xfs: remove xfs_iput
[deliverable/linux.git] / fs / xfs / xfs_inode_item.c
1 /*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_dinode.h"
31 #include "xfs_inode.h"
32 #include "xfs_inode_item.h"
33 #include "xfs_error.h"
34 #include "xfs_trace.h"
35
36
37 kmem_zone_t *xfs_ili_zone; /* inode log item zone */
38
39 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
40 {
41 return container_of(lip, struct xfs_inode_log_item, ili_item);
42 }
43
44
45 /*
46 * This returns the number of iovecs needed to log the given inode item.
47 *
48 * We need one iovec for the inode log format structure, one for the
49 * inode core, and possibly one for the inode data/extents/b-tree root
50 * and one for the inode attribute data/extents/b-tree root.
51 */
52 STATIC uint
53 xfs_inode_item_size(
54 struct xfs_log_item *lip)
55 {
56 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
57 struct xfs_inode *ip = iip->ili_inode;
58 uint nvecs = 2;
59
60 /*
61 * Only log the data/extents/b-tree root if there is something
62 * left to log.
63 */
64 iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
65
66 switch (ip->i_d.di_format) {
67 case XFS_DINODE_FMT_EXTENTS:
68 iip->ili_format.ilf_fields &=
69 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
70 XFS_ILOG_DEV | XFS_ILOG_UUID);
71 if ((iip->ili_format.ilf_fields & XFS_ILOG_DEXT) &&
72 (ip->i_d.di_nextents > 0) &&
73 (ip->i_df.if_bytes > 0)) {
74 ASSERT(ip->i_df.if_u1.if_extents != NULL);
75 nvecs++;
76 } else {
77 iip->ili_format.ilf_fields &= ~XFS_ILOG_DEXT;
78 }
79 break;
80
81 case XFS_DINODE_FMT_BTREE:
82 ASSERT(ip->i_df.if_ext_max ==
83 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t));
84 iip->ili_format.ilf_fields &=
85 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
86 XFS_ILOG_DEV | XFS_ILOG_UUID);
87 if ((iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) &&
88 (ip->i_df.if_broot_bytes > 0)) {
89 ASSERT(ip->i_df.if_broot != NULL);
90 nvecs++;
91 } else {
92 ASSERT(!(iip->ili_format.ilf_fields &
93 XFS_ILOG_DBROOT));
94 #ifdef XFS_TRANS_DEBUG
95 if (iip->ili_root_size > 0) {
96 ASSERT(iip->ili_root_size ==
97 ip->i_df.if_broot_bytes);
98 ASSERT(memcmp(iip->ili_orig_root,
99 ip->i_df.if_broot,
100 iip->ili_root_size) == 0);
101 } else {
102 ASSERT(ip->i_df.if_broot_bytes == 0);
103 }
104 #endif
105 iip->ili_format.ilf_fields &= ~XFS_ILOG_DBROOT;
106 }
107 break;
108
109 case XFS_DINODE_FMT_LOCAL:
110 iip->ili_format.ilf_fields &=
111 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
112 XFS_ILOG_DEV | XFS_ILOG_UUID);
113 if ((iip->ili_format.ilf_fields & XFS_ILOG_DDATA) &&
114 (ip->i_df.if_bytes > 0)) {
115 ASSERT(ip->i_df.if_u1.if_data != NULL);
116 ASSERT(ip->i_d.di_size > 0);
117 nvecs++;
118 } else {
119 iip->ili_format.ilf_fields &= ~XFS_ILOG_DDATA;
120 }
121 break;
122
123 case XFS_DINODE_FMT_DEV:
124 iip->ili_format.ilf_fields &=
125 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
126 XFS_ILOG_DEXT | XFS_ILOG_UUID);
127 break;
128
129 case XFS_DINODE_FMT_UUID:
130 iip->ili_format.ilf_fields &=
131 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
132 XFS_ILOG_DEXT | XFS_ILOG_DEV);
133 break;
134
135 default:
136 ASSERT(0);
137 break;
138 }
139
140 /*
141 * If there are no attributes associated with this file,
142 * then there cannot be anything more to log.
143 * Clear all attribute-related log flags.
144 */
145 if (!XFS_IFORK_Q(ip)) {
146 iip->ili_format.ilf_fields &=
147 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
148 return nvecs;
149 }
150
151 /*
152 * Log any necessary attribute data.
