Merge git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable
[deliverable/linux.git] / fs / xfs / xfs_log.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_error.h"
29 #include "xfs_log_priv.h"
30 #include "xfs_buf_item.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_log_recover.h"
35 #include "xfs_trans_priv.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_rw.h"
39 #include "xfs_trace.h"
40
41 kmem_zone_t *xfs_log_ticket_zone;
42
43 /* Local miscellaneous function prototypes */
44 STATIC int xlog_commit_record(struct log *log, struct xlog_ticket *ticket,
45 xlog_in_core_t **, xfs_lsn_t *);
46 STATIC xlog_t * xlog_alloc_log(xfs_mount_t *mp,
47 xfs_buftarg_t *log_target,
48 xfs_daddr_t blk_offset,
49 int num_bblks);
50 STATIC int xlog_space_left(struct log *log, atomic64_t *head);
51 STATIC int xlog_sync(xlog_t *log, xlog_in_core_t *iclog);
52 STATIC void xlog_dealloc_log(xlog_t *log);
53
54 /* local state machine functions */
55 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
56 STATIC void xlog_state_do_callback(xlog_t *log,int aborted, xlog_in_core_t *iclog);
57 STATIC int xlog_state_get_iclog_space(xlog_t *log,
58 int len,
59 xlog_in_core_t **iclog,
60 xlog_ticket_t *ticket,
61 int *continued_write,
62 int *logoffsetp);
63 STATIC int xlog_state_release_iclog(xlog_t *log,
64 xlog_in_core_t *iclog);
65 STATIC void xlog_state_switch_iclogs(xlog_t *log,
66 xlog_in_core_t *iclog,
67 int eventual_size);
68 STATIC void xlog_state_want_sync(xlog_t *log, xlog_in_core_t *iclog);
69
70 /* local functions to manipulate grant head */
71 STATIC int xlog_grant_log_space(xlog_t *log,
72 xlog_ticket_t *xtic);
73 STATIC void xlog_grant_push_ail(struct log *log,
74 int need_bytes);
75 STATIC void xlog_regrant_reserve_log_space(xlog_t *log,
76 xlog_ticket_t *ticket);
77 STATIC int xlog_regrant_write_log_space(xlog_t *log,
78 xlog_ticket_t *ticket);
79 STATIC void xlog_ungrant_log_space(xlog_t *log,
80 xlog_ticket_t *ticket);
81
82 #if defined(DEBUG)
83 STATIC void xlog_verify_dest_ptr(xlog_t *log, char *ptr);
84 STATIC void xlog_verify_grant_tail(struct log *log);
85 STATIC void xlog_verify_iclog(xlog_t *log, xlog_in_core_t *iclog,
86 int count, boolean_t syncing);
87 STATIC void xlog_verify_tail_lsn(xlog_t *log, xlog_in_core_t *iclog,
88 xfs_lsn_t tail_lsn);
89 #else
90 #define xlog_verify_dest_ptr(a,b)
91 #define xlog_verify_grant_tail(a)
92 #define xlog_verify_iclog(a,b,c,d)
93 #define xlog_verify_tail_lsn(a,b,c)
94 #endif
95
96 STATIC int xlog_iclogs_empty(xlog_t *log);
97
98 static void
99 xlog_grant_sub_space(
100 struct log *log,
101 atomic64_t *head,
102 int bytes)
103 {
104 int64_t head_val = atomic64_read(head);
105 int64_t new, old;
106
107 do {
108 int cycle, space;
109
110 xlog_crack_grant_head_val(head_val, &cycle, &space);
111
112 space -= bytes;
113 if (space < 0) {
114 space += log->l_logsize;
115 cycle--;
116 }
117
118 old = head_val;
119 new = xlog_assign_grant_head_val(cycle, space);
120 head_val = atomic64_cmpxchg(head, old, new);
121 } while (head_val != old);
122 }
123
124 static void
125 xlog_grant_add_space(
126 struct log *log,
127 atomic64_t *head,
128 int bytes)
129 {
130 int64_t head_val = atomic64_read(head);
131 int64_t new, old;
132
133 do {
134 int tmp;
135 int cycle, space;
136
137 xlog_crack_grant_head_val(head_val, &cycle, &space);
138
139 tmp = log->l_logsize - space;
140 if (tmp > bytes)
141 space += bytes;
142 else {
143 space = bytes - tmp;
144 cycle++;
145 }
146
147 old = head_val;
148 new = xlog_assign_grant_head_val(cycle, space);
149 head_val = atomic64_cmpxchg(head, old, new);
150 } while (head_val != old);
151 }
152
153 static void
154 xlog_tic_reset_res(xlog_ticket_t *tic)
155 {
156 tic->t_res_num = 0;
157 tic->t_res_arr_sum = 0;
158 tic->t_res_num_ophdrs = 0;
159 }
160
161 static void
162 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
163 {
164 if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
165 /* add to overflow and start again */
166 tic->t_res_o_flow += tic->t_res_arr_sum;
167 tic->t_res_num = 0;
168 tic->t_res_arr_sum = 0;
169 }
170
171 tic->t_res_arr[tic->t_res_num].r_len = len;
172 tic->t_res_arr[tic->t_res_num].r_type = type;
173 tic->t_res_arr_sum += len;
174 tic->t_res_num++;
175 }
176
177 /*
178 * NOTES:
179 *
180 * 1. currblock field gets updated at startup and after in-core logs
181 * marked as with WANT_SYNC.
182 */
183
184 /*
185 * This routine is called when a user of a log manager ticket is done with
186 * the reservation. If the ticket was ever used, then a commit record for
187 * the associated transaction is written out as a log operation header with
188 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with
189 * a given ticket. If the ticket was one with a permanent reservation, then
190 * a few operations are done differently. Permanent reservation tickets by
191 * default don't release the reservation. They just commit the current
192 * transaction with the belief that the reservation is still needed. A flag
193 * must be passed in before permanent reservations are actually released.
194 * When these type of tickets are not released, they need to be set into
195 * the inited state again. By doing this, a start record will be written
196 * out when the next write occurs.
197 */
198 xfs_lsn_t
199 xfs_log_done(
200 struct xfs_mount *mp,
201 struct xlog_ticket *ticket,
202 struct xlog_in_core **iclog,
203 uint flags)
204 {
205 struct log *log = mp->m_log;
206 xfs_lsn_t lsn = 0;
207
208 if (XLOG_FORCED_SHUTDOWN(log) ||
209 /*
210 * If nothing was ever written, don't write out commit record.
211 * If we get an error, just continue and give back the log ticket.
212 */
213 (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
214 (xlog_commit_record(log, ticket, iclog, &lsn)))) {
215 lsn = (xfs_lsn_t) -1;
216 if (ticket->t_flags & XLOG_TIC_PERM_RESERV) {
217 flags |= XFS_LOG_REL_PERM_RESERV;
218 }
219 }
220
221
222 if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 ||
223 (flags & XFS_LOG_REL_PERM_RESERV)) {
224 trace_xfs_log_done_nonperm(log, ticket);
225
226 /*
227 * Release ticket if not permanent reservation or a specific
228 * request has been made to release a permanent reservation.
229 */
230 xlog_ungrant_log_space(log, ticket);
231 xfs_log_ticket_put(ticket);
232 } else {
233 trace_xfs_log_done_perm(log, ticket);
234
235 xlog_regrant_reserve_log_space(log, ticket);
236 /* If this ticket was a permanent reservation and we aren't
237 * trying to release it, reset the inited flags; so next time
238 * we write, a start record will be written out.
239 */
240 ticket->t_flags |= XLOG_TIC_INITED;
241 }
242
243 return lsn;
244 }
245
246 /*
247 * Attaches a new iclog I/O completion callback routine during
248 * transaction commit. If the log is in error state, a non-zero
249 * return code is handed back and the caller is responsible for
250 * executing the callback at an appropriate time.
251 */
252 int
253 xfs_log_notify(
254 struct xfs_mount *mp,
255 struct xlog_in_core *iclog,
256 xfs_log_callback_t *cb)
257 {
258 int abortflg;
259
260 spin_lock(&iclog->ic_callback_lock);
261 abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
262 if (!abortflg) {
263 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
264 (iclog->ic_state == XLOG_STATE_WANT_SYNC));
265 cb->cb_next = NULL;
266 *(iclog->ic_callback_tail) = cb;
267 iclog->ic_callback_tail = &(cb->cb_next);
268 }
269 spin_unlock(&iclog->ic_callback_lock);
270 return abortflg;
271 }
272
273 int
274 xfs_log_release_iclog(
275 struct xfs_mount *mp,
276 struct xlog_in_core *iclog)
277 {
278 if (xlog_state_release_iclog(mp->m_log, iclog)) {
279 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
280 return EIO;
281 }
282
283 return 0;
284 }
285
286 /*
287 * 1. Reserve an amount of on-disk log space and return a ticket corresponding
288 * to the reservation.
289 * 2. Potentially, push buffers at tail of log to disk.
290 *
291 * Each reservation is going to reserve extra space for a log record header.
292 * When writes happen to the on-disk log, we don't subtract the length of the
293 * log record header from any reservation. By wasting space in each
294 * reservation, we prevent over allocation problems.
295 */
296 int
297 xfs_log_reserve(
298 struct xfs_mount *mp,
299 int unit_bytes,
300 int cnt,
301 struct xlog_ticket **ticket,
302 __uint8_t client,
303 uint flags,
304 uint t_type)
305 {
306 struct log *log = mp->m_log;
307 struct xlog_ticket *internal_ticket;
308 int retval = 0;
309
310 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
311
312 if (XLOG_FORCED_SHUTDOWN(log))
313 return XFS_ERROR(EIO);
314
315 XFS_STATS_INC(xs_try_logspace);
316
317
318 if (*ticket != NULL) {
319 ASSERT(flags & XFS_LOG_PERM_RESERV);
320 internal_ticket = *ticket;
321
322 /*
323 * this is a new transaction on the ticket, so we need to
324 * change the transaction ID so that the next transaction has a
325 * different TID in the log. Just add one to the existing tid
326 * so that we can see chains of rolling transactions in the log
327 * easily.
328 */
329 internal_ticket->t_tid++;
330
331 trace_xfs_log_reserve(log, internal_ticket);
332
333 xlog_grant_push_ail(log, internal_ticket->t_unit_res);
334 retval = xlog_regrant_write_log_space(log, internal_ticket);
335 } else {
336 /* may sleep if need to allocate more tickets */
337 internal_ticket = xlog_ticket_alloc(log, unit_bytes, cnt,
338 client, flags,
339 KM_SLEEP|KM_MAYFAIL);
340 if (!internal_ticket)
341 return XFS_ERROR(ENOMEM);
342 internal_ticket->t_trans_type = t_type;
343 *ticket = internal_ticket;
344
345 trace_xfs_log_reserve(log, internal_ticket);
346
347 xlog_grant_push_ail(log,
348 (internal_ticket->t_unit_res *
349 internal_ticket->t_cnt));
350 retval = xlog_grant_log_space(log, internal_ticket);
351 }
352
353 return retval;
354 } /* xfs_log_reserve */
355
356
357 /*
358 * Mount a log filesystem
359 *
360 * mp - ubiquitous xfs mount point structure
361 * log_target - buftarg of on-disk log device
362 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
363 * num_bblocks - Number of BBSIZE blocks in on-disk log
364 *
365 * Return error or zero.
366 */
367 int
368 xfs_log_mount(
369 xfs_mount_t *mp,
370 xfs_buftarg_t *log_target,
371 xfs_daddr_t blk_offset,
372 int num_bblks)
373 {
374 int error;
375
376 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
377 cmn_err(CE_NOTE, "XFS mounting filesystem %s", mp->m_fsname);
378 else {
379 cmn_err(CE_NOTE,
380 "Mounting filesystem \"%s\" in no-recovery mode. Filesystem will be inconsistent.",
381 mp->m_fsname);
382 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
383 }
384
385 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
386 if (IS_ERR(mp->m_log)) {
387 error = -PTR_ERR(mp->m_log);
388 goto out;
389 }
390
391 /*
392 * Initialize the AIL now we have a log.
393 */
394 error = xfs_trans_ail_init(mp);
395 if (error) {
396 cmn_err(CE_WARN, "XFS: AIL initialisation failed: error %d", error);
397 goto out_free_log;
398 }
399 mp->m_log->l_ailp = mp->m_ail;
400
401 /*
402 * skip log recovery on a norecovery mount. pretend it all
403 * just worked.
404 */
405 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
406 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
407
408 if (readonly)
409 mp->m_flags &= ~XFS_MOUNT_RDONLY;
410
411 error = xlog_recover(mp->m_log);
412
413 if (readonly)
414 mp->m_flags |= XFS_MOUNT_RDONLY;
415 if (error) {
416 cmn_err(CE_WARN, "XFS: log mount/recovery failed: error %d", error);
417 goto out_destroy_ail;
418 }
419 }
420
421 /* Normal transactions can now occur */
422 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
423
424 /*
425 * Now the log has been fully initialised and we know were our
426 * space grant counters are, we can initialise the permanent ticket
427 * needed for delayed logging to work.
428 */
429 xlog_cil_init_post_recovery(mp->m_log);
430
431 return 0;
432
433 out_destroy_ail:
434 xfs_trans_ail_destroy(mp);
435 out_free_log:
436 xlog_dealloc_log(mp->m_log);
437 out:
438 return error;
439 }
440
441 /*
442 * Finish the recovery of the file system. This is separate from
443 * the xfs_log_mount() call, because it depends on the code in
444 * xfs_mountfs() to read in the root and real-time bitmap inodes
445 * between calling xfs_log_mount() and here.
446 *
447 * mp - ubiquitous xfs mount point structure
448 */
449 int
450 xfs_log_mount_finish(xfs_mount_t *mp)
451 {
452 int error;
453
454 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
455 error = xlog_recover_finish(mp->m_log);
456 else {
457 error = 0;
458 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
459 }
460
461 return error;
462 }
463
464 /*
465 * Final log writes as part of unmount.
466 *
467 * Mark the filesystem clean as unmount happens. Note that during relocation
468 * this routine needs to be executed as part of source-bag while the
469 * deallocation must not be done until source-end.
470 */
471
472 /*
473 * Unmount record used to have a string "Unmount filesystem--" in the
474 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
475 * We just write the magic number now since that particular field isn't
476 * currently architecture converted and "nUmount" is a bit foo.
477 * As far as I know, there weren't any dependencies on the old behaviour.
478 */
479
480 int
481 xfs_log_unmount_write(xfs_mount_t *mp)
482 {
483 xlog_t *log = mp->m_log;
484 xlog_in_core_t *iclog;
485 #ifdef DEBUG
486 xlog_in_core_t *first_iclog;
487 #endif
488 xlog_ticket_t *tic = NULL;
489 xfs_lsn_t lsn;
490 int error;
491
492 /*
493 * Don't write out unmount record on read-only mounts.
494 * Or, if we are doing a forced umount (typically because of IO errors).
495 */
496 if (mp->m_flags & XFS_MOUNT_RDONLY)
497 return 0;
498
499 error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
500 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
501
502 #ifdef DEBUG
503 first_iclog = iclog = log->l_iclog;
504 do {
505 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
506 ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
507 ASSERT(iclog->ic_offset == 0);
508 }
509 iclog = iclog->ic_next;
510 } while (iclog != first_iclog);
511 #endif
512 if (! (XLOG_FORCED_SHUTDOWN(log))) {
513 error = xfs_log_reserve(mp, 600, 1, &tic,
514 XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
515 if (!error) {
516 /* the data section must be 32 bit size aligned */
517 struct {
518 __uint16_t magic;
519 __uint16_t pad1;
520 __uint32_t pad2; /* may as well make it 64 bits */
521 } magic = {
522 .magic = XLOG_UNMOUNT_TYPE,
523 };
524 struct xfs_log_iovec reg = {
525 .i_addr = &magic,
526 .i_len = sizeof(magic),
527 .i_type = XLOG_REG_TYPE_UNMOUNT,
528 };
529 struct xfs_log_vec vec = {
530 .lv_niovecs = 1,
531 .lv_iovecp = &reg,
532 };
533
534 /* remove inited flag */
535 tic->t_flags = 0;
536 error = xlog_write(log, &vec, tic, &lsn,
537 NULL, XLOG_UNMOUNT_TRANS);
538 /*
539 * At this point, we're umounting anyway,
540 * so there's no point in transitioning log state
541 * to IOERROR. Just continue...
