x86: Move call to print_modules() out of show_regs()
[deliverable/linux.git] / fs / xfs / xfs_log.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_log.h"
22 #include "xfs_trans.h"
23 #include "xfs_sb.h"
24 #include "xfs_ag.h"
25 #include "xfs_mount.h"
26 #include "xfs_error.h"
27 #include "xfs_log_priv.h"
28 #include "xfs_buf_item.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_log_recover.h"
33 #include "xfs_trans_priv.h"
34 #include "xfs_dinode.h"
35 #include "xfs_inode.h"
36 #include "xfs_trace.h"
37
38 kmem_zone_t *xfs_log_ticket_zone;
39
40 /* Local miscellaneous function prototypes */
41 STATIC int xlog_commit_record(struct log *log, struct xlog_ticket *ticket,
42 xlog_in_core_t **, xfs_lsn_t *);
43 STATIC xlog_t * xlog_alloc_log(xfs_mount_t *mp,
44 xfs_buftarg_t *log_target,
45 xfs_daddr_t blk_offset,
46 int num_bblks);
47 STATIC int xlog_space_left(struct log *log, atomic64_t *head);
48 STATIC int xlog_sync(xlog_t *log, xlog_in_core_t *iclog);
49 STATIC void xlog_dealloc_log(xlog_t *log);
50
51 /* local state machine functions */
52 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
53 STATIC void xlog_state_do_callback(xlog_t *log,int aborted, xlog_in_core_t *iclog);
54 STATIC int xlog_state_get_iclog_space(xlog_t *log,
55 int len,
56 xlog_in_core_t **iclog,
57 xlog_ticket_t *ticket,
58 int *continued_write,
59 int *logoffsetp);
60 STATIC int xlog_state_release_iclog(xlog_t *log,
61 xlog_in_core_t *iclog);
62 STATIC void xlog_state_switch_iclogs(xlog_t *log,
63 xlog_in_core_t *iclog,
64 int eventual_size);
65 STATIC void xlog_state_want_sync(xlog_t *log, xlog_in_core_t *iclog);
66
67 STATIC void xlog_grant_push_ail(struct log *log,
68 int need_bytes);
69 STATIC void xlog_regrant_reserve_log_space(xlog_t *log,
70 xlog_ticket_t *ticket);
71 STATIC void xlog_ungrant_log_space(xlog_t *log,
72 xlog_ticket_t *ticket);
73
74 #if defined(DEBUG)
75 STATIC void xlog_verify_dest_ptr(xlog_t *log, char *ptr);
76 STATIC void xlog_verify_grant_tail(struct log *log);
77 STATIC void xlog_verify_iclog(xlog_t *log, xlog_in_core_t *iclog,
78 int count, boolean_t syncing);
79 STATIC void xlog_verify_tail_lsn(xlog_t *log, xlog_in_core_t *iclog,
80 xfs_lsn_t tail_lsn);
81 #else
82 #define xlog_verify_dest_ptr(a,b)
83 #define xlog_verify_grant_tail(a)
84 #define xlog_verify_iclog(a,b,c,d)
85 #define xlog_verify_tail_lsn(a,b,c)
86 #endif
87
88 STATIC int xlog_iclogs_empty(xlog_t *log);
89
90 static void
91 xlog_grant_sub_space(
92 struct log *log,
93 atomic64_t *head,
94 int bytes)
95 {
96 int64_t head_val = atomic64_read(head);
97 int64_t new, old;
98
99 do {
100 int cycle, space;
101
102 xlog_crack_grant_head_val(head_val, &cycle, &space);
103
104 space -= bytes;
105 if (space < 0) {
106 space += log->l_logsize;
107 cycle--;
108 }
109
110 old = head_val;
111 new = xlog_assign_grant_head_val(cycle, space);
112 head_val = atomic64_cmpxchg(head, old, new);
113 } while (head_val != old);
114 }
115
116 static void
117 xlog_grant_add_space(
118 struct log *log,
119 atomic64_t *head,
120 int bytes)
121 {
122 int64_t head_val = atomic64_read(head);
123 int64_t new, old;
124
125 do {
126 int tmp;
127 int cycle, space;
128
129 xlog_crack_grant_head_val(head_val, &cycle, &space);
130
131 tmp = log->l_logsize - space;
132 if (tmp > bytes)
133 space += bytes;
134 else {
135 space = bytes - tmp;
136 cycle++;
137 }
138
139 old = head_val;
140 new = xlog_assign_grant_head_val(cycle, space);
141 head_val = atomic64_cmpxchg(head, old, new);
142 } while (head_val != old);
143 }
144
145 STATIC void
146 xlog_grant_head_init(
147 struct xlog_grant_head *head)
148 {
149 xlog_assign_grant_head(&head->grant, 1, 0);
150 INIT_LIST_HEAD(&head->waiters);
151 spin_lock_init(&head->lock);
152 }
153
154 STATIC void
155 xlog_grant_head_wake_all(
156 struct xlog_grant_head *head)
157 {
158 struct xlog_ticket *tic;
159
160 spin_lock(&head->lock);
161 list_for_each_entry(tic, &head->waiters, t_queue)
162 wake_up_process(tic->t_task);
163 spin_unlock(&head->lock);
164 }
165
166 static inline int
167 xlog_ticket_reservation(
168 struct log *log,
169 struct xlog_grant_head *head,
170 struct xlog_ticket *tic)
171 {
172 if (head == &log->l_write_head) {
173 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
174 return tic->t_unit_res;
175 } else {
176 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
177 return tic->t_unit_res * tic->t_cnt;
178 else
179 return tic->t_unit_res;
180 }
181 }
182
183 STATIC bool
184 xlog_grant_head_wake(
185 struct log *log,
186 struct xlog_grant_head *head,
187 int *free_bytes)
188 {
189 struct xlog_ticket *tic;
190 int need_bytes;
191
192 list_for_each_entry(tic, &head->waiters, t_queue) {
193 need_bytes = xlog_ticket_reservation(log, head, tic);
194 if (*free_bytes < need_bytes)
195 return false;
196
197 *free_bytes -= need_bytes;
198 trace_xfs_log_grant_wake_up(log, tic);
199 wake_up_process(tic->t_task);
200 }
201
202 return true;
203 }
204
205 STATIC int
206 xlog_grant_head_wait(
207 struct log *log,
208 struct xlog_grant_head *head,
209 struct xlog_ticket *tic,
210 int need_bytes)
211 {
212 list_add_tail(&tic->t_queue, &head->waiters);
213
214 do {
215 if (XLOG_FORCED_SHUTDOWN(log))
216 goto shutdown;
217 xlog_grant_push_ail(log, need_bytes);
218
219 __set_current_state(TASK_UNINTERRUPTIBLE);
220 spin_unlock(&head->lock);
221
222 XFS_STATS_INC(xs_sleep_logspace);
223
224 trace_xfs_log_grant_sleep(log, tic);
225 schedule();
226 trace_xfs_log_grant_wake(log, tic);
227
228 spin_lock(&head->lock);
229 if (XLOG_FORCED_SHUTDOWN(log))
230 goto shutdown;
231 } while (xlog_space_left(log, &head->grant) < need_bytes);
232
233 list_del_init(&tic->t_queue);
234 return 0;
235 shutdown:
236 list_del_init(&tic->t_queue);
237 return XFS_ERROR(EIO);
238 }
239
240 /*
241 * Atomically get the log space required for a log ticket.
242 *
243 * Once a ticket gets put onto head->waiters, it will only return after the
244 * needed reservation is satisfied.
245 *
246 * This function is structured so that it has a lock free fast path. This is
247 * necessary because every new transaction reservation will come through this
248 * path. Hence any lock will be globally hot if we take it unconditionally on
249 * every pass.
250 *
251 * As tickets are only ever moved on and off head->waiters under head->lock, we
252 * only need to take that lock if we are going to add the ticket to the queue
253 * and sleep. We can avoid taking the lock if the ticket was never added to
254 * head->waiters because the t_queue list head will be empty and we hold the
255 * only reference to it so it can safely be checked unlocked.
256 */
257 STATIC int
258 xlog_grant_head_check(
259 struct log *log,
260 struct xlog_grant_head *head,
261 struct xlog_ticket *tic,
262 int *need_bytes)
263 {
264 int free_bytes;
265 int error = 0;
266
267 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
268
269 /*
270 * If there are other waiters on the queue then give them a chance at
271 * logspace before us. Wake up the first waiters, if we do not wake
272 * up all the waiters then go to sleep waiting for more free space,
273 * otherwise try to get some space for this transaction.
274 */
275 *need_bytes = xlog_ticket_reservation(log, head, tic);
276 free_bytes = xlog_space_left(log, &head->grant);
277 if (!list_empty_careful(&head->waiters)) {
278 spin_lock(&head->lock);
279 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
280 free_bytes < *need_bytes) {
281 error = xlog_grant_head_wait(log, head, tic,
282 *need_bytes);
283 }
284 spin_unlock(&head->lock);
285 } else if (free_bytes < *need_bytes) {
286 spin_lock(&head->lock);
287 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
288 spin_unlock(&head->lock);
289 }
290
291 return error;
292 }
293
294 static void
295 xlog_tic_reset_res(xlog_ticket_t *tic)
296 {
297 tic->t_res_num = 0;
298 tic->t_res_arr_sum = 0;
299 tic->t_res_num_ophdrs = 0;
300 }
301
302 static void
303 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
304 {
305 if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
306 /* add to overflow and start again */
307 tic->t_res_o_flow += tic->t_res_arr_sum;
308 tic->t_res_num = 0;
309 tic->t_res_arr_sum = 0;
310 }
311
312 tic->t_res_arr[tic->t_res_num].r_len = len;
313 tic->t_res_arr[tic->t_res_num].r_type = type;
314 tic->t_res_arr_sum += len;
315 tic->t_res_num++;
316 }
317
318 /*
319 * Replenish the byte reservation required by moving the grant write head.
320 */
321 int
322 xfs_log_regrant(
323 struct xfs_mount *mp,
324 struct xlog_ticket *tic)
325 {
326 struct log *log = mp->m_log;
327 int need_bytes;
328 int error = 0;
329
330 if (XLOG_FORCED_SHUTDOWN(log))
331 return XFS_ERROR(EIO);
332
333 XFS_STATS_INC(xs_try_logspace);
334
335 /*
336 * This is a new transaction on the ticket, so we need to change the
337 * transaction ID so that the next transaction has a different TID in
338 * the log. Just add one to the existing tid so that we can see chains
339 * of rolling transactions in the log easily.
340 */
341 tic->t_tid++;
342
343 xlog_grant_push_ail(log, tic->t_unit_res);
344
345 tic->t_curr_res = tic->t_unit_res;
346 xlog_tic_reset_res(tic);
347
348 if (tic->t_cnt > 0)
349 return 0;
350
351 trace_xfs_log_regrant(log, tic);
352
353 error = xlog_grant_head_check(log, &log->l_write_head, tic,
354 &need_bytes);
355 if (error)
356 goto out_error;
357
358 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
359 trace_xfs_log_regrant_exit(log, tic);
360 xlog_verify_grant_tail(log);
361 return 0;
362
363 out_error:
364 /*
365 * If we are failing, make sure the ticket doesn't have any current
366 * reservations. We don't want to add this back when the ticket/
367 * transaction gets cancelled.
368 */
369 tic->t_curr_res = 0;
370 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
371 return error;
372 }
373
374 /*
375 * Reserve log space and return a ticket corresponding the reservation.
376 *
377 * Each reservation is going to reserve extra space for a log record header.
378 * When writes happen to the on-disk log, we don't subtract the length of the
379 * log record header from any reservation. By wasting space in each
380 * reservation, we prevent over allocation problems.
381 */
382 int
383 xfs_log_reserve(
384 struct xfs_mount *mp,
385 int unit_bytes,
386 int cnt,
387 struct xlog_ticket **ticp,
388 __uint8_t client,
389 bool permanent,
390 uint t_type)
391 {
392 struct log *log = mp->m_log;
393 struct xlog_ticket *tic;
394 int need_bytes;
395 int error = 0;
396
397 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
398
399 if (XLOG_FORCED_SHUTDOWN(log))
400 return XFS_ERROR(EIO);
401
402 XFS_STATS_INC(xs_try_logspace);
403
404 ASSERT(*ticp == NULL);
405 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
406 KM_SLEEP | KM_MAYFAIL);
407 if (!tic)
408 return XFS_ERROR(ENOMEM);
409
410 tic->t_trans_type = t_type;
411 *ticp = tic;
412
413 xlog_grant_push_ail(log, tic->t_unit_res * tic->t_cnt);
414
415 trace_xfs_log_reserve(log, tic);
416
417 error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
418 &need_bytes);
419 if (error)
420 goto out_error;
421
422 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
423 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
424 trace_xfs_log_reserve_exit(log, tic);
425 xlog_verify_grant_tail(log);
426 return 0;
427
428 out_error:
429 /*
430 * If we are failing, make sure the ticket doesn't have any current
431 * reservations. We don't want to add this back when the ticket/
432 * transaction gets cancelled.
433 */
434 tic->t_curr_res = 0;
435 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
436 return error;
437 }
438
439
440 /*
441 * NOTES:
442 *
443 * 1. currblock field gets updated at startup and after in-core logs
444 * marked as with WANT_SYNC.
445 */
446
447 /*
448 * This routine is called when a user of a log manager ticket is done with
449 * the reservation. If the ticket was ever used, then a commit record for
450 * the associated transaction is written out as a log operation header with
451 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with
452 * a given ticket. If the ticket was one with a permanent reservation, then
453 * a few operations are done differently. Permanent reservation tickets by
454 * default don't release the reservation. They just commit the current
455 * transaction with the belief that the reservation is still needed. A flag
456 * must be passed in before permanent reservations are actually released.
457 * When these type of tickets are not released, they need to be set into
458 * the inited state again. By doing this, a start record will be written
459 * out when the next write occurs.
460 */
461 xfs_lsn_t
462 xfs_log_done(
463 struct xfs_mount *mp,
464 struct xlog_ticket *ticket,
465 struct xlog_in_core **iclog,
466 uint flags)
467 {
468 struct log *log = mp->m_log;
469 xfs_lsn_t lsn = 0;
470
471 if (XLOG_FORCED_SHUTDOWN(log) ||
472 /*
473 * If nothing was ever written, don't write out commit record.
474 * If we get an error, just continue and give back the log ticket.
475 */
476 (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
477 (xlog_commit_record(log, ticket, iclog, &lsn)))) {
478 lsn = (xfs_lsn_t) -1;
479 if (ticket->t_flags & XLOG_TIC_PERM_RESERV) {
480 flags |= XFS_LOG_REL_PERM_RESERV;
481 }
482 }
483
484
485 if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 ||
486 (flags & XFS_LOG_REL_PERM_RESERV)) {
487 trace_xfs_log_done_nonperm(log, ticket);
488
489 /*
490 * Release ticket if not permanent reservation or a specific
491 * request has been made to release a permanent reservation.
