a2dea108071ae6e81d0e683a98a4a011b74f23ee
[deliverable/linux.git] / fs / xfs / xfs_log.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_log.h"
22 #include "xfs_trans.h"
23 #include "xfs_sb.h"
24 #include "xfs_ag.h"
25 #include "xfs_mount.h"
26 #include "xfs_error.h"
27 #include "xfs_log_priv.h"
28 #include "xfs_buf_item.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_log_recover.h"
33 #include "xfs_trans_priv.h"
34 #include "xfs_dinode.h"
35 #include "xfs_inode.h"
36 #include "xfs_trace.h"
37 #include "xfs_fsops.h"
38 #include "xfs_cksum.h"
39
40 kmem_zone_t *xfs_log_ticket_zone;
41
42 /* Local miscellaneous function prototypes */
43 STATIC int
44 xlog_commit_record(
45 struct xlog *log,
46 struct xlog_ticket *ticket,
47 struct xlog_in_core **iclog,
48 xfs_lsn_t *commitlsnp);
49
50 STATIC struct xlog *
51 xlog_alloc_log(
52 struct xfs_mount *mp,
53 struct xfs_buftarg *log_target,
54 xfs_daddr_t blk_offset,
55 int num_bblks);
56 STATIC int
57 xlog_space_left(
58 struct xlog *log,
59 atomic64_t *head);
60 STATIC int
61 xlog_sync(
62 struct xlog *log,
63 struct xlog_in_core *iclog);
64 STATIC void
65 xlog_dealloc_log(
66 struct xlog *log);
67
68 /* local state machine functions */
69 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
70 STATIC void
71 xlog_state_do_callback(
72 struct xlog *log,
73 int aborted,
74 struct xlog_in_core *iclog);
75 STATIC int
76 xlog_state_get_iclog_space(
77 struct xlog *log,
78 int len,
79 struct xlog_in_core **iclog,
80 struct xlog_ticket *ticket,
81 int *continued_write,
82 int *logoffsetp);
83 STATIC int
84 xlog_state_release_iclog(
85 struct xlog *log,
86 struct xlog_in_core *iclog);
87 STATIC void
88 xlog_state_switch_iclogs(
89 struct xlog *log,
90 struct xlog_in_core *iclog,
91 int eventual_size);
92 STATIC void
93 xlog_state_want_sync(
94 struct xlog *log,
95 struct xlog_in_core *iclog);
96
97 STATIC void
98 xlog_grant_push_ail(
99 struct xlog *log,
100 int need_bytes);
101 STATIC void
102 xlog_regrant_reserve_log_space(
103 struct xlog *log,
104 struct xlog_ticket *ticket);
105 STATIC void
106 xlog_ungrant_log_space(
107 struct xlog *log,
108 struct xlog_ticket *ticket);
109
110 #if defined(DEBUG)
111 STATIC void
112 xlog_verify_dest_ptr(
113 struct xlog *log,
114 char *ptr);
115 STATIC void
116 xlog_verify_grant_tail(
117 struct xlog *log);
118 STATIC void
119 xlog_verify_iclog(
120 struct xlog *log,
121 struct xlog_in_core *iclog,
122 int count,
123 bool syncing);
124 STATIC void
125 xlog_verify_tail_lsn(
126 struct xlog *log,
127 struct xlog_in_core *iclog,
128 xfs_lsn_t tail_lsn);
129 #else
130 #define xlog_verify_dest_ptr(a,b)
131 #define xlog_verify_grant_tail(a)
132 #define xlog_verify_iclog(a,b,c,d)
133 #define xlog_verify_tail_lsn(a,b,c)
134 #endif
135
136 STATIC int
137 xlog_iclogs_empty(
138 struct xlog *log);
139
140 static void
141 xlog_grant_sub_space(
142 struct xlog *log,
143 atomic64_t *head,
144 int bytes)
145 {
146 int64_t head_val = atomic64_read(head);
147 int64_t new, old;
148
149 do {
150 int cycle, space;
151
152 xlog_crack_grant_head_val(head_val, &cycle, &space);
153
154 space -= bytes;
155 if (space < 0) {
156 space += log->l_logsize;
157 cycle--;
158 }
159
160 old = head_val;
161 new = xlog_assign_grant_head_val(cycle, space);
162 head_val = atomic64_cmpxchg(head, old, new);
163 } while (head_val != old);
164 }
165
166 static void
167 xlog_grant_add_space(
168 struct xlog *log,
169 atomic64_t *head,
170 int bytes)
171 {
172 int64_t head_val = atomic64_read(head);
173 int64_t new, old;
174
175 do {
176 int tmp;
177 int cycle, space;
178
179 xlog_crack_grant_head_val(head_val, &cycle, &space);
180
181 tmp = log->l_logsize - space;
182 if (tmp > bytes)
183 space += bytes;
184 else {
185 space = bytes - tmp;
186 cycle++;
187 }
188
189 old = head_val;
190 new = xlog_assign_grant_head_val(cycle, space);
191 head_val = atomic64_cmpxchg(head, old, new);
192 } while (head_val != old);
193 }
194
195 STATIC void
196 xlog_grant_head_init(
197 struct xlog_grant_head *head)
198 {
199 xlog_assign_grant_head(&head->grant, 1, 0);
200 INIT_LIST_HEAD(&head->waiters);
201 spin_lock_init(&head->lock);
202 }
203
204 STATIC void
205 xlog_grant_head_wake_all(
206 struct xlog_grant_head *head)
207 {
208 struct xlog_ticket *tic;
209
210 spin_lock(&head->lock);
211 list_for_each_entry(tic, &head->waiters, t_queue)
212 wake_up_process(tic->t_task);
213 spin_unlock(&head->lock);
214 }
215
216 static inline int
217 xlog_ticket_reservation(
218 struct xlog *log,
219 struct xlog_grant_head *head,
220 struct xlog_ticket *tic)
221 {
222 if (head == &log->l_write_head) {
223 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
224 return tic->t_unit_res;
225 } else {
226 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
227 return tic->t_unit_res * tic->t_cnt;
228 else
229 return tic->t_unit_res;
230 }
231 }
232
233 STATIC bool
234 xlog_grant_head_wake(
235 struct xlog *log,
236 struct xlog_grant_head *head,
237 int *free_bytes)
238 {
239 struct xlog_ticket *tic;
240 int need_bytes;
241
242 list_for_each_entry(tic, &head->waiters, t_queue) {
243 need_bytes = xlog_ticket_reservation(log, head, tic);
244 if (*free_bytes < need_bytes)
245 return false;
246
247 *free_bytes -= need_bytes;
248 trace_xfs_log_grant_wake_up(log, tic);
249 wake_up_process(tic->t_task);
250 }
251
252 return true;
253 }
254
255 STATIC int
256 xlog_grant_head_wait(
257 struct xlog *log,
258 struct xlog_grant_head *head,
259 struct xlog_ticket *tic,
260 int need_bytes) __releases(&head->lock)
261 __acquires(&head->lock)
262 {
263 list_add_tail(&tic->t_queue, &head->waiters);
264
265 do {
266 if (XLOG_FORCED_SHUTDOWN(log))
267 goto shutdown;
268 xlog_grant_push_ail(log, need_bytes);
269
270 __set_current_state(TASK_UNINTERRUPTIBLE);
271 spin_unlock(&head->lock);
272
273 XFS_STATS_INC(xs_sleep_logspace);
274
275 trace_xfs_log_grant_sleep(log, tic);
276 schedule();
277 trace_xfs_log_grant_wake(log, tic);
278
279 spin_lock(&head->lock);
280 if (XLOG_FORCED_SHUTDOWN(log))
281 goto shutdown;
282 } while (xlog_space_left(log, &head->grant) < need_bytes);
283
284 list_del_init(&tic->t_queue);
285 return 0;
286 shutdown:
287 list_del_init(&tic->t_queue);
288 return XFS_ERROR(EIO);
289 }
290
291 /*
292 * Atomically get the log space required for a log ticket.
293 *
294 * Once a ticket gets put onto head->waiters, it will only return after the
295 * needed reservation is satisfied.
296 *
297 * This function is structured so that it has a lock free fast path. This is
298 * necessary because every new transaction reservation will come through this
299 * path. Hence any lock will be globally hot if we take it unconditionally on
300 * every pass.
301 *
302 * As tickets are only ever moved on and off head->waiters under head->lock, we
303 * only need to take that lock if we are going to add the ticket to the queue
304 * and sleep. We can avoid taking the lock if the ticket was never added to
305 * head->waiters because the t_queue list head will be empty and we hold the
306 * only reference to it so it can safely be checked unlocked.
307 */
308 STATIC int
309 xlog_grant_head_check(
310 struct xlog *log,
311 struct xlog_grant_head *head,
312 struct xlog_ticket *tic,
313 int *need_bytes)
314 {
315 int free_bytes;
316 int error = 0;
317
318 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
319
320 /*
321 * If there are other waiters on the queue then give them a chance at
322 * logspace before us. Wake up the first waiters, if we do not wake
323 * up all the waiters then go to sleep waiting for more free space,
324 * otherwise try to get some space for this transaction.
325 */
326 *need_bytes = xlog_ticket_reservation(log, head, tic);
327 free_bytes = xlog_space_left(log, &head->grant);
328 if (!list_empty_careful(&head->waiters)) {
329 spin_lock(&head->lock);
330 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
331 free_bytes < *need_bytes) {
332 error = xlog_grant_head_wait(log, head, tic,
333 *need_bytes);
334 }
335 spin_unlock(&head->lock);
336 } else if (free_bytes < *need_bytes) {
337 spin_lock(&head->lock);
338 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
339 spin_unlock(&head->lock);
340 }
341
342 return error;
343 }
344
345 static void
346 xlog_tic_reset_res(xlog_ticket_t *tic)
347 {
348 tic->t_res_num = 0;
349 tic->t_res_arr_sum = 0;
350 tic->t_res_num_ophdrs = 0;
351 }
352
353 static void
354 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
355 {
356 if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
357 /* add to overflow and start again */
358 tic->t_res_o_flow += tic->t_res_arr_sum;
359 tic->t_res_num = 0;
360 tic->t_res_arr_sum = 0;
361 }
362
363 tic->t_res_arr[tic->t_res_num].r_len = len;
364 tic->t_res_arr[tic->t_res_num].r_type = type;
365 tic->t_res_arr_sum += len;
366 tic->t_res_num++;
367 }
368
369 /*
370 * Replenish the byte reservation required by moving the grant write head.
371 */
372 int
373 xfs_log_regrant(
374 struct xfs_mount *mp,
375 struct xlog_ticket *tic)
376 {
377 struct xlog *log = mp->m_log;
378 int need_bytes;
379 int error = 0;
380
381 if (XLOG_FORCED_SHUTDOWN(log))
382 return XFS_ERROR(EIO);
383
384 XFS_STATS_INC(xs_try_logspace);
385
386 /*
387 * This is a new transaction on the ticket, so we need to change the
388 * transaction ID so that the next transaction has a different TID in
389 * the log. Just add one to the existing tid so that we can see chains
390 * of rolling transactions in the log easily.
391 */
392 tic->t_tid++;
393
394 xlog_grant_push_ail(log, tic->t_unit_res);
395
396 tic->t_curr_res = tic->t_unit_res;
397 xlog_tic_reset_res(tic);
398
399 if (tic->t_cnt > 0)
400 return 0;
401
402 trace_xfs_log_regrant(log, tic);
403
404 error = xlog_grant_head_check(log, &log->l_write_head, tic,
405 &need_bytes);
406 if (error)
407 goto out_error;
408
409 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
410 trace_xfs_log_regrant_exit(log, tic);
411 xlog_verify_grant_tail(log);
412 return 0;
413
414 out_error:
415 /*
416 * If we are failing, make sure the ticket doesn't have any current
417 * reservations. We don't want to add this back when the ticket/
418 * transaction gets cancelled.
419 */
420 tic->t_curr_res = 0;
421 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
422 return error;
423 }
424
425 /*
426 * Reserve log space and return a ticket corresponding the reservation.
427 *
428 * Each reservation is going to reserve extra space for a log record header.
429 * When writes happen to the on-disk log, we don't subtract the length of the
430 * log record header from any reservation. By wasting space in each
431 * reservation, we prevent over allocation problems.
432 */
433 int
434 xfs_log_reserve(
435 struct xfs_mount *mp,
436 int unit_bytes,
437 int cnt,
438 struct xlog_ticket **ticp,
439 __uint8_t client,
440 bool permanent,
441 uint t_type)
442 {
443 struct xlog *log = mp->m_log;
444 struct xlog_ticket *tic;
445 int need_bytes;
446 int error = 0;
447
448 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
449
450 if (XLOG_FORCED_SHUTDOWN(log))
451 return XFS_ERROR(EIO);
452
453 XFS_STATS_INC(xs_try_logspace);
454
455 ASSERT(*ticp == NULL);
456 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
457 KM_SLEEP | KM_MAYFAIL);
458 if (!tic)
459 return XFS_ERROR(ENOMEM);
460
461 tic->t_trans_type = t_type;
462 *ticp = tic;
463
464 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
465 : tic->t_unit_res);
466
467 trace_xfs_log_reserve(log, tic);
468
469 error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
470 &need_bytes);
471 if (error)
472 goto out_error;
473
474 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
475 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
476 trace_xfs_log_reserve_exit(log, tic);
477 xlog_verify_grant_tail(log);
478 return 0;
479
480 out_error:
481 /*
482 * If we are failing, make sure the ticket doesn't have any current
483 * reservations. We don't want to add this back when the ticket/
484 * transaction gets cancelled.
485 */
486 tic->t_curr_res = 0;
487 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
488 return error;
489 }
490
491
492 /*
493 * NOTES:
494 *
495 * 1. currblock field gets updated at startup and after in-core logs
496 * marked as with WANT_SYNC.
497 */
498
499 /*
500 * This routine is called when a user of a log manager ticket is done with
501 * the reservation. If the ticket was ever used, then a commit record for
502 * the associated transaction is written out as a log operation header with
503 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with
504 * a given ticket. If the ticket was one with a permanent reservation, then
505 * a few operations are done differently. Permanent reservation tickets by
506 * default don't release the reservation. They just commit the current
507 * transaction with the belief that the reservation is still needed. A flag
508 * must be passed in before permanent reservations are actually released.
509 * When these type of tickets are not released, they need to be set into
510 * the inited state again. By doing this, a start record will be written
511 * out when the next write occurs.
512 */
513 xfs_lsn_t
514 xfs_log_done(
515 struct xfs_mount *mp,
516 struct xlog_ticket *ticket,
517 struct xlog_in_core **iclog,
518 uint flags)
519 {
520 struct xlog *log = mp->m_log;
521 xfs_lsn_t lsn = 0;
522
523 if (XLOG_FORCED_SHUTDOWN(log) ||
524 /*
525 * If nothing was ever written, don't write out commit record.
526 * If we get an error, just continue and give back the log ticket.
527 */
528 (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
529 (xlog_commit_record(log, ticket, iclog, &lsn)))) {
530 lsn = (xfs_lsn_t) -1;
531 if (ticket->t_flags & XLOG_TIC_PERM_RESERV) {
532 flags |= XFS_LOG_REL_PERM_RESERV;
533 }
534 }
535
536
537 if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 ||
538 (flags & XFS_LOG_REL_PERM_RESERV)) {
539 trace_xfs_log_done_nonperm(log, ticket);
540
541 /*
542 * Release ticket if not permanent reservation or a specific
543 * request has been made to release a permanent reservation.
544 */
545 xlog_ungrant_log_space(log, ticket);
546 xfs_log_ticket_put(ticket);
547 } else {
548 trace_xfs_log_done_perm(log, ticket);
549
550 xlog_regrant_reserve_log_space(log, ticket);
551 /* If this ticket was a permanent reservation and we aren't
552 * trying to release it, reset the inited flags; so next time
553 * we write, a start record will be written out.
