Merge tag 'pm+acpi-fixes-3.12-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / fs / xfs / xfs_log.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_log.h"
22 #include "xfs_trans.h"
23 #include "xfs_sb.h"
24 #include "xfs_ag.h"
25 #include "xfs_mount.h"
26 #include "xfs_error.h"
27 #include "xfs_log_priv.h"
28 #include "xfs_buf_item.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_log_recover.h"
33 #include "xfs_trans_priv.h"
34 #include "xfs_dinode.h"
35 #include "xfs_inode.h"
36 #include "xfs_trace.h"
37 #include "xfs_fsops.h"
38 #include "xfs_cksum.h"
39
40 kmem_zone_t *xfs_log_ticket_zone;
41
42 /* Local miscellaneous function prototypes */
43 STATIC int
44 xlog_commit_record(
45 struct xlog *log,
46 struct xlog_ticket *ticket,
47 struct xlog_in_core **iclog,
48 xfs_lsn_t *commitlsnp);
49
50 STATIC struct xlog *
51 xlog_alloc_log(
52 struct xfs_mount *mp,
53 struct xfs_buftarg *log_target,
54 xfs_daddr_t blk_offset,
55 int num_bblks);
56 STATIC int
57 xlog_space_left(
58 struct xlog *log,
59 atomic64_t *head);
60 STATIC int
61 xlog_sync(
62 struct xlog *log,
63 struct xlog_in_core *iclog);
64 STATIC void
65 xlog_dealloc_log(
66 struct xlog *log);
67
68 /* local state machine functions */
69 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
70 STATIC void
71 xlog_state_do_callback(
72 struct xlog *log,
73 int aborted,
74 struct xlog_in_core *iclog);
75 STATIC int
76 xlog_state_get_iclog_space(
77 struct xlog *log,
78 int len,
79 struct xlog_in_core **iclog,
80 struct xlog_ticket *ticket,
81 int *continued_write,
82 int *logoffsetp);
83 STATIC int
84 xlog_state_release_iclog(
85 struct xlog *log,
86 struct xlog_in_core *iclog);
87 STATIC void
88 xlog_state_switch_iclogs(
89 struct xlog *log,
90 struct xlog_in_core *iclog,
91 int eventual_size);
92 STATIC void
93 xlog_state_want_sync(
94 struct xlog *log,
95 struct xlog_in_core *iclog);
96
97 STATIC void
98 xlog_grant_push_ail(
99 struct xlog *log,
100 int need_bytes);
101 STATIC void
102 xlog_regrant_reserve_log_space(
103 struct xlog *log,
104 struct xlog_ticket *ticket);
105 STATIC void
106 xlog_ungrant_log_space(
107 struct xlog *log,
108 struct xlog_ticket *ticket);
109
110 #if defined(DEBUG)
111 STATIC void
112 xlog_verify_dest_ptr(
113 struct xlog *log,
114 char *ptr);
115 STATIC void
116 xlog_verify_grant_tail(
117 struct xlog *log);
118 STATIC void
119 xlog_verify_iclog(
120 struct xlog *log,
121 struct xlog_in_core *iclog,
122 int count,
123 bool syncing);
124 STATIC void
125 xlog_verify_tail_lsn(
126 struct xlog *log,
127 struct xlog_in_core *iclog,
128 xfs_lsn_t tail_lsn);
129 #else
130 #define xlog_verify_dest_ptr(a,b)
131 #define xlog_verify_grant_tail(a)
132 #define xlog_verify_iclog(a,b,c,d)
133 #define xlog_verify_tail_lsn(a,b,c)
134 #endif
135
136 STATIC int
137 xlog_iclogs_empty(
138 struct xlog *log);
139
140 static void
141 xlog_grant_sub_space(
142 struct xlog *log,
143 atomic64_t *head,
144 int bytes)
145 {
146 int64_t head_val = atomic64_read(head);
147 int64_t new, old;
148
149 do {
150 int cycle, space;
151
152 xlog_crack_grant_head_val(head_val, &cycle, &space);
153
154 space -= bytes;
155 if (space < 0) {
156 space += log->l_logsize;
157 cycle--;
158 }
159
160 old = head_val;
161 new = xlog_assign_grant_head_val(cycle, space);
162 head_val = atomic64_cmpxchg(head, old, new);
163 } while (head_val != old);
164 }
165
166 static void
167 xlog_grant_add_space(
168 struct xlog *log,
169 atomic64_t *head,
170 int bytes)
171 {
172 int64_t head_val = atomic64_read(head);
173 int64_t new, old;
174
175 do {
176 int tmp;
177 int cycle, space;
178
179 xlog_crack_grant_head_val(head_val, &cycle, &space);
180
181 tmp = log->l_logsize - space;
182 if (tmp > bytes)
183 space += bytes;
184 else {
185 space = bytes - tmp;
186 cycle++;
187 }
188
189 old = head_val;
190 new = xlog_assign_grant_head_val(cycle, space);
191 head_val = atomic64_cmpxchg(head, old, new);
192 } while (head_val != old);
193 }
194
195 STATIC void
196 xlog_grant_head_init(
197 struct xlog_grant_head *head)
198 {
199 xlog_assign_grant_head(&head->grant, 1, 0);
200 INIT_LIST_HEAD(&head->waiters);
201 spin_lock_init(&head->lock);
202 }
203
204 STATIC void
205 xlog_grant_head_wake_all(
206 struct xlog_grant_head *head)
207 {
208 struct xlog_ticket *tic;
209
210 spin_lock(&head->lock);
211 list_for_each_entry(tic, &head->waiters, t_queue)
212 wake_up_process(tic->t_task);
213 spin_unlock(&head->lock);
214 }
215
216 static inline int
217 xlog_ticket_reservation(
218 struct xlog *log,
219 struct xlog_grant_head *head,
220 struct xlog_ticket *tic)
221 {
222 if (head == &log->l_write_head) {
223 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
224 return tic->t_unit_res;
225 } else {
226 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
227 return tic->t_unit_res * tic->t_cnt;
228 else
229 return tic->t_unit_res;
230 }
231 }
232
233 STATIC bool
234 xlog_grant_head_wake(
235 struct xlog *log,
236 struct xlog_grant_head *head,
237 int *free_bytes)
238 {
239 struct xlog_ticket *tic;
240 int need_bytes;
241
242 list_for_each_entry(tic, &head->waiters, t_queue) {
243 need_bytes = xlog_ticket_reservation(log, head, tic);
244 if (*free_bytes < need_bytes)
245 return false;
246
247 *free_bytes -= need_bytes;
248 trace_xfs_log_grant_wake_up(log, tic);
249 wake_up_process(tic->t_task);
250 }
251
252 return true;
253 }
254
255 STATIC int
256 xlog_grant_head_wait(
257 struct xlog *log,
258 struct xlog_grant_head *head,
259 struct xlog_ticket *tic,
260 int need_bytes)
261 {
262 list_add_tail(&tic->t_queue, &head->waiters);
263
264 do {
265 if (XLOG_FORCED_SHUTDOWN(log))
266 goto shutdown;
267 xlog_grant_push_ail(log, need_bytes);
268
269 __set_current_state(TASK_UNINTERRUPTIBLE);
270 spin_unlock(&head->lock);
271
272 XFS_STATS_INC(xs_sleep_logspace);
273
274 trace_xfs_log_grant_sleep(log, tic);
275 schedule();
276 trace_xfs_log_grant_wake(log, tic);
277
278 spin_lock(&head->lock);
279 if (XLOG_FORCED_SHUTDOWN(log))
280 goto shutdown;
281 } while (xlog_space_left(log, &head->grant) < need_bytes);
282
283 list_del_init(&tic->t_queue);
284 return 0;
285 shutdown:
286 list_del_init(&tic->t_queue);
287 return XFS_ERROR(EIO);
288 }
289
290 /*
291 * Atomically get the log space required for a log ticket.
292 *
293 * Once a ticket gets put onto head->waiters, it will only return after the
294 * needed reservation is satisfied.
295 *
296 * This function is structured so that it has a lock free fast path. This is
297 * necessary because every new transaction reservation will come through this
298 * path. Hence any lock will be globally hot if we take it unconditionally on
299 * every pass.
300 *
301 * As tickets are only ever moved on and off head->waiters under head->lock, we
302 * only need to take that lock if we are going to add the ticket to the queue
303 * and sleep. We can avoid taking the lock if the ticket was never added to
304 * head->waiters because the t_queue list head will be empty and we hold the
305 * only reference to it so it can safely be checked unlocked.
306 */
307 STATIC int
308 xlog_grant_head_check(
309 struct xlog *log,
310 struct xlog_grant_head *head,
311 struct xlog_ticket *tic,
312 int *need_bytes)
313 {
314 int free_bytes;
315 int error = 0;
316
317 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
318
319 /*
320 * If there are other waiters on the queue then give them a chance at
321 * logspace before us. Wake up the first waiters, if we do not wake
322 * up all the waiters then go to sleep waiting for more free space,
323 * otherwise try to get some space for this transaction.
324 */
325 *need_bytes = xlog_ticket_reservation(log, head, tic);
326 free_bytes = xlog_space_left(log, &head->grant);
327 if (!list_empty_careful(&head->waiters)) {
328 spin_lock(&head->lock);
329 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
330 free_bytes < *need_bytes) {
331 error = xlog_grant_head_wait(log, head, tic,
332 *need_bytes);
333 }
334 spin_unlock(&head->lock);
335 } else if (free_bytes < *need_bytes) {
336 spin_lock(&head->lock);
337 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
338 spin_unlock(&head->lock);
339 }
340
341 return error;
342 }
343
344 static void
345 xlog_tic_reset_res(xlog_ticket_t *tic)
346 {
347 tic->t_res_num = 0;
348 tic->t_res_arr_sum = 0;
349 tic->t_res_num_ophdrs = 0;
350 }
351
352 static void
353 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
354 {
355 if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
356 /* add to overflow and start again */
357 tic->t_res_o_flow += tic->t_res_arr_sum;
358 tic->t_res_num = 0;
359 tic->t_res_arr_sum = 0;
360 }
361
362 tic->t_res_arr[tic->t_res_num].r_len = len;
363 tic->t_res_arr[tic->t_res_num].r_type = type;
364 tic->t_res_arr_sum += len;
365 tic->t_res_num++;
366 }
367
368 /*
369 * Replenish the byte reservation required by moving the grant write head.
370 */
371 int
372 xfs_log_regrant(
373 struct xfs_mount *mp,
374 struct xlog_ticket *tic)
375 {
376 struct xlog *log = mp->m_log;
377 int need_bytes;
378 int error = 0;
379
380 if (XLOG_FORCED_SHUTDOWN(log))
381 return XFS_ERROR(EIO);
382
383 XFS_STATS_INC(xs_try_logspace);
384
385 /*
386 * This is a new transaction on the ticket, so we need to change the
387 * transaction ID so that the next transaction has a different TID in
388 * the log. Just add one to the existing tid so that we can see chains
389 * of rolling transactions in the log easily.
390 */
391 tic->t_tid++;
392
393 xlog_grant_push_ail(log, tic->t_unit_res);
394
395 tic->t_curr_res = tic->t_unit_res;
396 xlog_tic_reset_res(tic);
397
398 if (tic->t_cnt > 0)
399 return 0;
400
401 trace_xfs_log_regrant(log, tic);
402
403 error = xlog_grant_head_check(log, &log->l_write_head, tic,
404 &need_bytes);
405 if (error)
406 goto out_error;
407
408 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
409 trace_xfs_log_regrant_exit(log, tic);
410 xlog_verify_grant_tail(log);
411 return 0;
412
413 out_error:
414 /*
415 * If we are failing, make sure the ticket doesn't have any current
416 * reservations. We don't want to add this back when the ticket/
417 * transaction gets cancelled.
418 */
419 tic->t_curr_res = 0;
420 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
421 return error;
422 }
423
424 /*
425 * Reserve log space and return a ticket corresponding the reservation.
426 *
427 * Each reservation is going to reserve extra space for a log record header.
428 * When writes happen to the on-disk log, we don't subtract the length of the
429 * log record header from any reservation. By wasting space in each
430 * reservation, we prevent over allocation problems.
431 */
432 int
433 xfs_log_reserve(
434 struct xfs_mount *mp,
435 int unit_bytes,
436 int cnt,
437 struct xlog_ticket **ticp,
438 __uint8_t client,
439 bool permanent,
440 uint t_type)
441 {
442 struct xlog *log = mp->m_log;
443 struct xlog_ticket *tic;
444 int need_bytes;
445 int error = 0;
446
447 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
448
449 if (XLOG_FORCED_SHUTDOWN(log))
450 return XFS_ERROR(EIO);
451
452 XFS_STATS_INC(xs_try_logspace);
453
454 ASSERT(*ticp == NULL);
455 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
456 KM_SLEEP | KM_MAYFAIL);
457 if (!tic)
458 return XFS_ERROR(ENOMEM);
459
460 tic->t_trans_type = t_type;
461 *ticp = tic;
462
463 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
464 : tic->t_unit_res);
465
466 trace_xfs_log_reserve(log, tic);
467
468 error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
469 &need_bytes);
470 if (error)
471 goto out_error;
472
473 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
474 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
475 trace_xfs_log_reserve_exit(log, tic);
476 xlog_verify_grant_tail(log);
477 return 0;
478
479 out_error:
480 /*
481 * If we are failing, make sure the ticket doesn't have any current
482 * reservations. We don't want to add this back when the ticket/
483 * transaction gets cancelled.
484 */
485 tic->t_curr_res = 0;
486 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
487 return error;
488 }
489
490
491 /*
492 * NOTES:
493 *
494 * 1. currblock field gets updated at startup and after in-core logs
495 * marked as with WANT_SYNC.
496 */
497
498 /*
499 * This routine is called when a user of a log manager ticket is done with
500 * the reservation. If the ticket was ever used, then a commit record for
501 * the associated transaction is written out as a log operation header with
502 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with
503 * a given ticket. If the ticket was one with a permanent reservation, then
504 * a few operations are done differently. Permanent reservation tickets by
505 * default don't release the reservation. They just commit the current
506 * transaction with the belief that the reservation is still needed. A flag
507 * must be passed in before permanent reservations are actually released.
508 * When these type of tickets are not released, they need to be set into
509 * the inited state again. By doing this, a start record will be written
510 * out when the next write occurs.
511 */
512 xfs_lsn_t
513 xfs_log_done(
514 struct xfs_mount *mp,
515 struct xlog_ticket *ticket,
516 struct xlog_in_core **iclog,
517 uint flags)
518 {
519 struct xlog *log = mp->m_log;
520 xfs_lsn_t lsn = 0;
521
522 if (XLOG_FORCED_SHUTDOWN(log) ||
523 /*
524 * If nothing was ever written, don't write out commit record.
525 * If we get an error, just continue and give back the log ticket.
526 */
527 (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
528 (xlog_commit_record(log, ticket, iclog, &lsn)))) {
529 lsn = (xfs_lsn_t) -1;
530 if (ticket->t_flags & XLOG_TIC_PERM_RESERV) {
531 flags |= XFS_LOG_REL_PERM_RESERV;
532 }
533 }
534
535
536 if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 ||
537 (flags & XFS_LOG_REL_PERM_RESERV)) {
538 trace_xfs_log_done_nonperm(log, ticket);
539
540 /*
541 * Release ticket if not permanent reservation or a specific
542 * request has been made to release a permanent reservation.
543 */
544 xlog_ungrant_log_space(log, ticket);
545 xfs_log_ticket_put(ticket);
546 } else {
547 trace_xfs_log_done_perm(log, ticket);
548
549 xlog_regrant_reserve_log_space(log, ticket);
550 /* If this ticket was a permanent reservation and we aren't
551 * trying to release it, reset the inited flags; so next time
552 * we write, a start record will be written out.
