xfs: introduce xlog_copy_iovec
[deliverable/linux.git] / fs / xfs / xfs_inode_item.c
1 /*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_sb.h"
24 #include "xfs_ag.h"
25 #include "xfs_mount.h"
26 #include "xfs_inode.h"
27 #include "xfs_trans.h"
28 #include "xfs_inode_item.h"
29 #include "xfs_error.h"
30 #include "xfs_trace.h"
31 #include "xfs_trans_priv.h"
32 #include "xfs_dinode.h"
33 #include "xfs_log.h"
34
35
36 kmem_zone_t *xfs_ili_zone; /* inode log item zone */
37
38 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
39 {
40 return container_of(lip, struct xfs_inode_log_item, ili_item);
41 }
42
43 STATIC void
44 xfs_inode_item_data_fork_size(
45 struct xfs_inode_log_item *iip,
46 int *nvecs,
47 int *nbytes)
48 {
49 struct xfs_inode *ip = iip->ili_inode;
50
51 switch (ip->i_d.di_format) {
52 case XFS_DINODE_FMT_EXTENTS:
53 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
54 ip->i_d.di_nextents > 0 &&
55 ip->i_df.if_bytes > 0) {
56 /* worst case, doesn't subtract delalloc extents */
57 *nbytes += XFS_IFORK_DSIZE(ip);
58 *nvecs += 1;
59 }
60 break;
61 case XFS_DINODE_FMT_BTREE:
62 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
63 ip->i_df.if_broot_bytes > 0) {
64 *nbytes += ip->i_df.if_broot_bytes;
65 *nvecs += 1;
66 }
67 break;
68 case XFS_DINODE_FMT_LOCAL:
69 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
70 ip->i_df.if_bytes > 0) {
71 *nbytes += roundup(ip->i_df.if_bytes, 4);
72 *nvecs += 1;
73 }
74 break;
75
76 case XFS_DINODE_FMT_DEV:
77 case XFS_DINODE_FMT_UUID:
78 break;
79 default:
80 ASSERT(0);
81 break;
82 }
83 }
84
85 STATIC void
86 xfs_inode_item_attr_fork_size(
87 struct xfs_inode_log_item *iip,
88 int *nvecs,
89 int *nbytes)
90 {
91 struct xfs_inode *ip = iip->ili_inode;
92
93 switch (ip->i_d.di_aformat) {
94 case XFS_DINODE_FMT_EXTENTS:
95 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
96 ip->i_d.di_anextents > 0 &&
97 ip->i_afp->if_bytes > 0) {
98 /* worst case, doesn't subtract unused space */
99 *nbytes += XFS_IFORK_ASIZE(ip);
100 *nvecs += 1;
101 }
102 break;
103 case XFS_DINODE_FMT_BTREE:
104 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
105 ip->i_afp->if_broot_bytes > 0) {
106 *nbytes += ip->i_afp->if_broot_bytes;
107 *nvecs += 1;
108 }
109 break;
110 case XFS_DINODE_FMT_LOCAL:
111 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
112 ip->i_afp->if_bytes > 0) {
113 *nbytes += roundup(ip->i_afp->if_bytes, 4);
114 *nvecs += 1;
115 }
116 break;
117 default:
118 ASSERT(0);
119 break;
120 }
121 }
122
123 /*
124 * This returns the number of iovecs needed to log the given inode item.
125 *
126 * We need one iovec for the inode log format structure, one for the
127 * inode core, and possibly one for the inode data/extents/b-tree root
128 * and one for the inode attribute data/extents/b-tree root.
