xfs: Reduce allocations during CIL insertion
[deliverable/linux.git] / fs / xfs / xfs_log_cil.c
1 /*
2 * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it would be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write the Free Software Foundation,
15 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
16 */
17
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_log.h"
22 #include "xfs_trans.h"
23 #include "xfs_trans_priv.h"
24 #include "xfs_log_priv.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_error.h"
29 #include "xfs_alloc.h"
30 #include "xfs_extent_busy.h"
31 #include "xfs_discard.h"
32
33 /*
34 * Allocate a new ticket. Failing to get a new ticket makes it really hard to
35 * recover, so we don't allow failure here. Also, we allocate in a context that
36 * we don't want to be issuing transactions from, so we need to tell the
37 * allocation code this as well.
38 *
39 * We don't reserve any space for the ticket - we are going to steal whatever
40 * space we require from transactions as they commit. To ensure we reserve all
41 * the space required, we need to set the current reservation of the ticket to
42 * zero so that we know to steal the initial transaction overhead from the
43 * first transaction commit.
44 */
45 static struct xlog_ticket *
46 xlog_cil_ticket_alloc(
47 struct xlog *log)
48 {
49 struct xlog_ticket *tic;
50
51 tic = xlog_ticket_alloc(log, 0, 1, XFS_TRANSACTION, 0,
52 KM_SLEEP|KM_NOFS);
53 tic->t_trans_type = XFS_TRANS_CHECKPOINT;
54
55 /*
56 * set the current reservation to zero so we know to steal the basic
57 * transaction overhead reservation from the first transaction commit.
58 */
59 tic->t_curr_res = 0;
60 return tic;
61 }
62
63 /*
64 * After the first stage of log recovery is done, we know where the head and
65 * tail of the log are. We need this log initialisation done before we can
66 * initialise the first CIL checkpoint context.
67 *
68 * Here we allocate a log ticket to track space usage during a CIL push. This
69 * ticket is passed to xlog_write() directly so that we don't slowly leak log
70 * space by failing to account for space used by log headers and additional
71 * region headers for split regions.
72 */
73 void
74 xlog_cil_init_post_recovery(
75 struct xlog *log)
76 {
77 log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log);
78 log->l_cilp->xc_ctx->sequence = 1;
79 log->l_cilp->xc_ctx->commit_lsn = xlog_assign_lsn(log->l_curr_cycle,
80 log->l_curr_block);
81 }
82
83 STATIC int
84 xlog_cil_lv_item_format(
85 struct xfs_log_item *lip,
86 struct xfs_log_vec *lv)
87 {
88 int index;
89 char *ptr;
90
91 /* format new vectors into array */
92 lip->li_ops->iop_format(lip, lv->lv_iovecp);
93
94 /* copy data into existing array */
95 ptr = lv->lv_buf;
96 for (index = 0; index < lv->lv_niovecs; index++) {
97 struct xfs_log_iovec *vec = &lv->lv_iovecp[index];
98
99 memcpy(ptr, vec->i_addr, vec->i_len);
100 vec->i_addr = ptr;
101 ptr += vec->i_len;
102 }
103
104 /*
105 * some size calculations for log vectors over-estimate, so the caller
106 * doesn't know the amount of space actually used by the item. Return
107 * the byte count to the caller so they can check and store it
108 * appropriately.
109 */
110 return ptr - lv->lv_buf;
111 }
112
113 /*
114 * Format log item into a flat buffers
115 *
116 * For delayed logging, we need to hold a formatted buffer containing all the
117 * changes on the log item. This enables us to relog the item in memory and
118 * write it out asynchronously without needing to relock the object that was
119 * modified at the time it gets written into the iclog.
120 *
121 * This function builds a vector for the changes in each log item in the
122 * transaction. It then works out the length of the buffer needed for each log
123 * item, allocates them and formats the vector for the item into the buffer.
124 * The buffer is then attached to the log item are then inserted into the
125 * Committed Item List for tracking until the next checkpoint is written out.
126 *
127 * We don't set up region headers during this process; we simply copy the
128 * regions into the flat buffer. We can do this because we still have to do a
129 * formatting step to write the regions into the iclog buffer. Writing the
130 * ophdrs during the iclog write means that we can support splitting large
131 * regions across iclog boundares without needing a change in the format of the
132 * item/region encapsulation.