553 */
554 ticket->t_flags |= XLOG_TIC_INITED;
555 }
556
557 return lsn;
558 }
559
560 /*
561 * Attaches a new iclog I/O completion callback routine during
562 * transaction commit. If the log is in error state, a non-zero
563 * return code is handed back and the caller is responsible for
564 * executing the callback at an appropriate time.
565 */
566 int
567 xfs_log_notify(
568 struct xfs_mount *mp,
569 struct xlog_in_core *iclog,
570 xfs_log_callback_t *cb)
571 {
572 int abortflg;
573
574 spin_lock(&iclog->ic_callback_lock);
575 abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
576 if (!abortflg) {
577 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
578 (iclog->ic_state == XLOG_STATE_WANT_SYNC));
579 cb->cb_next = NULL;
580 *(iclog->ic_callback_tail) = cb;
581 iclog->ic_callback_tail = &(cb->cb_next);
582 }
583 spin_unlock(&iclog->ic_callback_lock);
584 return abortflg;
585 }
586
587 int
588 xfs_log_release_iclog(
589 struct xfs_mount *mp,
590 struct xlog_in_core *iclog)
591 {
592 if (xlog_state_release_iclog(mp->m_log, iclog)) {
593 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
594 return EIO;
595 }
596
597 return 0;
598 }
599
600 /*
601 * Mount a log filesystem
602 *
603 * mp - ubiquitous xfs mount point structure
604 * log_target - buftarg of on-disk log device
605 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
606 * num_bblocks - Number of BBSIZE blocks in on-disk log
607 *
608 * Return error or zero.
609 */
610 int
611 xfs_log_mount(
612 xfs_mount_t *mp,
613 xfs_buftarg_t *log_target,
614 xfs_daddr_t blk_offset,
615 int num_bblks)
616 {
617 int error = 0;
618 int min_logfsbs;
619
620 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
621 xfs_notice(mp, "Mounting Filesystem");
622 else {
623 xfs_notice(mp,
624 "Mounting filesystem in no-recovery mode. Filesystem will be inconsistent.");
625 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
626 }
627
628 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
629 if (IS_ERR(mp->m_log)) {
630 error = -PTR_ERR(mp->m_log);
631 goto out;
632 }
633
634 /*
635 * Validate the given log space and drop a critical message via syslog
636 * if the log size is too small that would lead to some unexpected
637 * situations in transaction log space reservation stage.
638 *
639 * Note: we can't just reject the mount if the validation fails. This
640 * would mean that people would have to downgrade their kernel just to
641 * remedy the situation as there is no way to grow the log (short of
642 * black magic surgery with xfs_db).
643 *
644 * We can, however, reject mounts for CRC format filesystems, as the
645 * mkfs binary being used to make the filesystem should never create a
646 * filesystem with a log that is too small.
647 */
648 min_logfsbs = xfs_log_calc_minimum_size(mp);
649
650 if (mp->m_sb.sb_logblocks < min_logfsbs) {
651 xfs_warn(mp,
652 "Log size %d blocks too small, minimum size is %d blocks",
653 mp->m_sb.sb_logblocks, min_logfsbs);
654 error = EINVAL;
655 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
656 xfs_warn(mp,
657 "Log size %d blocks too large, maximum size is %lld blocks",
658 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
659 error = EINVAL;
660 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
661 xfs_warn(mp,
662 "log size %lld bytes too large, maximum size is %lld bytes",
663 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
664 XFS_MAX_LOG_BYTES);
665 error = EINVAL;
666 }
667 if (error) {
668 if (xfs_sb_version_hascrc(&mp->m_sb)) {
669 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
670 ASSERT(0);
671 goto out_free_log;
672 }
673 xfs_crit(mp,
674 "Log size out of supported range. Continuing onwards, but if log hangs are\n"
675 "experienced then please report this message in the bug report.");
676 }
677
678 /*
679 * Initialize the AIL now we have a log.
680 */
681 error = xfs_trans_ail_init(mp);
682 if (error) {
683 xfs_warn(mp, "AIL initialisation failed: error %d", error);
684 goto out_free_log;
685 }
686 mp->m_log->l_ailp = mp->m_ail;
687
688 /*
689 * skip log recovery on a norecovery mount. pretend it all
690 * just worked.
691 */
692 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
693 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
694
695 if (readonly)
696 mp->m_flags &= ~XFS_MOUNT_RDONLY;
697
698 error = xlog_recover(mp->m_log);
699
700 if (readonly)
701 mp->m_flags |= XFS_MOUNT_RDONLY;
702 if (error) {
703 xfs_warn(mp, "log mount/recovery failed: error %d",
704 error);
705 goto out_destroy_ail;
706 }
707 }
708
709 /* Normal transactions can now occur */
710 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
711
712 /*
713 * Now the log has been fully initialised and we know were our
714 * space grant counters are, we can initialise the permanent ticket
715 * needed for delayed logging to work.
716 */
717 xlog_cil_init_post_recovery(mp->m_log);
718
719 return 0;
720
721 out_destroy_ail:
722 xfs_trans_ail_destroy(mp);
723 out_free_log:
724 xlog_dealloc_log(mp->m_log);
725 out:
726 return error;
727 }
728
729 /*
730 * Finish the recovery of the file system. This is separate from the
731 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
732 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
733 * here.
734 *
735 * If we finish recovery successfully, start the background log work. If we are
736 * not doing recovery, then we have a RO filesystem and we don't need to start
737 * it.
738 */
739 int
740 xfs_log_mount_finish(xfs_mount_t *mp)
741 {
742 int error = 0;
743
744 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
745 error = xlog_recover_finish(mp->m_log);
746 if (!error)
747 xfs_log_work_queue(mp);
748 } else {
749 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
750 }
751
752
753 return error;
754 }
755
756 /*
757 * Final log writes as part of unmount.
758 *
759 * Mark the filesystem clean as unmount happens. Note that during relocation
760 * this routine needs to be executed as part of source-bag while the
761 * deallocation must not be done until source-end.
762 */
763
764 /*
765 * Unmount record used to have a string "Unmount filesystem--" in the
766 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
767 * We just write the magic number now since that particular field isn't
768 * currently architecture converted and "Unmount" is a bit foo.
769 * As far as I know, there weren't any dependencies on the old behaviour.
770 */
771
772 int
773 xfs_log_unmount_write(xfs_mount_t *mp)
774 {
775 struct xlog *log = mp->m_log;
776 xlog_in_core_t *iclog;
777 #ifdef DEBUG
778 xlog_in_core_t *first_iclog;
779 #endif
780 xlog_ticket_t *tic = NULL;
781 xfs_lsn_t lsn;
782 int error;
783
784 /*
785 * Don't write out unmount record on read-only mounts.
786 * Or, if we are doing a forced umount (typically because of IO errors).
787 */
788 if (mp->m_flags & XFS_MOUNT_RDONLY)
789 return 0;
790
791 error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
792 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
793
794 #ifdef DEBUG
795 first_iclog = iclog = log->l_iclog;
796 do {
797 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
798 ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
799 ASSERT(iclog->ic_offset == 0);
800 }
801 iclog = iclog->ic_next;
802 } while (iclog != first_iclog);
803 #endif
804 if (! (XLOG_FORCED_SHUTDOWN(log))) {
805 error = xfs_log_reserve(mp, 600, 1, &tic,
806 XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
807 if (!error) {
808 /* the data section must be 32 bit size aligned */
809 struct {
810 __uint16_t magic;
811 __uint16_t pad1;
812 __uint32_t pad2; /* may as well make it 64 bits */
813 } magic = {
814 .magic = XLOG_UNMOUNT_TYPE,
815 };
816 struct xfs_log_iovec reg = {
817 .i_addr = &magic,
818 .i_len = sizeof(magic),
819 .i_type = XLOG_REG_TYPE_UNMOUNT,
820 };
821 struct xfs_log_vec vec = {
822 .lv_niovecs = 1,
823 .lv_iovecp = &reg,
824 };
825
826 /* remove inited flag, and account for space used */
827 tic->t_flags = 0;
828 tic->t_curr_res -= sizeof(magic);
829 error = xlog_write(log, &vec, tic, &lsn,
830 NULL, XLOG_UNMOUNT_TRANS);
831 /*
832 * At this point, we're umounting anyway,
833 * so there's no point in transitioning log state
834 * to IOERROR. Just continue...
835 */
836 }
837
838 if (error)
839 xfs_alert(mp, "%s: unmount record failed", __func__);
840
841
842 spin_lock(&log->l_icloglock);
843 iclog = log->l_iclog;
844 atomic_inc(&iclog->ic_refcnt);
845 xlog_state_want_sync(log, iclog);
846 spin_unlock(&log->l_icloglock);
847 error = xlog_state_release_iclog(log, iclog);
848
849 spin_lock(&log->l_icloglock);
850 if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
851 iclog->ic_state == XLOG_STATE_DIRTY)) {
852 if (!XLOG_FORCED_SHUTDOWN(log)) {
853 xlog_wait(&iclog->ic_force_wait,
854 &log->l_icloglock);
855 } else {
856 spin_unlock(&log->l_icloglock);
857 }
858 } else {
859 spin_unlock(&log->l_icloglock);
860 }
861 if (tic) {
862 trace_xfs_log_umount_write(log, tic);
863 xlog_ungrant_log_space(log, tic);
864 xfs_log_ticket_put(tic);
865 }
866 } else {
867 /*
868 * We're already in forced_shutdown mode, couldn't
869 * even attempt to write out the unmount transaction.
870 *
871 * Go through the motions of sync'ing and releasing
872 * the iclog, even though no I/O will actually happen,
873 * we need to wait for other log I/Os that may already
874 * be in progress. Do this as a separate section of
875 * code so we'll know if we ever get stuck here that
876 * we're in this odd situation of trying to unmount
877 * a file system that went into forced_shutdown as
878 * the result of an unmount..
879 */
880 spin_lock(&log->l_icloglock);
881 iclog = log->l_iclog;
882 atomic_inc(&iclog->ic_refcnt);
883
884 xlog_state_want_sync(log, iclog);
885 spin_unlock(&log->l_icloglock);
886 error = xlog_state_release_iclog(log, iclog);
887
888 spin_lock(&log->l_icloglock);
889
890 if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE
891 || iclog->ic_state == XLOG_STATE_DIRTY
892 || iclog->ic_state == XLOG_STATE_IOERROR) ) {
893
894 xlog_wait(&iclog->ic_force_wait,
895 &log->l_icloglock);
896 } else {
897 spin_unlock(&log->l_icloglock);
898 }
899 }
900
901 return error;
902 } /* xfs_log_unmount_write */
903
904 /*
905 * Empty the log for unmount/freeze.
906 *
907 * To do this, we first need to shut down the background log work so it is not
908 * trying to cover the log as we clean up. We then need to unpin all objects in
909 * the log so we can then flush them out. Once they have completed their IO and
910 * run the callbacks removing themselves from the AIL, we can write the unmount
911 * record.
912 */
913 void
914 xfs_log_quiesce(
915 struct xfs_mount *mp)
916 {
917 cancel_delayed_work_sync(&mp->m_log->l_work);
918 xfs_log_force(mp, XFS_LOG_SYNC);
919
920 /*
921 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
922 * will push it, xfs_wait_buftarg() will not wait for it. Further,
923 * xfs_buf_iowait() cannot be used because it was pushed with the
924 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
925 * the IO to complete.
926 */
927 xfs_ail_push_all_sync(mp->m_ail);
928 xfs_wait_buftarg(mp->m_ddev_targp);
929 xfs_buf_lock(mp->m_sb_bp);
930 xfs_buf_unlock(mp->m_sb_bp);
931
932 xfs_log_unmount_write(mp);
933 }
934
935 /*
936 * Shut down and release the AIL and Log.
937 *
938 * During unmount, we need to ensure we flush all the dirty metadata objects
939 * from the AIL so that the log is empty before we write the unmount record to
940 * the log. Once this is done, we can tear down the AIL and the log.
941 */
942 void
943 xfs_log_unmount(
944 struct xfs_mount *mp)
945 {
946 xfs_log_quiesce(mp);
947
948 xfs_trans_ail_destroy(mp);
949 xlog_dealloc_log(mp->m_log);
950 }
951
952 void
953 xfs_log_item_init(
954 struct xfs_mount *mp,
955 struct xfs_log_item *item,
956 int type,
957 const struct xfs_item_ops *ops)
958 {
959 item->li_mountp = mp;
960 item->li_ailp = mp->m_ail;
961 item->li_type = type;
962 item->li_ops = ops;
963 item->li_lv = NULL;
964
965 INIT_LIST_HEAD(&item->li_ail);
966 INIT_LIST_HEAD(&item->li_cil);
967 }
968
969 /*
970 * Wake up processes waiting for log space after we have moved the log tail.
971 */
972 void
973 xfs_log_space_wake(
974 struct xfs_mount *mp)
975 {
976 struct xlog *log = mp->m_log;
977 int free_bytes;
978
979 if (XLOG_FORCED_SHUTDOWN(log))
980 return;
981
982 if (!list_empty_careful(&log->l_write_head.waiters)) {
983 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
984
985 spin_lock(&log->l_write_head.lock);
986 free_bytes = xlog_space_left(log, &log->l_write_head.grant);
987 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
988 spin_unlock(&log->l_write_head.lock);
989 }
990
991 if (!list_empty_careful(&log->l_reserve_head.waiters)) {
992 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
993
994 spin_lock(&log->l_reserve_head.lock);
995 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
996 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
997 spin_unlock(&log->l_reserve_head.lock);
998 }
999 }
1000
1001 /*
1002 * Determine if we have a transaction that has gone to disk
1003 * that needs to be covered. To begin the transition to the idle state
1004 * firstly the log needs to be idle (no AIL and nothing in the iclogs).
1005 * If we are then in a state where covering is needed, the caller is informed
1006 * that dummy transactions are required to move the log into the idle state.
1007 *
1008 * Because this is called as part of the sync process, we should also indicate
1009 * that dummy transactions should be issued in anything but the covered or
1010 * idle states. This ensures that the log tail is accurately reflected in
1011 * the log at the end of the sync, hence if a crash occurrs avoids replay
1012 * of transactions where the metadata is already on disk.
1013 */
1014 int
1015 xfs_log_need_covered(xfs_mount_t *mp)
1016 {
1017 int needed = 0;
1018 struct xlog *log = mp->m_log;
1019
1020 if (!xfs_fs_writable(mp))
1021 return 0;
1022
1023 spin_lock(&log->l_icloglock);
1024 switch (log->l_covered_state) {
1025 case XLOG_STATE_COVER_DONE:
1026 case XLOG_STATE_COVER_DONE2:
1027 case XLOG_STATE_COVER_IDLE:
1028 break;
1029 case XLOG_STATE_COVER_NEED:
1030 case XLOG_STATE_COVER_NEED2:
1031 if (!xfs_ail_min_lsn(log->l_ailp) &&
1032 xlog_iclogs_empty(log)) {
1033 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1034 log->l_covered_state = XLOG_STATE_COVER_DONE;
1035 else
1036 log->l_covered_state = XLOG_STATE_COVER_DONE2;
1037 }
1038 /* FALLTHRU */
1039 default:
1040 needed = 1;
1041 break;
1042 }
1043 spin_unlock(&log->l_icloglock);
1044 return needed;
1045 }
1046
1047 /*
1048 * We may be holding the log iclog lock upon entering this routine.
1049 */
1050 xfs_lsn_t
1051 xlog_assign_tail_lsn_locked(
1052 struct xfs_mount *mp)
1053 {
1054 struct xlog *log = mp->m_log;
1055 struct xfs_log_item *lip;
1056 xfs_lsn_t tail_lsn;
1057
1058 assert_spin_locked(&mp->m_ail->xa_lock);
1059
1060 /*
1061 * To make sure we always have a valid LSN for the log tail we keep
1062 * track of the last LSN which was committed in log->l_last_sync_lsn,
1063 * and use that when the AIL was empty.