153 */
154 switch (ip->i_d.di_aformat) {
155 case XFS_DINODE_FMT_EXTENTS:
156 iip->ili_format.ilf_fields &=
157 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
158 if ((iip->ili_format.ilf_fields & XFS_ILOG_AEXT) &&
159 (ip->i_d.di_anextents > 0) &&
160 (ip->i_afp->if_bytes > 0)) {
161 ASSERT(ip->i_afp->if_u1.if_extents != NULL);
162 nvecs++;
163 } else {
164 iip->ili_format.ilf_fields &= ~XFS_ILOG_AEXT;
165 }
166 break;
167
168 case XFS_DINODE_FMT_BTREE:
169 iip->ili_format.ilf_fields &=
170 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
171 if ((iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) &&
172 (ip->i_afp->if_broot_bytes > 0)) {
173 ASSERT(ip->i_afp->if_broot != NULL);
174 nvecs++;
175 } else {
176 iip->ili_format.ilf_fields &= ~XFS_ILOG_ABROOT;
177 }
178 break;
179
180 case XFS_DINODE_FMT_LOCAL:
181 iip->ili_format.ilf_fields &=
182 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
183 if ((iip->ili_format.ilf_fields & XFS_ILOG_ADATA) &&
184 (ip->i_afp->if_bytes > 0)) {
185 ASSERT(ip->i_afp->if_u1.if_data != NULL);
186 nvecs++;
187 } else {
188 iip->ili_format.ilf_fields &= ~XFS_ILOG_ADATA;
189 }
190 break;
191
192 default:
193 ASSERT(0);
194 break;
195 }
196
197 return nvecs;
198 }
199
200 /*
201 * This is called to fill in the vector of log iovecs for the
202 * given inode log item. It fills the first item with an inode
203 * log format structure, the second with the on-disk inode structure,
204 * and a possible third and/or fourth with the inode data/extents/b-tree
205 * root and inode attributes data/extents/b-tree root.
206 */
207 STATIC void
208 xfs_inode_item_format(
209 struct xfs_log_item *lip,
210 struct xfs_log_iovec *vecp)
211 {
212 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
213 struct xfs_inode *ip = iip->ili_inode;
214 uint nvecs;
215 size_t data_bytes;
216 xfs_bmbt_rec_t *ext_buffer;
217 int nrecs;
218 xfs_mount_t *mp;
219
220 vecp->i_addr = &iip->ili_format;
221 vecp->i_len = sizeof(xfs_inode_log_format_t);
222 vecp->i_type = XLOG_REG_TYPE_IFORMAT;
223 vecp++;
224 nvecs = 1;
225
226 /*
227 * Make sure the linux inode is dirty. We do this before
228 * clearing i_update_core as the VFS will call back into
229 * XFS here and set i_update_core, so we need to dirty the
230 * inode first so that the ordering of i_update_core and
231 * unlogged modifications still works as described below.
232 */
233 xfs_mark_inode_dirty_sync(ip);
234
235 /*
236 * Clear i_update_core if the timestamps (or any other
237 * non-transactional modification) need flushing/logging
238 * and we're about to log them with the rest of the core.
239 *
240 * This is the same logic as xfs_iflush() but this code can't
241 * run at the same time as xfs_iflush because we're in commit
242 * processing here and so we have the inode lock held in
243 * exclusive mode. Although it doesn't really matter
244 * for the timestamps if both routines were to grab the
245 * timestamps or not. That would be ok.
246 *
247 * We clear i_update_core before copying out the data.
248 * This is for coordination with our timestamp updates
249 * that don't hold the inode lock. They will always
250 * update the timestamps BEFORE setting i_update_core,
251 * so if we clear i_update_core after they set it we
252 * are guaranteed to see their updates to the timestamps
253 * either here. Likewise, if they set it after we clear it
254 * here, we'll see it either on the next commit of this
255 * inode or the next time the inode gets flushed via
256 * xfs_iflush(). This depends on strongly ordered memory
257 * semantics, but we have that. We use the SYNCHRONIZE
258 * macro to make sure that the compiler does not reorder
259 * the i_update_core access below the data copy below.
260 */
261 if (ip->i_update_core) {
262 ip->i_update_core = 0;
263 SYNCHRONIZE();
264 }
265
266 /*
267 * Make sure to get the latest timestamps from the Linux inode.
