xfs: syncd workqueue is no more
[deliverable/linux.git] / fs / xfs / xfs_log.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_log.h"
22 #include "xfs_trans.h"
23 #include "xfs_sb.h"
24 #include "xfs_ag.h"
25 #include "xfs_mount.h"
26 #include "xfs_error.h"
27 #include "xfs_log_priv.h"
28 #include "xfs_buf_item.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_log_recover.h"
33 #include "xfs_trans_priv.h"
34 #include "xfs_dinode.h"
35 #include "xfs_inode.h"
36 #include "xfs_trace.h"
37 #include "xfs_fsops.h"
38
39 kmem_zone_t *xfs_log_ticket_zone;
40
41 /* Local miscellaneous function prototypes */
42 STATIC int
43 xlog_commit_record(
44 struct xlog *log,
45 struct xlog_ticket *ticket,
46 struct xlog_in_core **iclog,
47 xfs_lsn_t *commitlsnp);
48
49 STATIC struct xlog *
50 xlog_alloc_log(
51 struct xfs_mount *mp,
52 struct xfs_buftarg *log_target,
53 xfs_daddr_t blk_offset,
54 int num_bblks);
55 STATIC int
56 xlog_space_left(
57 struct xlog *log,
58 atomic64_t *head);
59 STATIC int
60 xlog_sync(
61 struct xlog *log,
62 struct xlog_in_core *iclog);
63 STATIC void
64 xlog_dealloc_log(
65 struct xlog *log);
66
67 /* local state machine functions */
68 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
69 STATIC void
70 xlog_state_do_callback(
71 struct xlog *log,
72 int aborted,
73 struct xlog_in_core *iclog);
74 STATIC int
75 xlog_state_get_iclog_space(
76 struct xlog *log,
77 int len,
78 struct xlog_in_core **iclog,
79 struct xlog_ticket *ticket,
80 int *continued_write,
81 int *logoffsetp);
82 STATIC int
83 xlog_state_release_iclog(
84 struct xlog *log,
85 struct xlog_in_core *iclog);
86 STATIC void
87 xlog_state_switch_iclogs(
88 struct xlog *log,
89 struct xlog_in_core *iclog,
90 int eventual_size);
91 STATIC void
92 xlog_state_want_sync(
93 struct xlog *log,
94 struct xlog_in_core *iclog);
95
96 STATIC void
97 xlog_grant_push_ail(
98 struct xlog *log,
99 int need_bytes);
100 STATIC void
101 xlog_regrant_reserve_log_space(
102 struct xlog *log,
103 struct xlog_ticket *ticket);
104 STATIC void
105 xlog_ungrant_log_space(
106 struct xlog *log,
107 struct xlog_ticket *ticket);
108
109 #if defined(DEBUG)
110 STATIC void
111 xlog_verify_dest_ptr(
112 struct xlog *log,
113 char *ptr);
114 STATIC void
115 xlog_verify_grant_tail(
116 struct xlog *log);
117 STATIC void
118 xlog_verify_iclog(
119 struct xlog *log,
120 struct xlog_in_core *iclog,
121 int count,
122 boolean_t syncing);
123 STATIC void
124 xlog_verify_tail_lsn(
125 struct xlog *log,
126 struct xlog_in_core *iclog,
127 xfs_lsn_t tail_lsn);
128 #else
129 #define xlog_verify_dest_ptr(a,b)
130 #define xlog_verify_grant_tail(a)
131 #define xlog_verify_iclog(a,b,c,d)
132 #define xlog_verify_tail_lsn(a,b,c)
133 #endif
134
135 STATIC int
136 xlog_iclogs_empty(
137 struct xlog *log);
138
139 static void
140 xlog_grant_sub_space(
141 struct xlog *log,
142 atomic64_t *head,
143 int bytes)
144 {
145 int64_t head_val = atomic64_read(head);
146 int64_t new, old;
147
148 do {
149 int cycle, space;
150
151 xlog_crack_grant_head_val(head_val, &cycle, &space);
152
153 space -= bytes;
154 if (space < 0) {
155 space += log->l_logsize;
156 cycle--;
157 }
158
159 old = head_val;
160 new = xlog_assign_grant_head_val(cycle, space);
161 head_val = atomic64_cmpxchg(head, old, new);
162 } while (head_val != old);
163 }
164
165 static void
166 xlog_grant_add_space(
167 struct xlog *log,
168 atomic64_t *head,
169 int bytes)
170 {
171 int64_t head_val = atomic64_read(head);
172 int64_t new, old;
173
174 do {
175 int tmp;
176 int cycle, space;
177
178 xlog_crack_grant_head_val(head_val, &cycle, &space);
179
180 tmp = log->l_logsize - space;
181 if (tmp > bytes)
182 space += bytes;
183 else {
184 space = bytes - tmp;
185 cycle++;
186 }
187
188 old = head_val;
189 new = xlog_assign_grant_head_val(cycle, space);
190 head_val = atomic64_cmpxchg(head, old, new);
191 } while (head_val != old);
192 }
193
194 STATIC void
195 xlog_grant_head_init(
196 struct xlog_grant_head *head)
197 {
198 xlog_assign_grant_head(&head->grant, 1, 0);
199 INIT_LIST_HEAD(&head->waiters);
200 spin_lock_init(&head->lock);
201 }
202
203 STATIC void
204 xlog_grant_head_wake_all(
205 struct xlog_grant_head *head)
206 {
207 struct xlog_ticket *tic;
208
209 spin_lock(&head->lock);
210 list_for_each_entry(tic, &head->waiters, t_queue)
211 wake_up_process(tic->t_task);
212 spin_unlock(&head->lock);
213 }
214
215 static inline int
216 xlog_ticket_reservation(
217 struct xlog *log,
218 struct xlog_grant_head *head,
219 struct xlog_ticket *tic)
220 {
221 if (head == &log->l_write_head) {
222 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
223 return tic->t_unit_res;
224 } else {
225 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
226 return tic->t_unit_res * tic->t_cnt;
227 else
228 return tic->t_unit_res;
229 }
230 }
231
232 STATIC bool
233 xlog_grant_head_wake(
234 struct xlog *log,
235 struct xlog_grant_head *head,
236 int *free_bytes)
237 {
238 struct xlog_ticket *tic;
239 int need_bytes;
240
241 list_for_each_entry(tic, &head->waiters, t_queue) {
242 need_bytes = xlog_ticket_reservation(log, head, tic);
243 if (*free_bytes < need_bytes)
244 return false;
245
246 *free_bytes -= need_bytes;
247 trace_xfs_log_grant_wake_up(log, tic);
248 wake_up_process(tic->t_task);
249 }
250
251 return true;
252 }
253
254 STATIC int
255 xlog_grant_head_wait(
256 struct xlog *log,
257 struct xlog_grant_head *head,
258 struct xlog_ticket *tic,
259 int need_bytes)
260 {
261 list_add_tail(&tic->t_queue, &head->waiters);
262
263 do {
264 if (XLOG_FORCED_SHUTDOWN(log))
265 goto shutdown;
266 xlog_grant_push_ail(log, need_bytes);
267
268 __set_current_state(TASK_UNINTERRUPTIBLE);
269 spin_unlock(&head->lock);
270
271 XFS_STATS_INC(xs_sleep_logspace);
272
273 trace_xfs_log_grant_sleep(log, tic);
274 schedule();
275 trace_xfs_log_grant_wake(log, tic);
276
277 spin_lock(&head->lock);
278 if (XLOG_FORCED_SHUTDOWN(log))
279 goto shutdown;
280 } while (xlog_space_left(log, &head->grant) < need_bytes);
281
282 list_del_init(&tic->t_queue);
283 return 0;
284 shutdown:
285 list_del_init(&tic->t_queue);
286 return XFS_ERROR(EIO);
287 }
288
289 /*
290 * Atomically get the log space required for a log ticket.
291 *
292 * Once a ticket gets put onto head->waiters, it will only return after the
293 * needed reservation is satisfied.
294 *
295 * This function is structured so that it has a lock free fast path. This is
296 * necessary because every new transaction reservation will come through this
297 * path. Hence any lock will be globally hot if we take it unconditionally on
298 * every pass.
299 *
300 * As tickets are only ever moved on and off head->waiters under head->lock, we
301 * only need to take that lock if we are going to add the ticket to the queue
302 * and sleep. We can avoid taking the lock if the ticket was never added to
303 * head->waiters because the t_queue list head will be empty and we hold the
304 * only reference to it so it can safely be checked unlocked.
305 */
306 STATIC int
307 xlog_grant_head_check(
308 struct xlog *log,
309 struct xlog_grant_head *head,
310 struct xlog_ticket *tic,
311 int *need_bytes)
312 {
313 int free_bytes;
314 int error = 0;
315
316 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
317
318 /*
319 * If there are other waiters on the queue then give them a chance at
320 * logspace before us. Wake up the first waiters, if we do not wake
321 * up all the waiters then go to sleep waiting for more free space,
322 * otherwise try to get some space for this transaction.
323 */
324 *need_bytes = xlog_ticket_reservation(log, head, tic);
325 free_bytes = xlog_space_left(log, &head->grant);
326 if (!list_empty_careful(&head->waiters)) {
327 spin_lock(&head->lock);
328 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
329 free_bytes < *need_bytes) {
330 error = xlog_grant_head_wait(log, head, tic,
331 *need_bytes);
332 }
333 spin_unlock(&head->lock);
334 } else if (free_bytes < *need_bytes) {
335 spin_lock(&head->lock);
336 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
337 spin_unlock(&head->lock);
338 }
339
340 return error;
341 }
342
343 static void
344 xlog_tic_reset_res(xlog_ticket_t *tic)
345 {
346 tic->t_res_num = 0;
347 tic->t_res_arr_sum = 0;
348 tic->t_res_num_ophdrs = 0;
349 }
350
351 static void
352 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
353 {
354 if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
355 /* add to overflow and start again */
356 tic->t_res_o_flow += tic->t_res_arr_sum;
357 tic->t_res_num = 0;
358 tic->t_res_arr_sum = 0;
359 }
360
361 tic->t_res_arr[tic->t_res_num].r_len = len;
362 tic->t_res_arr[tic->t_res_num].r_type = type;
363 tic->t_res_arr_sum += len;
364 tic->t_res_num++;
365 }
366
367 /*
368 * Replenish the byte reservation required by moving the grant write head.
369 */
370 int
371 xfs_log_regrant(
372 struct xfs_mount *mp,
373 struct xlog_ticket *tic)
374 {
375 struct xlog *log = mp->m_log;
376 int need_bytes;
377 int error = 0;
378
379 if (XLOG_FORCED_SHUTDOWN(log))
380 return XFS_ERROR(EIO);
381
382 XFS_STATS_INC(xs_try_logspace);
383
384 /*
385 * This is a new transaction on the ticket, so we need to change the
386 * transaction ID so that the next transaction has a different TID in
387 * the log. Just add one to the existing tid so that we can see chains
388 * of rolling transactions in the log easily.
389 */
390 tic->t_tid++;
391
392 xlog_grant_push_ail(log, tic->t_unit_res);
393
394 tic->t_curr_res = tic->t_unit_res;
395 xlog_tic_reset_res(tic);
396
397 if (tic->t_cnt > 0)
398 return 0;
399
400 trace_xfs_log_regrant(log, tic);
401
402 error = xlog_grant_head_check(log, &log->l_write_head, tic,
403 &need_bytes);
404 if (error)
405 goto out_error;
406
407 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
408 trace_xfs_log_regrant_exit(log, tic);
409 xlog_verify_grant_tail(log);
410 return 0;
411
412 out_error:
413 /*
414 * If we are failing, make sure the ticket doesn't have any current
415 * reservations. We don't want to add this back when the ticket/
416 * transaction gets cancelled.
417 */
418 tic->t_curr_res = 0;
419 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
420 return error;
421 }
422
423 /*
424 * Reserve log space and return a ticket corresponding the reservation.
425 *
426 * Each reservation is going to reserve extra space for a log record header.
427 * When writes happen to the on-disk log, we don't subtract the length of the
428 * log record header from any reservation. By wasting space in each
429 * reservation, we prevent over allocation problems.
430 */
431 int
432 xfs_log_reserve(
433 struct xfs_mount *mp,
434 int unit_bytes,
435 int cnt,
436 struct xlog_ticket **ticp,
437 __uint8_t client,
438 bool permanent,
439 uint t_type)
440 {
441 struct xlog *log = mp->m_log;
442 struct xlog_ticket *tic;
443 int need_bytes;
444 int error = 0;
445
446 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
447
448 if (XLOG_FORCED_SHUTDOWN(log))
449 return XFS_ERROR(EIO);
450
451 XFS_STATS_INC(xs_try_logspace);
452
453 ASSERT(*ticp == NULL);
454 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
455 KM_SLEEP | KM_MAYFAIL);
456 if (!tic)
457 return XFS_ERROR(ENOMEM);
458
459 tic->t_trans_type = t_type;
460 *ticp = tic;
461
462 xlog_grant_push_ail(log, tic->t_unit_res * tic->t_cnt);
463
464 trace_xfs_log_reserve(log, tic);
465
466 error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
467 &need_bytes);
468 if (error)
469 goto out_error;
470
471 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
472 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
473 trace_xfs_log_reserve_exit(log, tic);
474 xlog_verify_grant_tail(log);
475 return 0;
476
477 out_error:
478 /*
479 * If we are failing, make sure the ticket doesn't have any current
480 * reservations. We don't want to add this back when the ticket/
481 * transaction gets cancelled.
482 */
483 tic->t_curr_res = 0;
484 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
485 return error;
486 }
487
488
489 /*
490 * NOTES:
491 *
492 * 1. currblock field gets updated at startup and after in-core logs
493 * marked as with WANT_SYNC.
494 */
495
496 /*
497 * This routine is called when a user of a log manager ticket is done with
498 * the reservation. If the ticket was ever used, then a commit record for
499 * the associated transaction is written out as a log operation header with
500 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with
501 * a given ticket. If the ticket was one with a permanent reservation, then
502 * a few operations are done differently. Permanent reservation tickets by
503 * default don't release the reservation. They just commit the current
504 * transaction with the belief that the reservation is still needed. A flag
505 * must be passed in before permanent reservations are actually released.
506 * When these type of tickets are not released, they need to be set into
507 * the inited state again. By doing this, a start record will be written
508 * out when the next write occurs.
509 */
510 xfs_lsn_t
511 xfs_log_done(
512 struct xfs_mount *mp,
513 struct xlog_ticket *ticket,
514 struct xlog_in_core **iclog,
515 uint flags)
516 {
517 struct xlog *log = mp->m_log;
518 xfs_lsn_t lsn = 0;
519
520 if (XLOG_FORCED_SHUTDOWN(log) ||
521 /*
522 * If nothing was ever written, don't write out commit record.
523 * If we get an error, just continue and give back the log ticket.
524 */
525 (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
526 (xlog_commit_record(log, ticket, iclog, &lsn)))) {
527 lsn = (xfs_lsn_t) -1;
528 if (ticket->t_flags & XLOG_TIC_PERM_RESERV) {
529 flags |= XFS_LOG_REL_PERM_RESERV;
530 }
531 }
532
533
534 if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 ||
535 (flags & XFS_LOG_REL_PERM_RESERV)) {
536 trace_xfs_log_done_nonperm(log, ticket);
537
538 /*
539 * Release ticket if not permanent reservation or a specific
540 * request has been made to release a permanent reservation.