129 */
130 STATIC void
131 xfs_inode_item_size(
132 struct xfs_log_item *lip,
133 int *nvecs,
134 int *nbytes)
135 {
136 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
137 struct xfs_inode *ip = iip->ili_inode;
138
139 *nvecs += 2;
140 *nbytes += sizeof(struct xfs_inode_log_format) +
141 xfs_icdinode_size(ip->i_d.di_version);
142
143 xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
144 if (XFS_IFORK_Q(ip))
145 xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
146 }
147
148 /*
149 * xfs_inode_item_format_extents - convert in-core extents to on-disk form
150 *
151 * For either the data or attr fork in extent format, we need to endian convert
152 * the in-core extent as we place them into the on-disk inode. In this case, we
153 * need to do this conversion before we write the extents into the log. Because
154 * we don't have the disk inode to write into here, we allocate a buffer and
155 * format the extents into it via xfs_iextents_copy(). We free the buffer in
156 * the unlock routine after the copy for the log has been made.
157 *
158 * In the case of the data fork, the in-core and on-disk fork sizes can be
159 * different due to delayed allocation extents. We only log on-disk extents
160 * here, so always use the physical fork size to determine the size of the
161 * buffer we need to allocate.
162 */
163 STATIC int
164 xfs_inode_item_format_extents(
165 struct xfs_inode *ip,
166 struct xfs_log_iovec **vecp,
167 int whichfork,
168 int type)
169 {
170 xfs_bmbt_rec_t *ext_buffer;
171 int len;
172
173 ext_buffer = kmem_alloc(XFS_IFORK_SIZE(ip, whichfork), KM_SLEEP);
174 if (whichfork == XFS_DATA_FORK)
175 ip->i_itemp->ili_extents_buf = ext_buffer;
176 else
177 ip->i_itemp->ili_aextents_buf = ext_buffer;
178
179 len = xfs_iextents_copy(ip, ext_buffer, whichfork);
180 xlog_copy_iovec(vecp, type, ext_buffer, len);
181 return len;
182 }
183
184 /*
185 * If this is a v1 format inode, then we need to log it as such. This means
186 * that we have to copy the link count from the new field to the old. We
187 * don't have to worry about the new fields, because nothing trusts them as
188 * long as the old inode version number is there.
189 */
190 STATIC void
191 xfs_inode_item_format_v1_inode(
192 struct xfs_inode *ip)
193 {
194 if (!xfs_sb_version_hasnlink(&ip->i_mount->m_sb)) {
195 /*
196 * Convert it back.
197 */
198 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
199 ip->i_d.di_onlink = ip->i_d.di_nlink;
200 } else {
201 /*
202 * The superblock version has already been bumped,
203 * so just make the conversion to the new inode
204 * format permanent.
205 */
206 ip->i_d.di_version = 2;
207 ip->i_d.di_onlink = 0;
208 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
209 }
210 }
211
212 STATIC void
213 xfs_inode_item_format_data_fork(
214 struct xfs_inode_log_item *iip,
215 struct xfs_log_iovec **vecp,
216 int *nvecs)
217 {
218 struct xfs_inode *ip = iip->ili_inode;
219 size_t data_bytes;
220
221 switch (ip->i_d.di_format) {
222 case XFS_DINODE_FMT_EXTENTS:
223 iip->ili_fields &=
224 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
225 XFS_ILOG_DEV | XFS_ILOG_UUID);
226
227 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
228 ip->i_d.di_nextents > 0 &&
229 ip->i_df.if_bytes > 0) {
230 ASSERT(ip->i_df.if_u1.if_extents != NULL);
231 ASSERT(ip->i_df.if_bytes / sizeof(xfs_bmbt_rec_t) > 0);
232 ASSERT(iip->ili_extents_buf == NULL);
233
234 #ifdef XFS_NATIVE_HOST
235 if (ip->i_d.di_nextents == ip->i_df.if_bytes /
236 (uint)sizeof(xfs_bmbt_rec_t)) {
237 /*
238 * There are no delayed allocation
239 * extents, so just point to the
240 * real extents array.