133 *
134 * Hence what we need to do now is change the rewrite the vector array to point
135 * to the copied region inside the buffer we just allocated. This allows us to
136 * format the regions into the iclog as though they are being formatted
137 * directly out of the objects themselves.
138 */
139 static struct xfs_log_vec *
140 xlog_cil_prepare_log_vecs(
141 struct xfs_trans *tp)
142 {
143 struct xfs_log_item_desc *lidp;
144 struct xfs_log_vec *prev_lv = NULL;
145 struct xfs_log_vec *ret_lv = NULL;
146
147
148 /* Bail out if we didn't find a log item. */
149 if (list_empty(&tp->t_items)) {
150 ASSERT(0);
151 return NULL;
152 }
153
154 list_for_each_entry(lidp, &tp->t_items, lid_trans) {
155 struct xfs_log_item *lip = lidp->lid_item;
156 struct xfs_log_vec *lv;
157 int niovecs = 0;
158 int nbytes = 0;
159 int buf_size;
160 bool ordered = false;
161
162 /* Skip items which aren't dirty in this transaction. */
163 if (!(lidp->lid_flags & XFS_LID_DIRTY))
164 continue;
165
166 /* get number of vecs and size of data to be stored */
167 lip->li_ops->iop_size(lip, &niovecs, &nbytes);
168
169 /* Skip items that do not have any vectors for writing */
170 if (!niovecs)
171 continue;
172
173 /*
174 * Ordered items need to be tracked but we do not wish to write
175 * them. We need a logvec to track the object, but we do not
176 * need an iovec or buffer to be allocated for copying data.
177 */
178 if (niovecs == XFS_LOG_VEC_ORDERED) {
179 ordered = true;
180 niovecs = 0;
181 nbytes = 0;
182 }
183
184 /* calc buffer size */
185 buf_size = sizeof(struct xfs_log_vec) + nbytes +
186 niovecs * sizeof(struct xfs_log_iovec);
187
188 /* allocate new data chunk */
189 lv = kmem_zalloc(buf_size, KM_SLEEP|KM_NOFS);
190 lv->lv_item = lip;
191 lv->lv_size = buf_size;
192 lv->lv_niovecs = niovecs;
193 if (ordered) {
194 /* track as an ordered logvec */
195 ASSERT(lip->li_lv == NULL);
196 lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
197 goto insert;
198 }
199
200 /* The allocated iovec region lies beyond the log vector. */
201 lv->lv_iovecp = (struct xfs_log_iovec *)&lv[1];
202
203 /* The allocated data region lies beyond the iovec region */
204 lv->lv_buf = (char *)lv + buf_size - nbytes;
205
206 lv->lv_buf_len = xlog_cil_lv_item_format(lip, lv);
207 ASSERT(lv->lv_buf_len <= nbytes);
208 insert:
209 if (!ret_lv)
210 ret_lv = lv;
211 else
212 prev_lv->lv_next = lv;
213 prev_lv = lv;
214 }
215
216 return ret_lv;
217 }
218
219 /*
220 * Prepare the log item for insertion into the CIL. Calculate the difference in
221 * log space and vectors it will consume, and if it is a new item pin it as
222 * well.
223 */
224 STATIC void
225 xfs_cil_prepare_item(
226 struct xlog *log,
227 struct xfs_log_vec *lv,
228 int *len,
229 int *diff_iovecs)
230 {
231 struct xfs_log_vec *old = lv->lv_item->li_lv;
232
233 if (old) {
234 /* existing lv on log item, space used is a delta */
235 ASSERT((old->lv_buf && old->lv_buf_len && old->lv_niovecs) ||
236 old->lv_buf_len == XFS_LOG_VEC_ORDERED);
237
238 /*
239 * If the new item is ordered, keep the old one that is already
240 * tracking dirty or ordered regions
241 */
242 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
243 ASSERT(!lv->lv_buf);
244 kmem_free(lv);
245 return;
246 }
247
248 *len += lv->lv_buf_len - old->lv_buf_len;
249 *diff_iovecs += lv->lv_niovecs - old->lv_niovecs;
250 kmem_free(old);
251 } else {
252 /* new lv, must pin the log item */
253 ASSERT(!lv->lv_item->li_lv);
254
255 if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED) {
256 *len += lv->lv_buf_len;
257 *diff_iovecs += lv->lv_niovecs;
258 }
259 IOP_PIN(lv->lv_item);
260
261 }
262
263 /* attach new log vector to log item */
264 lv->lv_item->li_lv = lv;
265
266 /*
267 * If this is the first time the item is being committed to the
268 * CIL, store the sequence number on the log item so we can
269 * tell in future commits whether this is the first checkpoint
270 * the item is being committed into.