541 */
542 xlog_ungrant_log_space(log, ticket);
543 xfs_log_ticket_put(ticket);
544 } else {
545 trace_xfs_log_done_perm(log, ticket);
546
547 xlog_regrant_reserve_log_space(log, ticket);
548 /* If this ticket was a permanent reservation and we aren't
549 * trying to release it, reset the inited flags; so next time
550 * we write, a start record will be written out.
551 */
552 ticket->t_flags |= XLOG_TIC_INITED;
553 }
554
555 return lsn;
556 }
557
558 /*
559 * Attaches a new iclog I/O completion callback routine during
560 * transaction commit. If the log is in error state, a non-zero
561 * return code is handed back and the caller is responsible for
562 * executing the callback at an appropriate time.
563 */
564 int
565 xfs_log_notify(
566 struct xfs_mount *mp,
567 struct xlog_in_core *iclog,
568 xfs_log_callback_t *cb)
569 {
570 int abortflg;
571
572 spin_lock(&iclog->ic_callback_lock);
573 abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
574 if (!abortflg) {
575 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
576 (iclog->ic_state == XLOG_STATE_WANT_SYNC));
577 cb->cb_next = NULL;
578 *(iclog->ic_callback_tail) = cb;
579 iclog->ic_callback_tail = &(cb->cb_next);
580 }
581 spin_unlock(&iclog->ic_callback_lock);
582 return abortflg;
583 }
584
585 int
586 xfs_log_release_iclog(
587 struct xfs_mount *mp,
588 struct xlog_in_core *iclog)
589 {
590 if (xlog_state_release_iclog(mp->m_log, iclog)) {
591 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
592 return EIO;
593 }
594
595 return 0;
596 }
597
598 /*
599 * Mount a log filesystem
600 *
601 * mp - ubiquitous xfs mount point structure
602 * log_target - buftarg of on-disk log device
603 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
604 * num_bblocks - Number of BBSIZE blocks in on-disk log
605 *
606 * Return error or zero.
607 */
608 int
609 xfs_log_mount(
610 xfs_mount_t *mp,
611 xfs_buftarg_t *log_target,
612 xfs_daddr_t blk_offset,
613 int num_bblks)
614 {
615 int error;
616
617 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
618 xfs_notice(mp, "Mounting Filesystem");
619 else {
620 xfs_notice(mp,
621 "Mounting filesystem in no-recovery mode. Filesystem will be inconsistent.");
622 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
623 }
624
625 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
626 if (IS_ERR(mp->m_log)) {
627 error = -PTR_ERR(mp->m_log);
628 goto out;
629 }
630
631 /*
632 * Initialize the AIL now we have a log.
633 */
634 error = xfs_trans_ail_init(mp);
635 if (error) {
636 xfs_warn(mp, "AIL initialisation failed: error %d", error);
637 goto out_free_log;
638 }
639 mp->m_log->l_ailp = mp->m_ail;
640
641 /*
642 * skip log recovery on a norecovery mount. pretend it all
643 * just worked.
644 */
645 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
646 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
647
648 if (readonly)
649 mp->m_flags &= ~XFS_MOUNT_RDONLY;
650
651 error = xlog_recover(mp->m_log);
652
653 if (readonly)
654 mp->m_flags |= XFS_MOUNT_RDONLY;
655 if (error) {
656 xfs_warn(mp, "log mount/recovery failed: error %d",
657 error);
658 goto out_destroy_ail;
659 }
660 }
661
662 /* Normal transactions can now occur */
663 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
664
665 /*
666 * Now the log has been fully initialised and we know were our
667 * space grant counters are, we can initialise the permanent ticket
668 * needed for delayed logging to work.
669 */
670 xlog_cil_init_post_recovery(mp->m_log);
671
672 return 0;
673
674 out_destroy_ail:
675 xfs_trans_ail_destroy(mp);
676 out_free_log:
677 xlog_dealloc_log(mp->m_log);
678 out:
679 return error;
680 }
681
682 /*
683 * Finish the recovery of the file system. This is separate from the
684 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
685 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
686 * here.
687 *
688 * If we finish recovery successfully, start the background log work. If we are
689 * not doing recovery, then we have a RO filesystem and we don't need to start
690 * it.
691 */
692 int
693 xfs_log_mount_finish(xfs_mount_t *mp)
694 {
695 int error = 0;
696
697 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
698 error = xlog_recover_finish(mp->m_log);
699 if (!error)
700 xfs_log_work_queue(mp);
701 } else {
702 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
703 }
704
705
706 return error;
707 }
708
709 /*
710 * Final log writes as part of unmount.
711 *
712 * Mark the filesystem clean as unmount happens. Note that during relocation
713 * this routine needs to be executed as part of source-bag while the
714 * deallocation must not be done until source-end.
715 */
716
717 /*
718 * Unmount record used to have a string "Unmount filesystem--" in the
719 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
720 * We just write the magic number now since that particular field isn't
721 * currently architecture converted and "nUmount" is a bit foo.
722 * As far as I know, there weren't any dependencies on the old behaviour.
723 */
724
725 int
726 xfs_log_unmount_write(xfs_mount_t *mp)
727 {
728 struct xlog *log = mp->m_log;
729 xlog_in_core_t *iclog;
730 #ifdef DEBUG
731 xlog_in_core_t *first_iclog;
732 #endif
733 xlog_ticket_t *tic = NULL;
734 xfs_lsn_t lsn;
735 int error;
736
737 /*
738 * Don't write out unmount record on read-only mounts.
739 * Or, if we are doing a forced umount (typically because of IO errors).
740 */
741 if (mp->m_flags & XFS_MOUNT_RDONLY)
742 return 0;
743
744 error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
745 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
746
747 #ifdef DEBUG
748 first_iclog = iclog = log->l_iclog;
749 do {
750 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
751 ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
752 ASSERT(iclog->ic_offset == 0);
753 }
754 iclog = iclog->ic_next;
755 } while (iclog != first_iclog);
756 #endif
757 if (! (XLOG_FORCED_SHUTDOWN(log))) {
758 error = xfs_log_reserve(mp, 600, 1, &tic,
759 XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
760 if (!error) {
761 /* the data section must be 32 bit size aligned */
762 struct {
763 __uint16_t magic;
764 __uint16_t pad1;
765 __uint32_t pad2; /* may as well make it 64 bits */
766 } magic = {
767 .magic = XLOG_UNMOUNT_TYPE,
768 };
769 struct xfs_log_iovec reg = {
770 .i_addr = &magic,
771 .i_len = sizeof(magic),
772 .i_type = XLOG_REG_TYPE_UNMOUNT,
773 };
774 struct xfs_log_vec vec = {
775 .lv_niovecs = 1,
776 .lv_iovecp = &reg,
777 };
778
779 /* remove inited flag, and account for space used */
780 tic->t_flags = 0;
781 tic->t_curr_res -= sizeof(magic);
782 error = xlog_write(log, &vec, tic, &lsn,
783 NULL, XLOG_UNMOUNT_TRANS);
784 /*
785 * At this point, we're umounting anyway,
786 * so there's no point in transitioning log state
787 * to IOERROR. Just continue...
788 */
789 }
790
791 if (error)
792 xfs_alert(mp, "%s: unmount record failed", __func__);
793
794
795 spin_lock(&log->l_icloglock);
796 iclog = log->l_iclog;
797 atomic_inc(&iclog->ic_refcnt);
798 xlog_state_want_sync(log, iclog);
799 spin_unlock(&log->l_icloglock);
800 error = xlog_state_release_iclog(log, iclog);
801
802 spin_lock(&log->l_icloglock);
803 if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
804 iclog->ic_state == XLOG_STATE_DIRTY)) {
805 if (!XLOG_FORCED_SHUTDOWN(log)) {
806 xlog_wait(&iclog->ic_force_wait,
807 &log->l_icloglock);
808 } else {
809 spin_unlock(&log->l_icloglock);
810 }
811 } else {
812 spin_unlock(&log->l_icloglock);
813 }
814 if (tic) {
815 trace_xfs_log_umount_write(log, tic);
816 xlog_ungrant_log_space(log, tic);
817 xfs_log_ticket_put(tic);
818 }
819 } else {
820 /*
821 * We're already in forced_shutdown mode, couldn't
822 * even attempt to write out the unmount transaction.
823 *
824 * Go through the motions of sync'ing and releasing
825 * the iclog, even though no I/O will actually happen,
826 * we need to wait for other log I/Os that may already
827 * be in progress. Do this as a separate section of
828 * code so we'll know if we ever get stuck here that
829 * we're in this odd situation of trying to unmount
830 * a file system that went into forced_shutdown as
831 * the result of an unmount..
832 */
833 spin_lock(&log->l_icloglock);
834 iclog = log->l_iclog;
835 atomic_inc(&iclog->ic_refcnt);
836
837 xlog_state_want_sync(log, iclog);
838 spin_unlock(&log->l_icloglock);
839 error = xlog_state_release_iclog(log, iclog);
840
841 spin_lock(&log->l_icloglock);
842
843 if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE
844 || iclog->ic_state == XLOG_STATE_DIRTY
845 || iclog->ic_state == XLOG_STATE_IOERROR) ) {
846
847 xlog_wait(&iclog->ic_force_wait,
848 &log->l_icloglock);
849 } else {
850 spin_unlock(&log->l_icloglock);
851 }
852 }
853
854 return error;
855 } /* xfs_log_unmount_write */
856
857 /*
858 * Shut down and release the AIL and Log.
859 *
860 * During unmount, we need to ensure we flush all the dirty metadata objects
861 * from the AIL so that the log is empty before we write the unmount record to
862 * the log.
863 *
864 * To do this, we first need to shut down the background log work so it is not
865 * trying to cover the log as we clean up. We then need to unpin all objects in
866 * the log so we can then flush them out. Once they have completed their IO and
867 * run the callbacks removing themselves from the AIL, we can write the unmount
868 * record, tear down the AIL and finally free the log.
869 */
870 void
871 xfs_log_unmount(xfs_mount_t *mp)
872 {
873 cancel_delayed_work_sync(&mp->m_log->l_work);
874 xfs_log_force(mp, XFS_LOG_SYNC);
875
876 /*
877 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
878 * will push it, xfs_wait_buftarg() will not wait for it. Further,
879 * xfs_buf_iowait() cannot be used because it was pushed with the
880 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
881 * the IO to complete.
882 */
883 xfs_ail_push_all_sync(mp->m_ail);
884 xfs_wait_buftarg(mp->m_ddev_targp);
885 xfs_buf_lock(mp->m_sb_bp);
886 xfs_buf_unlock(mp->m_sb_bp);
887
888 xfs_log_unmount_write(mp);
889
890 xfs_trans_ail_destroy(mp);
891 xlog_dealloc_log(mp->m_log);
892 }
893
894 void
895 xfs_log_item_init(
896 struct xfs_mount *mp,
897 struct xfs_log_item *item,
898 int type,
899 const struct xfs_item_ops *ops)
900 {
901 item->li_mountp = mp;
902 item->li_ailp = mp->m_ail;
903 item->li_type = type;
904 item->li_ops = ops;
905 item->li_lv = NULL;
906
907 INIT_LIST_HEAD(&item->li_ail);
908 INIT_LIST_HEAD(&item->li_cil);
909 }
910
911 /*
912 * Wake up processes waiting for log space after we have moved the log tail.
913 */
914 void
915 xfs_log_space_wake(
916 struct xfs_mount *mp)
917 {
918 struct xlog *log = mp->m_log;
919 int free_bytes;
920
921 if (XLOG_FORCED_SHUTDOWN(log))
922 return;
923
924 if (!list_empty_careful(&log->l_write_head.waiters)) {
925 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
926
927 spin_lock(&log->l_write_head.lock);
928 free_bytes = xlog_space_left(log, &log->l_write_head.grant);
929 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
930 spin_unlock(&log->l_write_head.lock);
931 }
932
933 if (!list_empty_careful(&log->l_reserve_head.waiters)) {
934 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
935
936 spin_lock(&log->l_reserve_head.lock);
937 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
938 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
939 spin_unlock(&log->l_reserve_head.lock);
940 }
941 }
942
943 /*
944 * Determine if we have a transaction that has gone to disk
945 * that needs to be covered. To begin the transition to the idle state
946 * firstly the log needs to be idle (no AIL and nothing in the iclogs).
947 * If we are then in a state where covering is needed, the caller is informed
948 * that dummy transactions are required to move the log into the idle state.
949 *
950 * Because this is called as part of the sync process, we should also indicate
951 * that dummy transactions should be issued in anything but the covered or
952 * idle states. This ensures that the log tail is accurately reflected in
953 * the log at the end of the sync, hence if a crash occurrs avoids replay
954 * of transactions where the metadata is already on disk.
955 */
956 int
957 xfs_log_need_covered(xfs_mount_t *mp)
958 {
959 int needed = 0;
960 struct xlog *log = mp->m_log;
961
962 if (!xfs_fs_writable(mp))
963 return 0;
964
965 spin_lock(&log->l_icloglock);
966 switch (log->l_covered_state) {
967 case XLOG_STATE_COVER_DONE:
968 case XLOG_STATE_COVER_DONE2:
969 case XLOG_STATE_COVER_IDLE:
970 break;
971 case XLOG_STATE_COVER_NEED:
972 case XLOG_STATE_COVER_NEED2:
973 if (!xfs_ail_min_lsn(log->l_ailp) &&
974 xlog_iclogs_empty(log)) {
975 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
976 log->l_covered_state = XLOG_STATE_COVER_DONE;
977 else
978 log->l_covered_state = XLOG_STATE_COVER_DONE2;
979 }
980 /* FALLTHRU */
981 default:
982 needed = 1;
983 break;
984 }
985 spin_unlock(&log->l_icloglock);
986 return needed;
987 }
988
989 /*
990 * We may be holding the log iclog lock upon entering this routine.
991 */
992 xfs_lsn_t
993 xlog_assign_tail_lsn_locked(
994 struct xfs_mount *mp)
995 {
996 struct xlog *log = mp->m_log;
997 struct xfs_log_item *lip;
998 xfs_lsn_t tail_lsn;
999
1000 assert_spin_locked(&mp->m_ail->xa_lock);
1001
1002 /*
1003 * To make sure we always have a valid LSN for the log tail we keep
1004 * track of the last LSN which was committed in log->l_last_sync_lsn,
1005 * and use that when the AIL was empty.
