xfs: recovery of swap extents operations for CRC filesystems
[deliverable/linux.git] / fs / xfs / xfs_log_recover.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_error.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_btree.h"
33 #include "xfs_dinode.h"
34 #include "xfs_inode.h"
35 #include "xfs_inode_item.h"
36 #include "xfs_alloc.h"
37 #include "xfs_ialloc.h"
38 #include "xfs_log_priv.h"
39 #include "xfs_buf_item.h"
40 #include "xfs_log_recover.h"
41 #include "xfs_extfree_item.h"
42 #include "xfs_trans_priv.h"
43 #include "xfs_quota.h"
44 #include "xfs_cksum.h"
45 #include "xfs_trace.h"
46 #include "xfs_icache.h"
47 #include "xfs_icreate_item.h"
48
49 /* Need all the magic numbers and buffer ops structures from these headers */
50 #include "xfs_symlink.h"
51 #include "xfs_da_btree.h"
52 #include "xfs_dir2_format.h"
53 #include "xfs_dir2.h"
54 #include "xfs_attr_leaf.h"
55 #include "xfs_attr_remote.h"
56
57 #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1)
58
59 STATIC int
60 xlog_find_zeroed(
61 struct xlog *,
62 xfs_daddr_t *);
63 STATIC int
64 xlog_clear_stale_blocks(
65 struct xlog *,
66 xfs_lsn_t);
67 #if defined(DEBUG)
68 STATIC void
69 xlog_recover_check_summary(
70 struct xlog *);
71 #else
72 #define xlog_recover_check_summary(log)
73 #endif
74
75 /*
76 * This structure is used during recovery to record the buf log items which
77 * have been canceled and should not be replayed.
78 */
79 struct xfs_buf_cancel {
80 xfs_daddr_t bc_blkno;
81 uint bc_len;
82 int bc_refcount;
83 struct list_head bc_list;
84 };
85
86 /*
87 * Sector aligned buffer routines for buffer create/read/write/access
88 */
89
90 /*
91 * Verify the given count of basic blocks is valid number of blocks
92 * to specify for an operation involving the given XFS log buffer.
93 * Returns nonzero if the count is valid, 0 otherwise.
94 */
95
96 static inline int
97 xlog_buf_bbcount_valid(
98 struct xlog *log,
99 int bbcount)
100 {
101 return bbcount > 0 && bbcount <= log->l_logBBsize;
102 }
103
104 /*
105 * Allocate a buffer to hold log data. The buffer needs to be able
106 * to map to a range of nbblks basic blocks at any valid (basic
107 * block) offset within the log.
108 */
109 STATIC xfs_buf_t *
110 xlog_get_bp(
111 struct xlog *log,
112 int nbblks)
113 {
114 struct xfs_buf *bp;
115
116 if (!xlog_buf_bbcount_valid(log, nbblks)) {
117 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
118 nbblks);
119 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
120 return NULL;
121 }
122
123 /*
124 * We do log I/O in units of log sectors (a power-of-2
125 * multiple of the basic block size), so we round up the
126 * requested size to accommodate the basic blocks required
127 * for complete log sectors.
128 *
129 * In addition, the buffer may be used for a non-sector-
130 * aligned block offset, in which case an I/O of the
131 * requested size could extend beyond the end of the
132 * buffer. If the requested size is only 1 basic block it
133 * will never straddle a sector boundary, so this won't be
134 * an issue. Nor will this be a problem if the log I/O is
135 * done in basic blocks (sector size 1). But otherwise we
136 * extend the buffer by one extra log sector to ensure
137 * there's space to accommodate this possibility.
138 */
139 if (nbblks > 1 && log->l_sectBBsize > 1)
140 nbblks += log->l_sectBBsize;
141 nbblks = round_up(nbblks, log->l_sectBBsize);
142
143 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
144 if (bp)
145 xfs_buf_unlock(bp);
146 return bp;
147 }
148
149 STATIC void
150 xlog_put_bp(
151 xfs_buf_t *bp)
152 {
153 xfs_buf_free(bp);
154 }
155
156 /*
157 * Return the address of the start of the given block number's data
158 * in a log buffer. The buffer covers a log sector-aligned region.