554 */
555 ticket->t_flags |= XLOG_TIC_INITED;
556 }
557
558 return lsn;
559 }
560
561 /*
562 * Attaches a new iclog I/O completion callback routine during
563 * transaction commit. If the log is in error state, a non-zero
564 * return code is handed back and the caller is responsible for
565 * executing the callback at an appropriate time.
566 */
567 int
568 xfs_log_notify(
569 struct xfs_mount *mp,
570 struct xlog_in_core *iclog,
571 xfs_log_callback_t *cb)
572 {
573 int abortflg;
574
575 spin_lock(&iclog->ic_callback_lock);
576 abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
577 if (!abortflg) {
578 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
579 (iclog->ic_state == XLOG_STATE_WANT_SYNC));
580 cb->cb_next = NULL;
581 *(iclog->ic_callback_tail) = cb;
582 iclog->ic_callback_tail = &(cb->cb_next);
583 }
584 spin_unlock(&iclog->ic_callback_lock);
585 return abortflg;
586 }
587
588 int
589 xfs_log_release_iclog(
590 struct xfs_mount *mp,
591 struct xlog_in_core *iclog)
592 {
593 if (xlog_state_release_iclog(mp->m_log, iclog)) {
594 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
595 return EIO;
596 }
597
598 return 0;
599 }
600
601 /*
602 * Mount a log filesystem
603 *
604 * mp - ubiquitous xfs mount point structure
605 * log_target - buftarg of on-disk log device
606 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
607 * num_bblocks - Number of BBSIZE blocks in on-disk log
608 *
609 * Return error or zero.
610 */
611 int
612 xfs_log_mount(
613 xfs_mount_t *mp,
614 xfs_buftarg_t *log_target,
615 xfs_daddr_t blk_offset,
616 int num_bblks)
617 {
618 int error = 0;
619 int min_logfsbs;
620
621 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
622 xfs_notice(mp, "Mounting Filesystem");
623 else {
624 xfs_notice(mp,
625 "Mounting filesystem in no-recovery mode. Filesystem will be inconsistent.");
626 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
627 }
628
629 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
630 if (IS_ERR(mp->m_log)) {
631 error = -PTR_ERR(mp->m_log);
632 goto out;
633 }
634
635 /*
636 * Validate the given log space and drop a critical message via syslog
637 * if the log size is too small that would lead to some unexpected
638 * situations in transaction log space reservation stage.
639 *
640 * Note: we can't just reject the mount if the validation fails. This
641 * would mean that people would have to downgrade their kernel just to
642 * remedy the situation as there is no way to grow the log (short of
643 * black magic surgery with xfs_db).
644 *
645 * We can, however, reject mounts for CRC format filesystems, as the
646 * mkfs binary being used to make the filesystem should never create a
647 * filesystem with a log that is too small.
648 */
649 min_logfsbs = xfs_log_calc_minimum_size(mp);
650
651 if (mp->m_sb.sb_logblocks < min_logfsbs) {
652 xfs_warn(mp,
653 "Log size %d blocks too small, minimum size is %d blocks",
654 mp->m_sb.sb_logblocks, min_logfsbs);
655 error = EINVAL;
656 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
657 xfs_warn(mp,
658 "Log size %d blocks too large, maximum size is %lld blocks",
659 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
660 error = EINVAL;
661 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
662 xfs_warn(mp,
663 "log size %lld bytes too large, maximum size is %lld bytes",
664 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
665 XFS_MAX_LOG_BYTES);
666 error = EINVAL;
667 }
668 if (error) {
669 if (xfs_sb_version_hascrc(&mp->m_sb)) {
670 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
671 ASSERT(0);
672 goto out_free_log;
673 }
674 xfs_crit(mp,
675 "Log size out of supported range. Continuing onwards, but if log hangs are\n"
676 "experienced then please report this message in the bug report.");
677 }
678
679 /*
680 * Initialize the AIL now we have a log.
681 */
682 error = xfs_trans_ail_init(mp);
683 if (error) {
684 xfs_warn(mp, "AIL initialisation failed: error %d", error);
685 goto out_free_log;
686 }
687 mp->m_log->l_ailp = mp->m_ail;
688
689 /*
690 * skip log recovery on a norecovery mount. pretend it all
691 * just worked.
692 */
693 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
694 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
695
696 if (readonly)
697 mp->m_flags &= ~XFS_MOUNT_RDONLY;
698
699 error = xlog_recover(mp->m_log);
700
701 if (readonly)
702 mp->m_flags |= XFS_MOUNT_RDONLY;
703 if (error) {
704 xfs_warn(mp, "log mount/recovery failed: error %d",
705 error);
706 goto out_destroy_ail;
707 }
708 }
709
710 /* Normal transactions can now occur */
711 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
712
713 /*
714 * Now the log has been fully initialised and we know were our
715 * space grant counters are, we can initialise the permanent ticket
716 * needed for delayed logging to work.
717 */
718 xlog_cil_init_post_recovery(mp->m_log);
719
720 return 0;
721
722 out_destroy_ail:
723 xfs_trans_ail_destroy(mp);
724 out_free_log:
725 xlog_dealloc_log(mp->m_log);
726 out:
727 return error;
728 }
729
730 /*
731 * Finish the recovery of the file system. This is separate from the
732 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
733 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
734 * here.
735 *
736 * If we finish recovery successfully, start the background log work. If we are
737 * not doing recovery, then we have a RO filesystem and we don't need to start
738 * it.
739 */
740 int
741 xfs_log_mount_finish(xfs_mount_t *mp)
742 {
743 int error = 0;
744
745 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
746 error = xlog_recover_finish(mp->m_log);
747 if (!error)
748 xfs_log_work_queue(mp);
749 } else {
750 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
751 }
752
753
754 return error;
755 }
756
757 /*
758 * Final log writes as part of unmount.
759 *
760 * Mark the filesystem clean as unmount happens. Note that during relocation
761 * this routine needs to be executed as part of source-bag while the
762 * deallocation must not be done until source-end.
763 */
764
765 /*
766 * Unmount record used to have a string "Unmount filesystem--" in the
767 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
768 * We just write the magic number now since that particular field isn't
769 * currently architecture converted and "Unmount" is a bit foo.
770 * As far as I know, there weren't any dependencies on the old behaviour.
771 */
772
773 int
774 xfs_log_unmount_write(xfs_mount_t *mp)
775 {
776 struct xlog *log = mp->m_log;
777 xlog_in_core_t *iclog;
778 #ifdef DEBUG
779 xlog_in_core_t *first_iclog;
780 #endif
781 xlog_ticket_t *tic = NULL;
782 xfs_lsn_t lsn;
783 int error;
784
785 /*
786 * Don't write out unmount record on read-only mounts.
787 * Or, if we are doing a forced umount (typically because of IO errors).
788 */
789 if (mp->m_flags & XFS_MOUNT_RDONLY)
790 return 0;
791
792 error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
793 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
794
795 #ifdef DEBUG
796 first_iclog = iclog = log->l_iclog;
797 do {
798 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
799 ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
800 ASSERT(iclog->ic_offset == 0);
801 }
802 iclog = iclog->ic_next;
803 } while (iclog != first_iclog);
804 #endif
805 if (! (XLOG_FORCED_SHUTDOWN(log))) {
806 error = xfs_log_reserve(mp, 600, 1, &tic,
807 XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
808 if (!error) {
809 /* the data section must be 32 bit size aligned */
810 struct {
811 __uint16_t magic;
812 __uint16_t pad1;
813 __uint32_t pad2; /* may as well make it 64 bits */
814 } magic = {
815 .magic = XLOG_UNMOUNT_TYPE,
816 };
817 struct xfs_log_iovec reg = {
818 .i_addr = &magic,
819 .i_len = sizeof(magic),
820 .i_type = XLOG_REG_TYPE_UNMOUNT,
821 };
822 struct xfs_log_vec vec = {
823 .lv_niovecs = 1,
824 .lv_iovecp = &reg,
825 };
826
827 /* remove inited flag, and account for space used */
828 tic->t_flags = 0;
829 tic->t_curr_res -= sizeof(magic);
830 error = xlog_write(log, &vec, tic, &lsn,
831 NULL, XLOG_UNMOUNT_TRANS);
832 /*
833 * At this point, we're umounting anyway,
834 * so there's no point in transitioning log state
835 * to IOERROR. Just continue...
836 */
837 }
838
839 if (error)
840 xfs_alert(mp, "%s: unmount record failed", __func__);
841
842
843 spin_lock(&log->l_icloglock);
844 iclog = log->l_iclog;
845 atomic_inc(&iclog->ic_refcnt);
846 xlog_state_want_sync(log, iclog);
847 spin_unlock(&log->l_icloglock);
848 error = xlog_state_release_iclog(log, iclog);
849
850 spin_lock(&log->l_icloglock);
851 if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
852 iclog->ic_state == XLOG_STATE_DIRTY)) {
853 if (!XLOG_FORCED_SHUTDOWN(log)) {
854 xlog_wait(&iclog->ic_force_wait,
855 &log->l_icloglock);
856 } else {
857 spin_unlock(&log->l_icloglock);
858 }
859 } else {
860 spin_unlock(&log->l_icloglock);
861 }
862 if (tic) {
863 trace_xfs_log_umount_write(log, tic);
864 xlog_ungrant_log_space(log, tic);
865 xfs_log_ticket_put(tic);
866 }
867 } else {
868 /*
869 * We're already in forced_shutdown mode, couldn't
870 * even attempt to write out the unmount transaction.
871 *
872 * Go through the motions of sync'ing and releasing
873 * the iclog, even though no I/O will actually happen,
874 * we need to wait for other log I/Os that may already
875 * be in progress. Do this as a separate section of
876 * code so we'll know if we ever get stuck here that
877 * we're in this odd situation of trying to unmount
878 * a file system that went into forced_shutdown as
879 * the result of an unmount..
880 */
881 spin_lock(&log->l_icloglock);
882 iclog = log->l_iclog;
883 atomic_inc(&iclog->ic_refcnt);
884
885 xlog_state_want_sync(log, iclog);
886 spin_unlock(&log->l_icloglock);
887 error = xlog_state_release_iclog(log, iclog);
888
889 spin_lock(&log->l_icloglock);
890
891 if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE
892 || iclog->ic_state == XLOG_STATE_DIRTY
893 || iclog->ic_state == XLOG_STATE_IOERROR) ) {
894
895 xlog_wait(&iclog->ic_force_wait,
896 &log->l_icloglock);
897 } else {
898 spin_unlock(&log->l_icloglock);
899 }
900 }
901
902 return error;
903 } /* xfs_log_unmount_write */
904
905 /*
906 * Empty the log for unmount/freeze.
907 *
908 * To do this, we first need to shut down the background log work so it is not
909 * trying to cover the log as we clean up. We then need to unpin all objects in
910 * the log so we can then flush them out. Once they have completed their IO and
911 * run the callbacks removing themselves from the AIL, we can write the unmount
912 * record.
913 */
914 void
915 xfs_log_quiesce(
916 struct xfs_mount *mp)
917 {
918 cancel_delayed_work_sync(&mp->m_log->l_work);
919 xfs_log_force(mp, XFS_LOG_SYNC);
920
921 /*
922 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
923 * will push it, xfs_wait_buftarg() will not wait for it. Further,
924 * xfs_buf_iowait() cannot be used because it was pushed with the
925 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
926 * the IO to complete.
927 */
928 xfs_ail_push_all_sync(mp->m_ail);
929 xfs_wait_buftarg(mp->m_ddev_targp);
930 xfs_buf_lock(mp->m_sb_bp);
931 xfs_buf_unlock(mp->m_sb_bp);
932
933 xfs_log_unmount_write(mp);
934 }
935
936 /*
937 * Shut down and release the AIL and Log.
938 *
939 * During unmount, we need to ensure we flush all the dirty metadata objects
940 * from the AIL so that the log is empty before we write the unmount record to
941 * the log. Once this is done, we can tear down the AIL and the log.
942 */
943 void
944 xfs_log_unmount(
945 struct xfs_mount *mp)
946 {
947 xfs_log_quiesce(mp);
948
949 xfs_trans_ail_destroy(mp);
950 xlog_dealloc_log(mp->m_log);
951 }
952
953 void
954 xfs_log_item_init(
955 struct xfs_mount *mp,
956 struct xfs_log_item *item,
957 int type,
958 const struct xfs_item_ops *ops)
959 {
960 item->li_mountp = mp;
961 item->li_ailp = mp->m_ail;
962 item->li_type = type;
963 item->li_ops = ops;
964 item->li_lv = NULL;
965
966 INIT_LIST_HEAD(&item->li_ail);
967 INIT_LIST_HEAD(&item->li_cil);
968 }
969
970 /*
971 * Wake up processes waiting for log space after we have moved the log tail.
972 */
973 void
974 xfs_log_space_wake(
975 struct xfs_mount *mp)
976 {
977 struct xlog *log = mp->m_log;
978 int free_bytes;
979
980 if (XLOG_FORCED_SHUTDOWN(log))
981 return;
982
983 if (!list_empty_careful(&log->l_write_head.waiters)) {
984 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
985
986 spin_lock(&log->l_write_head.lock);
987 free_bytes = xlog_space_left(log, &log->l_write_head.grant);
988 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
989 spin_unlock(&log->l_write_head.lock);
990 }
991
992 if (!list_empty_careful(&log->l_reserve_head.waiters)) {
993 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
994
995 spin_lock(&log->l_reserve_head.lock);
996 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
997 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
998 spin_unlock(&log->l_reserve_head.lock);
999 }
1000 }
1001
1002 /*
1003 * Determine if we have a transaction that has gone to disk
1004 * that needs to be covered. To begin the transition to the idle state
1005 * firstly the log needs to be idle (no AIL and nothing in the iclogs).
1006 * If we are then in a state where covering is needed, the caller is informed
1007 * that dummy transactions are required to move the log into the idle state.
1008 *
1009 * Because this is called as part of the sync process, we should also indicate
1010 * that dummy transactions should be issued in anything but the covered or
1011 * idle states. This ensures that the log tail is accurately reflected in
1012 * the log at the end of the sync, hence if a crash occurrs avoids replay
1013 * of transactions where the metadata is already on disk.
1014 */
1015 int
1016 xfs_log_need_covered(xfs_mount_t *mp)
1017 {
1018 int needed = 0;
1019 struct xlog *log = mp->m_log;
1020
1021 if (!xfs_fs_writable(mp))
1022 return 0;
1023
1024 spin_lock(&log->l_icloglock);
1025 switch (log->l_covered_state) {
1026 case XLOG_STATE_COVER_DONE:
1027 case XLOG_STATE_COVER_DONE2:
1028 case XLOG_STATE_COVER_IDLE:
1029 break;
1030 case XLOG_STATE_COVER_NEED:
1031 case XLOG_STATE_COVER_NEED2:
1032 if (!xfs_ail_min_lsn(log->l_ailp) &&
1033 xlog_iclogs_empty(log)) {
1034 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1035 log->l_covered_state = XLOG_STATE_COVER_DONE;
1036 else
1037 log->l_covered_state = XLOG_STATE_COVER_DONE2;
1038 }
1039 /* FALLTHRU */
1040 default:
1041 needed = 1;
1042 break;
1043 }
1044 spin_unlock(&log->l_icloglock);
1045 return needed;
1046 }
1047
1048 /*
1049 * We may be holding the log iclog lock upon entering this routine.
1050 */
1051 xfs_lsn_t
1052 xlog_assign_tail_lsn_locked(
1053 struct xfs_mount *mp)
1054 {
1055 struct xlog *log = mp->m_log;
1056 struct xfs_log_item *lip;
1057 xfs_lsn_t tail_lsn;
1058
1059 assert_spin_locked(&mp->m_ail->xa_lock);
1060
1061 /*
1062 * To make sure we always have a valid LSN for the log tail we keep
1063 * track of the last LSN which was committed in log->l_last_sync_lsn,
1064 * and use that when the AIL was empty.