492 */
493 xlog_ungrant_log_space(log, ticket);
494 xfs_log_ticket_put(ticket);
495 } else {
496 trace_xfs_log_done_perm(log, ticket);
497
498 xlog_regrant_reserve_log_space(log, ticket);
499 /* If this ticket was a permanent reservation and we aren't
500 * trying to release it, reset the inited flags; so next time
501 * we write, a start record will be written out.
502 */
503 ticket->t_flags |= XLOG_TIC_INITED;
504 }
505
506 return lsn;
507 }
508
509 /*
510 * Attaches a new iclog I/O completion callback routine during
511 * transaction commit. If the log is in error state, a non-zero
512 * return code is handed back and the caller is responsible for
513 * executing the callback at an appropriate time.
514 */
515 int
516 xfs_log_notify(
517 struct xfs_mount *mp,
518 struct xlog_in_core *iclog,
519 xfs_log_callback_t *cb)
520 {
521 int abortflg;
522
523 spin_lock(&iclog->ic_callback_lock);
524 abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
525 if (!abortflg) {
526 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
527 (iclog->ic_state == XLOG_STATE_WANT_SYNC));
528 cb->cb_next = NULL;
529 *(iclog->ic_callback_tail) = cb;
530 iclog->ic_callback_tail = &(cb->cb_next);
531 }
532 spin_unlock(&iclog->ic_callback_lock);
533 return abortflg;
534 }
535
536 int
537 xfs_log_release_iclog(
538 struct xfs_mount *mp,
539 struct xlog_in_core *iclog)
540 {
541 if (xlog_state_release_iclog(mp->m_log, iclog)) {
542 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
543 return EIO;
544 }
545
546 return 0;
547 }
548
549 /*
550 * Mount a log filesystem
551 *
552 * mp - ubiquitous xfs mount point structure
553 * log_target - buftarg of on-disk log device
554 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
555 * num_bblocks - Number of BBSIZE blocks in on-disk log
556 *
557 * Return error or zero.
558 */
559 int
560 xfs_log_mount(
561 xfs_mount_t *mp,
562 xfs_buftarg_t *log_target,
563 xfs_daddr_t blk_offset,
564 int num_bblks)
565 {
566 int error;
567
568 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
569 xfs_notice(mp, "Mounting Filesystem");
570 else {
571 xfs_notice(mp,
572 "Mounting filesystem in no-recovery mode. Filesystem will be inconsistent.");
573 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
574 }
575
576 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
577 if (IS_ERR(mp->m_log)) {
578 error = -PTR_ERR(mp->m_log);
579 goto out;
580 }
581
582 /*
583 * Initialize the AIL now we have a log.
584 */
585 error = xfs_trans_ail_init(mp);
586 if (error) {
587 xfs_warn(mp, "AIL initialisation failed: error %d", error);
588 goto out_free_log;
589 }
590 mp->m_log->l_ailp = mp->m_ail;
591
592 /*
593 * skip log recovery on a norecovery mount. pretend it all
594 * just worked.
595 */
596 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
597 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
598
599 if (readonly)
600 mp->m_flags &= ~XFS_MOUNT_RDONLY;
601
602 error = xlog_recover(mp->m_log);
603
604 if (readonly)
605 mp->m_flags |= XFS_MOUNT_RDONLY;
606 if (error) {
607 xfs_warn(mp, "log mount/recovery failed: error %d",
608 error);
609 goto out_destroy_ail;
610 }
611 }
612
613 /* Normal transactions can now occur */
614 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
615
616 /*
617 * Now the log has been fully initialised and we know were our
618 * space grant counters are, we can initialise the permanent ticket
619 * needed for delayed logging to work.
620 */
621 xlog_cil_init_post_recovery(mp->m_log);
622
623 return 0;
624
625 out_destroy_ail:
626 xfs_trans_ail_destroy(mp);
627 out_free_log:
628 xlog_dealloc_log(mp->m_log);
629 out:
630 return error;
631 }
632
633 /*
634 * Finish the recovery of the file system. This is separate from
635 * the xfs_log_mount() call, because it depends on the code in
636 * xfs_mountfs() to read in the root and real-time bitmap inodes
637 * between calling xfs_log_mount() and here.
638 *
639 * mp - ubiquitous xfs mount point structure
640 */
641 int
642 xfs_log_mount_finish(xfs_mount_t *mp)
643 {
644 int error;
645
646 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
647 error = xlog_recover_finish(mp->m_log);
648 else {
649 error = 0;
650 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
651 }
652
653 return error;
654 }
655
656 /*
657 * Final log writes as part of unmount.
658 *
659 * Mark the filesystem clean as unmount happens. Note that during relocation
660 * this routine needs to be executed as part of source-bag while the
661 * deallocation must not be done until source-end.
662 */
663
664 /*
665 * Unmount record used to have a string "Unmount filesystem--" in the
666 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
667 * We just write the magic number now since that particular field isn't
668 * currently architecture converted and "nUmount" is a bit foo.
669 * As far as I know, there weren't any dependencies on the old behaviour.
670 */
671
672 int
673 xfs_log_unmount_write(xfs_mount_t *mp)
674 {
675 xlog_t *log = mp->m_log;
676 xlog_in_core_t *iclog;
677 #ifdef DEBUG
678 xlog_in_core_t *first_iclog;
679 #endif
680 xlog_ticket_t *tic = NULL;
681 xfs_lsn_t lsn;
682 int error;
683
684 /*
685 * Don't write out unmount record on read-only mounts.
686 * Or, if we are doing a forced umount (typically because of IO errors).
687 */
688 if (mp->m_flags & XFS_MOUNT_RDONLY)
689 return 0;
690
691 error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
692 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
693
694 #ifdef DEBUG
695 first_iclog = iclog = log->l_iclog;
696 do {
697 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
698 ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
699 ASSERT(iclog->ic_offset == 0);
700 }
701 iclog = iclog->ic_next;
702 } while (iclog != first_iclog);
703 #endif
704 if (! (XLOG_FORCED_SHUTDOWN(log))) {
705 error = xfs_log_reserve(mp, 600, 1, &tic,
706 XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
707 if (!error) {
708 /* the data section must be 32 bit size aligned */
709 struct {
710 __uint16_t magic;
711 __uint16_t pad1;
712 __uint32_t pad2; /* may as well make it 64 bits */
713 } magic = {
714 .magic = XLOG_UNMOUNT_TYPE,
715 };
716 struct xfs_log_iovec reg = {
717 .i_addr = &magic,
718 .i_len = sizeof(magic),
719 .i_type = XLOG_REG_TYPE_UNMOUNT,
720 };
721 struct xfs_log_vec vec = {
722 .lv_niovecs = 1,
723 .lv_iovecp = &reg,
724 };
725
726 /* remove inited flag, and account for space used */
727 tic->t_flags = 0;
728 tic->t_curr_res -= sizeof(magic);
729 error = xlog_write(log, &vec, tic, &lsn,
730 NULL, XLOG_UNMOUNT_TRANS);
731 /*
732 * At this point, we're umounting anyway,
733 * so there's no point in transitioning log state
734 * to IOERROR. Just continue...
735 */
736 }
737
738 if (error)
739 xfs_alert(mp, "%s: unmount record failed", __func__);
740
741
742 spin_lock(&log->l_icloglock);
743 iclog = log->l_iclog;
744 atomic_inc(&iclog->ic_refcnt);
745 xlog_state_want_sync(log, iclog);
746 spin_unlock(&log->l_icloglock);
747 error = xlog_state_release_iclog(log, iclog);
748
749 spin_lock(&log->l_icloglock);
750 if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
751 iclog->ic_state == XLOG_STATE_DIRTY)) {
752 if (!XLOG_FORCED_SHUTDOWN(log)) {
753 xlog_wait(&iclog->ic_force_wait,
754 &log->l_icloglock);
755 } else {
756 spin_unlock(&log->l_icloglock);
757 }
758 } else {
759 spin_unlock(&log->l_icloglock);
760 }
761 if (tic) {
762 trace_xfs_log_umount_write(log, tic);
763 xlog_ungrant_log_space(log, tic);
764 xfs_log_ticket_put(tic);
765 }
766 } else {
767 /*
768 * We're already in forced_shutdown mode, couldn't
769 * even attempt to write out the unmount transaction.
770 *
771 * Go through the motions of sync'ing and releasing
772 * the iclog, even though no I/O will actually happen,
773 * we need to wait for other log I/Os that may already
774 * be in progress. Do this as a separate section of
775 * code so we'll know if we ever get stuck here that
776 * we're in this odd situation of trying to unmount
777 * a file system that went into forced_shutdown as
778 * the result of an unmount..
779 */
780 spin_lock(&log->l_icloglock);
781 iclog = log->l_iclog;
782 atomic_inc(&iclog->ic_refcnt);
783
784 xlog_state_want_sync(log, iclog);
785 spin_unlock(&log->l_icloglock);
786 error = xlog_state_release_iclog(log, iclog);
787
788 spin_lock(&log->l_icloglock);
789
790 if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE
791 || iclog->ic_state == XLOG_STATE_DIRTY
792 || iclog->ic_state == XLOG_STATE_IOERROR) ) {
793
794 xlog_wait(&iclog->ic_force_wait,
795 &log->l_icloglock);
796 } else {
797 spin_unlock(&log->l_icloglock);
798 }
799 }
800
801 return error;
802 } /* xfs_log_unmount_write */
803
804 /*
805 * Deallocate log structures for unmount/relocation.
806 *
807 * We need to stop the aild from running before we destroy
808 * and deallocate the log as the aild references the log.
809 */
810 void
811 xfs_log_unmount(xfs_mount_t *mp)
812 {
813 xfs_trans_ail_destroy(mp);
814 xlog_dealloc_log(mp->m_log);
815 }
816
817 void
818 xfs_log_item_init(
819 struct xfs_mount *mp,
820 struct xfs_log_item *item,
821 int type,
822 const struct xfs_item_ops *ops)
823 {
824 item->li_mountp = mp;
825 item->li_ailp = mp->m_ail;
826 item->li_type = type;
827 item->li_ops = ops;
828 item->li_lv = NULL;
829
830 INIT_LIST_HEAD(&item->li_ail);
831 INIT_LIST_HEAD(&item->li_cil);
832 }
833
834 /*
835 * Wake up processes waiting for log space after we have moved the log tail.
836 */
837 void
838 xfs_log_space_wake(
839 struct xfs_mount *mp)
840 {
841 struct log *log = mp->m_log;
842 int free_bytes;
843
844 if (XLOG_FORCED_SHUTDOWN(log))
845 return;
846
847 if (!list_empty_careful(&log->l_write_head.waiters)) {
848 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
849
850 spin_lock(&log->l_write_head.lock);
851 free_bytes = xlog_space_left(log, &log->l_write_head.grant);
852 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
853 spin_unlock(&log->l_write_head.lock);
854 }
855
856 if (!list_empty_careful(&log->l_reserve_head.waiters)) {
857 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
858
859 spin_lock(&log->l_reserve_head.lock);
860 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
861 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
862 spin_unlock(&log->l_reserve_head.lock);
863 }
864 }
865
866 /*
867 * Determine if we have a transaction that has gone to disk
868 * that needs to be covered. To begin the transition to the idle state
869 * firstly the log needs to be idle (no AIL and nothing in the iclogs).
870 * If we are then in a state where covering is needed, the caller is informed
871 * that dummy transactions are required to move the log into the idle state.
872 *
873 * Because this is called as part of the sync process, we should also indicate
874 * that dummy transactions should be issued in anything but the covered or
875 * idle states. This ensures that the log tail is accurately reflected in
876 * the log at the end of the sync, hence if a crash occurrs avoids replay
877 * of transactions where the metadata is already on disk.
878 */
879 int
880 xfs_log_need_covered(xfs_mount_t *mp)
881 {
882 int needed = 0;
883 xlog_t *log = mp->m_log;
884
885 if (!xfs_fs_writable(mp))
886 return 0;
887
888 spin_lock(&log->l_icloglock);
889 switch (log->l_covered_state) {
890 case XLOG_STATE_COVER_DONE:
891 case XLOG_STATE_COVER_DONE2:
892 case XLOG_STATE_COVER_IDLE:
893 break;
894 case XLOG_STATE_COVER_NEED:
895 case XLOG_STATE_COVER_NEED2:
896 if (!xfs_ail_min_lsn(log->l_ailp) &&
897 xlog_iclogs_empty(log)) {
898 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
899 log->l_covered_state = XLOG_STATE_COVER_DONE;
900 else
901 log->l_covered_state = XLOG_STATE_COVER_DONE2;
902 }
903 /* FALLTHRU */
904 default:
905 needed = 1;
906 break;
907 }
908 spin_unlock(&log->l_icloglock);
909 return needed;
910 }
911
912 /*
913 * We may be holding the log iclog lock upon entering this routine.
914 */
915 xfs_lsn_t
916 xlog_assign_tail_lsn_locked(
917 struct xfs_mount *mp)
918 {
919 struct log *log = mp->m_log;
920 struct xfs_log_item *lip;
921 xfs_lsn_t tail_lsn;
922
923 assert_spin_locked(&mp->m_ail->xa_lock);
924
925 /*
926 * To make sure we always have a valid LSN for the log tail we keep
927 * track of the last LSN which was committed in log->l_last_sync_lsn,
928 * and use that when the AIL was empty.
929 */
930 lip = xfs_ail_min(mp->m_ail);
931 if (lip)
932 tail_lsn = lip->li_lsn;
933 else
934 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
935 atomic64_set(&log->l_tail_lsn, tail_lsn);
936 return tail_lsn;
937 }
938
939 xfs_lsn_t
940 xlog_assign_tail_lsn(
941 struct xfs_mount *mp)
942 {
943 xfs_lsn_t tail_lsn;
944
945 spin_lock(&mp->m_ail->xa_lock);
946 tail_lsn = xlog_assign_tail_lsn_locked(mp);
947 spin_unlock(&mp->m_ail->xa_lock);
948
949 return tail_lsn;
950 }
951
952 /*
953 * Return the space in the log between the tail and the head. The head
954 * is passed in the cycle/bytes formal parms. In the special case where
955 * the reserve head has wrapped passed the tail, this calculation is no
956 * longer valid. In this case, just return 0 which means there is no space
957 * in the log. This works for all places where this function is called
958 * with the reserve head. Of course, if the write head were to ever
959 * wrap the tail, we should blow up. Rather than catch this case here,
960 * we depend on other ASSERTions in other parts of the code. XXXmiken
961 *
962 * This code also handles the case where the reservation head is behind
963 * the tail. The details of this case are described below, but the end
964 * result is that we return the size of the log as the amount of space left.
