ichgtime(tp, dp2, dp2_flags);
2779 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2780 }
2781 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2782 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2783 return xfs_finish_rename(tp, free_list);
2784
2785 out_trans_abort:
2786 xfs_bmap_cancel(free_list);
2787 xfs_trans_cancel(tp);
2788 return error;
2789 }
2790
2791 /*
2792 * xfs_rename_alloc_whiteout()
2793 *
2794 * Return a referenced, unlinked, unlocked inode that that can be used as a
2795 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2796 * crash between allocating the inode and linking it into the rename transaction
2797 * recovery will free the inode and we won't leak it.
2798 */
2799 static int
2800 xfs_rename_alloc_whiteout(
2801 struct xfs_inode *dp,
2802 struct xfs_inode **wip)
2803 {
2804 struct xfs_inode *tmpfile;
2805 int error;
2806
2807 error = xfs_create_tmpfile(dp, NULL, S_IFCHR | WHITEOUT_MODE, &tmpfile);
2808 if (error)
2809 return error;
2810
2811 /*
2812 * Prepare the tmpfile inode as if it were created through the VFS.
2813 * Otherwise, the link increment paths will complain about nlink 0->1.
2814 * Drop the link count as done by d_tmpfile(), complete the inode setup
2815 * and flag it as linkable.
2816 */
2817 drop_nlink(VFS_I(tmpfile));
2818 xfs_finish_inode_setup(tmpfile);
2819 VFS_I(tmpfile)->i_state |= I_LINKABLE;
2820
2821 *wip = tmpfile;
2822 return 0;
2823 }
2824
2825 /*
2826 * xfs_rename
2827 */
2828 int
2829 xfs_rename(
2830 struct xfs_inode *src_dp,
2831 struct xfs_name *src_name,
2832 struct xfs_inode *src_ip,
2833 struct xfs_inode *target_dp,
2834 struct xfs_name *target_name,
2835 struct xfs_inode *target_ip,
2836 unsigned int flags)
2837 {
2838 struct xfs_mount *mp = src_dp->i_mount;
2839 struct xfs_trans *tp;
2840 struct xfs_bmap_free free_list;
2841 xfs_fsblock_t first_block;
2842 struct xfs_inode *wip = NULL; /* whiteout inode */
2843 struct xfs_inode *inodes[__XFS_SORT_INODES];
2844 int num_inodes = __XFS_SORT_INODES;
2845 bool new_parent = (src_dp != target_dp);
2846 bool src_is_directory = S_ISDIR(src_ip->i_d.di_mode);
2847 int spaceres;
2848 int error;
2849
2850 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2851
2852 if ((flags & RENAME_EXCHANGE) && !target_ip)
2853 return -EINVAL;
2854
2855 /*
2856 * If we are doing a whiteout operation, allocate the whiteout inode
2857 * we will be placing at the target and ensure the type is set
2858 * appropriately.
2859 */
2860 if (flags & RENAME_WHITEOUT) {
2861 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
2862 error = xfs_rename_alloc_whiteout(target_dp, &wip);
2863 if (error)
2864 return error;
2865
2866 /* setup target dirent info as whiteout */
2867 src_name->type = XFS_DIR3_FT_CHRDEV;
2868 }
2869
2870 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
2871 inodes, &num_inodes);
2872
2873 tp = xfs_trans_alloc(mp, XFS_TRANS_RENAME);
2874 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2875 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, spaceres, 0);
2876 if (error == -ENOSPC) {
2877 spaceres = 0;
2878 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, 0, 0);
2879 }
2880 if (error)
2881 goto out_trans_cancel;
2882
2883 /*
2884 * Attach the dquots to the inodes
2885 */
2886 error = xfs_qm_vop_rename_dqattach(inodes);
2887 if (error)
2888 goto out_trans_cancel;
2889
2890 /*
2891 * Lock all the participating inodes. Depending upon whether
2892 * the target_name exists in the target directory, and
2893 * whether the target directory is the same as the source
2894 * directory, we can lock from 2 to 4 inodes.