1064 */
1065 lip = xfs_ail_min(mp->m_ail);
1066 if (lip)
1067 tail_lsn = lip->li_lsn;
1068 else
1069 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1070 atomic64_set(&log->l_tail_lsn, tail_lsn);
1071 return tail_lsn;
1072 }
1073
1074 xfs_lsn_t
1075 xlog_assign_tail_lsn(
1076 struct xfs_mount *mp)
1077 {
1078 xfs_lsn_t tail_lsn;
1079
1080 spin_lock(&mp->m_ail->xa_lock);
1081 tail_lsn = xlog_assign_tail_lsn_locked(mp);
1082 spin_unlock(&mp->m_ail->xa_lock);
1083
1084 return tail_lsn;
1085 }
1086
1087 /*
1088 * Return the space in the log between the tail and the head. The head
1089 * is passed in the cycle/bytes formal parms. In the special case where
1090 * the reserve head has wrapped passed the tail, this calculation is no
1091 * longer valid. In this case, just return 0 which means there is no space
1092 * in the log. This works for all places where this function is called
1093 * with the reserve head. Of course, if the write head were to ever
1094 * wrap the tail, we should blow up. Rather than catch this case here,
1095 * we depend on other ASSERTions in other parts of the code. XXXmiken
1096 *
1097 * This code also handles the case where the reservation head is behind
1098 * the tail. The details of this case are described below, but the end
1099 * result is that we return the size of the log as the amount of space left.
1100 */
1101 STATIC int
1102 xlog_space_left(
1103 struct xlog *log,
1104 atomic64_t *head)
1105 {
1106 int free_bytes;
1107 int tail_bytes;
1108 int tail_cycle;
1109 int head_cycle;
1110 int head_bytes;
1111
1112 xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1113 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1114 tail_bytes = BBTOB(tail_bytes);
1115 if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1116 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1117 else if (tail_cycle + 1 < head_cycle)
1118 return 0;
1119 else if (tail_cycle < head_cycle) {
1120 ASSERT(tail_cycle == (head_cycle - 1));
1121 free_bytes = tail_bytes - head_bytes;
1122 } else {
1123 /*
1124 * The reservation head is behind the tail.
1125 * In this case we just want to return the size of the
1126 * log as the amount of space left.
1127 */
1128 xfs_alert(log->l_mp,
1129 "xlog_space_left: head behind tail\n"
1130 " tail_cycle = %d, tail_bytes = %d\n"
1131 " GH cycle = %d, GH bytes = %d",
1132 tail_cycle, tail_bytes, head_cycle, head_bytes);
1133 ASSERT(0);
1134 free_bytes = log->l_logsize;
1135 }
1136 return free_bytes;
1137 }
1138
1139
1140 /*
1141 * Log function which is called when an io completes.
1142 *
1143 * The log manager needs its own routine, in order to control what
1144 * happens with the buffer after the write completes.
1145 */
1146 void
1147 xlog_iodone(xfs_buf_t *bp)
1148 {
1149 struct xlog_in_core *iclog = bp->b_fspriv;
1150 struct xlog *l = iclog->ic_log;
1151 int aborted = 0;
1152
1153 /*
1154 * Race to shutdown the filesystem if we see an error.
1155 */
1156 if (XFS_TEST_ERROR((xfs_buf_geterror(bp)), l->l_mp,
1157 XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) {
1158 xfs_buf_ioerror_alert(bp, __func__);
1159 xfs_buf_stale(bp);
1160 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1161 /*
1162 * This flag will be propagated to the trans-committed
1163 * callback routines to let them know that the log-commit
1164 * didn't succeed.
1165 */
1166 aborted = XFS_LI_ABORTED;
1167 } else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1168 aborted = XFS_LI_ABORTED;
1169 }
1170
1171 /* log I/O is always issued ASYNC */
1172 ASSERT(XFS_BUF_ISASYNC(bp));
1173 xlog_state_done_syncing(iclog, aborted);
1174 /*
1175 * do not reference the buffer (bp) here as we could race
1176 * with it being freed after writing the unmount record to the
1177 * log.
1178 */
1179 }
1180
1181 /*
1182 * Return size of each in-core log record buffer.
1183 *
1184 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1185 *
1186 * If the filesystem blocksize is too large, we may need to choose a
1187 * larger size since the directory code currently logs entire blocks.
1188 */
1189
1190 STATIC void
1191 xlog_get_iclog_buffer_size(
1192 struct xfs_mount *mp,
1193 struct xlog *log)
1194 {
1195 int size;
1196 int xhdrs;
1197
1198 if (mp->m_logbufs <= 0)
1199 log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1200 else
1201 log->l_iclog_bufs = mp->m_logbufs;
1202
1203 /*
1204 * Buffer size passed in from mount system call.
1205 */
1206 if (mp->m_logbsize > 0) {
1207 size = log->l_iclog_size = mp->m_logbsize;
1208 log->l_iclog_size_log = 0;
1209 while (size != 1) {
1210 log->l_iclog_size_log++;
1211 size >>= 1;
1212 }
1213
1214 if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1215 /* # headers = size / 32k
1216 * one header holds cycles from 32k of data
1217 */
1218
1219 xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1220 if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1221 xhdrs++;
1222 log->l_iclog_hsize = xhdrs << BBSHIFT;
1223 log->l_iclog_heads = xhdrs;
1224 } else {
1225 ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1226 log->l_iclog_hsize = BBSIZE;
1227 log->l_iclog_heads = 1;
1228 }
1229 goto done;
1230 }
1231
1232 /* All machines use 32kB buffers by default. */
1233 log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1234 log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1235
1236 /* the default log size is 16k or 32k which is one header sector */
1237 log->l_iclog_hsize = BBSIZE;
1238 log->l_iclog_heads = 1;
1239
1240 done:
1241 /* are we being asked to make the sizes selected above visible? */
1242 if (mp->m_logbufs == 0)
1243 mp->m_logbufs = log->l_iclog_bufs;
1244 if (mp->m_logbsize == 0)
1245 mp->m_logbsize = log->l_iclog_size;
1246 } /* xlog_get_iclog_buffer_size */
1247
1248
1249 void
1250 xfs_log_work_queue(
1251 struct xfs_mount *mp)
1252 {
1253 queue_delayed_work(mp->m_log_workqueue, &mp->m_log->l_work,
1254 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1255 }
1256
1257 /*
1258 * Every sync period we need to unpin all items in the AIL and push them to
1259 * disk. If there is nothing dirty, then we might need to cover the log to
1260 * indicate that the filesystem is idle.
1261 */
1262 void
1263 xfs_log_worker(
1264 struct work_struct *work)
1265 {
1266 struct xlog *log = container_of(to_delayed_work(work),
1267 struct xlog, l_work);
1268 struct xfs_mount *mp = log->l_mp;
1269
1270 /* dgc: errors ignored - not fatal and nowhere to report them */
1271 if (xfs_log_need_covered(mp))
1272 xfs_fs_log_dummy(mp);
1273 else
1274 xfs_log_force(mp, 0);
1275
1276 /* start pushing all the metadata that is currently dirty */
1277 xfs_ail_push_all(mp->m_ail);
1278
1279 /* queue us up again */
1280 xfs_log_work_queue(mp);
1281 }
1282
1283 /*
1284 * This routine initializes some of the log structure for a given mount point.
1285 * Its primary purpose is to fill in enough, so recovery can occur. However,
1286 * some other stuff may be filled in too.
1287 */
1288 STATIC struct xlog *
1289 xlog_alloc_log(
1290 struct xfs_mount *mp,
1291 struct xfs_buftarg *log_target,
1292 xfs_daddr_t blk_offset,
1293 int num_bblks)
1294 {
1295 struct xlog *log;
1296 xlog_rec_header_t *head;
1297 xlog_in_core_t **iclogp;
1298 xlog_in_core_t *iclog, *prev_iclog=NULL;
1299 xfs_buf_t *bp;
1300 int i;
1301 int error = ENOMEM;
1302 uint log2_size = 0;
1303
1304 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1305 if (!log) {
1306 xfs_warn(mp, "Log allocation failed: No memory!");
1307 goto out;
1308 }
1309
1310 log->l_mp = mp;
1311 log->l_targ = log_target;
1312 log->l_logsize = BBTOB(num_bblks);
1313 log->l_logBBstart = blk_offset;
1314 log->l_logBBsize = num_bblks;
1315 log->l_covered_state = XLOG_STATE_COVER_IDLE;
1316 log->l_flags |= XLOG_ACTIVE_RECOVERY;
1317 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1318
1319 log->l_prev_block = -1;
1320 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1321 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1322 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1323 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
1324
1325 xlog_grant_head_init(&log->l_reserve_head);
1326 xlog_grant_head_init(&log->l_write_head);
1327
1328 error = EFSCORRUPTED;
1329 if (xfs_sb_version_hassector(&mp->m_sb)) {
1330 log2_size = mp->m_sb.sb_logsectlog;
1331 if (log2_size < BBSHIFT) {
1332 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1333 log2_size, BBSHIFT);
1334 goto out_free_log;
1335 }
1336
1337 log2_size -= BBSHIFT;
1338 if (log2_size > mp->m_sectbb_log) {
1339 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1340 log2_size, mp->m_sectbb_log);
1341 goto out_free_log;
1342 }
1343
1344 /* for larger sector sizes, must have v2 or external log */
1345 if (log2_size && log->l_logBBstart > 0 &&
1346 !xfs_sb_version_haslogv2(&mp->m_sb)) {
1347 xfs_warn(mp,
1348 "log sector size (0x%x) invalid for configuration.",
1349 log2_size);
1350 goto out_free_log;
1351 }
1352 }
1353 log->l_sectBBsize = 1 << log2_size;
1354
1355 xlog_get_iclog_buffer_size(mp, log);
1356
1357 error = ENOMEM;
1358 bp = xfs_buf_alloc(mp->m_logdev_targp, 0, BTOBB(log->l_iclog_size), 0);
1359 if (!bp)
1360 goto out_free_log;
1361 bp->b_iodone = xlog_iodone;
1362 ASSERT(xfs_buf_islocked(bp));
1363 log->l_xbuf = bp;
1364
1365 spin_lock_init(&log->l_icloglock);
1366 init_waitqueue_head(&log->l_flush_wait);
1367
1368 iclogp = &log->l_iclog;
1369 /*
1370 * The amount of memory to allocate for the iclog structure is
1371 * rather funky due to the way the structure is defined. It is
1372 * done this way so that we can use different sizes for machines
1373 * with different amounts of memory. See the definition of
1374 * xlog_in_core_t in xfs_log_priv.h for details.
1375 */
1376 ASSERT(log->l_iclog_size >= 4096);
1377 for (i=0; i < log->l_iclog_bufs; i++) {
1378 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1379 if (!*iclogp)
1380 goto out_free_iclog;
1381
1382 iclog = *iclogp;
1383 iclog->ic_prev = prev_iclog;
1384 prev_iclog = iclog;
1385
1386 bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1387 BTOBB(log->l_iclog_size), 0);
1388 if (!bp)
1389 goto out_free_iclog;
1390
1391 bp->b_iodone = xlog_iodone;
1392 iclog->ic_bp = bp;
1393 iclog->ic_data = bp->b_addr;
1394 #ifdef DEBUG
1395 log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header);
1396 #endif
1397 head = &iclog->ic_header;
1398 memset(head, 0, sizeof(xlog_rec_header_t));
1399 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1400 head->h_version = cpu_to_be32(
1401 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1402 head->h_size = cpu_to_be32(log->l_iclog_size);
1403 /* new fields */
1404 head->h_fmt = cpu_to_be32(XLOG_FMT);
1405 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1406
1407 iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1408 iclog->ic_state = XLOG_STATE_ACTIVE;
1409 iclog->ic_log = log;
1410 atomic_set(&iclog->ic_refcnt, 0);
1411 spin_lock_init(&iclog->ic_callback_lock);
1412 iclog->ic_callback_tail = &(iclog->ic_callback);
1413 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1414
1415 ASSERT(xfs_buf_islocked(iclog->ic_bp));
1416 init_waitqueue_head(&iclog->ic_force_wait);
1417 init_waitqueue_head(&iclog->ic_write_wait);
1418
1419 iclogp = &iclog->ic_next;
1420 }
1421 *iclogp = log->l_iclog; /* complete ring */
1422 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
1423
1424 error = xlog_cil_init(log);
1425 if (error)
1426 goto out_free_iclog;
1427 return log;
1428
1429 out_free_iclog:
1430 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1431 prev_iclog = iclog->ic_next;
1432 if (iclog->ic_bp)
1433 xfs_buf_free(iclog->ic_bp);
1434 kmem_free(iclog);
1435 }
1436 spinlock_destroy(&log->l_icloglock);
1437 xfs_buf_free(log->l_xbuf);
1438 out_free_log:
1439 kmem_free(log);
1440 out:
1441 return ERR_PTR(-error);
1442 } /* xlog_alloc_log */
1443
1444
1445 /*
1446 * Write out the commit record of a transaction associated with the given
1447 * ticket. Return the lsn of the commit record.
1448 */
1449 STATIC int
1450 xlog_commit_record(
1451 struct xlog *log,
1452 struct xlog_ticket *ticket,
1453 struct xlog_in_core **iclog,
1454 xfs_lsn_t *commitlsnp)
1455 {
1456 struct xfs_mount *mp = log->l_mp;
1457 int error;
1458 struct xfs_log_iovec reg = {
1459 .i_addr = NULL,
1460 .i_len = 0,
1461 .i_type = XLOG_REG_TYPE_COMMIT,
1462 };
1463 struct xfs_log_vec vec = {
1464 .lv_niovecs = 1,
1465 .lv_iovecp = &reg,
1466 };
1467
1468 ASSERT_ALWAYS(iclog);
1469 error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1470 XLOG_COMMIT_TRANS);
1471 if (error)
1472 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1473 return error;
1474 }
1475
1476 /*
1477 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1478 * log space. This code pushes on the lsn which would supposedly free up
1479 * the 25% which we want to leave free. We may need to adopt a policy which
1480 * pushes on an lsn which is further along in the log once we reach the high
1481 * water mark. In this manner, we would be creating a low water mark.
1482 */
1483 STATIC void
1484 xlog_grant_push_ail(
1485 struct xlog *log,
1486 int need_bytes)
1487 {
1488 xfs_lsn_t threshold_lsn = 0;
1489 xfs_lsn_t last_sync_lsn;
1490 int free_blocks;
1491 int free_bytes;
1492 int threshold_block;
1493 int threshold_cycle;
1494 int free_threshold;
1495
1496 ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1497
1498 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1499 free_blocks = BTOBBT(free_bytes);
1500
1501 /*
1502 * Set the threshold for the minimum number of free blocks in the
1503 * log to the maximum of what the caller needs, one quarter of the
1504 * log, and 256 blocks.
1505 */
1506 free_threshold = BTOBB(need_bytes);
1507 free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1508 free_threshold = MAX(free_threshold, 256);
1509 if (free_blocks >= free_threshold)
1510 return;
1511
1512 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1513 &threshold_block);
1514 threshold_block += free_threshold;
1515 if (threshold_block >= log->l_logBBsize) {
1516 threshold_block -= log->l_logBBsize;
1517 threshold_cycle += 1;
1518 }
1519 threshold_lsn = xlog_assign_lsn(threshold_cycle,
1520 threshold_block);
1521 /*
1522 * Don't pass in an lsn greater than the lsn of the last
1523 * log record known to be on disk. Use a snapshot of the last sync lsn
1524 * so that it doesn't change between the compare and the set.