268 */
269 xfs_synchronize_times(ip);
270
271 vecp->i_addr = &ip->i_d;
272 vecp->i_len = sizeof(struct xfs_icdinode);
273 vecp->i_type = XLOG_REG_TYPE_ICORE;
274 vecp++;
275 nvecs++;
276 iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
277
278 /*
279 * If this is really an old format inode, then we need to
280 * log it as such. This means that we have to copy the link
281 * count from the new field to the old. We don't have to worry
282 * about the new fields, because nothing trusts them as long as
283 * the old inode version number is there. If the superblock already
284 * has a new version number, then we don't bother converting back.
285 */
286 mp = ip->i_mount;
287 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
288 if (ip->i_d.di_version == 1) {
289 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
290 /*
291 * Convert it back.
292 */
293 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
294 ip->i_d.di_onlink = ip->i_d.di_nlink;
295 } else {
296 /*
297 * The superblock version has already been bumped,
298 * so just make the conversion to the new inode
299 * format permanent.
300 */
301 ip->i_d.di_version = 2;
302 ip->i_d.di_onlink = 0;
303 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
304 }
305 }
306
307 switch (ip->i_d.di_format) {
308 case XFS_DINODE_FMT_EXTENTS:
309 ASSERT(!(iip->ili_format.ilf_fields &
310 (XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
311 XFS_ILOG_DEV | XFS_ILOG_UUID)));
312 if (iip->ili_format.ilf_fields & XFS_ILOG_DEXT) {
313 ASSERT(ip->i_df.if_bytes > 0);
314 ASSERT(ip->i_df.if_u1.if_extents != NULL);
315 ASSERT(ip->i_d.di_nextents > 0);
316 ASSERT(iip->ili_extents_buf == NULL);
317 nrecs = ip->i_df.if_bytes /
318 (uint)sizeof(xfs_bmbt_rec_t);
319 ASSERT(nrecs > 0);
320 #ifdef XFS_NATIVE_HOST
321 if (nrecs == ip->i_d.di_nextents) {
322 /*
323 * There are no delayed allocation
324 * extents, so just point to the
325 * real extents array.
326 */
327 vecp->i_addr = ip->i_df.if_u1.if_extents;
328 vecp->i_len = ip->i_df.if_bytes;
329 vecp->i_type = XLOG_REG_TYPE_IEXT;
330 } else
331 #endif
332 {
333 /*
334 * There are delayed allocation extents
335 * in the inode, or we need to convert
336 * the extents to on disk format.
337 * Use xfs_iextents_copy()
338 * to copy only the real extents into
339 * a separate buffer. We'll free the
340 * buffer in the unlock routine.
341 */
342 ext_buffer = kmem_alloc(ip->i_df.if_bytes,
343 KM_SLEEP);
344 iip->ili_extents_buf = ext_buffer;
345 vecp->i_addr = ext_buffer;
346 vecp->i_len = xfs_iextents_copy(ip, ext_buffer,
347 XFS_DATA_FORK);
348 vecp->i_type = XLOG_REG_TYPE_IEXT;
349 }
350 ASSERT(vecp->i_len <= ip->i_df.if_bytes);
351 iip->ili_format.ilf_dsize = vecp->i_len;
352 vecp++;
353 nvecs++;
354 }
355 break;
356
357 case XFS_DINODE_FMT_BTREE:
358 ASSERT(!(iip->ili_format.ilf_fields &
359 (XFS_ILOG_DDATA | XFS_ILOG_DEXT |
360 XFS_ILOG_DEV | XFS_ILOG_UUID)));
361 if (iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) {
362 ASSERT(ip->i_df.if_broot_bytes > 0);
363 ASSERT(ip->i_df.if_broot != NULL);
364 vecp->i_addr = ip->i_df.if_broot;
365 vecp->i_len = ip->i_df.if_broot_bytes;
366 vecp->i_type = XLOG_REG_TYPE_IBROOT;
367 vecp++;
368 nvecs++;
369 iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes;
370 }
371 break;
372
373 case XFS_DINODE_FMT_LOCAL:
374 ASSERT(!(iip->ili_format.ilf_fields &
375 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
376 XFS_ILOG_DEV | XFS_ILOG_UUID)));
377 if (iip->ili_format.ilf_fields & XFS_ILOG_DDATA) {
378 ASSERT(ip->i_df.if_bytes > 0);
379 ASSERT(ip->i_df.if_u1.if_data != NULL);
380 ASSERT(ip->i_d.di_size > 0);
381
382 vecp->i_addr = ip->i_df.if_u1.if_data;
383 /*
384 * Round i_bytes up to a word boundary.