159 */
160 STATIC xfs_caddr_t
161 xlog_align(
162 struct xlog *log,
163 xfs_daddr_t blk_no,
164 int nbblks,
165 struct xfs_buf *bp)
166 {
167 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
168
169 ASSERT(offset + nbblks <= bp->b_length);
170 return bp->b_addr + BBTOB(offset);
171 }
172
173
174 /*
175 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
176 */
177 STATIC int
178 xlog_bread_noalign(
179 struct xlog *log,
180 xfs_daddr_t blk_no,
181 int nbblks,
182 struct xfs_buf *bp)
183 {
184 int error;
185
186 if (!xlog_buf_bbcount_valid(log, nbblks)) {
187 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
188 nbblks);
189 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
190 return EFSCORRUPTED;
191 }
192
193 blk_no = round_down(blk_no, log->l_sectBBsize);
194 nbblks = round_up(nbblks, log->l_sectBBsize);
195
196 ASSERT(nbblks > 0);
197 ASSERT(nbblks <= bp->b_length);
198
199 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
200 XFS_BUF_READ(bp);
201 bp->b_io_length = nbblks;
202 bp->b_error = 0;
203
204 xfsbdstrat(log->l_mp, bp);
205 error = xfs_buf_iowait(bp);
206 if (error)
207 xfs_buf_ioerror_alert(bp, __func__);
208 return error;
209 }
210
211 STATIC int
212 xlog_bread(
213 struct xlog *log,
214 xfs_daddr_t blk_no,
215 int nbblks,
216 struct xfs_buf *bp,
217 xfs_caddr_t *offset)
218 {
219 int error;
220
221 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
222 if (error)
223 return error;
224
225 *offset = xlog_align(log, blk_no, nbblks, bp);
226 return 0;
227 }
228
229 /*
230 * Read at an offset into the buffer. Returns with the buffer in it's original
231 * state regardless of the result of the read.
232 */
233 STATIC int
234 xlog_bread_offset(
235 struct xlog *log,
236 xfs_daddr_t blk_no, /* block to read from */
237 int nbblks, /* blocks to read */
238 struct xfs_buf *bp,
239 xfs_caddr_t offset)
240 {
241 xfs_caddr_t orig_offset = bp->b_addr;
242 int orig_len = BBTOB(bp->b_length);
243 int error, error2;
244
245 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
246 if (error)
247 return error;
248
249 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
250
251 /* must reset buffer pointer even on error */
252 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
253 if (error)
254 return error;
255 return error2;
256 }
257
258 /*
259 * Write out the buffer at the given block for the given number of blocks.
260 * The buffer is kept locked across the write and is returned locked.
261 * This can only be used for synchronous log writes.
262 */
263 STATIC int
264 xlog_bwrite(
265 struct xlog *log,
266 xfs_daddr_t blk_no,
267 int nbblks,
268 struct xfs_buf *bp)
269 {
270 int error;
271
272 if (!xlog_buf_bbcount_valid(log, nbblks)) {
273 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
274 nbblks);
275 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
276 return EFSCORRUPTED;
277 }
278
279 blk_no = round_down(blk_no, log->l_sectBBsize);
280 nbblks = round_up(nbblks, log->l_sectBBsize);
281
282 ASSERT(nbblks > 0);
283 ASSERT(nbblks <= bp->b_length);
284
285 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
286 XFS_BUF_ZEROFLAGS(bp);
287 xfs_buf_hold(bp);
288 xfs_buf_lock(bp);
289 bp->b_io_length = nbblks;
290 bp->b_error = 0;
291
292 error = xfs_bwrite(bp);
293 if (error)
294 xfs_buf_ioerror_alert(bp, __func__);
295 xfs_buf_relse(bp);
296 return error;
297 }
298
299 #ifdef DEBUG
300 /*
301 * dump debug superblock and log record information
302 */
303 STATIC void
304 xlog_header_check_dump(
305 xfs_mount_t *mp,
306 xlog_rec_header_t *head)
307 {
308 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d\n",
309 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
310 xfs_debug(mp, " log : uuid = %pU, fmt = %d\n",
311 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
312 }
313 #else
314 #define xlog_header_check_dump(mp, head)
315 #endif
316
317 /*
318 * check log record header for recovery
319 */
320 STATIC int
321 xlog_header_check_recover(
322 xfs_mount_t *mp,
323 xlog_rec_header_t *head)
324 {
325 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
326
327 /*
328 * IRIX doesn't write the h_fmt field and leaves it zeroed
329 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
330 * a dirty log created in IRIX.
