xfs: debug mode log record crc error injection
[deliverable/linux.git] / fs / xfs / xfs_log.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_error.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_log.h"
29 #include "xfs_log_priv.h"
30 #include "xfs_log_recover.h"
31 #include "xfs_inode.h"
32 #include "xfs_trace.h"
33 #include "xfs_fsops.h"
34 #include "xfs_cksum.h"
35 #include "xfs_sysfs.h"
36 #include "xfs_sb.h"
37
38 kmem_zone_t *xfs_log_ticket_zone;
39
40 /* Local miscellaneous function prototypes */
41 STATIC int
42 xlog_commit_record(
43 struct xlog *log,
44 struct xlog_ticket *ticket,
45 struct xlog_in_core **iclog,
46 xfs_lsn_t *commitlsnp);
47
48 STATIC struct xlog *
49 xlog_alloc_log(
50 struct xfs_mount *mp,
51 struct xfs_buftarg *log_target,
52 xfs_daddr_t blk_offset,
53 int num_bblks);
54 STATIC int
55 xlog_space_left(
56 struct xlog *log,
57 atomic64_t *head);
58 STATIC int
59 xlog_sync(
60 struct xlog *log,
61 struct xlog_in_core *iclog);
62 STATIC void
63 xlog_dealloc_log(
64 struct xlog *log);
65
66 /* local state machine functions */
67 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
68 STATIC void
69 xlog_state_do_callback(
70 struct xlog *log,
71 int aborted,
72 struct xlog_in_core *iclog);
73 STATIC int
74 xlog_state_get_iclog_space(
75 struct xlog *log,
76 int len,
77 struct xlog_in_core **iclog,
78 struct xlog_ticket *ticket,
79 int *continued_write,
80 int *logoffsetp);
81 STATIC int
82 xlog_state_release_iclog(
83 struct xlog *log,
84 struct xlog_in_core *iclog);
85 STATIC void
86 xlog_state_switch_iclogs(
87 struct xlog *log,
88 struct xlog_in_core *iclog,
89 int eventual_size);
90 STATIC void
91 xlog_state_want_sync(
92 struct xlog *log,
93 struct xlog_in_core *iclog);
94
95 STATIC void
96 xlog_grant_push_ail(
97 struct xlog *log,
98 int need_bytes);
99 STATIC void
100 xlog_regrant_reserve_log_space(
101 struct xlog *log,
102 struct xlog_ticket *ticket);
103 STATIC void
104 xlog_ungrant_log_space(
105 struct xlog *log,
106 struct xlog_ticket *ticket);
107
108 #if defined(DEBUG)
109 STATIC void
110 xlog_verify_dest_ptr(
111 struct xlog *log,
112 void *ptr);
113 STATIC void
114 xlog_verify_grant_tail(
115 struct xlog *log);
116 STATIC void
117 xlog_verify_iclog(
118 struct xlog *log,
119 struct xlog_in_core *iclog,
120 int count,
121 bool syncing);
122 STATIC void
123 xlog_verify_tail_lsn(
124 struct xlog *log,
125 struct xlog_in_core *iclog,
126 xfs_lsn_t tail_lsn);
127 #else
128 #define xlog_verify_dest_ptr(a,b)
129 #define xlog_verify_grant_tail(a)
130 #define xlog_verify_iclog(a,b,c,d)
131 #define xlog_verify_tail_lsn(a,b,c)
132 #endif
133
134 STATIC int
135 xlog_iclogs_empty(
136 struct xlog *log);
137
138 static void
139 xlog_grant_sub_space(
140 struct xlog *log,
141 atomic64_t *head,
142 int bytes)
143 {
144 int64_t head_val = atomic64_read(head);
145 int64_t new, old;
146
147 do {
148 int cycle, space;
149
150 xlog_crack_grant_head_val(head_val, &cycle, &space);
151
152 space -= bytes;
153 if (space < 0) {
154 space += log->l_logsize;
155 cycle--;
156 }
157
158 old = head_val;
159 new = xlog_assign_grant_head_val(cycle, space);
160 head_val = atomic64_cmpxchg(head, old, new);
161 } while (head_val != old);
162 }
163
164 static void
165 xlog_grant_add_space(
166 struct xlog *log,
167 atomic64_t *head,
168 int bytes)
169 {
170 int64_t head_val = atomic64_read(head);
171 int64_t new, old;
172
173 do {
174 int tmp;
175 int cycle, space;
176
177 xlog_crack_grant_head_val(head_val, &cycle, &space);
178
179 tmp = log->l_logsize - space;
180 if (tmp > bytes)
181 space += bytes;
182 else {
183 space = bytes - tmp;
184 cycle++;
185 }
186
187 old = head_val;
188 new = xlog_assign_grant_head_val(cycle, space);
189 head_val = atomic64_cmpxchg(head, old, new);
190 } while (head_val != old);
191 }
192
193 STATIC void
194 xlog_grant_head_init(
195 struct xlog_grant_head *head)
196 {
197 xlog_assign_grant_head(&head->grant, 1, 0);
198 INIT_LIST_HEAD(&head->waiters);
199 spin_lock_init(&head->lock);
200 }
201
202 STATIC void
203 xlog_grant_head_wake_all(
204 struct xlog_grant_head *head)
205 {
206 struct xlog_ticket *tic;
207
208 spin_lock(&head->lock);
209 list_for_each_entry(tic, &head->waiters, t_queue)
210 wake_up_process(tic->t_task);
211 spin_unlock(&head->lock);
212 }
213
214 static inline int
215 xlog_ticket_reservation(
216 struct xlog *log,
217 struct xlog_grant_head *head,
218 struct xlog_ticket *tic)
219 {
220 if (head == &log->l_write_head) {
221 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
222 return tic->t_unit_res;
223 } else {
224 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
225 return tic->t_unit_res * tic->t_cnt;
226 else
227 return tic->t_unit_res;
228 }
229 }
230
231 STATIC bool
232 xlog_grant_head_wake(
233 struct xlog *log,
234 struct xlog_grant_head *head,
235 int *free_bytes)
236 {
237 struct xlog_ticket *tic;
238 int need_bytes;
239
240 list_for_each_entry(tic, &head->waiters, t_queue) {
241 need_bytes = xlog_ticket_reservation(log, head, tic);
242 if (*free_bytes < need_bytes)
243 return false;
244
245 *free_bytes -= need_bytes;
246 trace_xfs_log_grant_wake_up(log, tic);
247 wake_up_process(tic->t_task);
248 }
249
250 return true;
251 }
252
253 STATIC int
254 xlog_grant_head_wait(
255 struct xlog *log,
256 struct xlog_grant_head *head,
257 struct xlog_ticket *tic,
258 int need_bytes) __releases(&head->lock)
259 __acquires(&head->lock)
260 {
261 list_add_tail(&tic->t_queue, &head->waiters);
262
263 do {
264 if (XLOG_FORCED_SHUTDOWN(log))
265 goto shutdown;
266 xlog_grant_push_ail(log, need_bytes);
267
268 __set_current_state(TASK_UNINTERRUPTIBLE);
269 spin_unlock(&head->lock);
270
271 XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
272
273 trace_xfs_log_grant_sleep(log, tic);
274 schedule();
275 trace_xfs_log_grant_wake(log, tic);
276
277 spin_lock(&head->lock);
278 if (XLOG_FORCED_SHUTDOWN(log))
279 goto shutdown;
280 } while (xlog_space_left(log, &head->grant) < need_bytes);
281
282 list_del_init(&tic->t_queue);
283 return 0;
284 shutdown:
285 list_del_init(&tic->t_queue);
286 return -EIO;
287 }
288
289 /*
290 * Atomically get the log space required for a log ticket.
291 *
292 * Once a ticket gets put onto head->waiters, it will only return after the
293 * needed reservation is satisfied.
294 *
295 * This function is structured so that it has a lock free fast path. This is
296 * necessary because every new transaction reservation will come through this
297 * path. Hence any lock will be globally hot if we take it unconditionally on
298 * every pass.
299 *
300 * As tickets are only ever moved on and off head->waiters under head->lock, we
301 * only need to take that lock if we are going to add the ticket to the queue
302 * and sleep. We can avoid taking the lock if the ticket was never added to
303 * head->waiters because the t_queue list head will be empty and we hold the
304 * only reference to it so it can safely be checked unlocked.
305 */
306 STATIC int
307 xlog_grant_head_check(
308 struct xlog *log,
309 struct xlog_grant_head *head,
310 struct xlog_ticket *tic,
311 int *need_bytes)
312 {
313 int free_bytes;
314 int error = 0;
315
316 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
317
318 /*
319 * If there are other waiters on the queue then give them a chance at
320 * logspace before us. Wake up the first waiters, if we do not wake
321 * up all the waiters then go to sleep waiting for more free space,
322 * otherwise try to get some space for this transaction.
323 */
324 *need_bytes = xlog_ticket_reservation(log, head, tic);
325 free_bytes = xlog_space_left(log, &head->grant);
326 if (!list_empty_careful(&head->waiters)) {
327 spin_lock(&head->lock);
328 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
329 free_bytes < *need_bytes) {
330 error = xlog_grant_head_wait(log, head, tic,
331 *need_bytes);
332 }
333 spin_unlock(&head->lock);
334 } else if (free_bytes < *need_bytes) {
335 spin_lock(&head->lock);
336 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
337 spin_unlock(&head->lock);
338 }
339
340 return error;
341 }
342
343 static void
344 xlog_tic_reset_res(xlog_ticket_t *tic)
345 {
346 tic->t_res_num = 0;
347 tic->t_res_arr_sum = 0;
348 tic->t_res_num_ophdrs = 0;
349 }
350
351 static void
352 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
353 {
354 if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
355 /* add to overflow and start again */
356 tic->t_res_o_flow += tic->t_res_arr_sum;
357 tic->t_res_num = 0;
358 tic->t_res_arr_sum = 0;
359 }
360
361 tic->t_res_arr[tic->t_res_num].r_len = len;
362 tic->t_res_arr[tic->t_res_num].r_type = type;
363 tic->t_res_arr_sum += len;
364 tic->t_res_num++;
365 }
366
367 /*
368 * Replenish the byte reservation required by moving the grant write head.
369 */
370 int
371 xfs_log_regrant(
372 struct xfs_mount *mp,
373 struct xlog_ticket *tic)
374 {
375 struct xlog *log = mp->m_log;
376 int need_bytes;
377 int error = 0;
378
379 if (XLOG_FORCED_SHUTDOWN(log))
380 return -EIO;
381
382 XFS_STATS_INC(mp, xs_try_logspace);
383
384 /*
385 * This is a new transaction on the ticket, so we need to change the
386 * transaction ID so that the next transaction has a different TID in
387 * the log. Just add one to the existing tid so that we can see chains
388 * of rolling transactions in the log easily.
389 */
390 tic->t_tid++;
391
392 xlog_grant_push_ail(log, tic->t_unit_res);
393
394 tic->t_curr_res = tic->t_unit_res;
395 xlog_tic_reset_res(tic);
396
397 if (tic->t_cnt > 0)
398 return 0;
399
400 trace_xfs_log_regrant(log, tic);
401
402 error = xlog_grant_head_check(log, &log->l_write_head, tic,
403 &need_bytes);
404 if (error)
405 goto out_error;
406
407 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
408 trace_xfs_log_regrant_exit(log, tic);
409 xlog_verify_grant_tail(log);
410 return 0;
411
412 out_error:
413 /*
414 * If we are failing, make sure the ticket doesn't have any current
415 * reservations. We don't want to add this back when the ticket/
416 * transaction gets cancelled.
417 */
418 tic->t_curr_res = 0;
419 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
420 return error;
421 }
422
423 /*
424 * Reserve log space and return a ticket corresponding the reservation.
425 *
426 * Each reservation is going to reserve extra space for a log record header.
427 * When writes happen to the on-disk log, we don't subtract the length of the
428 * log record header from any reservation. By wasting space in each
429 * reservation, we prevent over allocation problems.
430 */
431 int
432 xfs_log_reserve(
433 struct xfs_mount *mp,
434 int unit_bytes,
435 int cnt,
436 struct xlog_ticket **ticp,
437 __uint8_t client,
438 bool permanent,
439 uint t_type)
440 {
441 struct xlog *log = mp->m_log;
442 struct xlog_ticket *tic;
443 int need_bytes;
444 int error = 0;
445
446 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
447
448 if (XLOG_FORCED_SHUTDOWN(log))
449 return -EIO;
450
451 XFS_STATS_INC(mp, xs_try_logspace);
452
453 ASSERT(*ticp == NULL);
454 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
455 KM_SLEEP | KM_MAYFAIL);
456 if (!tic)
457 return -ENOMEM;
458
459 tic->t_trans_type = t_type;
460 *ticp = tic;
461
462 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
463 : tic->t_unit_res);
464
465 trace_xfs_log_reserve(log, tic);
466
467 error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
468 &need_bytes);
469 if (error)
470 goto out_error;
471
472 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
473 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
474 trace_xfs_log_reserve_exit(log, tic);
475 xlog_verify_grant_tail(log);
476 return 0;
477
478 out_error:
479 /*
480 * If we are failing, make sure the ticket doesn't have any current
481 * reservations. We don't want to add this back when the ticket/
482 * transaction gets cancelled.
483 */
484 tic->t_curr_res = 0;
485 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
486 return error;
487 }
488
489
490 /*
491 * NOTES:
492 *
493 * 1. currblock field gets updated at startup and after in-core logs
494 * marked as with WANT_SYNC.
495 */
496
497 /*
498 * This routine is called when a user of a log manager ticket is done with
499 * the reservation. If the ticket was ever used, then a commit record for
500 * the associated transaction is written out as a log operation header with
501 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with
502 * a given ticket. If the ticket was one with a permanent reservation, then
503 * a few operations are done differently. Permanent reservation tickets by
504 * default don't release the reservation. They just commit the current
505 * transaction with the belief that the reservation is still needed. A flag
506 * must be passed in before permanent reservations are actually released.
507 * When these type of tickets are not released, they need to be set into
508 * the inited state again. By doing this, a start record will be written
509 * out when the next write occurs.
510 */
511 xfs_lsn_t
512 xfs_log_done(
513 struct xfs_mount *mp,
514 struct xlog_ticket *ticket,
515 struct xlog_in_core **iclog,
516 bool regrant)
517 {
518 struct xlog *log = mp->m_log;
519 xfs_lsn_t lsn = 0;
520
521 if (XLOG_FORCED_SHUTDOWN(log) ||
522 /*
523 * If nothing was ever written, don't write out commit record.
524 * If we get an error, just continue and give back the log ticket.
525 */
526 (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
527 (xlog_commit_record(log, ticket, iclog, &lsn)))) {
528 lsn = (xfs_lsn_t) -1;
529 regrant = false;
530 }
531
532
533 if (!regrant) {
534 trace_xfs_log_done_nonperm(log, ticket);
535
536 /*
537 * Release ticket if not permanent reservation or a specific
538 * request has been made to release a permanent reservation.
539 */
540 xlog_ungrant_log_space(log, ticket);
541 } else {
542 trace_xfs_log_done_perm(log, ticket);
543
544 xlog_regrant_reserve_log_space(log, ticket);
545 /* If this ticket was a permanent reservation and we aren't
546 * trying to release it, reset the inited flags; so next time
547 * we write, a start record will be written out.
548 */
549 ticket->t_flags |= XLOG_TIC_INITED;
550 }
551
552 xfs_log_ticket_put(ticket);
553 return lsn;
554 }
555
556 /*
557 * Attaches a new iclog I/O completion callback routine during
558 * transaction commit. If the log is in error state, a non-zero
559 * return code is handed back and the caller is responsible for
560 * executing the callback at an appropriate time.
561 */
562 int
563 xfs_log_notify(
564 struct xfs_mount *mp,
565 struct xlog_in_core *iclog,
566 xfs_log_callback_t *cb)
567 {
568 int abortflg;
569
570 spin_lock(&iclog->ic_callback_lock);
571 abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
572 if (!abortflg) {
573 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
574 (iclog->ic_state == XLOG_STATE_WANT_SYNC));
575 cb->cb_next = NULL;
576 *(iclog->ic_callback_tail) = cb;
577 iclog->ic_callback_tail = &(cb->cb_next);
578 }
579 spin_unlock(&iclog->ic_callback_lock);
580 return abortflg;
581 }
582
583 int
584 xfs_log_release_iclog(
585 struct xfs_mount *mp,
586 struct xlog_in_core *iclog)
587 {
588 if (xlog_state_release_iclog(mp->m_log, iclog)) {
589 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
590 return -EIO;
591 }
592
593 return 0;
594 }
595
596 /*
597 * Mount a log filesystem
598 *
599 * mp - ubiquitous xfs mount point structure
600 * log_target - buftarg of on-disk log device
601 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
602 * num_bblocks - Number of BBSIZE blocks in on-disk log
603 *
604 * Return error or zero.