385 * The underlying memory is guaranteed to
386 * to be there by xfs_idata_realloc().
387 */
388 data_bytes = roundup(ip->i_df.if_bytes, 4);
389 ASSERT((ip->i_df.if_real_bytes == 0) ||
390 (ip->i_df.if_real_bytes == data_bytes));
391 vecp->i_len = (int)data_bytes;
392 vecp->i_type = XLOG_REG_TYPE_ILOCAL;
393 vecp++;
394 nvecs++;
395 iip->ili_format.ilf_dsize = (unsigned)data_bytes;
396 }
397 break;
398
399 case XFS_DINODE_FMT_DEV:
400 ASSERT(!(iip->ili_format.ilf_fields &
401 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
402 XFS_ILOG_DDATA | XFS_ILOG_UUID)));
403 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
404 iip->ili_format.ilf_u.ilfu_rdev =
405 ip->i_df.if_u2.if_rdev;
406 }
407 break;
408
409 case XFS_DINODE_FMT_UUID:
410 ASSERT(!(iip->ili_format.ilf_fields &
411 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
412 XFS_ILOG_DDATA | XFS_ILOG_DEV)));
413 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
414 iip->ili_format.ilf_u.ilfu_uuid =
415 ip->i_df.if_u2.if_uuid;
416 }
417 break;
418
419 default:
420 ASSERT(0);
421 break;
422 }
423
424 /*
425 * If there are no attributes associated with the file,
426 * then we're done.
427 * Assert that no attribute-related log flags are set.
428 */
429 if (!XFS_IFORK_Q(ip)) {
430 ASSERT(nvecs == lip->li_desc->lid_size);
431 iip->ili_format.ilf_size = nvecs;
432 ASSERT(!(iip->ili_format.ilf_fields &
433 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
434 return;
435 }
436
437 switch (ip->i_d.di_aformat) {
438 case XFS_DINODE_FMT_EXTENTS:
439 ASSERT(!(iip->ili_format.ilf_fields &
440 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT)));
441 if (iip->ili_format.ilf_fields & XFS_ILOG_AEXT) {
442 ASSERT(ip->i_afp->if_bytes > 0);
443 ASSERT(ip->i_afp->if_u1.if_extents != NULL);
444 ASSERT(ip->i_d.di_anextents > 0);
445 #ifdef DEBUG
446 nrecs = ip->i_afp->if_bytes /
447 (uint)sizeof(xfs_bmbt_rec_t);
448 #endif
449 ASSERT(nrecs > 0);
450 ASSERT(nrecs == ip->i_d.di_anextents);
451 #ifdef XFS_NATIVE_HOST
452 /*
453 * There are not delayed allocation extents
454 * for attributes, so just point at the array.
455 */
456 vecp->i_addr = ip->i_afp->if_u1.if_extents;
457 vecp->i_len = ip->i_afp->if_bytes;
458 #else
459 ASSERT(iip->ili_aextents_buf == NULL);
460 /*
461 * Need to endian flip before logging
462 */
463 ext_buffer = kmem_alloc(ip->i_afp->if_bytes,
464 KM_SLEEP);
465 iip->ili_aextents_buf = ext_buffer;
466 vecp->i_addr = ext_buffer;
467 vecp->i_len = xfs_iextents_copy(ip, ext_buffer,
468 XFS_ATTR_FORK);
469 #endif
470 vecp->i_type = XLOG_REG_TYPE_IATTR_EXT;
471 iip->ili_format.ilf_asize = vecp->i_len;
472 vecp++;
473 nvecs++;
474 }
475 break;
476
477 case XFS_DINODE_FMT_BTREE:
478 ASSERT(!(iip->ili_format.ilf_fields &
479 (XFS_ILOG_ADATA | XFS_ILOG_AEXT)));
480 if (iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) {
481 ASSERT(ip->i_afp->if_broot_bytes > 0);
482 ASSERT(ip->i_afp->if_broot != NULL);
483 vecp->i_addr = ip->i_afp->if_broot;
484 vecp->i_len = ip->i_afp->if_broot_bytes;
485 vecp->i_type = XLOG_REG_TYPE_IATTR_BROOT;
486 vecp++;
487 nvecs++;
488 iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes;
489 }
490 break;
491
492 case XFS_DINODE_FMT_LOCAL:
493 ASSERT(!(iip->ili_format.ilf_fields &
494 (XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
495 if (iip->ili_format.ilf_fields & XFS_ILOG_ADATA) {
496 ASSERT(ip->i_afp->if_bytes > 0);
497 ASSERT(ip->i_afp->if_u1.if_data != NULL);
498
499 vecp->i_addr = ip->i_afp->if_u1.if_data;
500 /*
501 * Round i_bytes up to a word boundary.