1065 */
1066 lip = xfs_ail_min(mp->m_ail);
1067 if (lip)
1068 tail_lsn = lip->li_lsn;
1069 else
1070 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1071 atomic64_set(&log->l_tail_lsn, tail_lsn);
1072 return tail_lsn;
1073 }
1074
1075 xfs_lsn_t
1076 xlog_assign_tail_lsn(
1077 struct xfs_mount *mp)
1078 {
1079 xfs_lsn_t tail_lsn;
1080
1081 spin_lock(&mp->m_ail->xa_lock);
1082 tail_lsn = xlog_assign_tail_lsn_locked(mp);
1083 spin_unlock(&mp->m_ail->xa_lock);
1084
1085 return tail_lsn;
1086 }
1087
1088 /*
1089 * Return the space in the log between the tail and the head. The head
1090 * is passed in the cycle/bytes formal parms. In the special case where
1091 * the reserve head has wrapped passed the tail, this calculation is no
1092 * longer valid. In this case, just return 0 which means there is no space
1093 * in the log. This works for all places where this function is called
1094 * with the reserve head. Of course, if the write head were to ever
1095 * wrap the tail, we should blow up. Rather than catch this case here,
1096 * we depend on other ASSERTions in other parts of the code. XXXmiken
1097 *
1098 * This code also handles the case where the reservation head is behind
1099 * the tail. The details of this case are described below, but the end
1100 * result is that we return the size of the log as the amount of space left.
1101 */
1102 STATIC int
1103 xlog_space_left(
1104 struct xlog *log,
1105 atomic64_t *head)
1106 {
1107 int free_bytes;
1108 int tail_bytes;
1109 int tail_cycle;
1110 int head_cycle;
1111 int head_bytes;
1112
1113 xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1114 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1115 tail_bytes = BBTOB(tail_bytes);
1116 if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1117 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1118 else if (tail_cycle + 1 < head_cycle)
1119 return 0;
1120 else if (tail_cycle < head_cycle) {
1121 ASSERT(tail_cycle == (head_cycle - 1));
1122 free_bytes = tail_bytes - head_bytes;
1123 } else {
1124 /*
1125 * The reservation head is behind the tail.
1126 * In this case we just want to return the size of the
1127 * log as the amount of space left.
1128 */
1129 xfs_alert(log->l_mp,
1130 "xlog_space_left: head behind tail\n"
1131 " tail_cycle = %d, tail_bytes = %d\n"
1132 " GH cycle = %d, GH bytes = %d",
1133 tail_cycle, tail_bytes, head_cycle, head_bytes);
1134 ASSERT(0);
1135 free_bytes = log->l_logsize;
1136 }
1137 return free_bytes;
1138 }
1139
1140
1141 /*
1142 * Log function which is called when an io completes.
1143 *
1144 * The log manager needs its own routine, in order to control what
1145 * happens with the buffer after the write completes.
1146 */
1147 void
1148 xlog_iodone(xfs_buf_t *bp)
1149 {
1150 struct xlog_in_core *iclog = bp->b_fspriv;
1151 struct xlog *l = iclog->ic_log;
1152 int aborted = 0;
1153
1154 /*
1155 * Race to shutdown the filesystem if we see an error.
1156 */
1157 if (XFS_TEST_ERROR((xfs_buf_geterror(bp)), l->l_mp,
1158 XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) {
1159 xfs_buf_ioerror_alert(bp, __func__);
1160 xfs_buf_stale(bp);
1161 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1162 /*
1163 * This flag will be propagated to the trans-committed
1164 * callback routines to let them know that the log-commit
1165 * didn't succeed.
1166 */
1167 aborted = XFS_LI_ABORTED;
1168 } else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1169 aborted = XFS_LI_ABORTED;
1170 }
1171
1172 /* log I/O is always issued ASYNC */
1173 ASSERT(XFS_BUF_ISASYNC(bp));
1174 xlog_state_done_syncing(iclog, aborted);
1175 /*
1176 * do not reference the buffer (bp) here as we could race
1177 * with it being freed after writing the unmount record to the
1178 * log.
1179 */
1180 }
1181
1182 /*
1183 * Return size of each in-core log record buffer.
1184 *
1185 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1186 *
1187 * If the filesystem blocksize is too large, we may need to choose a
1188 * larger size since the directory code currently logs entire blocks.
1189 */
1190
1191 STATIC void
1192 xlog_get_iclog_buffer_size(
1193 struct xfs_mount *mp,
1194 struct xlog *log)
1195 {
1196 int size;
1197 int xhdrs;
1198
1199 if (mp->m_logbufs <= 0)
1200 log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1201 else
1202 log->l_iclog_bufs = mp->m_logbufs;
1203
1204 /*
1205 * Buffer size passed in from mount system call.
1206 */
1207 if (mp->m_logbsize > 0) {
1208 size = log->l_iclog_size = mp->m_logbsize;
1209 log->l_iclog_size_log = 0;
1210 while (size != 1) {
1211 log->l_iclog_size_log++;
1212 size >>= 1;
1213 }
1214
1215 if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1216 /* # headers = size / 32k
1217 * one header holds cycles from 32k of data
1218 */
1219
1220 xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1221 if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1222 xhdrs++;
1223 log->l_iclog_hsize = xhdrs << BBSHIFT;
1224 log->l_iclog_heads = xhdrs;
1225 } else {
1226 ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1227 log->l_iclog_hsize = BBSIZE;
1228 log->l_iclog_heads = 1;
1229 }
1230 goto done;
1231 }
1232
1233 /* All machines use 32kB buffers by default. */
1234 log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1235 log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1236
1237 /* the default log size is 16k or 32k which is one header sector */
1238 log->l_iclog_hsize = BBSIZE;
1239 log->l_iclog_heads = 1;
1240
1241 done:
1242 /* are we being asked to make the sizes selected above visible? */
1243 if (mp->m_logbufs == 0)
1244 mp->m_logbufs = log->l_iclog_bufs;
1245 if (mp->m_logbsize == 0)
1246 mp->m_logbsize = log->l_iclog_size;
1247 } /* xlog_get_iclog_buffer_size */
1248
1249
1250 void
1251 xfs_log_work_queue(
1252 struct xfs_mount *mp)
1253 {
1254 queue_delayed_work(mp->m_log_workqueue, &mp->m_log->l_work,
1255 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1256 }
1257
1258 /*
1259 * Every sync period we need to unpin all items in the AIL and push them to
1260 * disk. If there is nothing dirty, then we might need to cover the log to
1261 * indicate that the filesystem is idle.
1262 */
1263 void
1264 xfs_log_worker(
1265 struct work_struct *work)
1266 {
1267 struct xlog *log = container_of(to_delayed_work(work),
1268 struct xlog, l_work);
1269 struct xfs_mount *mp = log->l_mp;
1270
1271 /* dgc: errors ignored - not fatal and nowhere to report them */
1272 if (xfs_log_need_covered(mp))
1273 xfs_fs_log_dummy(mp);
1274 else
1275 xfs_log_force(mp, 0);
1276
1277 /* start pushing all the metadata that is currently dirty */
1278 xfs_ail_push_all(mp->m_ail);
1279
1280 /* queue us up again */
1281 xfs_log_work_queue(mp);
1282 }
1283
1284 /*
1285 * This routine initializes some of the log structure for a given mount point.
1286 * Its primary purpose is to fill in enough, so recovery can occur. However,
1287 * some other stuff may be filled in too.
1288 */
1289 STATIC struct xlog *
1290 xlog_alloc_log(
1291 struct xfs_mount *mp,
1292 struct xfs_buftarg *log_target,
1293 xfs_daddr_t blk_offset,
1294 int num_bblks)
1295 {
1296 struct xlog *log;
1297 xlog_rec_header_t *head;
1298 xlog_in_core_t **iclogp;
1299 xlog_in_core_t *iclog, *prev_iclog=NULL;
1300 xfs_buf_t *bp;
1301 int i;
1302 int error = ENOMEM;
1303 uint log2_size = 0;
1304
1305 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1306 if (!log) {
1307 xfs_warn(mp, "Log allocation failed: No memory!");
1308 goto out;
1309 }
1310
1311 log->l_mp = mp;
1312 log->l_targ = log_target;
1313 log->l_logsize = BBTOB(num_bblks);
1314 log->l_logBBstart = blk_offset;
1315 log->l_logBBsize = num_bblks;
1316 log->l_covered_state = XLOG_STATE_COVER_IDLE;
1317 log->l_flags |= XLOG_ACTIVE_RECOVERY;
1318 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1319
1320 log->l_prev_block = -1;
1321 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1322 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1323 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1324 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
1325
1326 xlog_grant_head_init(&log->l_reserve_head);
1327 xlog_grant_head_init(&log->l_write_head);
1328
1329 error = EFSCORRUPTED;
1330 if (xfs_sb_version_hassector(&mp->m_sb)) {
1331 log2_size = mp->m_sb.sb_logsectlog;
1332 if (log2_size < BBSHIFT) {
1333 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1334 log2_size, BBSHIFT);
1335 goto out_free_log;
1336 }
1337
1338 log2_size -= BBSHIFT;
1339 if (log2_size > mp->m_sectbb_log) {
1340 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1341 log2_size, mp->m_sectbb_log);
1342 goto out_free_log;
1343 }
1344
1345 /* for larger sector sizes, must have v2 or external log */
1346 if (log2_size && log->l_logBBstart > 0 &&
1347 !xfs_sb_version_haslogv2(&mp->m_sb)) {
1348 xfs_warn(mp,
1349 "log sector size (0x%x) invalid for configuration.",
1350 log2_size);
1351 goto out_free_log;
1352 }
1353 }
1354 log->l_sectBBsize = 1 << log2_size;
1355
1356 xlog_get_iclog_buffer_size(mp, log);
1357
1358 error = ENOMEM;
1359 bp = xfs_buf_alloc(mp->m_logdev_targp, 0, BTOBB(log->l_iclog_size), 0);
1360 if (!bp)
1361 goto out_free_log;
1362 bp->b_iodone = xlog_iodone;
1363 ASSERT(xfs_buf_islocked(bp));
1364 log->l_xbuf = bp;
1365
1366 spin_lock_init(&log->l_icloglock);
1367 init_waitqueue_head(&log->l_flush_wait);
1368
1369 iclogp = &log->l_iclog;
1370 /*
1371 * The amount of memory to allocate for the iclog structure is
1372 * rather funky due to the way the structure is defined. It is
1373 * done this way so that we can use different sizes for machines
1374 * with different amounts of memory. See the definition of
1375 * xlog_in_core_t in xfs_log_priv.h for details.
1376 */
1377 ASSERT(log->l_iclog_size >= 4096);
1378 for (i=0; i < log->l_iclog_bufs; i++) {
1379 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1380 if (!*iclogp)
1381 goto out_free_iclog;
1382
1383 iclog = *iclogp;
1384 iclog->ic_prev = prev_iclog;
1385 prev_iclog = iclog;
1386
1387 bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1388 BTOBB(log->l_iclog_size), 0);
1389 if (!bp)
1390 goto out_free_iclog;
1391
1392 bp->b_iodone = xlog_iodone;
1393 iclog->ic_bp = bp;
1394 iclog->ic_data = bp->b_addr;
1395 #ifdef DEBUG
1396 log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header);
1397 #endif
1398 head = &iclog->ic_header;
1399 memset(head, 0, sizeof(xlog_rec_header_t));
1400 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1401 head->h_version = cpu_to_be32(
1402 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1403 head->h_size = cpu_to_be32(log->l_iclog_size);
1404 /* new fields */
1405 head->h_fmt = cpu_to_be32(XLOG_FMT);
1406 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1407
1408 iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1409 iclog->ic_state = XLOG_STATE_ACTIVE;
1410 iclog->ic_log = log;
1411 atomic_set(&iclog->ic_refcnt, 0);
1412 spin_lock_init(&iclog->ic_callback_lock);
1413 iclog->ic_callback_tail = &(iclog->ic_callback);
1414 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1415
1416 ASSERT(xfs_buf_islocked(iclog->ic_bp));
1417 init_waitqueue_head(&iclog->ic_force_wait);
1418 init_waitqueue_head(&iclog->ic_write_wait);
1419
1420 iclogp = &iclog->ic_next;
1421 }
1422 *iclogp = log->l_iclog; /* complete ring */
1423 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
1424
1425 error = xlog_cil_init(log);
1426 if (error)
1427 goto out_free_iclog;
1428 return log;
1429
1430 out_free_iclog:
1431 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1432 prev_iclog = iclog->ic_next;
1433 if (iclog->ic_bp)
1434 xfs_buf_free(iclog->ic_bp);
1435 kmem_free(iclog);
1436 }
1437 spinlock_destroy(&log->l_icloglock);
1438 xfs_buf_free(log->l_xbuf);
1439 out_free_log:
1440 kmem_free(log);
1441 out:
1442 return ERR_PTR(-error);
1443 } /* xlog_alloc_log */
1444
1445
1446 /*
1447 * Write out the commit record of a transaction associated with the given
1448 * ticket. Return the lsn of the commit record.
1449 */
1450 STATIC int
1451 xlog_commit_record(
1452 struct xlog *log,
1453 struct xlog_ticket *ticket,
1454 struct xlog_in_core **iclog,
1455 xfs_lsn_t *commitlsnp)
1456 {
1457 struct xfs_mount *mp = log->l_mp;
1458 int error;
1459 struct xfs_log_iovec reg = {
1460 .i_addr = NULL,
1461 .i_len = 0,
1462 .i_type = XLOG_REG_TYPE_COMMIT,
1463 };
1464 struct xfs_log_vec vec = {
1465 .lv_niovecs = 1,
1466 .lv_iovecp = &reg,
1467 };
1468
1469 ASSERT_ALWAYS(iclog);
1470 error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1471 XLOG_COMMIT_TRANS);
1472 if (error)
1473 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1474 return error;
1475 }
1476
1477 /*
1478 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1479 * log space. This code pushes on the lsn which would supposedly free up
1480 * the 25% which we want to leave free. We may need to adopt a policy which
1481 * pushes on an lsn which is further along in the log once we reach the high
1482 * water mark. In this manner, we would be creating a low water mark.
1483 */
1484 STATIC void
1485 xlog_grant_push_ail(
1486 struct xlog *log,
1487 int need_bytes)
1488 {
1489 xfs_lsn_t threshold_lsn = 0;
1490 xfs_lsn_t last_sync_lsn;
1491 int free_blocks;
1492 int free_bytes;
1493 int threshold_block;
1494 int threshold_cycle;
1495 int free_threshold;
1496
1497 ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1498
1499 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1500 free_blocks = BTOBBT(free_bytes);
1501
1502 /*
1503 * Set the threshold for the minimum number of free blocks in the
1504 * log to the maximum of what the caller needs, one quarter of the
1505 * log, and 256 blocks.
1506 */
1507 free_threshold = BTOBB(need_bytes);
1508 free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1509 free_threshold = MAX(free_threshold, 256);
1510 if (free_blocks >= free_threshold)
1511 return;
1512
1513 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1514 &threshold_block);
1515 threshold_block += free_threshold;
1516 if (threshold_block >= log->l_logBBsize) {
1517 threshold_block -= log->l_logBBsize;
1518 threshold_cycle += 1;
1519 }
1520 threshold_lsn = xlog_assign_lsn(threshold_cycle,
1521 threshold_block);
1522 /*
1523 * Don't pass in an lsn greater than the lsn of the last
1524 * log record known to be on disk. Use a snapshot of the last sync lsn
1525 * so that it doesn't change between the compare and the set.