605 */
606 int
607 xfs_log_mount(
608 xfs_mount_t *mp,
609 xfs_buftarg_t *log_target,
610 xfs_daddr_t blk_offset,
611 int num_bblks)
612 {
613 int error = 0;
614 int min_logfsbs;
615
616 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
617 xfs_notice(mp, "Mounting V%d Filesystem",
618 XFS_SB_VERSION_NUM(&mp->m_sb));
619 } else {
620 xfs_notice(mp,
621 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
622 XFS_SB_VERSION_NUM(&mp->m_sb));
623 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
624 }
625
626 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
627 if (IS_ERR(mp->m_log)) {
628 error = PTR_ERR(mp->m_log);
629 goto out;
630 }
631
632 /*
633 * Validate the given log space and drop a critical message via syslog
634 * if the log size is too small that would lead to some unexpected
635 * situations in transaction log space reservation stage.
636 *
637 * Note: we can't just reject the mount if the validation fails. This
638 * would mean that people would have to downgrade their kernel just to
639 * remedy the situation as there is no way to grow the log (short of
640 * black magic surgery with xfs_db).
641 *
642 * We can, however, reject mounts for CRC format filesystems, as the
643 * mkfs binary being used to make the filesystem should never create a
644 * filesystem with a log that is too small.
645 */
646 min_logfsbs = xfs_log_calc_minimum_size(mp);
647
648 if (mp->m_sb.sb_logblocks < min_logfsbs) {
649 xfs_warn(mp,
650 "Log size %d blocks too small, minimum size is %d blocks",
651 mp->m_sb.sb_logblocks, min_logfsbs);
652 error = -EINVAL;
653 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
654 xfs_warn(mp,
655 "Log size %d blocks too large, maximum size is %lld blocks",
656 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
657 error = -EINVAL;
658 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
659 xfs_warn(mp,
660 "log size %lld bytes too large, maximum size is %lld bytes",
661 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
662 XFS_MAX_LOG_BYTES);
663 error = -EINVAL;
664 }
665 if (error) {
666 if (xfs_sb_version_hascrc(&mp->m_sb)) {
667 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
668 ASSERT(0);
669 goto out_free_log;
670 }
671 xfs_crit(mp, "Log size out of supported range.");
672 xfs_crit(mp,
673 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
674 }
675
676 /*
677 * Initialize the AIL now we have a log.
678 */
679 error = xfs_trans_ail_init(mp);
680 if (error) {
681 xfs_warn(mp, "AIL initialisation failed: error %d", error);
682 goto out_free_log;
683 }
684 mp->m_log->l_ailp = mp->m_ail;
685
686 /*
687 * skip log recovery on a norecovery mount. pretend it all
688 * just worked.
689 */
690 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
691 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
692
693 if (readonly)
694 mp->m_flags &= ~XFS_MOUNT_RDONLY;
695
696 error = xlog_recover(mp->m_log);
697
698 if (readonly)
699 mp->m_flags |= XFS_MOUNT_RDONLY;
700 if (error) {
701 xfs_warn(mp, "log mount/recovery failed: error %d",
702 error);
703 xlog_recover_cancel(mp->m_log);
704 goto out_destroy_ail;
705 }
706 }
707
708 error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
709 "log");
710 if (error)
711 goto out_destroy_ail;
712
713 /* Normal transactions can now occur */
714 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
715
716 /*
717 * Now the log has been fully initialised and we know were our
718 * space grant counters are, we can initialise the permanent ticket
719 * needed for delayed logging to work.
720 */
721 xlog_cil_init_post_recovery(mp->m_log);
722
723 return 0;
724
725 out_destroy_ail:
726 xfs_trans_ail_destroy(mp);
727 out_free_log:
728 xlog_dealloc_log(mp->m_log);
729 out:
730 return error;
731 }
732
733 /*
734 * Finish the recovery of the file system. This is separate from the
735 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
736 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
737 * here.
738 *
739 * If we finish recovery successfully, start the background log work. If we are
740 * not doing recovery, then we have a RO filesystem and we don't need to start
741 * it.
742 */
743 int
744 xfs_log_mount_finish(
745 struct xfs_mount *mp)
746 {
747 int error = 0;
748
749 if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
750 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
751 return 0;
752 }
753
754 error = xlog_recover_finish(mp->m_log);
755 if (!error)
756 xfs_log_work_queue(mp);
757
758 return error;
759 }
760
761 /*
762 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
763 * the log.
764 */
765 int
766 xfs_log_mount_cancel(
767 struct xfs_mount *mp)
768 {
769 int error;
770
771 error = xlog_recover_cancel(mp->m_log);
772 xfs_log_unmount(mp);
773
774 return error;
775 }
776
777 /*
778 * Final log writes as part of unmount.
779 *
780 * Mark the filesystem clean as unmount happens. Note that during relocation
781 * this routine needs to be executed as part of source-bag while the
782 * deallocation must not be done until source-end.
783 */
784
785 /*
786 * Unmount record used to have a string "Unmount filesystem--" in the
787 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
788 * We just write the magic number now since that particular field isn't
789 * currently architecture converted and "Unmount" is a bit foo.
790 * As far as I know, there weren't any dependencies on the old behaviour.
791 */
792
793 int
794 xfs_log_unmount_write(xfs_mount_t *mp)
795 {
796 struct xlog *log = mp->m_log;
797 xlog_in_core_t *iclog;
798 #ifdef DEBUG
799 xlog_in_core_t *first_iclog;
800 #endif
801 xlog_ticket_t *tic = NULL;
802 xfs_lsn_t lsn;
803 int error;
804
805 /*
806 * Don't write out unmount record on read-only mounts.
807 * Or, if we are doing a forced umount (typically because of IO errors).
808 */
809 if (mp->m_flags & XFS_MOUNT_RDONLY)
810 return 0;
811
812 error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
813 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
814
815 #ifdef DEBUG
816 first_iclog = iclog = log->l_iclog;
817 do {
818 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
819 ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
820 ASSERT(iclog->ic_offset == 0);
821 }
822 iclog = iclog->ic_next;
823 } while (iclog != first_iclog);
824 #endif
825 if (! (XLOG_FORCED_SHUTDOWN(log))) {
826 error = xfs_log_reserve(mp, 600, 1, &tic,
827 XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
828 if (!error) {
829 /* the data section must be 32 bit size aligned */
830 struct {
831 __uint16_t magic;
832 __uint16_t pad1;
833 __uint32_t pad2; /* may as well make it 64 bits */
834 } magic = {
835 .magic = XLOG_UNMOUNT_TYPE,
836 };
837 struct xfs_log_iovec reg = {
838 .i_addr = &magic,
839 .i_len = sizeof(magic),
840 .i_type = XLOG_REG_TYPE_UNMOUNT,
841 };
842 struct xfs_log_vec vec = {
843 .lv_niovecs = 1,
844 .lv_iovecp = &reg,
845 };
846
847 /* remove inited flag, and account for space used */
848 tic->t_flags = 0;
849 tic->t_curr_res -= sizeof(magic);
850 error = xlog_write(log, &vec, tic, &lsn,
851 NULL, XLOG_UNMOUNT_TRANS);
852 /*
853 * At this point, we're umounting anyway,
854 * so there's no point in transitioning log state
855 * to IOERROR. Just continue...
856 */
857 }
858
859 if (error)
860 xfs_alert(mp, "%s: unmount record failed", __func__);
861
862
863 spin_lock(&log->l_icloglock);
864 iclog = log->l_iclog;
865 atomic_inc(&iclog->ic_refcnt);
866 xlog_state_want_sync(log, iclog);
867 spin_unlock(&log->l_icloglock);
868 error = xlog_state_release_iclog(log, iclog);
869
870 spin_lock(&log->l_icloglock);
871 if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
872 iclog->ic_state == XLOG_STATE_DIRTY)) {
873 if (!XLOG_FORCED_SHUTDOWN(log)) {
874 xlog_wait(&iclog->ic_force_wait,
875 &log->l_icloglock);
876 } else {
877 spin_unlock(&log->l_icloglock);
878 }
879 } else {
880 spin_unlock(&log->l_icloglock);
881 }
882 if (tic) {
883 trace_xfs_log_umount_write(log, tic);
884 xlog_ungrant_log_space(log, tic);
885 xfs_log_ticket_put(tic);
886 }
887 } else {
888 /*
889 * We're already in forced_shutdown mode, couldn't
890 * even attempt to write out the unmount transaction.
891 *
892 * Go through the motions of sync'ing and releasing
893 * the iclog, even though no I/O will actually happen,
894 * we need to wait for other log I/Os that may already
895 * be in progress. Do this as a separate section of
896 * code so we'll know if we ever get stuck here that
897 * we're in this odd situation of trying to unmount
898 * a file system that went into forced_shutdown as
899 * the result of an unmount..
900 */
901 spin_lock(&log->l_icloglock);
902 iclog = log->l_iclog;
903 atomic_inc(&iclog->ic_refcnt);
904
905 xlog_state_want_sync(log, iclog);
906 spin_unlock(&log->l_icloglock);
907 error = xlog_state_release_iclog(log, iclog);
908
909 spin_lock(&log->l_icloglock);
910
911 if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE
912 || iclog->ic_state == XLOG_STATE_DIRTY
913 || iclog->ic_state == XLOG_STATE_IOERROR) ) {
914
915 xlog_wait(&iclog->ic_force_wait,
916 &log->l_icloglock);
917 } else {
918 spin_unlock(&log->l_icloglock);
919 }
920 }
921
922 return error;
923 } /* xfs_log_unmount_write */
924
925 /*
926 * Empty the log for unmount/freeze.
927 *
928 * To do this, we first need to shut down the background log work so it is not
929 * trying to cover the log as we clean up. We then need to unpin all objects in
930 * the log so we can then flush them out. Once they have completed their IO and
931 * run the callbacks removing themselves from the AIL, we can write the unmount
932 * record.
933 */
934 void
935 xfs_log_quiesce(
936 struct xfs_mount *mp)
937 {
938 cancel_delayed_work_sync(&mp->m_log->l_work);
939 xfs_log_force(mp, XFS_LOG_SYNC);
940
941 /*
942 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
943 * will push it, xfs_wait_buftarg() will not wait for it. Further,
944 * xfs_buf_iowait() cannot be used because it was pushed with the
945 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
946 * the IO to complete.
947 */
948 xfs_ail_push_all_sync(mp->m_ail);
949 xfs_wait_buftarg(mp->m_ddev_targp);
950 xfs_buf_lock(mp->m_sb_bp);
951 xfs_buf_unlock(mp->m_sb_bp);
952
953 xfs_log_unmount_write(mp);
954 }
955
956 /*
957 * Shut down and release the AIL and Log.
958 *
959 * During unmount, we need to ensure we flush all the dirty metadata objects
960 * from the AIL so that the log is empty before we write the unmount record to
961 * the log. Once this is done, we can tear down the AIL and the log.
962 */
963 void
964 xfs_log_unmount(
965 struct xfs_mount *mp)
966 {
967 xfs_log_quiesce(mp);
968
969 xfs_trans_ail_destroy(mp);
970
971 xfs_sysfs_del(&mp->m_log->l_kobj);
972
973 xlog_dealloc_log(mp->m_log);
974 }
975
976 void
977 xfs_log_item_init(
978 struct xfs_mount *mp,
979 struct xfs_log_item *item,
980 int type,
981 const struct xfs_item_ops *ops)
982 {
983 item->li_mountp = mp;
984 item->li_ailp = mp->m_ail;
985 item->li_type = type;
986 item->li_ops = ops;
987 item->li_lv = NULL;
988
989 INIT_LIST_HEAD(&item->li_ail);
990 INIT_LIST_HEAD(&item->li_cil);
991 }
992
993 /*
994 * Wake up processes waiting for log space after we have moved the log tail.
995 */
996 void
997 xfs_log_space_wake(
998 struct xfs_mount *mp)
999 {
1000 struct xlog *log = mp->m_log;
1001 int free_bytes;
1002
1003 if (XLOG_FORCED_SHUTDOWN(log))
1004 return;
1005
1006 if (!list_empty_careful(&log->l_write_head.waiters)) {
1007 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1008
1009 spin_lock(&log->l_write_head.lock);
1010 free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1011 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1012 spin_unlock(&log->l_write_head.lock);
1013 }
1014
1015 if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1016 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1017
1018 spin_lock(&log->l_reserve_head.lock);
1019 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1020 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1021 spin_unlock(&log->l_reserve_head.lock);
1022 }
1023 }
1024
1025 /*
1026 * Determine if we have a transaction that has gone to disk that needs to be
1027 * covered. To begin the transition to the idle state firstly the log needs to
1028 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1029 * we start attempting to cover the log.
1030 *
1031 * Only if we are then in a state where covering is needed, the caller is
1032 * informed that dummy transactions are required to move the log into the idle
1033 * state.
1034 *
1035 * If there are any items in the AIl or CIL, then we do not want to attempt to
1036 * cover the log as we may be in a situation where there isn't log space
1037 * available to run a dummy transaction and this can lead to deadlocks when the
1038 * tail of the log is pinned by an item that is modified in the CIL. Hence
1039 * there's no point in running a dummy transaction at this point because we
1040 * can't start trying to idle the log until both the CIL and AIL are empty.
1041 */
1042 int
1043 xfs_log_need_covered(xfs_mount_t *mp)
1044 {
1045 struct xlog *log = mp->m_log;
1046 int needed = 0;
1047
1048 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1049 return 0;
1050
1051 if (!xlog_cil_empty(log))
1052 return 0;
1053
1054 spin_lock(&log->l_icloglock);
1055 switch (log->l_covered_state) {
1056 case XLOG_STATE_COVER_DONE:
1057 case XLOG_STATE_COVER_DONE2:
1058 case XLOG_STATE_COVER_IDLE:
1059 break;
1060 case XLOG_STATE_COVER_NEED:
1061 case XLOG_STATE_COVER_NEED2:
1062 if (xfs_ail_min_lsn(log->l_ailp))
1063 break;
1064 if (!xlog_iclogs_empty(log))
1065 break;
1066
1067 needed = 1;
1068 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1069 log->l_covered_state = XLOG_STATE_COVER_DONE;
1070 else
1071 log->l_covered_state = XLOG_STATE_COVER_DONE2;
1072 break;
1073 default:
1074 needed = 1;
1075 break;
1076 }
1077 spin_unlock(&log->l_icloglock);
1078 return needed;
1079 }
1080
1081 /*
1082 * We may be holding the log iclog lock upon entering this routine.
1083 */
1084 xfs_lsn_t
1085 xlog_assign_tail_lsn_locked(
1086 struct xfs_mount *mp)
1087 {
1088 struct xlog *log = mp->m_log;
1089 struct xfs_log_item *lip;
1090 xfs_lsn_t tail_lsn;
1091
1092 assert_spin_locked(&mp->m_ail->xa_lock);
1093
1094 /*
1095 * To make sure we always have a valid LSN for the log tail we keep
1096 * track of the last LSN which was committed in log->l_last_sync_lsn,
1097 * and use that when the AIL was empty.
1098 */
1099 lip = xfs_ail_min(mp->m_ail);
1100 if (lip)
1101 tail_lsn = lip->li_lsn;
1102 else
1103 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1104 trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1105 atomic64_set(&log->l_tail_lsn, tail_lsn);
1106 return tail_lsn;
1107 }
1108
1109 xfs_lsn_t
1110 xlog_assign_tail_lsn(
1111 struct xfs_mount *mp)
1112 {
1113 xfs_lsn_t tail_lsn;
1114
1115 spin_lock(&mp->m_ail->xa_lock);
1116 tail_lsn = xlog_assign_tail_lsn_locked(mp);
1117 spin_unlock(&mp->m_ail->xa_lock);
1118
1119 return tail_lsn;
1120 }
1121
1122 /*
1123 * Return the space in the log between the tail and the head. The head
1124 * is passed in the cycle/bytes formal parms. In the special case where
1125 * the reserve head has wrapped passed the tail, this calculation is no
1126 * longer valid. In this case, just return 0 which means there is no space
1127 * in the log. This works for all places where this function is called
1128 * with the reserve head. Of course, if the write head were to ever
1129 * wrap the tail, we should blow up. Rather than catch this case here,
1130 * we depend on other ASSERTions in other parts of the code. XXXmiken
1131 *
1132 * This code also handles the case where the reservation head is behind
1133 * the tail. The details of this case are described below, but the end
1134 * result is that we return the size of the log as the amount of space left.