271 */
272 if (!lv->lv_item->li_seq)
273 lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence;
274 }
275
276 /*
277 * Insert the log items into the CIL and calculate the difference in space
278 * consumed by the item. Add the space to the checkpoint ticket and calculate
279 * if the change requires additional log metadata. If it does, take that space
280 * as well. Remove the amount of space we added to the checkpoint ticket from
281 * the current transaction ticket so that the accounting works out correctly.
282 */
283 static void
284 xlog_cil_insert_items(
285 struct xlog *log,
286 struct xfs_log_vec *log_vector,
287 struct xlog_ticket *ticket)
288 {
289 struct xfs_cil *cil = log->l_cilp;
290 struct xfs_cil_ctx *ctx = cil->xc_ctx;
291 struct xfs_log_vec *lv;
292 int len = 0;
293 int diff_iovecs = 0;
294 int iclog_space;
295
296 ASSERT(log_vector);
297
298 /*
299 * Do all the accounting aggregation and switching of log vectors
300 * around in a separate loop to the insertion of items into the CIL.
301 * Then we can do a separate loop to update the CIL within a single
302 * lock/unlock pair. This reduces the number of round trips on the CIL
303 * lock from O(nr_logvectors) to O(1) and greatly reduces the overall
304 * hold time for the transaction commit.
305 *
306 * If this is the first time the item is being placed into the CIL in
307 * this context, pin it so it can't be written to disk until the CIL is
308 * flushed to the iclog and the iclog written to disk.
309 *
310 * We can do this safely because the context can't checkpoint until we
311 * are done so it doesn't matter exactly how we update the CIL.
312 */
313 spin_lock(&cil->xc_cil_lock);
314 for (lv = log_vector; lv; ) {
315 struct xfs_log_vec *next = lv->lv_next;
316
317 ASSERT(lv->lv_item->li_lv || list_empty(&lv->lv_item->li_cil));
318 lv->lv_next = NULL;
319
320 /*
321 * xfs_cil_prepare_item() may free the lv, so move the item on
322 * the CIL first.
323 */
324 list_move_tail(&lv->lv_item->li_cil, &cil->xc_cil);
325 xfs_cil_prepare_item(log, lv, &len, &diff_iovecs);
326 lv = next;
327 }
328
329 /* account for space used by new iovec headers */
330 len += diff_iovecs * sizeof(xlog_op_header_t);
331 ctx->nvecs += diff_iovecs;
332
333 /*
334 * Now transfer enough transaction reservation to the context ticket
335 * for the checkpoint. The context ticket is special - the unit
336 * reservation has to grow as well as the current reservation as we
337 * steal from tickets so we can correctly determine the space used
338 * during the transaction commit.
339 */
340 if (ctx->ticket->t_curr_res == 0) {
341 /* first commit in checkpoint, steal the header reservation */
342 ASSERT(ticket->t_curr_res >= ctx->ticket->t_unit_res + len);
343 ctx->ticket->t_curr_res = ctx->ticket->t_unit_res;
344 ticket->t_curr_res -= ctx->ticket->t_unit_res;
345 }
346
347 /* do we need space for more log record headers? */
348 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
349 if (len > 0 && (ctx->space_used / iclog_space !=
350 (ctx->space_used + len) / iclog_space)) {
351 int hdrs;
352
353 hdrs = (len + iclog_space - 1) / iclog_space;
354 /* need to take into account split region headers, too */
355 hdrs *= log->l_iclog_hsize + sizeof(struct xlog_op_header);
356 ctx->ticket->t_unit_res += hdrs;
357 ctx->ticket->t_curr_res += hdrs;
358 ticket->t_curr_res -= hdrs;
359 ASSERT(ticket->t_curr_res >= len);
360 }
361 ticket->t_curr_res -= len;
362 ctx->space_used += len;
363
364 spin_unlock(&cil->xc_cil_lock);
365 }
366
367 static void
368 xlog_cil_free_logvec(
369 struct xfs_log_vec *log_vector)
370 {
371 struct xfs_log_vec *lv;
372
373 for (lv = log_vector; lv; ) {
374 struct xfs_log_vec *next = lv->lv_next;
375 kmem_free(lv);
376 lv = next;
377 }
378 }
379
380 /*
381 * Mark all items committed and clear busy extents. We free the log vector
382 * chains in a separate pass so that we unpin the log items as quickly as
383 * possible.