1525 */
1526 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1527 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1528 threshold_lsn = last_sync_lsn;
1529
1530 /*
1531 * Get the transaction layer to kick the dirty buffers out to
1532 * disk asynchronously. No point in trying to do this if
1533 * the filesystem is shutting down.
1534 */
1535 if (!XLOG_FORCED_SHUTDOWN(log))
1536 xfs_ail_push(log->l_ailp, threshold_lsn);
1537 }
1538
1539 /*
1540 * Stamp cycle number in every block
1541 */
1542 STATIC void
1543 xlog_pack_data(
1544 struct xlog *log,
1545 struct xlog_in_core *iclog,
1546 int roundoff)
1547 {
1548 int i, j, k;
1549 int size = iclog->ic_offset + roundoff;
1550 __be32 cycle_lsn;
1551 xfs_caddr_t dp;
1552
1553 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1554
1555 dp = iclog->ic_datap;
1556 for (i = 0; i < BTOBB(size); i++) {
1557 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1558 break;
1559 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1560 *(__be32 *)dp = cycle_lsn;
1561 dp += BBSIZE;
1562 }
1563
1564 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1565 xlog_in_core_2_t *xhdr = iclog->ic_data;
1566
1567 for ( ; i < BTOBB(size); i++) {
1568 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1569 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1570 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1571 *(__be32 *)dp = cycle_lsn;
1572 dp += BBSIZE;
1573 }
1574
1575 for (i = 1; i < log->l_iclog_heads; i++)
1576 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1577 }
1578 }
1579
1580 /*
1581 * Calculate the checksum for a log buffer.
1582 *
1583 * This is a little more complicated than it should be because the various
1584 * headers and the actual data are non-contiguous.
1585 */
1586 __le32
1587 xlog_cksum(
1588 struct xlog *log,
1589 struct xlog_rec_header *rhead,
1590 char *dp,
1591 int size)
1592 {
1593 __uint32_t crc;
1594
1595 /* first generate the crc for the record header ... */
1596 crc = xfs_start_cksum((char *)rhead,
1597 sizeof(struct xlog_rec_header),
1598 offsetof(struct xlog_rec_header, h_crc));
1599
1600 /* ... then for additional cycle data for v2 logs ... */
1601 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1602 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1603 int i;
1604
1605 for (i = 1; i < log->l_iclog_heads; i++) {
1606 crc = crc32c(crc, &xhdr[i].hic_xheader,
1607 sizeof(struct xlog_rec_ext_header));
1608 }
1609 }
1610
1611 /* ... and finally for the payload */
1612 crc = crc32c(crc, dp, size);
1613
1614 return xfs_end_cksum(crc);
1615 }
1616
1617 /*
1618 * The bdstrat callback function for log bufs. This gives us a central
1619 * place to trap bufs in case we get hit by a log I/O error and need to
1620 * shutdown. Actually, in practice, even when we didn't get a log error,
1621 * we transition the iclogs to IOERROR state *after* flushing all existing
1622 * iclogs to disk. This is because we don't want anymore new transactions to be
1623 * started or completed afterwards.
1624 */
1625 STATIC int
1626 xlog_bdstrat(
1627 struct xfs_buf *bp)
1628 {
1629 struct xlog_in_core *iclog = bp->b_fspriv;
1630
1631 if (iclog->ic_state & XLOG_STATE_IOERROR) {
1632 xfs_buf_ioerror(bp, EIO);
1633 xfs_buf_stale(bp);
1634 xfs_buf_ioend(bp, 0);
1635 /*
1636 * It would seem logical to return EIO here, but we rely on
1637 * the log state machine to propagate I/O errors instead of
1638 * doing it here.
1639 */
1640 return 0;
1641 }
1642
1643 xfs_buf_iorequest(bp);
1644 return 0;
1645 }
1646
1647 /*
1648 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1649 * fashion. Previously, we should have moved the current iclog
1650 * ptr in the log to point to the next available iclog. This allows further
1651 * write to continue while this code syncs out an iclog ready to go.
1652 * Before an in-core log can be written out, the data section must be scanned
1653 * to save away the 1st word of each BBSIZE block into the header. We replace
1654 * it with the current cycle count. Each BBSIZE block is tagged with the
1655 * cycle count because there in an implicit assumption that drives will
1656 * guarantee that entire 512 byte blocks get written at once. In other words,
1657 * we can't have part of a 512 byte block written and part not written. By
1658 * tagging each block, we will know which blocks are valid when recovering
1659 * after an unclean shutdown.
1660 *
1661 * This routine is single threaded on the iclog. No other thread can be in
1662 * this routine with the same iclog. Changing contents of iclog can there-
1663 * fore be done without grabbing the state machine lock. Updating the global
1664 * log will require grabbing the lock though.
1665 *
1666 * The entire log manager uses a logical block numbering scheme. Only
1667 * log_sync (and then only bwrite()) know about the fact that the log may
1668 * not start with block zero on a given device. The log block start offset
1669 * is added immediately before calling bwrite().
1670 */
1671
1672 STATIC int
1673 xlog_sync(
1674 struct xlog *log,
1675 struct xlog_in_core *iclog)
1676 {
1677 xfs_buf_t *bp;
1678 int i;
1679 uint count; /* byte count of bwrite */
1680 uint count_init; /* initial count before roundup */
1681 int roundoff; /* roundoff to BB or stripe */
1682 int split = 0; /* split write into two regions */
1683 int error;
1684 int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1685 int size;
1686
1687 XFS_STATS_INC(xs_log_writes);
1688 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1689
1690 /* Add for LR header */
1691 count_init = log->l_iclog_hsize + iclog->ic_offset;
1692
1693 /* Round out the log write size */
1694 if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1695 /* we have a v2 stripe unit to use */
1696 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1697 } else {
1698 count = BBTOB(BTOBB(count_init));
1699 }
1700 roundoff = count - count_init;
1701 ASSERT(roundoff >= 0);
1702 ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1703 roundoff < log->l_mp->m_sb.sb_logsunit)
1704 ||
1705 (log->l_mp->m_sb.sb_logsunit <= 1 &&
1706 roundoff < BBTOB(1)));
1707
1708 /* move grant heads by roundoff in sync */
1709 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1710 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1711
1712 /* put cycle number in every block */
1713 xlog_pack_data(log, iclog, roundoff);
1714
1715 /* real byte length */
1716 size = iclog->ic_offset;
1717 if (v2)
1718 size += roundoff;
1719 iclog->ic_header.h_len = cpu_to_be32(size);
1720
1721 bp = iclog->ic_bp;
1722 XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1723
1724 XFS_STATS_ADD(xs_log_blocks, BTOBB(count));
1725
1726 /* Do we need to split this write into 2 parts? */
1727 if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1728 char *dptr;
1729
1730 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1731 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1732 iclog->ic_bwritecnt = 2;
1733
1734 /*
1735 * Bump the cycle numbers at the start of each block in the
1736 * part of the iclog that ends up in the buffer that gets
1737 * written to the start of the log.
1738 *
1739 * Watch out for the header magic number case, though.
1740 */
1741 dptr = (char *)&iclog->ic_header + count;
1742 for (i = 0; i < split; i += BBSIZE) {
1743 __uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1744 if (++cycle == XLOG_HEADER_MAGIC_NUM)
1745 cycle++;
1746 *(__be32 *)dptr = cpu_to_be32(cycle);
1747
1748 dptr += BBSIZE;
1749 }
1750 } else {
1751 iclog->ic_bwritecnt = 1;
1752 }
1753
1754 /* calculcate the checksum */
1755 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1756 iclog->ic_datap, size);
1757
1758 bp->b_io_length = BTOBB(count);
1759 bp->b_fspriv = iclog;
1760 XFS_BUF_ZEROFLAGS(bp);
1761 XFS_BUF_ASYNC(bp);
1762 bp->b_flags |= XBF_SYNCIO;
1763
1764 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1765 bp->b_flags |= XBF_FUA;
1766
1767 /*
1768 * Flush the data device before flushing the log to make
1769 * sure all meta data written back from the AIL actually made
1770 * it to disk before stamping the new log tail LSN into the
1771 * log buffer. For an external log we need to issue the
1772 * flush explicitly, and unfortunately synchronously here;
1773 * for an internal log we can simply use the block layer
1774 * state machine for preflushes.
1775 */
1776 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1777 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1778 else
1779 bp->b_flags |= XBF_FLUSH;
1780 }
1781
1782 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1783 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1784
1785 xlog_verify_iclog(log, iclog, count, true);
1786
1787 /* account for log which doesn't start at block #0 */
1788 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1789 /*
1790 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1791 * is shutting down.
1792 */
1793 XFS_BUF_WRITE(bp);
1794
1795 error = xlog_bdstrat(bp);
1796 if (error) {
1797 xfs_buf_ioerror_alert(bp, "xlog_sync");
1798 return error;
1799 }
1800 if (split) {
1801 bp = iclog->ic_log->l_xbuf;
1802 XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */
1803 xfs_buf_associate_memory(bp,
1804 (char *)&iclog->ic_header + count, split);
1805 bp->b_fspriv = iclog;
1806 XFS_BUF_ZEROFLAGS(bp);
1807 XFS_BUF_ASYNC(bp);
1808 bp->b_flags |= XBF_SYNCIO;
1809 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1810 bp->b_flags |= XBF_FUA;
1811
1812 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1813 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1814
1815 /* account for internal log which doesn't start at block #0 */
1816 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1817 XFS_BUF_WRITE(bp);
1818 error = xlog_bdstrat(bp);
1819 if (error) {
1820 xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1821 return error;
1822 }
1823 }
1824 return 0;
1825 } /* xlog_sync */
1826
1827 /*
1828 * Deallocate a log structure
1829 */
1830 STATIC void
1831 xlog_dealloc_log(
1832 struct xlog *log)
1833 {
1834 xlog_in_core_t *iclog, *next_iclog;
1835 int i;
1836
1837 xlog_cil_destroy(log);
1838
1839 /*
1840 * always need to ensure that the extra buffer does not point to memory
1841 * owned by another log buffer before we free it.
1842 */
1843 xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1844 xfs_buf_free(log->l_xbuf);
1845
1846 iclog = log->l_iclog;
1847 for (i=0; i<log->l_iclog_bufs; i++) {
1848 xfs_buf_free(iclog->ic_bp);
1849 next_iclog = iclog->ic_next;
1850 kmem_free(iclog);
1851 iclog = next_iclog;
1852 }
1853 spinlock_destroy(&log->l_icloglock);
1854
1855 log->l_mp->m_log = NULL;
1856 kmem_free(log);
1857 } /* xlog_dealloc_log */
1858
1859 /*
1860 * Update counters atomically now that memcpy is done.
1861 */
1862 /* ARGSUSED */
1863 static inline void
1864 xlog_state_finish_copy(
1865 struct xlog *log,
1866 struct xlog_in_core *iclog,
1867 int record_cnt,
1868 int copy_bytes)
1869 {
1870 spin_lock(&log->l_icloglock);
1871
1872 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1873 iclog->ic_offset += copy_bytes;
1874
1875 spin_unlock(&log->l_icloglock);
1876 } /* xlog_state_finish_copy */
1877
1878
1879
1880
1881 /*
1882 * print out info relating to regions written which consume
1883 * the reservation
1884 */
1885 void
1886 xlog_print_tic_res(
1887 struct xfs_mount *mp,
1888 struct xlog_ticket *ticket)
1889 {
1890 uint i;
1891 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1892
1893 /* match with XLOG_REG_TYPE_* in xfs_log.h */
1894 static char *res_type_str[XLOG_REG_TYPE_MAX] = {
1895 "bformat",
1896 "bchunk",
1897 "efi_format",
1898 "efd_format",
1899 "iformat",
1900 "icore",
1901 "iext",
1902 "ibroot",
1903 "ilocal",
1904 "iattr_ext",
1905 "iattr_broot",
1906 "iattr_local",
1907 "qformat",
1908 "dquot",
1909 "quotaoff",
1910 "LR header",
1911 "unmount",
1912 "commit",
1913 "trans header"
1914 };
1915 static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
1916 "SETATTR_NOT_SIZE",
1917 "SETATTR_SIZE",
1918 "INACTIVE",
1919 "CREATE",
1920 "CREATE_TRUNC",
1921 "TRUNCATE_FILE",
1922 "REMOVE",
1923 "LINK",
1924 "RENAME",
1925 "MKDIR",
1926 "RMDIR",
1927 "SYMLINK",
1928 "SET_DMATTRS",
1929 "GROWFS",
1930 "STRAT_WRITE",
1931 "DIOSTRAT",
1932 "WRITE_SYNC",
1933 "WRITEID",
1934 "ADDAFORK",
1935 "ATTRINVAL",
1936 "ATRUNCATE",
1937 "ATTR_SET",
1938 "ATTR_RM",
1939 "ATTR_FLAG",
1940 "CLEAR_AGI_BUCKET",
1941 "QM_SBCHANGE",
1942 "DUMMY1",
1943 "DUMMY2",
1944 "QM_QUOTAOFF",
1945 "QM_DQALLOC",
1946 "QM_SETQLIM",
1947 "QM_DQCLUSTER",
1948 "QM_QINOCREATE",
1949 "QM_QUOTAOFF_END",
1950 "SB_UNIT",
1951 "FSYNC_TS",
1952 "GROWFSRT_ALLOC",
1953 "GROWFSRT_ZERO",
1954 "GROWFSRT_FREE",
1955 "SWAPEXT"
1956 };
1957
1958 xfs_warn(mp,
1959 "xlog_write: reservation summary:\n"
1960 " trans type = %s (%u)\n"
1961 " unit res = %d bytes\n"
1962 " current res = %d bytes\n"
1963 " total reg = %u bytes (o/flow = %u bytes)\n"
1964 " ophdrs = %u (ophdr space = %u bytes)\n"
1965 " ophdr + reg = %u bytes\n"
1966 " num regions = %u\n",
1967 ((ticket->t_trans_type <= 0 ||
1968 ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
1969 "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
1970 ticket->t_trans_type,
1971 ticket->t_unit_res,
1972 ticket->t_curr_res,
1973 ticket->t_res_arr_sum, ticket->t_res_o_flow,
1974 ticket->t_res_num_ophdrs, ophdr_spc,
1975 ticket->t_res_arr_sum +
1976 ticket->t_res_o_flow + ophdr_spc,
1977 ticket->t_res_num);
1978
1979 for (i = 0; i < ticket->t_res_num; i++) {
1980 uint r_type = ticket->t_res_arr[i].r_type;
1981 xfs_warn(mp, "region[%u]: %s - %u bytes\n", i,
1982 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
1983 "bad-rtype" : res_type_str[r_type-1]),
1984 ticket->t_res_arr[i].r_len);
1985 }
1986
1987 xfs_alert_tag(mp, XFS_PTAG_LOGRES,
1988 "xlog_write: reservation ran out. Need to up reservation");
1989 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1990 }
1991
1992 /*
1993 * Calculate the potential space needed by the log vector. Each region gets
1994 * its own xlog_op_header_t and may need to be double word aligned.
1995 */
1996 static int
1997 xlog_write_calc_vec_length(
1998 struct xlog_ticket *ticket,
1999 struct xfs_log_vec *log_vector)
2000 {
2001 struct xfs_log_vec *lv;
2002 int headers = 0;
2003 int len = 0;
2004 int i;
2005
2006 /* acct for start rec of xact */
2007 if (ticket->t_flags & XLOG_TIC_INITED)
2008 headers++;
2009
2010 for (lv = log_vector; lv; lv = lv->lv_next) {
2011 /* we don't write ordered log vectors */
2012 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2013 continue;
2014
2015 headers += lv->lv_niovecs;
2016
2017 for (i = 0; i < lv->lv_niovecs; i++) {
2018 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i];
2019
2020 len += vecp->i_len;
2021 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2022 }
2023 }
2024
2025 ticket->t_res_num_ophdrs += headers;
2026 len += headers * sizeof(struct xlog_op_header);
2027
2028 return len;
2029 }
2030
2031 /*
2032 * If first write for transaction, insert start record We can't be trying to
2033 * commit if we are inited. We can't have any "partial_copy" if we are inited.
