xfs: global error sign conversion
[deliverable/linux.git] / fs / xfs / xfs_inode_item.c
1 /*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_sb.h"
24 #include "xfs_ag.h"
25 #include "xfs_mount.h"
26 #include "xfs_inode.h"
27 #include "xfs_trans.h"
28 #include "xfs_inode_item.h"
29 #include "xfs_error.h"
30 #include "xfs_trace.h"
31 #include "xfs_trans_priv.h"
32 #include "xfs_dinode.h"
33 #include "xfs_log.h"
34
35
36 kmem_zone_t *xfs_ili_zone; /* inode log item zone */
37
38 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
39 {
40 return container_of(lip, struct xfs_inode_log_item, ili_item);
41 }
42
43 STATIC void
44 xfs_inode_item_data_fork_size(
45 struct xfs_inode_log_item *iip,
46 int *nvecs,
47 int *nbytes)
48 {
49 struct xfs_inode *ip = iip->ili_inode;
50
51 switch (ip->i_d.di_format) {
52 case XFS_DINODE_FMT_EXTENTS:
53 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
54 ip->i_d.di_nextents > 0 &&
55 ip->i_df.if_bytes > 0) {
56 /* worst case, doesn't subtract delalloc extents */
57 *nbytes += XFS_IFORK_DSIZE(ip);
58 *nvecs += 1;
59 }
60 break;
61 case XFS_DINODE_FMT_BTREE:
62 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
63 ip->i_df.if_broot_bytes > 0) {
64 *nbytes += ip->i_df.if_broot_bytes;
65 *nvecs += 1;
66 }
67 break;
68 case XFS_DINODE_FMT_LOCAL:
69 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
70 ip->i_df.if_bytes > 0) {
71 *nbytes += roundup(ip->i_df.if_bytes, 4);
72 *nvecs += 1;
73 }
74 break;
75
76 case XFS_DINODE_FMT_DEV:
77 case XFS_DINODE_FMT_UUID:
78 break;
79 default:
80 ASSERT(0);
81 break;
82 }
83 }
84
85 STATIC void
86 xfs_inode_item_attr_fork_size(
87 struct xfs_inode_log_item *iip,
88 int *nvecs,
89 int *nbytes)
90 {
91 struct xfs_inode *ip = iip->ili_inode;
92
93 switch (ip->i_d.di_aformat) {
94 case XFS_DINODE_FMT_EXTENTS:
95 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
96 ip->i_d.di_anextents > 0 &&
97 ip->i_afp->if_bytes > 0) {
98 /* worst case, doesn't subtract unused space */
99 *nbytes += XFS_IFORK_ASIZE(ip);
100 *nvecs += 1;
101 }
102 break;
103 case XFS_DINODE_FMT_BTREE:
104 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
105 ip->i_afp->if_broot_bytes > 0) {
106 *nbytes += ip->i_afp->if_broot_bytes;
107 *nvecs += 1;
108 }
109 break;
110 case XFS_DINODE_FMT_LOCAL:
111 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
112 ip->i_afp->if_bytes > 0) {
113 *nbytes += roundup(ip->i_afp->if_bytes, 4);
114 *nvecs += 1;
115 }
116 break;
117 default:
118 ASSERT(0);
119 break;
120 }
121 }
122
123 /*
124 * This returns the number of iovecs needed to log the given inode item.
125 *
126 * We need one iovec for the inode log format structure, one for the
127 * inode core, and possibly one for the inode data/extents/b-tree root
128 * and one for the inode attribute data/extents/b-tree root.