241 */
242 xlog_copy_iovec(vecp, XLOG_REG_TYPE_IEXT,
243 ip->i_df.if_u1.if_extents,
244 ip->i_df.if_bytes);
245 iip->ili_format.ilf_dsize = ip->i_df.if_bytes;
246 } else
247 #endif
248 {
249 iip->ili_format.ilf_dsize =
250 xfs_inode_item_format_extents(ip, vecp,
251 XFS_DATA_FORK, XLOG_REG_TYPE_IEXT);
252 ASSERT(iip->ili_format.ilf_dsize <= ip->i_df.if_bytes);
253 }
254 (*nvecs)++;
255 } else {
256 iip->ili_fields &= ~XFS_ILOG_DEXT;
257 }
258 break;
259 case XFS_DINODE_FMT_BTREE:
260 iip->ili_fields &=
261 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
262 XFS_ILOG_DEV | XFS_ILOG_UUID);
263
264 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
265 ip->i_df.if_broot_bytes > 0) {
266 ASSERT(ip->i_df.if_broot != NULL);
267 xlog_copy_iovec(vecp, XLOG_REG_TYPE_IBROOT,
268 ip->i_df.if_broot,
269 ip->i_df.if_broot_bytes);
270 (*nvecs)++;
271 iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes;
272 } else {
273 ASSERT(!(iip->ili_fields &
274 XFS_ILOG_DBROOT));
275 iip->ili_fields &= ~XFS_ILOG_DBROOT;
276 }
277 break;
278 case XFS_DINODE_FMT_LOCAL:
279 iip->ili_fields &=
280 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
281 XFS_ILOG_DEV | XFS_ILOG_UUID);
282 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
283 ip->i_df.if_bytes > 0) {
284 /*
285 * Round i_bytes up to a word boundary.
286 * The underlying memory is guaranteed to
287 * to be there by xfs_idata_realloc().
288 */
289 data_bytes = roundup(ip->i_df.if_bytes, 4);
290 ASSERT(ip->i_df.if_real_bytes == 0 ||
291 ip->i_df.if_real_bytes == data_bytes);
292 ASSERT(ip->i_df.if_u1.if_data != NULL);
293 ASSERT(ip->i_d.di_size > 0);
294 xlog_copy_iovec(vecp, XLOG_REG_TYPE_ILOCAL,
295 ip->i_df.if_u1.if_data, data_bytes);
296 (*nvecs)++;
297 iip->ili_format.ilf_dsize = (unsigned)data_bytes;
298 } else {
299 iip->ili_fields &= ~XFS_ILOG_DDATA;
300 }
301 break;
302 case XFS_DINODE_FMT_DEV:
303 iip->ili_fields &=
304 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
305 XFS_ILOG_DEXT | XFS_ILOG_UUID);
306 if (iip->ili_fields & XFS_ILOG_DEV) {
307 iip->ili_format.ilf_u.ilfu_rdev =
308 ip->i_df.if_u2.if_rdev;
309 }
310 break;
311 case XFS_DINODE_FMT_UUID:
312 iip->ili_fields &=
313 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
314 XFS_ILOG_DEXT | XFS_ILOG_DEV);
315 if (iip->ili_fields & XFS_ILOG_UUID) {
316 iip->ili_format.ilf_u.ilfu_uuid =
317 ip->i_df.if_u2.if_uuid;
318 }
319 break;
320 default:
321 ASSERT(0);
322 break;
323 }
324 }
325
326 STATIC void
327 xfs_inode_item_format_attr_fork(
328 struct xfs_inode_log_item *iip,
329 struct xfs_log_iovec **vecp,
330 int *nvecs)
331 {
332 struct xfs_inode *ip = iip->ili_inode;
333 size_t data_bytes;
334
335 switch (ip->i_d.di_aformat) {
336 case XFS_DINODE_FMT_EXTENTS:
337 iip->ili_fields &=
338 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
339
340 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
341 ip->i_d.di_anextents > 0 &&
342 ip->i_afp->if_bytes > 0) {
343 ASSERT(ip->i_afp->if_bytes / sizeof(xfs_bmbt_rec_t) ==
344 ip->i_d.di_anextents);
345 ASSERT(ip->i_afp->if_u1.if_extents != NULL);
346 #ifdef XFS_NATIVE_HOST
347 /*
348 * There are not delayed allocation extents
349 * for attributes, so just point at the array.