1526 */
1527 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1528 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1529 threshold_lsn = last_sync_lsn;
1530
1531 /*
1532 * Get the transaction layer to kick the dirty buffers out to
1533 * disk asynchronously. No point in trying to do this if
1534 * the filesystem is shutting down.
1535 */
1536 if (!XLOG_FORCED_SHUTDOWN(log))
1537 xfs_ail_push(log->l_ailp, threshold_lsn);
1538 }
1539
1540 /*
1541 * Stamp cycle number in every block
1542 */
1543 STATIC void
1544 xlog_pack_data(
1545 struct xlog *log,
1546 struct xlog_in_core *iclog,
1547 int roundoff)
1548 {
1549 int i, j, k;
1550 int size = iclog->ic_offset + roundoff;
1551 __be32 cycle_lsn;
1552 xfs_caddr_t dp;
1553
1554 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1555
1556 dp = iclog->ic_datap;
1557 for (i = 0; i < BTOBB(size); i++) {
1558 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1559 break;
1560 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1561 *(__be32 *)dp = cycle_lsn;
1562 dp += BBSIZE;
1563 }
1564
1565 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1566 xlog_in_core_2_t *xhdr = iclog->ic_data;
1567
1568 for ( ; i < BTOBB(size); i++) {
1569 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1570 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1571 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1572 *(__be32 *)dp = cycle_lsn;
1573 dp += BBSIZE;
1574 }
1575
1576 for (i = 1; i < log->l_iclog_heads; i++)
1577 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1578 }
1579 }
1580
1581 /*
1582 * Calculate the checksum for a log buffer.
1583 *
1584 * This is a little more complicated than it should be because the various
1585 * headers and the actual data are non-contiguous.
1586 */
1587 __le32
1588 xlog_cksum(
1589 struct xlog *log,
1590 struct xlog_rec_header *rhead,
1591 char *dp,
1592 int size)
1593 {
1594 __uint32_t crc;
1595
1596 /* first generate the crc for the record header ... */
1597 crc = xfs_start_cksum((char *)rhead,
1598 sizeof(struct xlog_rec_header),
1599 offsetof(struct xlog_rec_header, h_crc));
1600
1601 /* ... then for additional cycle data for v2 logs ... */
1602 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1603 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1604 int i;
1605
1606 for (i = 1; i < log->l_iclog_heads; i++) {
1607 crc = crc32c(crc, &xhdr[i].hic_xheader,
1608 sizeof(struct xlog_rec_ext_header));
1609 }
1610 }
1611
1612 /* ... and finally for the payload */
1613 crc = crc32c(crc, dp, size);
1614
1615 return xfs_end_cksum(crc);
1616 }
1617
1618 /*
1619 * The bdstrat callback function for log bufs. This gives us a central
1620 * place to trap bufs in case we get hit by a log I/O error and need to
1621 * shutdown. Actually, in practice, even when we didn't get a log error,
1622 * we transition the iclogs to IOERROR state *after* flushing all existing
1623 * iclogs to disk. This is because we don't want anymore new transactions to be
1624 * started or completed afterwards.
1625 */
1626 STATIC int
1627 xlog_bdstrat(
1628 struct xfs_buf *bp)
1629 {
1630 struct xlog_in_core *iclog = bp->b_fspriv;
1631
1632 if (iclog->ic_state & XLOG_STATE_IOERROR) {
1633 xfs_buf_ioerror(bp, EIO);
1634 xfs_buf_stale(bp);
1635 xfs_buf_ioend(bp, 0);
1636 /*
1637 * It would seem logical to return EIO here, but we rely on
1638 * the log state machine to propagate I/O errors instead of
1639 * doing it here.
1640 */
1641 return 0;
1642 }
1643
1644 xfs_buf_iorequest(bp);
1645 return 0;
1646 }
1647
1648 /*
1649 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1650 * fashion. Previously, we should have moved the current iclog
1651 * ptr in the log to point to the next available iclog. This allows further
1652 * write to continue while this code syncs out an iclog ready to go.
1653 * Before an in-core log can be written out, the data section must be scanned
1654 * to save away the 1st word of each BBSIZE block into the header. We replace
1655 * it with the current cycle count. Each BBSIZE block is tagged with the
1656 * cycle count because there in an implicit assumption that drives will
1657 * guarantee that entire 512 byte blocks get written at once. In other words,
1658 * we can't have part of a 512 byte block written and part not written. By
1659 * tagging each block, we will know which blocks are valid when recovering
1660 * after an unclean shutdown.
1661 *
1662 * This routine is single threaded on the iclog. No other thread can be in
1663 * this routine with the same iclog. Changing contents of iclog can there-
1664 * fore be done without grabbing the state machine lock. Updating the global
1665 * log will require grabbing the lock though.
1666 *
1667 * The entire log manager uses a logical block numbering scheme. Only
1668 * log_sync (and then only bwrite()) know about the fact that the log may
1669 * not start with block zero on a given device. The log block start offset
1670 * is added immediately before calling bwrite().
1671 */
1672
1673 STATIC int
1674 xlog_sync(
1675 struct xlog *log,
1676 struct xlog_in_core *iclog)
1677 {
1678 xfs_buf_t *bp;
1679 int i;
1680 uint count; /* byte count of bwrite */
1681 uint count_init; /* initial count before roundup */
1682 int roundoff; /* roundoff to BB or stripe */
1683 int split = 0; /* split write into two regions */
1684 int error;
1685 int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1686 int size;
1687
1688 XFS_STATS_INC(xs_log_writes);
1689 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1690
1691 /* Add for LR header */
1692 count_init = log->l_iclog_hsize + iclog->ic_offset;
1693
1694 /* Round out the log write size */
1695 if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1696 /* we have a v2 stripe unit to use */
1697 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1698 } else {
1699 count = BBTOB(BTOBB(count_init));
1700 }
1701 roundoff = count - count_init;
1702 ASSERT(roundoff >= 0);
1703 ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1704 roundoff < log->l_mp->m_sb.sb_logsunit)
1705 ||
1706 (log->l_mp->m_sb.sb_logsunit <= 1 &&
1707 roundoff < BBTOB(1)));
1708
1709 /* move grant heads by roundoff in sync */
1710 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1711 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1712
1713 /* put cycle number in every block */
1714 xlog_pack_data(log, iclog, roundoff);
1715
1716 /* real byte length */
1717 size = iclog->ic_offset;
1718 if (v2)
1719 size += roundoff;
1720 iclog->ic_header.h_len = cpu_to_be32(size);
1721
1722 bp = iclog->ic_bp;
1723 XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1724
1725 XFS_STATS_ADD(xs_log_blocks, BTOBB(count));
1726
1727 /* Do we need to split this write into 2 parts? */
1728 if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1729 char *dptr;
1730
1731 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1732 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1733 iclog->ic_bwritecnt = 2;
1734
1735 /*
1736 * Bump the cycle numbers at the start of each block in the
1737 * part of the iclog that ends up in the buffer that gets
1738 * written to the start of the log.
1739 *
1740 * Watch out for the header magic number case, though.
1741 */
1742 dptr = (char *)&iclog->ic_header + count;
1743 for (i = 0; i < split; i += BBSIZE) {
1744 __uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1745 if (++cycle == XLOG_HEADER_MAGIC_NUM)
1746 cycle++;
1747 *(__be32 *)dptr = cpu_to_be32(cycle);
1748
1749 dptr += BBSIZE;
1750 }
1751 } else {
1752 iclog->ic_bwritecnt = 1;
1753 }
1754
1755 /* calculcate the checksum */
1756 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1757 iclog->ic_datap, size);
1758
1759 bp->b_io_length = BTOBB(count);
1760 bp->b_fspriv = iclog;
1761 XFS_BUF_ZEROFLAGS(bp);
1762 XFS_BUF_ASYNC(bp);
1763 bp->b_flags |= XBF_SYNCIO;
1764
1765 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1766 bp->b_flags |= XBF_FUA;
1767
1768 /*
1769 * Flush the data device before flushing the log to make
1770 * sure all meta data written back from the AIL actually made
1771 * it to disk before stamping the new log tail LSN into the
1772 * log buffer. For an external log we need to issue the
1773 * flush explicitly, and unfortunately synchronously here;
1774 * for an internal log we can simply use the block layer
1775 * state machine for preflushes.
1776 */
1777 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1778 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1779 else
1780 bp->b_flags |= XBF_FLUSH;
1781 }
1782
1783 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1784 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1785
1786 xlog_verify_iclog(log, iclog, count, true);
1787
1788 /* account for log which doesn't start at block #0 */
1789 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1790 /*
1791 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1792 * is shutting down.
1793 */
1794 XFS_BUF_WRITE(bp);
1795
1796 error = xlog_bdstrat(bp);
1797 if (error) {
1798 xfs_buf_ioerror_alert(bp, "xlog_sync");
1799 return error;
1800 }
1801 if (split) {
1802 bp = iclog->ic_log->l_xbuf;
1803 XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */
1804 xfs_buf_associate_memory(bp,
1805 (char *)&iclog->ic_header + count, split);
1806 bp->b_fspriv = iclog;
1807 XFS_BUF_ZEROFLAGS(bp);
1808 XFS_BUF_ASYNC(bp);
1809 bp->b_flags |= XBF_SYNCIO;
1810 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1811 bp->b_flags |= XBF_FUA;
1812
1813 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1814 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1815
1816 /* account for internal log which doesn't start at block #0 */
1817 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1818 XFS_BUF_WRITE(bp);
1819 error = xlog_bdstrat(bp);
1820 if (error) {
1821 xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1822 return error;
1823 }
1824 }
1825 return 0;
1826 } /* xlog_sync */
1827
1828 /*
1829 * Deallocate a log structure
1830 */
1831 STATIC void
1832 xlog_dealloc_log(
1833 struct xlog *log)
1834 {
1835 xlog_in_core_t *iclog, *next_iclog;
1836 int i;
1837
1838 xlog_cil_destroy(log);
1839
1840 /*
1841 * always need to ensure that the extra buffer does not point to memory
1842 * owned by another log buffer before we free it.
1843 */
1844 xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1845 xfs_buf_free(log->l_xbuf);
1846
1847 iclog = log->l_iclog;
1848 for (i=0; i<log->l_iclog_bufs; i++) {
1849 xfs_buf_free(iclog->ic_bp);
1850 next_iclog = iclog->ic_next;
1851 kmem_free(iclog);
1852 iclog = next_iclog;
1853 }
1854 spinlock_destroy(&log->l_icloglock);
1855
1856 log->l_mp->m_log = NULL;
1857 kmem_free(log);
1858 } /* xlog_dealloc_log */
1859
1860 /*
1861 * Update counters atomically now that memcpy is done.
1862 */
1863 /* ARGSUSED */
1864 static inline void
1865 xlog_state_finish_copy(
1866 struct xlog *log,
1867 struct xlog_in_core *iclog,
1868 int record_cnt,
1869 int copy_bytes)
1870 {
1871 spin_lock(&log->l_icloglock);
1872
1873 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1874 iclog->ic_offset += copy_bytes;
1875
1876 spin_unlock(&log->l_icloglock);
1877 } /* xlog_state_finish_copy */
1878
1879
1880
1881
1882 /*
1883 * print out info relating to regions written which consume
1884 * the reservation
1885 */
1886 void
1887 xlog_print_tic_res(
1888 struct xfs_mount *mp,
1889 struct xlog_ticket *ticket)
1890 {
1891 uint i;
1892 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1893
1894 /* match with XLOG_REG_TYPE_* in xfs_log.h */
1895 static char *res_type_str[XLOG_REG_TYPE_MAX] = {
1896 "bformat",
1897 "bchunk",
1898 "efi_format",
1899 "efd_format",
1900 "iformat",
1901 "icore",
1902 "iext",
1903 "ibroot",
1904 "ilocal",
1905 "iattr_ext",
1906 "iattr_broot",
1907 "iattr_local",
1908 "qformat",
1909 "dquot",
1910 "quotaoff",
1911 "LR header",
1912 "unmount",
1913 "commit",
1914 "trans header"
1915 };
1916 static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
1917 "SETATTR_NOT_SIZE",
1918 "SETATTR_SIZE",
1919 "INACTIVE",
1920 "CREATE",
1921 "CREATE_TRUNC",
1922 "TRUNCATE_FILE",
1923 "REMOVE",
1924 "LINK",
1925 "RENAME",
1926 "MKDIR",
1927 "RMDIR",
1928 "SYMLINK",
1929 "SET_DMATTRS",
1930 "GROWFS",
1931 "STRAT_WRITE",
1932 "DIOSTRAT",
1933 "WRITE_SYNC",
1934 "WRITEID",
1935 "ADDAFORK",
1936 "ATTRINVAL",
1937 "ATRUNCATE",
1938 "ATTR_SET",
1939 "ATTR_RM",
1940 "ATTR_FLAG",
1941 "CLEAR_AGI_BUCKET",
1942 "QM_SBCHANGE",
1943 "DUMMY1",
1944 "DUMMY2",
1945 "QM_QUOTAOFF",
1946 "QM_DQALLOC",
1947 "QM_SETQLIM",
1948 "QM_DQCLUSTER",
1949 "QM_QINOCREATE",
1950 "QM_QUOTAOFF_END",
1951 "SB_UNIT",
1952 "FSYNC_TS",
1953 "GROWFSRT_ALLOC",
1954 "GROWFSRT_ZERO",
1955 "GROWFSRT_FREE",
1956 "SWAPEXT"
1957 };
1958
1959 xfs_warn(mp,
1960 "xlog_write: reservation summary:\n"
1961 " trans type = %s (%u)\n"
1962 " unit res = %d bytes\n"
1963 " current res = %d bytes\n"
1964 " total reg = %u bytes (o/flow = %u bytes)\n"
1965 " ophdrs = %u (ophdr space = %u bytes)\n"
1966 " ophdr + reg = %u bytes\n"
1967 " num regions = %u\n",
1968 ((ticket->t_trans_type <= 0 ||
1969 ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
1970 "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
1971 ticket->t_trans_type,
1972 ticket->t_unit_res,
1973 ticket->t_curr_res,
1974 ticket->t_res_arr_sum, ticket->t_res_o_flow,
1975 ticket->t_res_num_ophdrs, ophdr_spc,
1976 ticket->t_res_arr_sum +
1977 ticket->t_res_o_flow + ophdr_spc,
1978 ticket->t_res_num);
1979
1980 for (i = 0; i < ticket->t_res_num; i++) {
1981 uint r_type = ticket->t_res_arr[i].r_type;
1982 xfs_warn(mp, "region[%u]: %s - %u bytes\n", i,
1983 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
1984 "bad-rtype" : res_type_str[r_type-1]),
1985 ticket->t_res_arr[i].r_len);
1986 }
1987
1988 xfs_alert_tag(mp, XFS_PTAG_LOGRES,
1989 "xlog_write: reservation ran out. Need to up reservation");
1990 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1991 }
1992
1993 /*
1994 * Calculate the potential space needed by the log vector. Each region gets
1995 * its own xlog_op_header_t and may need to be double word aligned.
1996 */
1997 static int
1998 xlog_write_calc_vec_length(
1999 struct xlog_ticket *ticket,
2000 struct xfs_log_vec *log_vector)
2001 {
2002 struct xfs_log_vec *lv;
2003 int headers = 0;
2004 int len = 0;
2005 int i;
2006
2007 /* acct for start rec of xact */
2008 if (ticket->t_flags & XLOG_TIC_INITED)
2009 headers++;
2010
2011 for (lv = log_vector; lv; lv = lv->lv_next) {
2012 /* we don't write ordered log vectors */
2013 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2014 continue;
2015
2016 headers += lv->lv_niovecs;
2017
2018 for (i = 0; i < lv->lv_niovecs; i++) {
2019 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i];
2020
2021 len += vecp->i_len;
2022 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2023 }
2024 }
2025
2026 ticket->t_res_num_ophdrs += headers;
2027 len += headers * sizeof(struct xlog_op_header);
2028
2029 return len;
2030 }
2031
2032 /*
2033 * If first write for transaction, insert start record We can't be trying to
2034 * commit if we are inited. We can't have any "partial_copy" if we are inited.