331 */
332 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
333 xfs_warn(mp,
334 "dirty log written in incompatible format - can't recover");
335 xlog_header_check_dump(mp, head);
336 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
337 XFS_ERRLEVEL_HIGH, mp);
338 return XFS_ERROR(EFSCORRUPTED);
339 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
340 xfs_warn(mp,
341 "dirty log entry has mismatched uuid - can't recover");
342 xlog_header_check_dump(mp, head);
343 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
344 XFS_ERRLEVEL_HIGH, mp);
345 return XFS_ERROR(EFSCORRUPTED);
346 }
347 return 0;
348 }
349
350 /*
351 * read the head block of the log and check the header
352 */
353 STATIC int
354 xlog_header_check_mount(
355 xfs_mount_t *mp,
356 xlog_rec_header_t *head)
357 {
358 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
359
360 if (uuid_is_nil(&head->h_fs_uuid)) {
361 /*
362 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
363 * h_fs_uuid is nil, we assume this log was last mounted
364 * by IRIX and continue.
365 */
366 xfs_warn(mp, "nil uuid in log - IRIX style log");
367 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
368 xfs_warn(mp, "log has mismatched uuid - can't recover");
369 xlog_header_check_dump(mp, head);
370 XFS_ERROR_REPORT("xlog_header_check_mount",
371 XFS_ERRLEVEL_HIGH, mp);
372 return XFS_ERROR(EFSCORRUPTED);
373 }
374 return 0;
375 }
376
377 STATIC void
378 xlog_recover_iodone(
379 struct xfs_buf *bp)
380 {
381 if (bp->b_error) {
382 /*
383 * We're not going to bother about retrying
384 * this during recovery. One strike!
385 */
386 xfs_buf_ioerror_alert(bp, __func__);
387 xfs_force_shutdown(bp->b_target->bt_mount,
388 SHUTDOWN_META_IO_ERROR);
389 }
390 bp->b_iodone = NULL;
391 xfs_buf_ioend(bp, 0);
392 }
393
394 /*
395 * This routine finds (to an approximation) the first block in the physical
396 * log which contains the given cycle. It uses a binary search algorithm.
397 * Note that the algorithm can not be perfect because the disk will not
398 * necessarily be perfect.
399 */
400 STATIC int
401 xlog_find_cycle_start(
402 struct xlog *log,
403 struct xfs_buf *bp,
404 xfs_daddr_t first_blk,
405 xfs_daddr_t *last_blk,
406 uint cycle)
407 {
408 xfs_caddr_t offset;
409 xfs_daddr_t mid_blk;
410 xfs_daddr_t end_blk;
411 uint mid_cycle;
412 int error;
413
414 end_blk = *last_blk;
415 mid_blk = BLK_AVG(first_blk, end_blk);
416 while (mid_blk != first_blk && mid_blk != end_blk) {
417 error = xlog_bread(log, mid_blk, 1, bp, &offset);
418 if (error)
419 return error;
420 mid_cycle = xlog_get_cycle(offset);
421 if (mid_cycle == cycle)
422 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
423 else
424 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
425 mid_blk = BLK_AVG(first_blk, end_blk);
426 }
427 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
428 (mid_blk == end_blk && mid_blk-1 == first_blk));
429
430 *last_blk = end_blk;
431
432 return 0;
433 }
434
435 /*
436 * Check that a range of blocks does not contain stop_on_cycle_no.
437 * Fill in *new_blk with the block offset where such a block is
438 * found, or with -1 (an invalid block number) if there is no such
439 * block in the range. The scan needs to occur from front to back
440 * and the pointer into the region must be updated since a later
441 * routine will need to perform another test.