965 */
966 STATIC int
967 xlog_space_left(
968 struct log *log,
969 atomic64_t *head)
970 {
971 int free_bytes;
972 int tail_bytes;
973 int tail_cycle;
974 int head_cycle;
975 int head_bytes;
976
977 xlog_crack_grant_head(head, &head_cycle, &head_bytes);
978 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
979 tail_bytes = BBTOB(tail_bytes);
980 if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
981 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
982 else if (tail_cycle + 1 < head_cycle)
983 return 0;
984 else if (tail_cycle < head_cycle) {
985 ASSERT(tail_cycle == (head_cycle - 1));
986 free_bytes = tail_bytes - head_bytes;
987 } else {
988 /*
989 * The reservation head is behind the tail.
990 * In this case we just want to return the size of the
991 * log as the amount of space left.
992 */
993 xfs_alert(log->l_mp,
994 "xlog_space_left: head behind tail\n"
995 " tail_cycle = %d, tail_bytes = %d\n"
996 " GH cycle = %d, GH bytes = %d",
997 tail_cycle, tail_bytes, head_cycle, head_bytes);
998 ASSERT(0);
999 free_bytes = log->l_logsize;
1000 }
1001 return free_bytes;
1002 }
1003
1004
1005 /*
1006 * Log function which is called when an io completes.
1007 *
1008 * The log manager needs its own routine, in order to control what
1009 * happens with the buffer after the write completes.
1010 */
1011 void
1012 xlog_iodone(xfs_buf_t *bp)
1013 {
1014 xlog_in_core_t *iclog = bp->b_fspriv;
1015 xlog_t *l = iclog->ic_log;
1016 int aborted = 0;
1017
1018 /*
1019 * Race to shutdown the filesystem if we see an error.
1020 */
1021 if (XFS_TEST_ERROR((xfs_buf_geterror(bp)), l->l_mp,
1022 XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) {
1023 xfs_buf_ioerror_alert(bp, __func__);
1024 xfs_buf_stale(bp);
1025 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1026 /*
1027 * This flag will be propagated to the trans-committed
1028 * callback routines to let them know that the log-commit
1029 * didn't succeed.
1030 */
1031 aborted = XFS_LI_ABORTED;
1032 } else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1033 aborted = XFS_LI_ABORTED;
1034 }
1035
1036 /* log I/O is always issued ASYNC */
1037 ASSERT(XFS_BUF_ISASYNC(bp));
1038 xlog_state_done_syncing(iclog, aborted);
1039 /*
1040 * do not reference the buffer (bp) here as we could race
1041 * with it being freed after writing the unmount record to the
1042 * log.
1043 */
1044
1045 } /* xlog_iodone */
1046
1047 /*
1048 * Return size of each in-core log record buffer.
1049 *
1050 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1051 *
1052 * If the filesystem blocksize is too large, we may need to choose a
1053 * larger size since the directory code currently logs entire blocks.
1054 */
1055
1056 STATIC void
1057 xlog_get_iclog_buffer_size(xfs_mount_t *mp,
1058 xlog_t *log)
1059 {
1060 int size;
1061 int xhdrs;
1062
1063 if (mp->m_logbufs <= 0)
1064 log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1065 else
1066 log->l_iclog_bufs = mp->m_logbufs;
1067
1068 /*
1069 * Buffer size passed in from mount system call.
1070 */
1071 if (mp->m_logbsize > 0) {
1072 size = log->l_iclog_size = mp->m_logbsize;
1073 log->l_iclog_size_log = 0;
1074 while (size != 1) {
1075 log->l_iclog_size_log++;
1076 size >>= 1;
1077 }
1078
1079 if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1080 /* # headers = size / 32k
1081 * one header holds cycles from 32k of data
1082 */
1083
1084 xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1085 if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1086 xhdrs++;
1087 log->l_iclog_hsize = xhdrs << BBSHIFT;
1088 log->l_iclog_heads = xhdrs;
1089 } else {
1090 ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1091 log->l_iclog_hsize = BBSIZE;
1092 log->l_iclog_heads = 1;
1093 }
1094 goto done;
1095 }
1096
1097 /* All machines use 32kB buffers by default. */
1098 log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1099 log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1100
1101 /* the default log size is 16k or 32k which is one header sector */
1102 log->l_iclog_hsize = BBSIZE;
1103 log->l_iclog_heads = 1;
1104
1105 done:
1106 /* are we being asked to make the sizes selected above visible? */
1107 if (mp->m_logbufs == 0)
1108 mp->m_logbufs = log->l_iclog_bufs;
1109 if (mp->m_logbsize == 0)
1110 mp->m_logbsize = log->l_iclog_size;
1111 } /* xlog_get_iclog_buffer_size */
1112
1113
1114 /*
1115 * This routine initializes some of the log structure for a given mount point.
1116 * Its primary purpose is to fill in enough, so recovery can occur. However,
1117 * some other stuff may be filled in too.
1118 */
1119 STATIC xlog_t *
1120 xlog_alloc_log(xfs_mount_t *mp,
1121 xfs_buftarg_t *log_target,
1122 xfs_daddr_t blk_offset,
1123 int num_bblks)
1124 {
1125 xlog_t *log;
1126 xlog_rec_header_t *head;
1127 xlog_in_core_t **iclogp;
1128 xlog_in_core_t *iclog, *prev_iclog=NULL;
1129 xfs_buf_t *bp;
1130 int i;
1131 int error = ENOMEM;
1132 uint log2_size = 0;
1133
1134 log = kmem_zalloc(sizeof(xlog_t), KM_MAYFAIL);
1135 if (!log) {
1136 xfs_warn(mp, "Log allocation failed: No memory!");
1137 goto out;
1138 }
1139
1140 log->l_mp = mp;
1141 log->l_targ = log_target;
1142 log->l_logsize = BBTOB(num_bblks);
1143 log->l_logBBstart = blk_offset;
1144 log->l_logBBsize = num_bblks;
1145 log->l_covered_state = XLOG_STATE_COVER_IDLE;
1146 log->l_flags |= XLOG_ACTIVE_RECOVERY;
1147
1148 log->l_prev_block = -1;
1149 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1150 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1151 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1152 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
1153
1154 xlog_grant_head_init(&log->l_reserve_head);
1155 xlog_grant_head_init(&log->l_write_head);
1156
1157 error = EFSCORRUPTED;
1158 if (xfs_sb_version_hassector(&mp->m_sb)) {
1159 log2_size = mp->m_sb.sb_logsectlog;
1160 if (log2_size < BBSHIFT) {
1161 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1162 log2_size, BBSHIFT);
1163 goto out_free_log;
1164 }
1165
1166 log2_size -= BBSHIFT;
1167 if (log2_size > mp->m_sectbb_log) {
1168 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1169 log2_size, mp->m_sectbb_log);
1170 goto out_free_log;
1171 }
1172
1173 /* for larger sector sizes, must have v2 or external log */
1174 if (log2_size && log->l_logBBstart > 0 &&
1175 !xfs_sb_version_haslogv2(&mp->m_sb)) {
1176 xfs_warn(mp,
1177 "log sector size (0x%x) invalid for configuration.",
1178 log2_size);
1179 goto out_free_log;
1180 }
1181 }
1182 log->l_sectBBsize = 1 << log2_size;
1183
1184 xlog_get_iclog_buffer_size(mp, log);
1185
1186 error = ENOMEM;
1187 bp = xfs_buf_alloc(mp->m_logdev_targp, 0, BTOBB(log->l_iclog_size), 0);
1188 if (!bp)
1189 goto out_free_log;
1190 bp->b_iodone = xlog_iodone;
1191 ASSERT(xfs_buf_islocked(bp));
1192 log->l_xbuf = bp;
1193
1194 spin_lock_init(&log->l_icloglock);
1195 init_waitqueue_head(&log->l_flush_wait);
1196
1197 iclogp = &log->l_iclog;
1198 /*
1199 * The amount of memory to allocate for the iclog structure is
1200 * rather funky due to the way the structure is defined. It is
1201 * done this way so that we can use different sizes for machines
1202 * with different amounts of memory. See the definition of
1203 * xlog_in_core_t in xfs_log_priv.h for details.
1204 */
1205 ASSERT(log->l_iclog_size >= 4096);
1206 for (i=0; i < log->l_iclog_bufs; i++) {
1207 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1208 if (!*iclogp)
1209 goto out_free_iclog;
1210
1211 iclog = *iclogp;
1212 iclog->ic_prev = prev_iclog;
1213 prev_iclog = iclog;
1214
1215 bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1216 BTOBB(log->l_iclog_size), 0);
1217 if (!bp)
1218 goto out_free_iclog;
1219
1220 bp->b_iodone = xlog_iodone;
1221 iclog->ic_bp = bp;
1222 iclog->ic_data = bp->b_addr;
1223 #ifdef DEBUG
1224 log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header);
1225 #endif
1226 head = &iclog->ic_header;
1227 memset(head, 0, sizeof(xlog_rec_header_t));
1228 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1229 head->h_version = cpu_to_be32(
1230 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1231 head->h_size = cpu_to_be32(log->l_iclog_size);
1232 /* new fields */
1233 head->h_fmt = cpu_to_be32(XLOG_FMT);
1234 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1235
1236 iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1237 iclog->ic_state = XLOG_STATE_ACTIVE;
1238 iclog->ic_log = log;
1239 atomic_set(&iclog->ic_refcnt, 0);
1240 spin_lock_init(&iclog->ic_callback_lock);
1241 iclog->ic_callback_tail = &(iclog->ic_callback);
1242 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1243
1244 ASSERT(xfs_buf_islocked(iclog->ic_bp));
1245 init_waitqueue_head(&iclog->ic_force_wait);
1246 init_waitqueue_head(&iclog->ic_write_wait);
1247
1248 iclogp = &iclog->ic_next;
1249 }
1250 *iclogp = log->l_iclog; /* complete ring */
1251 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
1252
1253 error = xlog_cil_init(log);
1254 if (error)
1255 goto out_free_iclog;
1256 return log;
1257
1258 out_free_iclog:
1259 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1260 prev_iclog = iclog->ic_next;
1261 if (iclog->ic_bp)
1262 xfs_buf_free(iclog->ic_bp);
1263 kmem_free(iclog);
1264 }
1265 spinlock_destroy(&log->l_icloglock);
1266 xfs_buf_free(log->l_xbuf);
1267 out_free_log:
1268 kmem_free(log);
1269 out:
1270 return ERR_PTR(-error);
1271 } /* xlog_alloc_log */
1272
1273
1274 /*
1275 * Write out the commit record of a transaction associated with the given
1276 * ticket. Return the lsn of the commit record.
1277 */
1278 STATIC int
1279 xlog_commit_record(
1280 struct log *log,
1281 struct xlog_ticket *ticket,
1282 struct xlog_in_core **iclog,
1283 xfs_lsn_t *commitlsnp)
1284 {
1285 struct xfs_mount *mp = log->l_mp;
1286 int error;
1287 struct xfs_log_iovec reg = {
1288 .i_addr = NULL,
1289 .i_len = 0,
1290 .i_type = XLOG_REG_TYPE_COMMIT,
1291 };
1292 struct xfs_log_vec vec = {
1293 .lv_niovecs = 1,
1294 .lv_iovecp = &reg,
1295 };
1296
1297 ASSERT_ALWAYS(iclog);
1298 error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1299 XLOG_COMMIT_TRANS);
1300 if (error)
1301 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1302 return error;
1303 }
1304
1305 /*
1306 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1307 * log space. This code pushes on the lsn which would supposedly free up
1308 * the 25% which we want to leave free. We may need to adopt a policy which
1309 * pushes on an lsn which is further along in the log once we reach the high
1310 * water mark. In this manner, we would be creating a low water mark.
1311 */
1312 STATIC void
1313 xlog_grant_push_ail(
1314 struct log *log,
1315 int need_bytes)
1316 {
1317 xfs_lsn_t threshold_lsn = 0;
1318 xfs_lsn_t last_sync_lsn;
1319 int free_blocks;
1320 int free_bytes;
1321 int threshold_block;
1322 int threshold_cycle;
1323 int free_threshold;
1324
1325 ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1326
1327 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1328 free_blocks = BTOBBT(free_bytes);
1329
1330 /*
1331 * Set the threshold for the minimum number of free blocks in the
1332 * log to the maximum of what the caller needs, one quarter of the
1333 * log, and 256 blocks.
1334 */
1335 free_threshold = BTOBB(need_bytes);
1336 free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1337 free_threshold = MAX(free_threshold, 256);
1338 if (free_blocks >= free_threshold)
1339 return;
1340
1341 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1342 &threshold_block);
1343 threshold_block += free_threshold;
1344 if (threshold_block >= log->l_logBBsize) {
1345 threshold_block -= log->l_logBBsize;
1346 threshold_cycle += 1;
1347 }
1348 threshold_lsn = xlog_assign_lsn(threshold_cycle,
1349 threshold_block);
1350 /*
1351 * Don't pass in an lsn greater than the lsn of the last
1352 * log record known to be on disk. Use a snapshot of the last sync lsn
1353 * so that it doesn't change between the compare and the set.
1354 */
1355 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1356 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1357 threshold_lsn = last_sync_lsn;
1358
1359 /*
1360 * Get the transaction layer to kick the dirty buffers out to
1361 * disk asynchronously. No point in trying to do this if
1362 * the filesystem is shutting down.
1363 */
1364 if (!XLOG_FORCED_SHUTDOWN(log))
1365 xfs_ail_push(log->l_ailp, threshold_lsn);
1366 }
1367
1368 /*
1369 * The bdstrat callback function for log bufs. This gives us a central
1370 * place to trap bufs in case we get hit by a log I/O error and need to
1371 * shutdown. Actually, in practice, even when we didn't get a log error,
1372 * we transition the iclogs to IOERROR state *after* flushing all existing
1373 * iclogs to disk. This is because we don't want anymore new transactions to be
1374 * started or completed afterwards.
1375 */
1376 STATIC int
1377 xlog_bdstrat(
1378 struct xfs_buf *bp)
1379 {
1380 struct xlog_in_core *iclog = bp->b_fspriv;
1381
1382 if (iclog->ic_state & XLOG_STATE_IOERROR) {
1383 xfs_buf_ioerror(bp, EIO);
1384 xfs_buf_stale(bp);
1385 xfs_buf_ioend(bp, 0);
1386 /*
1387 * It would seem logical to return EIO here, but we rely on
1388 * the log state machine to propagate I/O errors instead of
1389 * doing it here.
1390 */
1391 return 0;
1392 }
1393
1394 xfs_buf_iorequest(bp);
1395 return 0;
1396 }
1397
1398 /*
1399 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1400 * fashion. Previously, we should have moved the current iclog
1401 * ptr in the log to point to the next available iclog. This allows further
1402 * write to continue while this code syncs out an iclog ready to go.