384 */
385 static void
386 xlog_cil_committed(
387 void *args,
388 int abort)
389 {
390 struct xfs_cil_ctx *ctx = args;
391 struct xfs_mount *mp = ctx->cil->xc_log->l_mp;
392
393 xfs_trans_committed_bulk(ctx->cil->xc_log->l_ailp, ctx->lv_chain,
394 ctx->start_lsn, abort);
395
396 xfs_extent_busy_sort(&ctx->busy_extents);
397 xfs_extent_busy_clear(mp, &ctx->busy_extents,
398 (mp->m_flags & XFS_MOUNT_DISCARD) && !abort);
399
400 spin_lock(&ctx->cil->xc_cil_lock);
401 list_del(&ctx->committing);
402 spin_unlock(&ctx->cil->xc_cil_lock);
403
404 xlog_cil_free_logvec(ctx->lv_chain);
405
406 if (!list_empty(&ctx->busy_extents)) {
407 ASSERT(mp->m_flags & XFS_MOUNT_DISCARD);
408
409 xfs_discard_extents(mp, &ctx->busy_extents);
410 xfs_extent_busy_clear(mp, &ctx->busy_extents, false);
411 }
412
413 kmem_free(ctx);
414 }
415
416 /*
417 * Push the Committed Item List to the log. If @push_seq flag is zero, then it
418 * is a background flush and so we can chose to ignore it. Otherwise, if the
419 * current sequence is the same as @push_seq we need to do a flush. If
420 * @push_seq is less than the current sequence, then it has already been
421 * flushed and we don't need to do anything - the caller will wait for it to
422 * complete if necessary.
423 *
424 * @push_seq is a value rather than a flag because that allows us to do an
425 * unlocked check of the sequence number for a match. Hence we can allows log
426 * forces to run racily and not issue pushes for the same sequence twice. If we
427 * get a race between multiple pushes for the same sequence they will block on
428 * the first one and then abort, hence avoiding needless pushes.
429 */
430 STATIC int
431 xlog_cil_push(
432 struct xlog *log)
433 {
434 struct xfs_cil *cil = log->l_cilp;
435 struct xfs_log_vec *lv;
436 struct xfs_cil_ctx *ctx;
437 struct xfs_cil_ctx *new_ctx;
438 struct xlog_in_core *commit_iclog;
439 struct xlog_ticket *tic;
440 int num_iovecs;
441 int error = 0;
442 struct xfs_trans_header thdr;
443 struct xfs_log_iovec lhdr;
444 struct xfs_log_vec lvhdr = { NULL };
445 xfs_lsn_t commit_lsn;
446 xfs_lsn_t push_seq;
447
448 if (!cil)
449 return 0;
450
451 new_ctx = kmem_zalloc(sizeof(*new_ctx), KM_SLEEP|KM_NOFS);
452 new_ctx->ticket = xlog_cil_ticket_alloc(log);
453
454 down_write(&cil->xc_ctx_lock);
455 ctx = cil->xc_ctx;
456
457 spin_lock(&cil->xc_cil_lock);
458 push_seq = cil->xc_push_seq;
459 ASSERT(push_seq <= ctx->sequence);
460
461 /*
462 * Check if we've anything to push. If there is nothing, then we don't
463 * move on to a new sequence number and so we have to be able to push
464 * this sequence again later.