129 */
130 STATIC void
131 xfs_inode_item_size(
132 struct xfs_log_item *lip,
133 int *nvecs,
134 int *nbytes)
135 {
136 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
137 struct xfs_inode *ip = iip->ili_inode;
138
139 *nvecs += 2;
140 *nbytes += sizeof(struct xfs_inode_log_format) +
141 xfs_icdinode_size(ip->i_d.di_version);
142
143 xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
144 if (XFS_IFORK_Q(ip))
145 xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
146 }
147
148 STATIC void
149 xfs_inode_item_format_data_fork(
150 struct xfs_inode_log_item *iip,
151 struct xfs_inode_log_format *ilf,
152 struct xfs_log_vec *lv,
153 struct xfs_log_iovec **vecp)
154 {
155 struct xfs_inode *ip = iip->ili_inode;
156 size_t data_bytes;
157
158 switch (ip->i_d.di_format) {
159 case XFS_DINODE_FMT_EXTENTS:
160 iip->ili_fields &=
161 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
162 XFS_ILOG_DEV | XFS_ILOG_UUID);
163
164 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
165 ip->i_d.di_nextents > 0 &&
166 ip->i_df.if_bytes > 0) {
167 struct xfs_bmbt_rec *p;
168
169 ASSERT(ip->i_df.if_u1.if_extents != NULL);
170 ASSERT(ip->i_df.if_bytes / sizeof(xfs_bmbt_rec_t) > 0);
171
172 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
173 data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
174 xlog_finish_iovec(lv, *vecp, data_bytes);
175
176 ASSERT(data_bytes <= ip->i_df.if_bytes);
177
178 ilf->ilf_dsize = data_bytes;
179 ilf->ilf_size++;
180 } else {
181 iip->ili_fields &= ~XFS_ILOG_DEXT;
182 }
183 break;
184 case XFS_DINODE_FMT_BTREE:
185 iip->ili_fields &=
186 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
187 XFS_ILOG_DEV | XFS_ILOG_UUID);
188
189 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
190 ip->i_df.if_broot_bytes > 0) {
191 ASSERT(ip->i_df.if_broot != NULL);
192 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
193 ip->i_df.if_broot,
194 ip->i_df.if_broot_bytes);
195 ilf->ilf_dsize = ip->i_df.if_broot_bytes;
196 ilf->ilf_size++;
197 } else {
198 ASSERT(!(iip->ili_fields &
199 XFS_ILOG_DBROOT));
200 iip->ili_fields &= ~XFS_ILOG_DBROOT;
201 }
202 break;
203 case XFS_DINODE_FMT_LOCAL:
204 iip->ili_fields &=
205 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
206 XFS_ILOG_DEV | XFS_ILOG_UUID);
207 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
208 ip->i_df.if_bytes > 0) {
209 /*
210 * Round i_bytes up to a word boundary.
211 * The underlying memory is guaranteed to
212 * to be there by xfs_idata_realloc().
213 */
214 data_bytes = roundup(ip->i_df.if_bytes, 4);
215 ASSERT(ip->i_df.if_real_bytes == 0 ||
216 ip->i_df.if_real_bytes == data_bytes);
217 ASSERT(ip->i_df.if_u1.if_data != NULL);
218 ASSERT(ip->i_d.di_size > 0);
219 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
220 ip->i_df.if_u1.if_data, data_bytes);
221 ilf->ilf_dsize = (unsigned)data_bytes;
222 ilf->ilf_size++;
223 } else {
224 iip->ili_fields &= ~XFS_ILOG_DDATA;
225 }
226 break;
227 case XFS_DINODE_FMT_DEV:
228 iip->ili_fields &=
229 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
230 XFS_ILOG_DEXT | XFS_ILOG_UUID);
231 if (iip->ili_fields & XFS_ILOG_DEV)
232 ilf->ilf_u.ilfu_rdev = ip->i_df.if_u2.if_rdev;
233 break;
234 case XFS_DINODE_FMT_UUID:
235 iip->ili_fields &=
236 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
237 XFS_ILOG_DEXT | XFS_ILOG_DEV);
238 if (iip->ili_fields & XFS_ILOG_UUID)
239 ilf->ilf_u.ilfu_uuid = ip->i_df.if_u2.if_uuid;
240 break;
241 default:
242 ASSERT(0);
243 break;
244 }
245 }
246
247 STATIC void
248 xfs_inode_item_format_attr_fork(
249 struct xfs_inode_log_item *iip,
250 struct xfs_inode_log_format *ilf,
251 struct xfs_log_vec *lv,
252 struct xfs_log_iovec **vecp)
253 {
254 struct xfs_inode *ip = iip->ili_inode;
255 size_t data_bytes;
256
257 switch (ip->i_d.di_aformat) {
258 case XFS_DINODE_FMT_EXTENTS:
259 iip->ili_fields &=
260 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
261
262 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
263 ip->i_d.di_anextents > 0 &&
264 ip->i_afp->if_bytes > 0) {
265 struct xfs_bmbt_rec *p;
266
267 ASSERT(ip->i_afp->if_bytes / sizeof(xfs_bmbt_rec_t) ==
268 ip->i_d.di_anextents);
269 ASSERT(ip->i_afp->if_u1.if_extents != NULL);
270
271 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
272 data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
273 xlog_finish_iovec(lv, *vecp, data_bytes);
274
275 ilf->ilf_asize = data_bytes;
276 ilf->ilf_size++;
277 } else {
278 iip->ili_fields &= ~XFS_ILOG_AEXT;
279 }
280 break;
281 case XFS_DINODE_FMT_BTREE:
282 iip->ili_fields &=
283 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
284
285 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
286 ip->i_afp->if_broot_bytes > 0) {
287 ASSERT(ip->i_afp->if_broot != NULL);
288
289 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
290 ip->i_afp->if_broot,
291 ip->i_afp->if_broot_bytes);
292 ilf->ilf_asize = ip->i_afp->if_broot_bytes;
293 ilf->ilf_size++;
294 } else {
295 iip->ili_fields &= ~XFS_ILOG_ABROOT;
296 }
297 break;
298 case XFS_DINODE_FMT_LOCAL:
299 iip->ili_fields &=
300 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
301
302 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
303 ip->i_afp->if_bytes > 0) {
304 /*
305 * Round i_bytes up to a word boundary.