1403 * Before an in-core log can be written out, the data section must be scanned
1404 * to save away the 1st word of each BBSIZE block into the header. We replace
1405 * it with the current cycle count. Each BBSIZE block is tagged with the
1406 * cycle count because there in an implicit assumption that drives will
1407 * guarantee that entire 512 byte blocks get written at once. In other words,
1408 * we can't have part of a 512 byte block written and part not written. By
1409 * tagging each block, we will know which blocks are valid when recovering
1410 * after an unclean shutdown.
1411 *
1412 * This routine is single threaded on the iclog. No other thread can be in
1413 * this routine with the same iclog. Changing contents of iclog can there-
1414 * fore be done without grabbing the state machine lock. Updating the global
1415 * log will require grabbing the lock though.
1416 *
1417 * The entire log manager uses a logical block numbering scheme. Only
1418 * log_sync (and then only bwrite()) know about the fact that the log may
1419 * not start with block zero on a given device. The log block start offset
1420 * is added immediately before calling bwrite().
1421 */
1422
1423 STATIC int
1424 xlog_sync(xlog_t *log,
1425 xlog_in_core_t *iclog)
1426 {
1427 xfs_caddr_t dptr; /* pointer to byte sized element */
1428 xfs_buf_t *bp;
1429 int i;
1430 uint count; /* byte count of bwrite */
1431 uint count_init; /* initial count before roundup */
1432 int roundoff; /* roundoff to BB or stripe */
1433 int split = 0; /* split write into two regions */
1434 int error;
1435 int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1436
1437 XFS_STATS_INC(xs_log_writes);
1438 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1439
1440 /* Add for LR header */
1441 count_init = log->l_iclog_hsize + iclog->ic_offset;
1442
1443 /* Round out the log write size */
1444 if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1445 /* we have a v2 stripe unit to use */
1446 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1447 } else {
1448 count = BBTOB(BTOBB(count_init));
1449 }
1450 roundoff = count - count_init;
1451 ASSERT(roundoff >= 0);
1452 ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1453 roundoff < log->l_mp->m_sb.sb_logsunit)
1454 ||
1455 (log->l_mp->m_sb.sb_logsunit <= 1 &&
1456 roundoff < BBTOB(1)));
1457
1458 /* move grant heads by roundoff in sync */
1459 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1460 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1461
1462 /* put cycle number in every block */
1463 xlog_pack_data(log, iclog, roundoff);
1464
1465 /* real byte length */
1466 if (v2) {
1467 iclog->ic_header.h_len =
1468 cpu_to_be32(iclog->ic_offset + roundoff);
1469 } else {
1470 iclog->ic_header.h_len =
1471 cpu_to_be32(iclog->ic_offset);
1472 }
1473
1474 bp = iclog->ic_bp;
1475 XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1476
1477 XFS_STATS_ADD(xs_log_blocks, BTOBB(count));
1478
1479 /* Do we need to split this write into 2 parts? */
1480 if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1481 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1482 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1483 iclog->ic_bwritecnt = 2; /* split into 2 writes */
1484 } else {
1485 iclog->ic_bwritecnt = 1;
1486 }
1487 bp->b_io_length = BTOBB(count);
1488 bp->b_fspriv = iclog;
1489 XFS_BUF_ZEROFLAGS(bp);
1490 XFS_BUF_ASYNC(bp);
1491 bp->b_flags |= XBF_SYNCIO;
1492
1493 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1494 bp->b_flags |= XBF_FUA;
1495
1496 /*
1497 * Flush the data device before flushing the log to make
1498 * sure all meta data written back from the AIL actually made
1499 * it to disk before stamping the new log tail LSN into the
1500 * log buffer. For an external log we need to issue the
1501 * flush explicitly, and unfortunately synchronously here;
1502 * for an internal log we can simply use the block layer
1503 * state machine for preflushes.
1504 */
1505 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1506 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1507 else
1508 bp->b_flags |= XBF_FLUSH;
1509 }
1510
1511 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1512 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1513
1514 xlog_verify_iclog(log, iclog, count, B_TRUE);
1515
1516 /* account for log which doesn't start at block #0 */
1517 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1518 /*
1519 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1520 * is shutting down.
1521 */
1522 XFS_BUF_WRITE(bp);
1523
1524 error = xlog_bdstrat(bp);
1525 if (error) {
1526 xfs_buf_ioerror_alert(bp, "xlog_sync");
1527 return error;
1528 }
1529 if (split) {
1530 bp = iclog->ic_log->l_xbuf;
1531 XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */
1532 xfs_buf_associate_memory(bp,
1533 (char *)&iclog->ic_header + count, split);
1534 bp->b_fspriv = iclog;
1535 XFS_BUF_ZEROFLAGS(bp);
1536 XFS_BUF_ASYNC(bp);
1537 bp->b_flags |= XBF_SYNCIO;
1538 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1539 bp->b_flags |= XBF_FUA;
1540 dptr = bp->b_addr;
1541 /*
1542 * Bump the cycle numbers at the start of each block
1543 * since this part of the buffer is at the start of
1544 * a new cycle. Watch out for the header magic number
1545 * case, though.
1546 */
1547 for (i = 0; i < split; i += BBSIZE) {
1548 be32_add_cpu((__be32 *)dptr, 1);
1549 if (be32_to_cpu(*(__be32 *)dptr) == XLOG_HEADER_MAGIC_NUM)
1550 be32_add_cpu((__be32 *)dptr, 1);
1551 dptr += BBSIZE;
1552 }
1553
1554 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1555 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1556
1557 /* account for internal log which doesn't start at block #0 */
1558 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1559 XFS_BUF_WRITE(bp);
1560 error = xlog_bdstrat(bp);
1561 if (error) {
1562 xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1563 return error;
1564 }
1565 }
1566 return 0;
1567 } /* xlog_sync */
1568
1569
1570 /*
1571 * Deallocate a log structure
1572 */
1573 STATIC void
1574 xlog_dealloc_log(xlog_t *log)
1575 {
1576 xlog_in_core_t *iclog, *next_iclog;
1577 int i;
1578
1579 xlog_cil_destroy(log);
1580
1581 /*
1582 * always need to ensure that the extra buffer does not point to memory
1583 * owned by another log buffer before we free it.
1584 */
1585 xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1586 xfs_buf_free(log->l_xbuf);
1587
1588 iclog = log->l_iclog;
1589 for (i=0; i<log->l_iclog_bufs; i++) {
1590 xfs_buf_free(iclog->ic_bp);
1591 next_iclog = iclog->ic_next;
1592 kmem_free(iclog);
1593 iclog = next_iclog;
1594 }
1595 spinlock_destroy(&log->l_icloglock);
1596
1597 log->l_mp->m_log = NULL;
1598 kmem_free(log);
1599 } /* xlog_dealloc_log */
1600
1601 /*
1602 * Update counters atomically now that memcpy is done.
1603 */
1604 /* ARGSUSED */
1605 static inline void
1606 xlog_state_finish_copy(xlog_t *log,
1607 xlog_in_core_t *iclog,
1608 int record_cnt,
1609 int copy_bytes)
1610 {
1611 spin_lock(&log->l_icloglock);
1612
1613 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1614 iclog->ic_offset += copy_bytes;
1615
1616 spin_unlock(&log->l_icloglock);
1617 } /* xlog_state_finish_copy */
1618
1619
1620
1621
1622 /*
1623 * print out info relating to regions written which consume
1624 * the reservation
1625 */
1626 void
1627 xlog_print_tic_res(
1628 struct xfs_mount *mp,
1629 struct xlog_ticket *ticket)
1630 {
1631 uint i;
1632 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1633
1634 /* match with XLOG_REG_TYPE_* in xfs_log.h */
1635 static char *res_type_str[XLOG_REG_TYPE_MAX] = {
1636 "bformat",
1637 "bchunk",
1638 "efi_format",
1639 "efd_format",
1640 "iformat",
1641 "icore",
1642 "iext",
1643 "ibroot",
1644 "ilocal",
1645 "iattr_ext",
1646 "iattr_broot",
1647 "iattr_local",
1648 "qformat",
1649 "dquot",
1650 "quotaoff",
1651 "LR header",
1652 "unmount",
1653 "commit",
1654 "trans header"
1655 };
1656 static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
1657 "SETATTR_NOT_SIZE",
1658 "SETATTR_SIZE",
1659 "INACTIVE",
1660 "CREATE",
1661 "CREATE_TRUNC",
1662 "TRUNCATE_FILE",
1663 "REMOVE",
1664 "LINK",
1665 "RENAME",
1666 "MKDIR",
1667 "RMDIR",
1668 "SYMLINK",
1669 "SET_DMATTRS",
1670 "GROWFS",
1671 "STRAT_WRITE",
1672 "DIOSTRAT",
1673 "WRITE_SYNC",
1674 "WRITEID",
1675 "ADDAFORK",
1676 "ATTRINVAL",
1677 "ATRUNCATE",
1678 "ATTR_SET",
1679 "ATTR_RM",
1680 "ATTR_FLAG",
1681 "CLEAR_AGI_BUCKET",
1682 "QM_SBCHANGE",
1683 "DUMMY1",
1684 "DUMMY2",
1685 "QM_QUOTAOFF",
1686 "QM_DQALLOC",
1687 "QM_SETQLIM",
1688 "QM_DQCLUSTER",
1689 "QM_QINOCREATE",
1690 "QM_QUOTAOFF_END",
1691 "SB_UNIT",
1692 "FSYNC_TS",
1693 "GROWFSRT_ALLOC",
1694 "GROWFSRT_ZERO",
1695 "GROWFSRT_FREE",
1696 "SWAPEXT"
1697 };
1698
1699 xfs_warn(mp,
1700 "xlog_write: reservation summary:\n"
1701 " trans type = %s (%u)\n"
1702 " unit res = %d bytes\n"
1703 " current res = %d bytes\n"
1704 " total reg = %u bytes (o/flow = %u bytes)\n"
1705 " ophdrs = %u (ophdr space = %u bytes)\n"
1706 " ophdr + reg = %u bytes\n"
1707 " num regions = %u\n",
1708 ((ticket->t_trans_type <= 0 ||
1709 ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
1710 "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
1711 ticket->t_trans_type,
1712 ticket->t_unit_res,
1713 ticket->t_curr_res,
1714 ticket->t_res_arr_sum, ticket->t_res_o_flow,
1715 ticket->t_res_num_ophdrs, ophdr_spc,
1716 ticket->t_res_arr_sum +
1717 ticket->t_res_o_flow + ophdr_spc,
1718 ticket->t_res_num);
1719
1720 for (i = 0; i < ticket->t_res_num; i++) {
1721 uint r_type = ticket->t_res_arr[i].r_type;
1722 xfs_warn(mp, "region[%u]: %s - %u bytes\n", i,
1723 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
1724 "bad-rtype" : res_type_str[r_type-1]),
1725 ticket->t_res_arr[i].r_len);
1726 }
1727
1728 xfs_alert_tag(mp, XFS_PTAG_LOGRES,
1729 "xlog_write: reservation ran out. Need to up reservation");
1730 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1731 }
1732
1733 /*
1734 * Calculate the potential space needed by the log vector. Each region gets
1735 * its own xlog_op_header_t and may need to be double word aligned.
1736 */
1737 static int
1738 xlog_write_calc_vec_length(
1739 struct xlog_ticket *ticket,
1740 struct xfs_log_vec *log_vector)
1741 {
1742 struct xfs_log_vec *lv;
1743 int headers = 0;
1744 int len = 0;
1745 int i;
1746
1747 /* acct for start rec of xact */
1748 if (ticket->t_flags & XLOG_TIC_INITED)
1749 headers++;
1750
1751 for (lv = log_vector; lv; lv = lv->lv_next) {
1752 headers += lv->lv_niovecs;
1753
1754 for (i = 0; i < lv->lv_niovecs; i++) {
1755 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i];
1756
1757 len += vecp->i_len;
1758 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
1759 }
1760 }
1761
1762 ticket->t_res_num_ophdrs += headers;
1763 len += headers * sizeof(struct xlog_op_header);
1764
1765 return len;
1766 }
1767
1768 /*
1769 * If first write for transaction, insert start record We can't be trying to
1770 * commit if we are inited. We can't have any "partial_copy" if we are inited.
1771 */
1772 static int
1773 xlog_write_start_rec(
1774 struct xlog_op_header *ophdr,
1775 struct xlog_ticket *ticket)
1776 {
1777 if (!(ticket->t_flags & XLOG_TIC_INITED))
1778 return 0;
1779
1780 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
1781 ophdr->oh_clientid = ticket->t_clientid;
1782 ophdr->oh_len = 0;
1783 ophdr->oh_flags = XLOG_START_TRANS;
1784 ophdr->oh_res2 = 0;
1785
1786 ticket->t_flags &= ~XLOG_TIC_INITED;
1787
1788 return sizeof(struct xlog_op_header);
1789 }
1790
1791 static xlog_op_header_t *
1792 xlog_write_setup_ophdr(
1793 struct log *log,
1794 struct xlog_op_header *ophdr,
1795 struct xlog_ticket *ticket,
1796 uint flags)
1797 {
1798 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
1799 ophdr->oh_clientid = ticket->t_clientid;
1800 ophdr->oh_res2 = 0;
1801
1802 /* are we copying a commit or unmount record? */
1803 ophdr->oh_flags = flags;
1804
1805 /*
1806 * We've seen logs corrupted with bad transaction client ids. This
1807 * makes sure that XFS doesn't generate them on. Turn this into an EIO
1808 * and shut down the filesystem.
1809 */
1810 switch (ophdr->oh_clientid) {
1811 case XFS_TRANSACTION:
1812 case XFS_VOLUME:
1813 case XFS_LOG:
1814 break;
1815 default:
1816 xfs_warn(log->l_mp,
1817 "Bad XFS transaction clientid 0x%x in ticket 0x%p",
1818 ophdr->oh_clientid, ticket);
1819 return NULL;
1820 }
1821
1822 return ophdr;
1823 }
1824
1825 /*
1826 * Set up the parameters of the region copy into the log. This has
1827 * to handle region write split across multiple log buffers - this
1828 * state is kept external to this function so that this code can
1829 * can be written in an obvious, self documenting manner.