2895 */
2896 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2897
2898 /*
2899 * Join all the inodes to the transaction. From this point on,
2900 * we can rely on either trans_commit or trans_cancel to unlock
2901 * them.
2902 */
2903 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
2904 if (new_parent)
2905 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
2906 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2907 if (target_ip)
2908 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2909 if (wip)
2910 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
2911
2912 /*
2913 * If we are using project inheritance, we only allow renames
2914 * into our tree when the project IDs are the same; else the
2915 * tree quota mechanism would be circumvented.
2916 */
2917 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2918 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2919 error = -EXDEV;
2920 goto out_trans_cancel;
2921 }
2922
2923 xfs_bmap_init(&free_list, &first_block);
2924
2925 /* RENAME_EXCHANGE is unique from here on. */
2926 if (flags & RENAME_EXCHANGE)
2927 return xfs_cross_rename(tp, src_dp, src_name, src_ip,
2928 target_dp, target_name, target_ip,
2929 &free_list, &first_block, spaceres);
2930
2931 /*
2932 * Set up the target.
2933 */
2934 if (target_ip == NULL) {
2935 /*
2936 * If there's no space reservation, check the entry will
2937 * fit before actually inserting it.
2938 */
2939 if (!spaceres) {
2940 error = xfs_dir_canenter(tp, target_dp, target_name);
2941 if (error)
2942 goto out_trans_cancel;
2943 }
2944 /*
2945 * If target does not exist and the rename crosses
2946 * directories, adjust the target directory link count
2947 * to account for the ".." reference from the new entry.
2948 */
2949 error = xfs_dir_createname(tp, target_dp, target_name,
2950 src_ip->i_ino, &first_block,
2951 &free_list, spaceres);
2952 if (error)
2953 goto out_bmap_cancel;
2954
2955 xfs_trans_ichgtime(tp, target_dp,
2956 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2957
2958 if (new_parent && src_is_directory) {
2959 error = xfs_bumplink(tp, target_dp);
2960 if (error)
2961 goto out_bmap_cancel;
2962 }
2963 } else { /* target_ip != NULL */
2964 /*
2965 * If target exists and it's a directory, check that both
2966 * target and source are directories and that target can be
2967 * destroyed, or that neither is a directory.
2968 */
2969 if (S_ISDIR(target_ip->i_d.di_mode)) {
2970 /*
2971 * Make sure target dir is empty.
2972 */
2973 if (!(xfs_dir_isempty(target_ip)) ||
2974 (target_ip->i_d.di_nlink > 2)) {
2975 error = -EEXIST;
2976 goto out_trans_cancel;
2977 }
2978 }
2979
2980 /*
2981 * Link the source inode under the target name.
2982 * If the source inode is a directory and we are moving
2983 * it across directories, its ".." entry will be
2984 * inconsistent until we replace that down below.
2985 *
2986 * In case there is already an entry with the same
2987 * name at the destination directory, remove it first.
2988 */
2989 error = xfs_dir_replace(tp, target_dp, target_name,
2990 src_ip->i_ino,
2991 &first_block, &free_list, spaceres);
2992 if (error)
2993 goto out_bmap_cancel;
2994
2995 xfs_trans_ichgtime(tp, target_dp,
2996 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2997
2998 /*
2999 * Decrement the link count on the target since the target
3000 * dir no longer points to it.
3001 */
3002 error = xfs_droplink(tp, target_ip);
3003 if (error)
3004 goto out_bmap_cancel;
3005
3006 if (src_is_directory) {
3007 /*
3008 * Drop the link from the old "." entry.
3009 */
3010 error = xfs_droplink(tp, target_ip);
3011 if (error)
3012 goto out_bmap_cancel;
3013 }
3014 } /* target_ip != NULL */
3015
3016 /*
3017 * Remove the source.
3018 */
3019 if (new_parent && src_is_directory) {
3020 /*
3021 * Rewrite the ".." entry to point to the new
3022 * directory.