1006 */
1007 lip = xfs_ail_min(mp->m_ail);
1008 if (lip)
1009 tail_lsn = lip->li_lsn;
1010 else
1011 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1012 atomic64_set(&log->l_tail_lsn, tail_lsn);
1013 return tail_lsn;
1014 }
1015
1016 xfs_lsn_t
1017 xlog_assign_tail_lsn(
1018 struct xfs_mount *mp)
1019 {
1020 xfs_lsn_t tail_lsn;
1021
1022 spin_lock(&mp->m_ail->xa_lock);
1023 tail_lsn = xlog_assign_tail_lsn_locked(mp);
1024 spin_unlock(&mp->m_ail->xa_lock);
1025
1026 return tail_lsn;
1027 }
1028
1029 /*
1030 * Return the space in the log between the tail and the head. The head
1031 * is passed in the cycle/bytes formal parms. In the special case where
1032 * the reserve head has wrapped passed the tail, this calculation is no
1033 * longer valid. In this case, just return 0 which means there is no space
1034 * in the log. This works for all places where this function is called
1035 * with the reserve head. Of course, if the write head were to ever
1036 * wrap the tail, we should blow up. Rather than catch this case here,
1037 * we depend on other ASSERTions in other parts of the code. XXXmiken
1038 *
1039 * This code also handles the case where the reservation head is behind
1040 * the tail. The details of this case are described below, but the end
1041 * result is that we return the size of the log as the amount of space left.
1042 */
1043 STATIC int
1044 xlog_space_left(
1045 struct xlog *log,
1046 atomic64_t *head)
1047 {
1048 int free_bytes;
1049 int tail_bytes;
1050 int tail_cycle;
1051 int head_cycle;
1052 int head_bytes;
1053
1054 xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1055 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1056 tail_bytes = BBTOB(tail_bytes);
1057 if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1058 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1059 else if (tail_cycle + 1 < head_cycle)
1060 return 0;
1061 else if (tail_cycle < head_cycle) {
1062 ASSERT(tail_cycle == (head_cycle - 1));
1063 free_bytes = tail_bytes - head_bytes;
1064 } else {
1065 /*
1066 * The reservation head is behind the tail.
1067 * In this case we just want to return the size of the
1068 * log as the amount of space left.
1069 */
1070 xfs_alert(log->l_mp,
1071 "xlog_space_left: head behind tail\n"
1072 " tail_cycle = %d, tail_bytes = %d\n"
1073 " GH cycle = %d, GH bytes = %d",
1074 tail_cycle, tail_bytes, head_cycle, head_bytes);
1075 ASSERT(0);
1076 free_bytes = log->l_logsize;
1077 }
1078 return free_bytes;
1079 }
1080
1081
1082 /*
1083 * Log function which is called when an io completes.
1084 *
1085 * The log manager needs its own routine, in order to control what
1086 * happens with the buffer after the write completes.
1087 */
1088 void
1089 xlog_iodone(xfs_buf_t *bp)
1090 {
1091 struct xlog_in_core *iclog = bp->b_fspriv;
1092 struct xlog *l = iclog->ic_log;
1093 int aborted = 0;
1094
1095 /*
1096 * Race to shutdown the filesystem if we see an error.
1097 */
1098 if (XFS_TEST_ERROR((xfs_buf_geterror(bp)), l->l_mp,
1099 XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) {
1100 xfs_buf_ioerror_alert(bp, __func__);
1101 xfs_buf_stale(bp);
1102 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1103 /*
1104 * This flag will be propagated to the trans-committed
1105 * callback routines to let them know that the log-commit
1106 * didn't succeed.
1107 */
1108 aborted = XFS_LI_ABORTED;
1109 } else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1110 aborted = XFS_LI_ABORTED;
1111 }
1112
1113 /* log I/O is always issued ASYNC */
1114 ASSERT(XFS_BUF_ISASYNC(bp));
1115 xlog_state_done_syncing(iclog, aborted);
1116 /*
1117 * do not reference the buffer (bp) here as we could race
1118 * with it being freed after writing the unmount record to the
1119 * log.
1120 */
1121
1122 } /* xlog_iodone */
1123
1124 /*
1125 * Return size of each in-core log record buffer.
1126 *
1127 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1128 *
1129 * If the filesystem blocksize is too large, we may need to choose a
1130 * larger size since the directory code currently logs entire blocks.
1131 */
1132
1133 STATIC void
1134 xlog_get_iclog_buffer_size(
1135 struct xfs_mount *mp,
1136 struct xlog *log)
1137 {
1138 int size;
1139 int xhdrs;
1140
1141 if (mp->m_logbufs <= 0)
1142 log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1143 else
1144 log->l_iclog_bufs = mp->m_logbufs;
1145
1146 /*
1147 * Buffer size passed in from mount system call.
1148 */
1149 if (mp->m_logbsize > 0) {
1150 size = log->l_iclog_size = mp->m_logbsize;
1151 log->l_iclog_size_log = 0;
1152 while (size != 1) {
1153 log->l_iclog_size_log++;
1154 size >>= 1;
1155 }
1156
1157 if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1158 /* # headers = size / 32k
1159 * one header holds cycles from 32k of data
1160 */
1161
1162 xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1163 if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1164 xhdrs++;
1165 log->l_iclog_hsize = xhdrs << BBSHIFT;
1166 log->l_iclog_heads = xhdrs;
1167 } else {
1168 ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1169 log->l_iclog_hsize = BBSIZE;
1170 log->l_iclog_heads = 1;
1171 }
1172 goto done;
1173 }
1174
1175 /* All machines use 32kB buffers by default. */
1176 log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1177 log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1178
1179 /* the default log size is 16k or 32k which is one header sector */
1180 log->l_iclog_hsize = BBSIZE;
1181 log->l_iclog_heads = 1;
1182
1183 done:
1184 /* are we being asked to make the sizes selected above visible? */
1185 if (mp->m_logbufs == 0)
1186 mp->m_logbufs = log->l_iclog_bufs;
1187 if (mp->m_logbsize == 0)
1188 mp->m_logbsize = log->l_iclog_size;
1189 } /* xlog_get_iclog_buffer_size */
1190
1191
1192 void
1193 xfs_log_work_queue(
1194 struct xfs_mount *mp)
1195 {
1196 queue_delayed_work(mp->m_log_workqueue, &mp->m_log->l_work,
1197 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1198 }
1199
1200 /*
1201 * Every sync period we need to unpin all items in the AIL and push them to
1202 * disk. If there is nothing dirty, then we might need to cover the log to
1203 * indicate that the filesystem is idle.
1204 */
1205 void
1206 xfs_log_worker(
1207 struct work_struct *work)
1208 {
1209 struct xlog *log = container_of(to_delayed_work(work),
1210 struct xlog, l_work);
1211 struct xfs_mount *mp = log->l_mp;
1212
1213 /* dgc: errors ignored - not fatal and nowhere to report them */
1214 if (xfs_log_need_covered(mp))
1215 xfs_fs_log_dummy(mp);
1216 else
1217 xfs_log_force(mp, 0);
1218
1219 /* start pushing all the metadata that is currently dirty */
1220 xfs_ail_push_all(mp->m_ail);
1221
1222 /* queue us up again */
1223 xfs_log_work_queue(mp);
1224 }
1225
1226 /*
1227 * This routine initializes some of the log structure for a given mount point.
1228 * Its primary purpose is to fill in enough, so recovery can occur. However,
1229 * some other stuff may be filled in too.
1230 */
1231 STATIC struct xlog *
1232 xlog_alloc_log(
1233 struct xfs_mount *mp,
1234 struct xfs_buftarg *log_target,
1235 xfs_daddr_t blk_offset,
1236 int num_bblks)
1237 {
1238 struct xlog *log;
1239 xlog_rec_header_t *head;
1240 xlog_in_core_t **iclogp;
1241 xlog_in_core_t *iclog, *prev_iclog=NULL;
1242 xfs_buf_t *bp;
1243 int i;
1244 int error = ENOMEM;
1245 uint log2_size = 0;
1246
1247 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1248 if (!log) {
1249 xfs_warn(mp, "Log allocation failed: No memory!");
1250 goto out;
1251 }
1252
1253 log->l_mp = mp;
1254 log->l_targ = log_target;
1255 log->l_logsize = BBTOB(num_bblks);
1256 log->l_logBBstart = blk_offset;
1257 log->l_logBBsize = num_bblks;
1258 log->l_covered_state = XLOG_STATE_COVER_IDLE;
1259 log->l_flags |= XLOG_ACTIVE_RECOVERY;
1260 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1261
1262 log->l_prev_block = -1;
1263 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1264 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1265 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1266 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
1267
1268 xlog_grant_head_init(&log->l_reserve_head);
1269 xlog_grant_head_init(&log->l_write_head);
1270
1271 error = EFSCORRUPTED;
1272 if (xfs_sb_version_hassector(&mp->m_sb)) {
1273 log2_size = mp->m_sb.sb_logsectlog;
1274 if (log2_size < BBSHIFT) {
1275 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1276 log2_size, BBSHIFT);
1277 goto out_free_log;
1278 }
1279
1280 log2_size -= BBSHIFT;
1281 if (log2_size > mp->m_sectbb_log) {
1282 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1283 log2_size, mp->m_sectbb_log);
1284 goto out_free_log;
1285 }
1286
1287 /* for larger sector sizes, must have v2 or external log */
1288 if (log2_size && log->l_logBBstart > 0 &&
1289 !xfs_sb_version_haslogv2(&mp->m_sb)) {
1290 xfs_warn(mp,
1291 "log sector size (0x%x) invalid for configuration.",
1292 log2_size);
1293 goto out_free_log;
1294 }
1295 }
1296 log->l_sectBBsize = 1 << log2_size;
1297
1298 xlog_get_iclog_buffer_size(mp, log);
1299
1300 error = ENOMEM;
1301 bp = xfs_buf_alloc(mp->m_logdev_targp, 0, BTOBB(log->l_iclog_size), 0);
1302 if (!bp)
1303 goto out_free_log;
1304 bp->b_iodone = xlog_iodone;
1305 ASSERT(xfs_buf_islocked(bp));
1306 log->l_xbuf = bp;
1307
1308 spin_lock_init(&log->l_icloglock);
1309 init_waitqueue_head(&log->l_flush_wait);
1310
1311 iclogp = &log->l_iclog;
1312 /*
1313 * The amount of memory to allocate for the iclog structure is
1314 * rather funky due to the way the structure is defined. It is
1315 * done this way so that we can use different sizes for machines
1316 * with different amounts of memory. See the definition of
1317 * xlog_in_core_t in xfs_log_priv.h for details.
1318 */
1319 ASSERT(log->l_iclog_size >= 4096);
1320 for (i=0; i < log->l_iclog_bufs; i++) {
1321 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1322 if (!*iclogp)
1323 goto out_free_iclog;
1324
1325 iclog = *iclogp;
1326 iclog->ic_prev = prev_iclog;
1327 prev_iclog = iclog;
1328
1329 bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1330 BTOBB(log->l_iclog_size), 0);
1331 if (!bp)
1332 goto out_free_iclog;
1333
1334 bp->b_iodone = xlog_iodone;
1335 iclog->ic_bp = bp;
1336 iclog->ic_data = bp->b_addr;
1337 #ifdef DEBUG
1338 log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header);
1339 #endif
1340 head = &iclog->ic_header;
1341 memset(head, 0, sizeof(xlog_rec_header_t));
1342 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1343 head->h_version = cpu_to_be32(
1344 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1345 head->h_size = cpu_to_be32(log->l_iclog_size);
1346 /* new fields */
1347 head->h_fmt = cpu_to_be32(XLOG_FMT);
1348 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1349
1350 iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1351 iclog->ic_state = XLOG_STATE_ACTIVE;
1352 iclog->ic_log = log;
1353 atomic_set(&iclog->ic_refcnt, 0);
1354 spin_lock_init(&iclog->ic_callback_lock);
1355 iclog->ic_callback_tail = &(iclog->ic_callback);
1356 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1357
1358 ASSERT(xfs_buf_islocked(iclog->ic_bp));
1359 init_waitqueue_head(&iclog->ic_force_wait);
1360 init_waitqueue_head(&iclog->ic_write_wait);
1361
1362 iclogp = &iclog->ic_next;
1363 }
1364 *iclogp = log->l_iclog; /* complete ring */
1365 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
1366
1367 error = xlog_cil_init(log);
1368 if (error)
1369 goto out_free_iclog;
1370 return log;
1371
1372 out_free_iclog:
1373 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1374 prev_iclog = iclog->ic_next;
1375 if (iclog->ic_bp)
1376 xfs_buf_free(iclog->ic_bp);
1377 kmem_free(iclog);
1378 }
1379 spinlock_destroy(&log->l_icloglock);
1380 xfs_buf_free(log->l_xbuf);
1381 out_free_log:
1382 kmem_free(log);
1383 out:
1384 return ERR_PTR(-error);
1385 } /* xlog_alloc_log */
1386
1387
1388 /*
1389 * Write out the commit record of a transaction associated with the given
1390 * ticket. Return the lsn of the commit record.
1391 */
1392 STATIC int
1393 xlog_commit_record(
1394 struct xlog *log,
1395 struct xlog_ticket *ticket,
1396 struct xlog_in_core **iclog,
1397 xfs_lsn_t *commitlsnp)
1398 {
1399 struct xfs_mount *mp = log->l_mp;
1400 int error;
1401 struct xfs_log_iovec reg = {
1402 .i_addr = NULL,
1403 .i_len = 0,
1404 .i_type = XLOG_REG_TYPE_COMMIT,
1405 };
1406 struct xfs_log_vec vec = {
1407 .lv_niovecs = 1,
1408 .lv_iovecp = &reg,
1409 };
1410
1411 ASSERT_ALWAYS(iclog);
1412 error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1413 XLOG_COMMIT_TRANS);
1414 if (error)
1415 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1416 return error;
1417 }
1418
1419 /*
1420 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1421 * log space. This code pushes on the lsn which would supposedly free up
1422 * the 25% which we want to leave free. We may need to adopt a policy which
1423 * pushes on an lsn which is further along in the log once we reach the high
1424 * water mark. In this manner, we would be creating a low water mark.
1425 */
1426 STATIC void
1427 xlog_grant_push_ail(
1428 struct xlog *log,
1429 int need_bytes)
1430 {
1431 xfs_lsn_t threshold_lsn = 0;
1432 xfs_lsn_t last_sync_lsn;
1433 int free_blocks;
1434 int free_bytes;
1435 int threshold_block;
1436 int threshold_cycle;
1437 int free_threshold;
1438
1439 ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1440
1441 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1442 free_blocks = BTOBBT(free_bytes);
1443
1444 /*
1445 * Set the threshold for the minimum number of free blocks in the
1446 * log to the maximum of what the caller needs, one quarter of the
1447 * log, and 256 blocks.
1448 */
1449 free_threshold = BTOBB(need_bytes);
1450 free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1451 free_threshold = MAX(free_threshold, 256);
1452 if (free_blocks >= free_threshold)
1453 return;
1454
1455 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1456 &threshold_block);
1457 threshold_block += free_threshold;
1458 if (threshold_block >= log->l_logBBsize) {
1459 threshold_block -= log->l_logBBsize;
1460 threshold_cycle += 1;
1461 }
1462 threshold_lsn = xlog_assign_lsn(threshold_cycle,
1463 threshold_block);
1464 /*
1465 * Don't pass in an lsn greater than the lsn of the last
1466 * log record known to be on disk. Use a snapshot of the last sync lsn
1467 * so that it doesn't change between the compare and the set.
1468 */
1469 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1470 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1471 threshold_lsn = last_sync_lsn;
1472
1473 /*
1474 * Get the transaction layer to kick the dirty buffers out to
1475 * disk asynchronously. No point in trying to do this if
1476 * the filesystem is shutting down.