350 */
351 xlog_copy_iovec(vecp, XLOG_REG_TYPE_IATTR_EXT,
352 ip->i_afp->if_u1.if_extents,
353 ip->i_afp->if_bytes);
354 iip->ili_format.ilf_asize = ip->i_afp->if_bytes;
355 #else
356 ASSERT(iip->ili_aextents_buf == NULL);
357 iip->ili_format.ilf_asize =
358 xfs_inode_item_format_extents(ip, vecp,
359 XFS_ATTR_FORK, XLOG_REG_TYPE_IATTR_EXT);
360 #endif
361 (*nvecs)++;
362 } else {
363 iip->ili_fields &= ~XFS_ILOG_AEXT;
364 }
365 break;
366 case XFS_DINODE_FMT_BTREE:
367 iip->ili_fields &=
368 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
369
370 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
371 ip->i_afp->if_broot_bytes > 0) {
372 ASSERT(ip->i_afp->if_broot != NULL);
373
374 xlog_copy_iovec(vecp, XLOG_REG_TYPE_IATTR_BROOT,
375 ip->i_afp->if_broot,
376 ip->i_afp->if_broot_bytes);
377 (*nvecs)++;
378 iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes;
379 } else {
380 iip->ili_fields &= ~XFS_ILOG_ABROOT;
381 }
382 break;
383 case XFS_DINODE_FMT_LOCAL:
384 iip->ili_fields &=
385 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
386
387 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
388 ip->i_afp->if_bytes > 0) {
389 /*
390 * Round i_bytes up to a word boundary.
391 * The underlying memory is guaranteed to
392 * to be there by xfs_idata_realloc().
393 */
394 data_bytes = roundup(ip->i_afp->if_bytes, 4);
395 ASSERT(ip->i_afp->if_real_bytes == 0 ||
396 ip->i_afp->if_real_bytes == data_bytes);
397 ASSERT(ip->i_afp->if_u1.if_data != NULL);
398 xlog_copy_iovec(vecp, XLOG_REG_TYPE_IATTR_LOCAL,
399 ip->i_afp->if_u1.if_data,
400 data_bytes);
401 (*nvecs)++;
402 iip->ili_format.ilf_asize = (unsigned)data_bytes;
403 } else {
404 iip->ili_fields &= ~XFS_ILOG_ADATA;
405 }
406 break;
407 default:
408 ASSERT(0);
409 break;
410 }
411 }
412
413 /*
414 * This is called to fill in the vector of log iovecs for the given inode
415 * log item. It fills the first item with an inode log format structure,
416 * the second with the on-disk inode structure, and a possible third and/or
417 * fourth with the inode data/extents/b-tree root and inode attributes
418 * data/extents/b-tree root.
419 */
420 STATIC void
421 xfs_inode_item_format(
422 struct xfs_log_item *lip,
423 struct xfs_log_iovec *vecp)
424 {
425 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
426 struct xfs_inode *ip = iip->ili_inode;
427 uint nvecs;
428
429 xlog_copy_iovec(&vecp, XLOG_REG_TYPE_IFORMAT,
430 &iip->ili_format,
431 sizeof(struct xfs_inode_log_format));
432 nvecs = 1;
433
434 xlog_copy_iovec(&vecp, XLOG_REG_TYPE_ICORE,
435 &ip->i_d,
436 xfs_icdinode_size(ip->i_d.di_version));
437 nvecs++;
438
439 if (ip->i_d.di_version == 1)
440 xfs_inode_item_format_v1_inode(ip);
441
442 xfs_inode_item_format_data_fork(iip, &vecp, &nvecs);
443 if (XFS_IFORK_Q(ip)) {
444 xfs_inode_item_format_attr_fork(iip, &vecp, &nvecs);
445 } else {
446 iip->ili_fields &=
447 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
448 }
449
450 /*
451 * Now update the log format that goes out to disk from the in-core
452 * values. We always write the inode core to make the arithmetic
453 * games in recovery easier, which isn't a big deal as just about any
454 * transaction would dirty it anyway.