3023 */
3024 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3025 target_dp->i_ino,
3026 &first_block, &free_list, spaceres);
3027 ASSERT(error != -EEXIST);
3028 if (error)
3029 goto out_bmap_cancel;
3030 }
3031
3032 /*
3033 * We always want to hit the ctime on the source inode.
3034 *
3035 * This isn't strictly required by the standards since the source
3036 * inode isn't really being changed, but old unix file systems did
3037 * it and some incremental backup programs won't work without it.
3038 */
3039 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3040 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3041
3042 /*
3043 * Adjust the link count on src_dp. This is necessary when
3044 * renaming a directory, either within one parent when
3045 * the target existed, or across two parent directories.
3046 */
3047 if (src_is_directory && (new_parent || target_ip != NULL)) {
3048
3049 /*
3050 * Decrement link count on src_directory since the
3051 * entry that's moved no longer points to it.
3052 */
3053 error = xfs_droplink(tp, src_dp);
3054 if (error)
3055 goto out_bmap_cancel;
3056 }
3057
3058 /*
3059 * For whiteouts, we only need to update the source dirent with the
3060 * inode number of the whiteout inode rather than removing it
3061 * altogether.
3062 */
3063 if (wip) {
3064 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3065 &first_block, &free_list, spaceres);
3066 } else
3067 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3068 &first_block, &free_list, spaceres);
3069 if (error)
3070 goto out_bmap_cancel;
3071
3072 /*
3073 * For whiteouts, we need to bump the link count on the whiteout inode.
3074 * This means that failures all the way up to this point leave the inode
3075 * on the unlinked list and so cleanup is a simple matter of dropping
3076 * the remaining reference to it. If we fail here after bumping the link
3077 * count, we're shutting down the filesystem so we'll never see the
3078 * intermediate state on disk.
3079 */
3080 if (wip) {
3081 ASSERT(VFS_I(wip)->i_nlink == 0 && wip->i_d.di_nlink == 0);
3082 error = xfs_bumplink(tp, wip);
3083 if (error)
3084 goto out_bmap_cancel;
3085 error = xfs_iunlink_remove(tp, wip);
3086 if (error)
3087 goto out_bmap_cancel;
3088 xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
3089
3090 /*
3091 * Now we have a real link, clear the "I'm a tmpfile" state
3092 * flag from the inode so it doesn't accidentally get misused in
3093 * future.
3094 */
3095 VFS_I(wip)->i_state &= ~I_LINKABLE;
3096 }
3097
3098 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3099 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3100 if (new_parent)
3101 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3102
3103 error = xfs_finish_rename(tp, &free_list);
3104 if (wip)
3105 IRELE(wip);
3106 return error;
3107
3108 out_bmap_cancel:
3109 xfs_bmap_cancel(&free_list);
3110 out_trans_cancel:
3111 xfs_trans_cancel(tp);
3112 if (wip)
3113 IRELE(wip);
3114 return error;
3115 }
3116
3117 STATIC int
3118 xfs_iflush_cluster(
3119 xfs_inode_t *ip,
3120 xfs_buf_t *bp)
3121 {
3122 xfs_mount_t *mp = ip->i_mount;
3123 struct xfs_perag *pag;
3124 unsigned long first_index, mask;
3125 unsigned long inodes_per_cluster;
3126 int ilist_size;
3127 xfs_inode_t **ilist;
3128 xfs_inode_t *iq;
3129 int nr_found;
3130 int clcount = 0;
3131 int bufwasdelwri;
3132 int i;
3133
3134 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
3135
3136 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
3137 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3138 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
3139 if (!ilist)
3140 goto out_put;
3141
3142 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
3143 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3144 rcu_read_lock();
3145 /* really need a gang lookup range call here */
3146 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
3147 first_index, inodes_per_cluster);
3148 if (nr_found == 0)
3149 goto out_free;
3150
3151 for (i = 0; i < nr_found; i++) {
3152 iq = ilist[i];
3153 if (iq == ip)
3154 continue;
3155
3156 /*
3157 * because this is an RCU protected lookup, we could find a
3158 * recently freed or even reallocated inode during the lookup.