442 */
443 STATIC int
444 xlog_find_verify_cycle(
445 struct xlog *log,
446 xfs_daddr_t start_blk,
447 int nbblks,
448 uint stop_on_cycle_no,
449 xfs_daddr_t *new_blk)
450 {
451 xfs_daddr_t i, j;
452 uint cycle;
453 xfs_buf_t *bp;
454 xfs_daddr_t bufblks;
455 xfs_caddr_t buf = NULL;
456 int error = 0;
457
458 /*
459 * Greedily allocate a buffer big enough to handle the full
460 * range of basic blocks we'll be examining. If that fails,
461 * try a smaller size. We need to be able to read at least
462 * a log sector, or we're out of luck.
463 */
464 bufblks = 1 << ffs(nbblks);
465 while (bufblks > log->l_logBBsize)
466 bufblks >>= 1;
467 while (!(bp = xlog_get_bp(log, bufblks))) {
468 bufblks >>= 1;
469 if (bufblks < log->l_sectBBsize)
470 return ENOMEM;
471 }
472
473 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
474 int bcount;
475
476 bcount = min(bufblks, (start_blk + nbblks - i));
477
478 error = xlog_bread(log, i, bcount, bp, &buf);
479 if (error)
480 goto out;
481
482 for (j = 0; j < bcount; j++) {
483 cycle = xlog_get_cycle(buf);
484 if (cycle == stop_on_cycle_no) {
485 *new_blk = i+j;
486 goto out;
487 }
488
489 buf += BBSIZE;
490 }
491 }
492
493 *new_blk = -1;
494
495 out:
496 xlog_put_bp(bp);
497 return error;
498 }
499
500 /*
501 * Potentially backup over partial log record write.
502 *
503 * In the typical case, last_blk is the number of the block directly after
504 * a good log record. Therefore, we subtract one to get the block number
505 * of the last block in the given buffer. extra_bblks contains the number
506 * of blocks we would have read on a previous read. This happens when the
507 * last log record is split over the end of the physical log.
508 *
509 * extra_bblks is the number of blocks potentially verified on a previous
510 * call to this routine.
511 */
512 STATIC int
513 xlog_find_verify_log_record(
514 struct xlog *log,
515 xfs_daddr_t start_blk,
516 xfs_daddr_t *last_blk,
517 int extra_bblks)
518 {
519 xfs_daddr_t i;
520 xfs_buf_t *bp;
521 xfs_caddr_t offset = NULL;
522 xlog_rec_header_t *head = NULL;
523 int error = 0;
524 int smallmem = 0;
525 int num_blks = *last_blk - start_blk;
526 int xhdrs;
527
528 ASSERT(start_blk != 0 || *last_blk != start_blk);
529
530 if (!(bp = xlog_get_bp(log, num_blks))) {
531 if (!(bp = xlog_get_bp(log, 1)))
532 return ENOMEM;
533 smallmem = 1;
534 } else {
535 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
536 if (error)
537 goto out;
538 offset += ((num_blks - 1) << BBSHIFT);
539 }
540
541 for (i = (*last_blk) - 1; i >= 0; i--) {
542 if (i < start_blk) {
543 /* valid log record not found */
544 xfs_warn(log->l_mp,
545 "Log inconsistent (didn't find previous header)");
546 ASSERT(0);
547 error = XFS_ERROR(EIO);
548 goto out;
549 }
550
551 if (smallmem) {
552 error = xlog_bread(log, i, 1, bp, &offset);
553 if (error)
554 goto out;
555 }
556
557 head = (xlog_rec_header_t *)offset;
558
559 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
560 break;
561
562 if (!smallmem)
563 offset -= BBSIZE;
564 }
565
566 /*
567 * We hit the beginning of the physical log & still no header. Return
568 * to caller. If caller can handle a return of -1, then this routine
569 * will be called again for the end of the physical log.
570 */
571 if (i == -1) {
572 error = -1;
573 goto out;
574 }
575
576 /*
577 * We have the final block of the good log (the first block
578 * of the log record _before_ the head. So we check the uuid.
579 */
580 if ((error = xlog_header_check_mount(log->l_mp, head)))
581 goto out;
582
583 /*
584 * We may have found a log record header before we expected one.
585 * last_blk will be the 1st block # with a given cycle #. We may end
586 * up reading an entire log record. In this case, we don't want to
587 * reset last_blk. Only when last_blk points in the middle of a log
588 * record do we update last_blk.