502 * The underlying memory is guaranteed to
503 * to be there by xfs_idata_realloc().
504 */
505 data_bytes = roundup(ip->i_afp->if_bytes, 4);
506 ASSERT((ip->i_afp->if_real_bytes == 0) ||
507 (ip->i_afp->if_real_bytes == data_bytes));
508 vecp->i_len = (int)data_bytes;
509 vecp->i_type = XLOG_REG_TYPE_IATTR_LOCAL;
510 vecp++;
511 nvecs++;
512 iip->ili_format.ilf_asize = (unsigned)data_bytes;
513 }
514 break;
515
516 default:
517 ASSERT(0);
518 break;
519 }
520
521 ASSERT(nvecs == lip->li_desc->lid_size);
522 iip->ili_format.ilf_size = nvecs;
523 }
524
525
526 /*
527 * This is called to pin the inode associated with the inode log
528 * item in memory so it cannot be written out.
529 */
530 STATIC void
531 xfs_inode_item_pin(
532 struct xfs_log_item *lip)
533 {
534 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
535
536 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
537
538 trace_xfs_inode_pin(ip, _RET_IP_);
539 atomic_inc(&ip->i_pincount);
540 }
541
542
543 /*
544 * This is called to unpin the inode associated with the inode log
545 * item which was previously pinned with a call to xfs_inode_item_pin().
546 *
547 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
548 */
549 STATIC void
550 xfs_inode_item_unpin(
551 struct xfs_log_item *lip,
552 int remove)
553 {
554 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
555
556 trace_xfs_inode_unpin(ip, _RET_IP_);
557 ASSERT(atomic_read(&ip->i_pincount) > 0);
558 if (atomic_dec_and_test(&ip->i_pincount))
559 wake_up(&ip->i_ipin_wait);
560 }
561
562 /*
563 * This is called to attempt to lock the inode associated with this
564 * inode log item, in preparation for the push routine which does the actual
565 * iflush. Don't sleep on the inode lock or the flush lock.
566 *
567 * If the flush lock is already held, indicating that the inode has
568 * been or is in the process of being flushed, then (ideally) we'd like to
569 * see if the inode's buffer is still incore, and if so give it a nudge.
570 * We delay doing so until the pushbuf routine, though, to avoid holding
571 * the AIL lock across a call to the blackhole which is the buffer cache.
572 * Also we don't want to sleep in any device strategy routines, which can happen
573 * if we do the subsequent bawrite in here.
574 */
575 STATIC uint
576 xfs_inode_item_trylock(
577 struct xfs_log_item *lip)
578 {
579 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
580 struct xfs_inode *ip = iip->ili_inode;
581
582 if (xfs_ipincount(ip) > 0)
583 return XFS_ITEM_PINNED;
584
585 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
586 return XFS_ITEM_LOCKED;
587
588 if (!xfs_iflock_nowait(ip)) {
589 /*
590 * inode has already been flushed to the backing buffer,
591 * leave it locked in shared mode, pushbuf routine will
592 * unlock it.
593 */
594 return XFS_ITEM_PUSHBUF;
595 }
596
597 /* Stale items should force out the iclog */
598 if (ip->i_flags & XFS_ISTALE) {
599 xfs_ifunlock(ip);
600 /*
601 * we hold the AIL lock - notify the unlock routine of this
602 * so it doesn't try to get the lock again.
603 */
604 xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY);
605 return XFS_ITEM_PINNED;
606 }
607
608 #ifdef DEBUG
609 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
610 ASSERT(iip->ili_format.ilf_fields != 0);
611 ASSERT(iip->ili_logged == 0);
612 ASSERT(lip->li_flags & XFS_LI_IN_AIL);
613 }
614 #endif
615 return XFS_ITEM_SUCCESS;
616 }
617
618 /*
619 * Unlock the inode associated with the inode log item.