2034 */
2035 static int
2036 xlog_write_start_rec(
2037 struct xlog_op_header *ophdr,
2038 struct xlog_ticket *ticket)
2039 {
2040 if (!(ticket->t_flags & XLOG_TIC_INITED))
2041 return 0;
2042
2043 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2044 ophdr->oh_clientid = ticket->t_clientid;
2045 ophdr->oh_len = 0;
2046 ophdr->oh_flags = XLOG_START_TRANS;
2047 ophdr->oh_res2 = 0;
2048
2049 ticket->t_flags &= ~XLOG_TIC_INITED;
2050
2051 return sizeof(struct xlog_op_header);
2052 }
2053
2054 static xlog_op_header_t *
2055 xlog_write_setup_ophdr(
2056 struct xlog *log,
2057 struct xlog_op_header *ophdr,
2058 struct xlog_ticket *ticket,
2059 uint flags)
2060 {
2061 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2062 ophdr->oh_clientid = ticket->t_clientid;
2063 ophdr->oh_res2 = 0;
2064
2065 /* are we copying a commit or unmount record? */
2066 ophdr->oh_flags = flags;
2067
2068 /*
2069 * We've seen logs corrupted with bad transaction client ids. This
2070 * makes sure that XFS doesn't generate them on. Turn this into an EIO
2071 * and shut down the filesystem.
2072 */
2073 switch (ophdr->oh_clientid) {
2074 case XFS_TRANSACTION:
2075 case XFS_VOLUME:
2076 case XFS_LOG:
2077 break;
2078 default:
2079 xfs_warn(log->l_mp,
2080 "Bad XFS transaction clientid 0x%x in ticket 0x%p",
2081 ophdr->oh_clientid, ticket);
2082 return NULL;
2083 }
2084
2085 return ophdr;
2086 }
2087
2088 /*
2089 * Set up the parameters of the region copy into the log. This has
2090 * to handle region write split across multiple log buffers - this
2091 * state is kept external to this function so that this code can
2092 * be written in an obvious, self documenting manner.
2093 */
2094 static int
2095 xlog_write_setup_copy(
2096 struct xlog_ticket *ticket,
2097 struct xlog_op_header *ophdr,
2098 int space_available,
2099 int space_required,
2100 int *copy_off,
2101 int *copy_len,
2102 int *last_was_partial_copy,
2103 int *bytes_consumed)
2104 {
2105 int still_to_copy;
2106
2107 still_to_copy = space_required - *bytes_consumed;
2108 *copy_off = *bytes_consumed;
2109
2110 if (still_to_copy <= space_available) {
2111 /* write of region completes here */
2112 *copy_len = still_to_copy;
2113 ophdr->oh_len = cpu_to_be32(*copy_len);
2114 if (*last_was_partial_copy)
2115 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2116 *last_was_partial_copy = 0;
2117 *bytes_consumed = 0;
2118 return 0;
2119 }
2120
2121 /* partial write of region, needs extra log op header reservation */
2122 *copy_len = space_available;
2123 ophdr->oh_len = cpu_to_be32(*copy_len);
2124 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2125 if (*last_was_partial_copy)
2126 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2127 *bytes_consumed += *copy_len;
2128 (*last_was_partial_copy)++;
2129
2130 /* account for new log op header */
2131 ticket->t_curr_res -= sizeof(struct xlog_op_header);
2132 ticket->t_res_num_ophdrs++;
2133
2134 return sizeof(struct xlog_op_header);
2135 }
2136
2137 static int
2138 xlog_write_copy_finish(
2139 struct xlog *log,
2140 struct xlog_in_core *iclog,
2141 uint flags,
2142 int *record_cnt,
2143 int *data_cnt,
2144 int *partial_copy,
2145 int *partial_copy_len,
2146 int log_offset,
2147 struct xlog_in_core **commit_iclog)
2148 {
2149 if (*partial_copy) {
2150 /*
2151 * This iclog has already been marked WANT_SYNC by
2152 * xlog_state_get_iclog_space.
2153 */
2154 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2155 *record_cnt = 0;
2156 *data_cnt = 0;
2157 return xlog_state_release_iclog(log, iclog);
2158 }
2159
2160 *partial_copy = 0;
2161 *partial_copy_len = 0;
2162
2163 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2164 /* no more space in this iclog - push it. */
2165 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2166 *record_cnt = 0;
2167 *data_cnt = 0;
2168
2169 spin_lock(&log->l_icloglock);
2170 xlog_state_want_sync(log, iclog);
2171 spin_unlock(&log->l_icloglock);
2172
2173 if (!commit_iclog)
2174 return xlog_state_release_iclog(log, iclog);
2175 ASSERT(flags & XLOG_COMMIT_TRANS);
2176 *commit_iclog = iclog;
2177 }
2178
2179 return 0;
2180 }
2181
2182 /*
2183 * Write some region out to in-core log
2184 *
2185 * This will be called when writing externally provided regions or when
2186 * writing out a commit record for a given transaction.
2187 *
2188 * General algorithm:
2189 * 1. Find total length of this write. This may include adding to the
2190 * lengths passed in.
2191 * 2. Check whether we violate the tickets reservation.
2192 * 3. While writing to this iclog
2193 * A. Reserve as much space in this iclog as can get
2194 * B. If this is first write, save away start lsn
2195 * C. While writing this region:
2196 * 1. If first write of transaction, write start record
2197 * 2. Write log operation header (header per region)
2198 * 3. Find out if we can fit entire region into this iclog
2199 * 4. Potentially, verify destination memcpy ptr
2200 * 5. Memcpy (partial) region
2201 * 6. If partial copy, release iclog; otherwise, continue
2202 * copying more regions into current iclog
2203 * 4. Mark want sync bit (in simulation mode)
2204 * 5. Release iclog for potential flush to on-disk log.
2205 *
2206 * ERRORS:
2207 * 1. Panic if reservation is overrun. This should never happen since
2208 * reservation amounts are generated internal to the filesystem.
2209 * NOTES:
2210 * 1. Tickets are single threaded data structures.
2211 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2212 * syncing routine. When a single log_write region needs to span
2213 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2214 * on all log operation writes which don't contain the end of the
2215 * region. The XLOG_END_TRANS bit is used for the in-core log
2216 * operation which contains the end of the continued log_write region.
2217 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2218 * we don't really know exactly how much space will be used. As a result,
2219 * we don't update ic_offset until the end when we know exactly how many
2220 * bytes have been written out.
2221 */
2222 int
2223 xlog_write(
2224 struct xlog *log,
2225 struct xfs_log_vec *log_vector,
2226 struct xlog_ticket *ticket,
2227 xfs_lsn_t *start_lsn,
2228 struct xlog_in_core **commit_iclog,
2229 uint flags)
2230 {
2231 struct xlog_in_core *iclog = NULL;
2232 struct xfs_log_iovec *vecp;
2233 struct xfs_log_vec *lv;
2234 int len;
2235 int index;
2236 int partial_copy = 0;
2237 int partial_copy_len = 0;
2238 int contwr = 0;
2239 int record_cnt = 0;
2240 int data_cnt = 0;
2241 int error;
2242
2243 *start_lsn = 0;
2244
2245 len = xlog_write_calc_vec_length(ticket, log_vector);
2246
2247 /*
2248 * Region headers and bytes are already accounted for.
2249 * We only need to take into account start records and
2250 * split regions in this function.
2251 */
2252 if (ticket->t_flags & XLOG_TIC_INITED)
2253 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2254
2255 /*
2256 * Commit record headers need to be accounted for. These
2257 * come in as separate writes so are easy to detect.
2258 */
2259 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2260 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2261
2262 if (ticket->t_curr_res < 0)
2263 xlog_print_tic_res(log->l_mp, ticket);
2264
2265 index = 0;
2266 lv = log_vector;
2267 vecp = lv->lv_iovecp;
2268 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2269 void *ptr;
2270 int log_offset;
2271
2272 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2273 &contwr, &log_offset);
2274 if (error)
2275 return error;
2276
2277 ASSERT(log_offset <= iclog->ic_size - 1);
2278 ptr = iclog->ic_datap + log_offset;
2279
2280 /* start_lsn is the first lsn written to. That's all we need. */
2281 if (!*start_lsn)
2282 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2283
2284 /*
2285 * This loop writes out as many regions as can fit in the amount
2286 * of space which was allocated by xlog_state_get_iclog_space().
2287 */
2288 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2289 struct xfs_log_iovec *reg;
2290 struct xlog_op_header *ophdr;
2291 int start_rec_copy;
2292 int copy_len;
2293 int copy_off;
2294 bool ordered = false;
2295
2296 /* ordered log vectors have no regions to write */
2297 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2298 ASSERT(lv->lv_niovecs == 0);
2299 ordered = true;
2300 goto next_lv;
2301 }
2302
2303 reg = &vecp[index];
2304 ASSERT(reg->i_len % sizeof(__int32_t) == 0);
2305 ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
2306
2307 start_rec_copy = xlog_write_start_rec(ptr, ticket);
2308 if (start_rec_copy) {
2309 record_cnt++;
2310 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2311 start_rec_copy);
2312 }
2313
2314 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2315 if (!ophdr)
2316 return XFS_ERROR(EIO);
2317
2318 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2319 sizeof(struct xlog_op_header));
2320
2321 len += xlog_write_setup_copy(ticket, ophdr,
2322 iclog->ic_size-log_offset,
2323 reg->i_len,
2324 &copy_off, &copy_len,
2325 &partial_copy,
2326 &partial_copy_len);
2327 xlog_verify_dest_ptr(log, ptr);
2328
2329 /* copy region */
2330 ASSERT(copy_len >= 0);
2331 memcpy(ptr, reg->i_addr + copy_off, copy_len);
2332 xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len);
2333
2334 copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2335 record_cnt++;
2336 data_cnt += contwr ? copy_len : 0;
2337
2338 error = xlog_write_copy_finish(log, iclog, flags,
2339 &record_cnt, &data_cnt,
2340 &partial_copy,
2341 &partial_copy_len,
2342 log_offset,
2343 commit_iclog);
2344 if (error)
2345 return error;
2346
2347 /*
2348 * if we had a partial copy, we need to get more iclog
2349 * space but we don't want to increment the region
2350 * index because there is still more is this region to
2351 * write.
2352 *
2353 * If we completed writing this region, and we flushed
2354 * the iclog (indicated by resetting of the record
2355 * count), then we also need to get more log space. If
2356 * this was the last record, though, we are done and
2357 * can just return.
2358 */
2359 if (partial_copy)
2360 break;
2361
2362 if (++index == lv->lv_niovecs) {
2363 next_lv:
2364 lv = lv->lv_next;
2365 index = 0;
2366 if (lv)
2367 vecp = lv->lv_iovecp;
2368 }
2369 if (record_cnt == 0 && ordered == false) {
2370 if (!lv)
2371 return 0;
2372 break;
2373 }
2374 }
2375 }
2376
2377 ASSERT(len == 0);
2378
2379 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2380 if (!commit_iclog)
2381 return xlog_state_release_iclog(log, iclog);
2382
2383 ASSERT(flags & XLOG_COMMIT_TRANS);
2384 *commit_iclog = iclog;
2385 return 0;
2386 }
2387
2388
2389 /*****************************************************************************
2390 *
2391 * State Machine functions
2392 *
2393 *****************************************************************************
2394 */
2395
2396 /* Clean iclogs starting from the head. This ordering must be
2397 * maintained, so an iclog doesn't become ACTIVE beyond one that
2398 * is SYNCING. This is also required to maintain the notion that we use
2399 * a ordered wait queue to hold off would be writers to the log when every
2400 * iclog is trying to sync to disk.
2401 *
2402 * State Change: DIRTY -> ACTIVE
2403 */
2404 STATIC void
2405 xlog_state_clean_log(
2406 struct xlog *log)
2407 {
2408 xlog_in_core_t *iclog;
2409 int changed = 0;
2410
2411 iclog = log->l_iclog;
2412 do {
2413 if (iclog->ic_state == XLOG_STATE_DIRTY) {
2414 iclog->ic_state = XLOG_STATE_ACTIVE;
2415 iclog->ic_offset = 0;
2416 ASSERT(iclog->ic_callback == NULL);
2417 /*
2418 * If the number of ops in this iclog indicate it just
2419 * contains the dummy transaction, we can
2420 * change state into IDLE (the second time around).
2421 * Otherwise we should change the state into
2422 * NEED a dummy.
2423 * We don't need to cover the dummy.
2424 */
2425 if (!changed &&
2426 (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2427 XLOG_COVER_OPS)) {
2428 changed = 1;
2429 } else {
2430 /*
2431 * We have two dirty iclogs so start over
2432 * This could also be num of ops indicates
2433 * this is not the dummy going out.
2434 */
2435 changed = 2;
2436 }
2437 iclog->ic_header.h_num_logops = 0;
2438 memset(iclog->ic_header.h_cycle_data, 0,
2439 sizeof(iclog->ic_header.h_cycle_data));
2440 iclog->ic_header.h_lsn = 0;
2441 } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2442 /* do nothing */;
2443 else
2444 break; /* stop cleaning */
2445 iclog = iclog->ic_next;
2446 } while (iclog != log->l_iclog);
2447
2448 /* log is locked when we are called */
2449 /*
2450 * Change state for the dummy log recording.
2451 * We usually go to NEED. But we go to NEED2 if the changed indicates
2452 * we are done writing the dummy record.
2453 * If we are done with the second dummy recored (DONE2), then
2454 * we go to IDLE.
2455 */
2456 if (changed) {
2457 switch (log->l_covered_state) {
2458 case XLOG_STATE_COVER_IDLE:
2459 case XLOG_STATE_COVER_NEED:
2460 case XLOG_STATE_COVER_NEED2:
2461 log->l_covered_state = XLOG_STATE_COVER_NEED;
2462 break;
2463
2464 case XLOG_STATE_COVER_DONE:
2465 if (changed == 1)
2466 log->l_covered_state = XLOG_STATE_COVER_NEED2;
2467 else
2468 log->l_covered_state = XLOG_STATE_COVER_NEED;
2469 break;
2470
2471 case XLOG_STATE_COVER_DONE2:
2472 if (changed == 1)
2473 log->l_covered_state = XLOG_STATE_COVER_IDLE;
2474 else
2475 log->l_covered_state = XLOG_STATE_COVER_NEED;
2476 break;
2477
2478 default:
2479 ASSERT(0);
2480 }
2481 }
2482 } /* xlog_state_clean_log */
2483
2484 STATIC xfs_lsn_t
2485 xlog_get_lowest_lsn(
2486 struct xlog *log)
2487 {
2488 xlog_in_core_t *lsn_log;
2489 xfs_lsn_t lowest_lsn, lsn;
2490
2491 lsn_log = log->l_iclog;
2492 lowest_lsn = 0;
2493 do {
2494 if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2495 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2496 if ((lsn && !lowest_lsn) ||
2497 (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2498 lowest_lsn = lsn;
2499 }
2500 }
2501 lsn_log = lsn_log->ic_next;
2502 } while (lsn_log != log->l_iclog);
2503 return lowest_lsn;
2504 }
2505
2506
2507 STATIC void
2508 xlog_state_do_callback(
2509 struct xlog *log,
2510 int aborted,
2511 struct xlog_in_core *ciclog)
2512 {
2513 xlog_in_core_t *iclog;
2514 xlog_in_core_t *first_iclog; /* used to know when we've
2515 * processed all iclogs once */
2516 xfs_log_callback_t *cb, *cb_next;
2517 int flushcnt = 0;
2518 xfs_lsn_t lowest_lsn;
2519 int ioerrors; /* counter: iclogs with errors */
2520 int loopdidcallbacks; /* flag: inner loop did callbacks*/
2521 int funcdidcallbacks; /* flag: function did callbacks */
2522 int repeats; /* for issuing console warnings if
2523 * looping too many times */
2524 int wake = 0;
2525
2526 spin_lock(&log->l_icloglock);
2527 first_iclog = iclog = log->l_iclog;
2528 ioerrors = 0;
2529 funcdidcallbacks = 0;
2530 repeats = 0;
2531
2532 do {
2533 /*
2534 * Scan all iclogs starting with the one pointed to by the
2535 * log. Reset this starting point each time the log is
2536 * unlocked (during callbacks).