1135 */
1136 STATIC int
1137 xlog_space_left(
1138 struct xlog *log,
1139 atomic64_t *head)
1140 {
1141 int free_bytes;
1142 int tail_bytes;
1143 int tail_cycle;
1144 int head_cycle;
1145 int head_bytes;
1146
1147 xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1148 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1149 tail_bytes = BBTOB(tail_bytes);
1150 if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1151 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1152 else if (tail_cycle + 1 < head_cycle)
1153 return 0;
1154 else if (tail_cycle < head_cycle) {
1155 ASSERT(tail_cycle == (head_cycle - 1));
1156 free_bytes = tail_bytes - head_bytes;
1157 } else {
1158 /*
1159 * The reservation head is behind the tail.
1160 * In this case we just want to return the size of the
1161 * log as the amount of space left.
1162 */
1163 xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1164 xfs_alert(log->l_mp,
1165 " tail_cycle = %d, tail_bytes = %d",
1166 tail_cycle, tail_bytes);
1167 xfs_alert(log->l_mp,
1168 " GH cycle = %d, GH bytes = %d",
1169 head_cycle, head_bytes);
1170 ASSERT(0);
1171 free_bytes = log->l_logsize;
1172 }
1173 return free_bytes;
1174 }
1175
1176
1177 /*
1178 * Log function which is called when an io completes.
1179 *
1180 * The log manager needs its own routine, in order to control what
1181 * happens with the buffer after the write completes.
1182 */
1183 void
1184 xlog_iodone(xfs_buf_t *bp)
1185 {
1186 struct xlog_in_core *iclog = bp->b_fspriv;
1187 struct xlog *l = iclog->ic_log;
1188 int aborted = 0;
1189
1190 /*
1191 * Race to shutdown the filesystem if we see an error or the iclog is in
1192 * IOABORT state. The IOABORT state is only set in DEBUG mode to inject
1193 * CRC errors into log recovery.
1194 */
1195 if (XFS_TEST_ERROR(bp->b_error, l->l_mp, XFS_ERRTAG_IODONE_IOERR,
1196 XFS_RANDOM_IODONE_IOERR) ||
1197 iclog->ic_state & XLOG_STATE_IOABORT) {
1198 if (iclog->ic_state & XLOG_STATE_IOABORT)
1199 iclog->ic_state &= ~XLOG_STATE_IOABORT;
1200
1201 xfs_buf_ioerror_alert(bp, __func__);
1202 xfs_buf_stale(bp);
1203 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1204 /*
1205 * This flag will be propagated to the trans-committed
1206 * callback routines to let them know that the log-commit
1207 * didn't succeed.
1208 */
1209 aborted = XFS_LI_ABORTED;
1210 } else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1211 aborted = XFS_LI_ABORTED;
1212 }
1213
1214 /* log I/O is always issued ASYNC */
1215 ASSERT(XFS_BUF_ISASYNC(bp));
1216 xlog_state_done_syncing(iclog, aborted);
1217
1218 /*
1219 * drop the buffer lock now that we are done. Nothing references
1220 * the buffer after this, so an unmount waiting on this lock can now
1221 * tear it down safely. As such, it is unsafe to reference the buffer
1222 * (bp) after the unlock as we could race with it being freed.
1223 */
1224 xfs_buf_unlock(bp);
1225 }
1226
1227 /*
1228 * Return size of each in-core log record buffer.
1229 *
1230 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1231 *
1232 * If the filesystem blocksize is too large, we may need to choose a
1233 * larger size since the directory code currently logs entire blocks.
1234 */
1235
1236 STATIC void
1237 xlog_get_iclog_buffer_size(
1238 struct xfs_mount *mp,
1239 struct xlog *log)
1240 {
1241 int size;
1242 int xhdrs;
1243
1244 if (mp->m_logbufs <= 0)
1245 log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1246 else
1247 log->l_iclog_bufs = mp->m_logbufs;
1248
1249 /*
1250 * Buffer size passed in from mount system call.
1251 */
1252 if (mp->m_logbsize > 0) {
1253 size = log->l_iclog_size = mp->m_logbsize;
1254 log->l_iclog_size_log = 0;
1255 while (size != 1) {
1256 log->l_iclog_size_log++;
1257 size >>= 1;
1258 }
1259
1260 if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1261 /* # headers = size / 32k
1262 * one header holds cycles from 32k of data
1263 */
1264
1265 xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1266 if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1267 xhdrs++;
1268 log->l_iclog_hsize = xhdrs << BBSHIFT;
1269 log->l_iclog_heads = xhdrs;
1270 } else {
1271 ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1272 log->l_iclog_hsize = BBSIZE;
1273 log->l_iclog_heads = 1;
1274 }
1275 goto done;
1276 }
1277
1278 /* All machines use 32kB buffers by default. */
1279 log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1280 log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1281
1282 /* the default log size is 16k or 32k which is one header sector */
1283 log->l_iclog_hsize = BBSIZE;
1284 log->l_iclog_heads = 1;
1285
1286 done:
1287 /* are we being asked to make the sizes selected above visible? */
1288 if (mp->m_logbufs == 0)
1289 mp->m_logbufs = log->l_iclog_bufs;
1290 if (mp->m_logbsize == 0)
1291 mp->m_logbsize = log->l_iclog_size;
1292 } /* xlog_get_iclog_buffer_size */
1293
1294
1295 void
1296 xfs_log_work_queue(
1297 struct xfs_mount *mp)
1298 {
1299 queue_delayed_work(mp->m_log_workqueue, &mp->m_log->l_work,
1300 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1301 }
1302
1303 /*
1304 * Every sync period we need to unpin all items in the AIL and push them to
1305 * disk. If there is nothing dirty, then we might need to cover the log to
1306 * indicate that the filesystem is idle.
1307 */
1308 void
1309 xfs_log_worker(
1310 struct work_struct *work)
1311 {
1312 struct xlog *log = container_of(to_delayed_work(work),
1313 struct xlog, l_work);
1314 struct xfs_mount *mp = log->l_mp;
1315
1316 /* dgc: errors ignored - not fatal and nowhere to report them */
1317 if (xfs_log_need_covered(mp)) {
1318 /*
1319 * Dump a transaction into the log that contains no real change.
1320 * This is needed to stamp the current tail LSN into the log
1321 * during the covering operation.
1322 *
1323 * We cannot use an inode here for this - that will push dirty
1324 * state back up into the VFS and then periodic inode flushing
1325 * will prevent log covering from making progress. Hence we
1326 * synchronously log the superblock instead to ensure the
1327 * superblock is immediately unpinned and can be written back.
1328 */
1329 xfs_sync_sb(mp, true);
1330 } else
1331 xfs_log_force(mp, 0);
1332
1333 /* start pushing all the metadata that is currently dirty */
1334 xfs_ail_push_all(mp->m_ail);
1335
1336 /* queue us up again */
1337 xfs_log_work_queue(mp);
1338 }
1339
1340 /*
1341 * This routine initializes some of the log structure for a given mount point.
1342 * Its primary purpose is to fill in enough, so recovery can occur. However,
1343 * some other stuff may be filled in too.
1344 */
1345 STATIC struct xlog *
1346 xlog_alloc_log(
1347 struct xfs_mount *mp,
1348 struct xfs_buftarg *log_target,
1349 xfs_daddr_t blk_offset,
1350 int num_bblks)
1351 {
1352 struct xlog *log;
1353 xlog_rec_header_t *head;
1354 xlog_in_core_t **iclogp;
1355 xlog_in_core_t *iclog, *prev_iclog=NULL;
1356 xfs_buf_t *bp;
1357 int i;
1358 int error = -ENOMEM;
1359 uint log2_size = 0;
1360
1361 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1362 if (!log) {
1363 xfs_warn(mp, "Log allocation failed: No memory!");
1364 goto out;
1365 }
1366
1367 log->l_mp = mp;
1368 log->l_targ = log_target;
1369 log->l_logsize = BBTOB(num_bblks);
1370 log->l_logBBstart = blk_offset;
1371 log->l_logBBsize = num_bblks;
1372 log->l_covered_state = XLOG_STATE_COVER_IDLE;
1373 log->l_flags |= XLOG_ACTIVE_RECOVERY;
1374 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1375
1376 log->l_prev_block = -1;
1377 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1378 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1379 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1380 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
1381
1382 xlog_grant_head_init(&log->l_reserve_head);
1383 xlog_grant_head_init(&log->l_write_head);
1384
1385 error = -EFSCORRUPTED;
1386 if (xfs_sb_version_hassector(&mp->m_sb)) {
1387 log2_size = mp->m_sb.sb_logsectlog;
1388 if (log2_size < BBSHIFT) {
1389 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1390 log2_size, BBSHIFT);
1391 goto out_free_log;
1392 }
1393
1394 log2_size -= BBSHIFT;
1395 if (log2_size > mp->m_sectbb_log) {
1396 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1397 log2_size, mp->m_sectbb_log);
1398 goto out_free_log;
1399 }
1400
1401 /* for larger sector sizes, must have v2 or external log */
1402 if (log2_size && log->l_logBBstart > 0 &&
1403 !xfs_sb_version_haslogv2(&mp->m_sb)) {
1404 xfs_warn(mp,
1405 "log sector size (0x%x) invalid for configuration.",
1406 log2_size);
1407 goto out_free_log;
1408 }
1409 }
1410 log->l_sectBBsize = 1 << log2_size;
1411
1412 xlog_get_iclog_buffer_size(mp, log);
1413
1414 /*
1415 * Use a NULL block for the extra log buffer used during splits so that
1416 * it will trigger errors if we ever try to do IO on it without first
1417 * having set it up properly.
1418 */
1419 error = -ENOMEM;
1420 bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL,
1421 BTOBB(log->l_iclog_size), 0);
1422 if (!bp)
1423 goto out_free_log;
1424
1425 /*
1426 * The iclogbuf buffer locks are held over IO but we are not going to do
1427 * IO yet. Hence unlock the buffer so that the log IO path can grab it
1428 * when appropriately.
1429 */
1430 ASSERT(xfs_buf_islocked(bp));
1431 xfs_buf_unlock(bp);
1432
1433 /* use high priority wq for log I/O completion */
1434 bp->b_ioend_wq = mp->m_log_workqueue;
1435 bp->b_iodone = xlog_iodone;
1436 log->l_xbuf = bp;
1437
1438 spin_lock_init(&log->l_icloglock);
1439 init_waitqueue_head(&log->l_flush_wait);
1440
1441 iclogp = &log->l_iclog;
1442 /*
1443 * The amount of memory to allocate for the iclog structure is
1444 * rather funky due to the way the structure is defined. It is
1445 * done this way so that we can use different sizes for machines
1446 * with different amounts of memory. See the definition of
1447 * xlog_in_core_t in xfs_log_priv.h for details.
1448 */
1449 ASSERT(log->l_iclog_size >= 4096);
1450 for (i=0; i < log->l_iclog_bufs; i++) {
1451 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1452 if (!*iclogp)
1453 goto out_free_iclog;
1454
1455 iclog = *iclogp;
1456 iclog->ic_prev = prev_iclog;
1457 prev_iclog = iclog;
1458
1459 bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1460 BTOBB(log->l_iclog_size), 0);
1461 if (!bp)
1462 goto out_free_iclog;
1463
1464 ASSERT(xfs_buf_islocked(bp));
1465 xfs_buf_unlock(bp);
1466
1467 /* use high priority wq for log I/O completion */
1468 bp->b_ioend_wq = mp->m_log_workqueue;
1469 bp->b_iodone = xlog_iodone;
1470 iclog->ic_bp = bp;
1471 iclog->ic_data = bp->b_addr;
1472 #ifdef DEBUG
1473 log->l_iclog_bak[i] = &iclog->ic_header;
1474 #endif
1475 head = &iclog->ic_header;
1476 memset(head, 0, sizeof(xlog_rec_header_t));
1477 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1478 head->h_version = cpu_to_be32(
1479 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1480 head->h_size = cpu_to_be32(log->l_iclog_size);
1481 /* new fields */
1482 head->h_fmt = cpu_to_be32(XLOG_FMT);
1483 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1484
1485 iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1486 iclog->ic_state = XLOG_STATE_ACTIVE;
1487 iclog->ic_log = log;
1488 atomic_set(&iclog->ic_refcnt, 0);
1489 spin_lock_init(&iclog->ic_callback_lock);
1490 iclog->ic_callback_tail = &(iclog->ic_callback);
1491 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1492
1493 init_waitqueue_head(&iclog->ic_force_wait);
1494 init_waitqueue_head(&iclog->ic_write_wait);
1495
1496 iclogp = &iclog->ic_next;
1497 }
1498 *iclogp = log->l_iclog; /* complete ring */
1499 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
1500
1501 error = xlog_cil_init(log);
1502 if (error)
1503 goto out_free_iclog;
1504 return log;
1505
1506 out_free_iclog:
1507 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1508 prev_iclog = iclog->ic_next;
1509 if (iclog->ic_bp)
1510 xfs_buf_free(iclog->ic_bp);
1511 kmem_free(iclog);
1512 }
1513 spinlock_destroy(&log->l_icloglock);
1514 xfs_buf_free(log->l_xbuf);
1515 out_free_log:
1516 kmem_free(log);
1517 out:
1518 return ERR_PTR(error);
1519 } /* xlog_alloc_log */
1520
1521
1522 /*
1523 * Write out the commit record of a transaction associated with the given
1524 * ticket. Return the lsn of the commit record.
1525 */
1526 STATIC int
1527 xlog_commit_record(
1528 struct xlog *log,
1529 struct xlog_ticket *ticket,
1530 struct xlog_in_core **iclog,
1531 xfs_lsn_t *commitlsnp)
1532 {
1533 struct xfs_mount *mp = log->l_mp;
1534 int error;
1535 struct xfs_log_iovec reg = {
1536 .i_addr = NULL,
1537 .i_len = 0,
1538 .i_type = XLOG_REG_TYPE_COMMIT,
1539 };
1540 struct xfs_log_vec vec = {
1541 .lv_niovecs = 1,
1542 .lv_iovecp = &reg,
1543 };
1544
1545 ASSERT_ALWAYS(iclog);
1546 error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1547 XLOG_COMMIT_TRANS);
1548 if (error)
1549 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1550 return error;
1551 }
1552
1553 /*
1554 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1555 * log space. This code pushes on the lsn which would supposedly free up
1556 * the 25% which we want to leave free. We may need to adopt a policy which
1557 * pushes on an lsn which is further along in the log once we reach the high
1558 * water mark. In this manner, we would be creating a low water mark.
1559 */
1560 STATIC void
1561 xlog_grant_push_ail(
1562 struct xlog *log,
1563 int need_bytes)
1564 {
1565 xfs_lsn_t threshold_lsn = 0;
1566 xfs_lsn_t last_sync_lsn;
1567 int free_blocks;
1568 int free_bytes;
1569 int threshold_block;
1570 int threshold_cycle;
1571 int free_threshold;
1572
1573 ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1574
1575 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1576 free_blocks = BTOBBT(free_bytes);
1577
1578 /*
1579 * Set the threshold for the minimum number of free blocks in the
1580 * log to the maximum of what the caller needs, one quarter of the
1581 * log, and 256 blocks.
1582 */
1583 free_threshold = BTOBB(need_bytes);
1584 free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1585 free_threshold = MAX(free_threshold, 256);
1586 if (free_blocks >= free_threshold)
1587 return;
1588
1589 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1590 &threshold_block);
1591 threshold_block += free_threshold;
1592 if (threshold_block >= log->l_logBBsize) {
1593 threshold_block -= log->l_logBBsize;
1594 threshold_cycle += 1;
1595 }
1596 threshold_lsn = xlog_assign_lsn(threshold_cycle,
1597 threshold_block);
1598 /*
1599 * Don't pass in an lsn greater than the lsn of the last
1600 * log record known to be on disk. Use a snapshot of the last sync lsn
1601 * so that it doesn't change between the compare and the set.