2035 */
2036 static int
2037 xlog_write_start_rec(
2038 struct xlog_op_header *ophdr,
2039 struct xlog_ticket *ticket)
2040 {
2041 if (!(ticket->t_flags & XLOG_TIC_INITED))
2042 return 0;
2043
2044 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2045 ophdr->oh_clientid = ticket->t_clientid;
2046 ophdr->oh_len = 0;
2047 ophdr->oh_flags = XLOG_START_TRANS;
2048 ophdr->oh_res2 = 0;
2049
2050 ticket->t_flags &= ~XLOG_TIC_INITED;
2051
2052 return sizeof(struct xlog_op_header);
2053 }
2054
2055 static xlog_op_header_t *
2056 xlog_write_setup_ophdr(
2057 struct xlog *log,
2058 struct xlog_op_header *ophdr,
2059 struct xlog_ticket *ticket,
2060 uint flags)
2061 {
2062 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2063 ophdr->oh_clientid = ticket->t_clientid;
2064 ophdr->oh_res2 = 0;
2065
2066 /* are we copying a commit or unmount record? */
2067 ophdr->oh_flags = flags;
2068
2069 /*
2070 * We've seen logs corrupted with bad transaction client ids. This
2071 * makes sure that XFS doesn't generate them on. Turn this into an EIO
2072 * and shut down the filesystem.
2073 */
2074 switch (ophdr->oh_clientid) {
2075 case XFS_TRANSACTION:
2076 case XFS_VOLUME:
2077 case XFS_LOG:
2078 break;
2079 default:
2080 xfs_warn(log->l_mp,
2081 "Bad XFS transaction clientid 0x%x in ticket 0x%p",
2082 ophdr->oh_clientid, ticket);
2083 return NULL;
2084 }
2085
2086 return ophdr;
2087 }
2088
2089 /*
2090 * Set up the parameters of the region copy into the log. This has
2091 * to handle region write split across multiple log buffers - this
2092 * state is kept external to this function so that this code can
2093 * be written in an obvious, self documenting manner.
2094 */
2095 static int
2096 xlog_write_setup_copy(
2097 struct xlog_ticket *ticket,
2098 struct xlog_op_header *ophdr,
2099 int space_available,
2100 int space_required,
2101 int *copy_off,
2102 int *copy_len,
2103 int *last_was_partial_copy,
2104 int *bytes_consumed)
2105 {
2106 int still_to_copy;
2107
2108 still_to_copy = space_required - *bytes_consumed;
2109 *copy_off = *bytes_consumed;
2110
2111 if (still_to_copy <= space_available) {
2112 /* write of region completes here */
2113 *copy_len = still_to_copy;
2114 ophdr->oh_len = cpu_to_be32(*copy_len);
2115 if (*last_was_partial_copy)
2116 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2117 *last_was_partial_copy = 0;
2118 *bytes_consumed = 0;
2119 return 0;
2120 }
2121
2122 /* partial write of region, needs extra log op header reservation */
2123 *copy_len = space_available;
2124 ophdr->oh_len = cpu_to_be32(*copy_len);
2125 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2126 if (*last_was_partial_copy)
2127 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2128 *bytes_consumed += *copy_len;
2129 (*last_was_partial_copy)++;
2130
2131 /* account for new log op header */
2132 ticket->t_curr_res -= sizeof(struct xlog_op_header);
2133 ticket->t_res_num_ophdrs++;
2134
2135 return sizeof(struct xlog_op_header);
2136 }
2137
2138 static int
2139 xlog_write_copy_finish(
2140 struct xlog *log,
2141 struct xlog_in_core *iclog,
2142 uint flags,
2143 int *record_cnt,
2144 int *data_cnt,
2145 int *partial_copy,
2146 int *partial_copy_len,
2147 int log_offset,
2148 struct xlog_in_core **commit_iclog)
2149 {
2150 if (*partial_copy) {
2151 /*
2152 * This iclog has already been marked WANT_SYNC by
2153 * xlog_state_get_iclog_space.
2154 */
2155 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2156 *record_cnt = 0;
2157 *data_cnt = 0;
2158 return xlog_state_release_iclog(log, iclog);
2159 }
2160
2161 *partial_copy = 0;
2162 *partial_copy_len = 0;
2163
2164 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2165 /* no more space in this iclog - push it. */
2166 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2167 *record_cnt = 0;
2168 *data_cnt = 0;
2169
2170 spin_lock(&log->l_icloglock);
2171 xlog_state_want_sync(log, iclog);
2172 spin_unlock(&log->l_icloglock);
2173
2174 if (!commit_iclog)
2175 return xlog_state_release_iclog(log, iclog);
2176 ASSERT(flags & XLOG_COMMIT_TRANS);
2177 *commit_iclog = iclog;
2178 }
2179
2180 return 0;
2181 }
2182
2183 /*
2184 * Write some region out to in-core log
2185 *
2186 * This will be called when writing externally provided regions or when
2187 * writing out a commit record for a given transaction.
2188 *
2189 * General algorithm:
2190 * 1. Find total length of this write. This may include adding to the
2191 * lengths passed in.
2192 * 2. Check whether we violate the tickets reservation.
2193 * 3. While writing to this iclog
2194 * A. Reserve as much space in this iclog as can get
2195 * B. If this is first write, save away start lsn
2196 * C. While writing this region:
2197 * 1. If first write of transaction, write start record
2198 * 2. Write log operation header (header per region)
2199 * 3. Find out if we can fit entire region into this iclog
2200 * 4. Potentially, verify destination memcpy ptr
2201 * 5. Memcpy (partial) region
2202 * 6. If partial copy, release iclog; otherwise, continue
2203 * copying more regions into current iclog
2204 * 4. Mark want sync bit (in simulation mode)
2205 * 5. Release iclog for potential flush to on-disk log.
2206 *
2207 * ERRORS:
2208 * 1. Panic if reservation is overrun. This should never happen since
2209 * reservation amounts are generated internal to the filesystem.
2210 * NOTES:
2211 * 1. Tickets are single threaded data structures.
2212 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2213 * syncing routine. When a single log_write region needs to span
2214 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2215 * on all log operation writes which don't contain the end of the
2216 * region. The XLOG_END_TRANS bit is used for the in-core log
2217 * operation which contains the end of the continued log_write region.
2218 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2219 * we don't really know exactly how much space will be used. As a result,
2220 * we don't update ic_offset until the end when we know exactly how many
2221 * bytes have been written out.
2222 */
2223 int
2224 xlog_write(
2225 struct xlog *log,
2226 struct xfs_log_vec *log_vector,
2227 struct xlog_ticket *ticket,
2228 xfs_lsn_t *start_lsn,
2229 struct xlog_in_core **commit_iclog,
2230 uint flags)
2231 {
2232 struct xlog_in_core *iclog = NULL;
2233 struct xfs_log_iovec *vecp;
2234 struct xfs_log_vec *lv;
2235 int len;
2236 int index;
2237 int partial_copy = 0;
2238 int partial_copy_len = 0;
2239 int contwr = 0;
2240 int record_cnt = 0;
2241 int data_cnt = 0;
2242 int error;
2243
2244 *start_lsn = 0;
2245
2246 len = xlog_write_calc_vec_length(ticket, log_vector);
2247
2248 /*
2249 * Region headers and bytes are already accounted for.
2250 * We only need to take into account start records and
2251 * split regions in this function.
2252 */
2253 if (ticket->t_flags & XLOG_TIC_INITED)
2254 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2255
2256 /*
2257 * Commit record headers need to be accounted for. These
2258 * come in as separate writes so are easy to detect.
2259 */
2260 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2261 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2262
2263 if (ticket->t_curr_res < 0)
2264 xlog_print_tic_res(log->l_mp, ticket);
2265
2266 index = 0;
2267 lv = log_vector;
2268 vecp = lv->lv_iovecp;
2269 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2270 void *ptr;
2271 int log_offset;
2272
2273 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2274 &contwr, &log_offset);
2275 if (error)
2276 return error;
2277
2278 ASSERT(log_offset <= iclog->ic_size - 1);
2279 ptr = iclog->ic_datap + log_offset;
2280
2281 /* start_lsn is the first lsn written to. That's all we need. */
2282 if (!*start_lsn)
2283 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2284
2285 /*
2286 * This loop writes out as many regions as can fit in the amount
2287 * of space which was allocated by xlog_state_get_iclog_space().
2288 */
2289 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2290 struct xfs_log_iovec *reg;
2291 struct xlog_op_header *ophdr;
2292 int start_rec_copy;
2293 int copy_len;
2294 int copy_off;
2295 bool ordered = false;
2296
2297 /* ordered log vectors have no regions to write */
2298 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2299 ASSERT(lv->lv_niovecs == 0);
2300 ordered = true;
2301 goto next_lv;
2302 }
2303
2304 reg = &vecp[index];
2305 ASSERT(reg->i_len % sizeof(__int32_t) == 0);
2306 ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
2307
2308 start_rec_copy = xlog_write_start_rec(ptr, ticket);
2309 if (start_rec_copy) {
2310 record_cnt++;
2311 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2312 start_rec_copy);
2313 }
2314
2315 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2316 if (!ophdr)
2317 return XFS_ERROR(EIO);
2318
2319 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2320 sizeof(struct xlog_op_header));
2321
2322 len += xlog_write_setup_copy(ticket, ophdr,
2323 iclog->ic_size-log_offset,
2324 reg->i_len,
2325 &copy_off, &copy_len,
2326 &partial_copy,
2327 &partial_copy_len);
2328 xlog_verify_dest_ptr(log, ptr);
2329
2330 /* copy region */
2331 ASSERT(copy_len >= 0);
2332 memcpy(ptr, reg->i_addr + copy_off, copy_len);
2333 xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len);
2334
2335 copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2336 record_cnt++;
2337 data_cnt += contwr ? copy_len : 0;
2338
2339 error = xlog_write_copy_finish(log, iclog, flags,
2340 &record_cnt, &data_cnt,
2341 &partial_copy,
2342 &partial_copy_len,
2343 log_offset,
2344 commit_iclog);
2345 if (error)
2346 return error;
2347
2348 /*
2349 * if we had a partial copy, we need to get more iclog
2350 * space but we don't want to increment the region
2351 * index because there is still more is this region to
2352 * write.
2353 *
2354 * If we completed writing this region, and we flushed
2355 * the iclog (indicated by resetting of the record
2356 * count), then we also need to get more log space. If
2357 * this was the last record, though, we are done and
2358 * can just return.
2359 */
2360 if (partial_copy)
2361 break;
2362
2363 if (++index == lv->lv_niovecs) {
2364 next_lv:
2365 lv = lv->lv_next;
2366 index = 0;
2367 if (lv)
2368 vecp = lv->lv_iovecp;
2369 }
2370 if (record_cnt == 0 && ordered == false) {
2371 if (!lv)
2372 return 0;
2373 break;
2374 }
2375 }
2376 }
2377
2378 ASSERT(len == 0);
2379
2380 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2381 if (!commit_iclog)
2382 return xlog_state_release_iclog(log, iclog);
2383
2384 ASSERT(flags & XLOG_COMMIT_TRANS);
2385 *commit_iclog = iclog;
2386 return 0;
2387 }
2388
2389
2390 /*****************************************************************************
2391 *
2392 * State Machine functions
2393 *
2394 *****************************************************************************
2395 */
2396
2397 /* Clean iclogs starting from the head. This ordering must be
2398 * maintained, so an iclog doesn't become ACTIVE beyond one that
2399 * is SYNCING. This is also required to maintain the notion that we use
2400 * a ordered wait queue to hold off would be writers to the log when every
2401 * iclog is trying to sync to disk.
2402 *
2403 * State Change: DIRTY -> ACTIVE
2404 */
2405 STATIC void
2406 xlog_state_clean_log(
2407 struct xlog *log)
2408 {
2409 xlog_in_core_t *iclog;
2410 int changed = 0;
2411
2412 iclog = log->l_iclog;
2413 do {
2414 if (iclog->ic_state == XLOG_STATE_DIRTY) {
2415 iclog->ic_state = XLOG_STATE_ACTIVE;
2416 iclog->ic_offset = 0;
2417 ASSERT(iclog->ic_callback == NULL);
2418 /*
2419 * If the number of ops in this iclog indicate it just
2420 * contains the dummy transaction, we can
2421 * change state into IDLE (the second time around).
2422 * Otherwise we should change the state into
2423 * NEED a dummy.
2424 * We don't need to cover the dummy.
2425 */
2426 if (!changed &&
2427 (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2428 XLOG_COVER_OPS)) {
2429 changed = 1;
2430 } else {
2431 /*
2432 * We have two dirty iclogs so start over
2433 * This could also be num of ops indicates
2434 * this is not the dummy going out.
2435 */
2436 changed = 2;
2437 }
2438 iclog->ic_header.h_num_logops = 0;
2439 memset(iclog->ic_header.h_cycle_data, 0,
2440 sizeof(iclog->ic_header.h_cycle_data));
2441 iclog->ic_header.h_lsn = 0;
2442 } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2443 /* do nothing */;
2444 else
2445 break; /* stop cleaning */
2446 iclog = iclog->ic_next;
2447 } while (iclog != log->l_iclog);
2448
2449 /* log is locked when we are called */
2450 /*
2451 * Change state for the dummy log recording.
2452 * We usually go to NEED. But we go to NEED2 if the changed indicates
2453 * we are done writing the dummy record.
2454 * If we are done with the second dummy recored (DONE2), then
2455 * we go to IDLE.
2456 */
2457 if (changed) {
2458 switch (log->l_covered_state) {
2459 case XLOG_STATE_COVER_IDLE:
2460 case XLOG_STATE_COVER_NEED:
2461 case XLOG_STATE_COVER_NEED2:
2462 log->l_covered_state = XLOG_STATE_COVER_NEED;
2463 break;
2464
2465 case XLOG_STATE_COVER_DONE:
2466 if (changed == 1)
2467 log->l_covered_state = XLOG_STATE_COVER_NEED2;
2468 else
2469 log->l_covered_state = XLOG_STATE_COVER_NEED;
2470 break;
2471
2472 case XLOG_STATE_COVER_DONE2:
2473 if (changed == 1)
2474 log->l_covered_state = XLOG_STATE_COVER_IDLE;
2475 else
2476 log->l_covered_state = XLOG_STATE_COVER_NEED;
2477 break;
2478
2479 default:
2480 ASSERT(0);
2481 }
2482 }
2483 } /* xlog_state_clean_log */
2484
2485 STATIC xfs_lsn_t
2486 xlog_get_lowest_lsn(
2487 struct xlog *log)
2488 {
2489 xlog_in_core_t *lsn_log;
2490 xfs_lsn_t lowest_lsn, lsn;
2491
2492 lsn_log = log->l_iclog;
2493 lowest_lsn = 0;
2494 do {
2495 if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2496 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2497 if ((lsn && !lowest_lsn) ||
2498 (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2499 lowest_lsn = lsn;
2500 }
2501 }
2502 lsn_log = lsn_log->ic_next;
2503 } while (lsn_log != log->l_iclog);
2504 return lowest_lsn;
2505 }
2506
2507
2508 STATIC void
2509 xlog_state_do_callback(
2510 struct xlog *log,
2511 int aborted,
2512 struct xlog_in_core *ciclog)
2513 {
2514 xlog_in_core_t *iclog;
2515 xlog_in_core_t *first_iclog; /* used to know when we've
2516 * processed all iclogs once */
2517 xfs_log_callback_t *cb, *cb_next;
2518 int flushcnt = 0;
2519 xfs_lsn_t lowest_lsn;
2520 int ioerrors; /* counter: iclogs with errors */
2521 int loopdidcallbacks; /* flag: inner loop did callbacks*/
2522 int funcdidcallbacks; /* flag: function did callbacks */
2523 int repeats; /* for issuing console warnings if
2524 * looping too many times */
2525 int wake = 0;
2526
2527 spin_lock(&log->l_icloglock);
2528 first_iclog = iclog = log->l_iclog;
2529 ioerrors = 0;
2530 funcdidcallbacks = 0;
2531 repeats = 0;
2532
2533 do {
2534 /*
2535 * Scan all iclogs starting with the one pointed to by the
2536 * log. Reset this starting point each time the log is
2537 * unlocked (during callbacks).