1830 */
1831 static int
1832 xlog_write_setup_copy(
1833 struct xlog_ticket *ticket,
1834 struct xlog_op_header *ophdr,
1835 int space_available,
1836 int space_required,
1837 int *copy_off,
1838 int *copy_len,
1839 int *last_was_partial_copy,
1840 int *bytes_consumed)
1841 {
1842 int still_to_copy;
1843
1844 still_to_copy = space_required - *bytes_consumed;
1845 *copy_off = *bytes_consumed;
1846
1847 if (still_to_copy <= space_available) {
1848 /* write of region completes here */
1849 *copy_len = still_to_copy;
1850 ophdr->oh_len = cpu_to_be32(*copy_len);
1851 if (*last_was_partial_copy)
1852 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
1853 *last_was_partial_copy = 0;
1854 *bytes_consumed = 0;
1855 return 0;
1856 }
1857
1858 /* partial write of region, needs extra log op header reservation */
1859 *copy_len = space_available;
1860 ophdr->oh_len = cpu_to_be32(*copy_len);
1861 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
1862 if (*last_was_partial_copy)
1863 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
1864 *bytes_consumed += *copy_len;
1865 (*last_was_partial_copy)++;
1866
1867 /* account for new log op header */
1868 ticket->t_curr_res -= sizeof(struct xlog_op_header);
1869 ticket->t_res_num_ophdrs++;
1870
1871 return sizeof(struct xlog_op_header);
1872 }
1873
1874 static int
1875 xlog_write_copy_finish(
1876 struct log *log,
1877 struct xlog_in_core *iclog,
1878 uint flags,
1879 int *record_cnt,
1880 int *data_cnt,
1881 int *partial_copy,
1882 int *partial_copy_len,
1883 int log_offset,
1884 struct xlog_in_core **commit_iclog)
1885 {
1886 if (*partial_copy) {
1887 /*
1888 * This iclog has already been marked WANT_SYNC by
1889 * xlog_state_get_iclog_space.
1890 */
1891 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
1892 *record_cnt = 0;
1893 *data_cnt = 0;
1894 return xlog_state_release_iclog(log, iclog);
1895 }
1896
1897 *partial_copy = 0;
1898 *partial_copy_len = 0;
1899
1900 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
1901 /* no more space in this iclog - push it. */
1902 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
1903 *record_cnt = 0;
1904 *data_cnt = 0;
1905
1906 spin_lock(&log->l_icloglock);
1907 xlog_state_want_sync(log, iclog);
1908 spin_unlock(&log->l_icloglock);
1909
1910 if (!commit_iclog)
1911 return xlog_state_release_iclog(log, iclog);
1912 ASSERT(flags & XLOG_COMMIT_TRANS);
1913 *commit_iclog = iclog;
1914 }
1915
1916 return 0;
1917 }
1918
1919 /*
1920 * Write some region out to in-core log
1921 *
1922 * This will be called when writing externally provided regions or when
1923 * writing out a commit record for a given transaction.
1924 *
1925 * General algorithm:
1926 * 1. Find total length of this write. This may include adding to the
1927 * lengths passed in.
1928 * 2. Check whether we violate the tickets reservation.
1929 * 3. While writing to this iclog
1930 * A. Reserve as much space in this iclog as can get
1931 * B. If this is first write, save away start lsn
1932 * C. While writing this region:
1933 * 1. If first write of transaction, write start record
1934 * 2. Write log operation header (header per region)
1935 * 3. Find out if we can fit entire region into this iclog
1936 * 4. Potentially, verify destination memcpy ptr
1937 * 5. Memcpy (partial) region
1938 * 6. If partial copy, release iclog; otherwise, continue
1939 * copying more regions into current iclog
1940 * 4. Mark want sync bit (in simulation mode)
1941 * 5. Release iclog for potential flush to on-disk log.
1942 *
1943 * ERRORS:
1944 * 1. Panic if reservation is overrun. This should never happen since
1945 * reservation amounts are generated internal to the filesystem.
1946 * NOTES:
1947 * 1. Tickets are single threaded data structures.
1948 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
1949 * syncing routine. When a single log_write region needs to span
1950 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
1951 * on all log operation writes which don't contain the end of the
1952 * region. The XLOG_END_TRANS bit is used for the in-core log
1953 * operation which contains the end of the continued log_write region.
1954 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
1955 * we don't really know exactly how much space will be used. As a result,
1956 * we don't update ic_offset until the end when we know exactly how many
1957 * bytes have been written out.
1958 */
1959 int
1960 xlog_write(
1961 struct log *log,
1962 struct xfs_log_vec *log_vector,
1963 struct xlog_ticket *ticket,
1964 xfs_lsn_t *start_lsn,
1965 struct xlog_in_core **commit_iclog,
1966 uint flags)
1967 {
1968 struct xlog_in_core *iclog = NULL;
1969 struct xfs_log_iovec *vecp;
1970 struct xfs_log_vec *lv;
1971 int len;
1972 int index;
1973 int partial_copy = 0;
1974 int partial_copy_len = 0;
1975 int contwr = 0;
1976 int record_cnt = 0;
1977 int data_cnt = 0;
1978 int error;
1979
1980 *start_lsn = 0;
1981
1982 len = xlog_write_calc_vec_length(ticket, log_vector);
1983
1984 /*
1985 * Region headers and bytes are already accounted for.
1986 * We only need to take into account start records and
1987 * split regions in this function.
1988 */
1989 if (ticket->t_flags & XLOG_TIC_INITED)
1990 ticket->t_curr_res -= sizeof(xlog_op_header_t);
1991
1992 /*
1993 * Commit record headers need to be accounted for. These
1994 * come in as separate writes so are easy to detect.
1995 */
1996 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
1997 ticket->t_curr_res -= sizeof(xlog_op_header_t);
1998
1999 if (ticket->t_curr_res < 0)
2000 xlog_print_tic_res(log->l_mp, ticket);
2001
2002 index = 0;
2003 lv = log_vector;
2004 vecp = lv->lv_iovecp;
2005 while (lv && index < lv->lv_niovecs) {
2006 void *ptr;
2007 int log_offset;
2008
2009 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2010 &contwr, &log_offset);
2011 if (error)
2012 return error;
2013
2014 ASSERT(log_offset <= iclog->ic_size - 1);
2015 ptr = iclog->ic_datap + log_offset;
2016
2017 /* start_lsn is the first lsn written to. That's all we need. */
2018 if (!*start_lsn)
2019 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2020
2021 /*
2022 * This loop writes out as many regions as can fit in the amount
2023 * of space which was allocated by xlog_state_get_iclog_space().
2024 */
2025 while (lv && index < lv->lv_niovecs) {
2026 struct xfs_log_iovec *reg = &vecp[index];
2027 struct xlog_op_header *ophdr;
2028 int start_rec_copy;
2029 int copy_len;
2030 int copy_off;
2031
2032 ASSERT(reg->i_len % sizeof(__int32_t) == 0);
2033 ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
2034
2035 start_rec_copy = xlog_write_start_rec(ptr, ticket);
2036 if (start_rec_copy) {
2037 record_cnt++;
2038 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2039 start_rec_copy);
2040 }
2041
2042 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2043 if (!ophdr)
2044 return XFS_ERROR(EIO);
2045
2046 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2047 sizeof(struct xlog_op_header));
2048
2049 len += xlog_write_setup_copy(ticket, ophdr,
2050 iclog->ic_size-log_offset,
2051 reg->i_len,
2052 &copy_off, &copy_len,
2053 &partial_copy,
2054 &partial_copy_len);
2055 xlog_verify_dest_ptr(log, ptr);
2056
2057 /* copy region */
2058 ASSERT(copy_len >= 0);
2059 memcpy(ptr, reg->i_addr + copy_off, copy_len);
2060 xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len);
2061
2062 copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2063 record_cnt++;
2064 data_cnt += contwr ? copy_len : 0;
2065
2066 error = xlog_write_copy_finish(log, iclog, flags,
2067 &record_cnt, &data_cnt,
2068 &partial_copy,
2069 &partial_copy_len,
2070 log_offset,
2071 commit_iclog);
2072 if (error)
2073 return error;
2074
2075 /*
2076 * if we had a partial copy, we need to get more iclog
2077 * space but we don't want to increment the region
2078 * index because there is still more is this region to
2079 * write.
2080 *
2081 * If we completed writing this region, and we flushed
2082 * the iclog (indicated by resetting of the record
2083 * count), then we also need to get more log space. If
2084 * this was the last record, though, we are done and
2085 * can just return.
2086 */
2087 if (partial_copy)
2088 break;
2089
2090 if (++index == lv->lv_niovecs) {
2091 lv = lv->lv_next;
2092 index = 0;
2093 if (lv)
2094 vecp = lv->lv_iovecp;
2095 }
2096 if (record_cnt == 0) {
2097 if (!lv)
2098 return 0;
2099 break;
2100 }
2101 }
2102 }
2103
2104 ASSERT(len == 0);
2105
2106 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2107 if (!commit_iclog)
2108 return xlog_state_release_iclog(log, iclog);
2109
2110 ASSERT(flags & XLOG_COMMIT_TRANS);
2111 *commit_iclog = iclog;
2112 return 0;
2113 }
2114
2115
2116 /*****************************************************************************
2117 *
2118 * State Machine functions
2119 *
2120 *****************************************************************************
2121 */
2122
2123 /* Clean iclogs starting from the head. This ordering must be
2124 * maintained, so an iclog doesn't become ACTIVE beyond one that
2125 * is SYNCING. This is also required to maintain the notion that we use
2126 * a ordered wait queue to hold off would be writers to the log when every
2127 * iclog is trying to sync to disk.
2128 *
2129 * State Change: DIRTY -> ACTIVE
2130 */
2131 STATIC void
2132 xlog_state_clean_log(xlog_t *log)
2133 {
2134 xlog_in_core_t *iclog;
2135 int changed = 0;
2136
2137 iclog = log->l_iclog;
2138 do {
2139 if (iclog->ic_state == XLOG_STATE_DIRTY) {
2140 iclog->ic_state = XLOG_STATE_ACTIVE;
2141 iclog->ic_offset = 0;
2142 ASSERT(iclog->ic_callback == NULL);
2143 /*
2144 * If the number of ops in this iclog indicate it just
2145 * contains the dummy transaction, we can
2146 * change state into IDLE (the second time around).
2147 * Otherwise we should change the state into
2148 * NEED a dummy.
2149 * We don't need to cover the dummy.
2150 */
2151 if (!changed &&
2152 (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2153 XLOG_COVER_OPS)) {
2154 changed = 1;
2155 } else {
2156 /*
2157 * We have two dirty iclogs so start over
2158 * This could also be num of ops indicates
2159 * this is not the dummy going out.
2160 */
2161 changed = 2;
2162 }
2163 iclog->ic_header.h_num_logops = 0;
2164 memset(iclog->ic_header.h_cycle_data, 0,
2165 sizeof(iclog->ic_header.h_cycle_data));
2166 iclog->ic_header.h_lsn = 0;
2167 } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2168 /* do nothing */;
2169 else
2170 break; /* stop cleaning */
2171 iclog = iclog->ic_next;
2172 } while (iclog != log->l_iclog);
2173
2174 /* log is locked when we are called */
2175 /*
2176 * Change state for the dummy log recording.
2177 * We usually go to NEED. But we go to NEED2 if the changed indicates
2178 * we are done writing the dummy record.
2179 * If we are done with the second dummy recored (DONE2), then
2180 * we go to IDLE.
2181 */
2182 if (changed) {
2183 switch (log->l_covered_state) {
2184 case XLOG_STATE_COVER_IDLE:
2185 case XLOG_STATE_COVER_NEED:
2186 case XLOG_STATE_COVER_NEED2:
2187 log->l_covered_state = XLOG_STATE_COVER_NEED;
2188 break;
2189
2190 case XLOG_STATE_COVER_DONE:
2191 if (changed == 1)
2192 log->l_covered_state = XLOG_STATE_COVER_NEED2;
2193 else
2194 log->l_covered_state = XLOG_STATE_COVER_NEED;
2195 break;
2196
2197 case XLOG_STATE_COVER_DONE2:
2198 if (changed == 1)
2199 log->l_covered_state = XLOG_STATE_COVER_IDLE;
2200 else
2201 log->l_covered_state = XLOG_STATE_COVER_NEED;
2202 break;
2203
2204 default:
2205 ASSERT(0);
2206 }
2207 }
2208 } /* xlog_state_clean_log */
2209
2210 STATIC xfs_lsn_t
2211 xlog_get_lowest_lsn(
2212 xlog_t *log)
2213 {
2214 xlog_in_core_t *lsn_log;
2215 xfs_lsn_t lowest_lsn, lsn;
2216
2217 lsn_log = log->l_iclog;
2218 lowest_lsn = 0;
2219 do {
2220 if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2221 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2222 if ((lsn && !lowest_lsn) ||
2223 (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2224 lowest_lsn = lsn;
2225 }
2226 }
2227 lsn_log = lsn_log->ic_next;
2228 } while (lsn_log != log->l_iclog);
2229 return lowest_lsn;
2230 }
2231
2232
2233 STATIC void
2234 xlog_state_do_callback(
2235 xlog_t *log,
2236 int aborted,
2237 xlog_in_core_t *ciclog)
2238 {
2239 xlog_in_core_t *iclog;
2240 xlog_in_core_t *first_iclog; /* used to know when we've
2241 * processed all iclogs once */
2242 xfs_log_callback_t *cb, *cb_next;
2243 int flushcnt = 0;
2244 xfs_lsn_t lowest_lsn;
2245 int ioerrors; /* counter: iclogs with errors */
2246 int loopdidcallbacks; /* flag: inner loop did callbacks*/
2247 int funcdidcallbacks; /* flag: function did callbacks */
2248 int repeats; /* for issuing console warnings if
2249 * looping too many times */
2250 int wake = 0;
2251
2252 spin_lock(&log->l_icloglock);
2253 first_iclog = iclog = log->l_iclog;
2254 ioerrors = 0;
2255 funcdidcallbacks = 0;
2256 repeats = 0;
2257
2258 do {
2259 /*
2260 * Scan all iclogs starting with the one pointed to by the
2261 * log. Reset this starting point each time the log is
2262 * unlocked (during callbacks).
2263 *
2264 * Keep looping through iclogs until one full pass is made
2265 * without running any callbacks.
2266 */
2267 first_iclog = log->l_iclog;
2268 iclog = log->l_iclog;
2269 loopdidcallbacks = 0;
2270 repeats++;
2271
2272 do {
2273
2274 /* skip all iclogs in the ACTIVE & DIRTY states */
2275 if (iclog->ic_state &
2276 (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2277 iclog = iclog->ic_next;
2278 continue;
2279 }
2280
2281 /*
2282 * Between marking a filesystem SHUTDOWN and stopping
2283 * the log, we do flush all iclogs to disk (if there
2284 * wasn't a log I/O error). So, we do want things to
2285 * go smoothly in case of just a SHUTDOWN w/o a
2286 * LOG_IO_ERROR.
2287 */
2288 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2289 /*
2290 * Can only perform callbacks in order. Since
2291 * this iclog is not in the DONE_SYNC/
2292 * DO_CALLBACK state, we skip the rest and
2293 * just try to clean up. If we set our iclog
2294 * to DO_CALLBACK, we will not process it when
2295 * we retry since a previous iclog is in the
2296 * CALLBACK and the state cannot change since
2297 * we are holding the l_icloglock.