455 */
456 iip->ili_format.ilf_fields = XFS_ILOG_CORE |
457 (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
458 iip->ili_format.ilf_size = nvecs;
459 }
460
461 /*
462 * This is called to pin the inode associated with the inode log
463 * item in memory so it cannot be written out.
464 */
465 STATIC void
466 xfs_inode_item_pin(
467 struct xfs_log_item *lip)
468 {
469 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
470
471 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
472
473 trace_xfs_inode_pin(ip, _RET_IP_);
474 atomic_inc(&ip->i_pincount);
475 }
476
477
478 /*
479 * This is called to unpin the inode associated with the inode log
480 * item which was previously pinned with a call to xfs_inode_item_pin().
481 *
482 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
483 */
484 STATIC void
485 xfs_inode_item_unpin(
486 struct xfs_log_item *lip,
487 int remove)
488 {
489 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
490
491 trace_xfs_inode_unpin(ip, _RET_IP_);
492 ASSERT(atomic_read(&ip->i_pincount) > 0);
493 if (atomic_dec_and_test(&ip->i_pincount))
494 wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
495 }
496
497 STATIC uint
498 xfs_inode_item_push(
499 struct xfs_log_item *lip,
500 struct list_head *buffer_list)
501 {
502 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
503 struct xfs_inode *ip = iip->ili_inode;
504 struct xfs_buf *bp = NULL;
505 uint rval = XFS_ITEM_SUCCESS;
506 int error;
507
508 if (xfs_ipincount(ip) > 0)
509 return XFS_ITEM_PINNED;
510
511 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
512 return XFS_ITEM_LOCKED;
513
514 /*
515 * Re-check the pincount now that we stabilized the value by
516 * taking the ilock.
517 */
518 if (xfs_ipincount(ip) > 0) {
519 rval = XFS_ITEM_PINNED;
520 goto out_unlock;
521 }
522
523 /*
524 * Stale inode items should force out the iclog.
525 */
526 if (ip->i_flags & XFS_ISTALE) {
527 rval = XFS_ITEM_PINNED;
528 goto out_unlock;
529 }
530
531 /*
532 * Someone else is already flushing the inode. Nothing we can do
533 * here but wait for the flush to finish and remove the item from
534 * the AIL.
535 */
536 if (!xfs_iflock_nowait(ip)) {
537 rval = XFS_ITEM_FLUSHING;
538 goto out_unlock;
539 }
540
541 ASSERT(iip->ili_fields != 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
542 ASSERT(iip->ili_logged == 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
543
544 spin_unlock(&lip->li_ailp->xa_lock);
545
546 error = xfs_iflush(ip, &bp);
547 if (!error) {
548 if (!xfs_buf_delwri_queue(bp, buffer_list))
549 rval = XFS_ITEM_FLUSHING;
550 xfs_buf_relse(bp);
551 }
552
553 spin_lock(&lip->li_ailp->xa_lock);
554 out_unlock:
555 xfs_iunlock(ip, XFS_ILOCK_SHARED);
556 return rval;
557 }
558
559 /*
560 * Unlock the inode associated with the inode log item.
561 * Clear the fields of the inode and inode log item that
562 * are specific to the current transaction. If the
563 * hold flags is set, do not unlock the inode.
564 */
565 STATIC void
566 xfs_inode_item_unlock(
567 struct xfs_log_item *lip)
568 {
569 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
570 struct xfs_inode *ip = iip->ili_inode;
571 unsigned short lock_flags;
572
573 ASSERT(ip->i_itemp != NULL);
574 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
575
576 /*
577 * If the inode needed a separate buffer with which to log
578 * its extents, then free it now.