2538 *
2539 * Keep looping through iclogs until one full pass is made
2540 * without running any callbacks.
2541 */
2542 first_iclog = log->l_iclog;
2543 iclog = log->l_iclog;
2544 loopdidcallbacks = 0;
2545 repeats++;
2546
2547 do {
2548
2549 /* skip all iclogs in the ACTIVE & DIRTY states */
2550 if (iclog->ic_state &
2551 (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2552 iclog = iclog->ic_next;
2553 continue;
2554 }
2555
2556 /*
2557 * Between marking a filesystem SHUTDOWN and stopping
2558 * the log, we do flush all iclogs to disk (if there
2559 * wasn't a log I/O error). So, we do want things to
2560 * go smoothly in case of just a SHUTDOWN w/o a
2561 * LOG_IO_ERROR.
2562 */
2563 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2564 /*
2565 * Can only perform callbacks in order. Since
2566 * this iclog is not in the DONE_SYNC/
2567 * DO_CALLBACK state, we skip the rest and
2568 * just try to clean up. If we set our iclog
2569 * to DO_CALLBACK, we will not process it when
2570 * we retry since a previous iclog is in the
2571 * CALLBACK and the state cannot change since
2572 * we are holding the l_icloglock.
2573 */
2574 if (!(iclog->ic_state &
2575 (XLOG_STATE_DONE_SYNC |
2576 XLOG_STATE_DO_CALLBACK))) {
2577 if (ciclog && (ciclog->ic_state ==
2578 XLOG_STATE_DONE_SYNC)) {
2579 ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2580 }
2581 break;
2582 }
2583 /*
2584 * We now have an iclog that is in either the
2585 * DO_CALLBACK or DONE_SYNC states. The other
2586 * states (WANT_SYNC, SYNCING, or CALLBACK were
2587 * caught by the above if and are going to
2588 * clean (i.e. we aren't doing their callbacks)
2589 * see the above if.
2590 */
2591
2592 /*
2593 * We will do one more check here to see if we
2594 * have chased our tail around.
2595 */
2596
2597 lowest_lsn = xlog_get_lowest_lsn(log);
2598 if (lowest_lsn &&
2599 XFS_LSN_CMP(lowest_lsn,
2600 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2601 iclog = iclog->ic_next;
2602 continue; /* Leave this iclog for
2603 * another thread */
2604 }
2605
2606 iclog->ic_state = XLOG_STATE_CALLBACK;
2607
2608
2609 /*
2610 * Completion of a iclog IO does not imply that
2611 * a transaction has completed, as transactions
2612 * can be large enough to span many iclogs. We
2613 * cannot change the tail of the log half way
2614 * through a transaction as this may be the only
2615 * transaction in the log and moving th etail to
2616 * point to the middle of it will prevent
2617 * recovery from finding the start of the
2618 * transaction. Hence we should only update the
2619 * last_sync_lsn if this iclog contains
2620 * transaction completion callbacks on it.
2621 *
2622 * We have to do this before we drop the
2623 * icloglock to ensure we are the only one that
2624 * can update it.
2625 */
2626 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2627 be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2628 if (iclog->ic_callback)
2629 atomic64_set(&log->l_last_sync_lsn,
2630 be64_to_cpu(iclog->ic_header.h_lsn));
2631
2632 } else
2633 ioerrors++;
2634
2635 spin_unlock(&log->l_icloglock);
2636
2637 /*
2638 * Keep processing entries in the callback list until
2639 * we come around and it is empty. We need to
2640 * atomically see that the list is empty and change the
2641 * state to DIRTY so that we don't miss any more
2642 * callbacks being added.
2643 */
2644 spin_lock(&iclog->ic_callback_lock);
2645 cb = iclog->ic_callback;
2646 while (cb) {
2647 iclog->ic_callback_tail = &(iclog->ic_callback);
2648 iclog->ic_callback = NULL;
2649 spin_unlock(&iclog->ic_callback_lock);
2650
2651 /* perform callbacks in the order given */
2652 for (; cb; cb = cb_next) {
2653 cb_next = cb->cb_next;
2654 cb->cb_func(cb->cb_arg, aborted);
2655 }
2656 spin_lock(&iclog->ic_callback_lock);
2657 cb = iclog->ic_callback;
2658 }
2659
2660 loopdidcallbacks++;
2661 funcdidcallbacks++;
2662
2663 spin_lock(&log->l_icloglock);
2664 ASSERT(iclog->ic_callback == NULL);
2665 spin_unlock(&iclog->ic_callback_lock);
2666 if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2667 iclog->ic_state = XLOG_STATE_DIRTY;
2668
2669 /*
2670 * Transition from DIRTY to ACTIVE if applicable.
2671 * NOP if STATE_IOERROR.
2672 */
2673 xlog_state_clean_log(log);
2674
2675 /* wake up threads waiting in xfs_log_force() */
2676 wake_up_all(&iclog->ic_force_wait);
2677
2678 iclog = iclog->ic_next;
2679 } while (first_iclog != iclog);
2680
2681 if (repeats > 5000) {
2682 flushcnt += repeats;
2683 repeats = 0;
2684 xfs_warn(log->l_mp,
2685 "%s: possible infinite loop (%d iterations)",
2686 __func__, flushcnt);
2687 }
2688 } while (!ioerrors && loopdidcallbacks);
2689
2690 /*
2691 * make one last gasp attempt to see if iclogs are being left in
2692 * limbo..
2693 */
2694 #ifdef DEBUG
2695 if (funcdidcallbacks) {
2696 first_iclog = iclog = log->l_iclog;
2697 do {
2698 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2699 /*
2700 * Terminate the loop if iclogs are found in states
2701 * which will cause other threads to clean up iclogs.
2702 *
2703 * SYNCING - i/o completion will go through logs
2704 * DONE_SYNC - interrupt thread should be waiting for
2705 * l_icloglock
2706 * IOERROR - give up hope all ye who enter here
2707 */
2708 if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2709 iclog->ic_state == XLOG_STATE_SYNCING ||
2710 iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2711 iclog->ic_state == XLOG_STATE_IOERROR )
2712 break;
2713 iclog = iclog->ic_next;
2714 } while (first_iclog != iclog);
2715 }
2716 #endif
2717
2718 if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2719 wake = 1;
2720 spin_unlock(&log->l_icloglock);
2721
2722 if (wake)
2723 wake_up_all(&log->l_flush_wait);
2724 }
2725
2726
2727 /*
2728 * Finish transitioning this iclog to the dirty state.
2729 *
2730 * Make sure that we completely execute this routine only when this is
2731 * the last call to the iclog. There is a good chance that iclog flushes,
2732 * when we reach the end of the physical log, get turned into 2 separate
2733 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2734 * routine. By using the reference count bwritecnt, we guarantee that only
2735 * the second completion goes through.
2736 *
2737 * Callbacks could take time, so they are done outside the scope of the
2738 * global state machine log lock.
2739 */
2740 STATIC void
2741 xlog_state_done_syncing(
2742 xlog_in_core_t *iclog,
2743 int aborted)
2744 {
2745 struct xlog *log = iclog->ic_log;
2746
2747 spin_lock(&log->l_icloglock);
2748
2749 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2750 iclog->ic_state == XLOG_STATE_IOERROR);
2751 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2752 ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2753
2754
2755 /*
2756 * If we got an error, either on the first buffer, or in the case of
2757 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2758 * and none should ever be attempted to be written to disk
2759 * again.
2760 */
2761 if (iclog->ic_state != XLOG_STATE_IOERROR) {
2762 if (--iclog->ic_bwritecnt == 1) {
2763 spin_unlock(&log->l_icloglock);
2764 return;
2765 }
2766 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2767 }
2768
2769 /*
2770 * Someone could be sleeping prior to writing out the next
2771 * iclog buffer, we wake them all, one will get to do the
2772 * I/O, the others get to wait for the result.
2773 */
2774 wake_up_all(&iclog->ic_write_wait);
2775 spin_unlock(&log->l_icloglock);
2776 xlog_state_do_callback(log, aborted, iclog); /* also cleans log */
2777 } /* xlog_state_done_syncing */
2778
2779
2780 /*
2781 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2782 * sleep. We wait on the flush queue on the head iclog as that should be
2783 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2784 * we will wait here and all new writes will sleep until a sync completes.
2785 *
2786 * The in-core logs are used in a circular fashion. They are not used
2787 * out-of-order even when an iclog past the head is free.
2788 *
2789 * return:
2790 * * log_offset where xlog_write() can start writing into the in-core
2791 * log's data space.
2792 * * in-core log pointer to which xlog_write() should write.
2793 * * boolean indicating this is a continued write to an in-core log.
2794 * If this is the last write, then the in-core log's offset field
2795 * needs to be incremented, depending on the amount of data which
2796 * is copied.
2797 */
2798 STATIC int
2799 xlog_state_get_iclog_space(
2800 struct xlog *log,
2801 int len,
2802 struct xlog_in_core **iclogp,
2803 struct xlog_ticket *ticket,
2804 int *continued_write,
2805 int *logoffsetp)
2806 {
2807 int log_offset;
2808 xlog_rec_header_t *head;
2809 xlog_in_core_t *iclog;
2810 int error;
2811
2812 restart:
2813 spin_lock(&log->l_icloglock);
2814 if (XLOG_FORCED_SHUTDOWN(log)) {
2815 spin_unlock(&log->l_icloglock);
2816 return XFS_ERROR(EIO);
2817 }
2818
2819 iclog = log->l_iclog;
2820 if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2821 XFS_STATS_INC(xs_log_noiclogs);
2822
2823 /* Wait for log writes to have flushed */
2824 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2825 goto restart;
2826 }
2827
2828 head = &iclog->ic_header;
2829
2830 atomic_inc(&iclog->ic_refcnt); /* prevents sync */
2831 log_offset = iclog->ic_offset;
2832
2833 /* On the 1st write to an iclog, figure out lsn. This works
2834 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2835 * committing to. If the offset is set, that's how many blocks
2836 * must be written.
2837 */
2838 if (log_offset == 0) {
2839 ticket->t_curr_res -= log->l_iclog_hsize;
2840 xlog_tic_add_region(ticket,
2841 log->l_iclog_hsize,
2842 XLOG_REG_TYPE_LRHEADER);
2843 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2844 head->h_lsn = cpu_to_be64(
2845 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2846 ASSERT(log->l_curr_block >= 0);
2847 }
2848
2849 /* If there is enough room to write everything, then do it. Otherwise,
2850 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2851 * bit is on, so this will get flushed out. Don't update ic_offset
2852 * until you know exactly how many bytes get copied. Therefore, wait
2853 * until later to update ic_offset.
2854 *
2855 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2856 * can fit into remaining data section.
2857 */
2858 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2859 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2860
2861 /*
2862 * If I'm the only one writing to this iclog, sync it to disk.
2863 * We need to do an atomic compare and decrement here to avoid
2864 * racing with concurrent atomic_dec_and_lock() calls in
2865 * xlog_state_release_iclog() when there is more than one
2866 * reference to the iclog.
2867 */
2868 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2869 /* we are the only one */
2870 spin_unlock(&log->l_icloglock);
2871 error = xlog_state_release_iclog(log, iclog);
2872 if (error)
2873 return error;
2874 } else {
2875 spin_unlock(&log->l_icloglock);
2876 }
2877 goto restart;
2878 }
2879
2880 /* Do we have enough room to write the full amount in the remainder
2881 * of this iclog? Or must we continue a write on the next iclog and
2882 * mark this iclog as completely taken? In the case where we switch
2883 * iclogs (to mark it taken), this particular iclog will release/sync
2884 * to disk in xlog_write().
2885 */
2886 if (len <= iclog->ic_size - iclog->ic_offset) {
2887 *continued_write = 0;
2888 iclog->ic_offset += len;
2889 } else {
2890 *continued_write = 1;
2891 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2892 }
2893 *iclogp = iclog;
2894
2895 ASSERT(iclog->ic_offset <= iclog->ic_size);
2896 spin_unlock(&log->l_icloglock);
2897
2898 *logoffsetp = log_offset;
2899 return 0;
2900 } /* xlog_state_get_iclog_space */
2901
2902 /* The first cnt-1 times through here we don't need to
2903 * move the grant write head because the permanent
2904 * reservation has reserved cnt times the unit amount.
2905 * Release part of current permanent unit reservation and
2906 * reset current reservation to be one units worth. Also
2907 * move grant reservation head forward.
2908 */
2909 STATIC void
2910 xlog_regrant_reserve_log_space(
2911 struct xlog *log,
2912 struct xlog_ticket *ticket)
2913 {
2914 trace_xfs_log_regrant_reserve_enter(log, ticket);
2915
2916 if (ticket->t_cnt > 0)
2917 ticket->t_cnt--;
2918
2919 xlog_grant_sub_space(log, &log->l_reserve_head.grant,
2920 ticket->t_curr_res);
2921 xlog_grant_sub_space(log, &log->l_write_head.grant,
2922 ticket->t_curr_res);
2923 ticket->t_curr_res = ticket->t_unit_res;
2924 xlog_tic_reset_res(ticket);
2925
2926 trace_xfs_log_regrant_reserve_sub(log, ticket);
2927
2928 /* just return if we still have some of the pre-reserved space */
2929 if (ticket->t_cnt > 0)
2930 return;
2931
2932 xlog_grant_add_space(log, &log->l_reserve_head.grant,
2933 ticket->t_unit_res);
2934
2935 trace_xfs_log_regrant_reserve_exit(log, ticket);
2936
2937 ticket->t_curr_res = ticket->t_unit_res;
2938 xlog_tic_reset_res(ticket);
2939 } /* xlog_regrant_reserve_log_space */
2940
2941
2942 /*
2943 * Give back the space left from a reservation.
2944 *
2945 * All the information we need to make a correct determination of space left
2946 * is present. For non-permanent reservations, things are quite easy. The
2947 * count should have been decremented to zero. We only need to deal with the
2948 * space remaining in the current reservation part of the ticket. If the
2949 * ticket contains a permanent reservation, there may be left over space which
2950 * needs to be released. A count of N means that N-1 refills of the current
2951 * reservation can be done before we need to ask for more space. The first
2952 * one goes to fill up the first current reservation. Once we run out of
2953 * space, the count will stay at zero and the only space remaining will be
2954 * in the current reservation field.
2955 */
2956 STATIC void
2957 xlog_ungrant_log_space(
2958 struct xlog *log,
2959 struct xlog_ticket *ticket)
2960 {
2961 int bytes;
2962
2963 if (ticket->t_cnt > 0)
2964 ticket->t_cnt--;
2965
2966 trace_xfs_log_ungrant_enter(log, ticket);
2967 trace_xfs_log_ungrant_sub(log, ticket);
2968
2969 /*
2970 * If this is a permanent reservation ticket, we may be able to free
2971 * up more space based on the remaining count.