3159 * We need to check under the i_flags_lock for a valid inode
3160 * here. Skip it if it is not valid or the wrong inode.
3161 */
3162 spin_lock(&ip->i_flags_lock);
3163 if (!ip->i_ino ||
3164 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
3165 spin_unlock(&ip->i_flags_lock);
3166 continue;
3167 }
3168 spin_unlock(&ip->i_flags_lock);
3169
3170 /*
3171 * Do an un-protected check to see if the inode is dirty and
3172 * is a candidate for flushing. These checks will be repeated
3173 * later after the appropriate locks are acquired.
3174 */
3175 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
3176 continue;
3177
3178 /*
3179 * Try to get locks. If any are unavailable or it is pinned,
3180 * then this inode cannot be flushed and is skipped.
3181 */
3182
3183 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
3184 continue;
3185 if (!xfs_iflock_nowait(iq)) {
3186 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3187 continue;
3188 }
3189 if (xfs_ipincount(iq)) {
3190 xfs_ifunlock(iq);
3191 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3192 continue;
3193 }
3194
3195 /*
3196 * arriving here means that this inode can be flushed. First
3197 * re-check that it's dirty before flushing.
3198 */
3199 if (!xfs_inode_clean(iq)) {
3200 int error;
3201 error = xfs_iflush_int(iq, bp);
3202 if (error) {
3203 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3204 goto cluster_corrupt_out;
3205 }
3206 clcount++;
3207 } else {
3208 xfs_ifunlock(iq);
3209 }
3210 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3211 }
3212
3213 if (clcount) {
3214 XFS_STATS_INC(xs_icluster_flushcnt);
3215 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3216 }
3217
3218 out_free:
3219 rcu_read_unlock();
3220 kmem_free(ilist);
3221 out_put:
3222 xfs_perag_put(pag);
3223 return 0;
3224
3225
3226 cluster_corrupt_out:
3227 /*
3228 * Corruption detected in the clustering loop. Invalidate the
3229 * inode buffer and shut down the filesystem.
3230 */
3231 rcu_read_unlock();
3232 /*
3233 * Clean up the buffer. If it was delwri, just release it --
3234 * brelse can handle it with no problems. If not, shut down the
3235 * filesystem before releasing the buffer.
3236 */
3237 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
3238 if (bufwasdelwri)
3239 xfs_buf_relse(bp);
3240
3241 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3242
3243 if (!bufwasdelwri) {
3244 /*
3245 * Just like incore_relse: if we have b_iodone functions,
3246 * mark the buffer as an error and call them. Otherwise
3247 * mark it as stale and brelse.
3248 */
3249 if (bp->b_iodone) {
3250 XFS_BUF_UNDONE(bp);
3251 xfs_buf_stale(bp);
3252 xfs_buf_ioerror(bp, -EIO);
3253 xfs_buf_ioend(bp);
3254 } else {
3255 xfs_buf_stale(bp);
3256 xfs_buf_relse(bp);
3257 }
3258 }
3259
3260 /*
3261 * Unlocks the flush lock
3262 */
3263 xfs_iflush_abort(iq, false);
3264 kmem_free(ilist);
3265 xfs_perag_put(pag);
3266 return -EFSCORRUPTED;
3267 }
3268
3269 /*
3270 * Flush dirty inode metadata into the backing buffer.
3271 *
3272 * The caller must have the inode lock and the inode flush lock held. The
3273 * inode lock will still be held upon return to the caller, and the inode
3274 * flush lock will be released after the inode has reached the disk.
3275 *
3276 * The caller must write out the buffer returned in *bpp and release it.