306 * The underlying memory is guaranteed to
307 * to be there by xfs_idata_realloc().
308 */
309 data_bytes = roundup(ip->i_afp->if_bytes, 4);
310 ASSERT(ip->i_afp->if_real_bytes == 0 ||
311 ip->i_afp->if_real_bytes == data_bytes);
312 ASSERT(ip->i_afp->if_u1.if_data != NULL);
313 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
314 ip->i_afp->if_u1.if_data,
315 data_bytes);
316 ilf->ilf_asize = (unsigned)data_bytes;
317 ilf->ilf_size++;
318 } else {
319 iip->ili_fields &= ~XFS_ILOG_ADATA;
320 }
321 break;
322 default:
323 ASSERT(0);
324 break;
325 }
326 }
327
328 /*
329 * This is called to fill in the vector of log iovecs for the given inode
330 * log item. It fills the first item with an inode log format structure,
331 * the second with the on-disk inode structure, and a possible third and/or
332 * fourth with the inode data/extents/b-tree root and inode attributes
333 * data/extents/b-tree root.
334 */
335 STATIC void
336 xfs_inode_item_format(
337 struct xfs_log_item *lip,
338 struct xfs_log_vec *lv)
339 {
340 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
341 struct xfs_inode *ip = iip->ili_inode;
342 struct xfs_inode_log_format *ilf;
343 struct xfs_log_iovec *vecp = NULL;
344
345 ASSERT(ip->i_d.di_version > 1);
346
347 ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
348 ilf->ilf_type = XFS_LI_INODE;
349 ilf->ilf_ino = ip->i_ino;
350 ilf->ilf_blkno = ip->i_imap.im_blkno;
351 ilf->ilf_len = ip->i_imap.im_len;
352 ilf->ilf_boffset = ip->i_imap.im_boffset;
353 ilf->ilf_fields = XFS_ILOG_CORE;
354 ilf->ilf_size = 2; /* format + core */
355 xlog_finish_iovec(lv, vecp, sizeof(struct xfs_inode_log_format));
356
357 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_ICORE,
358 &ip->i_d,
359 xfs_icdinode_size(ip->i_d.di_version));
360
361 xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
362 if (XFS_IFORK_Q(ip)) {
363 xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
364 } else {
365 iip->ili_fields &=
366 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
367 }
368
369 /* update the format with the exact fields we actually logged */
370 ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
371 }
372
373 /*
374 * This is called to pin the inode associated with the inode log
375 * item in memory so it cannot be written out.
376 */
377 STATIC void
378 xfs_inode_item_pin(
379 struct xfs_log_item *lip)
380 {
381 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
382
383 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
384
385 trace_xfs_inode_pin(ip, _RET_IP_);
386 atomic_inc(&ip->i_pincount);
387 }
388
389
390 /*
391 * This is called to unpin the inode associated with the inode log
392 * item which was previously pinned with a call to xfs_inode_item_pin().