589 */
590 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
591 uint h_size = be32_to_cpu(head->h_size);
592
593 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
594 if (h_size % XLOG_HEADER_CYCLE_SIZE)
595 xhdrs++;
596 } else {
597 xhdrs = 1;
598 }
599
600 if (*last_blk - i + extra_bblks !=
601 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
602 *last_blk = i;
603
604 out:
605 xlog_put_bp(bp);
606 return error;
607 }
608
609 /*
610 * Head is defined to be the point of the log where the next log write
611 * could go. This means that incomplete LR writes at the end are
612 * eliminated when calculating the head. We aren't guaranteed that previous
613 * LR have complete transactions. We only know that a cycle number of
614 * current cycle number -1 won't be present in the log if we start writing
615 * from our current block number.
616 *
617 * last_blk contains the block number of the first block with a given
618 * cycle number.
619 *
620 * Return: zero if normal, non-zero if error.
621 */
622 STATIC int
623 xlog_find_head(
624 struct xlog *log,
625 xfs_daddr_t *return_head_blk)
626 {
627 xfs_buf_t *bp;
628 xfs_caddr_t offset;
629 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
630 int num_scan_bblks;
631 uint first_half_cycle, last_half_cycle;
632 uint stop_on_cycle;
633 int error, log_bbnum = log->l_logBBsize;
634
635 /* Is the end of the log device zeroed? */
636 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
637 *return_head_blk = first_blk;
638
639 /* Is the whole lot zeroed? */
640 if (!first_blk) {
641 /* Linux XFS shouldn't generate totally zeroed logs -
642 * mkfs etc write a dummy unmount record to a fresh
643 * log so we can store the uuid in there
644 */
645 xfs_warn(log->l_mp, "totally zeroed log");
646 }
647
648 return 0;
649 } else if (error) {
650 xfs_warn(log->l_mp, "empty log check failed");
651 return error;
652 }
653
654 first_blk = 0; /* get cycle # of 1st block */
655 bp = xlog_get_bp(log, 1);
656 if (!bp)
657 return ENOMEM;
658
659 error = xlog_bread(log, 0, 1, bp, &offset);
660 if (error)
661 goto bp_err;
662
663 first_half_cycle = xlog_get_cycle(offset);
664
665 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
666 error = xlog_bread(log, last_blk, 1, bp, &offset);
667 if (error)
668 goto bp_err;
669
670 last_half_cycle = xlog_get_cycle(offset);
671 ASSERT(last_half_cycle != 0);
672
673 /*
674 * If the 1st half cycle number is equal to the last half cycle number,
675 * then the entire log is stamped with the same cycle number. In this
676 * case, head_blk can't be set to zero (which makes sense). The below
677 * math doesn't work out properly with head_blk equal to zero. Instead,
678 * we set it to log_bbnum which is an invalid block number, but this
679 * value makes the math correct. If head_blk doesn't changed through
680 * all the tests below, *head_blk is set to zero at the very end rather
681 * than log_bbnum. In a sense, log_bbnum and zero are the same block
682 * in a circular file.
683 */
684 if (first_half_cycle == last_half_cycle) {
685 /*
686 * In this case we believe that the entire log should have
687 * cycle number last_half_cycle. We need to scan backwards
688 * from the end verifying that there are no holes still
689 * containing last_half_cycle - 1. If we find such a hole,
690 * then the start of that hole will be the new head. The
691 * simple case looks like
692 * x | x ... | x - 1 | x
693 * Another case that fits this picture would be
694 * x | x + 1 | x ... | x
695 * In this case the head really is somewhere at the end of the
696 * log, as one of the latest writes at the beginning was
697 * incomplete.
698 * One more case is
699 * x | x + 1 | x ... | x - 1 | x
700 * This is really the combination of the above two cases, and
701 * the head has to end up at the start of the x-1 hole at the
702 * end of the log.
703 *
704 * In the 256k log case, we will read from the beginning to the
705 * end of the log and search for cycle numbers equal to x-1.
706 * We don't worry about the x+1 blocks that we encounter,
707 * because we know that they cannot be the head since the log
708 * started with x.