465 */
466 if (list_empty(&cil->xc_cil)) {
467 cil->xc_push_seq = 0;
468 spin_unlock(&cil->xc_cil_lock);
469 goto out_skip;
470 }
471 spin_unlock(&cil->xc_cil_lock);
472
473
474 /* check for a previously pushed seqeunce */
475 if (push_seq < cil->xc_ctx->sequence)
476 goto out_skip;
477
478 /*
479 * pull all the log vectors off the items in the CIL, and
480 * remove the items from the CIL. We don't need the CIL lock
481 * here because it's only needed on the transaction commit
482 * side which is currently locked out by the flush lock.
483 */
484 lv = NULL;
485 num_iovecs = 0;
486 while (!list_empty(&cil->xc_cil)) {
487 struct xfs_log_item *item;
488
489 item = list_first_entry(&cil->xc_cil,
490 struct xfs_log_item, li_cil);
491 list_del_init(&item->li_cil);
492 if (!ctx->lv_chain)
493 ctx->lv_chain = item->li_lv;
494 else
495 lv->lv_next = item->li_lv;
496 lv = item->li_lv;
497 item->li_lv = NULL;
498 num_iovecs += lv->lv_niovecs;
499 }
500
501 /*
502 * initialise the new context and attach it to the CIL. Then attach
503 * the current context to the CIL committing lsit so it can be found
504 * during log forces to extract the commit lsn of the sequence that
505 * needs to be forced.
506 */
507 INIT_LIST_HEAD(&new_ctx->committing);
508 INIT_LIST_HEAD(&new_ctx->busy_extents);
509 new_ctx->sequence = ctx->sequence + 1;
510 new_ctx->cil = cil;
511 cil->xc_ctx = new_ctx;
512
513 /*
514 * mirror the new sequence into the cil structure so that we can do
515 * unlocked checks against the current sequence in log forces without
516 * risking deferencing a freed context pointer.
517 */
518 cil->xc_current_sequence = new_ctx->sequence;
519
520 /*
521 * The switch is now done, so we can drop the context lock and move out
522 * of a shared context. We can't just go straight to the commit record,
523 * though - we need to synchronise with previous and future commits so
524 * that the commit records are correctly ordered in the log to ensure
525 * that we process items during log IO completion in the correct order.
526 *
527 * For example, if we get an EFI in one checkpoint and the EFD in the
528 * next (e.g. due to log forces), we do not want the checkpoint with
529 * the EFD to be committed before the checkpoint with the EFI. Hence
530 * we must strictly order the commit records of the checkpoints so
531 * that: a) the checkpoint callbacks are attached to the iclogs in the
532 * correct order; and b) the checkpoints are replayed in correct order
533 * in log recovery.
534 *
535 * Hence we need to add this context to the committing context list so
536 * that higher sequences will wait for us to write out a commit record
537 * before they do.
538 */
539 spin_lock(&cil->xc_cil_lock);
540 list_add(&ctx->committing, &cil->xc_committing);
541 spin_unlock(&cil->xc_cil_lock);
542 up_write(&cil->xc_ctx_lock);
543
544 /*
545 * Build a checkpoint transaction header and write it to the log to
546 * begin the transaction. We need to account for the space used by the
547 * transaction header here as it is not accounted for in xlog_write().
548 *
549 * The LSN we need to pass to the log items on transaction commit is
550 * the LSN reported by the first log vector write. If we use the commit
551 * record lsn then we can move the tail beyond the grant write head.
552 */
553 tic = ctx->ticket;
554 thdr.th_magic = XFS_TRANS_HEADER_MAGIC;
555 thdr.th_type = XFS_TRANS_CHECKPOINT;
556 thdr.th_tid = tic->t_tid;
557 thdr.th_num_items = num_iovecs;
558 lhdr.i_addr = &thdr;
559 lhdr.i_len = sizeof(xfs_trans_header_t);
560 lhdr.i_type = XLOG_REG_TYPE_TRANSHDR;
561 tic->t_curr_res -= lhdr.i_len + sizeof(xlog_op_header_t);
562
563 lvhdr.lv_niovecs = 1;
564 lvhdr.lv_iovecp = &lhdr;
565 lvhdr.lv_next = ctx->lv_chain;
566
567 error = xlog_write(log, &lvhdr, tic, &ctx->start_lsn, NULL, 0);
568 if (error)
569 goto out_abort_free_ticket;
570
571 /*
572 * now that we've written the checkpoint into the log, strictly
573 * order the commit records so replay will get them in the right order.