1602 */
1603 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1604 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1605 threshold_lsn = last_sync_lsn;
1606
1607 /*
1608 * Get the transaction layer to kick the dirty buffers out to
1609 * disk asynchronously. No point in trying to do this if
1610 * the filesystem is shutting down.
1611 */
1612 if (!XLOG_FORCED_SHUTDOWN(log))
1613 xfs_ail_push(log->l_ailp, threshold_lsn);
1614 }
1615
1616 /*
1617 * Stamp cycle number in every block
1618 */
1619 STATIC void
1620 xlog_pack_data(
1621 struct xlog *log,
1622 struct xlog_in_core *iclog,
1623 int roundoff)
1624 {
1625 int i, j, k;
1626 int size = iclog->ic_offset + roundoff;
1627 __be32 cycle_lsn;
1628 char *dp;
1629
1630 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1631
1632 dp = iclog->ic_datap;
1633 for (i = 0; i < BTOBB(size); i++) {
1634 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1635 break;
1636 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1637 *(__be32 *)dp = cycle_lsn;
1638 dp += BBSIZE;
1639 }
1640
1641 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1642 xlog_in_core_2_t *xhdr = iclog->ic_data;
1643
1644 for ( ; i < BTOBB(size); i++) {
1645 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1646 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1647 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1648 *(__be32 *)dp = cycle_lsn;
1649 dp += BBSIZE;
1650 }
1651
1652 for (i = 1; i < log->l_iclog_heads; i++)
1653 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1654 }
1655 }
1656
1657 /*
1658 * Calculate the checksum for a log buffer.
1659 *
1660 * This is a little more complicated than it should be because the various
1661 * headers and the actual data are non-contiguous.
1662 */
1663 __le32
1664 xlog_cksum(
1665 struct xlog *log,
1666 struct xlog_rec_header *rhead,
1667 char *dp,
1668 int size)
1669 {
1670 __uint32_t crc;
1671
1672 /* first generate the crc for the record header ... */
1673 crc = xfs_start_cksum((char *)rhead,
1674 sizeof(struct xlog_rec_header),
1675 offsetof(struct xlog_rec_header, h_crc));
1676
1677 /* ... then for additional cycle data for v2 logs ... */
1678 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1679 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1680 int i;
1681 int xheads;
1682
1683 xheads = size / XLOG_HEADER_CYCLE_SIZE;
1684 if (size % XLOG_HEADER_CYCLE_SIZE)
1685 xheads++;
1686
1687 for (i = 1; i < xheads; i++) {
1688 crc = crc32c(crc, &xhdr[i].hic_xheader,
1689 sizeof(struct xlog_rec_ext_header));
1690 }
1691 }
1692
1693 /* ... and finally for the payload */
1694 crc = crc32c(crc, dp, size);
1695
1696 return xfs_end_cksum(crc);
1697 }
1698
1699 /*
1700 * The bdstrat callback function for log bufs. This gives us a central
1701 * place to trap bufs in case we get hit by a log I/O error and need to
1702 * shutdown. Actually, in practice, even when we didn't get a log error,
1703 * we transition the iclogs to IOERROR state *after* flushing all existing
1704 * iclogs to disk. This is because we don't want anymore new transactions to be
1705 * started or completed afterwards.
1706 *
1707 * We lock the iclogbufs here so that we can serialise against IO completion
1708 * during unmount. We might be processing a shutdown triggered during unmount,
1709 * and that can occur asynchronously to the unmount thread, and hence we need to
1710 * ensure that completes before tearing down the iclogbufs. Hence we need to
1711 * hold the buffer lock across the log IO to acheive that.
1712 */
1713 STATIC int
1714 xlog_bdstrat(
1715 struct xfs_buf *bp)
1716 {
1717 struct xlog_in_core *iclog = bp->b_fspriv;
1718
1719 xfs_buf_lock(bp);
1720 if (iclog->ic_state & XLOG_STATE_IOERROR) {
1721 xfs_buf_ioerror(bp, -EIO);
1722 xfs_buf_stale(bp);
1723 xfs_buf_ioend(bp);
1724 /*
1725 * It would seem logical to return EIO here, but we rely on
1726 * the log state machine to propagate I/O errors instead of
1727 * doing it here. Similarly, IO completion will unlock the
1728 * buffer, so we don't do it here.
1729 */
1730 return 0;
1731 }
1732
1733 xfs_buf_submit(bp);
1734 return 0;
1735 }
1736
1737 /*
1738 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1739 * fashion. Previously, we should have moved the current iclog
1740 * ptr in the log to point to the next available iclog. This allows further
1741 * write to continue while this code syncs out an iclog ready to go.
1742 * Before an in-core log can be written out, the data section must be scanned
1743 * to save away the 1st word of each BBSIZE block into the header. We replace
1744 * it with the current cycle count. Each BBSIZE block is tagged with the
1745 * cycle count because there in an implicit assumption that drives will
1746 * guarantee that entire 512 byte blocks get written at once. In other words,
1747 * we can't have part of a 512 byte block written and part not written. By
1748 * tagging each block, we will know which blocks are valid when recovering
1749 * after an unclean shutdown.
1750 *
1751 * This routine is single threaded on the iclog. No other thread can be in
1752 * this routine with the same iclog. Changing contents of iclog can there-
1753 * fore be done without grabbing the state machine lock. Updating the global
1754 * log will require grabbing the lock though.
1755 *
1756 * The entire log manager uses a logical block numbering scheme. Only
1757 * log_sync (and then only bwrite()) know about the fact that the log may
1758 * not start with block zero on a given device. The log block start offset
1759 * is added immediately before calling bwrite().
1760 */
1761
1762 STATIC int
1763 xlog_sync(
1764 struct xlog *log,
1765 struct xlog_in_core *iclog)
1766 {
1767 xfs_buf_t *bp;
1768 int i;
1769 uint count; /* byte count of bwrite */
1770 uint count_init; /* initial count before roundup */
1771 int roundoff; /* roundoff to BB or stripe */
1772 int split = 0; /* split write into two regions */
1773 int error;
1774 int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1775 int size;
1776
1777 XFS_STATS_INC(log->l_mp, xs_log_writes);
1778 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1779
1780 /* Add for LR header */
1781 count_init = log->l_iclog_hsize + iclog->ic_offset;
1782
1783 /* Round out the log write size */
1784 if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1785 /* we have a v2 stripe unit to use */
1786 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1787 } else {
1788 count = BBTOB(BTOBB(count_init));
1789 }
1790 roundoff = count - count_init;
1791 ASSERT(roundoff >= 0);
1792 ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1793 roundoff < log->l_mp->m_sb.sb_logsunit)
1794 ||
1795 (log->l_mp->m_sb.sb_logsunit <= 1 &&
1796 roundoff < BBTOB(1)));
1797
1798 /* move grant heads by roundoff in sync */
1799 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1800 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1801
1802 /* put cycle number in every block */
1803 xlog_pack_data(log, iclog, roundoff);
1804
1805 /* real byte length */
1806 size = iclog->ic_offset;
1807 if (v2)
1808 size += roundoff;
1809 iclog->ic_header.h_len = cpu_to_be32(size);
1810
1811 bp = iclog->ic_bp;
1812 XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1813
1814 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1815
1816 /* Do we need to split this write into 2 parts? */
1817 if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1818 char *dptr;
1819
1820 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1821 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1822 iclog->ic_bwritecnt = 2;
1823
1824 /*
1825 * Bump the cycle numbers at the start of each block in the
1826 * part of the iclog that ends up in the buffer that gets
1827 * written to the start of the log.
1828 *
1829 * Watch out for the header magic number case, though.
1830 */
1831 dptr = (char *)&iclog->ic_header + count;
1832 for (i = 0; i < split; i += BBSIZE) {
1833 __uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1834 if (++cycle == XLOG_HEADER_MAGIC_NUM)
1835 cycle++;
1836 *(__be32 *)dptr = cpu_to_be32(cycle);
1837
1838 dptr += BBSIZE;
1839 }
1840 } else {
1841 iclog->ic_bwritecnt = 1;
1842 }
1843
1844 /* calculcate the checksum */
1845 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1846 iclog->ic_datap, size);
1847 #ifdef DEBUG
1848 /*
1849 * Intentionally corrupt the log record CRC based on the error injection
1850 * frequency, if defined. This facilitates testing log recovery in the
1851 * event of torn writes. Hence, set the IOABORT state to abort the log
1852 * write on I/O completion and shutdown the fs. The subsequent mount
1853 * detects the bad CRC and attempts to recover.
1854 */
1855 if (log->l_badcrc_factor &&
1856 (prandom_u32() % log->l_badcrc_factor == 0)) {
1857 iclog->ic_header.h_crc &= 0xAAAAAAAA;
1858 iclog->ic_state |= XLOG_STATE_IOABORT;
1859 xfs_warn(log->l_mp,
1860 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1861 be64_to_cpu(iclog->ic_header.h_lsn));
1862 }
1863 #endif
1864
1865 bp->b_io_length = BTOBB(count);
1866 bp->b_fspriv = iclog;
1867 XFS_BUF_ZEROFLAGS(bp);
1868 XFS_BUF_ASYNC(bp);
1869 bp->b_flags |= XBF_SYNCIO;
1870
1871 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1872 bp->b_flags |= XBF_FUA;
1873
1874 /*
1875 * Flush the data device before flushing the log to make
1876 * sure all meta data written back from the AIL actually made
1877 * it to disk before stamping the new log tail LSN into the
1878 * log buffer. For an external log we need to issue the
1879 * flush explicitly, and unfortunately synchronously here;
1880 * for an internal log we can simply use the block layer
1881 * state machine for preflushes.
1882 */
1883 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1884 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1885 else
1886 bp->b_flags |= XBF_FLUSH;
1887 }
1888
1889 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1890 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1891
1892 xlog_verify_iclog(log, iclog, count, true);
1893
1894 /* account for log which doesn't start at block #0 */
1895 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1896 /*
1897 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1898 * is shutting down.
1899 */
1900 XFS_BUF_WRITE(bp);
1901
1902 error = xlog_bdstrat(bp);
1903 if (error) {
1904 xfs_buf_ioerror_alert(bp, "xlog_sync");
1905 return error;
1906 }
1907 if (split) {
1908 bp = iclog->ic_log->l_xbuf;
1909 XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */
1910 xfs_buf_associate_memory(bp,
1911 (char *)&iclog->ic_header + count, split);
1912 bp->b_fspriv = iclog;
1913 XFS_BUF_ZEROFLAGS(bp);
1914 XFS_BUF_ASYNC(bp);
1915 bp->b_flags |= XBF_SYNCIO;
1916 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1917 bp->b_flags |= XBF_FUA;
1918
1919 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1920 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1921
1922 /* account for internal log which doesn't start at block #0 */
1923 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1924 XFS_BUF_WRITE(bp);
1925 error = xlog_bdstrat(bp);
1926 if (error) {
1927 xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1928 return error;
1929 }
1930 }
1931 return 0;
1932 } /* xlog_sync */
1933
1934 /*
1935 * Deallocate a log structure
1936 */
1937 STATIC void
1938 xlog_dealloc_log(
1939 struct xlog *log)
1940 {
1941 xlog_in_core_t *iclog, *next_iclog;
1942 int i;
1943
1944 xlog_cil_destroy(log);
1945
1946 /*
1947 * Cycle all the iclogbuf locks to make sure all log IO completion
1948 * is done before we tear down these buffers.
1949 */
1950 iclog = log->l_iclog;
1951 for (i = 0; i < log->l_iclog_bufs; i++) {
1952 xfs_buf_lock(iclog->ic_bp);
1953 xfs_buf_unlock(iclog->ic_bp);
1954 iclog = iclog->ic_next;
1955 }
1956
1957 /*
1958 * Always need to ensure that the extra buffer does not point to memory
1959 * owned by another log buffer before we free it. Also, cycle the lock
1960 * first to ensure we've completed IO on it.
1961 */
1962 xfs_buf_lock(log->l_xbuf);
1963 xfs_buf_unlock(log->l_xbuf);
1964 xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1965 xfs_buf_free(log->l_xbuf);
1966
1967 iclog = log->l_iclog;
1968 for (i = 0; i < log->l_iclog_bufs; i++) {
1969 xfs_buf_free(iclog->ic_bp);
1970 next_iclog = iclog->ic_next;
1971 kmem_free(iclog);
1972 iclog = next_iclog;
1973 }
1974 spinlock_destroy(&log->l_icloglock);
1975
1976 log->l_mp->m_log = NULL;
1977 kmem_free(log);
1978 } /* xlog_dealloc_log */
1979
1980 /*
1981 * Update counters atomically now that memcpy is done.
1982 */
1983 /* ARGSUSED */
1984 static inline void
1985 xlog_state_finish_copy(
1986 struct xlog *log,
1987 struct xlog_in_core *iclog,
1988 int record_cnt,
1989 int copy_bytes)
1990 {
1991 spin_lock(&log->l_icloglock);
1992
1993 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1994 iclog->ic_offset += copy_bytes;
1995
1996 spin_unlock(&log->l_icloglock);
1997 } /* xlog_state_finish_copy */
1998
1999
2000
2001
2002 /*
2003 * print out info relating to regions written which consume
2004 * the reservation
2005 */
2006 void
2007 xlog_print_tic_res(
2008 struct xfs_mount *mp,
2009 struct xlog_ticket *ticket)
2010 {
2011 uint i;
2012 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2013
2014 /* match with XLOG_REG_TYPE_* in xfs_log.h */
2015 static char *res_type_str[XLOG_REG_TYPE_MAX] = {
2016 "bformat",
2017 "bchunk",
2018 "efi_format",
2019 "efd_format",
2020 "iformat",
2021 "icore",
2022 "iext",
2023 "ibroot",
2024 "ilocal",
2025 "iattr_ext",
2026 "iattr_broot",
2027 "iattr_local",
2028 "qformat",
2029 "dquot",
2030 "quotaoff",
2031 "LR header",
2032 "unmount",
2033 "commit",
2034 "trans header"
2035 };
2036 static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
2037 "SETATTR_NOT_SIZE",
2038 "SETATTR_SIZE",
2039 "INACTIVE",
2040 "CREATE",
2041 "CREATE_TRUNC",
2042 "TRUNCATE_FILE",
2043 "REMOVE",
2044 "LINK",
2045 "RENAME",
2046 "MKDIR",
2047 "RMDIR",
2048 "SYMLINK",
2049 "SET_DMATTRS",
2050 "GROWFS",
2051 "STRAT_WRITE",
2052 "DIOSTRAT",
2053 "WRITE_SYNC",
2054 "WRITEID",
2055 "ADDAFORK",
2056 "ATTRINVAL",
2057 "ATRUNCATE",
2058 "ATTR_SET",
2059 "ATTR_RM",
2060 "ATTR_FLAG",
2061 "CLEAR_AGI_BUCKET",
2062 "QM_SBCHANGE",
2063 "DUMMY1",
2064 "DUMMY2",
2065 "QM_QUOTAOFF",
2066 "QM_DQALLOC",
2067 "QM_SETQLIM",
2068 "QM_DQCLUSTER",
2069 "QM_QINOCREATE",
2070 "QM_QUOTAOFF_END",
2071 "SB_UNIT",
2072 "FSYNC_TS",
2073 "GROWFSRT_ALLOC",
2074 "GROWFSRT_ZERO",
2075 "GROWFSRT_FREE",
2076 "SWAPEXT"
2077 };
2078
2079 xfs_warn(mp, "xlog_write: reservation summary:");
2080 xfs_warn(mp, " trans type = %s (%u)",
2081 ((ticket->t_trans_type <= 0 ||
2082 ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
2083 "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
2084 ticket->t_trans_type);
2085 xfs_warn(mp, " unit res = %d bytes",
2086 ticket->t_unit_res);
2087 xfs_warn(mp, " current res = %d bytes",
2088 ticket->t_curr_res);
2089 xfs_warn(mp, " total reg = %u bytes (o/flow = %u bytes)",
2090 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2091 xfs_warn(mp, " ophdrs = %u (ophdr space = %u bytes)",
2092 ticket->t_res_num_ophdrs, ophdr_spc);
2093 xfs_warn(mp, " ophdr + reg = %u bytes",
2094 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2095 xfs_warn(mp, " num regions = %u",
2096 ticket->t_res_num);
2097
2098 for (i = 0; i < ticket->t_res_num; i++) {
2099 uint r_type = ticket->t_res_arr[i].r_type;
2100 xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2101 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2102 "bad-rtype" : res_type_str[r_type-1]),
2103 ticket->t_res_arr[i].r_len);
2104 }
2105
2106 xfs_alert_tag(mp, XFS_PTAG_LOGRES,
2107 "xlog_write: reservation ran out. Need to up reservation");
2108 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
2109 }
2110
2111 /*
2112 * Calculate the potential space needed by the log vector. Each region gets
2113 * its own xlog_op_header_t and may need to be double word aligned.