542 */
543 }
544
545 if (error) {
546 xfs_fs_cmn_err(CE_ALERT, mp,
547 "xfs_log_unmount: unmount record failed");
548 }
549
550
551 spin_lock(&log->l_icloglock);
552 iclog = log->l_iclog;
553 atomic_inc(&iclog->ic_refcnt);
554 xlog_state_want_sync(log, iclog);
555 spin_unlock(&log->l_icloglock);
556 error = xlog_state_release_iclog(log, iclog);
557
558 spin_lock(&log->l_icloglock);
559 if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
560 iclog->ic_state == XLOG_STATE_DIRTY)) {
561 if (!XLOG_FORCED_SHUTDOWN(log)) {
562 xlog_wait(&iclog->ic_force_wait,
563 &log->l_icloglock);
564 } else {
565 spin_unlock(&log->l_icloglock);
566 }
567 } else {
568 spin_unlock(&log->l_icloglock);
569 }
570 if (tic) {
571 trace_xfs_log_umount_write(log, tic);
572 xlog_ungrant_log_space(log, tic);
573 xfs_log_ticket_put(tic);
574 }
575 } else {
576 /*
577 * We're already in forced_shutdown mode, couldn't
578 * even attempt to write out the unmount transaction.
579 *
580 * Go through the motions of sync'ing and releasing
581 * the iclog, even though no I/O will actually happen,
582 * we need to wait for other log I/Os that may already
583 * be in progress. Do this as a separate section of
584 * code so we'll know if we ever get stuck here that
585 * we're in this odd situation of trying to unmount
586 * a file system that went into forced_shutdown as
587 * the result of an unmount..
588 */
589 spin_lock(&log->l_icloglock);
590 iclog = log->l_iclog;
591 atomic_inc(&iclog->ic_refcnt);
592
593 xlog_state_want_sync(log, iclog);
594 spin_unlock(&log->l_icloglock);
595 error = xlog_state_release_iclog(log, iclog);
596
597 spin_lock(&log->l_icloglock);
598
599 if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE
600 || iclog->ic_state == XLOG_STATE_DIRTY
601 || iclog->ic_state == XLOG_STATE_IOERROR) ) {
602
603 xlog_wait(&iclog->ic_force_wait,
604 &log->l_icloglock);
605 } else {
606 spin_unlock(&log->l_icloglock);
607 }
608 }
609
610 return error;
611 } /* xfs_log_unmount_write */
612
613 /*
614 * Deallocate log structures for unmount/relocation.
615 *
616 * We need to stop the aild from running before we destroy
617 * and deallocate the log as the aild references the log.
618 */
619 void
620 xfs_log_unmount(xfs_mount_t *mp)
621 {
622 xfs_trans_ail_destroy(mp);
623 xlog_dealloc_log(mp->m_log);
624 }
625
626 void
627 xfs_log_item_init(
628 struct xfs_mount *mp,
629 struct xfs_log_item *item,
630 int type,
631 struct xfs_item_ops *ops)
632 {
633 item->li_mountp = mp;
634 item->li_ailp = mp->m_ail;
635 item->li_type = type;
636 item->li_ops = ops;
637 item->li_lv = NULL;
638
639 INIT_LIST_HEAD(&item->li_ail);
640 INIT_LIST_HEAD(&item->li_cil);
641 }
642
643 /*
644 * Write region vectors to log. The write happens using the space reservation
645 * of the ticket (tic). It is not a requirement that all writes for a given
646 * transaction occur with one call to xfs_log_write(). However, it is important
647 * to note that the transaction reservation code makes an assumption about the
648 * number of log headers a transaction requires that may be violated if you
649 * don't pass all the transaction vectors in one call....
650 */
651 int
652 xfs_log_write(
653 struct xfs_mount *mp,
654 struct xfs_log_iovec reg[],
655 int nentries,
656 struct xlog_ticket *tic,
657 xfs_lsn_t *start_lsn)
658 {
659 struct log *log = mp->m_log;
660 int error;
661 struct xfs_log_vec vec = {
662 .lv_niovecs = nentries,
663 .lv_iovecp = reg,
664 };
665
666 if (XLOG_FORCED_SHUTDOWN(log))
667 return XFS_ERROR(EIO);
668
669 error = xlog_write(log, &vec, tic, start_lsn, NULL, 0);
670 if (error)
671 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
672 return error;
673 }
674
675 void
676 xfs_log_move_tail(xfs_mount_t *mp,
677 xfs_lsn_t tail_lsn)
678 {
679 xlog_ticket_t *tic;
680 xlog_t *log = mp->m_log;
681 int need_bytes, free_bytes;
682
683 if (XLOG_FORCED_SHUTDOWN(log))
684 return;
685
686 if (tail_lsn == 0)
687 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
688
689 /* tail_lsn == 1 implies that we weren't passed a valid value. */
690 if (tail_lsn != 1)
691 atomic64_set(&log->l_tail_lsn, tail_lsn);
692
693 if (!list_empty_careful(&log->l_writeq)) {
694 #ifdef DEBUG
695 if (log->l_flags & XLOG_ACTIVE_RECOVERY)
696 panic("Recovery problem");
697 #endif
698 spin_lock(&log->l_grant_write_lock);
699 free_bytes = xlog_space_left(log, &log->l_grant_write_head);
700 list_for_each_entry(tic, &log->l_writeq, t_queue) {
701 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
702
703 if (free_bytes < tic->t_unit_res && tail_lsn != 1)
704 break;
705 tail_lsn = 0;
706 free_bytes -= tic->t_unit_res;
707 trace_xfs_log_regrant_write_wake_up(log, tic);
708 wake_up(&tic->t_wait);
709 }
710 spin_unlock(&log->l_grant_write_lock);
711 }
712
713 if (!list_empty_careful(&log->l_reserveq)) {
714 #ifdef DEBUG
715 if (log->l_flags & XLOG_ACTIVE_RECOVERY)
716 panic("Recovery problem");
717 #endif
718 spin_lock(&log->l_grant_reserve_lock);
719 free_bytes = xlog_space_left(log, &log->l_grant_reserve_head);
720 list_for_each_entry(tic, &log->l_reserveq, t_queue) {
721 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
722 need_bytes = tic->t_unit_res*tic->t_cnt;
723 else
724 need_bytes = tic->t_unit_res;
725 if (free_bytes < need_bytes && tail_lsn != 1)
726 break;
727 tail_lsn = 0;
728 free_bytes -= need_bytes;
729 trace_xfs_log_grant_wake_up(log, tic);
730 wake_up(&tic->t_wait);
731 }
732 spin_unlock(&log->l_grant_reserve_lock);
733 }
734 }
735
736 /*
737 * Determine if we have a transaction that has gone to disk
738 * that needs to be covered. To begin the transition to the idle state
739 * firstly the log needs to be idle (no AIL and nothing in the iclogs).
740 * If we are then in a state where covering is needed, the caller is informed
741 * that dummy transactions are required to move the log into the idle state.
742 *
743 * Because this is called as part of the sync process, we should also indicate
744 * that dummy transactions should be issued in anything but the covered or
745 * idle states. This ensures that the log tail is accurately reflected in
746 * the log at the end of the sync, hence if a crash occurrs avoids replay
747 * of transactions where the metadata is already on disk.
748 */
749 int
750 xfs_log_need_covered(xfs_mount_t *mp)
751 {
752 int needed = 0;
753 xlog_t *log = mp->m_log;
754
755 if (!xfs_fs_writable(mp))
756 return 0;
757
758 spin_lock(&log->l_icloglock);
759 switch (log->l_covered_state) {
760 case XLOG_STATE_COVER_DONE:
761 case XLOG_STATE_COVER_DONE2:
762 case XLOG_STATE_COVER_IDLE:
763 break;
764 case XLOG_STATE_COVER_NEED:
765 case XLOG_STATE_COVER_NEED2:
766 if (!xfs_trans_ail_tail(log->l_ailp) &&
767 xlog_iclogs_empty(log)) {
768 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
769 log->l_covered_state = XLOG_STATE_COVER_DONE;
770 else
771 log->l_covered_state = XLOG_STATE_COVER_DONE2;
772 }
773 /* FALLTHRU */
774 default:
775 needed = 1;
776 break;
777 }
778 spin_unlock(&log->l_icloglock);
779 return needed;
780 }
781
782 /******************************************************************************
783 *
784 * local routines
785 *
786 ******************************************************************************
787 */
788
789 /* xfs_trans_tail_ail returns 0 when there is nothing in the list.
790 * The log manager must keep track of the last LR which was committed
791 * to disk. The lsn of this LR will become the new tail_lsn whenever
792 * xfs_trans_tail_ail returns 0. If we don't do this, we run into
793 * the situation where stuff could be written into the log but nothing
794 * was ever in the AIL when asked. Eventually, we panic since the
795 * tail hits the head.
796 *
797 * We may be holding the log iclog lock upon entering this routine.
798 */
799 xfs_lsn_t
800 xlog_assign_tail_lsn(
801 struct xfs_mount *mp)
802 {
803 xfs_lsn_t tail_lsn;
804 struct log *log = mp->m_log;
805
806 tail_lsn = xfs_trans_ail_tail(mp->m_ail);
807 if (!tail_lsn)
808 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
809
810 atomic64_set(&log->l_tail_lsn, tail_lsn);
811 return tail_lsn;
812 }
813
814 /*
815 * Return the space in the log between the tail and the head. The head
816 * is passed in the cycle/bytes formal parms. In the special case where
817 * the reserve head has wrapped passed the tail, this calculation is no
818 * longer valid. In this case, just return 0 which means there is no space
819 * in the log. This works for all places where this function is called
820 * with the reserve head. Of course, if the write head were to ever
821 * wrap the tail, we should blow up. Rather than catch this case here,
822 * we depend on other ASSERTions in other parts of the code. XXXmiken
823 *
824 * This code also handles the case where the reservation head is behind
825 * the tail. The details of this case are described below, but the end
826 * result is that we return the size of the log as the amount of space left.
827 */
828 STATIC int
829 xlog_space_left(
830 struct log *log,
831 atomic64_t *head)
832 {
833 int free_bytes;
834 int tail_bytes;
835 int tail_cycle;
836 int head_cycle;
837 int head_bytes;
838
839 xlog_crack_grant_head(head, &head_cycle, &head_bytes);
840 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
841 tail_bytes = BBTOB(tail_bytes);
842 if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
843 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
844 else if (tail_cycle + 1 < head_cycle)
845 return 0;
846 else if (tail_cycle < head_cycle) {
847 ASSERT(tail_cycle == (head_cycle - 1));
848 free_bytes = tail_bytes - head_bytes;
849 } else {
850 /*
851 * The reservation head is behind the tail.
852 * In this case we just want to return the size of the
853 * log as the amount of space left.
854 */
855 xfs_fs_cmn_err(CE_ALERT, log->l_mp,
856 "xlog_space_left: head behind tail\n"
857 " tail_cycle = %d, tail_bytes = %d\n"
858 " GH cycle = %d, GH bytes = %d",
859 tail_cycle, tail_bytes, head_cycle, head_bytes);
860 ASSERT(0);
861 free_bytes = log->l_logsize;
862 }
863 return free_bytes;
864 }
865
866
867 /*
868 * Log function which is called when an io completes.
869 *
870 * The log manager needs its own routine, in order to control what
871 * happens with the buffer after the write completes.
872 */
873 void
874 xlog_iodone(xfs_buf_t *bp)
875 {
876 xlog_in_core_t *iclog;
877 xlog_t *l;
878 int aborted;
879
880 iclog = XFS_BUF_FSPRIVATE(bp, xlog_in_core_t *);
881 ASSERT(XFS_BUF_FSPRIVATE2(bp, unsigned long) == (unsigned long) 2);
882 XFS_BUF_SET_FSPRIVATE2(bp, (unsigned long)1);
883 aborted = 0;
884 l = iclog->ic_log;
885
886 /*
887 * Race to shutdown the filesystem if we see an error.
888 */
889 if (XFS_TEST_ERROR((XFS_BUF_GETERROR(bp)), l->l_mp,
890 XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) {
891 xfs_ioerror_alert("xlog_iodone", l->l_mp, bp, XFS_BUF_ADDR(bp));
892 XFS_BUF_STALE(bp);
893 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
894 /*
895 * This flag will be propagated to the trans-committed
896 * callback routines to let them know that the log-commit
897 * didn't succeed.
898 */
899 aborted = XFS_LI_ABORTED;
900 } else if (iclog->ic_state & XLOG_STATE_IOERROR) {
901 aborted = XFS_LI_ABORTED;
902 }
903
904 /* log I/O is always issued ASYNC */
905 ASSERT(XFS_BUF_ISASYNC(bp));
906 xlog_state_done_syncing(iclog, aborted);
907 /*
908 * do not reference the buffer (bp) here as we could race
909 * with it being freed after writing the unmount record to the
910 * log.
911 */
912
913 } /* xlog_iodone */
914
915 /*
916 * Return size of each in-core log record buffer.
917 *
918 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
919 *
920 * If the filesystem blocksize is too large, we may need to choose a
921 * larger size since the directory code currently logs entire blocks.
922 */
923
924 STATIC void
925 xlog_get_iclog_buffer_size(xfs_mount_t *mp,
926 xlog_t *log)
927 {
928 int size;
929 int xhdrs;
930
931 if (mp->m_logbufs <= 0)
932 log->l_iclog_bufs = XLOG_MAX_ICLOGS;
933 else
934 log->l_iclog_bufs = mp->m_logbufs;
935
936 /*
937 * Buffer size passed in from mount system call.
938 */
939 if (mp->m_logbsize > 0) {
940 size = log->l_iclog_size = mp->m_logbsize;
941 log->l_iclog_size_log = 0;
942 while (size != 1) {
943 log->l_iclog_size_log++;
944 size >>= 1;
945 }
946
947 if (xfs_sb_version_haslogv2(&mp->m_sb)) {
948 /* # headers = size / 32k
949 * one header holds cycles from 32k of data
950 */
951
952 xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
953 if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
954 xhdrs++;
955 log->l_iclog_hsize = xhdrs << BBSHIFT;
956 log->l_iclog_heads = xhdrs;
957 } else {
958 ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
959 log->l_iclog_hsize = BBSIZE;
960 log->l_iclog_heads = 1;
961 }
962 goto done;
963 }
964
965 /* All machines use 32kB buffers by default. */
966 log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
967 log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
968
969 /* the default log size is 16k or 32k which is one header sector */
970 log->l_iclog_hsize = BBSIZE;
971 log->l_iclog_heads = 1;
972
973 done:
974 /* are we being asked to make the sizes selected above visible? */
975 if (mp->m_logbufs == 0)
976 mp->m_logbufs = log->l_iclog_bufs;
977 if (mp->m_logbsize == 0)
978 mp->m_logbsize = log->l_iclog_size;
979 } /* xlog_get_iclog_buffer_size */
980
981
982 /*
983 * This routine initializes some of the log structure for a given mount point.
984 * Its primary purpose is to fill in enough, so recovery can occur. However,
985 * some other stuff may be filled in too.