574 */
575 restart:
576 spin_lock(&cil->xc_cil_lock);
577 list_for_each_entry(new_ctx, &cil->xc_committing, committing) {
578 /*
579 * Higher sequences will wait for this one so skip them.
580 * Don't wait for own own sequence, either.
581 */
582 if (new_ctx->sequence >= ctx->sequence)
583 continue;
584 if (!new_ctx->commit_lsn) {
585 /*
586 * It is still being pushed! Wait for the push to
587 * complete, then start again from the beginning.
588 */
589 xlog_wait(&cil->xc_commit_wait, &cil->xc_cil_lock);
590 goto restart;
591 }
592 }
593 spin_unlock(&cil->xc_cil_lock);
594
595 /* xfs_log_done always frees the ticket on error. */
596 commit_lsn = xfs_log_done(log->l_mp, tic, &commit_iclog, 0);
597 if (commit_lsn == -1)
598 goto out_abort;
599
600 /* attach all the transactions w/ busy extents to iclog */
601 ctx->log_cb.cb_func = xlog_cil_committed;
602 ctx->log_cb.cb_arg = ctx;
603 error = xfs_log_notify(log->l_mp, commit_iclog, &ctx->log_cb);
604 if (error)
605 goto out_abort;
606
607 /*
608 * now the checkpoint commit is complete and we've attached the
609 * callbacks to the iclog we can assign the commit LSN to the context
610 * and wake up anyone who is waiting for the commit to complete.
611 */
612 spin_lock(&cil->xc_cil_lock);
613 ctx->commit_lsn = commit_lsn;
614 wake_up_all(&cil->xc_commit_wait);
615 spin_unlock(&cil->xc_cil_lock);
616
617 /* release the hounds! */
618 return xfs_log_release_iclog(log->l_mp, commit_iclog);
619
620 out_skip:
621 up_write(&cil->xc_ctx_lock);
622 xfs_log_ticket_put(new_ctx->ticket);
623 kmem_free(new_ctx);
624 return 0;
625
626 out_abort_free_ticket:
627 xfs_log_ticket_put(tic);
628 out_abort:
629 xlog_cil_committed(ctx, XFS_LI_ABORTED);
630 return XFS_ERROR(EIO);
631 }
632
633 static void
634 xlog_cil_push_work(
635 struct work_struct *work)
636 {
637 struct xfs_cil *cil = container_of(work, struct xfs_cil,
638 xc_push_work);
639 xlog_cil_push(cil->xc_log);
640 }
641
642 /*
643 * We need to push CIL every so often so we don't cache more than we can fit in
644 * the log. The limit really is that a checkpoint can't be more than half the
645 * log (the current checkpoint is not allowed to overwrite the previous
646 * checkpoint), but commit latency and memory usage limit this to a smaller
647 * size.
648 */
649 static void
650 xlog_cil_push_background(
651 struct xlog *log)
652 {
653 struct xfs_cil *cil = log->l_cilp;
654
655 /*
656 * The cil won't be empty because we are called while holding the
657 * context lock so whatever we added to the CIL will still be there
658 */
659 ASSERT(!list_empty(&cil->xc_cil));
660
661 /*
662 * don't do a background push if we haven't used up all the
663 * space available yet.
664 */
665 if (cil->xc_ctx->space_used < XLOG_CIL_SPACE_LIMIT(log))
666 return;
667
668 spin_lock(&cil->xc_cil_lock);
669 if (cil->xc_push_seq < cil->xc_current_sequence) {
670 cil->xc_push_seq = cil->xc_current_sequence;
671 queue_work(log->l_mp->m_cil_workqueue, &cil->xc_push_work);
672 }
673 spin_unlock(&cil->xc_cil_lock);
674
675 }
676
677 static void
678 xlog_cil_push_foreground(
679 struct xlog *log,
680 xfs_lsn_t push_seq)
681 {
682 struct xfs_cil *cil = log->l_cilp;
683
684 if (!cil)
685 return;
686
687 ASSERT(push_seq && push_seq <= cil->xc_current_sequence);
688
689 /* start on any pending background push to minimise wait time on it */
690 flush_work(&cil->xc_push_work);
691
692 /*
693 * If the CIL is empty or we've already pushed the sequence then
694 * there's no work we need to do.