2537 *
2538 * Keep looping through iclogs until one full pass is made
2539 * without running any callbacks.
2540 */
2541 first_iclog = log->l_iclog;
2542 iclog = log->l_iclog;
2543 loopdidcallbacks = 0;
2544 repeats++;
2545
2546 do {
2547
2548 /* skip all iclogs in the ACTIVE & DIRTY states */
2549 if (iclog->ic_state &
2550 (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2551 iclog = iclog->ic_next;
2552 continue;
2553 }
2554
2555 /*
2556 * Between marking a filesystem SHUTDOWN and stopping
2557 * the log, we do flush all iclogs to disk (if there
2558 * wasn't a log I/O error). So, we do want things to
2559 * go smoothly in case of just a SHUTDOWN w/o a
2560 * LOG_IO_ERROR.
2561 */
2562 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2563 /*
2564 * Can only perform callbacks in order. Since
2565 * this iclog is not in the DONE_SYNC/
2566 * DO_CALLBACK state, we skip the rest and
2567 * just try to clean up. If we set our iclog
2568 * to DO_CALLBACK, we will not process it when
2569 * we retry since a previous iclog is in the
2570 * CALLBACK and the state cannot change since
2571 * we are holding the l_icloglock.
2572 */
2573 if (!(iclog->ic_state &
2574 (XLOG_STATE_DONE_SYNC |
2575 XLOG_STATE_DO_CALLBACK))) {
2576 if (ciclog && (ciclog->ic_state ==
2577 XLOG_STATE_DONE_SYNC)) {
2578 ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2579 }
2580 break;
2581 }
2582 /*
2583 * We now have an iclog that is in either the
2584 * DO_CALLBACK or DONE_SYNC states. The other
2585 * states (WANT_SYNC, SYNCING, or CALLBACK were
2586 * caught by the above if and are going to
2587 * clean (i.e. we aren't doing their callbacks)
2588 * see the above if.
2589 */
2590
2591 /*
2592 * We will do one more check here to see if we
2593 * have chased our tail around.
2594 */
2595
2596 lowest_lsn = xlog_get_lowest_lsn(log);
2597 if (lowest_lsn &&
2598 XFS_LSN_CMP(lowest_lsn,
2599 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2600 iclog = iclog->ic_next;
2601 continue; /* Leave this iclog for
2602 * another thread */
2603 }
2604
2605 iclog->ic_state = XLOG_STATE_CALLBACK;
2606
2607
2608 /*
2609 * Completion of a iclog IO does not imply that
2610 * a transaction has completed, as transactions
2611 * can be large enough to span many iclogs. We
2612 * cannot change the tail of the log half way
2613 * through a transaction as this may be the only
2614 * transaction in the log and moving th etail to
2615 * point to the middle of it will prevent
2616 * recovery from finding the start of the
2617 * transaction. Hence we should only update the
2618 * last_sync_lsn if this iclog contains
2619 * transaction completion callbacks on it.
2620 *
2621 * We have to do this before we drop the
2622 * icloglock to ensure we are the only one that
2623 * can update it.
2624 */
2625 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2626 be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2627 if (iclog->ic_callback)
2628 atomic64_set(&log->l_last_sync_lsn,
2629 be64_to_cpu(iclog->ic_header.h_lsn));
2630
2631 } else
2632 ioerrors++;
2633
2634 spin_unlock(&log->l_icloglock);
2635
2636 /*
2637 * Keep processing entries in the callback list until
2638 * we come around and it is empty. We need to
2639 * atomically see that the list is empty and change the
2640 * state to DIRTY so that we don't miss any more
2641 * callbacks being added.
2642 */
2643 spin_lock(&iclog->ic_callback_lock);
2644 cb = iclog->ic_callback;
2645 while (cb) {
2646 iclog->ic_callback_tail = &(iclog->ic_callback);
2647 iclog->ic_callback = NULL;
2648 spin_unlock(&iclog->ic_callback_lock);
2649
2650 /* perform callbacks in the order given */
2651 for (; cb; cb = cb_next) {
2652 cb_next = cb->cb_next;
2653 cb->cb_func(cb->cb_arg, aborted);
2654 }
2655 spin_lock(&iclog->ic_callback_lock);
2656 cb = iclog->ic_callback;
2657 }
2658
2659 loopdidcallbacks++;
2660 funcdidcallbacks++;
2661
2662 spin_lock(&log->l_icloglock);
2663 ASSERT(iclog->ic_callback == NULL);
2664 spin_unlock(&iclog->ic_callback_lock);
2665 if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2666 iclog->ic_state = XLOG_STATE_DIRTY;
2667
2668 /*
2669 * Transition from DIRTY to ACTIVE if applicable.
2670 * NOP if STATE_IOERROR.
2671 */
2672 xlog_state_clean_log(log);
2673
2674 /* wake up threads waiting in xfs_log_force() */
2675 wake_up_all(&iclog->ic_force_wait);
2676
2677 iclog = iclog->ic_next;
2678 } while (first_iclog != iclog);
2679
2680 if (repeats > 5000) {
2681 flushcnt += repeats;
2682 repeats = 0;
2683 xfs_warn(log->l_mp,
2684 "%s: possible infinite loop (%d iterations)",
2685 __func__, flushcnt);
2686 }
2687 } while (!ioerrors && loopdidcallbacks);
2688
2689 /*
2690 * make one last gasp attempt to see if iclogs are being left in
2691 * limbo..
2692 */
2693 #ifdef DEBUG
2694 if (funcdidcallbacks) {
2695 first_iclog = iclog = log->l_iclog;
2696 do {
2697 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2698 /*
2699 * Terminate the loop if iclogs are found in states
2700 * which will cause other threads to clean up iclogs.
2701 *
2702 * SYNCING - i/o completion will go through logs
2703 * DONE_SYNC - interrupt thread should be waiting for
2704 * l_icloglock
2705 * IOERROR - give up hope all ye who enter here
2706 */
2707 if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2708 iclog->ic_state == XLOG_STATE_SYNCING ||
2709 iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2710 iclog->ic_state == XLOG_STATE_IOERROR )
2711 break;
2712 iclog = iclog->ic_next;
2713 } while (first_iclog != iclog);
2714 }
2715 #endif
2716
2717 if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2718 wake = 1;
2719 spin_unlock(&log->l_icloglock);
2720
2721 if (wake)
2722 wake_up_all(&log->l_flush_wait);
2723 }
2724
2725
2726 /*
2727 * Finish transitioning this iclog to the dirty state.
2728 *
2729 * Make sure that we completely execute this routine only when this is
2730 * the last call to the iclog. There is a good chance that iclog flushes,
2731 * when we reach the end of the physical log, get turned into 2 separate
2732 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2733 * routine. By using the reference count bwritecnt, we guarantee that only
2734 * the second completion goes through.
2735 *
2736 * Callbacks could take time, so they are done outside the scope of the
2737 * global state machine log lock.
2738 */
2739 STATIC void
2740 xlog_state_done_syncing(
2741 xlog_in_core_t *iclog,
2742 int aborted)
2743 {
2744 struct xlog *log = iclog->ic_log;
2745
2746 spin_lock(&log->l_icloglock);
2747
2748 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2749 iclog->ic_state == XLOG_STATE_IOERROR);
2750 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2751 ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2752
2753
2754 /*
2755 * If we got an error, either on the first buffer, or in the case of
2756 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2757 * and none should ever be attempted to be written to disk
2758 * again.
2759 */
2760 if (iclog->ic_state != XLOG_STATE_IOERROR) {
2761 if (--iclog->ic_bwritecnt == 1) {
2762 spin_unlock(&log->l_icloglock);
2763 return;
2764 }
2765 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2766 }
2767
2768 /*
2769 * Someone could be sleeping prior to writing out the next
2770 * iclog buffer, we wake them all, one will get to do the
2771 * I/O, the others get to wait for the result.
2772 */
2773 wake_up_all(&iclog->ic_write_wait);
2774 spin_unlock(&log->l_icloglock);
2775 xlog_state_do_callback(log, aborted, iclog); /* also cleans log */
2776 } /* xlog_state_done_syncing */
2777
2778
2779 /*
2780 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2781 * sleep. We wait on the flush queue on the head iclog as that should be
2782 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2783 * we will wait here and all new writes will sleep until a sync completes.
2784 *
2785 * The in-core logs are used in a circular fashion. They are not used
2786 * out-of-order even when an iclog past the head is free.
2787 *
2788 * return:
2789 * * log_offset where xlog_write() can start writing into the in-core
2790 * log's data space.
2791 * * in-core log pointer to which xlog_write() should write.
2792 * * boolean indicating this is a continued write to an in-core log.
2793 * If this is the last write, then the in-core log's offset field
2794 * needs to be incremented, depending on the amount of data which
2795 * is copied.
2796 */
2797 STATIC int
2798 xlog_state_get_iclog_space(
2799 struct xlog *log,
2800 int len,
2801 struct xlog_in_core **iclogp,
2802 struct xlog_ticket *ticket,
2803 int *continued_write,
2804 int *logoffsetp)
2805 {
2806 int log_offset;
2807 xlog_rec_header_t *head;
2808 xlog_in_core_t *iclog;
2809 int error;
2810
2811 restart:
2812 spin_lock(&log->l_icloglock);
2813 if (XLOG_FORCED_SHUTDOWN(log)) {
2814 spin_unlock(&log->l_icloglock);
2815 return XFS_ERROR(EIO);
2816 }
2817
2818 iclog = log->l_iclog;
2819 if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2820 XFS_STATS_INC(xs_log_noiclogs);
2821
2822 /* Wait for log writes to have flushed */
2823 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2824 goto restart;
2825 }
2826
2827 head = &iclog->ic_header;
2828
2829 atomic_inc(&iclog->ic_refcnt); /* prevents sync */
2830 log_offset = iclog->ic_offset;
2831
2832 /* On the 1st write to an iclog, figure out lsn. This works
2833 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2834 * committing to. If the offset is set, that's how many blocks
2835 * must be written.
2836 */
2837 if (log_offset == 0) {
2838 ticket->t_curr_res -= log->l_iclog_hsize;
2839 xlog_tic_add_region(ticket,
2840 log->l_iclog_hsize,
2841 XLOG_REG_TYPE_LRHEADER);
2842 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2843 head->h_lsn = cpu_to_be64(
2844 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2845 ASSERT(log->l_curr_block >= 0);
2846 }
2847
2848 /* If there is enough room to write everything, then do it. Otherwise,
2849 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2850 * bit is on, so this will get flushed out. Don't update ic_offset
2851 * until you know exactly how many bytes get copied. Therefore, wait
2852 * until later to update ic_offset.
2853 *
2854 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2855 * can fit into remaining data section.
2856 */
2857 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2858 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2859
2860 /*
2861 * If I'm the only one writing to this iclog, sync it to disk.
2862 * We need to do an atomic compare and decrement here to avoid
2863 * racing with concurrent atomic_dec_and_lock() calls in
2864 * xlog_state_release_iclog() when there is more than one
2865 * reference to the iclog.
2866 */
2867 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2868 /* we are the only one */
2869 spin_unlock(&log->l_icloglock);
2870 error = xlog_state_release_iclog(log, iclog);
2871 if (error)
2872 return error;
2873 } else {
2874 spin_unlock(&log->l_icloglock);
2875 }
2876 goto restart;
2877 }
2878
2879 /* Do we have enough room to write the full amount in the remainder
2880 * of this iclog? Or must we continue a write on the next iclog and
2881 * mark this iclog as completely taken? In the case where we switch
2882 * iclogs (to mark it taken), this particular iclog will release/sync
2883 * to disk in xlog_write().
2884 */
2885 if (len <= iclog->ic_size - iclog->ic_offset) {
2886 *continued_write = 0;
2887 iclog->ic_offset += len;
2888 } else {
2889 *continued_write = 1;
2890 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2891 }
2892 *iclogp = iclog;
2893
2894 ASSERT(iclog->ic_offset <= iclog->ic_size);
2895 spin_unlock(&log->l_icloglock);
2896
2897 *logoffsetp = log_offset;
2898 return 0;
2899 } /* xlog_state_get_iclog_space */
2900
2901 /* The first cnt-1 times through here we don't need to
2902 * move the grant write head because the permanent
2903 * reservation has reserved cnt times the unit amount.
2904 * Release part of current permanent unit reservation and
2905 * reset current reservation to be one units worth. Also
2906 * move grant reservation head forward.
2907 */
2908 STATIC void
2909 xlog_regrant_reserve_log_space(
2910 struct xlog *log,
2911 struct xlog_ticket *ticket)
2912 {
2913 trace_xfs_log_regrant_reserve_enter(log, ticket);
2914
2915 if (ticket->t_cnt > 0)
2916 ticket->t_cnt--;
2917
2918 xlog_grant_sub_space(log, &log->l_reserve_head.grant,
2919 ticket->t_curr_res);
2920 xlog_grant_sub_space(log, &log->l_write_head.grant,
2921 ticket->t_curr_res);
2922 ticket->t_curr_res = ticket->t_unit_res;
2923 xlog_tic_reset_res(ticket);
2924
2925 trace_xfs_log_regrant_reserve_sub(log, ticket);
2926
2927 /* just return if we still have some of the pre-reserved space */
2928 if (ticket->t_cnt > 0)
2929 return;
2930
2931 xlog_grant_add_space(log, &log->l_reserve_head.grant,
2932 ticket->t_unit_res);
2933
2934 trace_xfs_log_regrant_reserve_exit(log, ticket);
2935
2936 ticket->t_curr_res = ticket->t_unit_res;
2937 xlog_tic_reset_res(ticket);
2938 } /* xlog_regrant_reserve_log_space */
2939
2940
2941 /*
2942 * Give back the space left from a reservation.
2943 *
2944 * All the information we need to make a correct determination of space left
2945 * is present. For non-permanent reservations, things are quite easy. The
2946 * count should have been decremented to zero. We only need to deal with the
2947 * space remaining in the current reservation part of the ticket. If the
2948 * ticket contains a permanent reservation, there may be left over space which
2949 * needs to be released. A count of N means that N-1 refills of the current
2950 * reservation can be done before we need to ask for more space. The first
2951 * one goes to fill up the first current reservation. Once we run out of
2952 * space, the count will stay at zero and the only space remaining will be
2953 * in the current reservation field.
2954 */
2955 STATIC void
2956 xlog_ungrant_log_space(
2957 struct xlog *log,
2958 struct xlog_ticket *ticket)
2959 {
2960 int bytes;
2961
2962 if (ticket->t_cnt > 0)
2963 ticket->t_cnt--;
2964
2965 trace_xfs_log_ungrant_enter(log, ticket);
2966 trace_xfs_log_ungrant_sub(log, ticket);
2967
2968 /*
2969 * If this is a permanent reservation ticket, we may be able to free
2970 * up more space based on the remaining count.