393 *
394 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
395 */
396 STATIC void
397 xfs_inode_item_unpin(
398 struct xfs_log_item *lip,
399 int remove)
400 {
401 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
402
403 trace_xfs_inode_unpin(ip, _RET_IP_);
404 ASSERT(atomic_read(&ip->i_pincount) > 0);
405 if (atomic_dec_and_test(&ip->i_pincount))
406 wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
407 }
408
409 STATIC uint
410 xfs_inode_item_push(
411 struct xfs_log_item *lip,
412 struct list_head *buffer_list)
413 {
414 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
415 struct xfs_inode *ip = iip->ili_inode;
416 struct xfs_buf *bp = NULL;
417 uint rval = XFS_ITEM_SUCCESS;
418 int error;
419
420 if (xfs_ipincount(ip) > 0)
421 return XFS_ITEM_PINNED;
422
423 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
424 return XFS_ITEM_LOCKED;
425
426 /*
427 * Re-check the pincount now that we stabilized the value by
428 * taking the ilock.
429 */
430 if (xfs_ipincount(ip) > 0) {
431 rval = XFS_ITEM_PINNED;
432 goto out_unlock;
433 }
434
435 /*
436 * Stale inode items should force out the iclog.
437 */
438 if (ip->i_flags & XFS_ISTALE) {
439 rval = XFS_ITEM_PINNED;
440 goto out_unlock;
441 }
442
443 /*
444 * Someone else is already flushing the inode. Nothing we can do
445 * here but wait for the flush to finish and remove the item from
446 * the AIL.
447 */
448 if (!xfs_iflock_nowait(ip)) {
449 rval = XFS_ITEM_FLUSHING;
450 goto out_unlock;
451 }
452
453 ASSERT(iip->ili_fields != 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
454 ASSERT(iip->ili_logged == 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
455
456 spin_unlock(&lip->li_ailp->xa_lock);
457
458 error = xfs_iflush(ip, &bp);
459 if (!error) {
460 if (!xfs_buf_delwri_queue(bp, buffer_list))
461 rval = XFS_ITEM_FLUSHING;
462 xfs_buf_relse(bp);
463 }
464
465 spin_lock(&lip->li_ailp->xa_lock);
466 out_unlock:
467 xfs_iunlock(ip, XFS_ILOCK_SHARED);
468 return rval;
469 }
470
471 /*
472 * Unlock the inode associated with the inode log item.
473 * Clear the fields of the inode and inode log item that
474 * are specific to the current transaction. If the
475 * hold flags is set, do not unlock the inode.
476 */
477 STATIC void
478 xfs_inode_item_unlock(
479 struct xfs_log_item *lip)
480 {
481 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
482 struct xfs_inode *ip = iip->ili_inode;
483 unsigned short lock_flags;
484
485 ASSERT(ip->i_itemp != NULL);
486 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
487
488 lock_flags = iip->ili_lock_flags;
489 iip->ili_lock_flags = 0;
490 if (lock_flags)
491 xfs_iunlock(ip, lock_flags);
492 }
493
494 /*
495 * This is called to find out where the oldest active copy of the inode log
496 * item in the on disk log resides now that the last log write of it completed
497 * at the given lsn. Since we always re-log all dirty data in an inode, the
498 * latest copy in the on disk log is the only one that matters. Therefore,
499 * simply return the given lsn.
500 *
501 * If the inode has been marked stale because the cluster is being freed, we
502 * don't want to (re-)insert this inode into the AIL. There is a race condition
503 * where the cluster buffer may be unpinned before the inode is inserted into
504 * the AIL during transaction committed processing. If the buffer is unpinned
505 * before the inode item has been committed and inserted, then it is possible
506 * for the buffer to be written and IO completes before the inode is inserted
507 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
508 * AIL which will never get removed. It will, however, get reclaimed which
509 * triggers an assert in xfs_inode_free() complaining about freein an inode
510 * still in the AIL.
511 *
512 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
513 * transaction committed code knows that it does not need to do any further
514 * processing on the item.
515 */
516 STATIC xfs_lsn_t
517 xfs_inode_item_committed(
518 struct xfs_log_item *lip,
519 xfs_lsn_t lsn)
520 {
521 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
522 struct xfs_inode *ip = iip->ili_inode;
523
524 if (xfs_iflags_test(ip, XFS_ISTALE)) {
525 xfs_inode_item_unpin(lip, 0);
526 return -1;
527 }
528 return lsn;
529 }
530
531 /*
532 * XXX rcc - this one really has to do something. Probably needs
533 * to stamp in a new field in the incore inode.
534 */
535 STATIC void
536 xfs_inode_item_committing(
537 struct xfs_log_item *lip,
538 xfs_lsn_t lsn)
539 {
540 INODE_ITEM(lip)->ili_last_lsn = lsn;
541 }
542
543 /*
544 * This is the ops vector shared by all buf log items.