695 */
696 spin_lock(&cil->xc_cil_lock);
697 if (list_empty(&cil->xc_cil) || push_seq <= cil->xc_push_seq) {
698 spin_unlock(&cil->xc_cil_lock);
699 return;
700 }
701
702 cil->xc_push_seq = push_seq;
703 spin_unlock(&cil->xc_cil_lock);
704
705 /* do the push now */
706 xlog_cil_push(log);
707 }
708
709 /*
710 * Commit a transaction with the given vector to the Committed Item List.
711 *
712 * To do this, we need to format the item, pin it in memory if required and
713 * account for the space used by the transaction. Once we have done that we
714 * need to release the unused reservation for the transaction, attach the
715 * transaction to the checkpoint context so we carry the busy extents through
716 * to checkpoint completion, and then unlock all the items in the transaction.
717 *
718 * Called with the context lock already held in read mode to lock out
719 * background commit, returns without it held once background commits are
720 * allowed again.
721 */
722 int
723 xfs_log_commit_cil(
724 struct xfs_mount *mp,
725 struct xfs_trans *tp,
726 xfs_lsn_t *commit_lsn,
727 int flags)
728 {
729 struct xlog *log = mp->m_log;
730 int log_flags = 0;
731 struct xfs_log_vec *log_vector;
732
733 if (flags & XFS_TRANS_RELEASE_LOG_RES)
734 log_flags = XFS_LOG_REL_PERM_RESERV;
735
736 /*
737 * Do all the hard work of formatting items (including memory
738 * allocation) outside the CIL context lock. This prevents stalling CIL
739 * pushes when we are low on memory and a transaction commit spends a
740 * lot of time in memory reclaim.
741 */
742 log_vector = xlog_cil_prepare_log_vecs(tp);
743 if (!log_vector)
744 return ENOMEM;
745
746 /* lock out background commit */
747 down_read(&log->l_cilp->xc_ctx_lock);
748 if (commit_lsn)
749 *commit_lsn = log->l_cilp->xc_ctx->sequence;
750
751 /* xlog_cil_insert_items() destroys log_vector list */
752 xlog_cil_insert_items(log, log_vector, tp->t_ticket);
753
754 /* check we didn't blow the reservation */
755 if (tp->t_ticket->t_curr_res < 0)
756 xlog_print_tic_res(log->l_mp, tp->t_ticket);
757
758 /* attach the transaction to the CIL if it has any busy extents */
759 if (!list_empty(&tp->t_busy)) {
760 spin_lock(&log->l_cilp->xc_cil_lock);
761 list_splice_init(&tp->t_busy,
762 &log->l_cilp->xc_ctx->busy_extents);
763 spin_unlock(&log->l_cilp->xc_cil_lock);
764 }
765
766 tp->t_commit_lsn = *commit_lsn;
767 xfs_log_done(mp, tp->t_ticket, NULL, log_flags);
768 xfs_trans_unreserve_and_mod_sb(tp);
769
770 /*
771 * Once all the items of the transaction have been copied to the CIL,
772 * the items can be unlocked and freed.
773 *
774 * This needs to be done before we drop the CIL context lock because we
775 * have to update state in the log items and unlock them before they go
776 * to disk. If we don't, then the CIL checkpoint can race with us and
777 * we can run checkpoint completion before we've updated and unlocked
778 * the log items. This affects (at least) processing of stale buffers,
779 * inodes and EFIs.
780 */
781 xfs_trans_free_items(tp, *commit_lsn, 0);
782
783 xlog_cil_push_background(log);
784
785 up_read(&log->l_cilp->xc_ctx_lock);
786 return 0;
787 }
788
789 /*
790 * Conditionally push the CIL based on the sequence passed in.
791 *
792 * We only need to push if we haven't already pushed the sequence
793 * number given. Hence the only time we will trigger a push here is
794 * if the push sequence is the same as the current context.
795 *
796 * We return the current commit lsn to allow the callers to determine if a
797 * iclog flush is necessary following this call.
798 */
799 xfs_lsn_t
800 xlog_cil_force_lsn(
801 struct xlog *log,
802 xfs_lsn_t sequence)
803 {
804 struct xfs_cil *cil = log->l_cilp;
805 struct xfs_cil_ctx *ctx;
806 xfs_lsn_t commit_lsn = NULLCOMMITLSN;
807
808 ASSERT(sequence <= cil->xc_current_sequence);
809
810 /*
811 * check to see if we need to force out the current context.