2114 */
2115 static int
2116 xlog_write_calc_vec_length(
2117 struct xlog_ticket *ticket,
2118 struct xfs_log_vec *log_vector)
2119 {
2120 struct xfs_log_vec *lv;
2121 int headers = 0;
2122 int len = 0;
2123 int i;
2124
2125 /* acct for start rec of xact */
2126 if (ticket->t_flags & XLOG_TIC_INITED)
2127 headers++;
2128
2129 for (lv = log_vector; lv; lv = lv->lv_next) {
2130 /* we don't write ordered log vectors */
2131 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2132 continue;
2133
2134 headers += lv->lv_niovecs;
2135
2136 for (i = 0; i < lv->lv_niovecs; i++) {
2137 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i];
2138
2139 len += vecp->i_len;
2140 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2141 }
2142 }
2143
2144 ticket->t_res_num_ophdrs += headers;
2145 len += headers * sizeof(struct xlog_op_header);
2146
2147 return len;
2148 }
2149
2150 /*
2151 * If first write for transaction, insert start record We can't be trying to
2152 * commit if we are inited. We can't have any "partial_copy" if we are inited.
2153 */
2154 static int
2155 xlog_write_start_rec(
2156 struct xlog_op_header *ophdr,
2157 struct xlog_ticket *ticket)
2158 {
2159 if (!(ticket->t_flags & XLOG_TIC_INITED))
2160 return 0;
2161
2162 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2163 ophdr->oh_clientid = ticket->t_clientid;
2164 ophdr->oh_len = 0;
2165 ophdr->oh_flags = XLOG_START_TRANS;
2166 ophdr->oh_res2 = 0;
2167
2168 ticket->t_flags &= ~XLOG_TIC_INITED;
2169
2170 return sizeof(struct xlog_op_header);
2171 }
2172
2173 static xlog_op_header_t *
2174 xlog_write_setup_ophdr(
2175 struct xlog *log,
2176 struct xlog_op_header *ophdr,
2177 struct xlog_ticket *ticket,
2178 uint flags)
2179 {
2180 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2181 ophdr->oh_clientid = ticket->t_clientid;
2182 ophdr->oh_res2 = 0;
2183
2184 /* are we copying a commit or unmount record? */
2185 ophdr->oh_flags = flags;
2186
2187 /*
2188 * We've seen logs corrupted with bad transaction client ids. This
2189 * makes sure that XFS doesn't generate them on. Turn this into an EIO
2190 * and shut down the filesystem.
2191 */
2192 switch (ophdr->oh_clientid) {
2193 case XFS_TRANSACTION:
2194 case XFS_VOLUME:
2195 case XFS_LOG:
2196 break;
2197 default:
2198 xfs_warn(log->l_mp,
2199 "Bad XFS transaction clientid 0x%x in ticket 0x%p",
2200 ophdr->oh_clientid, ticket);
2201 return NULL;
2202 }
2203
2204 return ophdr;
2205 }
2206
2207 /*
2208 * Set up the parameters of the region copy into the log. This has
2209 * to handle region write split across multiple log buffers - this
2210 * state is kept external to this function so that this code can
2211 * be written in an obvious, self documenting manner.
2212 */
2213 static int
2214 xlog_write_setup_copy(
2215 struct xlog_ticket *ticket,
2216 struct xlog_op_header *ophdr,
2217 int space_available,
2218 int space_required,
2219 int *copy_off,
2220 int *copy_len,
2221 int *last_was_partial_copy,
2222 int *bytes_consumed)
2223 {
2224 int still_to_copy;
2225
2226 still_to_copy = space_required - *bytes_consumed;
2227 *copy_off = *bytes_consumed;
2228
2229 if (still_to_copy <= space_available) {
2230 /* write of region completes here */
2231 *copy_len = still_to_copy;
2232 ophdr->oh_len = cpu_to_be32(*copy_len);
2233 if (*last_was_partial_copy)
2234 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2235 *last_was_partial_copy = 0;
2236 *bytes_consumed = 0;
2237 return 0;
2238 }
2239
2240 /* partial write of region, needs extra log op header reservation */
2241 *copy_len = space_available;
2242 ophdr->oh_len = cpu_to_be32(*copy_len);
2243 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2244 if (*last_was_partial_copy)
2245 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2246 *bytes_consumed += *copy_len;
2247 (*last_was_partial_copy)++;
2248
2249 /* account for new log op header */
2250 ticket->t_curr_res -= sizeof(struct xlog_op_header);
2251 ticket->t_res_num_ophdrs++;
2252
2253 return sizeof(struct xlog_op_header);
2254 }
2255
2256 static int
2257 xlog_write_copy_finish(
2258 struct xlog *log,
2259 struct xlog_in_core *iclog,
2260 uint flags,
2261 int *record_cnt,
2262 int *data_cnt,
2263 int *partial_copy,
2264 int *partial_copy_len,
2265 int log_offset,
2266 struct xlog_in_core **commit_iclog)
2267 {
2268 if (*partial_copy) {
2269 /*
2270 * This iclog has already been marked WANT_SYNC by
2271 * xlog_state_get_iclog_space.
2272 */
2273 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2274 *record_cnt = 0;
2275 *data_cnt = 0;
2276 return xlog_state_release_iclog(log, iclog);
2277 }
2278
2279 *partial_copy = 0;
2280 *partial_copy_len = 0;
2281
2282 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2283 /* no more space in this iclog - push it. */
2284 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2285 *record_cnt = 0;
2286 *data_cnt = 0;
2287
2288 spin_lock(&log->l_icloglock);
2289 xlog_state_want_sync(log, iclog);
2290 spin_unlock(&log->l_icloglock);
2291
2292 if (!commit_iclog)
2293 return xlog_state_release_iclog(log, iclog);
2294 ASSERT(flags & XLOG_COMMIT_TRANS);
2295 *commit_iclog = iclog;
2296 }
2297
2298 return 0;
2299 }
2300
2301 /*
2302 * Write some region out to in-core log
2303 *
2304 * This will be called when writing externally provided regions or when
2305 * writing out a commit record for a given transaction.
2306 *
2307 * General algorithm:
2308 * 1. Find total length of this write. This may include adding to the
2309 * lengths passed in.
2310 * 2. Check whether we violate the tickets reservation.
2311 * 3. While writing to this iclog
2312 * A. Reserve as much space in this iclog as can get
2313 * B. If this is first write, save away start lsn
2314 * C. While writing this region:
2315 * 1. If first write of transaction, write start record
2316 * 2. Write log operation header (header per region)
2317 * 3. Find out if we can fit entire region into this iclog
2318 * 4. Potentially, verify destination memcpy ptr
2319 * 5. Memcpy (partial) region
2320 * 6. If partial copy, release iclog; otherwise, continue
2321 * copying more regions into current iclog
2322 * 4. Mark want sync bit (in simulation mode)
2323 * 5. Release iclog for potential flush to on-disk log.
2324 *
2325 * ERRORS:
2326 * 1. Panic if reservation is overrun. This should never happen since
2327 * reservation amounts are generated internal to the filesystem.
2328 * NOTES:
2329 * 1. Tickets are single threaded data structures.
2330 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2331 * syncing routine. When a single log_write region needs to span
2332 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2333 * on all log operation writes which don't contain the end of the
2334 * region. The XLOG_END_TRANS bit is used for the in-core log
2335 * operation which contains the end of the continued log_write region.
2336 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2337 * we don't really know exactly how much space will be used. As a result,
2338 * we don't update ic_offset until the end when we know exactly how many
2339 * bytes have been written out.
2340 */
2341 int
2342 xlog_write(
2343 struct xlog *log,
2344 struct xfs_log_vec *log_vector,
2345 struct xlog_ticket *ticket,
2346 xfs_lsn_t *start_lsn,
2347 struct xlog_in_core **commit_iclog,
2348 uint flags)
2349 {
2350 struct xlog_in_core *iclog = NULL;
2351 struct xfs_log_iovec *vecp;
2352 struct xfs_log_vec *lv;
2353 int len;
2354 int index;
2355 int partial_copy = 0;
2356 int partial_copy_len = 0;
2357 int contwr = 0;
2358 int record_cnt = 0;
2359 int data_cnt = 0;
2360 int error;
2361
2362 *start_lsn = 0;
2363
2364 len = xlog_write_calc_vec_length(ticket, log_vector);
2365
2366 /*
2367 * Region headers and bytes are already accounted for.
2368 * We only need to take into account start records and
2369 * split regions in this function.
2370 */
2371 if (ticket->t_flags & XLOG_TIC_INITED)
2372 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2373
2374 /*
2375 * Commit record headers need to be accounted for. These
2376 * come in as separate writes so are easy to detect.
2377 */
2378 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2379 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2380
2381 if (ticket->t_curr_res < 0)
2382 xlog_print_tic_res(log->l_mp, ticket);
2383
2384 index = 0;
2385 lv = log_vector;
2386 vecp = lv->lv_iovecp;
2387 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2388 void *ptr;
2389 int log_offset;
2390
2391 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2392 &contwr, &log_offset);
2393 if (error)
2394 return error;
2395
2396 ASSERT(log_offset <= iclog->ic_size - 1);
2397 ptr = iclog->ic_datap + log_offset;
2398
2399 /* start_lsn is the first lsn written to. That's all we need. */
2400 if (!*start_lsn)
2401 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2402
2403 /*
2404 * This loop writes out as many regions as can fit in the amount
2405 * of space which was allocated by xlog_state_get_iclog_space().
2406 */
2407 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2408 struct xfs_log_iovec *reg;
2409 struct xlog_op_header *ophdr;
2410 int start_rec_copy;
2411 int copy_len;
2412 int copy_off;
2413 bool ordered = false;
2414
2415 /* ordered log vectors have no regions to write */
2416 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2417 ASSERT(lv->lv_niovecs == 0);
2418 ordered = true;
2419 goto next_lv;
2420 }
2421
2422 reg = &vecp[index];
2423 ASSERT(reg->i_len % sizeof(__int32_t) == 0);
2424 ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
2425
2426 start_rec_copy = xlog_write_start_rec(ptr, ticket);
2427 if (start_rec_copy) {
2428 record_cnt++;
2429 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2430 start_rec_copy);
2431 }
2432
2433 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2434 if (!ophdr)
2435 return -EIO;
2436
2437 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2438 sizeof(struct xlog_op_header));
2439
2440 len += xlog_write_setup_copy(ticket, ophdr,
2441 iclog->ic_size-log_offset,
2442 reg->i_len,
2443 &copy_off, &copy_len,
2444 &partial_copy,
2445 &partial_copy_len);
2446 xlog_verify_dest_ptr(log, ptr);
2447
2448 /*
2449 * Copy region.
2450 *
2451 * Unmount records just log an opheader, so can have
2452 * empty payloads with no data region to copy. Hence we
2453 * only copy the payload if the vector says it has data
2454 * to copy.
2455 */
2456 ASSERT(copy_len >= 0);
2457 if (copy_len > 0) {
2458 memcpy(ptr, reg->i_addr + copy_off, copy_len);
2459 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2460 copy_len);
2461 }
2462 copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2463 record_cnt++;
2464 data_cnt += contwr ? copy_len : 0;
2465
2466 error = xlog_write_copy_finish(log, iclog, flags,
2467 &record_cnt, &data_cnt,
2468 &partial_copy,
2469 &partial_copy_len,
2470 log_offset,
2471 commit_iclog);
2472 if (error)
2473 return error;
2474
2475 /*
2476 * if we had a partial copy, we need to get more iclog
2477 * space but we don't want to increment the region
2478 * index because there is still more is this region to
2479 * write.
2480 *
2481 * If we completed writing this region, and we flushed
2482 * the iclog (indicated by resetting of the record
2483 * count), then we also need to get more log space. If
2484 * this was the last record, though, we are done and
2485 * can just return.
2486 */
2487 if (partial_copy)
2488 break;
2489
2490 if (++index == lv->lv_niovecs) {
2491 next_lv:
2492 lv = lv->lv_next;
2493 index = 0;
2494 if (lv)
2495 vecp = lv->lv_iovecp;
2496 }
2497 if (record_cnt == 0 && ordered == false) {
2498 if (!lv)
2499 return 0;
2500 break;
2501 }
2502 }
2503 }
2504
2505 ASSERT(len == 0);
2506
2507 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2508 if (!commit_iclog)
2509 return xlog_state_release_iclog(log, iclog);
2510
2511 ASSERT(flags & XLOG_COMMIT_TRANS);
2512 *commit_iclog = iclog;
2513 return 0;
2514 }
2515
2516
2517 /*****************************************************************************
2518 *
2519 * State Machine functions
2520 *
2521 *****************************************************************************
2522 */
2523
2524 /* Clean iclogs starting from the head. This ordering must be
2525 * maintained, so an iclog doesn't become ACTIVE beyond one that
2526 * is SYNCING. This is also required to maintain the notion that we use
2527 * a ordered wait queue to hold off would be writers to the log when every
2528 * iclog is trying to sync to disk.
2529 *
2530 * State Change: DIRTY -> ACTIVE
2531 */
2532 STATIC void
2533 xlog_state_clean_log(
2534 struct xlog *log)
2535 {
2536 xlog_in_core_t *iclog;
2537 int changed = 0;
2538
2539 iclog = log->l_iclog;
2540 do {
2541 if (iclog->ic_state == XLOG_STATE_DIRTY) {
2542 iclog->ic_state = XLOG_STATE_ACTIVE;
2543 iclog->ic_offset = 0;
2544 ASSERT(iclog->ic_callback == NULL);
2545 /*
2546 * If the number of ops in this iclog indicate it just
2547 * contains the dummy transaction, we can
2548 * change state into IDLE (the second time around).
2549 * Otherwise we should change the state into
2550 * NEED a dummy.
2551 * We don't need to cover the dummy.
2552 */
2553 if (!changed &&
2554 (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2555 XLOG_COVER_OPS)) {
2556 changed = 1;
2557 } else {
2558 /*
2559 * We have two dirty iclogs so start over
2560 * This could also be num of ops indicates
2561 * this is not the dummy going out.
2562 */
2563 changed = 2;
2564 }
2565 iclog->ic_header.h_num_logops = 0;
2566 memset(iclog->ic_header.h_cycle_data, 0,
2567 sizeof(iclog->ic_header.h_cycle_data));
2568 iclog->ic_header.h_lsn = 0;
2569 } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2570 /* do nothing */;
2571 else
2572 break; /* stop cleaning */
2573 iclog = iclog->ic_next;
2574 } while (iclog != log->l_iclog);
2575
2576 /* log is locked when we are called */
2577 /*
2578 * Change state for the dummy log recording.
2579 * We usually go to NEED. But we go to NEED2 if the changed indicates
2580 * we are done writing the dummy record.
2581 * If we are done with the second dummy recored (DONE2), then
2582 * we go to IDLE.