1477 */
1478 if (!XLOG_FORCED_SHUTDOWN(log))
1479 xfs_ail_push(log->l_ailp, threshold_lsn);
1480 }
1481
1482 /*
1483 * The bdstrat callback function for log bufs. This gives us a central
1484 * place to trap bufs in case we get hit by a log I/O error and need to
1485 * shutdown. Actually, in practice, even when we didn't get a log error,
1486 * we transition the iclogs to IOERROR state *after* flushing all existing
1487 * iclogs to disk. This is because we don't want anymore new transactions to be
1488 * started or completed afterwards.
1489 */
1490 STATIC int
1491 xlog_bdstrat(
1492 struct xfs_buf *bp)
1493 {
1494 struct xlog_in_core *iclog = bp->b_fspriv;
1495
1496 if (iclog->ic_state & XLOG_STATE_IOERROR) {
1497 xfs_buf_ioerror(bp, EIO);
1498 xfs_buf_stale(bp);
1499 xfs_buf_ioend(bp, 0);
1500 /*
1501 * It would seem logical to return EIO here, but we rely on
1502 * the log state machine to propagate I/O errors instead of
1503 * doing it here.
1504 */
1505 return 0;
1506 }
1507
1508 xfs_buf_iorequest(bp);
1509 return 0;
1510 }
1511
1512 /*
1513 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1514 * fashion. Previously, we should have moved the current iclog
1515 * ptr in the log to point to the next available iclog. This allows further
1516 * write to continue while this code syncs out an iclog ready to go.
1517 * Before an in-core log can be written out, the data section must be scanned
1518 * to save away the 1st word of each BBSIZE block into the header. We replace
1519 * it with the current cycle count. Each BBSIZE block is tagged with the
1520 * cycle count because there in an implicit assumption that drives will
1521 * guarantee that entire 512 byte blocks get written at once. In other words,
1522 * we can't have part of a 512 byte block written and part not written. By
1523 * tagging each block, we will know which blocks are valid when recovering
1524 * after an unclean shutdown.
1525 *
1526 * This routine is single threaded on the iclog. No other thread can be in
1527 * this routine with the same iclog. Changing contents of iclog can there-
1528 * fore be done without grabbing the state machine lock. Updating the global
1529 * log will require grabbing the lock though.
1530 *
1531 * The entire log manager uses a logical block numbering scheme. Only
1532 * log_sync (and then only bwrite()) know about the fact that the log may
1533 * not start with block zero on a given device. The log block start offset
1534 * is added immediately before calling bwrite().
1535 */
1536
1537 STATIC int
1538 xlog_sync(
1539 struct xlog *log,
1540 struct xlog_in_core *iclog)
1541 {
1542 xfs_caddr_t dptr; /* pointer to byte sized element */
1543 xfs_buf_t *bp;
1544 int i;
1545 uint count; /* byte count of bwrite */
1546 uint count_init; /* initial count before roundup */
1547 int roundoff; /* roundoff to BB or stripe */
1548 int split = 0; /* split write into two regions */
1549 int error;
1550 int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1551
1552 XFS_STATS_INC(xs_log_writes);
1553 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1554
1555 /* Add for LR header */
1556 count_init = log->l_iclog_hsize + iclog->ic_offset;
1557
1558 /* Round out the log write size */
1559 if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1560 /* we have a v2 stripe unit to use */
1561 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1562 } else {
1563 count = BBTOB(BTOBB(count_init));
1564 }
1565 roundoff = count - count_init;
1566 ASSERT(roundoff >= 0);
1567 ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1568 roundoff < log->l_mp->m_sb.sb_logsunit)
1569 ||
1570 (log->l_mp->m_sb.sb_logsunit <= 1 &&
1571 roundoff < BBTOB(1)));
1572
1573 /* move grant heads by roundoff in sync */
1574 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1575 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1576
1577 /* put cycle number in every block */
1578 xlog_pack_data(log, iclog, roundoff);
1579
1580 /* real byte length */
1581 if (v2) {
1582 iclog->ic_header.h_len =
1583 cpu_to_be32(iclog->ic_offset + roundoff);
1584 } else {
1585 iclog->ic_header.h_len =
1586 cpu_to_be32(iclog->ic_offset);
1587 }
1588
1589 bp = iclog->ic_bp;
1590 XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1591
1592 XFS_STATS_ADD(xs_log_blocks, BTOBB(count));
1593
1594 /* Do we need to split this write into 2 parts? */
1595 if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1596 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1597 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1598 iclog->ic_bwritecnt = 2; /* split into 2 writes */
1599 } else {
1600 iclog->ic_bwritecnt = 1;
1601 }
1602 bp->b_io_length = BTOBB(count);
1603 bp->b_fspriv = iclog;
1604 XFS_BUF_ZEROFLAGS(bp);
1605 XFS_BUF_ASYNC(bp);
1606 bp->b_flags |= XBF_SYNCIO;
1607
1608 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1609 bp->b_flags |= XBF_FUA;
1610
1611 /*
1612 * Flush the data device before flushing the log to make
1613 * sure all meta data written back from the AIL actually made
1614 * it to disk before stamping the new log tail LSN into the
1615 * log buffer. For an external log we need to issue the
1616 * flush explicitly, and unfortunately synchronously here;
1617 * for an internal log we can simply use the block layer
1618 * state machine for preflushes.
1619 */
1620 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1621 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1622 else
1623 bp->b_flags |= XBF_FLUSH;
1624 }
1625
1626 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1627 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1628
1629 xlog_verify_iclog(log, iclog, count, B_TRUE);
1630
1631 /* account for log which doesn't start at block #0 */
1632 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1633 /*
1634 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1635 * is shutting down.
1636 */
1637 XFS_BUF_WRITE(bp);
1638
1639 error = xlog_bdstrat(bp);
1640 if (error) {
1641 xfs_buf_ioerror_alert(bp, "xlog_sync");
1642 return error;
1643 }
1644 if (split) {
1645 bp = iclog->ic_log->l_xbuf;
1646 XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */
1647 xfs_buf_associate_memory(bp,
1648 (char *)&iclog->ic_header + count, split);
1649 bp->b_fspriv = iclog;
1650 XFS_BUF_ZEROFLAGS(bp);
1651 XFS_BUF_ASYNC(bp);
1652 bp->b_flags |= XBF_SYNCIO;
1653 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1654 bp->b_flags |= XBF_FUA;
1655 dptr = bp->b_addr;
1656 /*
1657 * Bump the cycle numbers at the start of each block
1658 * since this part of the buffer is at the start of
1659 * a new cycle. Watch out for the header magic number
1660 * case, though.
1661 */
1662 for (i = 0; i < split; i += BBSIZE) {
1663 be32_add_cpu((__be32 *)dptr, 1);
1664 if (be32_to_cpu(*(__be32 *)dptr) == XLOG_HEADER_MAGIC_NUM)
1665 be32_add_cpu((__be32 *)dptr, 1);
1666 dptr += BBSIZE;
1667 }
1668
1669 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1670 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1671
1672 /* account for internal log which doesn't start at block #0 */
1673 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1674 XFS_BUF_WRITE(bp);
1675 error = xlog_bdstrat(bp);
1676 if (error) {
1677 xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1678 return error;
1679 }
1680 }
1681 return 0;
1682 } /* xlog_sync */
1683
1684
1685 /*
1686 * Deallocate a log structure
1687 */
1688 STATIC void
1689 xlog_dealloc_log(
1690 struct xlog *log)
1691 {
1692 xlog_in_core_t *iclog, *next_iclog;
1693 int i;
1694
1695 xlog_cil_destroy(log);
1696
1697 /*
1698 * always need to ensure that the extra buffer does not point to memory
1699 * owned by another log buffer before we free it.
1700 */
1701 xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1702 xfs_buf_free(log->l_xbuf);
1703
1704 iclog = log->l_iclog;
1705 for (i=0; i<log->l_iclog_bufs; i++) {
1706 xfs_buf_free(iclog->ic_bp);
1707 next_iclog = iclog->ic_next;
1708 kmem_free(iclog);
1709 iclog = next_iclog;
1710 }
1711 spinlock_destroy(&log->l_icloglock);
1712
1713 log->l_mp->m_log = NULL;
1714 kmem_free(log);
1715 } /* xlog_dealloc_log */
1716
1717 /*
1718 * Update counters atomically now that memcpy is done.
1719 */
1720 /* ARGSUSED */
1721 static inline void
1722 xlog_state_finish_copy(
1723 struct xlog *log,
1724 struct xlog_in_core *iclog,
1725 int record_cnt,
1726 int copy_bytes)
1727 {
1728 spin_lock(&log->l_icloglock);
1729
1730 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1731 iclog->ic_offset += copy_bytes;
1732
1733 spin_unlock(&log->l_icloglock);
1734 } /* xlog_state_finish_copy */
1735
1736
1737
1738
1739 /*
1740 * print out info relating to regions written which consume
1741 * the reservation
1742 */
1743 void
1744 xlog_print_tic_res(
1745 struct xfs_mount *mp,
1746 struct xlog_ticket *ticket)
1747 {
1748 uint i;
1749 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1750
1751 /* match with XLOG_REG_TYPE_* in xfs_log.h */
1752 static char *res_type_str[XLOG_REG_TYPE_MAX] = {
1753 "bformat",
1754 "bchunk",
1755 "efi_format",
1756 "efd_format",
1757 "iformat",
1758 "icore",
1759 "iext",
1760 "ibroot",
1761 "ilocal",
1762 "iattr_ext",
1763 "iattr_broot",
1764 "iattr_local",
1765 "qformat",
1766 "dquot",
1767 "quotaoff",
1768 "LR header",
1769 "unmount",
1770 "commit",
1771 "trans header"
1772 };
1773 static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
1774 "SETATTR_NOT_SIZE",
1775 "SETATTR_SIZE",
1776 "INACTIVE",
1777 "CREATE",
1778 "CREATE_TRUNC",
1779 "TRUNCATE_FILE",
1780 "REMOVE",
1781 "LINK",
1782 "RENAME",
1783 "MKDIR",
1784 "RMDIR",
1785 "SYMLINK",
1786 "SET_DMATTRS",
1787 "GROWFS",
1788 "STRAT_WRITE",
1789 "DIOSTRAT",
1790 "WRITE_SYNC",
1791 "WRITEID",
1792 "ADDAFORK",
1793 "ATTRINVAL",
1794 "ATRUNCATE",
1795 "ATTR_SET",
1796 "ATTR_RM",
1797 "ATTR_FLAG",
1798 "CLEAR_AGI_BUCKET",
1799 "QM_SBCHANGE",
1800 "DUMMY1",
1801 "DUMMY2",
1802 "QM_QUOTAOFF",
1803 "QM_DQALLOC",
1804 "QM_SETQLIM",
1805 "QM_DQCLUSTER",
1806 "QM_QINOCREATE",
1807 "QM_QUOTAOFF_END",
1808 "SB_UNIT",
1809 "FSYNC_TS",
1810 "GROWFSRT_ALLOC",
1811 "GROWFSRT_ZERO",
1812 "GROWFSRT_FREE",
1813 "SWAPEXT"
1814 };
1815
1816 xfs_warn(mp,
1817 "xlog_write: reservation summary:\n"
1818 " trans type = %s (%u)\n"
1819 " unit res = %d bytes\n"
1820 " current res = %d bytes\n"
1821 " total reg = %u bytes (o/flow = %u bytes)\n"
1822 " ophdrs = %u (ophdr space = %u bytes)\n"
1823 " ophdr + reg = %u bytes\n"
1824 " num regions = %u\n",
1825 ((ticket->t_trans_type <= 0 ||
1826 ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
1827 "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
1828 ticket->t_trans_type,
1829 ticket->t_unit_res,
1830 ticket->t_curr_res,
1831 ticket->t_res_arr_sum, ticket->t_res_o_flow,
1832 ticket->t_res_num_ophdrs, ophdr_spc,
1833 ticket->t_res_arr_sum +
1834 ticket->t_res_o_flow + ophdr_spc,
1835 ticket->t_res_num);
1836
1837 for (i = 0; i < ticket->t_res_num; i++) {
1838 uint r_type = ticket->t_res_arr[i].r_type;
1839 xfs_warn(mp, "region[%u]: %s - %u bytes\n", i,
1840 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
1841 "bad-rtype" : res_type_str[r_type-1]),
1842 ticket->t_res_arr[i].r_len);
1843 }
1844
1845 xfs_alert_tag(mp, XFS_PTAG_LOGRES,
1846 "xlog_write: reservation ran out. Need to up reservation");
1847 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1848 }
1849
1850 /*
1851 * Calculate the potential space needed by the log vector. Each region gets
1852 * its own xlog_op_header_t and may need to be double word aligned.
1853 */
1854 static int
1855 xlog_write_calc_vec_length(
1856 struct xlog_ticket *ticket,
1857 struct xfs_log_vec *log_vector)
1858 {
1859 struct xfs_log_vec *lv;
1860 int headers = 0;
1861 int len = 0;
1862 int i;
1863
1864 /* acct for start rec of xact */
1865 if (ticket->t_flags & XLOG_TIC_INITED)
1866 headers++;
1867
1868 for (lv = log_vector; lv; lv = lv->lv_next) {
1869 headers += lv->lv_niovecs;
1870
1871 for (i = 0; i < lv->lv_niovecs; i++) {
1872 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i];
1873
1874 len += vecp->i_len;
1875 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
1876 }
1877 }
1878
1879 ticket->t_res_num_ophdrs += headers;
1880 len += headers * sizeof(struct xlog_op_header);
1881
1882 return len;
1883 }
1884
1885 /*
1886 * If first write for transaction, insert start record We can't be trying to
1887 * commit if we are inited. We can't have any "partial_copy" if we are inited.
1888 */
1889 static int
1890 xlog_write_start_rec(
1891 struct xlog_op_header *ophdr,
1892 struct xlog_ticket *ticket)
1893 {
1894 if (!(ticket->t_flags & XLOG_TIC_INITED))
1895 return 0;
1896
1897 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
1898 ophdr->oh_clientid = ticket->t_clientid;
1899 ophdr->oh_len = 0;
1900 ophdr->oh_flags = XLOG_START_TRANS;
1901 ophdr->oh_res2 = 0;
1902
1903 ticket->t_flags &= ~XLOG_TIC_INITED;
1904
1905 return sizeof(struct xlog_op_header);
1906 }
1907
1908 static xlog_op_header_t *
1909 xlog_write_setup_ophdr(
1910 struct xlog *log,
1911 struct xlog_op_header *ophdr,
1912 struct xlog_ticket *ticket,
1913 uint flags)
1914 {
1915 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
1916 ophdr->oh_clientid = ticket->t_clientid;
1917 ophdr->oh_res2 = 0;
1918
1919 /* are we copying a commit or unmount record? */
1920 ophdr->oh_flags = flags;
1921
1922 /*
1923 * We've seen logs corrupted with bad transaction client ids. This
1924 * makes sure that XFS doesn't generate them on. Turn this into an EIO
1925 * and shut down the filesystem.