579 */
580 if (iip->ili_extents_buf != NULL) {
581 ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS);
582 ASSERT(ip->i_d.di_nextents > 0);
583 ASSERT(iip->ili_fields & XFS_ILOG_DEXT);
584 ASSERT(ip->i_df.if_bytes > 0);
585 kmem_free(iip->ili_extents_buf);
586 iip->ili_extents_buf = NULL;
587 }
588 if (iip->ili_aextents_buf != NULL) {
589 ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS);
590 ASSERT(ip->i_d.di_anextents > 0);
591 ASSERT(iip->ili_fields & XFS_ILOG_AEXT);
592 ASSERT(ip->i_afp->if_bytes > 0);
593 kmem_free(iip->ili_aextents_buf);
594 iip->ili_aextents_buf = NULL;
595 }
596
597 lock_flags = iip->ili_lock_flags;
598 iip->ili_lock_flags = 0;
599 if (lock_flags)
600 xfs_iunlock(ip, lock_flags);
601 }
602
603 /*
604 * This is called to find out where the oldest active copy of the inode log
605 * item in the on disk log resides now that the last log write of it completed
606 * at the given lsn. Since we always re-log all dirty data in an inode, the
607 * latest copy in the on disk log is the only one that matters. Therefore,
608 * simply return the given lsn.
609 *
610 * If the inode has been marked stale because the cluster is being freed, we
611 * don't want to (re-)insert this inode into the AIL. There is a race condition
612 * where the cluster buffer may be unpinned before the inode is inserted into
613 * the AIL during transaction committed processing. If the buffer is unpinned
614 * before the inode item has been committed and inserted, then it is possible
615 * for the buffer to be written and IO completes before the inode is inserted
616 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
617 * AIL which will never get removed. It will, however, get reclaimed which
618 * triggers an assert in xfs_inode_free() complaining about freein an inode
619 * still in the AIL.
620 *
621 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
622 * transaction committed code knows that it does not need to do any further
623 * processing on the item.
624 */
625 STATIC xfs_lsn_t
626 xfs_inode_item_committed(
627 struct xfs_log_item *lip,
628 xfs_lsn_t lsn)
629 {
630 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
631 struct xfs_inode *ip = iip->ili_inode;
632
633 if (xfs_iflags_test(ip, XFS_ISTALE)) {
634 xfs_inode_item_unpin(lip, 0);
635 return -1;
636 }
637 return lsn;
638 }
639
640 /*
641 * XXX rcc - this one really has to do something. Probably needs
642 * to stamp in a new field in the incore inode.
643 */
644 STATIC void
645 xfs_inode_item_committing(
646 struct xfs_log_item *lip,
647 xfs_lsn_t lsn)
648 {
649 INODE_ITEM(lip)->ili_last_lsn = lsn;
650 }
651
652 /*
653 * This is the ops vector shared by all buf log items.
654 */
655 static const struct xfs_item_ops xfs_inode_item_ops = {
656 .iop_size = xfs_inode_item_size,
657 .iop_format = xfs_inode_item_format,
658 .iop_pin = xfs_inode_item_pin,
659 .iop_unpin = xfs_inode_item_unpin,
660 .iop_unlock = xfs_inode_item_unlock,
661 .iop_committed = xfs_inode_item_committed,
662 .iop_push = xfs_inode_item_push,
663 .iop_committing = xfs_inode_item_committing
664 };
665
666
667 /*
668 * Initialize the inode log item for a newly allocated (in-core) inode.
669 */
670 void
671 xfs_inode_item_init(
672 struct xfs_inode *ip,
673 struct xfs_mount *mp)
674 {
675 struct xfs_inode_log_item *iip;
676
677 ASSERT(ip->i_itemp == NULL);
678 iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
679
680 iip->ili_inode = ip;
681 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
682 &xfs_inode_item_ops);
683 iip->ili_format.ilf_type = XFS_LI_INODE;
684 iip->ili_format.ilf_ino = ip->i_ino;
685 iip->ili_format.ilf_blkno = ip->i_imap.im_blkno;
686 iip->ili_format.ilf_len = ip->i_imap.im_len;
687 iip->ili_format.ilf_boffset = ip->i_imap.im_boffset;
688 }
689
690 /*
691 * Free the inode log item and any memory hanging off of it.