2583 */
2584 if (changed) {
2585 switch (log->l_covered_state) {
2586 case XLOG_STATE_COVER_IDLE:
2587 case XLOG_STATE_COVER_NEED:
2588 case XLOG_STATE_COVER_NEED2:
2589 log->l_covered_state = XLOG_STATE_COVER_NEED;
2590 break;
2591
2592 case XLOG_STATE_COVER_DONE:
2593 if (changed == 1)
2594 log->l_covered_state = XLOG_STATE_COVER_NEED2;
2595 else
2596 log->l_covered_state = XLOG_STATE_COVER_NEED;
2597 break;
2598
2599 case XLOG_STATE_COVER_DONE2:
2600 if (changed == 1)
2601 log->l_covered_state = XLOG_STATE_COVER_IDLE;
2602 else
2603 log->l_covered_state = XLOG_STATE_COVER_NEED;
2604 break;
2605
2606 default:
2607 ASSERT(0);
2608 }
2609 }
2610 } /* xlog_state_clean_log */
2611
2612 STATIC xfs_lsn_t
2613 xlog_get_lowest_lsn(
2614 struct xlog *log)
2615 {
2616 xlog_in_core_t *lsn_log;
2617 xfs_lsn_t lowest_lsn, lsn;
2618
2619 lsn_log = log->l_iclog;
2620 lowest_lsn = 0;
2621 do {
2622 if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2623 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2624 if ((lsn && !lowest_lsn) ||
2625 (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2626 lowest_lsn = lsn;
2627 }
2628 }
2629 lsn_log = lsn_log->ic_next;
2630 } while (lsn_log != log->l_iclog);
2631 return lowest_lsn;
2632 }
2633
2634
2635 STATIC void
2636 xlog_state_do_callback(
2637 struct xlog *log,
2638 int aborted,
2639 struct xlog_in_core *ciclog)
2640 {
2641 xlog_in_core_t *iclog;
2642 xlog_in_core_t *first_iclog; /* used to know when we've
2643 * processed all iclogs once */
2644 xfs_log_callback_t *cb, *cb_next;
2645 int flushcnt = 0;
2646 xfs_lsn_t lowest_lsn;
2647 int ioerrors; /* counter: iclogs with errors */
2648 int loopdidcallbacks; /* flag: inner loop did callbacks*/
2649 int funcdidcallbacks; /* flag: function did callbacks */
2650 int repeats; /* for issuing console warnings if
2651 * looping too many times */
2652 int wake = 0;
2653
2654 spin_lock(&log->l_icloglock);
2655 first_iclog = iclog = log->l_iclog;
2656 ioerrors = 0;
2657 funcdidcallbacks = 0;
2658 repeats = 0;
2659
2660 do {
2661 /*
2662 * Scan all iclogs starting with the one pointed to by the
2663 * log. Reset this starting point each time the log is
2664 * unlocked (during callbacks).
2665 *
2666 * Keep looping through iclogs until one full pass is made
2667 * without running any callbacks.
2668 */
2669 first_iclog = log->l_iclog;
2670 iclog = log->l_iclog;
2671 loopdidcallbacks = 0;
2672 repeats++;
2673
2674 do {
2675
2676 /* skip all iclogs in the ACTIVE & DIRTY states */
2677 if (iclog->ic_state &
2678 (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2679 iclog = iclog->ic_next;
2680 continue;
2681 }
2682
2683 /*
2684 * Between marking a filesystem SHUTDOWN and stopping
2685 * the log, we do flush all iclogs to disk (if there
2686 * wasn't a log I/O error). So, we do want things to
2687 * go smoothly in case of just a SHUTDOWN w/o a
2688 * LOG_IO_ERROR.
2689 */
2690 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2691 /*
2692 * Can only perform callbacks in order. Since
2693 * this iclog is not in the DONE_SYNC/
2694 * DO_CALLBACK state, we skip the rest and
2695 * just try to clean up. If we set our iclog
2696 * to DO_CALLBACK, we will not process it when
2697 * we retry since a previous iclog is in the
2698 * CALLBACK and the state cannot change since
2699 * we are holding the l_icloglock.
2700 */
2701 if (!(iclog->ic_state &
2702 (XLOG_STATE_DONE_SYNC |
2703 XLOG_STATE_DO_CALLBACK))) {
2704 if (ciclog && (ciclog->ic_state ==
2705 XLOG_STATE_DONE_SYNC)) {
2706 ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2707 }
2708 break;
2709 }
2710 /*
2711 * We now have an iclog that is in either the
2712 * DO_CALLBACK or DONE_SYNC states. The other
2713 * states (WANT_SYNC, SYNCING, or CALLBACK were
2714 * caught by the above if and are going to
2715 * clean (i.e. we aren't doing their callbacks)
2716 * see the above if.
2717 */
2718
2719 /*
2720 * We will do one more check here to see if we
2721 * have chased our tail around.
2722 */
2723
2724 lowest_lsn = xlog_get_lowest_lsn(log);
2725 if (lowest_lsn &&
2726 XFS_LSN_CMP(lowest_lsn,
2727 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2728 iclog = iclog->ic_next;
2729 continue; /* Leave this iclog for
2730 * another thread */
2731 }
2732
2733 iclog->ic_state = XLOG_STATE_CALLBACK;
2734
2735
2736 /*
2737 * Completion of a iclog IO does not imply that
2738 * a transaction has completed, as transactions
2739 * can be large enough to span many iclogs. We
2740 * cannot change the tail of the log half way
2741 * through a transaction as this may be the only
2742 * transaction in the log and moving th etail to
2743 * point to the middle of it will prevent
2744 * recovery from finding the start of the
2745 * transaction. Hence we should only update the
2746 * last_sync_lsn if this iclog contains
2747 * transaction completion callbacks on it.
2748 *
2749 * We have to do this before we drop the
2750 * icloglock to ensure we are the only one that
2751 * can update it.
2752 */
2753 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2754 be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2755 if (iclog->ic_callback)
2756 atomic64_set(&log->l_last_sync_lsn,
2757 be64_to_cpu(iclog->ic_header.h_lsn));
2758
2759 } else
2760 ioerrors++;
2761
2762 spin_unlock(&log->l_icloglock);
2763
2764 /*
2765 * Keep processing entries in the callback list until
2766 * we come around and it is empty. We need to
2767 * atomically see that the list is empty and change the
2768 * state to DIRTY so that we don't miss any more
2769 * callbacks being added.
2770 */
2771 spin_lock(&iclog->ic_callback_lock);
2772 cb = iclog->ic_callback;
2773 while (cb) {
2774 iclog->ic_callback_tail = &(iclog->ic_callback);
2775 iclog->ic_callback = NULL;
2776 spin_unlock(&iclog->ic_callback_lock);
2777
2778 /* perform callbacks in the order given */
2779 for (; cb; cb = cb_next) {
2780 cb_next = cb->cb_next;
2781 cb->cb_func(cb->cb_arg, aborted);
2782 }
2783 spin_lock(&iclog->ic_callback_lock);
2784 cb = iclog->ic_callback;
2785 }
2786
2787 loopdidcallbacks++;
2788 funcdidcallbacks++;
2789
2790 spin_lock(&log->l_icloglock);
2791 ASSERT(iclog->ic_callback == NULL);
2792 spin_unlock(&iclog->ic_callback_lock);
2793 if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2794 iclog->ic_state = XLOG_STATE_DIRTY;
2795
2796 /*
2797 * Transition from DIRTY to ACTIVE if applicable.
2798 * NOP if STATE_IOERROR.
2799 */
2800 xlog_state_clean_log(log);
2801
2802 /* wake up threads waiting in xfs_log_force() */
2803 wake_up_all(&iclog->ic_force_wait);
2804
2805 iclog = iclog->ic_next;
2806 } while (first_iclog != iclog);
2807
2808 if (repeats > 5000) {
2809 flushcnt += repeats;
2810 repeats = 0;
2811 xfs_warn(log->l_mp,
2812 "%s: possible infinite loop (%d iterations)",
2813 __func__, flushcnt);
2814 }
2815 } while (!ioerrors && loopdidcallbacks);
2816
2817 #ifdef DEBUG
2818 /*
2819 * Make one last gasp attempt to see if iclogs are being left in limbo.
2820 * If the above loop finds an iclog earlier than the current iclog and
2821 * in one of the syncing states, the current iclog is put into
2822 * DO_CALLBACK and the callbacks are deferred to the completion of the
2823 * earlier iclog. Walk the iclogs in order and make sure that no iclog
2824 * is in DO_CALLBACK unless an earlier iclog is in one of the syncing
2825 * states.
2826 *
2827 * Note that SYNCING|IOABORT is a valid state so we cannot just check
2828 * for ic_state == SYNCING.
2829 */
2830 if (funcdidcallbacks) {
2831 first_iclog = iclog = log->l_iclog;
2832 do {
2833 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2834 /*
2835 * Terminate the loop if iclogs are found in states
2836 * which will cause other threads to clean up iclogs.
2837 *
2838 * SYNCING - i/o completion will go through logs
2839 * DONE_SYNC - interrupt thread should be waiting for
2840 * l_icloglock
2841 * IOERROR - give up hope all ye who enter here
2842 */
2843 if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2844 iclog->ic_state & XLOG_STATE_SYNCING ||
2845 iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2846 iclog->ic_state == XLOG_STATE_IOERROR )
2847 break;
2848 iclog = iclog->ic_next;
2849 } while (first_iclog != iclog);
2850 }
2851 #endif
2852
2853 if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2854 wake = 1;
2855 spin_unlock(&log->l_icloglock);
2856
2857 if (wake)
2858 wake_up_all(&log->l_flush_wait);
2859 }
2860
2861
2862 /*
2863 * Finish transitioning this iclog to the dirty state.
2864 *
2865 * Make sure that we completely execute this routine only when this is
2866 * the last call to the iclog. There is a good chance that iclog flushes,
2867 * when we reach the end of the physical log, get turned into 2 separate
2868 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2869 * routine. By using the reference count bwritecnt, we guarantee that only
2870 * the second completion goes through.
2871 *
2872 * Callbacks could take time, so they are done outside the scope of the
2873 * global state machine log lock.
2874 */
2875 STATIC void
2876 xlog_state_done_syncing(
2877 xlog_in_core_t *iclog,
2878 int aborted)
2879 {
2880 struct xlog *log = iclog->ic_log;
2881
2882 spin_lock(&log->l_icloglock);
2883
2884 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2885 iclog->ic_state == XLOG_STATE_IOERROR);
2886 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2887 ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2888
2889
2890 /*
2891 * If we got an error, either on the first buffer, or in the case of
2892 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2893 * and none should ever be attempted to be written to disk
2894 * again.
2895 */
2896 if (iclog->ic_state != XLOG_STATE_IOERROR) {
2897 if (--iclog->ic_bwritecnt == 1) {
2898 spin_unlock(&log->l_icloglock);
2899 return;
2900 }
2901 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2902 }
2903
2904 /*
2905 * Someone could be sleeping prior to writing out the next
2906 * iclog buffer, we wake them all, one will get to do the
2907 * I/O, the others get to wait for the result.
2908 */
2909 wake_up_all(&iclog->ic_write_wait);
2910 spin_unlock(&log->l_icloglock);
2911 xlog_state_do_callback(log, aborted, iclog); /* also cleans log */
2912 } /* xlog_state_done_syncing */
2913
2914
2915 /*
2916 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2917 * sleep. We wait on the flush queue on the head iclog as that should be
2918 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2919 * we will wait here and all new writes will sleep until a sync completes.
2920 *
2921 * The in-core logs are used in a circular fashion. They are not used
2922 * out-of-order even when an iclog past the head is free.
2923 *
2924 * return:
2925 * * log_offset where xlog_write() can start writing into the in-core
2926 * log's data space.
2927 * * in-core log pointer to which xlog_write() should write.
2928 * * boolean indicating this is a continued write to an in-core log.
2929 * If this is the last write, then the in-core log's offset field
2930 * needs to be incremented, depending on the amount of data which
2931 * is copied.
2932 */
2933 STATIC int
2934 xlog_state_get_iclog_space(
2935 struct xlog *log,
2936 int len,
2937 struct xlog_in_core **iclogp,
2938 struct xlog_ticket *ticket,
2939 int *continued_write,
2940 int *logoffsetp)
2941 {
2942 int log_offset;
2943 xlog_rec_header_t *head;
2944 xlog_in_core_t *iclog;
2945 int error;
2946
2947 restart:
2948 spin_lock(&log->l_icloglock);
2949 if (XLOG_FORCED_SHUTDOWN(log)) {
2950 spin_unlock(&log->l_icloglock);
2951 return -EIO;
2952 }
2953
2954 iclog = log->l_iclog;
2955 if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2956 XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2957
2958 /* Wait for log writes to have flushed */
2959 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2960 goto restart;
2961 }
2962
2963 head = &iclog->ic_header;
2964
2965 atomic_inc(&iclog->ic_refcnt); /* prevents sync */
2966 log_offset = iclog->ic_offset;
2967
2968 /* On the 1st write to an iclog, figure out lsn. This works
2969 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2970 * committing to. If the offset is set, that's how many blocks
2971 * must be written.
2972 */
2973 if (log_offset == 0) {
2974 ticket->t_curr_res -= log->l_iclog_hsize;
2975 xlog_tic_add_region(ticket,
2976 log->l_iclog_hsize,
2977 XLOG_REG_TYPE_LRHEADER);
2978 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2979 head->h_lsn = cpu_to_be64(
2980 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2981 ASSERT(log->l_curr_block >= 0);
2982 }
2983
2984 /* If there is enough room to write everything, then do it. Otherwise,
2985 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2986 * bit is on, so this will get flushed out. Don't update ic_offset
2987 * until you know exactly how many bytes get copied. Therefore, wait
2988 * until later to update ic_offset.
2989 *
2990 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2991 * can fit into remaining data section.
2992 */
2993 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2994 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2995
2996 /*
2997 * If I'm the only one writing to this iclog, sync it to disk.
2998 * We need to do an atomic compare and decrement here to avoid
2999 * racing with concurrent atomic_dec_and_lock() calls in
3000 * xlog_state_release_iclog() when there is more than one
3001 * reference to the iclog.
3002 */
3003 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
3004 /* we are the only one */
3005 spin_unlock(&log->l_icloglock);
3006 error = xlog_state_release_iclog(log, iclog);
3007 if (error)
3008 return error;
3009 } else {
3010 spin_unlock(&log->l_icloglock);
3011 }
3012 goto restart;
3013 }
3014
3015 /* Do we have enough room to write the full amount in the remainder
3016 * of this iclog? Or must we continue a write on the next iclog and
3017 * mark this iclog as completely taken? In the case where we switch
3018 * iclogs (to mark it taken), this particular iclog will release/sync
3019 * to disk in xlog_write().
3020 */
3021 if (len <= iclog->ic_size - iclog->ic_offset) {
3022 *continued_write = 0;
3023 iclog->ic_offset += len;
3024 } else {
3025 *continued_write = 1;
3026 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3027 }
3028 *iclogp = iclog;
3029
3030 ASSERT(iclog->ic_offset <= iclog->ic_size);
3031 spin_unlock(&log->l_icloglock);
3032
3033 *logoffsetp = log_offset;
3034 return 0;
3035 } /* xlog_state_get_iclog_space */
3036
3037 /* The first cnt-1 times through here we don't need to
3038 * move the grant write head because the permanent
3039 * reservation has reserved cnt times the unit amount.
3040 * Release part of current permanent unit reservation and
3041 * reset current reservation to be one units worth. Also
3042 * move grant reservation head forward.
3043 */
3044 STATIC void
3045 xlog_regrant_reserve_log_space(
3046 struct xlog *log,
3047 struct xlog_ticket *ticket)
3048 {
3049 trace_xfs_log_regrant_reserve_enter(log, ticket);
3050
3051 if (ticket->t_cnt > 0)
3052 ticket->t_cnt--;
3053
3054 xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3055 ticket->t_curr_res);
3056 xlog_grant_sub_space(log, &log->l_write_head.grant,
3057 ticket->t_curr_res);
3058 ticket->t_curr_res = ticket->t_unit_res;
3059 xlog_tic_reset_res(ticket);
3060
3061 trace_xfs_log_regrant_reserve_sub(log, ticket);
3062
3063 /* just return if we still have some of the pre-reserved space */
3064 if (ticket->t_cnt > 0)
3065 return;
3066
3067 xlog_grant_add_space(log, &log->l_reserve_head.grant,
3068 ticket->t_unit_res);
3069
3070 trace_xfs_log_regrant_reserve_exit(log, ticket);
3071
3072 ticket->t_curr_res = ticket->t_unit_res;
3073 xlog_tic_reset_res(ticket);
3074 } /* xlog_regrant_reserve_log_space */
3075
3076
3077 /*
3078 * Give back the space left from a reservation.
3079 *
3080 * All the information we need to make a correct determination of space left
3081 * is present. For non-permanent reservations, things are quite easy. The
3082 * count should have been decremented to zero. We only need to deal with the
3083 * space remaining in the current reservation part of the ticket. If the
3084 * ticket contains a permanent reservation, there may be left over space which
3085 * needs to be released. A count of N means that N-1 refills of the current
3086 * reservation can be done before we need to ask for more space. The first
3087 * one goes to fill up the first current reservation. Once we run out of
3088 * space, the count will stay at zero and the only space remaining will be
3089 * in the current reservation field.