1926 */
1927 switch (ophdr->oh_clientid) {
1928 case XFS_TRANSACTION:
1929 case XFS_VOLUME:
1930 case XFS_LOG:
1931 break;
1932 default:
1933 xfs_warn(log->l_mp,
1934 "Bad XFS transaction clientid 0x%x in ticket 0x%p",
1935 ophdr->oh_clientid, ticket);
1936 return NULL;
1937 }
1938
1939 return ophdr;
1940 }
1941
1942 /*
1943 * Set up the parameters of the region copy into the log. This has
1944 * to handle region write split across multiple log buffers - this
1945 * state is kept external to this function so that this code can
1946 * can be written in an obvious, self documenting manner.
1947 */
1948 static int
1949 xlog_write_setup_copy(
1950 struct xlog_ticket *ticket,
1951 struct xlog_op_header *ophdr,
1952 int space_available,
1953 int space_required,
1954 int *copy_off,
1955 int *copy_len,
1956 int *last_was_partial_copy,
1957 int *bytes_consumed)
1958 {
1959 int still_to_copy;
1960
1961 still_to_copy = space_required - *bytes_consumed;
1962 *copy_off = *bytes_consumed;
1963
1964 if (still_to_copy <= space_available) {
1965 /* write of region completes here */
1966 *copy_len = still_to_copy;
1967 ophdr->oh_len = cpu_to_be32(*copy_len);
1968 if (*last_was_partial_copy)
1969 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
1970 *last_was_partial_copy = 0;
1971 *bytes_consumed = 0;
1972 return 0;
1973 }
1974
1975 /* partial write of region, needs extra log op header reservation */
1976 *copy_len = space_available;
1977 ophdr->oh_len = cpu_to_be32(*copy_len);
1978 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
1979 if (*last_was_partial_copy)
1980 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
1981 *bytes_consumed += *copy_len;
1982 (*last_was_partial_copy)++;
1983
1984 /* account for new log op header */
1985 ticket->t_curr_res -= sizeof(struct xlog_op_header);
1986 ticket->t_res_num_ophdrs++;
1987
1988 return sizeof(struct xlog_op_header);
1989 }
1990
1991 static int
1992 xlog_write_copy_finish(
1993 struct xlog *log,
1994 struct xlog_in_core *iclog,
1995 uint flags,
1996 int *record_cnt,
1997 int *data_cnt,
1998 int *partial_copy,
1999 int *partial_copy_len,
2000 int log_offset,
2001 struct xlog_in_core **commit_iclog)
2002 {
2003 if (*partial_copy) {
2004 /*
2005 * This iclog has already been marked WANT_SYNC by
2006 * xlog_state_get_iclog_space.
2007 */
2008 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2009 *record_cnt = 0;
2010 *data_cnt = 0;
2011 return xlog_state_release_iclog(log, iclog);
2012 }
2013
2014 *partial_copy = 0;
2015 *partial_copy_len = 0;
2016
2017 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2018 /* no more space in this iclog - push it. */
2019 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2020 *record_cnt = 0;
2021 *data_cnt = 0;
2022
2023 spin_lock(&log->l_icloglock);
2024 xlog_state_want_sync(log, iclog);
2025 spin_unlock(&log->l_icloglock);
2026
2027 if (!commit_iclog)
2028 return xlog_state_release_iclog(log, iclog);
2029 ASSERT(flags & XLOG_COMMIT_TRANS);
2030 *commit_iclog = iclog;
2031 }
2032
2033 return 0;
2034 }
2035
2036 /*
2037 * Write some region out to in-core log
2038 *
2039 * This will be called when writing externally provided regions or when
2040 * writing out a commit record for a given transaction.
2041 *
2042 * General algorithm:
2043 * 1. Find total length of this write. This may include adding to the
2044 * lengths passed in.
2045 * 2. Check whether we violate the tickets reservation.
2046 * 3. While writing to this iclog
2047 * A. Reserve as much space in this iclog as can get
2048 * B. If this is first write, save away start lsn
2049 * C. While writing this region:
2050 * 1. If first write of transaction, write start record
2051 * 2. Write log operation header (header per region)
2052 * 3. Find out if we can fit entire region into this iclog
2053 * 4. Potentially, verify destination memcpy ptr
2054 * 5. Memcpy (partial) region
2055 * 6. If partial copy, release iclog; otherwise, continue
2056 * copying more regions into current iclog
2057 * 4. Mark want sync bit (in simulation mode)
2058 * 5. Release iclog for potential flush to on-disk log.
2059 *
2060 * ERRORS:
2061 * 1. Panic if reservation is overrun. This should never happen since
2062 * reservation amounts are generated internal to the filesystem.
2063 * NOTES:
2064 * 1. Tickets are single threaded data structures.
2065 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2066 * syncing routine. When a single log_write region needs to span
2067 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2068 * on all log operation writes which don't contain the end of the
2069 * region. The XLOG_END_TRANS bit is used for the in-core log
2070 * operation which contains the end of the continued log_write region.
2071 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2072 * we don't really know exactly how much space will be used. As a result,
2073 * we don't update ic_offset until the end when we know exactly how many
2074 * bytes have been written out.
2075 */
2076 int
2077 xlog_write(
2078 struct xlog *log,
2079 struct xfs_log_vec *log_vector,
2080 struct xlog_ticket *ticket,
2081 xfs_lsn_t *start_lsn,
2082 struct xlog_in_core **commit_iclog,
2083 uint flags)
2084 {
2085 struct xlog_in_core *iclog = NULL;
2086 struct xfs_log_iovec *vecp;
2087 struct xfs_log_vec *lv;
2088 int len;
2089 int index;
2090 int partial_copy = 0;
2091 int partial_copy_len = 0;
2092 int contwr = 0;
2093 int record_cnt = 0;
2094 int data_cnt = 0;
2095 int error;
2096
2097 *start_lsn = 0;
2098
2099 len = xlog_write_calc_vec_length(ticket, log_vector);
2100
2101 /*
2102 * Region headers and bytes are already accounted for.
2103 * We only need to take into account start records and
2104 * split regions in this function.
2105 */
2106 if (ticket->t_flags & XLOG_TIC_INITED)
2107 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2108
2109 /*
2110 * Commit record headers need to be accounted for. These
2111 * come in as separate writes so are easy to detect.
2112 */
2113 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2114 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2115
2116 if (ticket->t_curr_res < 0)
2117 xlog_print_tic_res(log->l_mp, ticket);
2118
2119 index = 0;
2120 lv = log_vector;
2121 vecp = lv->lv_iovecp;
2122 while (lv && index < lv->lv_niovecs) {
2123 void *ptr;
2124 int log_offset;
2125
2126 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2127 &contwr, &log_offset);
2128 if (error)
2129 return error;
2130
2131 ASSERT(log_offset <= iclog->ic_size - 1);
2132 ptr = iclog->ic_datap + log_offset;
2133
2134 /* start_lsn is the first lsn written to. That's all we need. */
2135 if (!*start_lsn)
2136 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2137
2138 /*
2139 * This loop writes out as many regions as can fit in the amount
2140 * of space which was allocated by xlog_state_get_iclog_space().
2141 */
2142 while (lv && index < lv->lv_niovecs) {
2143 struct xfs_log_iovec *reg = &vecp[index];
2144 struct xlog_op_header *ophdr;
2145 int start_rec_copy;
2146 int copy_len;
2147 int copy_off;
2148
2149 ASSERT(reg->i_len % sizeof(__int32_t) == 0);
2150 ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
2151
2152 start_rec_copy = xlog_write_start_rec(ptr, ticket);
2153 if (start_rec_copy) {
2154 record_cnt++;
2155 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2156 start_rec_copy);
2157 }
2158
2159 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2160 if (!ophdr)
2161 return XFS_ERROR(EIO);
2162
2163 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2164 sizeof(struct xlog_op_header));
2165
2166 len += xlog_write_setup_copy(ticket, ophdr,
2167 iclog->ic_size-log_offset,
2168 reg->i_len,
2169 &copy_off, &copy_len,
2170 &partial_copy,
2171 &partial_copy_len);
2172 xlog_verify_dest_ptr(log, ptr);
2173
2174 /* copy region */
2175 ASSERT(copy_len >= 0);
2176 memcpy(ptr, reg->i_addr + copy_off, copy_len);
2177 xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len);
2178
2179 copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2180 record_cnt++;
2181 data_cnt += contwr ? copy_len : 0;
2182
2183 error = xlog_write_copy_finish(log, iclog, flags,
2184 &record_cnt, &data_cnt,
2185 &partial_copy,
2186 &partial_copy_len,
2187 log_offset,
2188 commit_iclog);
2189 if (error)
2190 return error;
2191
2192 /*
2193 * if we had a partial copy, we need to get more iclog
2194 * space but we don't want to increment the region
2195 * index because there is still more is this region to
2196 * write.
2197 *
2198 * If we completed writing this region, and we flushed
2199 * the iclog (indicated by resetting of the record
2200 * count), then we also need to get more log space. If
2201 * this was the last record, though, we are done and
2202 * can just return.
2203 */
2204 if (partial_copy)
2205 break;
2206
2207 if (++index == lv->lv_niovecs) {
2208 lv = lv->lv_next;
2209 index = 0;
2210 if (lv)
2211 vecp = lv->lv_iovecp;
2212 }
2213 if (record_cnt == 0) {
2214 if (!lv)
2215 return 0;
2216 break;
2217 }
2218 }
2219 }
2220
2221 ASSERT(len == 0);
2222
2223 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2224 if (!commit_iclog)
2225 return xlog_state_release_iclog(log, iclog);
2226
2227 ASSERT(flags & XLOG_COMMIT_TRANS);
2228 *commit_iclog = iclog;
2229 return 0;
2230 }
2231
2232
2233 /*****************************************************************************
2234 *
2235 * State Machine functions
2236 *
2237 *****************************************************************************
2238 */
2239
2240 /* Clean iclogs starting from the head. This ordering must be
2241 * maintained, so an iclog doesn't become ACTIVE beyond one that
2242 * is SYNCING. This is also required to maintain the notion that we use
2243 * a ordered wait queue to hold off would be writers to the log when every
2244 * iclog is trying to sync to disk.
2245 *
2246 * State Change: DIRTY -> ACTIVE
2247 */
2248 STATIC void
2249 xlog_state_clean_log(
2250 struct xlog *log)
2251 {
2252 xlog_in_core_t *iclog;
2253 int changed = 0;
2254
2255 iclog = log->l_iclog;
2256 do {
2257 if (iclog->ic_state == XLOG_STATE_DIRTY) {
2258 iclog->ic_state = XLOG_STATE_ACTIVE;
2259 iclog->ic_offset = 0;
2260 ASSERT(iclog->ic_callback == NULL);
2261 /*
2262 * If the number of ops in this iclog indicate it just
2263 * contains the dummy transaction, we can
2264 * change state into IDLE (the second time around).
2265 * Otherwise we should change the state into
2266 * NEED a dummy.
2267 * We don't need to cover the dummy.
2268 */
2269 if (!changed &&
2270 (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2271 XLOG_COVER_OPS)) {
2272 changed = 1;
2273 } else {
2274 /*
2275 * We have two dirty iclogs so start over
2276 * This could also be num of ops indicates
2277 * this is not the dummy going out.
2278 */
2279 changed = 2;
2280 }
2281 iclog->ic_header.h_num_logops = 0;
2282 memset(iclog->ic_header.h_cycle_data, 0,
2283 sizeof(iclog->ic_header.h_cycle_data));
2284 iclog->ic_header.h_lsn = 0;
2285 } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2286 /* do nothing */;
2287 else
2288 break; /* stop cleaning */
2289 iclog = iclog->ic_next;
2290 } while (iclog != log->l_iclog);
2291
2292 /* log is locked when we are called */
2293 /*
2294 * Change state for the dummy log recording.
2295 * We usually go to NEED. But we go to NEED2 if the changed indicates
2296 * we are done writing the dummy record.
2297 * If we are done with the second dummy recored (DONE2), then
2298 * we go to IDLE.
2299 */
2300 if (changed) {
2301 switch (log->l_covered_state) {
2302 case XLOG_STATE_COVER_IDLE:
2303 case XLOG_STATE_COVER_NEED:
2304 case XLOG_STATE_COVER_NEED2:
2305 log->l_covered_state = XLOG_STATE_COVER_NEED;
2306 break;
2307
2308 case XLOG_STATE_COVER_DONE:
2309 if (changed == 1)
2310 log->l_covered_state = XLOG_STATE_COVER_NEED2;
2311 else
2312 log->l_covered_state = XLOG_STATE_COVER_NEED;
2313 break;
2314
2315 case XLOG_STATE_COVER_DONE2:
2316 if (changed == 1)
2317 log->l_covered_state = XLOG_STATE_COVER_IDLE;
2318 else
2319 log->l_covered_state = XLOG_STATE_COVER_NEED;
2320 break;
2321
2322 default:
2323 ASSERT(0);
2324 }
2325 }
2326 } /* xlog_state_clean_log */
2327
2328 STATIC xfs_lsn_t
2329 xlog_get_lowest_lsn(
2330 struct xlog *log)
2331 {
2332 xlog_in_core_t *lsn_log;
2333 xfs_lsn_t lowest_lsn, lsn;
2334
2335 lsn_log = log->l_iclog;
2336 lowest_lsn = 0;
2337 do {
2338 if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2339 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2340 if ((lsn && !lowest_lsn) ||
2341 (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2342 lowest_lsn = lsn;
2343 }
2344 }
2345 lsn_log = lsn_log->ic_next;
2346 } while (lsn_log != log->l_iclog);
2347 return lowest_lsn;
2348 }
2349
2350
2351 STATIC void
2352 xlog_state_do_callback(
2353 struct xlog *log,
2354 int aborted,
2355 struct xlog_in_core *ciclog)
2356 {
2357 xlog_in_core_t *iclog;
2358 xlog_in_core_t *first_iclog; /* used to know when we've
2359 * processed all iclogs once */
2360 xfs_log_callback_t *cb, *cb_next;
2361 int flushcnt = 0;
2362 xfs_lsn_t lowest_lsn;
2363 int ioerrors; /* counter: iclogs with errors */
2364 int loopdidcallbacks; /* flag: inner loop did callbacks*/
2365 int funcdidcallbacks; /* flag: function did callbacks */
2366 int repeats; /* for issuing console warnings if
2367 * looping too many times */
2368 int wake = 0;
2369
2370 spin_lock(&log->l_icloglock);
2371 first_iclog = iclog = log->l_iclog;
2372 ioerrors = 0;
2373 funcdidcallbacks = 0;
2374 repeats = 0;
2375
2376 do {
2377 /*
2378 * Scan all iclogs starting with the one pointed to by the
2379 * log. Reset this starting point each time the log is
2380 * unlocked (during callbacks).
2381 *
2382 * Keep looping through iclogs until one full pass is made
2383 * without running any callbacks.