620 * Clear the fields of the inode and inode log item that
621 * are specific to the current transaction. If the
622 * hold flags is set, do not unlock the inode.
623 */
624 STATIC void
625 xfs_inode_item_unlock(
626 struct xfs_log_item *lip)
627 {
628 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
629 struct xfs_inode *ip = iip->ili_inode;
630 unsigned short lock_flags;
631
632 ASSERT(iip->ili_inode->i_itemp != NULL);
633 ASSERT(xfs_isilocked(iip->ili_inode, XFS_ILOCK_EXCL));
634
635 /*
636 * Clear the transaction pointer in the inode.
637 */
638 ip->i_transp = NULL;
639
640 /*
641 * If the inode needed a separate buffer with which to log
642 * its extents, then free it now.
643 */
644 if (iip->ili_extents_buf != NULL) {
645 ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS);
646 ASSERT(ip->i_d.di_nextents > 0);
647 ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_DEXT);
648 ASSERT(ip->i_df.if_bytes > 0);
649 kmem_free(iip->ili_extents_buf);
650 iip->ili_extents_buf = NULL;
651 }
652 if (iip->ili_aextents_buf != NULL) {
653 ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS);
654 ASSERT(ip->i_d.di_anextents > 0);
655 ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_AEXT);
656 ASSERT(ip->i_afp->if_bytes > 0);
657 kmem_free(iip->ili_aextents_buf);
658 iip->ili_aextents_buf = NULL;
659 }
660
661 lock_flags = iip->ili_lock_flags;
662 iip->ili_lock_flags = 0;
663 if (lock_flags) {
664 xfs_iunlock(iip->ili_inode, lock_flags);
665 IRELE(iip->ili_inode);
666 }
667 }
668
669 /*
670 * This is called to find out where the oldest active copy of the
671 * inode log item in the on disk log resides now that the last log
672 * write of it completed at the given lsn. Since we always re-log
673 * all dirty data in an inode, the latest copy in the on disk log
674 * is the only one that matters. Therefore, simply return the
675 * given lsn.
676 */
677 STATIC xfs_lsn_t
678 xfs_inode_item_committed(
679 struct xfs_log_item *lip,
680 xfs_lsn_t lsn)
681 {
682 return lsn;
683 }
684
685 /*
686 * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK
687 * failed to get the inode flush lock but did get the inode locked SHARED.
688 * Here we're trying to see if the inode buffer is incore, and if so whether it's
689 * marked delayed write. If that's the case, we'll promote it and that will
690 * allow the caller to write the buffer by triggering the xfsbufd to run.
691 */
692 STATIC void
693 xfs_inode_item_pushbuf(
694 struct xfs_log_item *lip)
695 {
696 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
697 struct xfs_inode *ip = iip->ili_inode;
698 struct xfs_buf *bp;
699
700 ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED));
701
702 /*
703 * If a flush is not in progress anymore, chances are that the
704 * inode was taken off the AIL. So, just get out.
705 */
706 if (completion_done(&ip->i_flush) ||
707 !(lip->li_flags & XFS_LI_IN_AIL)) {
708 xfs_iunlock(ip, XFS_ILOCK_SHARED);
709 return;
710 }
711
712 bp = xfs_incore(ip->i_mount->m_ddev_targp, iip->ili_format.ilf_blkno,
713 iip->ili_format.ilf_len, XBF_TRYLOCK);
714
715 xfs_iunlock(ip, XFS_ILOCK_SHARED);
716 if (!bp)
717 return;
718 if (XFS_BUF_ISDELAYWRITE(bp))
719 xfs_buf_delwri_promote(bp);
720 xfs_buf_relse(bp);
721 }
722
723 /*
724 * This is called to asynchronously write the inode associated with this
725 * inode log item out to disk. The inode will already have been locked by
726 * a successful call to xfs_inode_item_trylock().
727 */
728 STATIC void
729 xfs_inode_item_push(
730 struct xfs_log_item *lip)
731 {
732 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
733 struct xfs_inode *ip = iip->ili_inode;
734
735 ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED));
736 ASSERT(!completion_done(&ip->i_flush));
737
738 /*
739 * Since we were able to lock the inode's flush lock and
740 * we found it on the AIL, the inode must be dirty. This
741 * is because the inode is removed from the AIL while still
742 * holding the flush lock in xfs_iflush_done(). Thus, if
743 * we found it in the AIL and were able to obtain the flush
744 * lock without sleeping, then there must not have been
745 * anyone in the process of flushing the inode.