2972 */
2973 bytes = ticket->t_curr_res;
2974 if (ticket->t_cnt > 0) {
2975 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
2976 bytes += ticket->t_unit_res*ticket->t_cnt;
2977 }
2978
2979 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
2980 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
2981
2982 trace_xfs_log_ungrant_exit(log, ticket);
2983
2984 xfs_log_space_wake(log->l_mp);
2985 }
2986
2987 /*
2988 * Flush iclog to disk if this is the last reference to the given iclog and
2989 * the WANT_SYNC bit is set.
2990 *
2991 * When this function is entered, the iclog is not necessarily in the
2992 * WANT_SYNC state. It may be sitting around waiting to get filled.
2993 *
2994 *
2995 */
2996 STATIC int
2997 xlog_state_release_iclog(
2998 struct xlog *log,
2999 struct xlog_in_core *iclog)
3000 {
3001 int sync = 0; /* do we sync? */
3002
3003 if (iclog->ic_state & XLOG_STATE_IOERROR)
3004 return XFS_ERROR(EIO);
3005
3006 ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3007 if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3008 return 0;
3009
3010 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3011 spin_unlock(&log->l_icloglock);
3012 return XFS_ERROR(EIO);
3013 }
3014 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3015 iclog->ic_state == XLOG_STATE_WANT_SYNC);
3016
3017 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3018 /* update tail before writing to iclog */
3019 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3020 sync++;
3021 iclog->ic_state = XLOG_STATE_SYNCING;
3022 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3023 xlog_verify_tail_lsn(log, iclog, tail_lsn);
3024 /* cycle incremented when incrementing curr_block */
3025 }
3026 spin_unlock(&log->l_icloglock);
3027
3028 /*
3029 * We let the log lock go, so it's possible that we hit a log I/O
3030 * error or some other SHUTDOWN condition that marks the iclog
3031 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3032 * this iclog has consistent data, so we ignore IOERROR
3033 * flags after this point.
3034 */
3035 if (sync)
3036 return xlog_sync(log, iclog);
3037 return 0;
3038 } /* xlog_state_release_iclog */
3039
3040
3041 /*
3042 * This routine will mark the current iclog in the ring as WANT_SYNC
3043 * and move the current iclog pointer to the next iclog in the ring.
3044 * When this routine is called from xlog_state_get_iclog_space(), the
3045 * exact size of the iclog has not yet been determined. All we know is
3046 * that every data block. We have run out of space in this log record.
3047 */
3048 STATIC void
3049 xlog_state_switch_iclogs(
3050 struct xlog *log,
3051 struct xlog_in_core *iclog,
3052 int eventual_size)
3053 {
3054 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3055 if (!eventual_size)
3056 eventual_size = iclog->ic_offset;
3057 iclog->ic_state = XLOG_STATE_WANT_SYNC;
3058 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3059 log->l_prev_block = log->l_curr_block;
3060 log->l_prev_cycle = log->l_curr_cycle;
3061
3062 /* roll log?: ic_offset changed later */
3063 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3064
3065 /* Round up to next log-sunit */
3066 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3067 log->l_mp->m_sb.sb_logsunit > 1) {
3068 __uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3069 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3070 }
3071
3072 if (log->l_curr_block >= log->l_logBBsize) {
3073 log->l_curr_cycle++;
3074 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3075 log->l_curr_cycle++;
3076 log->l_curr_block -= log->l_logBBsize;
3077 ASSERT(log->l_curr_block >= 0);
3078 }
3079 ASSERT(iclog == log->l_iclog);
3080 log->l_iclog = iclog->ic_next;
3081 } /* xlog_state_switch_iclogs */
3082
3083 /*
3084 * Write out all data in the in-core log as of this exact moment in time.
3085 *
3086 * Data may be written to the in-core log during this call. However,
3087 * we don't guarantee this data will be written out. A change from past
3088 * implementation means this routine will *not* write out zero length LRs.
3089 *
3090 * Basically, we try and perform an intelligent scan of the in-core logs.
3091 * If we determine there is no flushable data, we just return. There is no
3092 * flushable data if:
3093 *
3094 * 1. the current iclog is active and has no data; the previous iclog
3095 * is in the active or dirty state.
3096 * 2. the current iclog is drity, and the previous iclog is in the
3097 * active or dirty state.
3098 *
3099 * We may sleep if:
3100 *
3101 * 1. the current iclog is not in the active nor dirty state.
3102 * 2. the current iclog dirty, and the previous iclog is not in the
3103 * active nor dirty state.
3104 * 3. the current iclog is active, and there is another thread writing
3105 * to this particular iclog.
3106 * 4. a) the current iclog is active and has no other writers
3107 * b) when we return from flushing out this iclog, it is still
3108 * not in the active nor dirty state.
3109 */
3110 int
3111 _xfs_log_force(
3112 struct xfs_mount *mp,
3113 uint flags,
3114 int *log_flushed)
3115 {
3116 struct xlog *log = mp->m_log;
3117 struct xlog_in_core *iclog;
3118 xfs_lsn_t lsn;
3119
3120 XFS_STATS_INC(xs_log_force);
3121
3122 xlog_cil_force(log);
3123
3124 spin_lock(&log->l_icloglock);
3125
3126 iclog = log->l_iclog;
3127 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3128 spin_unlock(&log->l_icloglock);
3129 return XFS_ERROR(EIO);
3130 }
3131
3132 /* If the head iclog is not active nor dirty, we just attach
3133 * ourselves to the head and go to sleep.
3134 */
3135 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3136 iclog->ic_state == XLOG_STATE_DIRTY) {
3137 /*
3138 * If the head is dirty or (active and empty), then
3139 * we need to look at the previous iclog. If the previous
3140 * iclog is active or dirty we are done. There is nothing
3141 * to sync out. Otherwise, we attach ourselves to the
3142 * previous iclog and go to sleep.
3143 */
3144 if (iclog->ic_state == XLOG_STATE_DIRTY ||
3145 (atomic_read(&iclog->ic_refcnt) == 0
3146 && iclog->ic_offset == 0)) {
3147 iclog = iclog->ic_prev;
3148 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3149 iclog->ic_state == XLOG_STATE_DIRTY)
3150 goto no_sleep;
3151 else
3152 goto maybe_sleep;
3153 } else {
3154 if (atomic_read(&iclog->ic_refcnt) == 0) {
3155 /* We are the only one with access to this
3156 * iclog. Flush it out now. There should
3157 * be a roundoff of zero to show that someone
3158 * has already taken care of the roundoff from
3159 * the previous sync.
3160 */
3161 atomic_inc(&iclog->ic_refcnt);
3162 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3163 xlog_state_switch_iclogs(log, iclog, 0);
3164 spin_unlock(&log->l_icloglock);
3165
3166 if (xlog_state_release_iclog(log, iclog))
3167 return XFS_ERROR(EIO);
3168
3169 if (log_flushed)
3170 *log_flushed = 1;
3171 spin_lock(&log->l_icloglock);
3172 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3173 iclog->ic_state != XLOG_STATE_DIRTY)
3174 goto maybe_sleep;
3175 else
3176 goto no_sleep;
3177 } else {
3178 /* Someone else is writing to this iclog.
3179 * Use its call to flush out the data. However,
3180 * the other thread may not force out this LR,
3181 * so we mark it WANT_SYNC.
3182 */
3183 xlog_state_switch_iclogs(log, iclog, 0);
3184 goto maybe_sleep;
3185 }
3186 }
3187 }
3188
3189 /* By the time we come around again, the iclog could've been filled
3190 * which would give it another lsn. If we have a new lsn, just
3191 * return because the relevant data has been flushed.
3192 */
3193 maybe_sleep:
3194 if (flags & XFS_LOG_SYNC) {
3195 /*
3196 * We must check if we're shutting down here, before
3197 * we wait, while we're holding the l_icloglock.
3198 * Then we check again after waking up, in case our
3199 * sleep was disturbed by a bad news.
3200 */
3201 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3202 spin_unlock(&log->l_icloglock);
3203 return XFS_ERROR(EIO);
3204 }
3205 XFS_STATS_INC(xs_log_force_sleep);
3206 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3207 /*
3208 * No need to grab the log lock here since we're
3209 * only deciding whether or not to return EIO
3210 * and the memory read should be atomic.
3211 */
3212 if (iclog->ic_state & XLOG_STATE_IOERROR)
3213 return XFS_ERROR(EIO);
3214 if (log_flushed)
3215 *log_flushed = 1;
3216 } else {
3217
3218 no_sleep:
3219 spin_unlock(&log->l_icloglock);
3220 }
3221 return 0;
3222 }
3223
3224 /*
3225 * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3226 * about errors or whether the log was flushed or not. This is the normal
3227 * interface to use when trying to unpin items or move the log forward.
3228 */
3229 void
3230 xfs_log_force(
3231 xfs_mount_t *mp,
3232 uint flags)
3233 {
3234 int error;
3235
3236 trace_xfs_log_force(mp, 0);
3237 error = _xfs_log_force(mp, flags, NULL);
3238 if (error)
3239 xfs_warn(mp, "%s: error %d returned.", __func__, error);
3240 }
3241
3242 /*
3243 * Force the in-core log to disk for a specific LSN.
3244 *
3245 * Find in-core log with lsn.
3246 * If it is in the DIRTY state, just return.
3247 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3248 * state and go to sleep or return.
3249 * If it is in any other state, go to sleep or return.
3250 *
3251 * Synchronous forces are implemented with a signal variable. All callers
3252 * to force a given lsn to disk will wait on a the sv attached to the
3253 * specific in-core log. When given in-core log finally completes its
3254 * write to disk, that thread will wake up all threads waiting on the
3255 * sv.
3256 */
3257 int
3258 _xfs_log_force_lsn(
3259 struct xfs_mount *mp,
3260 xfs_lsn_t lsn,
3261 uint flags,
3262 int *log_flushed)
3263 {
3264 struct xlog *log = mp->m_log;
3265 struct xlog_in_core *iclog;
3266 int already_slept = 0;
3267
3268 ASSERT(lsn != 0);
3269
3270 XFS_STATS_INC(xs_log_force);
3271
3272 lsn = xlog_cil_force_lsn(log, lsn);
3273 if (lsn == NULLCOMMITLSN)
3274 return 0;
3275
3276 try_again:
3277 spin_lock(&log->l_icloglock);
3278 iclog = log->l_iclog;
3279 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3280 spin_unlock(&log->l_icloglock);
3281 return XFS_ERROR(EIO);
3282 }
3283
3284 do {
3285 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3286 iclog = iclog->ic_next;
3287 continue;
3288 }
3289
3290 if (iclog->ic_state == XLOG_STATE_DIRTY) {
3291 spin_unlock(&log->l_icloglock);
3292 return 0;
3293 }
3294
3295 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3296 /*
3297 * We sleep here if we haven't already slept (e.g.
3298 * this is the first time we've looked at the correct
3299 * iclog buf) and the buffer before us is going to
3300 * be sync'ed. The reason for this is that if we
3301 * are doing sync transactions here, by waiting for
3302 * the previous I/O to complete, we can allow a few
3303 * more transactions into this iclog before we close
3304 * it down.
3305 *
3306 * Otherwise, we mark the buffer WANT_SYNC, and bump
3307 * up the refcnt so we can release the log (which
3308 * drops the ref count). The state switch keeps new
3309 * transaction commits from using this buffer. When
3310 * the current commits finish writing into the buffer,
3311 * the refcount will drop to zero and the buffer will
3312 * go out then.
3313 */
3314 if (!already_slept &&
3315 (iclog->ic_prev->ic_state &
3316 (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3317 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3318
3319 XFS_STATS_INC(xs_log_force_sleep);
3320
3321 xlog_wait(&iclog->ic_prev->ic_write_wait,
3322 &log->l_icloglock);
3323 if (log_flushed)
3324 *log_flushed = 1;
3325 already_slept = 1;
3326 goto try_again;
3327 }
3328 atomic_inc(&iclog->ic_refcnt);
3329 xlog_state_switch_iclogs(log, iclog, 0);
3330 spin_unlock(&log->l_icloglock);
3331 if (xlog_state_release_iclog(log, iclog))
3332 return XFS_ERROR(EIO);
3333 if (log_flushed)
3334 *log_flushed = 1;
3335 spin_lock(&log->l_icloglock);
3336 }
3337
3338 if ((flags & XFS_LOG_SYNC) && /* sleep */
3339 !(iclog->ic_state &
3340 (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3341 /*
3342 * Don't wait on completion if we know that we've
3343 * gotten a log write error.
3344 */
3345 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3346 spin_unlock(&log->l_icloglock);
3347 return XFS_ERROR(EIO);
3348 }
3349 XFS_STATS_INC(xs_log_force_sleep);
3350 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3351 /*
3352 * No need to grab the log lock here since we're
3353 * only deciding whether or not to return EIO
3354 * and the memory read should be atomic.
3355 */
3356 if (iclog->ic_state & XLOG_STATE_IOERROR)
3357 return XFS_ERROR(EIO);
3358
3359 if (log_flushed)
3360 *log_flushed = 1;
3361 } else { /* just return */
3362 spin_unlock(&log->l_icloglock);
3363 }
3364
3365 return 0;
3366 } while (iclog != log->l_iclog);
3367
3368 spin_unlock(&log->l_icloglock);
3369 return 0;
3370 }
3371
3372 /*
3373 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3374 * about errors or whether the log was flushed or not. This is the normal
3375 * interface to use when trying to unpin items or move the log forward.
3376 */
3377 void
3378 xfs_log_force_lsn(
3379 xfs_mount_t *mp,
3380 xfs_lsn_t lsn,
3381 uint flags)
3382 {
3383 int error;
3384
3385 trace_xfs_log_force(mp, lsn);
3386 error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3387 if (error)
3388 xfs_warn(mp, "%s: error %d returned.", __func__, error);
3389 }
3390
3391 /*
3392 * Called when we want to mark the current iclog as being ready to sync to
3393 * disk.
3394 */
3395 STATIC void
3396 xlog_state_want_sync(
3397 struct xlog *log,
3398 struct xlog_in_core *iclog)
3399 {
3400 assert_spin_locked(&log->l_icloglock);
3401
3402 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3403 xlog_state_switch_iclogs(log, iclog, 0);
3404 } else {
3405 ASSERT(iclog->ic_state &
3406 (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3407 }
3408 }
3409
3410
3411 /*****************************************************************************
3412 *
3413 * TICKET functions
3414 *
3415 *****************************************************************************
3416 */
3417
3418 /*
3419 * Free a used ticket when its refcount falls to zero.
3420 */
3421 void
3422 xfs_log_ticket_put(
3423 xlog_ticket_t *ticket)
3424 {
3425 ASSERT(atomic_read(&ticket->t_ref) > 0);
3426 if (atomic_dec_and_test(&ticket->t_ref))
3427 kmem_zone_free(xfs_log_ticket_zone, ticket);
3428 }
3429
3430 xlog_ticket_t *
3431 xfs_log_ticket_get(
3432 xlog_ticket_t *ticket)
3433 {
3434 ASSERT(atomic_read(&ticket->t_ref) > 0);
3435 atomic_inc(&ticket->t_ref);
3436 return ticket;
3437 }
3438
3439 /*
3440 * Figure out the total log space unit (in bytes) that would be
3441 * required for a log ticket.
3442 */
3443 int
3444 xfs_log_calc_unit_res(
3445 struct xfs_mount *mp,
3446 int unit_bytes)
3447 {
3448 struct xlog *log = mp->m_log;
3449 int iclog_space;
3450 uint num_headers;
3451
3452 /*
3453 * Permanent reservations have up to 'cnt'-1 active log operations
3454 * in the log. A unit in this case is the amount of space for one
3455 * of these log operations. Normal reservations have a cnt of 1
3456 * and their unit amount is the total amount of space required.
3457 *
3458 * The following lines of code account for non-transaction data
3459 * which occupy space in the on-disk log.