986 */
987 STATIC xlog_t *
988 xlog_alloc_log(xfs_mount_t *mp,
989 xfs_buftarg_t *log_target,
990 xfs_daddr_t blk_offset,
991 int num_bblks)
992 {
993 xlog_t *log;
994 xlog_rec_header_t *head;
995 xlog_in_core_t **iclogp;
996 xlog_in_core_t *iclog, *prev_iclog=NULL;
997 xfs_buf_t *bp;
998 int i;
999 int error = ENOMEM;
1000 uint log2_size = 0;
1001
1002 log = kmem_zalloc(sizeof(xlog_t), KM_MAYFAIL);
1003 if (!log) {
1004 xlog_warn("XFS: Log allocation failed: No memory!");
1005 goto out;
1006 }
1007
1008 log->l_mp = mp;
1009 log->l_targ = log_target;
1010 log->l_logsize = BBTOB(num_bblks);
1011 log->l_logBBstart = blk_offset;
1012 log->l_logBBsize = num_bblks;
1013 log->l_covered_state = XLOG_STATE_COVER_IDLE;
1014 log->l_flags |= XLOG_ACTIVE_RECOVERY;
1015
1016 log->l_prev_block = -1;
1017 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1018 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1019 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1020 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
1021 xlog_assign_grant_head(&log->l_grant_reserve_head, 1, 0);
1022 xlog_assign_grant_head(&log->l_grant_write_head, 1, 0);
1023 INIT_LIST_HEAD(&log->l_reserveq);
1024 INIT_LIST_HEAD(&log->l_writeq);
1025 spin_lock_init(&log->l_grant_reserve_lock);
1026 spin_lock_init(&log->l_grant_write_lock);
1027
1028 error = EFSCORRUPTED;
1029 if (xfs_sb_version_hassector(&mp->m_sb)) {
1030 log2_size = mp->m_sb.sb_logsectlog;
1031 if (log2_size < BBSHIFT) {
1032 xlog_warn("XFS: Log sector size too small "
1033 "(0x%x < 0x%x)", log2_size, BBSHIFT);
1034 goto out_free_log;
1035 }
1036
1037 log2_size -= BBSHIFT;
1038 if (log2_size > mp->m_sectbb_log) {
1039 xlog_warn("XFS: Log sector size too large "
1040 "(0x%x > 0x%x)", log2_size, mp->m_sectbb_log);
1041 goto out_free_log;
1042 }
1043
1044 /* for larger sector sizes, must have v2 or external log */
1045 if (log2_size && log->l_logBBstart > 0 &&
1046 !xfs_sb_version_haslogv2(&mp->m_sb)) {
1047
1048 xlog_warn("XFS: log sector size (0x%x) invalid "
1049 "for configuration.", log2_size);
1050 goto out_free_log;
1051 }
1052 }
1053 log->l_sectBBsize = 1 << log2_size;
1054
1055 xlog_get_iclog_buffer_size(mp, log);
1056
1057 error = ENOMEM;
1058 bp = xfs_buf_get_empty(log->l_iclog_size, mp->m_logdev_targp);
1059 if (!bp)
1060 goto out_free_log;
1061 XFS_BUF_SET_IODONE_FUNC(bp, xlog_iodone);
1062 XFS_BUF_SET_FSPRIVATE2(bp, (unsigned long)1);
1063 ASSERT(XFS_BUF_ISBUSY(bp));
1064 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
1065 log->l_xbuf = bp;
1066
1067 spin_lock_init(&log->l_icloglock);
1068 init_waitqueue_head(&log->l_flush_wait);
1069
1070 /* log record size must be multiple of BBSIZE; see xlog_rec_header_t */
1071 ASSERT((XFS_BUF_SIZE(bp) & BBMASK) == 0);
1072
1073 iclogp = &log->l_iclog;
1074 /*
1075 * The amount of memory to allocate for the iclog structure is
1076 * rather funky due to the way the structure is defined. It is
1077 * done this way so that we can use different sizes for machines
1078 * with different amounts of memory. See the definition of
1079 * xlog_in_core_t in xfs_log_priv.h for details.
1080 */
1081 ASSERT(log->l_iclog_size >= 4096);
1082 for (i=0; i < log->l_iclog_bufs; i++) {
1083 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1084 if (!*iclogp)
1085 goto out_free_iclog;
1086
1087 iclog = *iclogp;
1088 iclog->ic_prev = prev_iclog;
1089 prev_iclog = iclog;
1090
1091 bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1092 log->l_iclog_size, 0);
1093 if (!bp)
1094 goto out_free_iclog;
1095 if (!XFS_BUF_CPSEMA(bp))
1096 ASSERT(0);
1097 XFS_BUF_SET_IODONE_FUNC(bp, xlog_iodone);
1098 XFS_BUF_SET_FSPRIVATE2(bp, (unsigned long)1);
1099 iclog->ic_bp = bp;
1100 iclog->ic_data = bp->b_addr;
1101 #ifdef DEBUG
1102 log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header);
1103 #endif
1104 head = &iclog->ic_header;
1105 memset(head, 0, sizeof(xlog_rec_header_t));
1106 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1107 head->h_version = cpu_to_be32(
1108 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1109 head->h_size = cpu_to_be32(log->l_iclog_size);
1110 /* new fields */
1111 head->h_fmt = cpu_to_be32(XLOG_FMT);
1112 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1113
1114 iclog->ic_size = XFS_BUF_SIZE(bp) - log->l_iclog_hsize;
1115 iclog->ic_state = XLOG_STATE_ACTIVE;
1116 iclog->ic_log = log;
1117 atomic_set(&iclog->ic_refcnt, 0);
1118 spin_lock_init(&iclog->ic_callback_lock);
1119 iclog->ic_callback_tail = &(iclog->ic_callback);
1120 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1121
1122 ASSERT(XFS_BUF_ISBUSY(iclog->ic_bp));
1123 ASSERT(XFS_BUF_VALUSEMA(iclog->ic_bp) <= 0);
1124 init_waitqueue_head(&iclog->ic_force_wait);
1125 init_waitqueue_head(&iclog->ic_write_wait);
1126
1127 iclogp = &iclog->ic_next;
1128 }
1129 *iclogp = log->l_iclog; /* complete ring */
1130 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
1131
1132 error = xlog_cil_init(log);
1133 if (error)
1134 goto out_free_iclog;
1135 return log;
1136
1137 out_free_iclog:
1138 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1139 prev_iclog = iclog->ic_next;
1140 if (iclog->ic_bp)
1141 xfs_buf_free(iclog->ic_bp);
1142 kmem_free(iclog);
1143 }
1144 spinlock_destroy(&log->l_icloglock);
1145 xfs_buf_free(log->l_xbuf);
1146 out_free_log:
1147 kmem_free(log);
1148 out:
1149 return ERR_PTR(-error);
1150 } /* xlog_alloc_log */
1151
1152
1153 /*
1154 * Write out the commit record of a transaction associated with the given
1155 * ticket. Return the lsn of the commit record.
1156 */
1157 STATIC int
1158 xlog_commit_record(
1159 struct log *log,
1160 struct xlog_ticket *ticket,
1161 struct xlog_in_core **iclog,
1162 xfs_lsn_t *commitlsnp)
1163 {
1164 struct xfs_mount *mp = log->l_mp;
1165 int error;
1166 struct xfs_log_iovec reg = {
1167 .i_addr = NULL,
1168 .i_len = 0,
1169 .i_type = XLOG_REG_TYPE_COMMIT,
1170 };
1171 struct xfs_log_vec vec = {
1172 .lv_niovecs = 1,
1173 .lv_iovecp = &reg,
1174 };
1175
1176 ASSERT_ALWAYS(iclog);
1177 error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1178 XLOG_COMMIT_TRANS);
1179 if (error)
1180 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1181 return error;
1182 }
1183
1184 /*
1185 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1186 * log space. This code pushes on the lsn which would supposedly free up
1187 * the 25% which we want to leave free. We may need to adopt a policy which
1188 * pushes on an lsn which is further along in the log once we reach the high
1189 * water mark. In this manner, we would be creating a low water mark.
1190 */
1191 STATIC void
1192 xlog_grant_push_ail(
1193 struct log *log,
1194 int need_bytes)
1195 {
1196 xfs_lsn_t threshold_lsn = 0;
1197 xfs_lsn_t last_sync_lsn;
1198 int free_blocks;
1199 int free_bytes;
1200 int threshold_block;
1201 int threshold_cycle;
1202 int free_threshold;
1203
1204 ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1205
1206 free_bytes = xlog_space_left(log, &log->l_grant_reserve_head);
1207 free_blocks = BTOBBT(free_bytes);
1208
1209 /*
1210 * Set the threshold for the minimum number of free blocks in the
1211 * log to the maximum of what the caller needs, one quarter of the
1212 * log, and 256 blocks.
1213 */
1214 free_threshold = BTOBB(need_bytes);
1215 free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1216 free_threshold = MAX(free_threshold, 256);
1217 if (free_blocks >= free_threshold)
1218 return;
1219
1220 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1221 &threshold_block);
1222 threshold_block += free_threshold;
1223 if (threshold_block >= log->l_logBBsize) {
1224 threshold_block -= log->l_logBBsize;
1225 threshold_cycle += 1;
1226 }
1227 threshold_lsn = xlog_assign_lsn(threshold_cycle,
1228 threshold_block);
1229 /*
1230 * Don't pass in an lsn greater than the lsn of the last
1231 * log record known to be on disk. Use a snapshot of the last sync lsn
1232 * so that it doesn't change between the compare and the set.
1233 */
1234 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1235 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1236 threshold_lsn = last_sync_lsn;
1237
1238 /*
1239 * Get the transaction layer to kick the dirty buffers out to
1240 * disk asynchronously. No point in trying to do this if
1241 * the filesystem is shutting down.
1242 */
1243 if (!XLOG_FORCED_SHUTDOWN(log))
1244 xfs_trans_ail_push(log->l_ailp, threshold_lsn);
1245 }
1246
1247 /*
1248 * The bdstrat callback function for log bufs. This gives us a central
1249 * place to trap bufs in case we get hit by a log I/O error and need to
1250 * shutdown. Actually, in practice, even when we didn't get a log error,
1251 * we transition the iclogs to IOERROR state *after* flushing all existing
1252 * iclogs to disk. This is because we don't want anymore new transactions to be
1253 * started or completed afterwards.
1254 */
1255 STATIC int
1256 xlog_bdstrat(
1257 struct xfs_buf *bp)
1258 {
1259 struct xlog_in_core *iclog;
1260
1261 iclog = XFS_BUF_FSPRIVATE(bp, xlog_in_core_t *);
1262 if (iclog->ic_state & XLOG_STATE_IOERROR) {
1263 XFS_BUF_ERROR(bp, EIO);
1264 XFS_BUF_STALE(bp);
1265 xfs_buf_ioend(bp, 0);
1266 /*
1267 * It would seem logical to return EIO here, but we rely on
1268 * the log state machine to propagate I/O errors instead of
1269 * doing it here.
1270 */
1271 return 0;
1272 }
1273
1274 bp->b_flags |= _XBF_RUN_QUEUES;
1275 xfs_buf_iorequest(bp);
1276 return 0;
1277 }
1278
1279 /*
1280 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1281 * fashion. Previously, we should have moved the current iclog
1282 * ptr in the log to point to the next available iclog. This allows further
1283 * write to continue while this code syncs out an iclog ready to go.
1284 * Before an in-core log can be written out, the data section must be scanned
1285 * to save away the 1st word of each BBSIZE block into the header. We replace
1286 * it with the current cycle count. Each BBSIZE block is tagged with the
1287 * cycle count because there in an implicit assumption that drives will
1288 * guarantee that entire 512 byte blocks get written at once. In other words,
1289 * we can't have part of a 512 byte block written and part not written. By
1290 * tagging each block, we will know which blocks are valid when recovering
1291 * after an unclean shutdown.
1292 *
1293 * This routine is single threaded on the iclog. No other thread can be in
1294 * this routine with the same iclog. Changing contents of iclog can there-
1295 * fore be done without grabbing the state machine lock. Updating the global
1296 * log will require grabbing the lock though.
1297 *
1298 * The entire log manager uses a logical block numbering scheme. Only
1299 * log_sync (and then only bwrite()) know about the fact that the log may
1300 * not start with block zero on a given device. The log block start offset
1301 * is added immediately before calling bwrite().
1302 */
1303
1304 STATIC int
1305 xlog_sync(xlog_t *log,
1306 xlog_in_core_t *iclog)
1307 {
1308 xfs_caddr_t dptr; /* pointer to byte sized element */
1309 xfs_buf_t *bp;
1310 int i;
1311 uint count; /* byte count of bwrite */
1312 uint count_init; /* initial count before roundup */
1313 int roundoff; /* roundoff to BB or stripe */
1314 int split = 0; /* split write into two regions */
1315 int error;
1316 int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1317
1318 XFS_STATS_INC(xs_log_writes);
1319 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1320
1321 /* Add for LR header */
1322 count_init = log->l_iclog_hsize + iclog->ic_offset;
1323
1324 /* Round out the log write size */
1325 if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1326 /* we have a v2 stripe unit to use */
1327 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1328 } else {
1329 count = BBTOB(BTOBB(count_init));
1330 }
1331 roundoff = count - count_init;
1332 ASSERT(roundoff >= 0);
1333 ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1334 roundoff < log->l_mp->m_sb.sb_logsunit)
1335 ||
1336 (log->l_mp->m_sb.sb_logsunit <= 1 &&
1337 roundoff < BBTOB(1)));
1338
1339 /* move grant heads by roundoff in sync */
1340 xlog_grant_add_space(log, &log->l_grant_reserve_head, roundoff);
1341 xlog_grant_add_space(log, &log->l_grant_write_head, roundoff);
1342
1343 /* put cycle number in every block */
1344 xlog_pack_data(log, iclog, roundoff);
1345
1346 /* real byte length */
1347 if (v2) {
1348 iclog->ic_header.h_len =
1349 cpu_to_be32(iclog->ic_offset + roundoff);
1350 } else {
1351 iclog->ic_header.h_len =
1352 cpu_to_be32(iclog->ic_offset);
1353 }
1354
1355 bp = iclog->ic_bp;
1356 ASSERT(XFS_BUF_FSPRIVATE2(bp, unsigned long) == (unsigned long)1);
1357 XFS_BUF_SET_FSPRIVATE2(bp, (unsigned long)2);
1358 XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1359
1360 XFS_STATS_ADD(xs_log_blocks, BTOBB(count));
1361
1362 /* Do we need to split this write into 2 parts? */
1363 if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1364 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1365 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1366 iclog->ic_bwritecnt = 2; /* split into 2 writes */
1367 } else {
1368 iclog->ic_bwritecnt = 1;
1369 }
1370 XFS_BUF_SET_COUNT(bp, count);
1371 XFS_BUF_SET_FSPRIVATE(bp, iclog); /* save for later */
1372 XFS_BUF_ZEROFLAGS(bp);
1373 XFS_BUF_BUSY(bp);
1374 XFS_BUF_ASYNC(bp);
1375 bp->b_flags |= XBF_LOG_BUFFER;
1376
1377 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1378 XFS_BUF_ORDERED(bp);
1379
1380 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1381 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1382
1383 xlog_verify_iclog(log, iclog, count, B_TRUE);
1384
1385 /* account for log which doesn't start at block #0 */
1386 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1387 /*
1388 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1389 * is shutting down.
1390 */
1391 XFS_BUF_WRITE(bp);
1392
1393 if ((error = xlog_bdstrat(bp))) {
1394 xfs_ioerror_alert("xlog_sync", log->l_mp, bp,
1395 XFS_BUF_ADDR(bp));
1396 return error;
1397 }
1398 if (split) {
1399 bp = iclog->ic_log->l_xbuf;
1400 ASSERT(XFS_BUF_FSPRIVATE2(bp, unsigned long) ==
1401 (unsigned long)1);
1402 XFS_BUF_SET_FSPRIVATE2(bp, (unsigned long)2);
1403 XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */
1404 XFS_BUF_SET_PTR(bp, (xfs_caddr_t)((__psint_t)&(iclog->ic_header)+
1405 (__psint_t)count), split);
1406 XFS_BUF_SET_FSPRIVATE(bp, iclog);
1407 XFS_BUF_ZEROFLAGS(bp);
1408 XFS_BUF_BUSY(bp);
1409 XFS_BUF_ASYNC(bp);
1410 bp->b_flags |= XBF_LOG_BUFFER;
1411 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1412 XFS_BUF_ORDERED(bp);
1413 dptr = XFS_BUF_PTR(bp);
1414 /*
1415 * Bump the cycle numbers at the start of each block
1416 * since this part of the buffer is at the start of
1417 * a new cycle. Watch out for the header magic number
1418 * case, though.