746 */
747 ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) ||
748 iip->ili_format.ilf_fields != 0);
749
750 /*
751 * Push the inode to it's backing buffer. This will not remove the
752 * inode from the AIL - a further push will be required to trigger a
753 * buffer push. However, this allows all the dirty inodes to be pushed
754 * to the buffer before it is pushed to disk. THe buffer IO completion
755 * will pull th einode from the AIL, mark it clean and unlock the flush
756 * lock.
757 */
758 (void) xfs_iflush(ip, 0);
759 xfs_iunlock(ip, XFS_ILOCK_SHARED);
760 }
761
762 /*
763 * XXX rcc - this one really has to do something. Probably needs
764 * to stamp in a new field in the incore inode.
765 */
766 STATIC void
767 xfs_inode_item_committing(
768 struct xfs_log_item *lip,
769 xfs_lsn_t lsn)
770 {
771 INODE_ITEM(lip)->ili_last_lsn = lsn;
772 }
773
774 /*
775 * This is the ops vector shared by all buf log items.
776 */
777 static struct xfs_item_ops xfs_inode_item_ops = {
778 .iop_size = xfs_inode_item_size,
779 .iop_format = xfs_inode_item_format,
780 .iop_pin = xfs_inode_item_pin,
781 .iop_unpin = xfs_inode_item_unpin,
782 .iop_trylock = xfs_inode_item_trylock,
783 .iop_unlock = xfs_inode_item_unlock,
784 .iop_committed = xfs_inode_item_committed,
785 .iop_push = xfs_inode_item_push,
786 .iop_pushbuf = xfs_inode_item_pushbuf,
787 .iop_committing = xfs_inode_item_committing
788 };
789
790
791 /*
792 * Initialize the inode log item for a newly allocated (in-core) inode.
793 */
794 void
795 xfs_inode_item_init(
796 struct xfs_inode *ip,
797 struct xfs_mount *mp)
798 {
799 struct xfs_inode_log_item *iip;
800
801 ASSERT(ip->i_itemp == NULL);
802 iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
803
804 iip->ili_inode = ip;
805 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
806 &xfs_inode_item_ops);
807 iip->ili_format.ilf_type = XFS_LI_INODE;
808 iip->ili_format.ilf_ino = ip->i_ino;
809 iip->ili_format.ilf_blkno = ip->i_imap.im_blkno;
810 iip->ili_format.ilf_len = ip->i_imap.im_len;
811 iip->ili_format.ilf_boffset = ip->i_imap.im_boffset;
812 }
813
814 /*
815 * Free the inode log item and any memory hanging off of it.
816 */
817 void
818 xfs_inode_item_destroy(
819 xfs_inode_t *ip)
820 {
821 #ifdef XFS_TRANS_DEBUG
822 if (ip->i_itemp->ili_root_size != 0) {
823 kmem_free(ip->i_itemp->ili_orig_root);
824 }
825 #endif
826 kmem_zone_free(xfs_ili_zone, ip->i_itemp);
827 }
828
829
830 /*
831 * This is the inode flushing I/O completion routine. It is called
832 * from interrupt level when the buffer containing the inode is
833 * flushed to disk. It is responsible for removing the inode item
834 * from the AIL if it has not been re-logged, and unlocking the inode's
835 * flush lock.
836 */
837 void
838 xfs_iflush_done(
839 struct xfs_buf *bp,
840 struct xfs_log_item *lip)
841 {
842 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
843 xfs_inode_t *ip = iip->ili_inode;
844 struct xfs_ail *ailp = lip->li_ailp;
845
846 /*
847 * We only want to pull the item from the AIL if it is
848 * actually there and its location in the log has not
849 * changed since we started the flush. Thus, we only bother
850 * if the ili_logged flag is set and the inode's lsn has not
851 * changed. First we check the lsn outside
852 * the lock since it's cheaper, and then we recheck while
853 * holding the lock before removing the inode from the AIL.