692 */
693 void
694 xfs_inode_item_destroy(
695 xfs_inode_t *ip)
696 {
697 kmem_zone_free(xfs_ili_zone, ip->i_itemp);
698 }
699
700
701 /*
702 * This is the inode flushing I/O completion routine. It is called
703 * from interrupt level when the buffer containing the inode is
704 * flushed to disk. It is responsible for removing the inode item
705 * from the AIL if it has not been re-logged, and unlocking the inode's
706 * flush lock.
707 *
708 * To reduce AIL lock traffic as much as possible, we scan the buffer log item
709 * list for other inodes that will run this function. We remove them from the
710 * buffer list so we can process all the inode IO completions in one AIL lock
711 * traversal.
712 */
713 void
714 xfs_iflush_done(
715 struct xfs_buf *bp,
716 struct xfs_log_item *lip)
717 {
718 struct xfs_inode_log_item *iip;
719 struct xfs_log_item *blip;
720 struct xfs_log_item *next;
721 struct xfs_log_item *prev;
722 struct xfs_ail *ailp = lip->li_ailp;
723 int need_ail = 0;
724
725 /*
726 * Scan the buffer IO completions for other inodes being completed and
727 * attach them to the current inode log item.
728 */
729 blip = bp->b_fspriv;
730 prev = NULL;
731 while (blip != NULL) {
732 if (lip->li_cb != xfs_iflush_done) {
733 prev = blip;
734 blip = blip->li_bio_list;
735 continue;
736 }
737
738 /* remove from list */
739 next = blip->li_bio_list;
740 if (!prev) {
741 bp->b_fspriv = next;
742 } else {
743 prev->li_bio_list = next;
744 }
745
746 /* add to current list */
747 blip->li_bio_list = lip->li_bio_list;
748 lip->li_bio_list = blip;
749
750 /*
751 * while we have the item, do the unlocked check for needing
752 * the AIL lock.
753 */
754 iip = INODE_ITEM(blip);
755 if (iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn)
756 need_ail++;
757
758 blip = next;
759 }
760
761 /* make sure we capture the state of the initial inode. */
762 iip = INODE_ITEM(lip);
763 if (iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn)
764 need_ail++;
765
766 /*
767 * We only want to pull the item from the AIL if it is
768 * actually there and its location in the log has not
769 * changed since we started the flush. Thus, we only bother
770 * if the ili_logged flag is set and the inode's lsn has not
771 * changed. First we check the lsn outside
772 * the lock since it's cheaper, and then we recheck while
773 * holding the lock before removing the inode from the AIL.
774 */
775 if (need_ail) {
776 struct xfs_log_item *log_items[need_ail];
777 int i = 0;
778 spin_lock(&ailp->xa_lock);
779 for (blip = lip; blip; blip = blip->li_bio_list) {
780 iip = INODE_ITEM(blip);
781 if (iip->ili_logged &&
782 blip->li_lsn == iip->ili_flush_lsn) {
783 log_items[i++] = blip;
784 }
785 ASSERT(i <= need_ail);
786 }
787 /* xfs_trans_ail_delete_bulk() drops the AIL lock. */
788 xfs_trans_ail_delete_bulk(ailp, log_items, i,
789 SHUTDOWN_CORRUPT_INCORE);
790 }
791
792
793 /*
794 * clean up and unlock the flush lock now we are done. We can clear the
795 * ili_last_fields bits now that we know that the data corresponding to
796 * them is safely on disk.