3090 */
3091 STATIC void
3092 xlog_ungrant_log_space(
3093 struct xlog *log,
3094 struct xlog_ticket *ticket)
3095 {
3096 int bytes;
3097
3098 if (ticket->t_cnt > 0)
3099 ticket->t_cnt--;
3100
3101 trace_xfs_log_ungrant_enter(log, ticket);
3102 trace_xfs_log_ungrant_sub(log, ticket);
3103
3104 /*
3105 * If this is a permanent reservation ticket, we may be able to free
3106 * up more space based on the remaining count.
3107 */
3108 bytes = ticket->t_curr_res;
3109 if (ticket->t_cnt > 0) {
3110 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3111 bytes += ticket->t_unit_res*ticket->t_cnt;
3112 }
3113
3114 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3115 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3116
3117 trace_xfs_log_ungrant_exit(log, ticket);
3118
3119 xfs_log_space_wake(log->l_mp);
3120 }
3121
3122 /*
3123 * Flush iclog to disk if this is the last reference to the given iclog and
3124 * the WANT_SYNC bit is set.
3125 *
3126 * When this function is entered, the iclog is not necessarily in the
3127 * WANT_SYNC state. It may be sitting around waiting to get filled.
3128 *
3129 *
3130 */
3131 STATIC int
3132 xlog_state_release_iclog(
3133 struct xlog *log,
3134 struct xlog_in_core *iclog)
3135 {
3136 int sync = 0; /* do we sync? */
3137
3138 if (iclog->ic_state & XLOG_STATE_IOERROR)
3139 return -EIO;
3140
3141 ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3142 if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3143 return 0;
3144
3145 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3146 spin_unlock(&log->l_icloglock);
3147 return -EIO;
3148 }
3149 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3150 iclog->ic_state == XLOG_STATE_WANT_SYNC);
3151
3152 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3153 /* update tail before writing to iclog */
3154 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3155 sync++;
3156 iclog->ic_state = XLOG_STATE_SYNCING;
3157 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3158 xlog_verify_tail_lsn(log, iclog, tail_lsn);
3159 /* cycle incremented when incrementing curr_block */
3160 }
3161 spin_unlock(&log->l_icloglock);
3162
3163 /*
3164 * We let the log lock go, so it's possible that we hit a log I/O
3165 * error or some other SHUTDOWN condition that marks the iclog
3166 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3167 * this iclog has consistent data, so we ignore IOERROR
3168 * flags after this point.
3169 */
3170 if (sync)
3171 return xlog_sync(log, iclog);
3172 return 0;
3173 } /* xlog_state_release_iclog */
3174
3175
3176 /*
3177 * This routine will mark the current iclog in the ring as WANT_SYNC
3178 * and move the current iclog pointer to the next iclog in the ring.
3179 * When this routine is called from xlog_state_get_iclog_space(), the
3180 * exact size of the iclog has not yet been determined. All we know is
3181 * that every data block. We have run out of space in this log record.
3182 */
3183 STATIC void
3184 xlog_state_switch_iclogs(
3185 struct xlog *log,
3186 struct xlog_in_core *iclog,
3187 int eventual_size)
3188 {
3189 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3190 if (!eventual_size)
3191 eventual_size = iclog->ic_offset;
3192 iclog->ic_state = XLOG_STATE_WANT_SYNC;
3193 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3194 log->l_prev_block = log->l_curr_block;
3195 log->l_prev_cycle = log->l_curr_cycle;
3196
3197 /* roll log?: ic_offset changed later */
3198 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3199
3200 /* Round up to next log-sunit */
3201 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3202 log->l_mp->m_sb.sb_logsunit > 1) {
3203 __uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3204 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3205 }
3206
3207 if (log->l_curr_block >= log->l_logBBsize) {
3208 /*
3209 * Rewind the current block before the cycle is bumped to make
3210 * sure that the combined LSN never transiently moves forward
3211 * when the log wraps to the next cycle. This is to support the
3212 * unlocked sample of these fields from xlog_valid_lsn(). Most
3213 * other cases should acquire l_icloglock.
3214 */
3215 log->l_curr_block -= log->l_logBBsize;
3216 ASSERT(log->l_curr_block >= 0);
3217 smp_wmb();
3218 log->l_curr_cycle++;
3219 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3220 log->l_curr_cycle++;
3221 }
3222 ASSERT(iclog == log->l_iclog);
3223 log->l_iclog = iclog->ic_next;
3224 } /* xlog_state_switch_iclogs */
3225
3226 /*
3227 * Write out all data in the in-core log as of this exact moment in time.
3228 *
3229 * Data may be written to the in-core log during this call. However,
3230 * we don't guarantee this data will be written out. A change from past
3231 * implementation means this routine will *not* write out zero length LRs.
3232 *
3233 * Basically, we try and perform an intelligent scan of the in-core logs.
3234 * If we determine there is no flushable data, we just return. There is no
3235 * flushable data if:
3236 *
3237 * 1. the current iclog is active and has no data; the previous iclog
3238 * is in the active or dirty state.
3239 * 2. the current iclog is drity, and the previous iclog is in the
3240 * active or dirty state.
3241 *
3242 * We may sleep if:
3243 *
3244 * 1. the current iclog is not in the active nor dirty state.
3245 * 2. the current iclog dirty, and the previous iclog is not in the
3246 * active nor dirty state.
3247 * 3. the current iclog is active, and there is another thread writing
3248 * to this particular iclog.
3249 * 4. a) the current iclog is active and has no other writers
3250 * b) when we return from flushing out this iclog, it is still
3251 * not in the active nor dirty state.
3252 */
3253 int
3254 _xfs_log_force(
3255 struct xfs_mount *mp,
3256 uint flags,
3257 int *log_flushed)
3258 {
3259 struct xlog *log = mp->m_log;
3260 struct xlog_in_core *iclog;
3261 xfs_lsn_t lsn;
3262
3263 XFS_STATS_INC(mp, xs_log_force);
3264
3265 xlog_cil_force(log);
3266
3267 spin_lock(&log->l_icloglock);
3268
3269 iclog = log->l_iclog;
3270 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3271 spin_unlock(&log->l_icloglock);
3272 return -EIO;
3273 }
3274
3275 /* If the head iclog is not active nor dirty, we just attach
3276 * ourselves to the head and go to sleep.
3277 */
3278 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3279 iclog->ic_state == XLOG_STATE_DIRTY) {
3280 /*
3281 * If the head is dirty or (active and empty), then
3282 * we need to look at the previous iclog. If the previous
3283 * iclog is active or dirty we are done. There is nothing
3284 * to sync out. Otherwise, we attach ourselves to the
3285 * previous iclog and go to sleep.
3286 */
3287 if (iclog->ic_state == XLOG_STATE_DIRTY ||
3288 (atomic_read(&iclog->ic_refcnt) == 0
3289 && iclog->ic_offset == 0)) {
3290 iclog = iclog->ic_prev;
3291 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3292 iclog->ic_state == XLOG_STATE_DIRTY)
3293 goto no_sleep;
3294 else
3295 goto maybe_sleep;
3296 } else {
3297 if (atomic_read(&iclog->ic_refcnt) == 0) {
3298 /* We are the only one with access to this
3299 * iclog. Flush it out now. There should
3300 * be a roundoff of zero to show that someone
3301 * has already taken care of the roundoff from
3302 * the previous sync.
3303 */
3304 atomic_inc(&iclog->ic_refcnt);
3305 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3306 xlog_state_switch_iclogs(log, iclog, 0);
3307 spin_unlock(&log->l_icloglock);
3308
3309 if (xlog_state_release_iclog(log, iclog))
3310 return -EIO;
3311
3312 if (log_flushed)
3313 *log_flushed = 1;
3314 spin_lock(&log->l_icloglock);
3315 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3316 iclog->ic_state != XLOG_STATE_DIRTY)
3317 goto maybe_sleep;
3318 else
3319 goto no_sleep;
3320 } else {
3321 /* Someone else is writing to this iclog.
3322 * Use its call to flush out the data. However,
3323 * the other thread may not force out this LR,
3324 * so we mark it WANT_SYNC.
3325 */
3326 xlog_state_switch_iclogs(log, iclog, 0);
3327 goto maybe_sleep;
3328 }
3329 }
3330 }
3331
3332 /* By the time we come around again, the iclog could've been filled
3333 * which would give it another lsn. If we have a new lsn, just
3334 * return because the relevant data has been flushed.
3335 */
3336 maybe_sleep:
3337 if (flags & XFS_LOG_SYNC) {
3338 /*
3339 * We must check if we're shutting down here, before
3340 * we wait, while we're holding the l_icloglock.
3341 * Then we check again after waking up, in case our
3342 * sleep was disturbed by a bad news.
3343 */
3344 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3345 spin_unlock(&log->l_icloglock);
3346 return -EIO;
3347 }
3348 XFS_STATS_INC(mp, xs_log_force_sleep);
3349 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3350 /*
3351 * No need to grab the log lock here since we're
3352 * only deciding whether or not to return EIO
3353 * and the memory read should be atomic.
3354 */
3355 if (iclog->ic_state & XLOG_STATE_IOERROR)
3356 return -EIO;
3357 if (log_flushed)
3358 *log_flushed = 1;
3359 } else {
3360
3361 no_sleep:
3362 spin_unlock(&log->l_icloglock);
3363 }
3364 return 0;
3365 }
3366
3367 /*
3368 * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3369 * about errors or whether the log was flushed or not. This is the normal
3370 * interface to use when trying to unpin items or move the log forward.
3371 */
3372 void
3373 xfs_log_force(
3374 xfs_mount_t *mp,
3375 uint flags)
3376 {
3377 int error;
3378
3379 trace_xfs_log_force(mp, 0);
3380 error = _xfs_log_force(mp, flags, NULL);
3381 if (error)
3382 xfs_warn(mp, "%s: error %d returned.", __func__, error);
3383 }
3384
3385 /*
3386 * Force the in-core log to disk for a specific LSN.
3387 *
3388 * Find in-core log with lsn.
3389 * If it is in the DIRTY state, just return.
3390 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3391 * state and go to sleep or return.
3392 * If it is in any other state, go to sleep or return.
3393 *
3394 * Synchronous forces are implemented with a signal variable. All callers
3395 * to force a given lsn to disk will wait on a the sv attached to the
3396 * specific in-core log. When given in-core log finally completes its
3397 * write to disk, that thread will wake up all threads waiting on the
3398 * sv.
3399 */
3400 int
3401 _xfs_log_force_lsn(
3402 struct xfs_mount *mp,
3403 xfs_lsn_t lsn,
3404 uint flags,
3405 int *log_flushed)
3406 {
3407 struct xlog *log = mp->m_log;
3408 struct xlog_in_core *iclog;
3409 int already_slept = 0;
3410
3411 ASSERT(lsn != 0);
3412
3413 XFS_STATS_INC(mp, xs_log_force);
3414
3415 lsn = xlog_cil_force_lsn(log, lsn);
3416 if (lsn == NULLCOMMITLSN)
3417 return 0;
3418
3419 try_again:
3420 spin_lock(&log->l_icloglock);
3421 iclog = log->l_iclog;
3422 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3423 spin_unlock(&log->l_icloglock);
3424 return -EIO;
3425 }
3426
3427 do {
3428 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3429 iclog = iclog->ic_next;
3430 continue;
3431 }
3432
3433 if (iclog->ic_state == XLOG_STATE_DIRTY) {
3434 spin_unlock(&log->l_icloglock);
3435 return 0;
3436 }
3437
3438 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3439 /*
3440 * We sleep here if we haven't already slept (e.g.
3441 * this is the first time we've looked at the correct
3442 * iclog buf) and the buffer before us is going to
3443 * be sync'ed. The reason for this is that if we
3444 * are doing sync transactions here, by waiting for
3445 * the previous I/O to complete, we can allow a few
3446 * more transactions into this iclog before we close
3447 * it down.
3448 *
3449 * Otherwise, we mark the buffer WANT_SYNC, and bump
3450 * up the refcnt so we can release the log (which
3451 * drops the ref count). The state switch keeps new
3452 * transaction commits from using this buffer. When
3453 * the current commits finish writing into the buffer,
3454 * the refcount will drop to zero and the buffer will
3455 * go out then.
3456 */
3457 if (!already_slept &&
3458 (iclog->ic_prev->ic_state &
3459 (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3460 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3461
3462 XFS_STATS_INC(mp, xs_log_force_sleep);
3463
3464 xlog_wait(&iclog->ic_prev->ic_write_wait,
3465 &log->l_icloglock);
3466 if (log_flushed)
3467 *log_flushed = 1;
3468 already_slept = 1;
3469 goto try_again;
3470 }
3471 atomic_inc(&iclog->ic_refcnt);
3472 xlog_state_switch_iclogs(log, iclog, 0);
3473 spin_unlock(&log->l_icloglock);
3474 if (xlog_state_release_iclog(log, iclog))
3475 return -EIO;
3476 if (log_flushed)
3477 *log_flushed = 1;
3478 spin_lock(&log->l_icloglock);
3479 }
3480
3481 if ((flags & XFS_LOG_SYNC) && /* sleep */
3482 !(iclog->ic_state &
3483 (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3484 /*
3485 * Don't wait on completion if we know that we've
3486 * gotten a log write error.
3487 */
3488 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3489 spin_unlock(&log->l_icloglock);
3490 return -EIO;
3491 }
3492 XFS_STATS_INC(mp, xs_log_force_sleep);
3493 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3494 /*
3495 * No need to grab the log lock here since we're
3496 * only deciding whether or not to return EIO
3497 * and the memory read should be atomic.
3498 */
3499 if (iclog->ic_state & XLOG_STATE_IOERROR)
3500 return -EIO;
3501
3502 if (log_flushed)
3503 *log_flushed = 1;
3504 } else { /* just return */
3505 spin_unlock(&log->l_icloglock);
3506 }
3507
3508 return 0;
3509 } while (iclog != log->l_iclog);
3510
3511 spin_unlock(&log->l_icloglock);
3512 return 0;
3513 }
3514
3515 /*
3516 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3517 * about errors or whether the log was flushed or not. This is the normal
3518 * interface to use when trying to unpin items or move the log forward.
3519 */
3520 void
3521 xfs_log_force_lsn(
3522 xfs_mount_t *mp,
3523 xfs_lsn_t lsn,
3524 uint flags)
3525 {
3526 int error;
3527
3528 trace_xfs_log_force(mp, lsn);
3529 error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3530 if (error)
3531 xfs_warn(mp, "%s: error %d returned.", __func__, error);
3532 }
3533
3534 /*
3535 * Called when we want to mark the current iclog as being ready to sync to
3536 * disk.
3537 */
3538 STATIC void
3539 xlog_state_want_sync(
3540 struct xlog *log,
3541 struct xlog_in_core *iclog)
3542 {
3543 assert_spin_locked(&log->l_icloglock);
3544
3545 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3546 xlog_state_switch_iclogs(log, iclog, 0);
3547 } else {
3548 ASSERT(iclog->ic_state &
3549 (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3550 }
3551 }
3552
3553
3554 /*****************************************************************************
3555 *
3556 * TICKET functions
3557 *
3558 *****************************************************************************
3559 */
3560
3561 /*
3562 * Free a used ticket when its refcount falls to zero.
3563 */
3564 void
3565 xfs_log_ticket_put(
3566 xlog_ticket_t *ticket)
3567 {
3568 ASSERT(atomic_read(&ticket->t_ref) > 0);
3569 if (atomic_dec_and_test(&ticket->t_ref))
3570 kmem_zone_free(xfs_log_ticket_zone, ticket);
3571 }
3572
3573 xlog_ticket_t *
3574 xfs_log_ticket_get(
3575 xlog_ticket_t *ticket)
3576 {
3577 ASSERT(atomic_read(&ticket->t_ref) > 0);
3578 atomic_inc(&ticket->t_ref);
3579 return ticket;
3580 }
3581
3582 /*
3583 * Figure out the total log space unit (in bytes) that would be
3584 * required for a log ticket.
3585 */
3586 int
3587 xfs_log_calc_unit_res(
3588 struct xfs_mount *mp,
3589 int unit_bytes)
3590 {
3591 struct xlog *log = mp->m_log;
3592 int iclog_space;
3593 uint num_headers;
3594
3595 /*
3596 * Permanent reservations have up to 'cnt'-1 active log operations
3597 * in the log. A unit in this case is the amount of space for one
3598 * of these log operations. Normal reservations have a cnt of 1
3599 * and their unit amount is the total amount of space required.
3600 *
3601 * The following lines of code account for non-transaction data
3602 * which occupy space in the on-disk log.