854 */
855 if (iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn) {
856 spin_lock(&ailp->xa_lock);
857 if (lip->li_lsn == iip->ili_flush_lsn) {
858 /* xfs_trans_ail_delete() drops the AIL lock. */
859 xfs_trans_ail_delete(ailp, lip);
860 } else {
861 spin_unlock(&ailp->xa_lock);
862 }
863 }
864
865 iip->ili_logged = 0;
866
867 /*
868 * Clear the ili_last_fields bits now that we know that the
869 * data corresponding to them is safely on disk.
870 */
871 iip->ili_last_fields = 0;
872
873 /*
874 * Release the inode's flush lock since we're done with it.
875 */
876 xfs_ifunlock(ip);
877 }
878
879 /*
880 * This is the inode flushing abort routine. It is called
881 * from xfs_iflush when the filesystem is shutting down to clean
882 * up the inode state.
883 * It is responsible for removing the inode item
884 * from the AIL if it has not been re-logged, and unlocking the inode's
885 * flush lock.
886 */
887 void
888 xfs_iflush_abort(
889 xfs_inode_t *ip)
890 {
891 xfs_inode_log_item_t *iip = ip->i_itemp;
892 xfs_mount_t *mp;
893
894 iip = ip->i_itemp;
895 mp = ip->i_mount;
896 if (iip) {
897 struct xfs_ail *ailp = iip->ili_item.li_ailp;
898 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
899 spin_lock(&ailp->xa_lock);
900 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
901 /* xfs_trans_ail_delete() drops the AIL lock. */
902 xfs_trans_ail_delete(ailp, (xfs_log_item_t *)iip);
903 } else
904 spin_unlock(&ailp->xa_lock);
905 }
906 iip->ili_logged = 0;
907 /*
908 * Clear the ili_last_fields bits now that we know that the
909 * data corresponding to them is safely on disk.
910 */
911 iip->ili_last_fields = 0;
912 /*
913 * Clear the inode logging fields so no more flushes are
914 * attempted.
915 */
916 iip->ili_format.ilf_fields = 0;
917 }
918 /*
919 * Release the inode's flush lock since we're done with it.
920 */
921 xfs_ifunlock(ip);
922 }
923
924 void
925 xfs_istale_done(
926 struct xfs_buf *bp,
927 struct xfs_log_item *lip)
928 {
929 xfs_iflush_abort(INODE_ITEM(lip)->ili_inode);
930 }
931
932 /*
933 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
934 * (which can have different field alignments) to the native version
935 */
936 int
937 xfs_inode_item_format_convert(
938 xfs_log_iovec_t *buf,
939 xfs_inode_log_format_t *in_f)
940 {
941 if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) {
942 xfs_inode_log_format_32_t *in_f32 = buf->i_addr;
943
944 in_f->ilf_type = in_f32->ilf_type;
945 in_f->ilf_size = in_f32->ilf_size;
946 in_f->ilf_fields = in_f32->ilf_fields;
947 in_f->ilf_asize = in_f32->ilf_asize;
948 in_f->ilf_dsize = in_f32->ilf_dsize;
949 in_f->ilf_ino = in_f32->ilf_ino;
950 /* copy biggest field of ilf_u */
951 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
952 in_f32->ilf_u.ilfu_uuid.__u_bits,
953 sizeof(uuid_t));
954 in_f->ilf_blkno = in_f32->ilf_blkno;
955 in_f->ilf_len = in_f32->ilf_len;
956 in_f->ilf_boffset = in_f32->ilf_boffset;
957 return 0;
958 } else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){
959 xfs_inode_log_format_64_t *in_f64 = buf->i_addr;
960
961 in_f->ilf_type = in_f64->ilf_type;
962 in_f->ilf_size = in_f64->ilf_size;
963 in_f->ilf_fields = in_f64->ilf_fields;
964 in_f->ilf_asize = in_f64->ilf_asize;
965 in_f->ilf_dsize = in_f64->ilf_dsize;
966 in_f->ilf_ino = in_f64->ilf_ino;
967 /* copy biggest field of ilf_u */
968 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
969 in_f64->ilf_u.ilfu_uuid.__u_bits,
970 sizeof(uuid_t));
971 in_f->ilf_blkno = in_f64->ilf_blkno;
972 in_f->ilf_len = in_f64->ilf_len;
973 in_f->ilf_boffset = in_f64->ilf_boffset;
974 return 0;
975 }
976 return EFSCORRUPTED;
977 }
This page took 0.051741 seconds and 5 git commands to generate.