2971 */
2972 bytes = ticket->t_curr_res;
2973 if (ticket->t_cnt > 0) {
2974 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
2975 bytes += ticket->t_unit_res*ticket->t_cnt;
2976 }
2977
2978 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
2979 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
2980
2981 trace_xfs_log_ungrant_exit(log, ticket);
2982
2983 xfs_log_space_wake(log->l_mp);
2984 }
2985
2986 /*
2987 * Flush iclog to disk if this is the last reference to the given iclog and
2988 * the WANT_SYNC bit is set.
2989 *
2990 * When this function is entered, the iclog is not necessarily in the
2991 * WANT_SYNC state. It may be sitting around waiting to get filled.
2992 *
2993 *
2994 */
2995 STATIC int
2996 xlog_state_release_iclog(
2997 struct xlog *log,
2998 struct xlog_in_core *iclog)
2999 {
3000 int sync = 0; /* do we sync? */
3001
3002 if (iclog->ic_state & XLOG_STATE_IOERROR)
3003 return XFS_ERROR(EIO);
3004
3005 ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3006 if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3007 return 0;
3008
3009 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3010 spin_unlock(&log->l_icloglock);
3011 return XFS_ERROR(EIO);
3012 }
3013 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3014 iclog->ic_state == XLOG_STATE_WANT_SYNC);
3015
3016 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3017 /* update tail before writing to iclog */
3018 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3019 sync++;
3020 iclog->ic_state = XLOG_STATE_SYNCING;
3021 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3022 xlog_verify_tail_lsn(log, iclog, tail_lsn);
3023 /* cycle incremented when incrementing curr_block */
3024 }
3025 spin_unlock(&log->l_icloglock);
3026
3027 /*
3028 * We let the log lock go, so it's possible that we hit a log I/O
3029 * error or some other SHUTDOWN condition that marks the iclog
3030 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3031 * this iclog has consistent data, so we ignore IOERROR
3032 * flags after this point.
3033 */
3034 if (sync)
3035 return xlog_sync(log, iclog);
3036 return 0;
3037 } /* xlog_state_release_iclog */
3038
3039
3040 /*
3041 * This routine will mark the current iclog in the ring as WANT_SYNC
3042 * and move the current iclog pointer to the next iclog in the ring.
3043 * When this routine is called from xlog_state_get_iclog_space(), the
3044 * exact size of the iclog has not yet been determined. All we know is
3045 * that every data block. We have run out of space in this log record.
3046 */
3047 STATIC void
3048 xlog_state_switch_iclogs(
3049 struct xlog *log,
3050 struct xlog_in_core *iclog,
3051 int eventual_size)
3052 {
3053 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3054 if (!eventual_size)
3055 eventual_size = iclog->ic_offset;
3056 iclog->ic_state = XLOG_STATE_WANT_SYNC;
3057 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3058 log->l_prev_block = log->l_curr_block;
3059 log->l_prev_cycle = log->l_curr_cycle;
3060
3061 /* roll log?: ic_offset changed later */
3062 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3063
3064 /* Round up to next log-sunit */
3065 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3066 log->l_mp->m_sb.sb_logsunit > 1) {
3067 __uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3068 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3069 }
3070
3071 if (log->l_curr_block >= log->l_logBBsize) {
3072 log->l_curr_cycle++;
3073 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3074 log->l_curr_cycle++;
3075 log->l_curr_block -= log->l_logBBsize;
3076 ASSERT(log->l_curr_block >= 0);
3077 }
3078 ASSERT(iclog == log->l_iclog);
3079 log->l_iclog = iclog->ic_next;
3080 } /* xlog_state_switch_iclogs */
3081
3082 /*
3083 * Write out all data in the in-core log as of this exact moment in time.
3084 *
3085 * Data may be written to the in-core log during this call. However,
3086 * we don't guarantee this data will be written out. A change from past
3087 * implementation means this routine will *not* write out zero length LRs.
3088 *
3089 * Basically, we try and perform an intelligent scan of the in-core logs.
3090 * If we determine there is no flushable data, we just return. There is no
3091 * flushable data if:
3092 *
3093 * 1. the current iclog is active and has no data; the previous iclog
3094 * is in the active or dirty state.
3095 * 2. the current iclog is drity, and the previous iclog is in the
3096 * active or dirty state.
3097 *
3098 * We may sleep if:
3099 *
3100 * 1. the current iclog is not in the active nor dirty state.
3101 * 2. the current iclog dirty, and the previous iclog is not in the
3102 * active nor dirty state.
3103 * 3. the current iclog is active, and there is another thread writing
3104 * to this particular iclog.
3105 * 4. a) the current iclog is active and has no other writers
3106 * b) when we return from flushing out this iclog, it is still
3107 * not in the active nor dirty state.
3108 */
3109 int
3110 _xfs_log_force(
3111 struct xfs_mount *mp,
3112 uint flags,
3113 int *log_flushed)
3114 {
3115 struct xlog *log = mp->m_log;
3116 struct xlog_in_core *iclog;
3117 xfs_lsn_t lsn;
3118
3119 XFS_STATS_INC(xs_log_force);
3120
3121 xlog_cil_force(log);
3122
3123 spin_lock(&log->l_icloglock);
3124
3125 iclog = log->l_iclog;
3126 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3127 spin_unlock(&log->l_icloglock);
3128 return XFS_ERROR(EIO);
3129 }
3130
3131 /* If the head iclog is not active nor dirty, we just attach
3132 * ourselves to the head and go to sleep.
3133 */
3134 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3135 iclog->ic_state == XLOG_STATE_DIRTY) {
3136 /*
3137 * If the head is dirty or (active and empty), then
3138 * we need to look at the previous iclog. If the previous
3139 * iclog is active or dirty we are done. There is nothing
3140 * to sync out. Otherwise, we attach ourselves to the
3141 * previous iclog and go to sleep.
3142 */
3143 if (iclog->ic_state == XLOG_STATE_DIRTY ||
3144 (atomic_read(&iclog->ic_refcnt) == 0
3145 && iclog->ic_offset == 0)) {
3146 iclog = iclog->ic_prev;
3147 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3148 iclog->ic_state == XLOG_STATE_DIRTY)
3149 goto no_sleep;
3150 else
3151 goto maybe_sleep;
3152 } else {
3153 if (atomic_read(&iclog->ic_refcnt) == 0) {
3154 /* We are the only one with access to this
3155 * iclog. Flush it out now. There should
3156 * be a roundoff of zero to show that someone
3157 * has already taken care of the roundoff from
3158 * the previous sync.
3159 */
3160 atomic_inc(&iclog->ic_refcnt);
3161 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3162 xlog_state_switch_iclogs(log, iclog, 0);
3163 spin_unlock(&log->l_icloglock);
3164
3165 if (xlog_state_release_iclog(log, iclog))
3166 return XFS_ERROR(EIO);
3167
3168 if (log_flushed)
3169 *log_flushed = 1;
3170 spin_lock(&log->l_icloglock);
3171 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3172 iclog->ic_state != XLOG_STATE_DIRTY)
3173 goto maybe_sleep;
3174 else
3175 goto no_sleep;
3176 } else {
3177 /* Someone else is writing to this iclog.
3178 * Use its call to flush out the data. However,
3179 * the other thread may not force out this LR,
3180 * so we mark it WANT_SYNC.
3181 */
3182 xlog_state_switch_iclogs(log, iclog, 0);
3183 goto maybe_sleep;
3184 }
3185 }
3186 }
3187
3188 /* By the time we come around again, the iclog could've been filled
3189 * which would give it another lsn. If we have a new lsn, just
3190 * return because the relevant data has been flushed.
3191 */
3192 maybe_sleep:
3193 if (flags & XFS_LOG_SYNC) {
3194 /*
3195 * We must check if we're shutting down here, before
3196 * we wait, while we're holding the l_icloglock.
3197 * Then we check again after waking up, in case our
3198 * sleep was disturbed by a bad news.
3199 */
3200 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3201 spin_unlock(&log->l_icloglock);
3202 return XFS_ERROR(EIO);
3203 }
3204 XFS_STATS_INC(xs_log_force_sleep);
3205 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3206 /*
3207 * No need to grab the log lock here since we're
3208 * only deciding whether or not to return EIO
3209 * and the memory read should be atomic.
3210 */
3211 if (iclog->ic_state & XLOG_STATE_IOERROR)
3212 return XFS_ERROR(EIO);
3213 if (log_flushed)
3214 *log_flushed = 1;
3215 } else {
3216
3217 no_sleep:
3218 spin_unlock(&log->l_icloglock);
3219 }
3220 return 0;
3221 }
3222
3223 /*
3224 * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3225 * about errors or whether the log was flushed or not. This is the normal
3226 * interface to use when trying to unpin items or move the log forward.
3227 */
3228 void
3229 xfs_log_force(
3230 xfs_mount_t *mp,
3231 uint flags)
3232 {
3233 int error;
3234
3235 trace_xfs_log_force(mp, 0);
3236 error = _xfs_log_force(mp, flags, NULL);
3237 if (error)
3238 xfs_warn(mp, "%s: error %d returned.", __func__, error);
3239 }
3240
3241 /*
3242 * Force the in-core log to disk for a specific LSN.
3243 *
3244 * Find in-core log with lsn.
3245 * If it is in the DIRTY state, just return.
3246 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3247 * state and go to sleep or return.
3248 * If it is in any other state, go to sleep or return.
3249 *
3250 * Synchronous forces are implemented with a signal variable. All callers
3251 * to force a given lsn to disk will wait on a the sv attached to the
3252 * specific in-core log. When given in-core log finally completes its
3253 * write to disk, that thread will wake up all threads waiting on the
3254 * sv.
3255 */
3256 int
3257 _xfs_log_force_lsn(
3258 struct xfs_mount *mp,
3259 xfs_lsn_t lsn,
3260 uint flags,
3261 int *log_flushed)
3262 {
3263 struct xlog *log = mp->m_log;
3264 struct xlog_in_core *iclog;
3265 int already_slept = 0;
3266
3267 ASSERT(lsn != 0);
3268
3269 XFS_STATS_INC(xs_log_force);
3270
3271 lsn = xlog_cil_force_lsn(log, lsn);
3272 if (lsn == NULLCOMMITLSN)
3273 return 0;
3274
3275 try_again:
3276 spin_lock(&log->l_icloglock);
3277 iclog = log->l_iclog;
3278 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3279 spin_unlock(&log->l_icloglock);
3280 return XFS_ERROR(EIO);
3281 }
3282
3283 do {
3284 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3285 iclog = iclog->ic_next;
3286 continue;
3287 }
3288
3289 if (iclog->ic_state == XLOG_STATE_DIRTY) {
3290 spin_unlock(&log->l_icloglock);
3291 return 0;
3292 }
3293
3294 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3295 /*
3296 * We sleep here if we haven't already slept (e.g.
3297 * this is the first time we've looked at the correct
3298 * iclog buf) and the buffer before us is going to
3299 * be sync'ed. The reason for this is that if we
3300 * are doing sync transactions here, by waiting for
3301 * the previous I/O to complete, we can allow a few
3302 * more transactions into this iclog before we close
3303 * it down.
3304 *
3305 * Otherwise, we mark the buffer WANT_SYNC, and bump
3306 * up the refcnt so we can release the log (which
3307 * drops the ref count). The state switch keeps new
3308 * transaction commits from using this buffer. When
3309 * the current commits finish writing into the buffer,
3310 * the refcount will drop to zero and the buffer will
3311 * go out then.
3312 */
3313 if (!already_slept &&
3314 (iclog->ic_prev->ic_state &
3315 (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3316 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3317
3318 XFS_STATS_INC(xs_log_force_sleep);
3319
3320 xlog_wait(&iclog->ic_prev->ic_write_wait,
3321 &log->l_icloglock);
3322 if (log_flushed)
3323 *log_flushed = 1;
3324 already_slept = 1;
3325 goto try_again;
3326 }
3327 atomic_inc(&iclog->ic_refcnt);
3328 xlog_state_switch_iclogs(log, iclog, 0);
3329 spin_unlock(&log->l_icloglock);
3330 if (xlog_state_release_iclog(log, iclog))
3331 return XFS_ERROR(EIO);
3332 if (log_flushed)
3333 *log_flushed = 1;
3334 spin_lock(&log->l_icloglock);
3335 }
3336
3337 if ((flags & XFS_LOG_SYNC) && /* sleep */
3338 !(iclog->ic_state &
3339 (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3340 /*
3341 * Don't wait on completion if we know that we've
3342 * gotten a log write error.
3343 */
3344 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3345 spin_unlock(&log->l_icloglock);
3346 return XFS_ERROR(EIO);
3347 }
3348 XFS_STATS_INC(xs_log_force_sleep);
3349 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3350 /*
3351 * No need to grab the log lock here since we're
3352 * only deciding whether or not to return EIO
3353 * and the memory read should be atomic.
3354 */
3355 if (iclog->ic_state & XLOG_STATE_IOERROR)
3356 return XFS_ERROR(EIO);
3357
3358 if (log_flushed)
3359 *log_flushed = 1;
3360 } else { /* just return */
3361 spin_unlock(&log->l_icloglock);
3362 }
3363
3364 return 0;
3365 } while (iclog != log->l_iclog);
3366
3367 spin_unlock(&log->l_icloglock);
3368 return 0;
3369 }
3370
3371 /*
3372 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3373 * about errors or whether the log was flushed or not. This is the normal
3374 * interface to use when trying to unpin items or move the log forward.
3375 */
3376 void
3377 xfs_log_force_lsn(
3378 xfs_mount_t *mp,
3379 xfs_lsn_t lsn,
3380 uint flags)
3381 {
3382 int error;
3383
3384 trace_xfs_log_force(mp, lsn);
3385 error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3386 if (error)
3387 xfs_warn(mp, "%s: error %d returned.", __func__, error);
3388 }
3389
3390 /*
3391 * Called when we want to mark the current iclog as being ready to sync to
3392 * disk.
3393 */
3394 STATIC void
3395 xlog_state_want_sync(
3396 struct xlog *log,
3397 struct xlog_in_core *iclog)
3398 {
3399 assert_spin_locked(&log->l_icloglock);
3400
3401 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3402 xlog_state_switch_iclogs(log, iclog, 0);
3403 } else {
3404 ASSERT(iclog->ic_state &
3405 (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3406 }
3407 }
3408
3409
3410 /*****************************************************************************
3411 *
3412 * TICKET functions
3413 *
3414 *****************************************************************************
3415 */
3416
3417 /*
3418 * Free a used ticket when its refcount falls to zero.
3419 */
3420 void
3421 xfs_log_ticket_put(
3422 xlog_ticket_t *ticket)
3423 {
3424 ASSERT(atomic_read(&ticket->t_ref) > 0);
3425 if (atomic_dec_and_test(&ticket->t_ref))
3426 kmem_zone_free(xfs_log_ticket_zone, ticket);
3427 }
3428
3429 xlog_ticket_t *
3430 xfs_log_ticket_get(
3431 xlog_ticket_t *ticket)
3432 {
3433 ASSERT(atomic_read(&ticket->t_ref) > 0);
3434 atomic_inc(&ticket->t_ref);
3435 return ticket;
3436 }
3437
3438 /*
3439 * Figure out the total log space unit (in bytes) that would be
3440 * required for a log ticket.
3441 */
3442 int
3443 xfs_log_calc_unit_res(
3444 struct xfs_mount *mp,
3445 int unit_bytes)
3446 {
3447 struct xlog *log = mp->m_log;
3448 int iclog_space;
3449 uint num_headers;
3450
3451 /*
3452 * Permanent reservations have up to 'cnt'-1 active log operations
3453 * in the log. A unit in this case is the amount of space for one
3454 * of these log operations. Normal reservations have a cnt of 1
3455 * and their unit amount is the total amount of space required.
3456 *
3457 * The following lines of code account for non-transaction data
3458 * which occupy space in the on-disk log.
3459 *
3460 * Normal form of a transaction is:
3461 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3462 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3463 *
3464 * We need to account for all the leadup data and trailer data
3465 * around the transaction data.