545 */
546 static const struct xfs_item_ops xfs_inode_item_ops = {
547 .iop_size = xfs_inode_item_size,
548 .iop_format = xfs_inode_item_format,
549 .iop_pin = xfs_inode_item_pin,
550 .iop_unpin = xfs_inode_item_unpin,
551 .iop_unlock = xfs_inode_item_unlock,
552 .iop_committed = xfs_inode_item_committed,
553 .iop_push = xfs_inode_item_push,
554 .iop_committing = xfs_inode_item_committing
555 };
556
557
558 /*
559 * Initialize the inode log item for a newly allocated (in-core) inode.
560 */
561 void
562 xfs_inode_item_init(
563 struct xfs_inode *ip,
564 struct xfs_mount *mp)
565 {
566 struct xfs_inode_log_item *iip;
567
568 ASSERT(ip->i_itemp == NULL);
569 iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
570
571 iip->ili_inode = ip;
572 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
573 &xfs_inode_item_ops);
574 }
575
576 /*
577 * Free the inode log item and any memory hanging off of it.
578 */
579 void
580 xfs_inode_item_destroy(
581 xfs_inode_t *ip)
582 {
583 kmem_zone_free(xfs_ili_zone, ip->i_itemp);
584 }
585
586
587 /*
588 * This is the inode flushing I/O completion routine. It is called
589 * from interrupt level when the buffer containing the inode is
590 * flushed to disk. It is responsible for removing the inode item
591 * from the AIL if it has not been re-logged, and unlocking the inode's
592 * flush lock.
593 *
594 * To reduce AIL lock traffic as much as possible, we scan the buffer log item
595 * list for other inodes that will run this function. We remove them from the
596 * buffer list so we can process all the inode IO completions in one AIL lock
597 * traversal.
598 */
599 void
600 xfs_iflush_done(
601 struct xfs_buf *bp,
602 struct xfs_log_item *lip)
603 {
604 struct xfs_inode_log_item *iip;
605 struct xfs_log_item *blip;
606 struct xfs_log_item *next;
607 struct xfs_log_item *prev;
608 struct xfs_ail *ailp = lip->li_ailp;
609 int need_ail = 0;
610
611 /*
612 * Scan the buffer IO completions for other inodes being completed and
613 * attach them to the current inode log item.
614 */
615 blip = bp->b_fspriv;
616 prev = NULL;
617 while (blip != NULL) {
618 if (lip->li_cb != xfs_iflush_done) {
619 prev = blip;
620 blip = blip->li_bio_list;
621 continue;
622 }
623
624 /* remove from list */
625 next = blip->li_bio_list;
626 if (!prev) {
627 bp->b_fspriv = next;
628 } else {
629 prev->li_bio_list = next;
630 }
631
632 /* add to current list */
633 blip->li_bio_list = lip->li_bio_list;
634 lip->li_bio_list = blip;
635
636 /*
637 * while we have the item, do the unlocked check for needing
638 * the AIL lock.
639 */
640 iip = INODE_ITEM(blip);
641 if (iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn)
642 need_ail++;
643
644 blip = next;
645 }
646
647 /* make sure we capture the state of the initial inode. */
648 iip = INODE_ITEM(lip);
649 if (iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn)
650 need_ail++;
651
652 /*
653 * We only want to pull the item from the AIL if it is
654 * actually there and its location in the log has not
655 * changed since we started the flush. Thus, we only bother
656 * if the ili_logged flag is set and the inode's lsn has not
657 * changed. First we check the lsn outside
658 * the lock since it's cheaper, and then we recheck while
659 * holding the lock before removing the inode from the AIL.
660 */
661 if (need_ail) {
662 struct xfs_log_item *log_items[need_ail];
663 int i = 0;
664 spin_lock(&ailp->xa_lock);
665 for (blip = lip; blip; blip = blip->li_bio_list) {
666 iip = INODE_ITEM(blip);
667 if (iip->ili_logged &&
668 blip->li_lsn == iip->ili_flush_lsn) {
669 log_items[i++] = blip;
670 }
671 ASSERT(i <= need_ail);
672 }
673 /* xfs_trans_ail_delete_bulk() drops the AIL lock. */
674 xfs_trans_ail_delete_bulk(ailp, log_items, i,
675 SHUTDOWN_CORRUPT_INCORE);
676 }
677
678
679 /*
680 * clean up and unlock the flush lock now we are done. We can clear the
681 * ili_last_fields bits now that we know that the data corresponding to
682 * them is safely on disk.