3277 */
3278 int
3279 xfs_iflush(
3280 struct xfs_inode *ip,
3281 struct xfs_buf **bpp)
3282 {
3283 struct xfs_mount *mp = ip->i_mount;
3284 struct xfs_buf *bp;
3285 struct xfs_dinode *dip;
3286 int error;
3287
3288 XFS_STATS_INC(xs_iflush_count);
3289
3290 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3291 ASSERT(xfs_isiflocked(ip));
3292 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3293 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3294
3295 *bpp = NULL;
3296
3297 xfs_iunpin_wait(ip);
3298
3299 /*
3300 * For stale inodes we cannot rely on the backing buffer remaining
3301 * stale in cache for the remaining life of the stale inode and so
3302 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3303 * inodes below. We have to check this after ensuring the inode is
3304 * unpinned so that it is safe to reclaim the stale inode after the
3305 * flush call.
3306 */
3307 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3308 xfs_ifunlock(ip);
3309 return 0;
3310 }
3311
3312 /*
3313 * This may have been unpinned because the filesystem is shutting
3314 * down forcibly. If that's the case we must not write this inode
3315 * to disk, because the log record didn't make it to disk.
3316 *
3317 * We also have to remove the log item from the AIL in this case,
3318 * as we wait for an empty AIL as part of the unmount process.
3319 */
3320 if (XFS_FORCED_SHUTDOWN(mp)) {
3321 error = -EIO;
3322 goto abort_out;
3323 }
3324
3325 /*
3326 * Get the buffer containing the on-disk inode.
3327 */
3328 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3329 0);
3330 if (error || !bp) {
3331 xfs_ifunlock(ip);
3332 return error;
3333 }
3334
3335 /*
3336 * First flush out the inode that xfs_iflush was called with.
3337 */
3338 error = xfs_iflush_int(ip, bp);
3339 if (error)
3340 goto corrupt_out;
3341
3342 /*
3343 * If the buffer is pinned then push on the log now so we won't
3344 * get stuck waiting in the write for too long.
3345 */
3346 if (xfs_buf_ispinned(bp))
3347 xfs_log_force(mp, 0);
3348
3349 /*
3350 * inode clustering:
3351 * see if other inodes can be gathered into this write
3352 */
3353 error = xfs_iflush_cluster(ip, bp);
3354 if (error)
3355 goto cluster_corrupt_out;
3356
3357 *bpp = bp;
3358 return 0;
3359
3360 corrupt_out:
3361 xfs_buf_relse(bp);
3362 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3363 cluster_corrupt_out:
3364 error = -EFSCORRUPTED;
3365 abort_out:
3366 /*
3367 * Unlocks the flush lock
3368 */
3369 xfs_iflush_abort(ip, false);
3370 return error;
3371 }
3372
3373 STATIC int
3374 xfs_iflush_int(
3375 struct xfs_inode *ip,
3376 struct xfs_buf *bp)
3377 {
3378 struct xfs_inode_log_item *iip = ip->i_itemp;
3379 struct xfs_dinode *dip;
3380 struct xfs_mount *mp = ip->i_mount;
3381
3382 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3383 ASSERT(xfs_isiflocked(ip));
3384 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3385 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3386 ASSERT(iip != NULL && iip->ili_fields != 0);
3387 ASSERT(ip->i_d.di_version > 1);
3388
3389 /* set *dip = inode's place in the buffer */
3390 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3391
3392 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3393 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3394 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3395 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3396 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3397 goto corrupt_out;
3398 }
3399 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3400 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3401 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3402 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3403 __func__, ip->i_ino, ip, ip->i_d.di_magic);
3404 goto corrupt_out;
3405 }
3406 if (S_ISREG(ip->i_d.di_mode)) {
3407 if (XFS_TEST_ERROR(
3408 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3409 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3410 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3411 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3412 "%s: Bad regular inode %Lu, ptr 0x%p",
3413 __func__, ip->i_ino, ip);
3414 goto corrupt_out;
3415 }
3416 } else if (S_ISDIR(ip->i_d.di_mode)) {
3417 if (XFS_TEST_ERROR(
3418 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3419 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3420 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3421 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3422 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3423 "%s: Bad directory inode %Lu, ptr 0x%p",
3424 __func__, ip->i_ino, ip);
3425 goto corrupt_out;
3426 }
3427 }
3428 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3429 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3430 XFS_RANDOM_IFLUSH_5)) {
3431 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3432 "%s: detected corrupt incore inode %Lu, "
3433 "total extents = %d, nblocks = %Ld, ptr 0x%p",
3434 __func__, ip->i_ino,
3435 ip->i_d.di_nextents + ip->i_d.di_anextents,
3436 ip->i_d.di_nblocks, ip);
3437 goto corrupt_out;
3438 }
3439 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3440 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3441 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3442 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3443 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3444 goto corrupt_out;
3445 }
3446
3447 /*
3448 * Inode item log recovery for v2 inodes are dependent on the
3449 * di_flushiter count for correct sequencing. We bump the flush
3450 * iteration count so we can detect flushes which postdate a log record
3451 * during recovery. This is redundant as we now log every change and
3452 * hence this can't happen but we need to still do it to ensure
3453 * backwards compatibility with old kernels that predate logging all
3454 * inode changes.