2298 */
2299 if (!(iclog->ic_state &
2300 (XLOG_STATE_DONE_SYNC |
2301 XLOG_STATE_DO_CALLBACK))) {
2302 if (ciclog && (ciclog->ic_state ==
2303 XLOG_STATE_DONE_SYNC)) {
2304 ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2305 }
2306 break;
2307 }
2308 /*
2309 * We now have an iclog that is in either the
2310 * DO_CALLBACK or DONE_SYNC states. The other
2311 * states (WANT_SYNC, SYNCING, or CALLBACK were
2312 * caught by the above if and are going to
2313 * clean (i.e. we aren't doing their callbacks)
2314 * see the above if.
2315 */
2316
2317 /*
2318 * We will do one more check here to see if we
2319 * have chased our tail around.
2320 */
2321
2322 lowest_lsn = xlog_get_lowest_lsn(log);
2323 if (lowest_lsn &&
2324 XFS_LSN_CMP(lowest_lsn,
2325 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2326 iclog = iclog->ic_next;
2327 continue; /* Leave this iclog for
2328 * another thread */
2329 }
2330
2331 iclog->ic_state = XLOG_STATE_CALLBACK;
2332
2333
2334 /*
2335 * update the last_sync_lsn before we drop the
2336 * icloglock to ensure we are the only one that
2337 * can update it.
2338 */
2339 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2340 be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2341 atomic64_set(&log->l_last_sync_lsn,
2342 be64_to_cpu(iclog->ic_header.h_lsn));
2343
2344 } else
2345 ioerrors++;
2346
2347 spin_unlock(&log->l_icloglock);
2348
2349 /*
2350 * Keep processing entries in the callback list until
2351 * we come around and it is empty. We need to
2352 * atomically see that the list is empty and change the
2353 * state to DIRTY so that we don't miss any more
2354 * callbacks being added.
2355 */
2356 spin_lock(&iclog->ic_callback_lock);
2357 cb = iclog->ic_callback;
2358 while (cb) {
2359 iclog->ic_callback_tail = &(iclog->ic_callback);
2360 iclog->ic_callback = NULL;
2361 spin_unlock(&iclog->ic_callback_lock);
2362
2363 /* perform callbacks in the order given */
2364 for (; cb; cb = cb_next) {
2365 cb_next = cb->cb_next;
2366 cb->cb_func(cb->cb_arg, aborted);
2367 }
2368 spin_lock(&iclog->ic_callback_lock);
2369 cb = iclog->ic_callback;
2370 }
2371
2372 loopdidcallbacks++;
2373 funcdidcallbacks++;
2374
2375 spin_lock(&log->l_icloglock);
2376 ASSERT(iclog->ic_callback == NULL);
2377 spin_unlock(&iclog->ic_callback_lock);
2378 if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2379 iclog->ic_state = XLOG_STATE_DIRTY;
2380
2381 /*
2382 * Transition from DIRTY to ACTIVE if applicable.
2383 * NOP if STATE_IOERROR.
2384 */
2385 xlog_state_clean_log(log);
2386
2387 /* wake up threads waiting in xfs_log_force() */
2388 wake_up_all(&iclog->ic_force_wait);
2389
2390 iclog = iclog->ic_next;
2391 } while (first_iclog != iclog);
2392
2393 if (repeats > 5000) {
2394 flushcnt += repeats;
2395 repeats = 0;
2396 xfs_warn(log->l_mp,
2397 "%s: possible infinite loop (%d iterations)",
2398 __func__, flushcnt);
2399 }
2400 } while (!ioerrors && loopdidcallbacks);
2401
2402 /*
2403 * make one last gasp attempt to see if iclogs are being left in
2404 * limbo..
2405 */
2406 #ifdef DEBUG
2407 if (funcdidcallbacks) {
2408 first_iclog = iclog = log->l_iclog;
2409 do {
2410 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2411 /*
2412 * Terminate the loop if iclogs are found in states
2413 * which will cause other threads to clean up iclogs.
2414 *
2415 * SYNCING - i/o completion will go through logs
2416 * DONE_SYNC - interrupt thread should be waiting for
2417 * l_icloglock
2418 * IOERROR - give up hope all ye who enter here
2419 */
2420 if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2421 iclog->ic_state == XLOG_STATE_SYNCING ||
2422 iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2423 iclog->ic_state == XLOG_STATE_IOERROR )
2424 break;
2425 iclog = iclog->ic_next;
2426 } while (first_iclog != iclog);
2427 }
2428 #endif
2429
2430 if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2431 wake = 1;
2432 spin_unlock(&log->l_icloglock);
2433
2434 if (wake)
2435 wake_up_all(&log->l_flush_wait);
2436 }
2437
2438
2439 /*
2440 * Finish transitioning this iclog to the dirty state.
2441 *
2442 * Make sure that we completely execute this routine only when this is
2443 * the last call to the iclog. There is a good chance that iclog flushes,
2444 * when we reach the end of the physical log, get turned into 2 separate
2445 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2446 * routine. By using the reference count bwritecnt, we guarantee that only
2447 * the second completion goes through.
2448 *
2449 * Callbacks could take time, so they are done outside the scope of the
2450 * global state machine log lock.
2451 */
2452 STATIC void
2453 xlog_state_done_syncing(
2454 xlog_in_core_t *iclog,
2455 int aborted)
2456 {
2457 xlog_t *log = iclog->ic_log;
2458
2459 spin_lock(&log->l_icloglock);
2460
2461 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2462 iclog->ic_state == XLOG_STATE_IOERROR);
2463 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2464 ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2465
2466
2467 /*
2468 * If we got an error, either on the first buffer, or in the case of
2469 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2470 * and none should ever be attempted to be written to disk
2471 * again.
2472 */
2473 if (iclog->ic_state != XLOG_STATE_IOERROR) {
2474 if (--iclog->ic_bwritecnt == 1) {
2475 spin_unlock(&log->l_icloglock);
2476 return;
2477 }
2478 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2479 }
2480
2481 /*
2482 * Someone could be sleeping prior to writing out the next
2483 * iclog buffer, we wake them all, one will get to do the
2484 * I/O, the others get to wait for the result.
2485 */
2486 wake_up_all(&iclog->ic_write_wait);
2487 spin_unlock(&log->l_icloglock);
2488 xlog_state_do_callback(log, aborted, iclog); /* also cleans log */
2489 } /* xlog_state_done_syncing */
2490
2491
2492 /*
2493 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2494 * sleep. We wait on the flush queue on the head iclog as that should be
2495 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2496 * we will wait here and all new writes will sleep until a sync completes.
2497 *
2498 * The in-core logs are used in a circular fashion. They are not used
2499 * out-of-order even when an iclog past the head is free.
2500 *
2501 * return:
2502 * * log_offset where xlog_write() can start writing into the in-core
2503 * log's data space.
2504 * * in-core log pointer to which xlog_write() should write.
2505 * * boolean indicating this is a continued write to an in-core log.
2506 * If this is the last write, then the in-core log's offset field
2507 * needs to be incremented, depending on the amount of data which
2508 * is copied.
2509 */
2510 STATIC int
2511 xlog_state_get_iclog_space(xlog_t *log,
2512 int len,
2513 xlog_in_core_t **iclogp,
2514 xlog_ticket_t *ticket,
2515 int *continued_write,
2516 int *logoffsetp)
2517 {
2518 int log_offset;
2519 xlog_rec_header_t *head;
2520 xlog_in_core_t *iclog;
2521 int error;
2522
2523 restart:
2524 spin_lock(&log->l_icloglock);
2525 if (XLOG_FORCED_SHUTDOWN(log)) {
2526 spin_unlock(&log->l_icloglock);
2527 return XFS_ERROR(EIO);
2528 }
2529
2530 iclog = log->l_iclog;
2531 if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2532 XFS_STATS_INC(xs_log_noiclogs);
2533
2534 /* Wait for log writes to have flushed */
2535 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2536 goto restart;
2537 }
2538
2539 head = &iclog->ic_header;
2540
2541 atomic_inc(&iclog->ic_refcnt); /* prevents sync */
2542 log_offset = iclog->ic_offset;
2543
2544 /* On the 1st write to an iclog, figure out lsn. This works
2545 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2546 * committing to. If the offset is set, that's how many blocks
2547 * must be written.
2548 */
2549 if (log_offset == 0) {
2550 ticket->t_curr_res -= log->l_iclog_hsize;
2551 xlog_tic_add_region(ticket,
2552 log->l_iclog_hsize,
2553 XLOG_REG_TYPE_LRHEADER);
2554 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2555 head->h_lsn = cpu_to_be64(
2556 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2557 ASSERT(log->l_curr_block >= 0);
2558 }
2559
2560 /* If there is enough room to write everything, then do it. Otherwise,
2561 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2562 * bit is on, so this will get flushed out. Don't update ic_offset
2563 * until you know exactly how many bytes get copied. Therefore, wait
2564 * until later to update ic_offset.
2565 *
2566 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2567 * can fit into remaining data section.
2568 */
2569 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2570 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2571
2572 /*
2573 * If I'm the only one writing to this iclog, sync it to disk.
2574 * We need to do an atomic compare and decrement here to avoid
2575 * racing with concurrent atomic_dec_and_lock() calls in
2576 * xlog_state_release_iclog() when there is more than one
2577 * reference to the iclog.
2578 */
2579 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2580 /* we are the only one */
2581 spin_unlock(&log->l_icloglock);
2582 error = xlog_state_release_iclog(log, iclog);
2583 if (error)
2584 return error;
2585 } else {
2586 spin_unlock(&log->l_icloglock);
2587 }
2588 goto restart;
2589 }
2590
2591 /* Do we have enough room to write the full amount in the remainder
2592 * of this iclog? Or must we continue a write on the next iclog and
2593 * mark this iclog as completely taken? In the case where we switch
2594 * iclogs (to mark it taken), this particular iclog will release/sync
2595 * to disk in xlog_write().
2596 */
2597 if (len <= iclog->ic_size - iclog->ic_offset) {
2598 *continued_write = 0;
2599 iclog->ic_offset += len;
2600 } else {
2601 *continued_write = 1;
2602 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2603 }
2604 *iclogp = iclog;
2605
2606 ASSERT(iclog->ic_offset <= iclog->ic_size);
2607 spin_unlock(&log->l_icloglock);
2608
2609 *logoffsetp = log_offset;
2610 return 0;
2611 } /* xlog_state_get_iclog_space */
2612
2613 /* The first cnt-1 times through here we don't need to
2614 * move the grant write head because the permanent
2615 * reservation has reserved cnt times the unit amount.
2616 * Release part of current permanent unit reservation and
2617 * reset current reservation to be one units worth. Also
2618 * move grant reservation head forward.
2619 */
2620 STATIC void
2621 xlog_regrant_reserve_log_space(xlog_t *log,
2622 xlog_ticket_t *ticket)
2623 {
2624 trace_xfs_log_regrant_reserve_enter(log, ticket);
2625
2626 if (ticket->t_cnt > 0)
2627 ticket->t_cnt--;
2628
2629 xlog_grant_sub_space(log, &log->l_reserve_head.grant,
2630 ticket->t_curr_res);
2631 xlog_grant_sub_space(log, &log->l_write_head.grant,
2632 ticket->t_curr_res);
2633 ticket->t_curr_res = ticket->t_unit_res;
2634 xlog_tic_reset_res(ticket);
2635
2636 trace_xfs_log_regrant_reserve_sub(log, ticket);
2637
2638 /* just return if we still have some of the pre-reserved space */
2639 if (ticket->t_cnt > 0)
2640 return;
2641
2642 xlog_grant_add_space(log, &log->l_reserve_head.grant,
2643 ticket->t_unit_res);
2644
2645 trace_xfs_log_regrant_reserve_exit(log, ticket);
2646
2647 ticket->t_curr_res = ticket->t_unit_res;
2648 xlog_tic_reset_res(ticket);
2649 } /* xlog_regrant_reserve_log_space */
2650
2651
2652 /*
2653 * Give back the space left from a reservation.
2654 *
2655 * All the information we need to make a correct determination of space left
2656 * is present. For non-permanent reservations, things are quite easy. The
2657 * count should have been decremented to zero. We only need to deal with the
2658 * space remaining in the current reservation part of the ticket. If the
2659 * ticket contains a permanent reservation, there may be left over space which
2660 * needs to be released. A count of N means that N-1 refills of the current
2661 * reservation can be done before we need to ask for more space. The first
2662 * one goes to fill up the first current reservation. Once we run out of
2663 * space, the count will stay at zero and the only space remaining will be
2664 * in the current reservation field.
2665 */
2666 STATIC void
2667 xlog_ungrant_log_space(xlog_t *log,
2668 xlog_ticket_t *ticket)
2669 {
2670 int bytes;
2671
2672 if (ticket->t_cnt > 0)
2673 ticket->t_cnt--;
2674
2675 trace_xfs_log_ungrant_enter(log, ticket);
2676 trace_xfs_log_ungrant_sub(log, ticket);
2677
2678 /*
2679 * If this is a permanent reservation ticket, we may be able to free
2680 * up more space based on the remaining count.
2681 */
2682 bytes = ticket->t_curr_res;
2683 if (ticket->t_cnt > 0) {
2684 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
2685 bytes += ticket->t_unit_res*ticket->t_cnt;
2686 }
2687
2688 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
2689 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
2690
2691 trace_xfs_log_ungrant_exit(log, ticket);
2692
2693 xfs_log_space_wake(log->l_mp);
2694 }
2695
2696 /*
2697 * Flush iclog to disk if this is the last reference to the given iclog and
2698 * the WANT_SYNC bit is set.
2699 *
2700 * When this function is entered, the iclog is not necessarily in the
2701 * WANT_SYNC state. It may be sitting around waiting to get filled.
2702 *
2703 *
2704 */
2705 STATIC int
2706 xlog_state_release_iclog(
2707 xlog_t *log,
2708 xlog_in_core_t *iclog)
2709 {
2710 int sync = 0; /* do we sync? */
2711
2712 if (iclog->ic_state & XLOG_STATE_IOERROR)
2713 return XFS_ERROR(EIO);
2714
2715 ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
2716 if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
2717 return 0;
2718
2719 if (iclog->ic_state & XLOG_STATE_IOERROR) {
2720 spin_unlock(&log->l_icloglock);
2721 return XFS_ERROR(EIO);
2722 }
2723 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
2724 iclog->ic_state == XLOG_STATE_WANT_SYNC);
2725
2726 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
2727 /* update tail before writing to iclog */
2728 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
2729 sync++;
2730 iclog->ic_state = XLOG_STATE_SYNCING;
2731 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
2732 xlog_verify_tail_lsn(log, iclog, tail_lsn);
2733 /* cycle incremented when incrementing curr_block */
2734 }
2735 spin_unlock(&log->l_icloglock);
2736
2737 /*
2738 * We let the log lock go, so it's possible that we hit a log I/O
2739 * error or some other SHUTDOWN condition that marks the iclog
2740 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
2741 * this iclog has consistent data, so we ignore IOERROR
2742 * flags after this point.