1419 */
1420 for (i = 0; i < split; i += BBSIZE) {
1421 be32_add_cpu((__be32 *)dptr, 1);
1422 if (be32_to_cpu(*(__be32 *)dptr) == XLOG_HEADER_MAGIC_NUM)
1423 be32_add_cpu((__be32 *)dptr, 1);
1424 dptr += BBSIZE;
1425 }
1426
1427 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1428 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1429
1430 /* account for internal log which doesn't start at block #0 */
1431 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1432 XFS_BUF_WRITE(bp);
1433 if ((error = xlog_bdstrat(bp))) {
1434 xfs_ioerror_alert("xlog_sync (split)", log->l_mp,
1435 bp, XFS_BUF_ADDR(bp));
1436 return error;
1437 }
1438 }
1439 return 0;
1440 } /* xlog_sync */
1441
1442
1443 /*
1444 * Deallocate a log structure
1445 */
1446 STATIC void
1447 xlog_dealloc_log(xlog_t *log)
1448 {
1449 xlog_in_core_t *iclog, *next_iclog;
1450 int i;
1451
1452 xlog_cil_destroy(log);
1453
1454 iclog = log->l_iclog;
1455 for (i=0; i<log->l_iclog_bufs; i++) {
1456 xfs_buf_free(iclog->ic_bp);
1457 next_iclog = iclog->ic_next;
1458 kmem_free(iclog);
1459 iclog = next_iclog;
1460 }
1461 spinlock_destroy(&log->l_icloglock);
1462
1463 xfs_buf_free(log->l_xbuf);
1464 log->l_mp->m_log = NULL;
1465 kmem_free(log);
1466 } /* xlog_dealloc_log */
1467
1468 /*
1469 * Update counters atomically now that memcpy is done.
1470 */
1471 /* ARGSUSED */
1472 static inline void
1473 xlog_state_finish_copy(xlog_t *log,
1474 xlog_in_core_t *iclog,
1475 int record_cnt,
1476 int copy_bytes)
1477 {
1478 spin_lock(&log->l_icloglock);
1479
1480 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1481 iclog->ic_offset += copy_bytes;
1482
1483 spin_unlock(&log->l_icloglock);
1484 } /* xlog_state_finish_copy */
1485
1486
1487
1488
1489 /*
1490 * print out info relating to regions written which consume
1491 * the reservation
1492 */
1493 void
1494 xlog_print_tic_res(
1495 struct xfs_mount *mp,
1496 struct xlog_ticket *ticket)
1497 {
1498 uint i;
1499 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1500
1501 /* match with XLOG_REG_TYPE_* in xfs_log.h */
1502 static char *res_type_str[XLOG_REG_TYPE_MAX] = {
1503 "bformat",
1504 "bchunk",
1505 "efi_format",
1506 "efd_format",
1507 "iformat",
1508 "icore",
1509 "iext",
1510 "ibroot",
1511 "ilocal",
1512 "iattr_ext",
1513 "iattr_broot",
1514 "iattr_local",
1515 "qformat",
1516 "dquot",
1517 "quotaoff",
1518 "LR header",
1519 "unmount",
1520 "commit",
1521 "trans header"
1522 };
1523 static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
1524 "SETATTR_NOT_SIZE",
1525 "SETATTR_SIZE",
1526 "INACTIVE",
1527 "CREATE",
1528 "CREATE_TRUNC",
1529 "TRUNCATE_FILE",
1530 "REMOVE",
1531 "LINK",
1532 "RENAME",
1533 "MKDIR",
1534 "RMDIR",
1535 "SYMLINK",
1536 "SET_DMATTRS",
1537 "GROWFS",
1538 "STRAT_WRITE",
1539 "DIOSTRAT",
1540 "WRITE_SYNC",
1541 "WRITEID",
1542 "ADDAFORK",
1543 "ATTRINVAL",
1544 "ATRUNCATE",
1545 "ATTR_SET",
1546 "ATTR_RM",
1547 "ATTR_FLAG",
1548 "CLEAR_AGI_BUCKET",
1549 "QM_SBCHANGE",
1550 "DUMMY1",
1551 "DUMMY2",
1552 "QM_QUOTAOFF",
1553 "QM_DQALLOC",
1554 "QM_SETQLIM",
1555 "QM_DQCLUSTER",
1556 "QM_QINOCREATE",
1557 "QM_QUOTAOFF_END",
1558 "SB_UNIT",
1559 "FSYNC_TS",
1560 "GROWFSRT_ALLOC",
1561 "GROWFSRT_ZERO",
1562 "GROWFSRT_FREE",
1563 "SWAPEXT"
1564 };
1565
1566 xfs_fs_cmn_err(CE_WARN, mp,
1567 "xfs_log_write: reservation summary:\n"
1568 " trans type = %s (%u)\n"
1569 " unit res = %d bytes\n"
1570 " current res = %d bytes\n"
1571 " total reg = %u bytes (o/flow = %u bytes)\n"
1572 " ophdrs = %u (ophdr space = %u bytes)\n"
1573 " ophdr + reg = %u bytes\n"
1574 " num regions = %u\n",
1575 ((ticket->t_trans_type <= 0 ||
1576 ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
1577 "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
1578 ticket->t_trans_type,
1579 ticket->t_unit_res,
1580 ticket->t_curr_res,
1581 ticket->t_res_arr_sum, ticket->t_res_o_flow,
1582 ticket->t_res_num_ophdrs, ophdr_spc,
1583 ticket->t_res_arr_sum +
1584 ticket->t_res_o_flow + ophdr_spc,
1585 ticket->t_res_num);
1586
1587 for (i = 0; i < ticket->t_res_num; i++) {
1588 uint r_type = ticket->t_res_arr[i].r_type;
1589 cmn_err(CE_WARN,
1590 "region[%u]: %s - %u bytes\n",
1591 i,
1592 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
1593 "bad-rtype" : res_type_str[r_type-1]),
1594 ticket->t_res_arr[i].r_len);
1595 }
1596
1597 xfs_cmn_err(XFS_PTAG_LOGRES, CE_ALERT, mp,
1598 "xfs_log_write: reservation ran out. Need to up reservation");
1599 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1600 }
1601
1602 /*
1603 * Calculate the potential space needed by the log vector. Each region gets
1604 * its own xlog_op_header_t and may need to be double word aligned.
1605 */
1606 static int
1607 xlog_write_calc_vec_length(
1608 struct xlog_ticket *ticket,
1609 struct xfs_log_vec *log_vector)
1610 {
1611 struct xfs_log_vec *lv;
1612 int headers = 0;
1613 int len = 0;
1614 int i;
1615
1616 /* acct for start rec of xact */
1617 if (ticket->t_flags & XLOG_TIC_INITED)
1618 headers++;
1619
1620 for (lv = log_vector; lv; lv = lv->lv_next) {
1621 headers += lv->lv_niovecs;
1622
1623 for (i = 0; i < lv->lv_niovecs; i++) {
1624 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i];
1625
1626 len += vecp->i_len;
1627 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
1628 }
1629 }
1630
1631 ticket->t_res_num_ophdrs += headers;
1632 len += headers * sizeof(struct xlog_op_header);
1633
1634 return len;
1635 }
1636
1637 /*
1638 * If first write for transaction, insert start record We can't be trying to
1639 * commit if we are inited. We can't have any "partial_copy" if we are inited.
1640 */
1641 static int
1642 xlog_write_start_rec(
1643 struct xlog_op_header *ophdr,
1644 struct xlog_ticket *ticket)
1645 {
1646 if (!(ticket->t_flags & XLOG_TIC_INITED))
1647 return 0;
1648
1649 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
1650 ophdr->oh_clientid = ticket->t_clientid;
1651 ophdr->oh_len = 0;
1652 ophdr->oh_flags = XLOG_START_TRANS;
1653 ophdr->oh_res2 = 0;
1654
1655 ticket->t_flags &= ~XLOG_TIC_INITED;
1656
1657 return sizeof(struct xlog_op_header);
1658 }
1659
1660 static xlog_op_header_t *
1661 xlog_write_setup_ophdr(
1662 struct log *log,
1663 struct xlog_op_header *ophdr,
1664 struct xlog_ticket *ticket,
1665 uint flags)
1666 {
1667 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
1668 ophdr->oh_clientid = ticket->t_clientid;
1669 ophdr->oh_res2 = 0;
1670
1671 /* are we copying a commit or unmount record? */
1672 ophdr->oh_flags = flags;
1673
1674 /*
1675 * We've seen logs corrupted with bad transaction client ids. This
1676 * makes sure that XFS doesn't generate them on. Turn this into an EIO
1677 * and shut down the filesystem.
1678 */
1679 switch (ophdr->oh_clientid) {
1680 case XFS_TRANSACTION:
1681 case XFS_VOLUME:
1682 case XFS_LOG:
1683 break;
1684 default:
1685 xfs_fs_cmn_err(CE_WARN, log->l_mp,
1686 "Bad XFS transaction clientid 0x%x in ticket 0x%p",
1687 ophdr->oh_clientid, ticket);
1688 return NULL;
1689 }
1690
1691 return ophdr;
1692 }
1693
1694 /*
1695 * Set up the parameters of the region copy into the log. This has
1696 * to handle region write split across multiple log buffers - this
1697 * state is kept external to this function so that this code can
1698 * can be written in an obvious, self documenting manner.
1699 */
1700 static int
1701 xlog_write_setup_copy(
1702 struct xlog_ticket *ticket,
1703 struct xlog_op_header *ophdr,
1704 int space_available,
1705 int space_required,
1706 int *copy_off,
1707 int *copy_len,
1708 int *last_was_partial_copy,
1709 int *bytes_consumed)
1710 {
1711 int still_to_copy;
1712
1713 still_to_copy = space_required - *bytes_consumed;
1714 *copy_off = *bytes_consumed;
1715
1716 if (still_to_copy <= space_available) {
1717 /* write of region completes here */
1718 *copy_len = still_to_copy;
1719 ophdr->oh_len = cpu_to_be32(*copy_len);
1720 if (*last_was_partial_copy)
1721 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
1722 *last_was_partial_copy = 0;
1723 *bytes_consumed = 0;
1724 return 0;
1725 }
1726
1727 /* partial write of region, needs extra log op header reservation */
1728 *copy_len = space_available;
1729 ophdr->oh_len = cpu_to_be32(*copy_len);
1730 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
1731 if (*last_was_partial_copy)
1732 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
1733 *bytes_consumed += *copy_len;
1734 (*last_was_partial_copy)++;
1735
1736 /* account for new log op header */
1737 ticket->t_curr_res -= sizeof(struct xlog_op_header);
1738 ticket->t_res_num_ophdrs++;
1739
1740 return sizeof(struct xlog_op_header);
1741 }
1742
1743 static int
1744 xlog_write_copy_finish(
1745 struct log *log,
1746 struct xlog_in_core *iclog,
1747 uint flags,
1748 int *record_cnt,
1749 int *data_cnt,
1750 int *partial_copy,
1751 int *partial_copy_len,
1752 int log_offset,
1753 struct xlog_in_core **commit_iclog)
1754 {
1755 if (*partial_copy) {
1756 /*
1757 * This iclog has already been marked WANT_SYNC by
1758 * xlog_state_get_iclog_space.
1759 */
1760 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
1761 *record_cnt = 0;
1762 *data_cnt = 0;
1763 return xlog_state_release_iclog(log, iclog);
1764 }
1765
1766 *partial_copy = 0;
1767 *partial_copy_len = 0;
1768
1769 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
1770 /* no more space in this iclog - push it. */
1771 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
1772 *record_cnt = 0;
1773 *data_cnt = 0;
1774
1775 spin_lock(&log->l_icloglock);
1776 xlog_state_want_sync(log, iclog);
1777 spin_unlock(&log->l_icloglock);
1778
1779 if (!commit_iclog)
1780 return xlog_state_release_iclog(log, iclog);
1781 ASSERT(flags & XLOG_COMMIT_TRANS);
1782 *commit_iclog = iclog;
1783 }
1784
1785 return 0;
1786 }
1787
1788 /*
1789 * Write some region out to in-core log
1790 *
1791 * This will be called when writing externally provided regions or when
1792 * writing out a commit record for a given transaction.
1793 *
1794 * General algorithm:
1795 * 1. Find total length of this write. This may include adding to the
1796 * lengths passed in.
1797 * 2. Check whether we violate the tickets reservation.
1798 * 3. While writing to this iclog
1799 * A. Reserve as much space in this iclog as can get
1800 * B. If this is first write, save away start lsn
1801 * C. While writing this region:
1802 * 1. If first write of transaction, write start record
1803 * 2. Write log operation header (header per region)
1804 * 3. Find out if we can fit entire region into this iclog
1805 * 4. Potentially, verify destination memcpy ptr
1806 * 5. Memcpy (partial) region
1807 * 6. If partial copy, release iclog; otherwise, continue
1808 * copying more regions into current iclog
1809 * 4. Mark want sync bit (in simulation mode)
1810 * 5. Release iclog for potential flush to on-disk log.
1811 *
1812 * ERRORS:
1813 * 1. Panic if reservation is overrun. This should never happen since
1814 * reservation amounts are generated internal to the filesystem.
1815 * NOTES:
1816 * 1. Tickets are single threaded data structures.
1817 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
1818 * syncing routine. When a single log_write region needs to span
1819 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
1820 * on all log operation writes which don't contain the end of the
1821 * region. The XLOG_END_TRANS bit is used for the in-core log
1822 * operation which contains the end of the continued log_write region.
1823 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
1824 * we don't really know exactly how much space will be used. As a result,
1825 * we don't update ic_offset until the end when we know exactly how many
1826 * bytes have been written out.
1827 */
1828 int
1829 xlog_write(
1830 struct log *log,
1831 struct xfs_log_vec *log_vector,
1832 struct xlog_ticket *ticket,
1833 xfs_lsn_t *start_lsn,
1834 struct xlog_in_core **commit_iclog,
1835 uint flags)
1836 {
1837 struct xlog_in_core *iclog = NULL;
1838 struct xfs_log_iovec *vecp;
1839 struct xfs_log_vec *lv;
1840 int len;
1841 int index;
1842 int partial_copy = 0;
1843 int partial_copy_len = 0;
1844 int contwr = 0;
1845 int record_cnt = 0;
1846 int data_cnt = 0;
1847 int error;
1848
1849 *start_lsn = 0;
1850
1851 len = xlog_write_calc_vec_length(ticket, log_vector);
1852 if (log->l_cilp) {
1853 /*
1854 * Region headers and bytes are already accounted for.
1855 * We only need to take into account start records and
1856 * split regions in this function.
1857 */
1858 if (ticket->t_flags & XLOG_TIC_INITED)
1859 ticket->t_curr_res -= sizeof(xlog_op_header_t);
1860
1861 /*
1862 * Commit record headers need to be accounted for. These
1863 * come in as separate writes so are easy to detect.
1864 */
1865 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
1866 ticket->t_curr_res -= sizeof(xlog_op_header_t);
1867 } else
1868 ticket->t_curr_res -= len;
1869
1870 if (ticket->t_curr_res < 0)
1871 xlog_print_tic_res(log->l_mp, ticket);
1872
1873 index = 0;
1874 lv = log_vector;
1875 vecp = lv->lv_iovecp;
1876 while (lv && index < lv->lv_niovecs) {
1877 void *ptr;
1878 int log_offset;
1879
1880 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
1881 &contwr, &log_offset);
1882 if (error)
1883 return error;
1884
1885 ASSERT(log_offset <= iclog->ic_size - 1);
1886 ptr = iclog->ic_datap + log_offset;
1887
1888 /* start_lsn is the first lsn written to. That's all we need. */
1889 if (!*start_lsn)
1890 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
1891
1892 /*
1893 * This loop writes out as many regions as can fit in the amount
1894 * of space which was allocated by xlog_state_get_iclog_space().