2384 */
2385 first_iclog = log->l_iclog;
2386 iclog = log->l_iclog;
2387 loopdidcallbacks = 0;
2388 repeats++;
2389
2390 do {
2391
2392 /* skip all iclogs in the ACTIVE & DIRTY states */
2393 if (iclog->ic_state &
2394 (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2395 iclog = iclog->ic_next;
2396 continue;
2397 }
2398
2399 /*
2400 * Between marking a filesystem SHUTDOWN and stopping
2401 * the log, we do flush all iclogs to disk (if there
2402 * wasn't a log I/O error). So, we do want things to
2403 * go smoothly in case of just a SHUTDOWN w/o a
2404 * LOG_IO_ERROR.
2405 */
2406 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2407 /*
2408 * Can only perform callbacks in order. Since
2409 * this iclog is not in the DONE_SYNC/
2410 * DO_CALLBACK state, we skip the rest and
2411 * just try to clean up. If we set our iclog
2412 * to DO_CALLBACK, we will not process it when
2413 * we retry since a previous iclog is in the
2414 * CALLBACK and the state cannot change since
2415 * we are holding the l_icloglock.
2416 */
2417 if (!(iclog->ic_state &
2418 (XLOG_STATE_DONE_SYNC |
2419 XLOG_STATE_DO_CALLBACK))) {
2420 if (ciclog && (ciclog->ic_state ==
2421 XLOG_STATE_DONE_SYNC)) {
2422 ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2423 }
2424 break;
2425 }
2426 /*
2427 * We now have an iclog that is in either the
2428 * DO_CALLBACK or DONE_SYNC states. The other
2429 * states (WANT_SYNC, SYNCING, or CALLBACK were
2430 * caught by the above if and are going to
2431 * clean (i.e. we aren't doing their callbacks)
2432 * see the above if.
2433 */
2434
2435 /*
2436 * We will do one more check here to see if we
2437 * have chased our tail around.
2438 */
2439
2440 lowest_lsn = xlog_get_lowest_lsn(log);
2441 if (lowest_lsn &&
2442 XFS_LSN_CMP(lowest_lsn,
2443 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2444 iclog = iclog->ic_next;
2445 continue; /* Leave this iclog for
2446 * another thread */
2447 }
2448
2449 iclog->ic_state = XLOG_STATE_CALLBACK;
2450
2451
2452 /*
2453 * update the last_sync_lsn before we drop the
2454 * icloglock to ensure we are the only one that
2455 * can update it.
2456 */
2457 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2458 be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2459 atomic64_set(&log->l_last_sync_lsn,
2460 be64_to_cpu(iclog->ic_header.h_lsn));
2461
2462 } else
2463 ioerrors++;
2464
2465 spin_unlock(&log->l_icloglock);
2466
2467 /*
2468 * Keep processing entries in the callback list until
2469 * we come around and it is empty. We need to
2470 * atomically see that the list is empty and change the
2471 * state to DIRTY so that we don't miss any more
2472 * callbacks being added.
2473 */
2474 spin_lock(&iclog->ic_callback_lock);
2475 cb = iclog->ic_callback;
2476 while (cb) {
2477 iclog->ic_callback_tail = &(iclog->ic_callback);
2478 iclog->ic_callback = NULL;
2479 spin_unlock(&iclog->ic_callback_lock);
2480
2481 /* perform callbacks in the order given */
2482 for (; cb; cb = cb_next) {
2483 cb_next = cb->cb_next;
2484 cb->cb_func(cb->cb_arg, aborted);
2485 }
2486 spin_lock(&iclog->ic_callback_lock);
2487 cb = iclog->ic_callback;
2488 }
2489
2490 loopdidcallbacks++;
2491 funcdidcallbacks++;
2492
2493 spin_lock(&log->l_icloglock);
2494 ASSERT(iclog->ic_callback == NULL);
2495 spin_unlock(&iclog->ic_callback_lock);
2496 if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2497 iclog->ic_state = XLOG_STATE_DIRTY;
2498
2499 /*
2500 * Transition from DIRTY to ACTIVE if applicable.
2501 * NOP if STATE_IOERROR.
2502 */
2503 xlog_state_clean_log(log);
2504
2505 /* wake up threads waiting in xfs_log_force() */
2506 wake_up_all(&iclog->ic_force_wait);
2507
2508 iclog = iclog->ic_next;
2509 } while (first_iclog != iclog);
2510
2511 if (repeats > 5000) {
2512 flushcnt += repeats;
2513 repeats = 0;
2514 xfs_warn(log->l_mp,
2515 "%s: possible infinite loop (%d iterations)",
2516 __func__, flushcnt);
2517 }
2518 } while (!ioerrors && loopdidcallbacks);
2519
2520 /*
2521 * make one last gasp attempt to see if iclogs are being left in
2522 * limbo..
2523 */
2524 #ifdef DEBUG
2525 if (funcdidcallbacks) {
2526 first_iclog = iclog = log->l_iclog;
2527 do {
2528 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2529 /*
2530 * Terminate the loop if iclogs are found in states
2531 * which will cause other threads to clean up iclogs.
2532 *
2533 * SYNCING - i/o completion will go through logs
2534 * DONE_SYNC - interrupt thread should be waiting for
2535 * l_icloglock
2536 * IOERROR - give up hope all ye who enter here
2537 */
2538 if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2539 iclog->ic_state == XLOG_STATE_SYNCING ||
2540 iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2541 iclog->ic_state == XLOG_STATE_IOERROR )
2542 break;
2543 iclog = iclog->ic_next;
2544 } while (first_iclog != iclog);
2545 }
2546 #endif
2547
2548 if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2549 wake = 1;
2550 spin_unlock(&log->l_icloglock);
2551
2552 if (wake)
2553 wake_up_all(&log->l_flush_wait);
2554 }
2555
2556
2557 /*
2558 * Finish transitioning this iclog to the dirty state.
2559 *
2560 * Make sure that we completely execute this routine only when this is
2561 * the last call to the iclog. There is a good chance that iclog flushes,
2562 * when we reach the end of the physical log, get turned into 2 separate
2563 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2564 * routine. By using the reference count bwritecnt, we guarantee that only
2565 * the second completion goes through.
2566 *
2567 * Callbacks could take time, so they are done outside the scope of the
2568 * global state machine log lock.
2569 */
2570 STATIC void
2571 xlog_state_done_syncing(
2572 xlog_in_core_t *iclog,
2573 int aborted)
2574 {
2575 struct xlog *log = iclog->ic_log;
2576
2577 spin_lock(&log->l_icloglock);
2578
2579 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2580 iclog->ic_state == XLOG_STATE_IOERROR);
2581 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2582 ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2583
2584
2585 /*
2586 * If we got an error, either on the first buffer, or in the case of
2587 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2588 * and none should ever be attempted to be written to disk
2589 * again.
2590 */
2591 if (iclog->ic_state != XLOG_STATE_IOERROR) {
2592 if (--iclog->ic_bwritecnt == 1) {
2593 spin_unlock(&log->l_icloglock);
2594 return;
2595 }
2596 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2597 }
2598
2599 /*
2600 * Someone could be sleeping prior to writing out the next
2601 * iclog buffer, we wake them all, one will get to do the
2602 * I/O, the others get to wait for the result.
2603 */
2604 wake_up_all(&iclog->ic_write_wait);
2605 spin_unlock(&log->l_icloglock);
2606 xlog_state_do_callback(log, aborted, iclog); /* also cleans log */
2607 } /* xlog_state_done_syncing */
2608
2609
2610 /*
2611 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2612 * sleep. We wait on the flush queue on the head iclog as that should be
2613 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2614 * we will wait here and all new writes will sleep until a sync completes.
2615 *
2616 * The in-core logs are used in a circular fashion. They are not used
2617 * out-of-order even when an iclog past the head is free.
2618 *
2619 * return:
2620 * * log_offset where xlog_write() can start writing into the in-core
2621 * log's data space.
2622 * * in-core log pointer to which xlog_write() should write.
2623 * * boolean indicating this is a continued write to an in-core log.
2624 * If this is the last write, then the in-core log's offset field
2625 * needs to be incremented, depending on the amount of data which
2626 * is copied.
2627 */
2628 STATIC int
2629 xlog_state_get_iclog_space(
2630 struct xlog *log,
2631 int len,
2632 struct xlog_in_core **iclogp,
2633 struct xlog_ticket *ticket,
2634 int *continued_write,
2635 int *logoffsetp)
2636 {
2637 int log_offset;
2638 xlog_rec_header_t *head;
2639 xlog_in_core_t *iclog;
2640 int error;
2641
2642 restart:
2643 spin_lock(&log->l_icloglock);
2644 if (XLOG_FORCED_SHUTDOWN(log)) {
2645 spin_unlock(&log->l_icloglock);
2646 return XFS_ERROR(EIO);
2647 }
2648
2649 iclog = log->l_iclog;
2650 if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2651 XFS_STATS_INC(xs_log_noiclogs);
2652
2653 /* Wait for log writes to have flushed */
2654 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2655 goto restart;
2656 }
2657
2658 head = &iclog->ic_header;
2659
2660 atomic_inc(&iclog->ic_refcnt); /* prevents sync */
2661 log_offset = iclog->ic_offset;
2662
2663 /* On the 1st write to an iclog, figure out lsn. This works
2664 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2665 * committing to. If the offset is set, that's how many blocks
2666 * must be written.
2667 */
2668 if (log_offset == 0) {
2669 ticket->t_curr_res -= log->l_iclog_hsize;
2670 xlog_tic_add_region(ticket,
2671 log->l_iclog_hsize,
2672 XLOG_REG_TYPE_LRHEADER);
2673 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2674 head->h_lsn = cpu_to_be64(
2675 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2676 ASSERT(log->l_curr_block >= 0);
2677 }
2678
2679 /* If there is enough room to write everything, then do it. Otherwise,
2680 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2681 * bit is on, so this will get flushed out. Don't update ic_offset
2682 * until you know exactly how many bytes get copied. Therefore, wait
2683 * until later to update ic_offset.
2684 *
2685 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2686 * can fit into remaining data section.
2687 */
2688 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2689 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2690
2691 /*
2692 * If I'm the only one writing to this iclog, sync it to disk.
2693 * We need to do an atomic compare and decrement here to avoid
2694 * racing with concurrent atomic_dec_and_lock() calls in
2695 * xlog_state_release_iclog() when there is more than one
2696 * reference to the iclog.
2697 */
2698 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2699 /* we are the only one */
2700 spin_unlock(&log->l_icloglock);
2701 error = xlog_state_release_iclog(log, iclog);
2702 if (error)
2703 return error;
2704 } else {
2705 spin_unlock(&log->l_icloglock);
2706 }
2707 goto restart;
2708 }
2709
2710 /* Do we have enough room to write the full amount in the remainder
2711 * of this iclog? Or must we continue a write on the next iclog and
2712 * mark this iclog as completely taken? In the case where we switch
2713 * iclogs (to mark it taken), this particular iclog will release/sync
2714 * to disk in xlog_write().
2715 */
2716 if (len <= iclog->ic_size - iclog->ic_offset) {
2717 *continued_write = 0;
2718 iclog->ic_offset += len;
2719 } else {
2720 *continued_write = 1;
2721 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2722 }
2723 *iclogp = iclog;
2724
2725 ASSERT(iclog->ic_offset <= iclog->ic_size);
2726 spin_unlock(&log->l_icloglock);
2727
2728 *logoffsetp = log_offset;
2729 return 0;
2730 } /* xlog_state_get_iclog_space */
2731
2732 /* The first cnt-1 times through here we don't need to
2733 * move the grant write head because the permanent
2734 * reservation has reserved cnt times the unit amount.
2735 * Release part of current permanent unit reservation and
2736 * reset current reservation to be one units worth. Also
2737 * move grant reservation head forward.
2738 */
2739 STATIC void
2740 xlog_regrant_reserve_log_space(
2741 struct xlog *log,
2742 struct xlog_ticket *ticket)
2743 {
2744 trace_xfs_log_regrant_reserve_enter(log, ticket);
2745
2746 if (ticket->t_cnt > 0)
2747 ticket->t_cnt--;
2748
2749 xlog_grant_sub_space(log, &log->l_reserve_head.grant,
2750 ticket->t_curr_res);
2751 xlog_grant_sub_space(log, &log->l_write_head.grant,
2752 ticket->t_curr_res);
2753 ticket->t_curr_res = ticket->t_unit_res;
2754 xlog_tic_reset_res(ticket);
2755
2756 trace_xfs_log_regrant_reserve_sub(log, ticket);
2757
2758 /* just return if we still have some of the pre-reserved space */
2759 if (ticket->t_cnt > 0)
2760 return;
2761
2762 xlog_grant_add_space(log, &log->l_reserve_head.grant,
2763 ticket->t_unit_res);
2764
2765 trace_xfs_log_regrant_reserve_exit(log, ticket);
2766
2767 ticket->t_curr_res = ticket->t_unit_res;
2768 xlog_tic_reset_res(ticket);
2769 } /* xlog_regrant_reserve_log_space */
2770
2771
2772 /*
2773 * Give back the space left from a reservation.
2774 *
2775 * All the information we need to make a correct determination of space left
2776 * is present. For non-permanent reservations, things are quite easy. The
2777 * count should have been decremented to zero. We only need to deal with the
2778 * space remaining in the current reservation part of the ticket. If the
2779 * ticket contains a permanent reservation, there may be left over space which
2780 * needs to be released. A count of N means that N-1 refills of the current
2781 * reservation can be done before we need to ask for more space. The first
2782 * one goes to fill up the first current reservation. Once we run out of
2783 * space, the count will stay at zero and the only space remaining will be
2784 * in the current reservation field.
2785 */
2786 STATIC void
2787 xlog_ungrant_log_space(
2788 struct xlog *log,
2789 struct xlog_ticket *ticket)
2790 {
2791 int bytes;
2792
2793 if (ticket->t_cnt > 0)
2794 ticket->t_cnt--;
2795
2796 trace_xfs_log_ungrant_enter(log, ticket);
2797 trace_xfs_log_ungrant_sub(log, ticket);
2798
2799 /*
2800 * If this is a permanent reservation ticket, we may be able to free
2801 * up more space based on the remaining count.
2802 */
2803 bytes = ticket->t_curr_res;
2804 if (ticket->t_cnt > 0) {
2805 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
2806 bytes += ticket->t_unit_res*ticket->t_cnt;
2807 }
2808
2809 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
2810 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
2811
2812 trace_xfs_log_ungrant_exit(log, ticket);
2813
2814 xfs_log_space_wake(log->l_mp);
2815 }
2816
2817 /*
2818 * Flush iclog to disk if this is the last reference to the given iclog and
2819 * the WANT_SYNC bit is set.
2820 *
2821 * When this function is entered, the iclog is not necessarily in the
2822 * WANT_SYNC state. It may be sitting around waiting to get filled.