3460 *
3461 * Normal form of a transaction is:
3462 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3463 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3464 *
3465 * We need to account for all the leadup data and trailer data
3466 * around the transaction data.
3467 * And then we need to account for the worst case in terms of using
3468 * more space.
3469 * The worst case will happen if:
3470 * - the placement of the transaction happens to be such that the
3471 * roundoff is at its maximum
3472 * - the transaction data is synced before the commit record is synced
3473 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3474 * Therefore the commit record is in its own Log Record.
3475 * This can happen as the commit record is called with its
3476 * own region to xlog_write().
3477 * This then means that in the worst case, roundoff can happen for
3478 * the commit-rec as well.
3479 * The commit-rec is smaller than padding in this scenario and so it is
3480 * not added separately.
3481 */
3482
3483 /* for trans header */
3484 unit_bytes += sizeof(xlog_op_header_t);
3485 unit_bytes += sizeof(xfs_trans_header_t);
3486
3487 /* for start-rec */
3488 unit_bytes += sizeof(xlog_op_header_t);
3489
3490 /*
3491 * for LR headers - the space for data in an iclog is the size minus
3492 * the space used for the headers. If we use the iclog size, then we
3493 * undercalculate the number of headers required.
3494 *
3495 * Furthermore - the addition of op headers for split-recs might
3496 * increase the space required enough to require more log and op
3497 * headers, so take that into account too.
3498 *
3499 * IMPORTANT: This reservation makes the assumption that if this
3500 * transaction is the first in an iclog and hence has the LR headers
3501 * accounted to it, then the remaining space in the iclog is
3502 * exclusively for this transaction. i.e. if the transaction is larger
3503 * than the iclog, it will be the only thing in that iclog.
3504 * Fundamentally, this means we must pass the entire log vector to
3505 * xlog_write to guarantee this.
3506 */
3507 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3508 num_headers = howmany(unit_bytes, iclog_space);
3509
3510 /* for split-recs - ophdrs added when data split over LRs */
3511 unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3512
3513 /* add extra header reservations if we overrun */
3514 while (!num_headers ||
3515 howmany(unit_bytes, iclog_space) > num_headers) {
3516 unit_bytes += sizeof(xlog_op_header_t);
3517 num_headers++;
3518 }
3519 unit_bytes += log->l_iclog_hsize * num_headers;
3520
3521 /* for commit-rec LR header - note: padding will subsume the ophdr */
3522 unit_bytes += log->l_iclog_hsize;
3523
3524 /* for roundoff padding for transaction data and one for commit record */
3525 if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3526 /* log su roundoff */
3527 unit_bytes += 2 * mp->m_sb.sb_logsunit;
3528 } else {
3529 /* BB roundoff */
3530 unit_bytes += 2 * BBSIZE;
3531 }
3532
3533 return unit_bytes;
3534 }
3535
3536 /*
3537 * Allocate and initialise a new log ticket.
3538 */
3539 struct xlog_ticket *
3540 xlog_ticket_alloc(
3541 struct xlog *log,
3542 int unit_bytes,
3543 int cnt,
3544 char client,
3545 bool permanent,
3546 xfs_km_flags_t alloc_flags)
3547 {
3548 struct xlog_ticket *tic;
3549 int unit_res;
3550
3551 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3552 if (!tic)
3553 return NULL;
3554
3555 unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3556
3557 atomic_set(&tic->t_ref, 1);
3558 tic->t_task = current;
3559 INIT_LIST_HEAD(&tic->t_queue);
3560 tic->t_unit_res = unit_res;
3561 tic->t_curr_res = unit_res;
3562 tic->t_cnt = cnt;
3563 tic->t_ocnt = cnt;
3564 tic->t_tid = prandom_u32();
3565 tic->t_clientid = client;
3566 tic->t_flags = XLOG_TIC_INITED;
3567 tic->t_trans_type = 0;
3568 if (permanent)
3569 tic->t_flags |= XLOG_TIC_PERM_RESERV;
3570
3571 xlog_tic_reset_res(tic);
3572
3573 return tic;
3574 }
3575
3576
3577 /******************************************************************************
3578 *
3579 * Log debug routines
3580 *
3581 ******************************************************************************
3582 */
3583 #if defined(DEBUG)
3584 /*
3585 * Make sure that the destination ptr is within the valid data region of
3586 * one of the iclogs. This uses backup pointers stored in a different
3587 * part of the log in case we trash the log structure.
3588 */
3589 void
3590 xlog_verify_dest_ptr(
3591 struct xlog *log,
3592 char *ptr)
3593 {
3594 int i;
3595 int good_ptr = 0;
3596
3597 for (i = 0; i < log->l_iclog_bufs; i++) {
3598 if (ptr >= log->l_iclog_bak[i] &&
3599 ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3600 good_ptr++;
3601 }
3602
3603 if (!good_ptr)
3604 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3605 }
3606
3607 /*
3608 * Check to make sure the grant write head didn't just over lap the tail. If
3609 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3610 * the cycles differ by exactly one and check the byte count.
3611 *
3612 * This check is run unlocked, so can give false positives. Rather than assert
3613 * on failures, use a warn-once flag and a panic tag to allow the admin to
3614 * determine if they want to panic the machine when such an error occurs. For
3615 * debug kernels this will have the same effect as using an assert but, unlinke
3616 * an assert, it can be turned off at runtime.
3617 */
3618 STATIC void
3619 xlog_verify_grant_tail(
3620 struct xlog *log)
3621 {
3622 int tail_cycle, tail_blocks;
3623 int cycle, space;
3624
3625 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3626 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3627 if (tail_cycle != cycle) {
3628 if (cycle - 1 != tail_cycle &&
3629 !(log->l_flags & XLOG_TAIL_WARN)) {
3630 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3631 "%s: cycle - 1 != tail_cycle", __func__);
3632 log->l_flags |= XLOG_TAIL_WARN;
3633 }
3634
3635 if (space > BBTOB(tail_blocks) &&
3636 !(log->l_flags & XLOG_TAIL_WARN)) {
3637 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3638 "%s: space > BBTOB(tail_blocks)", __func__);
3639 log->l_flags |= XLOG_TAIL_WARN;
3640 }
3641 }
3642 }
3643
3644 /* check if it will fit */
3645 STATIC void
3646 xlog_verify_tail_lsn(
3647 struct xlog *log,
3648 struct xlog_in_core *iclog,
3649 xfs_lsn_t tail_lsn)
3650 {
3651 int blocks;
3652
3653 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3654 blocks =
3655 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3656 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3657 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3658 } else {
3659 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3660
3661 if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3662 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3663
3664 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3665 if (blocks < BTOBB(iclog->ic_offset) + 1)
3666 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3667 }
3668 } /* xlog_verify_tail_lsn */
3669
3670 /*
3671 * Perform a number of checks on the iclog before writing to disk.
3672 *
3673 * 1. Make sure the iclogs are still circular
3674 * 2. Make sure we have a good magic number
3675 * 3. Make sure we don't have magic numbers in the data
3676 * 4. Check fields of each log operation header for:
3677 * A. Valid client identifier
3678 * B. tid ptr value falls in valid ptr space (user space code)
3679 * C. Length in log record header is correct according to the
3680 * individual operation headers within record.
3681 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3682 * log, check the preceding blocks of the physical log to make sure all
3683 * the cycle numbers agree with the current cycle number.
3684 */
3685 STATIC void
3686 xlog_verify_iclog(
3687 struct xlog *log,
3688 struct xlog_in_core *iclog,
3689 int count,
3690 bool syncing)
3691 {
3692 xlog_op_header_t *ophead;
3693 xlog_in_core_t *icptr;
3694 xlog_in_core_2_t *xhdr;
3695 xfs_caddr_t ptr;
3696 xfs_caddr_t base_ptr;
3697 __psint_t field_offset;
3698 __uint8_t clientid;
3699 int len, i, j, k, op_len;
3700 int idx;
3701
3702 /* check validity of iclog pointers */
3703 spin_lock(&log->l_icloglock);
3704 icptr = log->l_iclog;
3705 for (i=0; i < log->l_iclog_bufs; i++) {
3706 if (icptr == NULL)
3707 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3708 icptr = icptr->ic_next;
3709 }
3710 if (icptr != log->l_iclog)
3711 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3712 spin_unlock(&log->l_icloglock);
3713
3714 /* check log magic numbers */
3715 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3716 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3717
3718 ptr = (xfs_caddr_t) &iclog->ic_header;
3719 for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count;
3720 ptr += BBSIZE) {
3721 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3722 xfs_emerg(log->l_mp, "%s: unexpected magic num",
3723 __func__);
3724 }
3725
3726 /* check fields */
3727 len = be32_to_cpu(iclog->ic_header.h_num_logops);
3728 ptr = iclog->ic_datap;
3729 base_ptr = ptr;
3730 ophead = (xlog_op_header_t *)ptr;
3731 xhdr = iclog->ic_data;
3732 for (i = 0; i < len; i++) {
3733 ophead = (xlog_op_header_t *)ptr;
3734
3735 /* clientid is only 1 byte */
3736 field_offset = (__psint_t)
3737 ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr);
3738 if (!syncing || (field_offset & 0x1ff)) {
3739 clientid = ophead->oh_clientid;
3740 } else {
3741 idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap);
3742 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3743 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3744 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3745 clientid = xlog_get_client_id(
3746 xhdr[j].hic_xheader.xh_cycle_data[k]);
3747 } else {
3748 clientid = xlog_get_client_id(
3749 iclog->ic_header.h_cycle_data[idx]);
3750 }
3751 }
3752 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3753 xfs_warn(log->l_mp,
3754 "%s: invalid clientid %d op 0x%p offset 0x%lx",
3755 __func__, clientid, ophead,
3756 (unsigned long)field_offset);
3757
3758 /* check length */
3759 field_offset = (__psint_t)
3760 ((xfs_caddr_t)&(ophead->oh_len) - base_ptr);
3761 if (!syncing || (field_offset & 0x1ff)) {
3762 op_len = be32_to_cpu(ophead->oh_len);
3763 } else {
3764 idx = BTOBBT((__psint_t)&ophead->oh_len -
3765 (__psint_t)iclog->ic_datap);
3766 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3767 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3768 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3769 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3770 } else {
3771 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3772 }
3773 }
3774 ptr += sizeof(xlog_op_header_t) + op_len;
3775 }
3776 } /* xlog_verify_iclog */
3777 #endif
3778
3779 /*
3780 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3781 */
3782 STATIC int
3783 xlog_state_ioerror(
3784 struct xlog *log)
3785 {
3786 xlog_in_core_t *iclog, *ic;
3787
3788 iclog = log->l_iclog;
3789 if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3790 /*
3791 * Mark all the incore logs IOERROR.
3792 * From now on, no log flushes will result.
3793 */
3794 ic = iclog;
3795 do {
3796 ic->ic_state = XLOG_STATE_IOERROR;
3797 ic = ic->ic_next;
3798 } while (ic != iclog);
3799 return 0;
3800 }
3801 /*
3802 * Return non-zero, if state transition has already happened.
3803 */
3804 return 1;
3805 }
3806
3807 /*
3808 * This is called from xfs_force_shutdown, when we're forcibly
3809 * shutting down the filesystem, typically because of an IO error.
3810 * Our main objectives here are to make sure that:
3811 * a. the filesystem gets marked 'SHUTDOWN' for all interested
3812 * parties to find out, 'atomically'.
3813 * b. those who're sleeping on log reservations, pinned objects and
3814 * other resources get woken up, and be told the bad news.
3815 * c. nothing new gets queued up after (a) and (b) are done.
3816 * d. if !logerror, flush the iclogs to disk, then seal them off
3817 * for business.
3818 *
3819 * Note: for delayed logging the !logerror case needs to flush the regions
3820 * held in memory out to the iclogs before flushing them to disk. This needs
3821 * to be done before the log is marked as shutdown, otherwise the flush to the
3822 * iclogs will fail.
3823 */
3824 int
3825 xfs_log_force_umount(
3826 struct xfs_mount *mp,
3827 int logerror)
3828 {
3829 struct xlog *log;
3830 int retval;
3831
3832 log = mp->m_log;
3833
3834 /*
3835 * If this happens during log recovery, don't worry about
3836 * locking; the log isn't open for business yet.
3837 */
3838 if (!log ||
3839 log->l_flags & XLOG_ACTIVE_RECOVERY) {
3840 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3841 if (mp->m_sb_bp)
3842 XFS_BUF_DONE(mp->m_sb_bp);
3843 return 0;
3844 }
3845
3846 /*
3847 * Somebody could've already done the hard work for us.
3848 * No need to get locks for this.
3849 */
3850 if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3851 ASSERT(XLOG_FORCED_SHUTDOWN(log));
3852 return 1;
3853 }
3854 retval = 0;
3855
3856 /*
3857 * Flush the in memory commit item list before marking the log as
3858 * being shut down. We need to do it in this order to ensure all the
3859 * completed transactions are flushed to disk with the xfs_log_force()
3860 * call below.
3861 */
3862 if (!logerror)
3863 xlog_cil_force(log);
3864
3865 /*
3866 * mark the filesystem and the as in a shutdown state and wake
3867 * everybody up to tell them the bad news.
3868 */
3869 spin_lock(&log->l_icloglock);
3870 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3871 if (mp->m_sb_bp)
3872 XFS_BUF_DONE(mp->m_sb_bp);
3873
3874 /*
3875 * This flag is sort of redundant because of the mount flag, but
3876 * it's good to maintain the separation between the log and the rest
3877 * of XFS.
3878 */
3879 log->l_flags |= XLOG_IO_ERROR;
3880
3881 /*
3882 * If we hit a log error, we want to mark all the iclogs IOERROR
3883 * while we're still holding the loglock.
3884 */
3885 if (logerror)
3886 retval = xlog_state_ioerror(log);
3887 spin_unlock(&log->l_icloglock);
3888
3889 /*
3890 * We don't want anybody waiting for log reservations after this. That
3891 * means we have to wake up everybody queued up on reserveq as well as
3892 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
3893 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3894 * action is protected by the grant locks.
3895 */
3896 xlog_grant_head_wake_all(&log->l_reserve_head);
3897 xlog_grant_head_wake_all(&log->l_write_head);
3898
3899 if (!(log->l_iclog->ic_state & XLOG_STATE_IOERROR)) {
3900 ASSERT(!logerror);
3901 /*
3902 * Force the incore logs to disk before shutting the
3903 * log down completely.
3904 */
3905 _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3906
3907 spin_lock(&log->l_icloglock);
3908 retval = xlog_state_ioerror(log);
3909 spin_unlock(&log->l_icloglock);
3910 }
3911 /*
3912 * Wake up everybody waiting on xfs_log_force.
3913 * Callback all log item committed functions as if the
3914 * log writes were completed.
3915 */
3916 xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
3917
3918 #ifdef XFSERRORDEBUG
3919 {
3920 xlog_in_core_t *iclog;
3921
3922 spin_lock(&log->l_icloglock);
3923 iclog = log->l_iclog;
3924 do {
3925 ASSERT(iclog->ic_callback == 0);
3926 iclog = iclog->ic_next;
3927 } while (iclog != log->l_iclog);
3928 spin_unlock(&log->l_icloglock);
3929 }
3930 #endif
3931 /* return non-zero if log IOERROR transition had already happened */
3932 return retval;
3933 }
3934
3935 STATIC int
3936 xlog_iclogs_empty(
3937 struct xlog *log)
3938 {
3939 xlog_in_core_t *iclog;
3940
3941 iclog = log->l_iclog;
3942 do {
3943 /* endianness does not matter here, zero is zero in
3944 * any language.
3945 */
3946 if (iclog->ic_header.h_num_logops)
3947 return 0;
3948 iclog = iclog->ic_next;
3949 } while (iclog != log->l_iclog);
3950 return 1;
3951 }
3952
This page took 0.147179 seconds and 4 git commands to generate.