1895 */
1896 while (lv && index < lv->lv_niovecs) {
1897 struct xfs_log_iovec *reg = &vecp[index];
1898 struct xlog_op_header *ophdr;
1899 int start_rec_copy;
1900 int copy_len;
1901 int copy_off;
1902
1903 ASSERT(reg->i_len % sizeof(__int32_t) == 0);
1904 ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
1905
1906 start_rec_copy = xlog_write_start_rec(ptr, ticket);
1907 if (start_rec_copy) {
1908 record_cnt++;
1909 xlog_write_adv_cnt(&ptr, &len, &log_offset,
1910 start_rec_copy);
1911 }
1912
1913 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
1914 if (!ophdr)
1915 return XFS_ERROR(EIO);
1916
1917 xlog_write_adv_cnt(&ptr, &len, &log_offset,
1918 sizeof(struct xlog_op_header));
1919
1920 len += xlog_write_setup_copy(ticket, ophdr,
1921 iclog->ic_size-log_offset,
1922 reg->i_len,
1923 &copy_off, &copy_len,
1924 &partial_copy,
1925 &partial_copy_len);
1926 xlog_verify_dest_ptr(log, ptr);
1927
1928 /* copy region */
1929 ASSERT(copy_len >= 0);
1930 memcpy(ptr, reg->i_addr + copy_off, copy_len);
1931 xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len);
1932
1933 copy_len += start_rec_copy + sizeof(xlog_op_header_t);
1934 record_cnt++;
1935 data_cnt += contwr ? copy_len : 0;
1936
1937 error = xlog_write_copy_finish(log, iclog, flags,
1938 &record_cnt, &data_cnt,
1939 &partial_copy,
1940 &partial_copy_len,
1941 log_offset,
1942 commit_iclog);
1943 if (error)
1944 return error;
1945
1946 /*
1947 * if we had a partial copy, we need to get more iclog
1948 * space but we don't want to increment the region
1949 * index because there is still more is this region to
1950 * write.
1951 *
1952 * If we completed writing this region, and we flushed
1953 * the iclog (indicated by resetting of the record
1954 * count), then we also need to get more log space. If
1955 * this was the last record, though, we are done and
1956 * can just return.
1957 */
1958 if (partial_copy)
1959 break;
1960
1961 if (++index == lv->lv_niovecs) {
1962 lv = lv->lv_next;
1963 index = 0;
1964 if (lv)
1965 vecp = lv->lv_iovecp;
1966 }
1967 if (record_cnt == 0) {
1968 if (!lv)
1969 return 0;
1970 break;
1971 }
1972 }
1973 }
1974
1975 ASSERT(len == 0);
1976
1977 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
1978 if (!commit_iclog)
1979 return xlog_state_release_iclog(log, iclog);
1980
1981 ASSERT(flags & XLOG_COMMIT_TRANS);
1982 *commit_iclog = iclog;
1983 return 0;
1984 }
1985
1986
1987 /*****************************************************************************
1988 *
1989 * State Machine functions
1990 *
1991 *****************************************************************************
1992 */
1993
1994 /* Clean iclogs starting from the head. This ordering must be
1995 * maintained, so an iclog doesn't become ACTIVE beyond one that
1996 * is SYNCING. This is also required to maintain the notion that we use
1997 * a ordered wait queue to hold off would be writers to the log when every
1998 * iclog is trying to sync to disk.
1999 *
2000 * State Change: DIRTY -> ACTIVE
2001 */
2002 STATIC void
2003 xlog_state_clean_log(xlog_t *log)
2004 {
2005 xlog_in_core_t *iclog;
2006 int changed = 0;
2007
2008 iclog = log->l_iclog;
2009 do {
2010 if (iclog->ic_state == XLOG_STATE_DIRTY) {
2011 iclog->ic_state = XLOG_STATE_ACTIVE;
2012 iclog->ic_offset = 0;
2013 ASSERT(iclog->ic_callback == NULL);
2014 /*
2015 * If the number of ops in this iclog indicate it just
2016 * contains the dummy transaction, we can
2017 * change state into IDLE (the second time around).
2018 * Otherwise we should change the state into
2019 * NEED a dummy.
2020 * We don't need to cover the dummy.
2021 */
2022 if (!changed &&
2023 (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2024 XLOG_COVER_OPS)) {
2025 changed = 1;
2026 } else {
2027 /*
2028 * We have two dirty iclogs so start over
2029 * This could also be num of ops indicates
2030 * this is not the dummy going out.
2031 */
2032 changed = 2;
2033 }
2034 iclog->ic_header.h_num_logops = 0;
2035 memset(iclog->ic_header.h_cycle_data, 0,
2036 sizeof(iclog->ic_header.h_cycle_data));
2037 iclog->ic_header.h_lsn = 0;
2038 } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2039 /* do nothing */;
2040 else
2041 break; /* stop cleaning */
2042 iclog = iclog->ic_next;
2043 } while (iclog != log->l_iclog);
2044
2045 /* log is locked when we are called */
2046 /*
2047 * Change state for the dummy log recording.
2048 * We usually go to NEED. But we go to NEED2 if the changed indicates
2049 * we are done writing the dummy record.
2050 * If we are done with the second dummy recored (DONE2), then
2051 * we go to IDLE.
2052 */
2053 if (changed) {
2054 switch (log->l_covered_state) {
2055 case XLOG_STATE_COVER_IDLE:
2056 case XLOG_STATE_COVER_NEED:
2057 case XLOG_STATE_COVER_NEED2:
2058 log->l_covered_state = XLOG_STATE_COVER_NEED;
2059 break;
2060
2061 case XLOG_STATE_COVER_DONE:
2062 if (changed == 1)
2063 log->l_covered_state = XLOG_STATE_COVER_NEED2;
2064 else
2065 log->l_covered_state = XLOG_STATE_COVER_NEED;
2066 break;
2067
2068 case XLOG_STATE_COVER_DONE2:
2069 if (changed == 1)
2070 log->l_covered_state = XLOG_STATE_COVER_IDLE;
2071 else
2072 log->l_covered_state = XLOG_STATE_COVER_NEED;
2073 break;
2074
2075 default:
2076 ASSERT(0);
2077 }
2078 }
2079 } /* xlog_state_clean_log */
2080
2081 STATIC xfs_lsn_t
2082 xlog_get_lowest_lsn(
2083 xlog_t *log)
2084 {
2085 xlog_in_core_t *lsn_log;
2086 xfs_lsn_t lowest_lsn, lsn;
2087
2088 lsn_log = log->l_iclog;
2089 lowest_lsn = 0;
2090 do {
2091 if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2092 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2093 if ((lsn && !lowest_lsn) ||
2094 (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2095 lowest_lsn = lsn;
2096 }
2097 }
2098 lsn_log = lsn_log->ic_next;
2099 } while (lsn_log != log->l_iclog);
2100 return lowest_lsn;
2101 }
2102
2103
2104 STATIC void
2105 xlog_state_do_callback(
2106 xlog_t *log,
2107 int aborted,
2108 xlog_in_core_t *ciclog)
2109 {
2110 xlog_in_core_t *iclog;
2111 xlog_in_core_t *first_iclog; /* used to know when we've
2112 * processed all iclogs once */
2113 xfs_log_callback_t *cb, *cb_next;
2114 int flushcnt = 0;
2115 xfs_lsn_t lowest_lsn;
2116 int ioerrors; /* counter: iclogs with errors */
2117 int loopdidcallbacks; /* flag: inner loop did callbacks*/
2118 int funcdidcallbacks; /* flag: function did callbacks */
2119 int repeats; /* for issuing console warnings if
2120 * looping too many times */
2121 int wake = 0;
2122
2123 spin_lock(&log->l_icloglock);
2124 first_iclog = iclog = log->l_iclog;
2125 ioerrors = 0;
2126 funcdidcallbacks = 0;
2127 repeats = 0;
2128
2129 do {
2130 /*
2131 * Scan all iclogs starting with the one pointed to by the
2132 * log. Reset this starting point each time the log is
2133 * unlocked (during callbacks).
2134 *
2135 * Keep looping through iclogs until one full pass is made
2136 * without running any callbacks.
2137 */
2138 first_iclog = log->l_iclog;
2139 iclog = log->l_iclog;
2140 loopdidcallbacks = 0;
2141 repeats++;
2142
2143 do {
2144
2145 /* skip all iclogs in the ACTIVE & DIRTY states */
2146 if (iclog->ic_state &
2147 (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2148 iclog = iclog->ic_next;
2149 continue;
2150 }
2151
2152 /*
2153 * Between marking a filesystem SHUTDOWN and stopping
2154 * the log, we do flush all iclogs to disk (if there
2155 * wasn't a log I/O error). So, we do want things to
2156 * go smoothly in case of just a SHUTDOWN w/o a
2157 * LOG_IO_ERROR.
2158 */
2159 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2160 /*
2161 * Can only perform callbacks in order. Since
2162 * this iclog is not in the DONE_SYNC/
2163 * DO_CALLBACK state, we skip the rest and
2164 * just try to clean up. If we set our iclog
2165 * to DO_CALLBACK, we will not process it when
2166 * we retry since a previous iclog is in the
2167 * CALLBACK and the state cannot change since
2168 * we are holding the l_icloglock.
2169 */
2170 if (!(iclog->ic_state &
2171 (XLOG_STATE_DONE_SYNC |
2172 XLOG_STATE_DO_CALLBACK))) {
2173 if (ciclog && (ciclog->ic_state ==
2174 XLOG_STATE_DONE_SYNC)) {
2175 ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2176 }
2177 break;
2178 }
2179 /*
2180 * We now have an iclog that is in either the
2181 * DO_CALLBACK or DONE_SYNC states. The other
2182 * states (WANT_SYNC, SYNCING, or CALLBACK were
2183 * caught by the above if and are going to
2184 * clean (i.e. we aren't doing their callbacks)
2185 * see the above if.
2186 */
2187
2188 /*
2189 * We will do one more check here to see if we
2190 * have chased our tail around.
2191 */
2192
2193 lowest_lsn = xlog_get_lowest_lsn(log);
2194 if (lowest_lsn &&
2195 XFS_LSN_CMP(lowest_lsn,
2196 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2197 iclog = iclog->ic_next;
2198 continue; /* Leave this iclog for
2199 * another thread */
2200 }
2201
2202 iclog->ic_state = XLOG_STATE_CALLBACK;
2203
2204
2205 /*
2206 * update the last_sync_lsn before we drop the
2207 * icloglock to ensure we are the only one that
2208 * can update it.
2209 */
2210 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2211 be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2212 atomic64_set(&log->l_last_sync_lsn,
2213 be64_to_cpu(iclog->ic_header.h_lsn));
2214
2215 } else
2216 ioerrors++;
2217
2218 spin_unlock(&log->l_icloglock);
2219
2220 /*
2221 * Keep processing entries in the callback list until
2222 * we come around and it is empty. We need to
2223 * atomically see that the list is empty and change the
2224 * state to DIRTY so that we don't miss any more
2225 * callbacks being added.
2226 */
2227 spin_lock(&iclog->ic_callback_lock);
2228 cb = iclog->ic_callback;
2229 while (cb) {
2230 iclog->ic_callback_tail = &(iclog->ic_callback);
2231 iclog->ic_callback = NULL;
2232 spin_unlock(&iclog->ic_callback_lock);
2233
2234 /* perform callbacks in the order given */
2235 for (; cb; cb = cb_next) {
2236 cb_next = cb->cb_next;
2237 cb->cb_func(cb->cb_arg, aborted);
2238 }
2239 spin_lock(&iclog->ic_callback_lock);
2240 cb = iclog->ic_callback;
2241 }
2242
2243 loopdidcallbacks++;
2244 funcdidcallbacks++;
2245
2246 spin_lock(&log->l_icloglock);
2247 ASSERT(iclog->ic_callback == NULL);
2248 spin_unlock(&iclog->ic_callback_lock);
2249 if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2250 iclog->ic_state = XLOG_STATE_DIRTY;
2251
2252 /*
2253 * Transition from DIRTY to ACTIVE if applicable.
2254 * NOP if STATE_IOERROR.
2255 */
2256 xlog_state_clean_log(log);
2257
2258 /* wake up threads waiting in xfs_log_force() */
2259 wake_up_all(&iclog->ic_force_wait);
2260
2261 iclog = iclog->ic_next;
2262 } while (first_iclog != iclog);
2263
2264 if (repeats > 5000) {
2265 flushcnt += repeats;
2266 repeats = 0;
2267 xfs_fs_cmn_err(CE_WARN, log->l_mp,
2268 "%s: possible infinite loop (%d iterations)",
2269 __func__, flushcnt);
2270 }
2271 } while (!ioerrors && loopdidcallbacks);
2272
2273 /*
2274 * make one last gasp attempt to see if iclogs are being left in
2275 * limbo..
2276 */
2277 #ifdef DEBUG
2278 if (funcdidcallbacks) {
2279 first_iclog = iclog = log->l_iclog;
2280 do {
2281 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2282 /*
2283 * Terminate the loop if iclogs are found in states
2284 * which will cause other threads to clean up iclogs.
2285 *
2286 * SYNCING - i/o completion will go through logs
2287 * DONE_SYNC - interrupt thread should be waiting for
2288 * l_icloglock
2289 * IOERROR - give up hope all ye who enter here
2290 */
2291 if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2292 iclog->ic_state == XLOG_STATE_SYNCING ||
2293 iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2294 iclog->ic_state == XLOG_STATE_IOERROR )
2295 break;
2296 iclog = iclog->ic_next;
2297 } while (first_iclog != iclog);
2298 }
2299 #endif
2300
2301 if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2302 wake = 1;
2303 spin_unlock(&log->l_icloglock);
2304
2305 if (wake)
2306 wake_up_all(&log->l_flush_wait);
2307 }
2308
2309
2310 /*
2311 * Finish transitioning this iclog to the dirty state.
2312 *
2313 * Make sure that we completely execute this routine only when this is
2314 * the last call to the iclog. There is a good chance that iclog flushes,
2315 * when we reach the end of the physical log, get turned into 2 separate
2316 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2317 * routine. By using the reference count bwritecnt, we guarantee that only
2318 * the second completion goes through.
2319 *
2320 * Callbacks could take time, so they are done outside the scope of the
2321 * global state machine log lock.
2322 */
2323 STATIC void
2324 xlog_state_done_syncing(
2325 xlog_in_core_t *iclog,
2326 int aborted)
2327 {
2328 xlog_t *log = iclog->ic_log;
2329
2330 spin_lock(&log->l_icloglock);
2331
2332 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2333 iclog->ic_state == XLOG_STATE_IOERROR);
2334 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2335 ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2336
2337
2338 /*
2339 * If we got an error, either on the first buffer, or in the case of
2340 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2341 * and none should ever be attempted to be written to disk
2342 * again.
2343 */
2344 if (iclog->ic_state != XLOG_STATE_IOERROR) {
2345 if (--iclog->ic_bwritecnt == 1) {
2346 spin_unlock(&log->l_icloglock);
2347 return;
2348 }
2349 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2350 }
2351
2352 /*
2353 * Someone could be sleeping prior to writing out the next
2354 * iclog buffer, we wake them all, one will get to do the
2355 * I/O, the others get to wait for the result.
2356 */
2357 wake_up_all(&iclog->ic_write_wait);
2358 spin_unlock(&log->l_icloglock);
2359 xlog_state_do_callback(log, aborted, iclog); /* also cleans log */
2360 } /* xlog_state_done_syncing */
2361
2362
2363 /*
2364 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2365 * sleep. We wait on the flush queue on the head iclog as that should be
2366 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2367 * we will wait here and all new writes will sleep until a sync completes.
2368 *
2369 * The in-core logs are used in a circular fashion. They are not used
2370 * out-of-order even when an iclog past the head is free.
2371 *
2372 * return:
2373 * * log_offset where xlog_write() can start writing into the in-core
2374 * log's data space.
2375 * * in-core log pointer to which xlog_write() should write.
2376 * * boolean indicating this is a continued write to an in-core log.