2823 *
2824 *
2825 */
2826 STATIC int
2827 xlog_state_release_iclog(
2828 struct xlog *log,
2829 struct xlog_in_core *iclog)
2830 {
2831 int sync = 0; /* do we sync? */
2832
2833 if (iclog->ic_state & XLOG_STATE_IOERROR)
2834 return XFS_ERROR(EIO);
2835
2836 ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
2837 if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
2838 return 0;
2839
2840 if (iclog->ic_state & XLOG_STATE_IOERROR) {
2841 spin_unlock(&log->l_icloglock);
2842 return XFS_ERROR(EIO);
2843 }
2844 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
2845 iclog->ic_state == XLOG_STATE_WANT_SYNC);
2846
2847 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
2848 /* update tail before writing to iclog */
2849 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
2850 sync++;
2851 iclog->ic_state = XLOG_STATE_SYNCING;
2852 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
2853 xlog_verify_tail_lsn(log, iclog, tail_lsn);
2854 /* cycle incremented when incrementing curr_block */
2855 }
2856 spin_unlock(&log->l_icloglock);
2857
2858 /*
2859 * We let the log lock go, so it's possible that we hit a log I/O
2860 * error or some other SHUTDOWN condition that marks the iclog
2861 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
2862 * this iclog has consistent data, so we ignore IOERROR
2863 * flags after this point.
2864 */
2865 if (sync)
2866 return xlog_sync(log, iclog);
2867 return 0;
2868 } /* xlog_state_release_iclog */
2869
2870
2871 /*
2872 * This routine will mark the current iclog in the ring as WANT_SYNC
2873 * and move the current iclog pointer to the next iclog in the ring.
2874 * When this routine is called from xlog_state_get_iclog_space(), the
2875 * exact size of the iclog has not yet been determined. All we know is
2876 * that every data block. We have run out of space in this log record.
2877 */
2878 STATIC void
2879 xlog_state_switch_iclogs(
2880 struct xlog *log,
2881 struct xlog_in_core *iclog,
2882 int eventual_size)
2883 {
2884 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
2885 if (!eventual_size)
2886 eventual_size = iclog->ic_offset;
2887 iclog->ic_state = XLOG_STATE_WANT_SYNC;
2888 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
2889 log->l_prev_block = log->l_curr_block;
2890 log->l_prev_cycle = log->l_curr_cycle;
2891
2892 /* roll log?: ic_offset changed later */
2893 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
2894
2895 /* Round up to next log-sunit */
2896 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
2897 log->l_mp->m_sb.sb_logsunit > 1) {
2898 __uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
2899 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
2900 }
2901
2902 if (log->l_curr_block >= log->l_logBBsize) {
2903 log->l_curr_cycle++;
2904 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
2905 log->l_curr_cycle++;
2906 log->l_curr_block -= log->l_logBBsize;
2907 ASSERT(log->l_curr_block >= 0);
2908 }
2909 ASSERT(iclog == log->l_iclog);
2910 log->l_iclog = iclog->ic_next;
2911 } /* xlog_state_switch_iclogs */
2912
2913 /*
2914 * Write out all data in the in-core log as of this exact moment in time.
2915 *
2916 * Data may be written to the in-core log during this call. However,
2917 * we don't guarantee this data will be written out. A change from past
2918 * implementation means this routine will *not* write out zero length LRs.
2919 *
2920 * Basically, we try and perform an intelligent scan of the in-core logs.
2921 * If we determine there is no flushable data, we just return. There is no
2922 * flushable data if:
2923 *
2924 * 1. the current iclog is active and has no data; the previous iclog
2925 * is in the active or dirty state.
2926 * 2. the current iclog is drity, and the previous iclog is in the
2927 * active or dirty state.
2928 *
2929 * We may sleep if:
2930 *
2931 * 1. the current iclog is not in the active nor dirty state.
2932 * 2. the current iclog dirty, and the previous iclog is not in the
2933 * active nor dirty state.
2934 * 3. the current iclog is active, and there is another thread writing
2935 * to this particular iclog.
2936 * 4. a) the current iclog is active and has no other writers
2937 * b) when we return from flushing out this iclog, it is still
2938 * not in the active nor dirty state.
2939 */
2940 int
2941 _xfs_log_force(
2942 struct xfs_mount *mp,
2943 uint flags,
2944 int *log_flushed)
2945 {
2946 struct xlog *log = mp->m_log;
2947 struct xlog_in_core *iclog;
2948 xfs_lsn_t lsn;
2949
2950 XFS_STATS_INC(xs_log_force);
2951
2952 xlog_cil_force(log);
2953
2954 spin_lock(&log->l_icloglock);
2955
2956 iclog = log->l_iclog;
2957 if (iclog->ic_state & XLOG_STATE_IOERROR) {
2958 spin_unlock(&log->l_icloglock);
2959 return XFS_ERROR(EIO);
2960 }
2961
2962 /* If the head iclog is not active nor dirty, we just attach
2963 * ourselves to the head and go to sleep.
2964 */
2965 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2966 iclog->ic_state == XLOG_STATE_DIRTY) {
2967 /*
2968 * If the head is dirty or (active and empty), then
2969 * we need to look at the previous iclog. If the previous
2970 * iclog is active or dirty we are done. There is nothing
2971 * to sync out. Otherwise, we attach ourselves to the
2972 * previous iclog and go to sleep.
2973 */
2974 if (iclog->ic_state == XLOG_STATE_DIRTY ||
2975 (atomic_read(&iclog->ic_refcnt) == 0
2976 && iclog->ic_offset == 0)) {
2977 iclog = iclog->ic_prev;
2978 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2979 iclog->ic_state == XLOG_STATE_DIRTY)
2980 goto no_sleep;
2981 else
2982 goto maybe_sleep;
2983 } else {
2984 if (atomic_read(&iclog->ic_refcnt) == 0) {
2985 /* We are the only one with access to this
2986 * iclog. Flush it out now. There should
2987 * be a roundoff of zero to show that someone
2988 * has already taken care of the roundoff from
2989 * the previous sync.
2990 */
2991 atomic_inc(&iclog->ic_refcnt);
2992 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2993 xlog_state_switch_iclogs(log, iclog, 0);
2994 spin_unlock(&log->l_icloglock);
2995
2996 if (xlog_state_release_iclog(log, iclog))
2997 return XFS_ERROR(EIO);
2998
2999 if (log_flushed)
3000 *log_flushed = 1;
3001 spin_lock(&log->l_icloglock);
3002 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3003 iclog->ic_state != XLOG_STATE_DIRTY)
3004 goto maybe_sleep;
3005 else
3006 goto no_sleep;
3007 } else {
3008 /* Someone else is writing to this iclog.
3009 * Use its call to flush out the data. However,
3010 * the other thread may not force out this LR,
3011 * so we mark it WANT_SYNC.
3012 */
3013 xlog_state_switch_iclogs(log, iclog, 0);
3014 goto maybe_sleep;
3015 }
3016 }
3017 }
3018
3019 /* By the time we come around again, the iclog could've been filled
3020 * which would give it another lsn. If we have a new lsn, just
3021 * return because the relevant data has been flushed.
3022 */
3023 maybe_sleep:
3024 if (flags & XFS_LOG_SYNC) {
3025 /*
3026 * We must check if we're shutting down here, before
3027 * we wait, while we're holding the l_icloglock.
3028 * Then we check again after waking up, in case our
3029 * sleep was disturbed by a bad news.
3030 */
3031 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3032 spin_unlock(&log->l_icloglock);
3033 return XFS_ERROR(EIO);
3034 }
3035 XFS_STATS_INC(xs_log_force_sleep);
3036 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3037 /*
3038 * No need to grab the log lock here since we're
3039 * only deciding whether or not to return EIO
3040 * and the memory read should be atomic.
3041 */
3042 if (iclog->ic_state & XLOG_STATE_IOERROR)
3043 return XFS_ERROR(EIO);
3044 if (log_flushed)
3045 *log_flushed = 1;
3046 } else {
3047
3048 no_sleep:
3049 spin_unlock(&log->l_icloglock);
3050 }
3051 return 0;
3052 }
3053
3054 /*
3055 * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3056 * about errors or whether the log was flushed or not. This is the normal
3057 * interface to use when trying to unpin items or move the log forward.
3058 */
3059 void
3060 xfs_log_force(
3061 xfs_mount_t *mp,
3062 uint flags)
3063 {
3064 int error;
3065
3066 trace_xfs_log_force(mp, 0);
3067 error = _xfs_log_force(mp, flags, NULL);
3068 if (error)
3069 xfs_warn(mp, "%s: error %d returned.", __func__, error);
3070 }
3071
3072 /*
3073 * Force the in-core log to disk for a specific LSN.
3074 *
3075 * Find in-core log with lsn.
3076 * If it is in the DIRTY state, just return.
3077 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3078 * state and go to sleep or return.
3079 * If it is in any other state, go to sleep or return.
3080 *
3081 * Synchronous forces are implemented with a signal variable. All callers
3082 * to force a given lsn to disk will wait on a the sv attached to the
3083 * specific in-core log. When given in-core log finally completes its
3084 * write to disk, that thread will wake up all threads waiting on the
3085 * sv.
3086 */
3087 int
3088 _xfs_log_force_lsn(
3089 struct xfs_mount *mp,
3090 xfs_lsn_t lsn,
3091 uint flags,
3092 int *log_flushed)
3093 {
3094 struct xlog *log = mp->m_log;
3095 struct xlog_in_core *iclog;
3096 int already_slept = 0;
3097
3098 ASSERT(lsn != 0);
3099
3100 XFS_STATS_INC(xs_log_force);
3101
3102 lsn = xlog_cil_force_lsn(log, lsn);
3103 if (lsn == NULLCOMMITLSN)
3104 return 0;
3105
3106 try_again:
3107 spin_lock(&log->l_icloglock);
3108 iclog = log->l_iclog;
3109 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3110 spin_unlock(&log->l_icloglock);
3111 return XFS_ERROR(EIO);
3112 }
3113
3114 do {
3115 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3116 iclog = iclog->ic_next;
3117 continue;
3118 }
3119
3120 if (iclog->ic_state == XLOG_STATE_DIRTY) {
3121 spin_unlock(&log->l_icloglock);
3122 return 0;
3123 }
3124
3125 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3126 /*
3127 * We sleep here if we haven't already slept (e.g.
3128 * this is the first time we've looked at the correct
3129 * iclog buf) and the buffer before us is going to
3130 * be sync'ed. The reason for this is that if we
3131 * are doing sync transactions here, by waiting for
3132 * the previous I/O to complete, we can allow a few
3133 * more transactions into this iclog before we close
3134 * it down.
3135 *
3136 * Otherwise, we mark the buffer WANT_SYNC, and bump
3137 * up the refcnt so we can release the log (which
3138 * drops the ref count). The state switch keeps new
3139 * transaction commits from using this buffer. When
3140 * the current commits finish writing into the buffer,
3141 * the refcount will drop to zero and the buffer will
3142 * go out then.
3143 */
3144 if (!already_slept &&
3145 (iclog->ic_prev->ic_state &
3146 (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3147 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3148
3149 XFS_STATS_INC(xs_log_force_sleep);
3150
3151 xlog_wait(&iclog->ic_prev->ic_write_wait,
3152 &log->l_icloglock);
3153 if (log_flushed)
3154 *log_flushed = 1;
3155 already_slept = 1;
3156 goto try_again;
3157 }
3158 atomic_inc(&iclog->ic_refcnt);
3159 xlog_state_switch_iclogs(log, iclog, 0);
3160 spin_unlock(&log->l_icloglock);
3161 if (xlog_state_release_iclog(log, iclog))
3162 return XFS_ERROR(EIO);
3163 if (log_flushed)
3164 *log_flushed = 1;
3165 spin_lock(&log->l_icloglock);
3166 }
3167
3168 if ((flags & XFS_LOG_SYNC) && /* sleep */
3169 !(iclog->ic_state &
3170 (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3171 /*
3172 * Don't wait on completion if we know that we've
3173 * gotten a log write error.
3174 */
3175 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3176 spin_unlock(&log->l_icloglock);
3177 return XFS_ERROR(EIO);
3178 }
3179 XFS_STATS_INC(xs_log_force_sleep);
3180 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3181 /*
3182 * No need to grab the log lock here since we're
3183 * only deciding whether or not to return EIO
3184 * and the memory read should be atomic.
3185 */
3186 if (iclog->ic_state & XLOG_STATE_IOERROR)
3187 return XFS_ERROR(EIO);
3188
3189 if (log_flushed)
3190 *log_flushed = 1;
3191 } else { /* just return */
3192 spin_unlock(&log->l_icloglock);
3193 }
3194
3195 return 0;
3196 } while (iclog != log->l_iclog);
3197
3198 spin_unlock(&log->l_icloglock);
3199 return 0;
3200 }
3201
3202 /*
3203 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3204 * about errors or whether the log was flushed or not. This is the normal
3205 * interface to use when trying to unpin items or move the log forward.
3206 */
3207 void
3208 xfs_log_force_lsn(
3209 xfs_mount_t *mp,
3210 xfs_lsn_t lsn,
3211 uint flags)
3212 {
3213 int error;
3214
3215 trace_xfs_log_force(mp, lsn);
3216 error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3217 if (error)
3218 xfs_warn(mp, "%s: error %d returned.", __func__, error);
3219 }
3220
3221 /*
3222 * Called when we want to mark the current iclog as being ready to sync to
3223 * disk.
3224 */
3225 STATIC void
3226 xlog_state_want_sync(
3227 struct xlog *log,
3228 struct xlog_in_core *iclog)
3229 {
3230 assert_spin_locked(&log->l_icloglock);
3231
3232 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3233 xlog_state_switch_iclogs(log, iclog, 0);
3234 } else {
3235 ASSERT(iclog->ic_state &
3236 (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3237 }
3238 }
3239
3240
3241 /*****************************************************************************
3242 *
3243 * TICKET functions
3244 *
3245 *****************************************************************************
3246 */
3247
3248 /*
3249 * Free a used ticket when its refcount falls to zero.
3250 */
3251 void
3252 xfs_log_ticket_put(
3253 xlog_ticket_t *ticket)
3254 {
3255 ASSERT(atomic_read(&ticket->t_ref) > 0);
3256 if (atomic_dec_and_test(&ticket->t_ref))
3257 kmem_zone_free(xfs_log_ticket_zone, ticket);
3258 }
3259
3260 xlog_ticket_t *
3261 xfs_log_ticket_get(
3262 xlog_ticket_t *ticket)
3263 {
3264 ASSERT(atomic_read(&ticket->t_ref) > 0);
3265 atomic_inc(&ticket->t_ref);
3266 return ticket;
3267 }
3268
3269 /*
3270 * Allocate and initialise a new log ticket.
3271 */
3272 struct xlog_ticket *
3273 xlog_ticket_alloc(
3274 struct xlog *log,
3275 int unit_bytes,
3276 int cnt,
3277 char client,
3278 bool permanent,
3279 xfs_km_flags_t alloc_flags)
3280 {
3281 struct xlog_ticket *tic;
3282 uint num_headers;
3283 int iclog_space;
3284
3285 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3286 if (!tic)
3287 return NULL;
3288
3289 /*
3290 * Permanent reservations have up to 'cnt'-1 active log operations
3291 * in the log. A unit in this case is the amount of space for one
3292 * of these log operations. Normal reservations have a cnt of 1
3293 * and their unit amount is the total amount of space required.
3294 *
3295 * The following lines of code account for non-transaction data
3296 * which occupy space in the on-disk log.
3297 *
3298 * Normal form of a transaction is:
3299 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3300 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3301 *
3302 * We need to account for all the leadup data and trailer data
3303 * around the transaction data.
3304 * And then we need to account for the worst case in terms of using
3305 * more space.