709 */
710 head_blk = log_bbnum;
711 stop_on_cycle = last_half_cycle - 1;
712 } else {
713 /*
714 * In this case we want to find the first block with cycle
715 * number matching last_half_cycle. We expect the log to be
716 * some variation on
717 * x + 1 ... | x ... | x
718 * The first block with cycle number x (last_half_cycle) will
719 * be where the new head belongs. First we do a binary search
720 * for the first occurrence of last_half_cycle. The binary
721 * search may not be totally accurate, so then we scan back
722 * from there looking for occurrences of last_half_cycle before
723 * us. If that backwards scan wraps around the beginning of
724 * the log, then we look for occurrences of last_half_cycle - 1
725 * at the end of the log. The cases we're looking for look
726 * like
727 * v binary search stopped here
728 * x + 1 ... | x | x + 1 | x ... | x
729 * ^ but we want to locate this spot
730 * or
731 * <---------> less than scan distance
732 * x + 1 ... | x ... | x - 1 | x
733 * ^ we want to locate this spot
734 */
735 stop_on_cycle = last_half_cycle;
736 if ((error = xlog_find_cycle_start(log, bp, first_blk,
737 &head_blk, last_half_cycle)))
738 goto bp_err;
739 }
740
741 /*
742 * Now validate the answer. Scan back some number of maximum possible
743 * blocks and make sure each one has the expected cycle number. The
744 * maximum is determined by the total possible amount of buffering
745 * in the in-core log. The following number can be made tighter if
746 * we actually look at the block size of the filesystem.
747 */
748 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
749 if (head_blk >= num_scan_bblks) {
750 /*
751 * We are guaranteed that the entire check can be performed
752 * in one buffer.
753 */
754 start_blk = head_blk - num_scan_bblks;
755 if ((error = xlog_find_verify_cycle(log,
756 start_blk, num_scan_bblks,
757 stop_on_cycle, &new_blk)))
758 goto bp_err;
759 if (new_blk != -1)
760 head_blk = new_blk;
761 } else { /* need to read 2 parts of log */
762 /*
763 * We are going to scan backwards in the log in two parts.
764 * First we scan the physical end of the log. In this part
765 * of the log, we are looking for blocks with cycle number
766 * last_half_cycle - 1.
767 * If we find one, then we know that the log starts there, as
768 * we've found a hole that didn't get written in going around
769 * the end of the physical log. The simple case for this is
770 * x + 1 ... | x ... | x - 1 | x
771 * <---------> less than scan distance
772 * If all of the blocks at the end of the log have cycle number
773 * last_half_cycle, then we check the blocks at the start of
774 * the log looking for occurrences of last_half_cycle. If we
775 * find one, then our current estimate for the location of the
776 * first occurrence of last_half_cycle is wrong and we move
777 * back to the hole we've found. This case looks like
778 * x + 1 ... | x | x + 1 | x ...
779 * ^ binary search stopped here
780 * Another case we need to handle that only occurs in 256k
781 * logs is
782 * x + 1 ... | x ... | x+1 | x ...
783 * ^ binary search stops here
784 * In a 256k log, the scan at the end of the log will see the
785 * x + 1 blocks. We need to skip past those since that is
786 * certainly not the head of the log. By searching for
787 * last_half_cycle-1 we accomplish that.
788 */
789 ASSERT(head_blk <= INT_MAX &&
790 (xfs_daddr_t) num_scan_bblks >= head_blk);
791 start_blk = log_bbnum - (num_scan_bblks - head_blk);
792 if ((error = xlog_find_verify_cycle(log, start_blk,
793 num_scan_bblks - (int)head_blk,
794 (stop_on_cycle - 1), &new_blk)))
795 goto bp_err;
796 if (new_blk != -1) {
797 head_blk = new_blk;
798 goto validate_head;
799 }
800
801 /*
802 * Scan beginning of log now. The last part of the physical
803 * log is good. This scan needs to verify that it doesn't find
804 * the last_half_cycle.
805 */
806 start_blk = 0;
807 ASSERT(head_blk <= INT_MAX);
808 if ((error = xlog_find_verify_cycle(log,
809 start_blk, (int)head_blk,
810 stop_on_cycle, &new_blk)))
811 goto bp_err;
812 if (new_blk != -1)
813 head_blk = new_blk;
814 }
815
816 validate_head:
817 /*
818 * Now we need to make sure head_blk is not pointing to a block in
819 * the middle of a log record.