2377 * If this is the last write, then the in-core log's offset field
2378 * needs to be incremented, depending on the amount of data which
2379 * is copied.
2380 */
2381 STATIC int
2382 xlog_state_get_iclog_space(xlog_t *log,
2383 int len,
2384 xlog_in_core_t **iclogp,
2385 xlog_ticket_t *ticket,
2386 int *continued_write,
2387 int *logoffsetp)
2388 {
2389 int log_offset;
2390 xlog_rec_header_t *head;
2391 xlog_in_core_t *iclog;
2392 int error;
2393
2394 restart:
2395 spin_lock(&log->l_icloglock);
2396 if (XLOG_FORCED_SHUTDOWN(log)) {
2397 spin_unlock(&log->l_icloglock);
2398 return XFS_ERROR(EIO);
2399 }
2400
2401 iclog = log->l_iclog;
2402 if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2403 XFS_STATS_INC(xs_log_noiclogs);
2404
2405 /* Wait for log writes to have flushed */
2406 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2407 goto restart;
2408 }
2409
2410 head = &iclog->ic_header;
2411
2412 atomic_inc(&iclog->ic_refcnt); /* prevents sync */
2413 log_offset = iclog->ic_offset;
2414
2415 /* On the 1st write to an iclog, figure out lsn. This works
2416 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2417 * committing to. If the offset is set, that's how many blocks
2418 * must be written.
2419 */
2420 if (log_offset == 0) {
2421 ticket->t_curr_res -= log->l_iclog_hsize;
2422 xlog_tic_add_region(ticket,
2423 log->l_iclog_hsize,
2424 XLOG_REG_TYPE_LRHEADER);
2425 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2426 head->h_lsn = cpu_to_be64(
2427 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2428 ASSERT(log->l_curr_block >= 0);
2429 }
2430
2431 /* If there is enough room to write everything, then do it. Otherwise,
2432 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2433 * bit is on, so this will get flushed out. Don't update ic_offset
2434 * until you know exactly how many bytes get copied. Therefore, wait
2435 * until later to update ic_offset.
2436 *
2437 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2438 * can fit into remaining data section.
2439 */
2440 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2441 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2442
2443 /*
2444 * If I'm the only one writing to this iclog, sync it to disk.
2445 * We need to do an atomic compare and decrement here to avoid
2446 * racing with concurrent atomic_dec_and_lock() calls in
2447 * xlog_state_release_iclog() when there is more than one
2448 * reference to the iclog.
2449 */
2450 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2451 /* we are the only one */
2452 spin_unlock(&log->l_icloglock);
2453 error = xlog_state_release_iclog(log, iclog);
2454 if (error)
2455 return error;
2456 } else {
2457 spin_unlock(&log->l_icloglock);
2458 }
2459 goto restart;
2460 }
2461
2462 /* Do we have enough room to write the full amount in the remainder
2463 * of this iclog? Or must we continue a write on the next iclog and
2464 * mark this iclog as completely taken? In the case where we switch
2465 * iclogs (to mark it taken), this particular iclog will release/sync
2466 * to disk in xlog_write().
2467 */
2468 if (len <= iclog->ic_size - iclog->ic_offset) {
2469 *continued_write = 0;
2470 iclog->ic_offset += len;
2471 } else {
2472 *continued_write = 1;
2473 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2474 }
2475 *iclogp = iclog;
2476
2477 ASSERT(iclog->ic_offset <= iclog->ic_size);
2478 spin_unlock(&log->l_icloglock);
2479
2480 *logoffsetp = log_offset;
2481 return 0;
2482 } /* xlog_state_get_iclog_space */
2483
2484 /*
2485 * Atomically get the log space required for a log ticket.
2486 *
2487 * Once a ticket gets put onto the reserveq, it will only return after
2488 * the needed reservation is satisfied.
2489 *
2490 * This function is structured so that it has a lock free fast path. This is
2491 * necessary because every new transaction reservation will come through this
2492 * path. Hence any lock will be globally hot if we take it unconditionally on
2493 * every pass.
2494 *
2495 * As tickets are only ever moved on and off the reserveq under the
2496 * l_grant_reserve_lock, we only need to take that lock if we are going
2497 * to add the ticket to the queue and sleep. We can avoid taking the lock if the
2498 * ticket was never added to the reserveq because the t_queue list head will be
2499 * empty and we hold the only reference to it so it can safely be checked
2500 * unlocked.
2501 */
2502 STATIC int
2503 xlog_grant_log_space(xlog_t *log,
2504 xlog_ticket_t *tic)
2505 {
2506 int free_bytes;
2507 int need_bytes;
2508
2509 #ifdef DEBUG
2510 if (log->l_flags & XLOG_ACTIVE_RECOVERY)
2511 panic("grant Recovery problem");
2512 #endif
2513
2514 trace_xfs_log_grant_enter(log, tic);
2515
2516 need_bytes = tic->t_unit_res;
2517 if (tic->t_flags & XFS_LOG_PERM_RESERV)
2518 need_bytes *= tic->t_ocnt;
2519
2520 /* something is already sleeping; insert new transaction at end */
2521 if (!list_empty_careful(&log->l_reserveq)) {
2522 spin_lock(&log->l_grant_reserve_lock);
2523 /* recheck the queue now we are locked */
2524 if (list_empty(&log->l_reserveq)) {
2525 spin_unlock(&log->l_grant_reserve_lock);
2526 goto redo;
2527 }
2528 list_add_tail(&tic->t_queue, &log->l_reserveq);
2529
2530 trace_xfs_log_grant_sleep1(log, tic);
2531
2532 /*
2533 * Gotta check this before going to sleep, while we're
2534 * holding the grant lock.
2535 */
2536 if (XLOG_FORCED_SHUTDOWN(log))
2537 goto error_return;
2538
2539 XFS_STATS_INC(xs_sleep_logspace);
2540 xlog_wait(&tic->t_wait, &log->l_grant_reserve_lock);
2541
2542 /*
2543 * If we got an error, and the filesystem is shutting down,
2544 * we'll catch it down below. So just continue...
2545 */
2546 trace_xfs_log_grant_wake1(log, tic);
2547 }
2548
2549 redo:
2550 if (XLOG_FORCED_SHUTDOWN(log))
2551 goto error_return_unlocked;
2552
2553 free_bytes = xlog_space_left(log, &log->l_grant_reserve_head);
2554 if (free_bytes < need_bytes) {
2555 spin_lock(&log->l_grant_reserve_lock);
2556 if (list_empty(&tic->t_queue))
2557 list_add_tail(&tic->t_queue, &log->l_reserveq);
2558
2559 trace_xfs_log_grant_sleep2(log, tic);
2560
2561 if (XLOG_FORCED_SHUTDOWN(log))
2562 goto error_return;
2563
2564 xlog_grant_push_ail(log, need_bytes);
2565
2566 XFS_STATS_INC(xs_sleep_logspace);
2567 xlog_wait(&tic->t_wait, &log->l_grant_reserve_lock);
2568
2569 trace_xfs_log_grant_wake2(log, tic);
2570 goto redo;
2571 }
2572
2573 if (!list_empty(&tic->t_queue)) {
2574 spin_lock(&log->l_grant_reserve_lock);
2575 list_del_init(&tic->t_queue);
2576 spin_unlock(&log->l_grant_reserve_lock);
2577 }
2578
2579 /* we've got enough space */
2580 xlog_grant_add_space(log, &log->l_grant_reserve_head, need_bytes);
2581 xlog_grant_add_space(log, &log->l_grant_write_head, need_bytes);
2582 trace_xfs_log_grant_exit(log, tic);
2583 xlog_verify_grant_tail(log);
2584 return 0;
2585
2586 error_return_unlocked:
2587 spin_lock(&log->l_grant_reserve_lock);
2588 error_return:
2589 list_del_init(&tic->t_queue);
2590 spin_unlock(&log->l_grant_reserve_lock);
2591 trace_xfs_log_grant_error(log, tic);
2592
2593 /*
2594 * If we are failing, make sure the ticket doesn't have any
2595 * current reservations. We don't want to add this back when
2596 * the ticket/transaction gets cancelled.
2597 */
2598 tic->t_curr_res = 0;
2599 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
2600 return XFS_ERROR(EIO);
2601 } /* xlog_grant_log_space */
2602
2603
2604 /*
2605 * Replenish the byte reservation required by moving the grant write head.
2606 *
2607 * Similar to xlog_grant_log_space, the function is structured to have a lock
2608 * free fast path.
2609 */
2610 STATIC int
2611 xlog_regrant_write_log_space(xlog_t *log,
2612 xlog_ticket_t *tic)
2613 {
2614 int free_bytes, need_bytes;
2615
2616 tic->t_curr_res = tic->t_unit_res;
2617 xlog_tic_reset_res(tic);
2618
2619 if (tic->t_cnt > 0)
2620 return 0;
2621
2622 #ifdef DEBUG
2623 if (log->l_flags & XLOG_ACTIVE_RECOVERY)
2624 panic("regrant Recovery problem");
2625 #endif
2626
2627 trace_xfs_log_regrant_write_enter(log, tic);
2628 if (XLOG_FORCED_SHUTDOWN(log))
2629 goto error_return_unlocked;
2630
2631 /* If there are other waiters on the queue then give them a
2632 * chance at logspace before us. Wake up the first waiters,
2633 * if we do not wake up all the waiters then go to sleep waiting
2634 * for more free space, otherwise try to get some space for
2635 * this transaction.
2636 */
2637 need_bytes = tic->t_unit_res;
2638 if (!list_empty_careful(&log->l_writeq)) {
2639 struct xlog_ticket *ntic;
2640
2641 spin_lock(&log->l_grant_write_lock);
2642 free_bytes = xlog_space_left(log, &log->l_grant_write_head);
2643 list_for_each_entry(ntic, &log->l_writeq, t_queue) {
2644 ASSERT(ntic->t_flags & XLOG_TIC_PERM_RESERV);
2645
2646 if (free_bytes < ntic->t_unit_res)
2647 break;
2648 free_bytes -= ntic->t_unit_res;
2649 wake_up(&ntic->t_wait);
2650 }
2651
2652 if (ntic != list_first_entry(&log->l_writeq,
2653 struct xlog_ticket, t_queue)) {
2654 if (list_empty(&tic->t_queue))
2655 list_add_tail(&tic->t_queue, &log->l_writeq);
2656 trace_xfs_log_regrant_write_sleep1(log, tic);
2657
2658 xlog_grant_push_ail(log, need_bytes);
2659
2660 XFS_STATS_INC(xs_sleep_logspace);
2661 xlog_wait(&tic->t_wait, &log->l_grant_write_lock);
2662 trace_xfs_log_regrant_write_wake1(log, tic);
2663 } else
2664 spin_unlock(&log->l_grant_write_lock);
2665 }
2666
2667 redo:
2668 if (XLOG_FORCED_SHUTDOWN(log))
2669 goto error_return_unlocked;
2670
2671 free_bytes = xlog_space_left(log, &log->l_grant_write_head);
2672 if (free_bytes < need_bytes) {
2673 spin_lock(&log->l_grant_write_lock);
2674 if (list_empty(&tic->t_queue))
2675 list_add_tail(&tic->t_queue, &log->l_writeq);
2676
2677 if (XLOG_FORCED_SHUTDOWN(log))
2678 goto error_return;
2679
2680 xlog_grant_push_ail(log, need_bytes);
2681
2682 XFS_STATS_INC(xs_sleep_logspace);
2683 trace_xfs_log_regrant_write_sleep2(log, tic);
2684 xlog_wait(&tic->t_wait, &log->l_grant_write_lock);
2685
2686 trace_xfs_log_regrant_write_wake2(log, tic);
2687 goto redo;
2688 }
2689
2690 if (!list_empty(&tic->t_queue)) {
2691 spin_lock(&log->l_grant_write_lock);
2692 list_del_init(&tic->t_queue);
2693 spin_unlock(&log->l_grant_write_lock);
2694 }
2695
2696 /* we've got enough space */
2697 xlog_grant_add_space(log, &log->l_grant_write_head, need_bytes);
2698 trace_xfs_log_regrant_write_exit(log, tic);
2699 xlog_verify_grant_tail(log);
2700 return 0;
2701
2702
2703 error_return_unlocked:
2704 spin_lock(&log->l_grant_write_lock);
2705 error_return:
2706 list_del_init(&tic->t_queue);
2707 spin_unlock(&log->l_grant_write_lock);
2708 trace_xfs_log_regrant_write_error(log, tic);
2709
2710 /*
2711 * If we are failing, make sure the ticket doesn't have any
2712 * current reservations. We don't want to add this back when
2713 * the ticket/transaction gets cancelled.
2714 */
2715 tic->t_curr_res = 0;
2716 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
2717 return XFS_ERROR(EIO);
2718 } /* xlog_regrant_write_log_space */
2719
2720
2721 /* The first cnt-1 times through here we don't need to
2722 * move the grant write head because the permanent
2723 * reservation has reserved cnt times the unit amount.
2724 * Release part of current permanent unit reservation and
2725 * reset current reservation to be one units worth. Also
2726 * move grant reservation head forward.
2727 */
2728 STATIC void
2729 xlog_regrant_reserve_log_space(xlog_t *log,
2730 xlog_ticket_t *ticket)
2731 {
2732 trace_xfs_log_regrant_reserve_enter(log, ticket);
2733
2734 if (ticket->t_cnt > 0)
2735 ticket->t_cnt--;
2736
2737 xlog_grant_sub_space(log, &log->l_grant_reserve_head,
2738 ticket->t_curr_res);
2739 xlog_grant_sub_space(log, &log->l_grant_write_head,
2740 ticket->t_curr_res);
2741 ticket->t_curr_res = ticket->t_unit_res;
2742 xlog_tic_reset_res(ticket);
2743
2744 trace_xfs_log_regrant_reserve_sub(log, ticket);
2745
2746 /* just return if we still have some of the pre-reserved space */
2747 if (ticket->t_cnt > 0)
2748 return;
2749
2750 xlog_grant_add_space(log, &log->l_grant_reserve_head,
2751 ticket->t_unit_res);
2752
2753 trace_xfs_log_regrant_reserve_exit(log, ticket);
2754
2755 ticket->t_curr_res = ticket->t_unit_res;
2756 xlog_tic_reset_res(ticket);
2757 } /* xlog_regrant_reserve_log_space */
2758
2759
2760 /*
2761 * Give back the space left from a reservation.
2762 *
2763 * All the information we need to make a correct determination of space left
2764 * is present. For non-permanent reservations, things are quite easy. The
2765 * count should have been decremented to zero. We only need to deal with the
2766 * space remaining in the current reservation part of the ticket. If the
2767 * ticket contains a permanent reservation, there may be left over space which
2768 * needs to be released. A count of N means that N-1 refills of the current
2769 * reservation can be done before we need to ask for more space. The first
2770 * one goes to fill up the first current reservation. Once we run out of
2771 * space, the count will stay at zero and the only space remaining will be
2772 * in the current reservation field.
2773 */
2774 STATIC void
2775 xlog_ungrant_log_space(xlog_t *log,
2776 xlog_ticket_t *ticket)
2777 {
2778 int bytes;
2779
2780 if (ticket->t_cnt > 0)
2781 ticket->t_cnt--;
2782
2783 trace_xfs_log_ungrant_enter(log, ticket);
2784 trace_xfs_log_ungrant_sub(log, ticket);
2785
2786 /*
2787 * If this is a permanent reservation ticket, we may be able to free
2788 * up more space based on the remaining count.
2789 */
2790 bytes = ticket->t_curr_res;
2791 if (ticket->t_cnt > 0) {
2792 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
2793 bytes += ticket->t_unit_res*ticket->t_cnt;
2794 }
2795
2796 xlog_grant_sub_space(log, &log->l_grant_reserve_head, bytes);
2797 xlog_grant_sub_space(log, &log->l_grant_write_head, bytes);
2798
2799 trace_xfs_log_ungrant_exit(log, ticket);
2800
2801 xfs_log_move_tail(log->l_mp, 1);
2802 } /* xlog_ungrant_log_space */
2803
2804
2805 /*
2806 * Flush iclog to disk if this is the last reference to the given iclog and
2807 * the WANT_SYNC bit is set.