797 */
798 for (blip = lip; blip; blip = next) {
799 next = blip->li_bio_list;
800 blip->li_bio_list = NULL;
801
802 iip = INODE_ITEM(blip);
803 iip->ili_logged = 0;
804 iip->ili_last_fields = 0;
805 xfs_ifunlock(iip->ili_inode);
806 }
807 }
808
809 /*
810 * This is the inode flushing abort routine. It is called from xfs_iflush when
811 * the filesystem is shutting down to clean up the inode state. It is
812 * responsible for removing the inode item from the AIL if it has not been
813 * re-logged, and unlocking the inode's flush lock.
814 */
815 void
816 xfs_iflush_abort(
817 xfs_inode_t *ip,
818 bool stale)
819 {
820 xfs_inode_log_item_t *iip = ip->i_itemp;
821
822 if (iip) {
823 struct xfs_ail *ailp = iip->ili_item.li_ailp;
824 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
825 spin_lock(&ailp->xa_lock);
826 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
827 /* xfs_trans_ail_delete() drops the AIL lock. */
828 xfs_trans_ail_delete(ailp, &iip->ili_item,
829 stale ?
830 SHUTDOWN_LOG_IO_ERROR :
831 SHUTDOWN_CORRUPT_INCORE);
832 } else
833 spin_unlock(&ailp->xa_lock);
834 }
835 iip->ili_logged = 0;
836 /*
837 * Clear the ili_last_fields bits now that we know that the
838 * data corresponding to them is safely on disk.
839 */
840 iip->ili_last_fields = 0;
841 /*
842 * Clear the inode logging fields so no more flushes are
843 * attempted.
844 */
845 iip->ili_fields = 0;
846 }
847 /*
848 * Release the inode's flush lock since we're done with it.
849 */
850 xfs_ifunlock(ip);
851 }
852
853 void
854 xfs_istale_done(
855 struct xfs_buf *bp,
856 struct xfs_log_item *lip)
857 {
858 xfs_iflush_abort(INODE_ITEM(lip)->ili_inode, true);
859 }
860
861 /*
862 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
863 * (which can have different field alignments) to the native version
864 */
865 int
866 xfs_inode_item_format_convert(
867 xfs_log_iovec_t *buf,
868 xfs_inode_log_format_t *in_f)
869 {
870 if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) {
871 xfs_inode_log_format_32_t *in_f32 = buf->i_addr;
872
873 in_f->ilf_type = in_f32->ilf_type;
874 in_f->ilf_size = in_f32->ilf_size;
875 in_f->ilf_fields = in_f32->ilf_fields;
876 in_f->ilf_asize = in_f32->ilf_asize;
877 in_f->ilf_dsize = in_f32->ilf_dsize;
878 in_f->ilf_ino = in_f32->ilf_ino;
879 /* copy biggest field of ilf_u */
880 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
881 in_f32->ilf_u.ilfu_uuid.__u_bits,
882 sizeof(uuid_t));
883 in_f->ilf_blkno = in_f32->ilf_blkno;
884 in_f->ilf_len = in_f32->ilf_len;
885 in_f->ilf_boffset = in_f32->ilf_boffset;
886 return 0;
887 } else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){
888 xfs_inode_log_format_64_t *in_f64 = buf->i_addr;
889
890 in_f->ilf_type = in_f64->ilf_type;
891 in_f->ilf_size = in_f64->ilf_size;
892 in_f->ilf_fields = in_f64->ilf_fields;
893 in_f->ilf_asize = in_f64->ilf_asize;
894 in_f->ilf_dsize = in_f64->ilf_dsize;
895 in_f->ilf_ino = in_f64->ilf_ino;
896 /* copy biggest field of ilf_u */
897 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
898 in_f64->ilf_u.ilfu_uuid.__u_bits,
899 sizeof(uuid_t));
900 in_f->ilf_blkno = in_f64->ilf_blkno;
901 in_f->ilf_len = in_f64->ilf_len;
902 in_f->ilf_boffset = in_f64->ilf_boffset;
903 return 0;
904 }
905 return EFSCORRUPTED;
906 }
This page took 0.049539 seconds and 5 git commands to generate.