3466 * And then we need to account for the worst case in terms of using
3467 * more space.
3468 * The worst case will happen if:
3469 * - the placement of the transaction happens to be such that the
3470 * roundoff is at its maximum
3471 * - the transaction data is synced before the commit record is synced
3472 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3473 * Therefore the commit record is in its own Log Record.
3474 * This can happen as the commit record is called with its
3475 * own region to xlog_write().
3476 * This then means that in the worst case, roundoff can happen for
3477 * the commit-rec as well.
3478 * The commit-rec is smaller than padding in this scenario and so it is
3479 * not added separately.
3480 */
3481
3482 /* for trans header */
3483 unit_bytes += sizeof(xlog_op_header_t);
3484 unit_bytes += sizeof(xfs_trans_header_t);
3485
3486 /* for start-rec */
3487 unit_bytes += sizeof(xlog_op_header_t);
3488
3489 /*
3490 * for LR headers - the space for data in an iclog is the size minus
3491 * the space used for the headers. If we use the iclog size, then we
3492 * undercalculate the number of headers required.
3493 *
3494 * Furthermore - the addition of op headers for split-recs might
3495 * increase the space required enough to require more log and op
3496 * headers, so take that into account too.
3497 *
3498 * IMPORTANT: This reservation makes the assumption that if this
3499 * transaction is the first in an iclog and hence has the LR headers
3500 * accounted to it, then the remaining space in the iclog is
3501 * exclusively for this transaction. i.e. if the transaction is larger
3502 * than the iclog, it will be the only thing in that iclog.
3503 * Fundamentally, this means we must pass the entire log vector to
3504 * xlog_write to guarantee this.
3505 */
3506 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3507 num_headers = howmany(unit_bytes, iclog_space);
3508
3509 /* for split-recs - ophdrs added when data split over LRs */
3510 unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3511
3512 /* add extra header reservations if we overrun */
3513 while (!num_headers ||
3514 howmany(unit_bytes, iclog_space) > num_headers) {
3515 unit_bytes += sizeof(xlog_op_header_t);
3516 num_headers++;
3517 }
3518 unit_bytes += log->l_iclog_hsize * num_headers;
3519
3520 /* for commit-rec LR header - note: padding will subsume the ophdr */
3521 unit_bytes += log->l_iclog_hsize;
3522
3523 /* for roundoff padding for transaction data and one for commit record */
3524 if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3525 /* log su roundoff */
3526 unit_bytes += 2 * mp->m_sb.sb_logsunit;
3527 } else {
3528 /* BB roundoff */
3529 unit_bytes += 2 * BBSIZE;
3530 }
3531
3532 return unit_bytes;
3533 }
3534
3535 /*
3536 * Allocate and initialise a new log ticket.
3537 */
3538 struct xlog_ticket *
3539 xlog_ticket_alloc(
3540 struct xlog *log,
3541 int unit_bytes,
3542 int cnt,
3543 char client,
3544 bool permanent,
3545 xfs_km_flags_t alloc_flags)
3546 {
3547 struct xlog_ticket *tic;
3548 int unit_res;
3549
3550 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3551 if (!tic)
3552 return NULL;
3553
3554 unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3555
3556 atomic_set(&tic->t_ref, 1);
3557 tic->t_task = current;
3558 INIT_LIST_HEAD(&tic->t_queue);
3559 tic->t_unit_res = unit_res;
3560 tic->t_curr_res = unit_res;
3561 tic->t_cnt = cnt;
3562 tic->t_ocnt = cnt;
3563 tic->t_tid = prandom_u32();
3564 tic->t_clientid = client;
3565 tic->t_flags = XLOG_TIC_INITED;
3566 tic->t_trans_type = 0;
3567 if (permanent)
3568 tic->t_flags |= XLOG_TIC_PERM_RESERV;
3569
3570 xlog_tic_reset_res(tic);
3571
3572 return tic;
3573 }
3574
3575
3576 /******************************************************************************
3577 *
3578 * Log debug routines
3579 *
3580 ******************************************************************************
3581 */
3582 #if defined(DEBUG)
3583 /*
3584 * Make sure that the destination ptr is within the valid data region of
3585 * one of the iclogs. This uses backup pointers stored in a different
3586 * part of the log in case we trash the log structure.
3587 */
3588 void
3589 xlog_verify_dest_ptr(
3590 struct xlog *log,
3591 char *ptr)
3592 {
3593 int i;
3594 int good_ptr = 0;
3595
3596 for (i = 0; i < log->l_iclog_bufs; i++) {
3597 if (ptr >= log->l_iclog_bak[i] &&
3598 ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3599 good_ptr++;
3600 }
3601
3602 if (!good_ptr)
3603 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3604 }
3605
3606 /*
3607 * Check to make sure the grant write head didn't just over lap the tail. If
3608 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3609 * the cycles differ by exactly one and check the byte count.
3610 *
3611 * This check is run unlocked, so can give false positives. Rather than assert
3612 * on failures, use a warn-once flag and a panic tag to allow the admin to
3613 * determine if they want to panic the machine when such an error occurs. For
3614 * debug kernels this will have the same effect as using an assert but, unlinke
3615 * an assert, it can be turned off at runtime.
3616 */
3617 STATIC void
3618 xlog_verify_grant_tail(
3619 struct xlog *log)
3620 {
3621 int tail_cycle, tail_blocks;
3622 int cycle, space;
3623
3624 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3625 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3626 if (tail_cycle != cycle) {
3627 if (cycle - 1 != tail_cycle &&
3628 !(log->l_flags & XLOG_TAIL_WARN)) {
3629 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3630 "%s: cycle - 1 != tail_cycle", __func__);
3631 log->l_flags |= XLOG_TAIL_WARN;
3632 }
3633
3634 if (space > BBTOB(tail_blocks) &&
3635 !(log->l_flags & XLOG_TAIL_WARN)) {
3636 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3637 "%s: space > BBTOB(tail_blocks)", __func__);
3638 log->l_flags |= XLOG_TAIL_WARN;
3639 }
3640 }
3641 }
3642
3643 /* check if it will fit */
3644 STATIC void
3645 xlog_verify_tail_lsn(
3646 struct xlog *log,
3647 struct xlog_in_core *iclog,
3648 xfs_lsn_t tail_lsn)
3649 {
3650 int blocks;
3651
3652 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3653 blocks =
3654 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3655 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3656 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3657 } else {
3658 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3659
3660 if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3661 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3662
3663 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3664 if (blocks < BTOBB(iclog->ic_offset) + 1)
3665 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3666 }
3667 } /* xlog_verify_tail_lsn */
3668
3669 /*
3670 * Perform a number of checks on the iclog before writing to disk.
3671 *
3672 * 1. Make sure the iclogs are still circular
3673 * 2. Make sure we have a good magic number
3674 * 3. Make sure we don't have magic numbers in the data
3675 * 4. Check fields of each log operation header for:
3676 * A. Valid client identifier
3677 * B. tid ptr value falls in valid ptr space (user space code)
3678 * C. Length in log record header is correct according to the
3679 * individual operation headers within record.
3680 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3681 * log, check the preceding blocks of the physical log to make sure all
3682 * the cycle numbers agree with the current cycle number.
3683 */
3684 STATIC void
3685 xlog_verify_iclog(
3686 struct xlog *log,
3687 struct xlog_in_core *iclog,
3688 int count,
3689 bool syncing)
3690 {
3691 xlog_op_header_t *ophead;
3692 xlog_in_core_t *icptr;
3693 xlog_in_core_2_t *xhdr;
3694 xfs_caddr_t ptr;
3695 xfs_caddr_t base_ptr;
3696 __psint_t field_offset;
3697 __uint8_t clientid;
3698 int len, i, j, k, op_len;
3699 int idx;
3700
3701 /* check validity of iclog pointers */
3702 spin_lock(&log->l_icloglock);
3703 icptr = log->l_iclog;
3704 for (i=0; i < log->l_iclog_bufs; i++) {
3705 if (icptr == NULL)
3706 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3707 icptr = icptr->ic_next;
3708 }
3709 if (icptr != log->l_iclog)
3710 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3711 spin_unlock(&log->l_icloglock);
3712
3713 /* check log magic numbers */
3714 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3715 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3716
3717 ptr = (xfs_caddr_t) &iclog->ic_header;
3718 for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count;
3719 ptr += BBSIZE) {
3720 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3721 xfs_emerg(log->l_mp, "%s: unexpected magic num",
3722 __func__);
3723 }
3724
3725 /* check fields */
3726 len = be32_to_cpu(iclog->ic_header.h_num_logops);
3727 ptr = iclog->ic_datap;
3728 base_ptr = ptr;
3729 ophead = (xlog_op_header_t *)ptr;
3730 xhdr = iclog->ic_data;
3731 for (i = 0; i < len; i++) {
3732 ophead = (xlog_op_header_t *)ptr;
3733
3734 /* clientid is only 1 byte */
3735 field_offset = (__psint_t)
3736 ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr);
3737 if (!syncing || (field_offset & 0x1ff)) {
3738 clientid = ophead->oh_clientid;
3739 } else {
3740 idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap);
3741 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3742 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3743 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3744 clientid = xlog_get_client_id(
3745 xhdr[j].hic_xheader.xh_cycle_data[k]);
3746 } else {
3747 clientid = xlog_get_client_id(
3748 iclog->ic_header.h_cycle_data[idx]);
3749 }
3750 }
3751 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3752 xfs_warn(log->l_mp,
3753 "%s: invalid clientid %d op 0x%p offset 0x%lx",
3754 __func__, clientid, ophead,
3755 (unsigned long)field_offset);
3756
3757 /* check length */
3758 field_offset = (__psint_t)
3759 ((xfs_caddr_t)&(ophead->oh_len) - base_ptr);
3760 if (!syncing || (field_offset & 0x1ff)) {
3761 op_len = be32_to_cpu(ophead->oh_len);
3762 } else {
3763 idx = BTOBBT((__psint_t)&ophead->oh_len -
3764 (__psint_t)iclog->ic_datap);
3765 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3766 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3767 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3768 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3769 } else {
3770 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3771 }
3772 }
3773 ptr += sizeof(xlog_op_header_t) + op_len;
3774 }
3775 } /* xlog_verify_iclog */
3776 #endif
3777
3778 /*
3779 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3780 */
3781 STATIC int
3782 xlog_state_ioerror(
3783 struct xlog *log)
3784 {
3785 xlog_in_core_t *iclog, *ic;
3786
3787 iclog = log->l_iclog;
3788 if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3789 /*
3790 * Mark all the incore logs IOERROR.
3791 * From now on, no log flushes will result.
3792 */
3793 ic = iclog;
3794 do {
3795 ic->ic_state = XLOG_STATE_IOERROR;
3796 ic = ic->ic_next;
3797 } while (ic != iclog);
3798 return 0;
3799 }
3800 /*
3801 * Return non-zero, if state transition has already happened.
3802 */
3803 return 1;
3804 }
3805
3806 /*
3807 * This is called from xfs_force_shutdown, when we're forcibly
3808 * shutting down the filesystem, typically because of an IO error.
3809 * Our main objectives here are to make sure that:
3810 * a. the filesystem gets marked 'SHUTDOWN' for all interested
3811 * parties to find out, 'atomically'.
3812 * b. those who're sleeping on log reservations, pinned objects and
3813 * other resources get woken up, and be told the bad news.
3814 * c. nothing new gets queued up after (a) and (b) are done.
3815 * d. if !logerror, flush the iclogs to disk, then seal them off
3816 * for business.
3817 *
3818 * Note: for delayed logging the !logerror case needs to flush the regions
3819 * held in memory out to the iclogs before flushing them to disk. This needs
3820 * to be done before the log is marked as shutdown, otherwise the flush to the
3821 * iclogs will fail.
3822 */
3823 int
3824 xfs_log_force_umount(
3825 struct xfs_mount *mp,
3826 int logerror)
3827 {
3828 struct xlog *log;
3829 int retval;
3830
3831 log = mp->m_log;
3832
3833 /*
3834 * If this happens during log recovery, don't worry about
3835 * locking; the log isn't open for business yet.
3836 */
3837 if (!log ||
3838 log->l_flags & XLOG_ACTIVE_RECOVERY) {
3839 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3840 if (mp->m_sb_bp)
3841 XFS_BUF_DONE(mp->m_sb_bp);
3842 return 0;
3843 }
3844
3845 /*
3846 * Somebody could've already done the hard work for us.
3847 * No need to get locks for this.
3848 */
3849 if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3850 ASSERT(XLOG_FORCED_SHUTDOWN(log));
3851 return 1;
3852 }
3853 retval = 0;
3854
3855 /*
3856 * Flush the in memory commit item list before marking the log as
3857 * being shut down. We need to do it in this order to ensure all the
3858 * completed transactions are flushed to disk with the xfs_log_force()
3859 * call below.
3860 */
3861 if (!logerror)
3862 xlog_cil_force(log);
3863
3864 /*
3865 * mark the filesystem and the as in a shutdown state and wake
3866 * everybody up to tell them the bad news.
3867 */
3868 spin_lock(&log->l_icloglock);
3869 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3870 if (mp->m_sb_bp)
3871 XFS_BUF_DONE(mp->m_sb_bp);
3872
3873 /*
3874 * This flag is sort of redundant because of the mount flag, but
3875 * it's good to maintain the separation between the log and the rest
3876 * of XFS.
3877 */
3878 log->l_flags |= XLOG_IO_ERROR;
3879
3880 /*
3881 * If we hit a log error, we want to mark all the iclogs IOERROR
3882 * while we're still holding the loglock.
3883 */
3884 if (logerror)
3885 retval = xlog_state_ioerror(log);
3886 spin_unlock(&log->l_icloglock);
3887
3888 /*
3889 * We don't want anybody waiting for log reservations after this. That
3890 * means we have to wake up everybody queued up on reserveq as well as
3891 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
3892 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3893 * action is protected by the grant locks.
3894 */
3895 xlog_grant_head_wake_all(&log->l_reserve_head);
3896 xlog_grant_head_wake_all(&log->l_write_head);
3897
3898 if (!(log->l_iclog->ic_state & XLOG_STATE_IOERROR)) {
3899 ASSERT(!logerror);
3900 /*
3901 * Force the incore logs to disk before shutting the
3902 * log down completely.
3903 */
3904 _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3905
3906 spin_lock(&log->l_icloglock);
3907 retval = xlog_state_ioerror(log);
3908 spin_unlock(&log->l_icloglock);
3909 }
3910 /*
3911 * Wake up everybody waiting on xfs_log_force.
3912 * Callback all log item committed functions as if the
3913 * log writes were completed.
3914 */
3915 xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
3916
3917 #ifdef XFSERRORDEBUG
3918 {
3919 xlog_in_core_t *iclog;
3920
3921 spin_lock(&log->l_icloglock);
3922 iclog = log->l_iclog;
3923 do {
3924 ASSERT(iclog->ic_callback == 0);
3925 iclog = iclog->ic_next;
3926 } while (iclog != log->l_iclog);
3927 spin_unlock(&log->l_icloglock);
3928 }
3929 #endif
3930 /* return non-zero if log IOERROR transition had already happened */
3931 return retval;
3932 }
3933
3934 STATIC int
3935 xlog_iclogs_empty(
3936 struct xlog *log)
3937 {
3938 xlog_in_core_t *iclog;
3939
3940 iclog = log->l_iclog;
3941 do {
3942 /* endianness does not matter here, zero is zero in
3943 * any language.
3944 */
3945 if (iclog->ic_header.h_num_logops)
3946 return 0;
3947 iclog = iclog->ic_next;
3948 } while (iclog != log->l_iclog);
3949 return 1;
3950 }
3951
This page took 0.117029 seconds and 6 git commands to generate.