3306 * The worst case will happen if:
3307 * - the placement of the transaction happens to be such that the
3308 * roundoff is at its maximum
3309 * - the transaction data is synced before the commit record is synced
3310 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3311 * Therefore the commit record is in its own Log Record.
3312 * This can happen as the commit record is called with its
3313 * own region to xlog_write().
3314 * This then means that in the worst case, roundoff can happen for
3315 * the commit-rec as well.
3316 * The commit-rec is smaller than padding in this scenario and so it is
3317 * not added separately.
3318 */
3319
3320 /* for trans header */
3321 unit_bytes += sizeof(xlog_op_header_t);
3322 unit_bytes += sizeof(xfs_trans_header_t);
3323
3324 /* for start-rec */
3325 unit_bytes += sizeof(xlog_op_header_t);
3326
3327 /*
3328 * for LR headers - the space for data in an iclog is the size minus
3329 * the space used for the headers. If we use the iclog size, then we
3330 * undercalculate the number of headers required.
3331 *
3332 * Furthermore - the addition of op headers for split-recs might
3333 * increase the space required enough to require more log and op
3334 * headers, so take that into account too.
3335 *
3336 * IMPORTANT: This reservation makes the assumption that if this
3337 * transaction is the first in an iclog and hence has the LR headers
3338 * accounted to it, then the remaining space in the iclog is
3339 * exclusively for this transaction. i.e. if the transaction is larger
3340 * than the iclog, it will be the only thing in that iclog.
3341 * Fundamentally, this means we must pass the entire log vector to
3342 * xlog_write to guarantee this.
3343 */
3344 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3345 num_headers = howmany(unit_bytes, iclog_space);
3346
3347 /* for split-recs - ophdrs added when data split over LRs */
3348 unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3349
3350 /* add extra header reservations if we overrun */
3351 while (!num_headers ||
3352 howmany(unit_bytes, iclog_space) > num_headers) {
3353 unit_bytes += sizeof(xlog_op_header_t);
3354 num_headers++;
3355 }
3356 unit_bytes += log->l_iclog_hsize * num_headers;
3357
3358 /* for commit-rec LR header - note: padding will subsume the ophdr */
3359 unit_bytes += log->l_iclog_hsize;
3360
3361 /* for roundoff padding for transaction data and one for commit record */
3362 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3363 log->l_mp->m_sb.sb_logsunit > 1) {
3364 /* log su roundoff */
3365 unit_bytes += 2*log->l_mp->m_sb.sb_logsunit;
3366 } else {
3367 /* BB roundoff */
3368 unit_bytes += 2*BBSIZE;
3369 }
3370
3371 atomic_set(&tic->t_ref, 1);
3372 tic->t_task = current;
3373 INIT_LIST_HEAD(&tic->t_queue);
3374 tic->t_unit_res = unit_bytes;
3375 tic->t_curr_res = unit_bytes;
3376 tic->t_cnt = cnt;
3377 tic->t_ocnt = cnt;
3378 tic->t_tid = random32();
3379 tic->t_clientid = client;
3380 tic->t_flags = XLOG_TIC_INITED;
3381 tic->t_trans_type = 0;
3382 if (permanent)
3383 tic->t_flags |= XLOG_TIC_PERM_RESERV;
3384
3385 xlog_tic_reset_res(tic);
3386
3387 return tic;
3388 }
3389
3390
3391 /******************************************************************************
3392 *
3393 * Log debug routines
3394 *
3395 ******************************************************************************
3396 */
3397 #if defined(DEBUG)
3398 /*
3399 * Make sure that the destination ptr is within the valid data region of
3400 * one of the iclogs. This uses backup pointers stored in a different
3401 * part of the log in case we trash the log structure.
3402 */
3403 void
3404 xlog_verify_dest_ptr(
3405 struct xlog *log,
3406 char *ptr)
3407 {
3408 int i;
3409 int good_ptr = 0;
3410
3411 for (i = 0; i < log->l_iclog_bufs; i++) {
3412 if (ptr >= log->l_iclog_bak[i] &&
3413 ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3414 good_ptr++;
3415 }
3416
3417 if (!good_ptr)
3418 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3419 }
3420
3421 /*
3422 * Check to make sure the grant write head didn't just over lap the tail. If
3423 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3424 * the cycles differ by exactly one and check the byte count.
3425 *
3426 * This check is run unlocked, so can give false positives. Rather than assert
3427 * on failures, use a warn-once flag and a panic tag to allow the admin to
3428 * determine if they want to panic the machine when such an error occurs. For
3429 * debug kernels this will have the same effect as using an assert but, unlinke
3430 * an assert, it can be turned off at runtime.
3431 */
3432 STATIC void
3433 xlog_verify_grant_tail(
3434 struct xlog *log)
3435 {
3436 int tail_cycle, tail_blocks;
3437 int cycle, space;
3438
3439 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3440 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3441 if (tail_cycle != cycle) {
3442 if (cycle - 1 != tail_cycle &&
3443 !(log->l_flags & XLOG_TAIL_WARN)) {
3444 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3445 "%s: cycle - 1 != tail_cycle", __func__);
3446 log->l_flags |= XLOG_TAIL_WARN;
3447 }
3448
3449 if (space > BBTOB(tail_blocks) &&
3450 !(log->l_flags & XLOG_TAIL_WARN)) {
3451 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3452 "%s: space > BBTOB(tail_blocks)", __func__);
3453 log->l_flags |= XLOG_TAIL_WARN;
3454 }
3455 }
3456 }
3457
3458 /* check if it will fit */
3459 STATIC void
3460 xlog_verify_tail_lsn(
3461 struct xlog *log,
3462 struct xlog_in_core *iclog,
3463 xfs_lsn_t tail_lsn)
3464 {
3465 int blocks;
3466
3467 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3468 blocks =
3469 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3470 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3471 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3472 } else {
3473 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3474
3475 if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3476 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3477
3478 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3479 if (blocks < BTOBB(iclog->ic_offset) + 1)
3480 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3481 }
3482 } /* xlog_verify_tail_lsn */
3483
3484 /*
3485 * Perform a number of checks on the iclog before writing to disk.
3486 *
3487 * 1. Make sure the iclogs are still circular
3488 * 2. Make sure we have a good magic number
3489 * 3. Make sure we don't have magic numbers in the data
3490 * 4. Check fields of each log operation header for:
3491 * A. Valid client identifier
3492 * B. tid ptr value falls in valid ptr space (user space code)
3493 * C. Length in log record header is correct according to the
3494 * individual operation headers within record.
3495 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3496 * log, check the preceding blocks of the physical log to make sure all
3497 * the cycle numbers agree with the current cycle number.
3498 */
3499 STATIC void
3500 xlog_verify_iclog(
3501 struct xlog *log,
3502 struct xlog_in_core *iclog,
3503 int count,
3504 boolean_t syncing)
3505 {
3506 xlog_op_header_t *ophead;
3507 xlog_in_core_t *icptr;
3508 xlog_in_core_2_t *xhdr;
3509 xfs_caddr_t ptr;
3510 xfs_caddr_t base_ptr;
3511 __psint_t field_offset;
3512 __uint8_t clientid;
3513 int len, i, j, k, op_len;
3514 int idx;
3515
3516 /* check validity of iclog pointers */
3517 spin_lock(&log->l_icloglock);
3518 icptr = log->l_iclog;
3519 for (i=0; i < log->l_iclog_bufs; i++) {
3520 if (icptr == NULL)
3521 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3522 icptr = icptr->ic_next;
3523 }
3524 if (icptr != log->l_iclog)
3525 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3526 spin_unlock(&log->l_icloglock);
3527
3528 /* check log magic numbers */
3529 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3530 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3531
3532 ptr = (xfs_caddr_t) &iclog->ic_header;
3533 for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count;
3534 ptr += BBSIZE) {
3535 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3536 xfs_emerg(log->l_mp, "%s: unexpected magic num",
3537 __func__);
3538 }
3539
3540 /* check fields */
3541 len = be32_to_cpu(iclog->ic_header.h_num_logops);
3542 ptr = iclog->ic_datap;
3543 base_ptr = ptr;
3544 ophead = (xlog_op_header_t *)ptr;
3545 xhdr = iclog->ic_data;
3546 for (i = 0; i < len; i++) {
3547 ophead = (xlog_op_header_t *)ptr;
3548
3549 /* clientid is only 1 byte */
3550 field_offset = (__psint_t)
3551 ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr);
3552 if (syncing == B_FALSE || (field_offset & 0x1ff)) {
3553 clientid = ophead->oh_clientid;
3554 } else {
3555 idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap);
3556 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3557 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3558 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3559 clientid = xlog_get_client_id(
3560 xhdr[j].hic_xheader.xh_cycle_data[k]);
3561 } else {
3562 clientid = xlog_get_client_id(
3563 iclog->ic_header.h_cycle_data[idx]);
3564 }
3565 }
3566 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3567 xfs_warn(log->l_mp,
3568 "%s: invalid clientid %d op 0x%p offset 0x%lx",
3569 __func__, clientid, ophead,
3570 (unsigned long)field_offset);
3571
3572 /* check length */
3573 field_offset = (__psint_t)
3574 ((xfs_caddr_t)&(ophead->oh_len) - base_ptr);
3575 if (syncing == B_FALSE || (field_offset & 0x1ff)) {
3576 op_len = be32_to_cpu(ophead->oh_len);
3577 } else {
3578 idx = BTOBBT((__psint_t)&ophead->oh_len -
3579 (__psint_t)iclog->ic_datap);
3580 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3581 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3582 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3583 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3584 } else {
3585 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3586 }
3587 }
3588 ptr += sizeof(xlog_op_header_t) + op_len;
3589 }
3590 } /* xlog_verify_iclog */
3591 #endif
3592
3593 /*
3594 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3595 */
3596 STATIC int
3597 xlog_state_ioerror(
3598 struct xlog *log)
3599 {
3600 xlog_in_core_t *iclog, *ic;
3601
3602 iclog = log->l_iclog;
3603 if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3604 /*
3605 * Mark all the incore logs IOERROR.
3606 * From now on, no log flushes will result.
3607 */
3608 ic = iclog;
3609 do {
3610 ic->ic_state = XLOG_STATE_IOERROR;
3611 ic = ic->ic_next;
3612 } while (ic != iclog);
3613 return 0;
3614 }
3615 /*
3616 * Return non-zero, if state transition has already happened.
3617 */
3618 return 1;
3619 }
3620
3621 /*
3622 * This is called from xfs_force_shutdown, when we're forcibly
3623 * shutting down the filesystem, typically because of an IO error.
3624 * Our main objectives here are to make sure that:
3625 * a. the filesystem gets marked 'SHUTDOWN' for all interested
3626 * parties to find out, 'atomically'.
3627 * b. those who're sleeping on log reservations, pinned objects and
3628 * other resources get woken up, and be told the bad news.
3629 * c. nothing new gets queued up after (a) and (b) are done.
3630 * d. if !logerror, flush the iclogs to disk, then seal them off
3631 * for business.
3632 *
3633 * Note: for delayed logging the !logerror case needs to flush the regions
3634 * held in memory out to the iclogs before flushing them to disk. This needs
3635 * to be done before the log is marked as shutdown, otherwise the flush to the
3636 * iclogs will fail.
3637 */
3638 int
3639 xfs_log_force_umount(
3640 struct xfs_mount *mp,
3641 int logerror)
3642 {
3643 struct xlog *log;
3644 int retval;
3645
3646 log = mp->m_log;
3647
3648 /*
3649 * If this happens during log recovery, don't worry about
3650 * locking; the log isn't open for business yet.
3651 */
3652 if (!log ||
3653 log->l_flags & XLOG_ACTIVE_RECOVERY) {
3654 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3655 if (mp->m_sb_bp)
3656 XFS_BUF_DONE(mp->m_sb_bp);
3657 return 0;
3658 }
3659
3660 /*
3661 * Somebody could've already done the hard work for us.
3662 * No need to get locks for this.
3663 */
3664 if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3665 ASSERT(XLOG_FORCED_SHUTDOWN(log));
3666 return 1;
3667 }
3668 retval = 0;
3669
3670 /*
3671 * Flush the in memory commit item list before marking the log as
3672 * being shut down. We need to do it in this order to ensure all the
3673 * completed transactions are flushed to disk with the xfs_log_force()
3674 * call below.
3675 */
3676 if (!logerror)
3677 xlog_cil_force(log);
3678
3679 /*
3680 * mark the filesystem and the as in a shutdown state and wake
3681 * everybody up to tell them the bad news.
3682 */
3683 spin_lock(&log->l_icloglock);
3684 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3685 if (mp->m_sb_bp)
3686 XFS_BUF_DONE(mp->m_sb_bp);
3687
3688 /*
3689 * This flag is sort of redundant because of the mount flag, but
3690 * it's good to maintain the separation between the log and the rest
3691 * of XFS.
3692 */
3693 log->l_flags |= XLOG_IO_ERROR;
3694
3695 /*
3696 * If we hit a log error, we want to mark all the iclogs IOERROR
3697 * while we're still holding the loglock.
3698 */
3699 if (logerror)
3700 retval = xlog_state_ioerror(log);
3701 spin_unlock(&log->l_icloglock);
3702
3703 /*
3704 * We don't want anybody waiting for log reservations after this. That
3705 * means we have to wake up everybody queued up on reserveq as well as
3706 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
3707 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3708 * action is protected by the grant locks.
3709 */
3710 xlog_grant_head_wake_all(&log->l_reserve_head);
3711 xlog_grant_head_wake_all(&log->l_write_head);
3712
3713 if (!(log->l_iclog->ic_state & XLOG_STATE_IOERROR)) {
3714 ASSERT(!logerror);
3715 /*
3716 * Force the incore logs to disk before shutting the
3717 * log down completely.
3718 */
3719 _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3720
3721 spin_lock(&log->l_icloglock);
3722 retval = xlog_state_ioerror(log);
3723 spin_unlock(&log->l_icloglock);
3724 }
3725 /*
3726 * Wake up everybody waiting on xfs_log_force.
3727 * Callback all log item committed functions as if the
3728 * log writes were completed.
3729 */
3730 xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
3731
3732 #ifdef XFSERRORDEBUG
3733 {
3734 xlog_in_core_t *iclog;
3735
3736 spin_lock(&log->l_icloglock);
3737 iclog = log->l_iclog;
3738 do {
3739 ASSERT(iclog->ic_callback == 0);
3740 iclog = iclog->ic_next;
3741 } while (iclog != log->l_iclog);
3742 spin_unlock(&log->l_icloglock);
3743 }
3744 #endif
3745 /* return non-zero if log IOERROR transition had already happened */
3746 return retval;
3747 }
3748
3749 STATIC int
3750 xlog_iclogs_empty(
3751 struct xlog *log)
3752 {
3753 xlog_in_core_t *iclog;
3754
3755 iclog = log->l_iclog;
3756 do {
3757 /* endianness does not matter here, zero is zero in
3758 * any language.
3759 */
3760 if (iclog->ic_header.h_num_logops)
3761 return 0;
3762 iclog = iclog->ic_next;
3763 } while (iclog != log->l_iclog);
3764 return 1;
3765 }
3766
This page took 0.108607 seconds and 5 git commands to generate.