2743 */
2744 if (sync)
2745 return xlog_sync(log, iclog);
2746 return 0;
2747 } /* xlog_state_release_iclog */
2748
2749
2750 /*
2751 * This routine will mark the current iclog in the ring as WANT_SYNC
2752 * and move the current iclog pointer to the next iclog in the ring.
2753 * When this routine is called from xlog_state_get_iclog_space(), the
2754 * exact size of the iclog has not yet been determined. All we know is
2755 * that every data block. We have run out of space in this log record.
2756 */
2757 STATIC void
2758 xlog_state_switch_iclogs(xlog_t *log,
2759 xlog_in_core_t *iclog,
2760 int eventual_size)
2761 {
2762 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
2763 if (!eventual_size)
2764 eventual_size = iclog->ic_offset;
2765 iclog->ic_state = XLOG_STATE_WANT_SYNC;
2766 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
2767 log->l_prev_block = log->l_curr_block;
2768 log->l_prev_cycle = log->l_curr_cycle;
2769
2770 /* roll log?: ic_offset changed later */
2771 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
2772
2773 /* Round up to next log-sunit */
2774 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
2775 log->l_mp->m_sb.sb_logsunit > 1) {
2776 __uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
2777 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
2778 }
2779
2780 if (log->l_curr_block >= log->l_logBBsize) {
2781 log->l_curr_cycle++;
2782 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
2783 log->l_curr_cycle++;
2784 log->l_curr_block -= log->l_logBBsize;
2785 ASSERT(log->l_curr_block >= 0);
2786 }
2787 ASSERT(iclog == log->l_iclog);
2788 log->l_iclog = iclog->ic_next;
2789 } /* xlog_state_switch_iclogs */
2790
2791 /*
2792 * Write out all data in the in-core log as of this exact moment in time.
2793 *
2794 * Data may be written to the in-core log during this call. However,
2795 * we don't guarantee this data will be written out. A change from past
2796 * implementation means this routine will *not* write out zero length LRs.
2797 *
2798 * Basically, we try and perform an intelligent scan of the in-core logs.
2799 * If we determine there is no flushable data, we just return. There is no
2800 * flushable data if:
2801 *
2802 * 1. the current iclog is active and has no data; the previous iclog
2803 * is in the active or dirty state.
2804 * 2. the current iclog is drity, and the previous iclog is in the
2805 * active or dirty state.
2806 *
2807 * We may sleep if:
2808 *
2809 * 1. the current iclog is not in the active nor dirty state.
2810 * 2. the current iclog dirty, and the previous iclog is not in the
2811 * active nor dirty state.
2812 * 3. the current iclog is active, and there is another thread writing
2813 * to this particular iclog.
2814 * 4. a) the current iclog is active and has no other writers
2815 * b) when we return from flushing out this iclog, it is still
2816 * not in the active nor dirty state.
2817 */
2818 int
2819 _xfs_log_force(
2820 struct xfs_mount *mp,
2821 uint flags,
2822 int *log_flushed)
2823 {
2824 struct log *log = mp->m_log;
2825 struct xlog_in_core *iclog;
2826 xfs_lsn_t lsn;
2827
2828 XFS_STATS_INC(xs_log_force);
2829
2830 xlog_cil_force(log);
2831
2832 spin_lock(&log->l_icloglock);
2833
2834 iclog = log->l_iclog;
2835 if (iclog->ic_state & XLOG_STATE_IOERROR) {
2836 spin_unlock(&log->l_icloglock);
2837 return XFS_ERROR(EIO);
2838 }
2839
2840 /* If the head iclog is not active nor dirty, we just attach
2841 * ourselves to the head and go to sleep.
2842 */
2843 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2844 iclog->ic_state == XLOG_STATE_DIRTY) {
2845 /*
2846 * If the head is dirty or (active and empty), then
2847 * we need to look at the previous iclog. If the previous
2848 * iclog is active or dirty we are done. There is nothing
2849 * to sync out. Otherwise, we attach ourselves to the
2850 * previous iclog and go to sleep.
2851 */
2852 if (iclog->ic_state == XLOG_STATE_DIRTY ||
2853 (atomic_read(&iclog->ic_refcnt) == 0
2854 && iclog->ic_offset == 0)) {
2855 iclog = iclog->ic_prev;
2856 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2857 iclog->ic_state == XLOG_STATE_DIRTY)
2858 goto no_sleep;
2859 else
2860 goto maybe_sleep;
2861 } else {
2862 if (atomic_read(&iclog->ic_refcnt) == 0) {
2863 /* We are the only one with access to this
2864 * iclog. Flush it out now. There should
2865 * be a roundoff of zero to show that someone
2866 * has already taken care of the roundoff from
2867 * the previous sync.
2868 */
2869 atomic_inc(&iclog->ic_refcnt);
2870 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2871 xlog_state_switch_iclogs(log, iclog, 0);
2872 spin_unlock(&log->l_icloglock);
2873
2874 if (xlog_state_release_iclog(log, iclog))
2875 return XFS_ERROR(EIO);
2876
2877 if (log_flushed)
2878 *log_flushed = 1;
2879 spin_lock(&log->l_icloglock);
2880 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
2881 iclog->ic_state != XLOG_STATE_DIRTY)
2882 goto maybe_sleep;
2883 else
2884 goto no_sleep;
2885 } else {
2886 /* Someone else is writing to this iclog.
2887 * Use its call to flush out the data. However,
2888 * the other thread may not force out this LR,
2889 * so we mark it WANT_SYNC.
2890 */
2891 xlog_state_switch_iclogs(log, iclog, 0);
2892 goto maybe_sleep;
2893 }
2894 }
2895 }
2896
2897 /* By the time we come around again, the iclog could've been filled
2898 * which would give it another lsn. If we have a new lsn, just
2899 * return because the relevant data has been flushed.
2900 */
2901 maybe_sleep:
2902 if (flags & XFS_LOG_SYNC) {
2903 /*
2904 * We must check if we're shutting down here, before
2905 * we wait, while we're holding the l_icloglock.
2906 * Then we check again after waking up, in case our
2907 * sleep was disturbed by a bad news.
2908 */
2909 if (iclog->ic_state & XLOG_STATE_IOERROR) {
2910 spin_unlock(&log->l_icloglock);
2911 return XFS_ERROR(EIO);
2912 }
2913 XFS_STATS_INC(xs_log_force_sleep);
2914 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
2915 /*
2916 * No need to grab the log lock here since we're
2917 * only deciding whether or not to return EIO
2918 * and the memory read should be atomic.
2919 */
2920 if (iclog->ic_state & XLOG_STATE_IOERROR)
2921 return XFS_ERROR(EIO);
2922 if (log_flushed)
2923 *log_flushed = 1;
2924 } else {
2925
2926 no_sleep:
2927 spin_unlock(&log->l_icloglock);
2928 }
2929 return 0;
2930 }
2931
2932 /*
2933 * Wrapper for _xfs_log_force(), to be used when caller doesn't care
2934 * about errors or whether the log was flushed or not. This is the normal
2935 * interface to use when trying to unpin items or move the log forward.
2936 */
2937 void
2938 xfs_log_force(
2939 xfs_mount_t *mp,
2940 uint flags)
2941 {
2942 int error;
2943
2944 trace_xfs_log_force(mp, 0);
2945 error = _xfs_log_force(mp, flags, NULL);
2946 if (error)
2947 xfs_warn(mp, "%s: error %d returned.", __func__, error);
2948 }
2949
2950 /*
2951 * Force the in-core log to disk for a specific LSN.
2952 *
2953 * Find in-core log with lsn.
2954 * If it is in the DIRTY state, just return.
2955 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
2956 * state and go to sleep or return.
2957 * If it is in any other state, go to sleep or return.
2958 *
2959 * Synchronous forces are implemented with a signal variable. All callers
2960 * to force a given lsn to disk will wait on a the sv attached to the
2961 * specific in-core log. When given in-core log finally completes its
2962 * write to disk, that thread will wake up all threads waiting on the
2963 * sv.
2964 */
2965 int
2966 _xfs_log_force_lsn(
2967 struct xfs_mount *mp,
2968 xfs_lsn_t lsn,
2969 uint flags,
2970 int *log_flushed)
2971 {
2972 struct log *log = mp->m_log;
2973 struct xlog_in_core *iclog;
2974 int already_slept = 0;
2975
2976 ASSERT(lsn != 0);
2977
2978 XFS_STATS_INC(xs_log_force);
2979
2980 lsn = xlog_cil_force_lsn(log, lsn);
2981 if (lsn == NULLCOMMITLSN)
2982 return 0;
2983
2984 try_again:
2985 spin_lock(&log->l_icloglock);
2986 iclog = log->l_iclog;
2987 if (iclog->ic_state & XLOG_STATE_IOERROR) {
2988 spin_unlock(&log->l_icloglock);
2989 return XFS_ERROR(EIO);
2990 }
2991
2992 do {
2993 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
2994 iclog = iclog->ic_next;
2995 continue;
2996 }
2997
2998 if (iclog->ic_state == XLOG_STATE_DIRTY) {
2999 spin_unlock(&log->l_icloglock);
3000 return 0;
3001 }
3002
3003 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3004 /*
3005 * We sleep here if we haven't already slept (e.g.
3006 * this is the first time we've looked at the correct
3007 * iclog buf) and the buffer before us is going to
3008 * be sync'ed. The reason for this is that if we
3009 * are doing sync transactions here, by waiting for
3010 * the previous I/O to complete, we can allow a few
3011 * more transactions into this iclog before we close
3012 * it down.
3013 *
3014 * Otherwise, we mark the buffer WANT_SYNC, and bump
3015 * up the refcnt so we can release the log (which
3016 * drops the ref count). The state switch keeps new
3017 * transaction commits from using this buffer. When
3018 * the current commits finish writing into the buffer,
3019 * the refcount will drop to zero and the buffer will
3020 * go out then.
3021 */
3022 if (!already_slept &&
3023 (iclog->ic_prev->ic_state &
3024 (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3025 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3026
3027 XFS_STATS_INC(xs_log_force_sleep);
3028
3029 xlog_wait(&iclog->ic_prev->ic_write_wait,
3030 &log->l_icloglock);
3031 if (log_flushed)
3032 *log_flushed = 1;
3033 already_slept = 1;
3034 goto try_again;
3035 }
3036 atomic_inc(&iclog->ic_refcnt);
3037 xlog_state_switch_iclogs(log, iclog, 0);
3038 spin_unlock(&log->l_icloglock);
3039 if (xlog_state_release_iclog(log, iclog))
3040 return XFS_ERROR(EIO);
3041 if (log_flushed)
3042 *log_flushed = 1;
3043 spin_lock(&log->l_icloglock);
3044 }
3045
3046 if ((flags & XFS_LOG_SYNC) && /* sleep */
3047 !(iclog->ic_state &
3048 (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3049 /*
3050 * Don't wait on completion if we know that we've
3051 * gotten a log write error.
3052 */
3053 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3054 spin_unlock(&log->l_icloglock);
3055 return XFS_ERROR(EIO);
3056 }
3057 XFS_STATS_INC(xs_log_force_sleep);
3058 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3059 /*
3060 * No need to grab the log lock here since we're
3061 * only deciding whether or not to return EIO
3062 * and the memory read should be atomic.
3063 */
3064 if (iclog->ic_state & XLOG_STATE_IOERROR)
3065 return XFS_ERROR(EIO);
3066
3067 if (log_flushed)
3068 *log_flushed = 1;
3069 } else { /* just return */
3070 spin_unlock(&log->l_icloglock);
3071 }
3072
3073 return 0;
3074 } while (iclog != log->l_iclog);
3075
3076 spin_unlock(&log->l_icloglock);
3077 return 0;
3078 }
3079
3080 /*
3081 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3082 * about errors or whether the log was flushed or not. This is the normal
3083 * interface to use when trying to unpin items or move the log forward.
3084 */
3085 void
3086 xfs_log_force_lsn(
3087 xfs_mount_t *mp,
3088 xfs_lsn_t lsn,
3089 uint flags)
3090 {
3091 int error;
3092
3093 trace_xfs_log_force(mp, lsn);
3094 error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3095 if (error)
3096 xfs_warn(mp, "%s: error %d returned.", __func__, error);
3097 }
3098
3099 /*
3100 * Called when we want to mark the current iclog as being ready to sync to
3101 * disk.
3102 */
3103 STATIC void
3104 xlog_state_want_sync(xlog_t *log, xlog_in_core_t *iclog)
3105 {
3106 assert_spin_locked(&log->l_icloglock);
3107
3108 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3109 xlog_state_switch_iclogs(log, iclog, 0);
3110 } else {
3111 ASSERT(iclog->ic_state &
3112 (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3113 }
3114 }
3115
3116
3117 /*****************************************************************************
3118 *
3119 * TICKET functions
3120 *
3121 *****************************************************************************
3122 */
3123
3124 /*
3125 * Free a used ticket when its refcount falls to zero.
3126 */
3127 void
3128 xfs_log_ticket_put(
3129 xlog_ticket_t *ticket)
3130 {
3131 ASSERT(atomic_read(&ticket->t_ref) > 0);
3132 if (atomic_dec_and_test(&ticket->t_ref))
3133 kmem_zone_free(xfs_log_ticket_zone, ticket);
3134 }
3135
3136 xlog_ticket_t *
3137 xfs_log_ticket_get(
3138 xlog_ticket_t *ticket)
3139 {
3140 ASSERT(atomic_read(&ticket->t_ref) > 0);
3141 atomic_inc(&ticket->t_ref);
3142 return ticket;
3143 }
3144
3145 /*
3146 * Allocate and initialise a new log ticket.
3147 */
3148 xlog_ticket_t *
3149 xlog_ticket_alloc(
3150 struct log *log,
3151 int unit_bytes,
3152 int cnt,
3153 char client,
3154 bool permanent,
3155 xfs_km_flags_t alloc_flags)
3156 {
3157 struct xlog_ticket *tic;
3158 uint num_headers;
3159 int iclog_space;
3160
3161 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3162 if (!tic)
3163 return NULL;
3164
3165 /*
3166 * Permanent reservations have up to 'cnt'-1 active log operations
3167 * in the log. A unit in this case is the amount of space for one
3168 * of these log operations. Normal reservations have a cnt of 1
3169 * and their unit amount is the total amount of space required.
3170 *
3171 * The following lines of code account for non-transaction data
3172 * which occupy space in the on-disk log.
3173 *
3174 * Normal form of a transaction is:
3175 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3176 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3177 *
3178 * We need to account for all the leadup data and trailer data
3179 * around the transaction data.
3180 * And then we need to account for the worst case in terms of using
3181 * more space.
3182 * The worst case will happen if:
3183 * - the placement of the transaction happens to be such that the
3184 * roundoff is at its maximum
3185 * - the transaction data is synced before the commit record is synced
3186 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3187 * Therefore the commit record is in its own Log Record.
3188 * This can happen as the commit record is called with its
3189 * own region to xlog_write().