683 */
684 for (blip = lip; blip; blip = next) {
685 next = blip->li_bio_list;
686 blip->li_bio_list = NULL;
687
688 iip = INODE_ITEM(blip);
689 iip->ili_logged = 0;
690 iip->ili_last_fields = 0;
691 xfs_ifunlock(iip->ili_inode);
692 }
693 }
694
695 /*
696 * This is the inode flushing abort routine. It is called from xfs_iflush when
697 * the filesystem is shutting down to clean up the inode state. It is
698 * responsible for removing the inode item from the AIL if it has not been
699 * re-logged, and unlocking the inode's flush lock.
700 */
701 void
702 xfs_iflush_abort(
703 xfs_inode_t *ip,
704 bool stale)
705 {
706 xfs_inode_log_item_t *iip = ip->i_itemp;
707
708 if (iip) {
709 struct xfs_ail *ailp = iip->ili_item.li_ailp;
710 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
711 spin_lock(&ailp->xa_lock);
712 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
713 /* xfs_trans_ail_delete() drops the AIL lock. */
714 xfs_trans_ail_delete(ailp, &iip->ili_item,
715 stale ?
716 SHUTDOWN_LOG_IO_ERROR :
717 SHUTDOWN_CORRUPT_INCORE);
718 } else
719 spin_unlock(&ailp->xa_lock);
720 }
721 iip->ili_logged = 0;
722 /*
723 * Clear the ili_last_fields bits now that we know that the
724 * data corresponding to them is safely on disk.
725 */
726 iip->ili_last_fields = 0;
727 /*
728 * Clear the inode logging fields so no more flushes are
729 * attempted.
730 */
731 iip->ili_fields = 0;
732 }
733 /*
734 * Release the inode's flush lock since we're done with it.
735 */
736 xfs_ifunlock(ip);
737 }
738
739 void
740 xfs_istale_done(
741 struct xfs_buf *bp,
742 struct xfs_log_item *lip)
743 {
744 xfs_iflush_abort(INODE_ITEM(lip)->ili_inode, true);
745 }
746
747 /*
748 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
749 * (which can have different field alignments) to the native version
750 */
751 int
752 xfs_inode_item_format_convert(
753 xfs_log_iovec_t *buf,
754 xfs_inode_log_format_t *in_f)
755 {
756 if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) {
757 xfs_inode_log_format_32_t *in_f32 = buf->i_addr;
758
759 in_f->ilf_type = in_f32->ilf_type;
760 in_f->ilf_size = in_f32->ilf_size;
761 in_f->ilf_fields = in_f32->ilf_fields;
762 in_f->ilf_asize = in_f32->ilf_asize;
763 in_f->ilf_dsize = in_f32->ilf_dsize;
764 in_f->ilf_ino = in_f32->ilf_ino;
765 /* copy biggest field of ilf_u */
766 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
767 in_f32->ilf_u.ilfu_uuid.__u_bits,
768 sizeof(uuid_t));
769 in_f->ilf_blkno = in_f32->ilf_blkno;
770 in_f->ilf_len = in_f32->ilf_len;
771 in_f->ilf_boffset = in_f32->ilf_boffset;
772 return 0;
773 } else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){
774 xfs_inode_log_format_64_t *in_f64 = buf->i_addr;
775
776 in_f->ilf_type = in_f64->ilf_type;
777 in_f->ilf_size = in_f64->ilf_size;
778 in_f->ilf_fields = in_f64->ilf_fields;
779 in_f->ilf_asize = in_f64->ilf_asize;
780 in_f->ilf_dsize = in_f64->ilf_dsize;
781 in_f->ilf_ino = in_f64->ilf_ino;
782 /* copy biggest field of ilf_u */
783 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
784 in_f64->ilf_u.ilfu_uuid.__u_bits,
785 sizeof(uuid_t));
786 in_f->ilf_blkno = in_f64->ilf_blkno;
787 in_f->ilf_len = in_f64->ilf_len;
788 in_f->ilf_boffset = in_f64->ilf_boffset;
789 return 0;
790 }
791 return -EFSCORRUPTED;
792 }
This page took 0.066134 seconds and 5 git commands to generate.