812 * xlog_cil_push() handles racing pushes for the same sequence,
813 * so no need to deal with it here.
814 */
815 xlog_cil_push_foreground(log, sequence);
816
817 /*
818 * See if we can find a previous sequence still committing.
819 * We need to wait for all previous sequence commits to complete
820 * before allowing the force of push_seq to go ahead. Hence block
821 * on commits for those as well.
822 */
823 restart:
824 spin_lock(&cil->xc_cil_lock);
825 list_for_each_entry(ctx, &cil->xc_committing, committing) {
826 if (ctx->sequence > sequence)
827 continue;
828 if (!ctx->commit_lsn) {
829 /*
830 * It is still being pushed! Wait for the push to
831 * complete, then start again from the beginning.
832 */
833 xlog_wait(&cil->xc_commit_wait, &cil->xc_cil_lock);
834 goto restart;
835 }
836 if (ctx->sequence != sequence)
837 continue;
838 /* found it! */
839 commit_lsn = ctx->commit_lsn;
840 }
841 spin_unlock(&cil->xc_cil_lock);
842 return commit_lsn;
843 }
844
845 /*
846 * Check if the current log item was first committed in this sequence.
847 * We can't rely on just the log item being in the CIL, we have to check
848 * the recorded commit sequence number.
849 *
850 * Note: for this to be used in a non-racy manner, it has to be called with
851 * CIL flushing locked out. As a result, it should only be used during the
852 * transaction commit process when deciding what to format into the item.
853 */
854 bool
855 xfs_log_item_in_current_chkpt(
856 struct xfs_log_item *lip)
857 {
858 struct xfs_cil_ctx *ctx;
859
860 if (list_empty(&lip->li_cil))
861 return false;
862
863 ctx = lip->li_mountp->m_log->l_cilp->xc_ctx;
864
865 /*
866 * li_seq is written on the first commit of a log item to record the
867 * first checkpoint it is written to. Hence if it is different to the
868 * current sequence, we're in a new checkpoint.
869 */
870 if (XFS_LSN_CMP(lip->li_seq, ctx->sequence) != 0)
871 return false;
872 return true;
873 }
874
875 /*
876 * Perform initial CIL structure initialisation.
877 */
878 int
879 xlog_cil_init(
880 struct xlog *log)
881 {
882 struct xfs_cil *cil;
883 struct xfs_cil_ctx *ctx;
884
885 cil = kmem_zalloc(sizeof(*cil), KM_SLEEP|KM_MAYFAIL);
886 if (!cil)
887 return ENOMEM;
888
889 ctx = kmem_zalloc(sizeof(*ctx), KM_SLEEP|KM_MAYFAIL);
890 if (!ctx) {
891 kmem_free(cil);
892 return ENOMEM;
893 }
894
895 INIT_WORK(&cil->xc_push_work, xlog_cil_push_work);
896 INIT_LIST_HEAD(&cil->xc_cil);
897 INIT_LIST_HEAD(&cil->xc_committing);
898 spin_lock_init(&cil->xc_cil_lock);
899 init_rwsem(&cil->xc_ctx_lock);
900 init_waitqueue_head(&cil->xc_commit_wait);
901
902 INIT_LIST_HEAD(&ctx->committing);
903 INIT_LIST_HEAD(&ctx->busy_extents);
904 ctx->sequence = 1;
905 ctx->cil = cil;
906 cil->xc_ctx = ctx;
907 cil->xc_current_sequence = ctx->sequence;
908
909 cil->xc_log = log;
910 log->l_cilp = cil;
911 return 0;
912 }
913
914 void
915 xlog_cil_destroy(
916 struct xlog *log)
917 {
918 if (log->l_cilp->xc_ctx) {
919 if (log->l_cilp->xc_ctx->ticket)
920 xfs_log_ticket_put(log->l_cilp->xc_ctx->ticket);
921 kmem_free(log->l_cilp->xc_ctx);
922 }
923
924 ASSERT(list_empty(&log->l_cilp->xc_cil));
925 kmem_free(log->l_cilp);
926 }
927
This page took 0.128513 seconds and 6 git commands to generate.