3190 * This then means that in the worst case, roundoff can happen for
3191 * the commit-rec as well.
3192 * The commit-rec is smaller than padding in this scenario and so it is
3193 * not added separately.
3194 */
3195
3196 /* for trans header */
3197 unit_bytes += sizeof(xlog_op_header_t);
3198 unit_bytes += sizeof(xfs_trans_header_t);
3199
3200 /* for start-rec */
3201 unit_bytes += sizeof(xlog_op_header_t);
3202
3203 /*
3204 * for LR headers - the space for data in an iclog is the size minus
3205 * the space used for the headers. If we use the iclog size, then we
3206 * undercalculate the number of headers required.
3207 *
3208 * Furthermore - the addition of op headers for split-recs might
3209 * increase the space required enough to require more log and op
3210 * headers, so take that into account too.
3211 *
3212 * IMPORTANT: This reservation makes the assumption that if this
3213 * transaction is the first in an iclog and hence has the LR headers
3214 * accounted to it, then the remaining space in the iclog is
3215 * exclusively for this transaction. i.e. if the transaction is larger
3216 * than the iclog, it will be the only thing in that iclog.
3217 * Fundamentally, this means we must pass the entire log vector to
3218 * xlog_write to guarantee this.
3219 */
3220 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3221 num_headers = howmany(unit_bytes, iclog_space);
3222
3223 /* for split-recs - ophdrs added when data split over LRs */
3224 unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3225
3226 /* add extra header reservations if we overrun */
3227 while (!num_headers ||
3228 howmany(unit_bytes, iclog_space) > num_headers) {
3229 unit_bytes += sizeof(xlog_op_header_t);
3230 num_headers++;
3231 }
3232 unit_bytes += log->l_iclog_hsize * num_headers;
3233
3234 /* for commit-rec LR header - note: padding will subsume the ophdr */
3235 unit_bytes += log->l_iclog_hsize;
3236
3237 /* for roundoff padding for transaction data and one for commit record */
3238 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3239 log->l_mp->m_sb.sb_logsunit > 1) {
3240 /* log su roundoff */
3241 unit_bytes += 2*log->l_mp->m_sb.sb_logsunit;
3242 } else {
3243 /* BB roundoff */
3244 unit_bytes += 2*BBSIZE;
3245 }
3246
3247 atomic_set(&tic->t_ref, 1);
3248 tic->t_task = current;
3249 INIT_LIST_HEAD(&tic->t_queue);
3250 tic->t_unit_res = unit_bytes;
3251 tic->t_curr_res = unit_bytes;
3252 tic->t_cnt = cnt;
3253 tic->t_ocnt = cnt;
3254 tic->t_tid = random32();
3255 tic->t_clientid = client;
3256 tic->t_flags = XLOG_TIC_INITED;
3257 tic->t_trans_type = 0;
3258 if (permanent)
3259 tic->t_flags |= XLOG_TIC_PERM_RESERV;
3260
3261 xlog_tic_reset_res(tic);
3262
3263 return tic;
3264 }
3265
3266
3267 /******************************************************************************
3268 *
3269 * Log debug routines
3270 *
3271 ******************************************************************************
3272 */
3273 #if defined(DEBUG)
3274 /*
3275 * Make sure that the destination ptr is within the valid data region of
3276 * one of the iclogs. This uses backup pointers stored in a different
3277 * part of the log in case we trash the log structure.
3278 */
3279 void
3280 xlog_verify_dest_ptr(
3281 struct log *log,
3282 char *ptr)
3283 {
3284 int i;
3285 int good_ptr = 0;
3286
3287 for (i = 0; i < log->l_iclog_bufs; i++) {
3288 if (ptr >= log->l_iclog_bak[i] &&
3289 ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3290 good_ptr++;
3291 }
3292
3293 if (!good_ptr)
3294 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3295 }
3296
3297 /*
3298 * Check to make sure the grant write head didn't just over lap the tail. If
3299 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3300 * the cycles differ by exactly one and check the byte count.
3301 *
3302 * This check is run unlocked, so can give false positives. Rather than assert
3303 * on failures, use a warn-once flag and a panic tag to allow the admin to
3304 * determine if they want to panic the machine when such an error occurs. For
3305 * debug kernels this will have the same effect as using an assert but, unlinke
3306 * an assert, it can be turned off at runtime.
3307 */
3308 STATIC void
3309 xlog_verify_grant_tail(
3310 struct log *log)
3311 {
3312 int tail_cycle, tail_blocks;
3313 int cycle, space;
3314
3315 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3316 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3317 if (tail_cycle != cycle) {
3318 if (cycle - 1 != tail_cycle &&
3319 !(log->l_flags & XLOG_TAIL_WARN)) {
3320 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3321 "%s: cycle - 1 != tail_cycle", __func__);
3322 log->l_flags |= XLOG_TAIL_WARN;
3323 }
3324
3325 if (space > BBTOB(tail_blocks) &&
3326 !(log->l_flags & XLOG_TAIL_WARN)) {
3327 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3328 "%s: space > BBTOB(tail_blocks)", __func__);
3329 log->l_flags |= XLOG_TAIL_WARN;
3330 }
3331 }
3332 }
3333
3334 /* check if it will fit */
3335 STATIC void
3336 xlog_verify_tail_lsn(xlog_t *log,
3337 xlog_in_core_t *iclog,
3338 xfs_lsn_t tail_lsn)
3339 {
3340 int blocks;
3341
3342 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3343 blocks =
3344 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3345 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3346 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3347 } else {
3348 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3349
3350 if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3351 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3352
3353 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3354 if (blocks < BTOBB(iclog->ic_offset) + 1)
3355 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3356 }
3357 } /* xlog_verify_tail_lsn */
3358
3359 /*
3360 * Perform a number of checks on the iclog before writing to disk.
3361 *
3362 * 1. Make sure the iclogs are still circular
3363 * 2. Make sure we have a good magic number
3364 * 3. Make sure we don't have magic numbers in the data
3365 * 4. Check fields of each log operation header for:
3366 * A. Valid client identifier
3367 * B. tid ptr value falls in valid ptr space (user space code)
3368 * C. Length in log record header is correct according to the
3369 * individual operation headers within record.
3370 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3371 * log, check the preceding blocks of the physical log to make sure all
3372 * the cycle numbers agree with the current cycle number.
3373 */
3374 STATIC void
3375 xlog_verify_iclog(xlog_t *log,
3376 xlog_in_core_t *iclog,
3377 int count,
3378 boolean_t syncing)
3379 {
3380 xlog_op_header_t *ophead;
3381 xlog_in_core_t *icptr;
3382 xlog_in_core_2_t *xhdr;
3383 xfs_caddr_t ptr;
3384 xfs_caddr_t base_ptr;
3385 __psint_t field_offset;
3386 __uint8_t clientid;
3387 int len, i, j, k, op_len;
3388 int idx;
3389
3390 /* check validity of iclog pointers */
3391 spin_lock(&log->l_icloglock);
3392 icptr = log->l_iclog;
3393 for (i=0; i < log->l_iclog_bufs; i++) {
3394 if (icptr == NULL)
3395 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3396 icptr = icptr->ic_next;
3397 }
3398 if (icptr != log->l_iclog)
3399 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3400 spin_unlock(&log->l_icloglock);
3401
3402 /* check log magic numbers */
3403 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3404 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3405
3406 ptr = (xfs_caddr_t) &iclog->ic_header;
3407 for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count;
3408 ptr += BBSIZE) {
3409 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3410 xfs_emerg(log->l_mp, "%s: unexpected magic num",
3411 __func__);
3412 }
3413
3414 /* check fields */
3415 len = be32_to_cpu(iclog->ic_header.h_num_logops);
3416 ptr = iclog->ic_datap;
3417 base_ptr = ptr;
3418 ophead = (xlog_op_header_t *)ptr;
3419 xhdr = iclog->ic_data;
3420 for (i = 0; i < len; i++) {
3421 ophead = (xlog_op_header_t *)ptr;
3422
3423 /* clientid is only 1 byte */
3424 field_offset = (__psint_t)
3425 ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr);
3426 if (syncing == B_FALSE || (field_offset & 0x1ff)) {
3427 clientid = ophead->oh_clientid;
3428 } else {
3429 idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap);
3430 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3431 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3432 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3433 clientid = xlog_get_client_id(
3434 xhdr[j].hic_xheader.xh_cycle_data[k]);
3435 } else {
3436 clientid = xlog_get_client_id(
3437 iclog->ic_header.h_cycle_data[idx]);
3438 }
3439 }
3440 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3441 xfs_warn(log->l_mp,
3442 "%s: invalid clientid %d op 0x%p offset 0x%lx",
3443 __func__, clientid, ophead,
3444 (unsigned long)field_offset);
3445
3446 /* check length */
3447 field_offset = (__psint_t)
3448 ((xfs_caddr_t)&(ophead->oh_len) - base_ptr);
3449 if (syncing == B_FALSE || (field_offset & 0x1ff)) {
3450 op_len = be32_to_cpu(ophead->oh_len);
3451 } else {
3452 idx = BTOBBT((__psint_t)&ophead->oh_len -
3453 (__psint_t)iclog->ic_datap);
3454 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3455 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3456 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3457 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3458 } else {
3459 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3460 }
3461 }
3462 ptr += sizeof(xlog_op_header_t) + op_len;
3463 }
3464 } /* xlog_verify_iclog */
3465 #endif
3466
3467 /*
3468 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3469 */
3470 STATIC int
3471 xlog_state_ioerror(
3472 xlog_t *log)
3473 {
3474 xlog_in_core_t *iclog, *ic;
3475
3476 iclog = log->l_iclog;
3477 if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3478 /*
3479 * Mark all the incore logs IOERROR.
3480 * From now on, no log flushes will result.
3481 */
3482 ic = iclog;
3483 do {
3484 ic->ic_state = XLOG_STATE_IOERROR;
3485 ic = ic->ic_next;
3486 } while (ic != iclog);
3487 return 0;
3488 }
3489 /*
3490 * Return non-zero, if state transition has already happened.
3491 */
3492 return 1;
3493 }
3494
3495 /*
3496 * This is called from xfs_force_shutdown, when we're forcibly
3497 * shutting down the filesystem, typically because of an IO error.
3498 * Our main objectives here are to make sure that:
3499 * a. the filesystem gets marked 'SHUTDOWN' for all interested
3500 * parties to find out, 'atomically'.
3501 * b. those who're sleeping on log reservations, pinned objects and
3502 * other resources get woken up, and be told the bad news.
3503 * c. nothing new gets queued up after (a) and (b) are done.
3504 * d. if !logerror, flush the iclogs to disk, then seal them off
3505 * for business.
3506 *
3507 * Note: for delayed logging the !logerror case needs to flush the regions
3508 * held in memory out to the iclogs before flushing them to disk. This needs
3509 * to be done before the log is marked as shutdown, otherwise the flush to the
3510 * iclogs will fail.
3511 */
3512 int
3513 xfs_log_force_umount(
3514 struct xfs_mount *mp,
3515 int logerror)
3516 {
3517 xlog_t *log;
3518 int retval;
3519
3520 log = mp->m_log;
3521
3522 /*
3523 * If this happens during log recovery, don't worry about
3524 * locking; the log isn't open for business yet.
3525 */
3526 if (!log ||
3527 log->l_flags & XLOG_ACTIVE_RECOVERY) {
3528 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3529 if (mp->m_sb_bp)
3530 XFS_BUF_DONE(mp->m_sb_bp);
3531 return 0;
3532 }
3533
3534 /*
3535 * Somebody could've already done the hard work for us.
3536 * No need to get locks for this.
3537 */
3538 if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3539 ASSERT(XLOG_FORCED_SHUTDOWN(log));
3540 return 1;
3541 }
3542 retval = 0;
3543
3544 /*
3545 * Flush the in memory commit item list before marking the log as
3546 * being shut down. We need to do it in this order to ensure all the
3547 * completed transactions are flushed to disk with the xfs_log_force()
3548 * call below.
3549 */
3550 if (!logerror)
3551 xlog_cil_force(log);
3552
3553 /*
3554 * mark the filesystem and the as in a shutdown state and wake
3555 * everybody up to tell them the bad news.
3556 */
3557 spin_lock(&log->l_icloglock);
3558 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3559 if (mp->m_sb_bp)
3560 XFS_BUF_DONE(mp->m_sb_bp);
3561
3562 /*
3563 * This flag is sort of redundant because of the mount flag, but
3564 * it's good to maintain the separation between the log and the rest
3565 * of XFS.
3566 */
3567 log->l_flags |= XLOG_IO_ERROR;
3568
3569 /*
3570 * If we hit a log error, we want to mark all the iclogs IOERROR
3571 * while we're still holding the loglock.
3572 */
3573 if (logerror)
3574 retval = xlog_state_ioerror(log);
3575 spin_unlock(&log->l_icloglock);
3576
3577 /*
3578 * We don't want anybody waiting for log reservations after this. That
3579 * means we have to wake up everybody queued up on reserveq as well as
3580 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
3581 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3582 * action is protected by the grant locks.
3583 */
3584 xlog_grant_head_wake_all(&log->l_reserve_head);
3585 xlog_grant_head_wake_all(&log->l_write_head);
3586
3587 if (!(log->l_iclog->ic_state & XLOG_STATE_IOERROR)) {
3588 ASSERT(!logerror);
3589 /*
3590 * Force the incore logs to disk before shutting the
3591 * log down completely.
3592 */
3593 _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3594
3595 spin_lock(&log->l_icloglock);
3596 retval = xlog_state_ioerror(log);
3597 spin_unlock(&log->l_icloglock);
3598 }
3599 /*
3600 * Wake up everybody waiting on xfs_log_force.
3601 * Callback all log item committed functions as if the
3602 * log writes were completed.
3603 */
3604 xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
3605
3606 #ifdef XFSERRORDEBUG
3607 {
3608 xlog_in_core_t *iclog;
3609
3610 spin_lock(&log->l_icloglock);
3611 iclog = log->l_iclog;
3612 do {
3613 ASSERT(iclog->ic_callback == 0);
3614 iclog = iclog->ic_next;
3615 } while (iclog != log->l_iclog);
3616 spin_unlock(&log->l_icloglock);
3617 }
3618 #endif
3619 /* return non-zero if log IOERROR transition had already happened */
3620 return retval;
3621 }
3622
3623 STATIC int
3624 xlog_iclogs_empty(xlog_t *log)
3625 {
3626 xlog_in_core_t *iclog;
3627
3628 iclog = log->l_iclog;
3629 do {
3630 /* endianness does not matter here, zero is zero in
3631 * any language.
3632 */
3633 if (iclog->ic_header.h_num_logops)
3634 return 0;
3635 iclog = iclog->ic_next;
3636 } while (iclog != log->l_iclog);
3637 return 1;
3638 }
This page took 0.220561 seconds and 5 git commands to generate.