3455 */
3456 if (ip->i_d.di_version < 3)
3457 ip->i_d.di_flushiter++;
3458
3459 /*
3460 * Copy the dirty parts of the inode into the on-disk
3461 * inode. We always copy out the core of the inode,
3462 * because if the inode is dirty at all the core must
3463 * be.
3464 */
3465 xfs_dinode_to_disk(dip, &ip->i_d);
3466
3467 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3468 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3469 ip->i_d.di_flushiter = 0;
3470
3471 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3472 if (XFS_IFORK_Q(ip))
3473 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3474 xfs_inobp_check(mp, bp);
3475
3476 /*
3477 * We've recorded everything logged in the inode, so we'd like to clear
3478 * the ili_fields bits so we don't log and flush things unnecessarily.
3479 * However, we can't stop logging all this information until the data
3480 * we've copied into the disk buffer is written to disk. If we did we
3481 * might overwrite the copy of the inode in the log with all the data
3482 * after re-logging only part of it, and in the face of a crash we
3483 * wouldn't have all the data we need to recover.
3484 *
3485 * What we do is move the bits to the ili_last_fields field. When
3486 * logging the inode, these bits are moved back to the ili_fields field.
3487 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3488 * know that the information those bits represent is permanently on
3489 * disk. As long as the flush completes before the inode is logged
3490 * again, then both ili_fields and ili_last_fields will be cleared.
3491 *
3492 * We can play with the ili_fields bits here, because the inode lock
3493 * must be held exclusively in order to set bits there and the flush
3494 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3495 * done routine can tell whether or not to look in the AIL. Also, store
3496 * the current LSN of the inode so that we can tell whether the item has
3497 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3498 * need the AIL lock, because it is a 64 bit value that cannot be read
3499 * atomically.
3500 */
3501 iip->ili_last_fields = iip->ili_fields;
3502 iip->ili_fields = 0;
3503 iip->ili_logged = 1;
3504
3505 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3506 &iip->ili_item.li_lsn);
3507
3508 /*
3509 * Attach the function xfs_iflush_done to the inode's
3510 * buffer. This will remove the inode from the AIL
3511 * and unlock the inode's flush lock when the inode is
3512 * completely written to disk.
3513 */
3514 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3515
3516 /* update the lsn in the on disk inode if required */
3517 if (ip->i_d.di_version == 3)
3518 dip->di_lsn = cpu_to_be64(iip->ili_item.li_lsn);
3519
3520 /* generate the checksum. */
3521 xfs_dinode_calc_crc(mp, dip);
3522
3523 ASSERT(bp->b_fspriv != NULL);
3524 ASSERT(bp->b_iodone != NULL);
3525 return 0;
3526
3527 corrupt_out:
3528 return -EFSCORRUPTED;
3529 }
This page took 0.146635 seconds and 6 git commands to generate.