3603 *
3604 * Normal form of a transaction is:
3605 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3606 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3607 *
3608 * We need to account for all the leadup data and trailer data
3609 * around the transaction data.
3610 * And then we need to account for the worst case in terms of using
3611 * more space.
3612 * The worst case will happen if:
3613 * - the placement of the transaction happens to be such that the
3614 * roundoff is at its maximum
3615 * - the transaction data is synced before the commit record is synced
3616 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3617 * Therefore the commit record is in its own Log Record.
3618 * This can happen as the commit record is called with its
3619 * own region to xlog_write().
3620 * This then means that in the worst case, roundoff can happen for
3621 * the commit-rec as well.
3622 * The commit-rec is smaller than padding in this scenario and so it is
3623 * not added separately.
3624 */
3625
3626 /* for trans header */
3627 unit_bytes += sizeof(xlog_op_header_t);
3628 unit_bytes += sizeof(xfs_trans_header_t);
3629
3630 /* for start-rec */
3631 unit_bytes += sizeof(xlog_op_header_t);
3632
3633 /*
3634 * for LR headers - the space for data in an iclog is the size minus
3635 * the space used for the headers. If we use the iclog size, then we
3636 * undercalculate the number of headers required.
3637 *
3638 * Furthermore - the addition of op headers for split-recs might
3639 * increase the space required enough to require more log and op
3640 * headers, so take that into account too.
3641 *
3642 * IMPORTANT: This reservation makes the assumption that if this
3643 * transaction is the first in an iclog and hence has the LR headers
3644 * accounted to it, then the remaining space in the iclog is
3645 * exclusively for this transaction. i.e. if the transaction is larger
3646 * than the iclog, it will be the only thing in that iclog.
3647 * Fundamentally, this means we must pass the entire log vector to
3648 * xlog_write to guarantee this.
3649 */
3650 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3651 num_headers = howmany(unit_bytes, iclog_space);
3652
3653 /* for split-recs - ophdrs added when data split over LRs */
3654 unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3655
3656 /* add extra header reservations if we overrun */
3657 while (!num_headers ||
3658 howmany(unit_bytes, iclog_space) > num_headers) {
3659 unit_bytes += sizeof(xlog_op_header_t);
3660 num_headers++;
3661 }
3662 unit_bytes += log->l_iclog_hsize * num_headers;
3663
3664 /* for commit-rec LR header - note: padding will subsume the ophdr */
3665 unit_bytes += log->l_iclog_hsize;
3666
3667 /* for roundoff padding for transaction data and one for commit record */
3668 if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3669 /* log su roundoff */
3670 unit_bytes += 2 * mp->m_sb.sb_logsunit;
3671 } else {
3672 /* BB roundoff */
3673 unit_bytes += 2 * BBSIZE;
3674 }
3675
3676 return unit_bytes;
3677 }
3678
3679 /*
3680 * Allocate and initialise a new log ticket.
3681 */
3682 struct xlog_ticket *
3683 xlog_ticket_alloc(
3684 struct xlog *log,
3685 int unit_bytes,
3686 int cnt,
3687 char client,
3688 bool permanent,
3689 xfs_km_flags_t alloc_flags)
3690 {
3691 struct xlog_ticket *tic;
3692 int unit_res;
3693
3694 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3695 if (!tic)
3696 return NULL;
3697
3698 unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3699
3700 atomic_set(&tic->t_ref, 1);
3701 tic->t_task = current;
3702 INIT_LIST_HEAD(&tic->t_queue);
3703 tic->t_unit_res = unit_res;
3704 tic->t_curr_res = unit_res;
3705 tic->t_cnt = cnt;
3706 tic->t_ocnt = cnt;
3707 tic->t_tid = prandom_u32();
3708 tic->t_clientid = client;
3709 tic->t_flags = XLOG_TIC_INITED;
3710 tic->t_trans_type = 0;
3711 if (permanent)
3712 tic->t_flags |= XLOG_TIC_PERM_RESERV;
3713
3714 xlog_tic_reset_res(tic);
3715
3716 return tic;
3717 }
3718
3719
3720 /******************************************************************************
3721 *
3722 * Log debug routines
3723 *
3724 ******************************************************************************
3725 */
3726 #if defined(DEBUG)
3727 /*
3728 * Make sure that the destination ptr is within the valid data region of
3729 * one of the iclogs. This uses backup pointers stored in a different
3730 * part of the log in case we trash the log structure.
3731 */
3732 void
3733 xlog_verify_dest_ptr(
3734 struct xlog *log,
3735 void *ptr)
3736 {
3737 int i;
3738 int good_ptr = 0;
3739
3740 for (i = 0; i < log->l_iclog_bufs; i++) {
3741 if (ptr >= log->l_iclog_bak[i] &&
3742 ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3743 good_ptr++;
3744 }
3745
3746 if (!good_ptr)
3747 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3748 }
3749
3750 /*
3751 * Check to make sure the grant write head didn't just over lap the tail. If
3752 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3753 * the cycles differ by exactly one and check the byte count.
3754 *
3755 * This check is run unlocked, so can give false positives. Rather than assert
3756 * on failures, use a warn-once flag and a panic tag to allow the admin to
3757 * determine if they want to panic the machine when such an error occurs. For
3758 * debug kernels this will have the same effect as using an assert but, unlinke
3759 * an assert, it can be turned off at runtime.
3760 */
3761 STATIC void
3762 xlog_verify_grant_tail(
3763 struct xlog *log)
3764 {
3765 int tail_cycle, tail_blocks;
3766 int cycle, space;
3767
3768 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3769 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3770 if (tail_cycle != cycle) {
3771 if (cycle - 1 != tail_cycle &&
3772 !(log->l_flags & XLOG_TAIL_WARN)) {
3773 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3774 "%s: cycle - 1 != tail_cycle", __func__);
3775 log->l_flags |= XLOG_TAIL_WARN;
3776 }
3777
3778 if (space > BBTOB(tail_blocks) &&
3779 !(log->l_flags & XLOG_TAIL_WARN)) {
3780 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3781 "%s: space > BBTOB(tail_blocks)", __func__);
3782 log->l_flags |= XLOG_TAIL_WARN;
3783 }
3784 }
3785 }
3786
3787 /* check if it will fit */
3788 STATIC void
3789 xlog_verify_tail_lsn(
3790 struct xlog *log,
3791 struct xlog_in_core *iclog,
3792 xfs_lsn_t tail_lsn)
3793 {
3794 int blocks;
3795
3796 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3797 blocks =
3798 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3799 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3800 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3801 } else {
3802 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3803
3804 if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3805 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3806
3807 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3808 if (blocks < BTOBB(iclog->ic_offset) + 1)
3809 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3810 }
3811 } /* xlog_verify_tail_lsn */
3812
3813 /*
3814 * Perform a number of checks on the iclog before writing to disk.
3815 *
3816 * 1. Make sure the iclogs are still circular
3817 * 2. Make sure we have a good magic number
3818 * 3. Make sure we don't have magic numbers in the data
3819 * 4. Check fields of each log operation header for:
3820 * A. Valid client identifier
3821 * B. tid ptr value falls in valid ptr space (user space code)
3822 * C. Length in log record header is correct according to the
3823 * individual operation headers within record.
3824 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3825 * log, check the preceding blocks of the physical log to make sure all
3826 * the cycle numbers agree with the current cycle number.
3827 */
3828 STATIC void
3829 xlog_verify_iclog(
3830 struct xlog *log,
3831 struct xlog_in_core *iclog,
3832 int count,
3833 bool syncing)
3834 {
3835 xlog_op_header_t *ophead;
3836 xlog_in_core_t *icptr;
3837 xlog_in_core_2_t *xhdr;
3838 void *base_ptr, *ptr, *p;
3839 ptrdiff_t field_offset;
3840 __uint8_t clientid;
3841 int len, i, j, k, op_len;
3842 int idx;
3843
3844 /* check validity of iclog pointers */
3845 spin_lock(&log->l_icloglock);
3846 icptr = log->l_iclog;
3847 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3848 ASSERT(icptr);
3849
3850 if (icptr != log->l_iclog)
3851 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3852 spin_unlock(&log->l_icloglock);
3853
3854 /* check log magic numbers */
3855 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3856 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3857
3858 base_ptr = ptr = &iclog->ic_header;
3859 p = &iclog->ic_header;
3860 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3861 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3862 xfs_emerg(log->l_mp, "%s: unexpected magic num",
3863 __func__);
3864 }
3865
3866 /* check fields */
3867 len = be32_to_cpu(iclog->ic_header.h_num_logops);
3868 base_ptr = ptr = iclog->ic_datap;
3869 ophead = ptr;
3870 xhdr = iclog->ic_data;
3871 for (i = 0; i < len; i++) {
3872 ophead = ptr;
3873
3874 /* clientid is only 1 byte */
3875 p = &ophead->oh_clientid;
3876 field_offset = p - base_ptr;
3877 if (!syncing || (field_offset & 0x1ff)) {
3878 clientid = ophead->oh_clientid;
3879 } else {
3880 idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3881 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3882 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3883 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3884 clientid = xlog_get_client_id(
3885 xhdr[j].hic_xheader.xh_cycle_data[k]);
3886 } else {
3887 clientid = xlog_get_client_id(
3888 iclog->ic_header.h_cycle_data[idx]);
3889 }
3890 }
3891 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3892 xfs_warn(log->l_mp,
3893 "%s: invalid clientid %d op 0x%p offset 0x%lx",
3894 __func__, clientid, ophead,
3895 (unsigned long)field_offset);
3896
3897 /* check length */
3898 p = &ophead->oh_len;
3899 field_offset = p - base_ptr;
3900 if (!syncing || (field_offset & 0x1ff)) {
3901 op_len = be32_to_cpu(ophead->oh_len);
3902 } else {
3903 idx = BTOBBT((uintptr_t)&ophead->oh_len -
3904 (uintptr_t)iclog->ic_datap);
3905 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3906 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3907 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3908 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3909 } else {
3910 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3911 }
3912 }
3913 ptr += sizeof(xlog_op_header_t) + op_len;
3914 }
3915 } /* xlog_verify_iclog */
3916 #endif
3917
3918 /*
3919 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3920 */
3921 STATIC int
3922 xlog_state_ioerror(
3923 struct xlog *log)
3924 {
3925 xlog_in_core_t *iclog, *ic;
3926
3927 iclog = log->l_iclog;
3928 if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3929 /*
3930 * Mark all the incore logs IOERROR.
3931 * From now on, no log flushes will result.
3932 */
3933 ic = iclog;
3934 do {
3935 ic->ic_state = XLOG_STATE_IOERROR;
3936 ic = ic->ic_next;
3937 } while (ic != iclog);
3938 return 0;
3939 }
3940 /*
3941 * Return non-zero, if state transition has already happened.
3942 */
3943 return 1;
3944 }
3945
3946 /*
3947 * This is called from xfs_force_shutdown, when we're forcibly
3948 * shutting down the filesystem, typically because of an IO error.
3949 * Our main objectives here are to make sure that:
3950 * a. if !logerror, flush the logs to disk. Anything modified
3951 * after this is ignored.
3952 * b. the filesystem gets marked 'SHUTDOWN' for all interested
3953 * parties to find out, 'atomically'.
3954 * c. those who're sleeping on log reservations, pinned objects and
3955 * other resources get woken up, and be told the bad news.
3956 * d. nothing new gets queued up after (b) and (c) are done.
3957 *
3958 * Note: for the !logerror case we need to flush the regions held in memory out
3959 * to disk first. This needs to be done before the log is marked as shutdown,
3960 * otherwise the iclog writes will fail.
3961 */
3962 int
3963 xfs_log_force_umount(
3964 struct xfs_mount *mp,
3965 int logerror)
3966 {
3967 struct xlog *log;
3968 int retval;
3969
3970 log = mp->m_log;
3971
3972 /*
3973 * If this happens during log recovery, don't worry about
3974 * locking; the log isn't open for business yet.
3975 */
3976 if (!log ||
3977 log->l_flags & XLOG_ACTIVE_RECOVERY) {
3978 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3979 if (mp->m_sb_bp)
3980 XFS_BUF_DONE(mp->m_sb_bp);
3981 return 0;
3982 }
3983
3984 /*
3985 * Somebody could've already done the hard work for us.
3986 * No need to get locks for this.
3987 */
3988 if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3989 ASSERT(XLOG_FORCED_SHUTDOWN(log));
3990 return 1;
3991 }
3992
3993 /*
3994 * Flush all the completed transactions to disk before marking the log
3995 * being shut down. We need to do it in this order to ensure that
3996 * completed operations are safely on disk before we shut down, and that
3997 * we don't have to issue any buffer IO after the shutdown flags are set
3998 * to guarantee this.
3999 */
4000 if (!logerror)
4001 _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
4002
4003 /*
4004 * mark the filesystem and the as in a shutdown state and wake
4005 * everybody up to tell them the bad news.
4006 */
4007 spin_lock(&log->l_icloglock);
4008 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
4009 if (mp->m_sb_bp)
4010 XFS_BUF_DONE(mp->m_sb_bp);
4011
4012 /*
4013 * Mark the log and the iclogs with IO error flags to prevent any
4014 * further log IO from being issued or completed.
4015 */
4016 log->l_flags |= XLOG_IO_ERROR;
4017 retval = xlog_state_ioerror(log);
4018 spin_unlock(&log->l_icloglock);
4019
4020 /*
4021 * We don't want anybody waiting for log reservations after this. That
4022 * means we have to wake up everybody queued up on reserveq as well as
4023 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
4024 * we don't enqueue anything once the SHUTDOWN flag is set, and this
4025 * action is protected by the grant locks.
4026 */
4027 xlog_grant_head_wake_all(&log->l_reserve_head);
4028 xlog_grant_head_wake_all(&log->l_write_head);
4029
4030 /*
4031 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
4032 * as if the log writes were completed. The abort handling in the log
4033 * item committed callback functions will do this again under lock to
4034 * avoid races.
4035 */
4036 wake_up_all(&log->l_cilp->xc_commit_wait);
4037 xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
4038
4039 #ifdef XFSERRORDEBUG
4040 {
4041 xlog_in_core_t *iclog;
4042
4043 spin_lock(&log->l_icloglock);
4044 iclog = log->l_iclog;
4045 do {
4046 ASSERT(iclog->ic_callback == 0);
4047 iclog = iclog->ic_next;
4048 } while (iclog != log->l_iclog);
4049 spin_unlock(&log->l_icloglock);
4050 }
4051 #endif
4052 /* return non-zero if log IOERROR transition had already happened */
4053 return retval;
4054 }
4055
4056 STATIC int
4057 xlog_iclogs_empty(
4058 struct xlog *log)
4059 {
4060 xlog_in_core_t *iclog;
4061
4062 iclog = log->l_iclog;
4063 do {
4064 /* endianness does not matter here, zero is zero in
4065 * any language.
4066 */
4067 if (iclog->ic_header.h_num_logops)
4068 return 0;
4069 iclog = iclog->ic_next;
4070 } while (iclog != log->l_iclog);
4071 return 1;
4072 }
4073
4074 /*
4075 * Verify that an LSN stamped into a piece of metadata is valid. This is
4076 * intended for use in read verifiers on v5 superblocks.
4077 */
4078 bool
4079 xfs_log_check_lsn(
4080 struct xfs_mount *mp,
4081 xfs_lsn_t lsn)
4082 {
4083 struct xlog *log = mp->m_log;
4084 bool valid;
4085
4086 /*
4087 * norecovery mode skips mount-time log processing and unconditionally
4088 * resets the in-core LSN. We can't validate in this mode, but
4089 * modifications are not allowed anyways so just return true.
4090 */
4091 if (mp->m_flags & XFS_MOUNT_NORECOVERY)
4092 return true;
4093
4094 /*
4095 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
4096 * handled by recovery and thus safe to ignore here.
4097 */
4098 if (lsn == NULLCOMMITLSN)
4099 return true;
4100
4101 valid = xlog_valid_lsn(mp->m_log, lsn);
4102
4103 /* warn the user about what's gone wrong before verifier failure */
4104 if (!valid) {
4105 spin_lock(&log->l_icloglock);
4106 xfs_warn(mp,
4107 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
4108 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
4109 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
4110 log->l_curr_cycle, log->l_curr_block);
4111 spin_unlock(&log->l_icloglock);
4112 }
4113
4114 return valid;
4115 }
This page took 0.113022 seconds and 6 git commands to generate.