2808 *
2809 * When this function is entered, the iclog is not necessarily in the
2810 * WANT_SYNC state. It may be sitting around waiting to get filled.
2811 *
2812 *
2813 */
2814 STATIC int
2815 xlog_state_release_iclog(
2816 xlog_t *log,
2817 xlog_in_core_t *iclog)
2818 {
2819 int sync = 0; /* do we sync? */
2820
2821 if (iclog->ic_state & XLOG_STATE_IOERROR)
2822 return XFS_ERROR(EIO);
2823
2824 ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
2825 if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
2826 return 0;
2827
2828 if (iclog->ic_state & XLOG_STATE_IOERROR) {
2829 spin_unlock(&log->l_icloglock);
2830 return XFS_ERROR(EIO);
2831 }
2832 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
2833 iclog->ic_state == XLOG_STATE_WANT_SYNC);
2834
2835 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
2836 /* update tail before writing to iclog */
2837 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
2838 sync++;
2839 iclog->ic_state = XLOG_STATE_SYNCING;
2840 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
2841 xlog_verify_tail_lsn(log, iclog, tail_lsn);
2842 /* cycle incremented when incrementing curr_block */
2843 }
2844 spin_unlock(&log->l_icloglock);
2845
2846 /*
2847 * We let the log lock go, so it's possible that we hit a log I/O
2848 * error or some other SHUTDOWN condition that marks the iclog
2849 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
2850 * this iclog has consistent data, so we ignore IOERROR
2851 * flags after this point.
2852 */
2853 if (sync)
2854 return xlog_sync(log, iclog);
2855 return 0;
2856 } /* xlog_state_release_iclog */
2857
2858
2859 /*
2860 * This routine will mark the current iclog in the ring as WANT_SYNC
2861 * and move the current iclog pointer to the next iclog in the ring.
2862 * When this routine is called from xlog_state_get_iclog_space(), the
2863 * exact size of the iclog has not yet been determined. All we know is
2864 * that every data block. We have run out of space in this log record.
2865 */
2866 STATIC void
2867 xlog_state_switch_iclogs(xlog_t *log,
2868 xlog_in_core_t *iclog,
2869 int eventual_size)
2870 {
2871 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
2872 if (!eventual_size)
2873 eventual_size = iclog->ic_offset;
2874 iclog->ic_state = XLOG_STATE_WANT_SYNC;
2875 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
2876 log->l_prev_block = log->l_curr_block;
2877 log->l_prev_cycle = log->l_curr_cycle;
2878
2879 /* roll log?: ic_offset changed later */
2880 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
2881
2882 /* Round up to next log-sunit */
2883 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
2884 log->l_mp->m_sb.sb_logsunit > 1) {
2885 __uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
2886 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
2887 }
2888
2889 if (log->l_curr_block >= log->l_logBBsize) {
2890 log->l_curr_cycle++;
2891 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
2892 log->l_curr_cycle++;
2893 log->l_curr_block -= log->l_logBBsize;
2894 ASSERT(log->l_curr_block >= 0);
2895 }
2896 ASSERT(iclog == log->l_iclog);
2897 log->l_iclog = iclog->ic_next;
2898 } /* xlog_state_switch_iclogs */
2899
2900 /*
2901 * Write out all data in the in-core log as of this exact moment in time.
2902 *
2903 * Data may be written to the in-core log during this call. However,
2904 * we don't guarantee this data will be written out. A change from past
2905 * implementation means this routine will *not* write out zero length LRs.
2906 *
2907 * Basically, we try and perform an intelligent scan of the in-core logs.
2908 * If we determine there is no flushable data, we just return. There is no
2909 * flushable data if:
2910 *
2911 * 1. the current iclog is active and has no data; the previous iclog
2912 * is in the active or dirty state.
2913 * 2. the current iclog is drity, and the previous iclog is in the
2914 * active or dirty state.
2915 *
2916 * We may sleep if:
2917 *
2918 * 1. the current iclog is not in the active nor dirty state.
2919 * 2. the current iclog dirty, and the previous iclog is not in the
2920 * active nor dirty state.
2921 * 3. the current iclog is active, and there is another thread writing
2922 * to this particular iclog.
2923 * 4. a) the current iclog is active and has no other writers
2924 * b) when we return from flushing out this iclog, it is still
2925 * not in the active nor dirty state.
2926 */
2927 int
2928 _xfs_log_force(
2929 struct xfs_mount *mp,
2930 uint flags,
2931 int *log_flushed)
2932 {
2933 struct log *log = mp->m_log;
2934 struct xlog_in_core *iclog;
2935 xfs_lsn_t lsn;
2936
2937 XFS_STATS_INC(xs_log_force);
2938
2939 if (log->l_cilp)
2940 xlog_cil_force(log);
2941
2942 spin_lock(&log->l_icloglock);
2943
2944 iclog = log->l_iclog;
2945 if (iclog->ic_state & XLOG_STATE_IOERROR) {
2946 spin_unlock(&log->l_icloglock);
2947 return XFS_ERROR(EIO);
2948 }
2949
2950 /* If the head iclog is not active nor dirty, we just attach
2951 * ourselves to the head and go to sleep.
2952 */
2953 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2954 iclog->ic_state == XLOG_STATE_DIRTY) {
2955 /*
2956 * If the head is dirty or (active and empty), then
2957 * we need to look at the previous iclog. If the previous
2958 * iclog is active or dirty we are done. There is nothing
2959 * to sync out. Otherwise, we attach ourselves to the
2960 * previous iclog and go to sleep.
2961 */
2962 if (iclog->ic_state == XLOG_STATE_DIRTY ||
2963 (atomic_read(&iclog->ic_refcnt) == 0
2964 && iclog->ic_offset == 0)) {
2965 iclog = iclog->ic_prev;
2966 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2967 iclog->ic_state == XLOG_STATE_DIRTY)
2968 goto no_sleep;
2969 else
2970 goto maybe_sleep;
2971 } else {
2972 if (atomic_read(&iclog->ic_refcnt) == 0) {
2973 /* We are the only one with access to this
2974 * iclog. Flush it out now. There should
2975 * be a roundoff of zero to show that someone
2976 * has already taken care of the roundoff from
2977 * the previous sync.
2978 */
2979 atomic_inc(&iclog->ic_refcnt);
2980 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2981 xlog_state_switch_iclogs(log, iclog, 0);
2982 spin_unlock(&log->l_icloglock);
2983
2984 if (xlog_state_release_iclog(log, iclog))
2985 return XFS_ERROR(EIO);
2986
2987 if (log_flushed)
2988 *log_flushed = 1;
2989 spin_lock(&log->l_icloglock);
2990 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
2991 iclog->ic_state != XLOG_STATE_DIRTY)
2992 goto maybe_sleep;
2993 else
2994 goto no_sleep;
2995 } else {
2996 /* Someone else is writing to this iclog.
2997 * Use its call to flush out the data. However,
2998 * the other thread may not force out this LR,
2999 * so we mark it WANT_SYNC.
3000 */
3001 xlog_state_switch_iclogs(log, iclog, 0);
3002 goto maybe_sleep;
3003 }
3004 }
3005 }
3006
3007 /* By the time we come around again, the iclog could've been filled
3008 * which would give it another lsn. If we have a new lsn, just
3009 * return because the relevant data has been flushed.
3010 */
3011 maybe_sleep:
3012 if (flags & XFS_LOG_SYNC) {
3013 /*
3014 * We must check if we're shutting down here, before
3015 * we wait, while we're holding the l_icloglock.
3016 * Then we check again after waking up, in case our
3017 * sleep was disturbed by a bad news.
3018 */
3019 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3020 spin_unlock(&log->l_icloglock);
3021 return XFS_ERROR(EIO);
3022 }
3023 XFS_STATS_INC(xs_log_force_sleep);
3024 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3025 /*
3026 * No need to grab the log lock here since we're
3027 * only deciding whether or not to return EIO
3028 * and the memory read should be atomic.
3029 */
3030 if (iclog->ic_state & XLOG_STATE_IOERROR)
3031 return XFS_ERROR(EIO);
3032 if (log_flushed)
3033 *log_flushed = 1;
3034 } else {
3035
3036 no_sleep:
3037 spin_unlock(&log->l_icloglock);
3038 }
3039 return 0;
3040 }
3041
3042 /*
3043 * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3044 * about errors or whether the log was flushed or not. This is the normal
3045 * interface to use when trying to unpin items or move the log forward.
3046 */
3047 void
3048 xfs_log_force(
3049 xfs_mount_t *mp,
3050 uint flags)
3051 {
3052 int error;
3053
3054 error = _xfs_log_force(mp, flags, NULL);
3055 if (error) {
3056 xfs_fs_cmn_err(CE_WARN, mp, "xfs_log_force: "
3057 "error %d returned.", error);
3058 }
3059 }
3060
3061 /*
3062 * Force the in-core log to disk for a specific LSN.
3063 *
3064 * Find in-core log with lsn.
3065 * If it is in the DIRTY state, just return.
3066 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3067 * state and go to sleep or return.
3068 * If it is in any other state, go to sleep or return.
3069 *
3070 * Synchronous forces are implemented with a signal variable. All callers
3071 * to force a given lsn to disk will wait on a the sv attached to the
3072 * specific in-core log. When given in-core log finally completes its
3073 * write to disk, that thread will wake up all threads waiting on the
3074 * sv.
3075 */
3076 int
3077 _xfs_log_force_lsn(
3078 struct xfs_mount *mp,
3079 xfs_lsn_t lsn,
3080 uint flags,
3081 int *log_flushed)
3082 {
3083 struct log *log = mp->m_log;
3084 struct xlog_in_core *iclog;
3085 int already_slept = 0;
3086
3087 ASSERT(lsn != 0);
3088
3089 XFS_STATS_INC(xs_log_force);
3090
3091 if (log->l_cilp) {
3092 lsn = xlog_cil_force_lsn(log, lsn);
3093 if (lsn == NULLCOMMITLSN)
3094 return 0;
3095 }
3096
3097 try_again:
3098 spin_lock(&log->l_icloglock);
3099 iclog = log->l_iclog;
3100 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3101 spin_unlock(&log->l_icloglock);
3102 return XFS_ERROR(EIO);
3103 }
3104
3105 do {
3106 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3107 iclog = iclog->ic_next;
3108 continue;
3109 }
3110
3111 if (iclog->ic_state == XLOG_STATE_DIRTY) {
3112 spin_unlock(&log->l_icloglock);
3113 return 0;
3114 }
3115
3116 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3117 /*
3118 * We sleep here if we haven't already slept (e.g.
3119 * this is the first time we've looked at the correct
3120 * iclog buf) and the buffer before us is going to
3121 * be sync'ed. The reason for this is that if we
3122 * are doing sync transactions here, by waiting for
3123 * the previous I/O to complete, we can allow a few
3124 * more transactions into this iclog before we close
3125 * it down.
3126 *
3127 * Otherwise, we mark the buffer WANT_SYNC, and bump
3128 * up the refcnt so we can release the log (which
3129 * drops the ref count). The state switch keeps new
3130 * transaction commits from using this buffer. When
3131 * the current commits finish writing into the buffer,
3132 * the refcount will drop to zero and the buffer will
3133 * go out then.
3134 */
3135 if (!already_slept &&
3136 (iclog->ic_prev->ic_state &
3137 (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3138 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3139
3140 XFS_STATS_INC(xs_log_force_sleep);
3141
3142 xlog_wait(&iclog->ic_prev->ic_write_wait,
3143 &log->l_icloglock);
3144 if (log_flushed)
3145 *log_flushed = 1;
3146 already_slept = 1;
3147 goto try_again;
3148 }
3149 atomic_inc(&iclog->ic_refcnt);
3150 xlog_state_switch_iclogs(log, iclog, 0);
3151 spin_unlock(&log->l_icloglock);
3152 if (xlog_state_release_iclog(log, iclog))
3153 return XFS_ERROR(EIO);
3154 if (log_flushed)
3155 *log_flushed = 1;
3156 spin_lock(&log->l_icloglock);
3157 }
3158
3159 if ((flags & XFS_LOG_SYNC) && /* sleep */
3160 !(iclog->ic_state &
3161 (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3162 /*
3163 * Don't wait on completion if we know that we've
3164 * gotten a log write error.
3165 */
3166 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3167 spin_unlock(&log->l_icloglock);
3168 return XFS_ERROR(EIO);
3169 }
3170 XFS_STATS_INC(xs_log_force_sleep);
3171 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3172 /*
3173 * No need to grab the log lock here since we're
3174 * only deciding whether or not to return EIO
3175 * and the memory read should be atomic.
3176 */
3177 if (iclog->ic_state & XLOG_STATE_IOERROR)
3178 return XFS_ERROR(EIO);
3179
3180 if (log_flushed)
3181 *log_flushed = 1;
3182 } else { /* just return */
3183 spin_unlock(&log->l_icloglock);
3184 }
3185
3186 return 0;
3187 } while (iclog != log->l_iclog);
3188
3189 spin_unlock(&log->l_icloglock);
3190 return 0;
3191 }
3192
3193 /*
3194 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3195 * about errors or whether the log was flushed or not. This is the normal
3196 * interface to use when trying to unpin items or move the log forward.
3197 */
3198 void
3199 xfs_log_force_lsn(
3200 xfs_mount_t *mp,
3201 xfs_lsn_t lsn,
3202 uint flags)
3203 {
3204 int error;
3205
3206 error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3207 if (error) {
3208 xfs_fs_cmn_err(CE_WARN, mp, "xfs_log_force: "
3209 "error %d returned.", error);
3210 }
3211 }
3212
3213 /*
3214 * Called when we want to mark the current iclog as being ready to sync to
3215 * disk.
3216 */
3217 STATIC void
3218 xlog_state_want_sync(xlog_t *log, xlog_in_core_t *iclog)
3219 {
3220 assert_spin_locked(&log->l_icloglock);
3221
3222 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3223 xlog_state_switch_iclogs(log, iclog, 0);
3224 } else {
3225 ASSERT(iclog->ic_state &
3226 (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3227 }
3228 }
3229
3230
3231 /*****************************************************************************
3232 *
3233 * TICKET functions
3234 *
3235 *****************************************************************************
3236 */
3237
3238 /*
3239 * Free a used ticket when its refcount falls to zero.
3240 */
3241 void
3242 xfs_log_ticket_put(
3243 xlog_ticket_t *ticket)
3244 {
3245 ASSERT(atomic_read(&ticket->t_ref) > 0);
3246 if (atomic_dec_and_test(&ticket->t_ref))
3247 kmem_zone_free(xfs_log_ticket_zone, ticket);
3248 }
3249
3250 xlog_ticket_t *
3251 xfs_log_ticket_get(
3252 xlog_ticket_t *ticket)
3253 {
3254 ASSERT(atomic_read(&ticket->t_ref) > 0);
3255 atomic_inc(&ticket->t_ref);
3256 return ticket;
3257 }
3258
3259 xlog_tid_t
3260 xfs_log_get_trans_ident(
3261 struct xfs_trans *tp)
3262 {
3263 return tp->t_ticket->t_tid;
3264 }
3265
3266 /*
3267 * Allocate and initialise a new log ticket.
3268 */
3269 xlog_ticket_t *
3270 xlog_ticket_alloc(
3271 struct log *log,
3272 int unit_bytes,
3273 int cnt,
3274 char client,
3275 uint xflags,
3276 int alloc_flags)
3277 {
3278 struct xlog_ticket *tic;
3279 uint num_headers;
3280 int iclog_space;
3281
3282 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3283 if (!tic)
3284 return NULL;
3285
3286 /*
3287 * Permanent reservations have up to 'cnt'-1 active log operations
3288 * in the log. A unit in this case is the amount of space for one
3289 * of these log operations. Normal reservations have a cnt of 1
3290 * and their unit amount is the total amount of space required.
3291 *
3292 * The following lines of code account for non-transaction data
3293 * which occupy space in the on-disk log.
3294 *
3295 * Normal form of a transaction is:
3296 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3297 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3298 *
3299 * We need to account for all the leadup data and trailer data
3300 * around the transaction data.
3301 * And then we need to account for the worst case in terms of using
3302 * more space.
3303 * The worst case will happen if:
3304 * - the placement of the transaction happens to be such that the
3305 * roundoff is at its maximum
3306 * - the transaction data is synced before the commit record is synced
3307 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3308 * Therefore the commit record is in its own Log Record.
3309 * This can happen as the commit record is called with its
3310 * own region to xlog_write().
3311 * This then means that in the worst case, roundoff can happen for
3312 * the commit-rec as well.
3313 * The commit-rec is smaller than padding in this scenario and so it is
3314 * not added separately.
3315 */
3316
3317 /* for trans header */
3318 unit_bytes += sizeof(xlog_op_header_t);
3319 unit_bytes += sizeof(xfs_trans_header_t);
3320
3321 /* for start-rec */
3322 unit_bytes += sizeof(xlog_op_header_t);
3323
3324 /*
3325 * for LR headers - the space for data in an iclog is the size minus
3326 * the space used for the headers. If we use the iclog size, then we
3327 * undercalculate the number of headers required.
3328 *
3329 * Furthermore - the addition of op headers for split-recs might
3330 * increase the space required enough to require more log and op
3331 * headers, so take that into account too.
3332 *
3333 * IMPORTANT: This reservation makes the assumption that if this
3334 * transaction is the first in an iclog and hence has the LR headers
3335 * accounted to it, then the remaining space in the iclog is
3336 * exclusively for this transaction. i.e. if the transaction is larger
3337 * than the iclog, it will be the only thing in that iclog.
3338 * Fundamentally, this means we must pass the entire log vector to
3339 * xlog_write to guarantee this.
3340 */
3341 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3342 num_headers = howmany(unit_bytes, iclog_space);
3343
3344 /* for split-recs - ophdrs added when data split over LRs */
3345 unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3346
3347 /* add extra header reservations if we overrun */
3348 while (!num_headers ||
3349 howmany(unit_bytes, iclog_space) > num_headers) {
3350 unit_bytes += sizeof(xlog_op_header_t);
3351 num_headers++;
3352 }
3353 unit_bytes += log->l_iclog_hsize * num_headers;
3354
3355 /* for commit-rec LR header - note: padding will subsume the ophdr */
3356 unit_bytes += log->l_iclog_hsize;
3357
3358 /* for roundoff padding for transaction data and one for commit record */
3359 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3360 log->l_mp->m_sb.sb_logsunit > 1) {
3361 /* log su roundoff */
3362 unit_bytes += 2*log->l_mp->m_sb.sb_logsunit;
3363 } else {
3364 /* BB roundoff */
3365 unit_bytes += 2*BBSIZE;
3366 }
3367
3368 atomic_set(&tic->t_ref, 1);
3369 INIT_LIST_HEAD(&tic->t_queue);
3370 tic->t_unit_res = unit_bytes;
3371 tic->t_curr_res = unit_bytes;
3372 tic->t_cnt = cnt;
3373 tic->t_ocnt = cnt;
3374 tic->t_tid = random32();
3375 tic->t_clientid = client;
3376 tic->t_flags = XLOG_TIC_INITED;
3377 tic->t_trans_type = 0;
3378 if (xflags & XFS_LOG_PERM_RESERV)
3379 tic->t_flags |= XLOG_TIC_PERM_RESERV;
3380 init_waitqueue_head(&tic->t_wait);
3381
3382 xlog_tic_reset_res(tic);
3383
3384 return tic;
3385 }
3386
3387
3388 /******************************************************************************
3389 *
3390 * Log debug routines
3391 *
3392 ******************************************************************************
3393 */
3394 #if defined(DEBUG)
3395 /*
3396 * Make sure that the destination ptr is within the valid data region of
3397 * one of the iclogs. This uses backup pointers stored in a different
3398 * part of the log in case we trash the log structure.
3399 */
3400 void
3401 xlog_verify_dest_ptr(
3402 struct log *log,
3403 char *ptr)
3404 {
3405 int i;
3406 int good_ptr = 0;
3407
3408 for (i = 0; i < log->l_iclog_bufs; i++) {
3409 if (ptr >= log->l_iclog_bak[i] &&
3410 ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3411 good_ptr++;
3412 }
3413
3414 if (!good_ptr)
3415 xlog_panic("xlog_verify_dest_ptr: invalid ptr");
3416 }
3417
3418 STATIC void
3419 xlog_verify_grant_tail(
3420 struct log *log)
3421 {
3422 int tail_cycle, tail_blocks;
3423 int cycle, space;
3424
3425 /*
3426 * Check to make sure the grant write head didn't just over lap the
3427 * tail. If the cycles are the same, we can't be overlapping.
3428 * Otherwise, make sure that the cycles differ by exactly one and
3429 * check the byte count.
3430 */
3431 xlog_crack_grant_head(&log->l_grant_write_head, &cycle, &space);
3432 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3433 if (tail_cycle != cycle) {
3434 ASSERT(cycle - 1 == tail_cycle);
3435 ASSERT(space <= BBTOB(tail_blocks));
3436 }
3437 }
3438
3439 /* check if it will fit */
3440 STATIC void
3441 xlog_verify_tail_lsn(xlog_t *log,
3442 xlog_in_core_t *iclog,
3443 xfs_lsn_t tail_lsn)
3444 {
3445 int blocks;
3446
3447 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3448 blocks =
3449 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3450 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3451 xlog_panic("xlog_verify_tail_lsn: ran out of log space");
3452 } else {
3453 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3454
3455 if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3456 xlog_panic("xlog_verify_tail_lsn: tail wrapped");
3457
3458 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3459 if (blocks < BTOBB(iclog->ic_offset) + 1)
3460 xlog_panic("xlog_verify_tail_lsn: ran out of log space");
3461 }
3462 } /* xlog_verify_tail_lsn */
3463
3464 /*
3465 * Perform a number of checks on the iclog before writing to disk.
3466 *
3467 * 1. Make sure the iclogs are still circular
3468 * 2. Make sure we have a good magic number
3469 * 3. Make sure we don't have magic numbers in the data
3470 * 4. Check fields of each log operation header for:
3471 * A. Valid client identifier
3472 * B. tid ptr value falls in valid ptr space (user space code)
3473 * C. Length in log record header is correct according to the
3474 * individual operation headers within record.
3475 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3476 * log, check the preceding blocks of the physical log to make sure all
3477 * the cycle numbers agree with the current cycle number.
3478 */
3479 STATIC void
3480 xlog_verify_iclog(xlog_t *log,
3481 xlog_in_core_t *iclog,
3482 int count,
3483 boolean_t syncing)
3484 {
3485 xlog_op_header_t *ophead;
3486 xlog_in_core_t *icptr;
3487 xlog_in_core_2_t *xhdr;
3488 xfs_caddr_t ptr;
3489 xfs_caddr_t base_ptr;
3490 __psint_t field_offset;
3491 __uint8_t clientid;
3492 int len, i, j, k, op_len;
3493 int idx;
3494
3495 /* check validity of iclog pointers */
3496 spin_lock(&log->l_icloglock);
3497 icptr = log->l_iclog;
3498 for (i=0; i < log->l_iclog_bufs; i++) {
3499 if (icptr == NULL)
3500 xlog_panic("xlog_verify_iclog: invalid ptr");
3501 icptr = icptr->ic_next;
3502 }
3503 if (icptr != log->l_iclog)
3504 xlog_panic("xlog_verify_iclog: corrupt iclog ring");
3505 spin_unlock(&log->l_icloglock);
3506
3507 /* check log magic numbers */
3508 if (be32_to_cpu(iclog->ic_header.h_magicno) != XLOG_HEADER_MAGIC_NUM)
3509 xlog_panic("xlog_verify_iclog: invalid magic num");
3510
3511 ptr = (xfs_caddr_t) &iclog->ic_header;
3512 for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count;
3513 ptr += BBSIZE) {
3514 if (be32_to_cpu(*(__be32 *)ptr) == XLOG_HEADER_MAGIC_NUM)
3515 xlog_panic("xlog_verify_iclog: unexpected magic num");
3516 }
3517
3518 /* check fields */
3519 len = be32_to_cpu(iclog->ic_header.h_num_logops);
3520 ptr = iclog->ic_datap;
3521 base_ptr = ptr;
3522 ophead = (xlog_op_header_t *)ptr;
3523 xhdr = iclog->ic_data;
3524 for (i = 0; i < len; i++) {
3525 ophead = (xlog_op_header_t *)ptr;
3526
3527 /* clientid is only 1 byte */
3528 field_offset = (__psint_t)
3529 ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr);
3530 if (syncing == B_FALSE || (field_offset & 0x1ff)) {
3531 clientid = ophead->oh_clientid;
3532 } else {
3533 idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap);
3534 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3535 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3536 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3537 clientid = xlog_get_client_id(
3538 xhdr[j].hic_xheader.xh_cycle_data[k]);
3539 } else {
3540 clientid = xlog_get_client_id(
3541 iclog->ic_header.h_cycle_data[idx]);
3542 }
3543 }
3544 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3545 cmn_err(CE_WARN, "xlog_verify_iclog: "
3546 "invalid clientid %d op 0x%p offset 0x%lx",
3547 clientid, ophead, (unsigned long)field_offset);
3548
3549 /* check length */
3550 field_offset = (__psint_t)
3551 ((xfs_caddr_t)&(ophead->oh_len) - base_ptr);
3552 if (syncing == B_FALSE || (field_offset & 0x1ff)) {
3553 op_len = be32_to_cpu(ophead->oh_len);
3554 } else {
3555 idx = BTOBBT((__psint_t)&ophead->oh_len -
3556 (__psint_t)iclog->ic_datap);
3557 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3558 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3559 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3560 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3561 } else {
3562 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3563 }
3564 }
3565 ptr += sizeof(xlog_op_header_t) + op_len;
3566 }
3567 } /* xlog_verify_iclog */
3568 #endif
3569
3570 /*
3571 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3572 */
3573 STATIC int
3574 xlog_state_ioerror(
3575 xlog_t *log)
3576 {
3577 xlog_in_core_t *iclog, *ic;
3578
3579 iclog = log->l_iclog;
3580 if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3581 /*
3582 * Mark all the incore logs IOERROR.
3583 * From now on, no log flushes will result.
3584 */
3585 ic = iclog;
3586 do {
3587 ic->ic_state = XLOG_STATE_IOERROR;
3588 ic = ic->ic_next;
3589 } while (ic != iclog);
3590 return 0;
3591 }
3592 /*
3593 * Return non-zero, if state transition has already happened.
3594 */
3595 return 1;
3596 }
3597
3598 /*
3599 * This is called from xfs_force_shutdown, when we're forcibly
3600 * shutting down the filesystem, typically because of an IO error.
3601 * Our main objectives here are to make sure that:
3602 * a. the filesystem gets marked 'SHUTDOWN' for all interested
3603 * parties to find out, 'atomically'.
3604 * b. those who're sleeping on log reservations, pinned objects and
3605 * other resources get woken up, and be told the bad news.
3606 * c. nothing new gets queued up after (a) and (b) are done.
3607 * d. if !logerror, flush the iclogs to disk, then seal them off
3608 * for business.
3609 *
3610 * Note: for delayed logging the !logerror case needs to flush the regions
3611 * held in memory out to the iclogs before flushing them to disk. This needs
3612 * to be done before the log is marked as shutdown, otherwise the flush to the
3613 * iclogs will fail.
3614 */
3615 int
3616 xfs_log_force_umount(
3617 struct xfs_mount *mp,
3618 int logerror)
3619 {
3620 xlog_ticket_t *tic;
3621 xlog_t *log;
3622 int retval;
3623
3624 log = mp->m_log;
3625
3626 /*
3627 * If this happens during log recovery, don't worry about
3628 * locking; the log isn't open for business yet.
3629 */
3630 if (!log ||
3631 log->l_flags & XLOG_ACTIVE_RECOVERY) {
3632 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3633 if (mp->m_sb_bp)
3634 XFS_BUF_DONE(mp->m_sb_bp);
3635 return 0;
3636 }
3637
3638 /*
3639 * Somebody could've already done the hard work for us.
3640 * No need to get locks for this.
3641 */
3642 if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3643 ASSERT(XLOG_FORCED_SHUTDOWN(log));
3644 return 1;
3645 }
3646 retval = 0;
3647
3648 /*
3649 * Flush the in memory commit item list before marking the log as
3650 * being shut down. We need to do it in this order to ensure all the
3651 * completed transactions are flushed to disk with the xfs_log_force()
3652 * call below.
3653 */
3654 if (!logerror && (mp->m_flags & XFS_MOUNT_DELAYLOG))
3655 xlog_cil_force(log);
3656
3657 /*
3658 * mark the filesystem and the as in a shutdown state and wake
3659 * everybody up to tell them the bad news.
3660 */
3661 spin_lock(&log->l_icloglock);
3662 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3663 if (mp->m_sb_bp)
3664 XFS_BUF_DONE(mp->m_sb_bp);
3665
3666 /*
3667 * This flag is sort of redundant because of the mount flag, but
3668 * it's good to maintain the separation between the log and the rest
3669 * of XFS.
3670 */
3671 log->l_flags |= XLOG_IO_ERROR;
3672
3673 /*
3674 * If we hit a log error, we want to mark all the iclogs IOERROR
3675 * while we're still holding the loglock.
3676 */
3677 if (logerror)
3678 retval = xlog_state_ioerror(log);
3679 spin_unlock(&log->l_icloglock);
3680
3681 /*
3682 * We don't want anybody waiting for log reservations after this. That
3683 * means we have to wake up everybody queued up on reserveq as well as
3684 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
3685 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3686 * action is protected by the grant locks.
3687 */
3688 spin_lock(&log->l_grant_reserve_lock);
3689 list_for_each_entry(tic, &log->l_reserveq, t_queue)
3690 wake_up(&tic->t_wait);
3691 spin_unlock(&log->l_grant_reserve_lock);
3692
3693 spin_lock(&log->l_grant_write_lock);
3694 list_for_each_entry(tic, &log->l_writeq, t_queue)
3695 wake_up(&tic->t_wait);
3696 spin_unlock(&log->l_grant_write_lock);
3697
3698 if (!(log->l_iclog->ic_state & XLOG_STATE_IOERROR)) {
3699 ASSERT(!logerror);
3700 /*
3701 * Force the incore logs to disk before shutting the
3702 * log down completely.
3703 */
3704 _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3705
3706 spin_lock(&log->l_icloglock);
3707 retval = xlog_state_ioerror(log);
3708 spin_unlock(&log->l_icloglock);
3709 }
3710 /*
3711 * Wake up everybody waiting on xfs_log_force.
3712 * Callback all log item committed functions as if the
3713 * log writes were completed.
3714 */
3715 xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
3716
3717 #ifdef XFSERRORDEBUG
3718 {
3719 xlog_in_core_t *iclog;
3720
3721 spin_lock(&log->l_icloglock);
3722 iclog = log->l_iclog;
3723 do {
3724 ASSERT(iclog->ic_callback == 0);
3725 iclog = iclog->ic_next;
3726 } while (iclog != log->l_iclog);
3727 spin_unlock(&log->l_icloglock);
3728 }
3729 #endif
3730 /* return non-zero if log IOERROR transition had already happened */
3731 return retval;
3732 }
3733
3734 STATIC int
3735 xlog_iclogs_empty(xlog_t *log)
3736 {
3737 xlog_in_core_t *iclog;
3738
3739 iclog = log->l_iclog;
3740 do {
3741 /* endianness does not matter here, zero is zero in
3742 * any language.
3743 */
3744 if (iclog->ic_header.h_num_logops)
3745 return 0;
3746 iclog = iclog->ic_next;
3747 } while (iclog != log->l_iclog);
3748 return 1;
3749 }
This page took 0.150509 seconds and 5 git commands to generate.