820 */
821 num_scan_bblks = XLOG_REC_SHIFT(log);
822 if (head_blk >= num_scan_bblks) {
823 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
824
825 /* start ptr at last block ptr before head_blk */
826 if ((error = xlog_find_verify_log_record(log, start_blk,
827 &head_blk, 0)) == -1) {
828 error = XFS_ERROR(EIO);
829 goto bp_err;
830 } else if (error)
831 goto bp_err;
832 } else {
833 start_blk = 0;
834 ASSERT(head_blk <= INT_MAX);
835 if ((error = xlog_find_verify_log_record(log, start_blk,
836 &head_blk, 0)) == -1) {
837 /* We hit the beginning of the log during our search */
838 start_blk = log_bbnum - (num_scan_bblks - head_blk);
839 new_blk = log_bbnum;
840 ASSERT(start_blk <= INT_MAX &&
841 (xfs_daddr_t) log_bbnum-start_blk >= 0);
842 ASSERT(head_blk <= INT_MAX);
843 if ((error = xlog_find_verify_log_record(log,
844 start_blk, &new_blk,
845 (int)head_blk)) == -1) {
846 error = XFS_ERROR(EIO);
847 goto bp_err;
848 } else if (error)
849 goto bp_err;
850 if (new_blk != log_bbnum)
851 head_blk = new_blk;
852 } else if (error)
853 goto bp_err;
854 }
855
856 xlog_put_bp(bp);
857 if (head_blk == log_bbnum)
858 *return_head_blk = 0;
859 else
860 *return_head_blk = head_blk;
861 /*
862 * When returning here, we have a good block number. Bad block
863 * means that during a previous crash, we didn't have a clean break
864 * from cycle number N to cycle number N-1. In this case, we need
865 * to find the first block with cycle number N-1.
866 */
867 return 0;
868
869 bp_err:
870 xlog_put_bp(bp);
871
872 if (error)
873 xfs_warn(log->l_mp, "failed to find log head");
874 return error;
875 }
876
877 /*
878 * Find the sync block number or the tail of the log.
879 *
880 * This will be the block number of the last record to have its
881 * associated buffers synced to disk. Every log record header has
882 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
883 * to get a sync block number. The only concern is to figure out which
884 * log record header to believe.
885 *
886 * The following algorithm uses the log record header with the largest
887 * lsn. The entire log record does not need to be valid. We only care
888 * that the header is valid.
889 *
890 * We could speed up search by using current head_blk buffer, but it is not
891 * available.
892 */
893 STATIC int
894 xlog_find_tail(
895 struct xlog *log,
896 xfs_daddr_t *head_blk,
897 xfs_daddr_t *tail_blk)
898 {
899 xlog_rec_header_t *rhead;
900 xlog_op_header_t *op_head;
901 xfs_caddr_t offset = NULL;
902 xfs_buf_t *bp;
903 int error, i, found;
904 xfs_daddr_t umount_data_blk;
905 xfs_daddr_t after_umount_blk;
906 xfs_lsn_t tail_lsn;
907 int hblks;
908
909 found = 0;
910
911 /*
912 * Find previous log record
913 */
914 if ((error = xlog_find_head(log, head_blk)))
915 return error;
916
917 bp = xlog_get_bp(log, 1);
918 if (!bp)
919 return ENOMEM;
920 if (*head_blk == 0) { /* special case */
921 error = xlog_bread(log, 0, 1, bp, &offset);
922 if (error)
923 goto done;
924
925 if (xlog_get_cycle(offset) == 0) {
926 *tail_blk = 0;
927 /* leave all other log inited values alone */
928 goto done;
929 }
930 }
931
932 /*
933 * Search backwards looking for log record header block
934 */
935 ASSERT(*head_blk < INT_MAX);
936 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
937 error = xlog_bread(log, i, 1, bp, &offset);
938 if (error)
939 goto done;
940
941 if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
942 found = 1;
943 break;
944 }
945 }
946 /*
947 * If we haven't found the log record header block, start looking
948 * again from the end of the physical log. XXXmiken: There should be
949 * a check here to make sure we didn't search more than N blocks in
950 * the previous code.
951 */
952 if (!found) {
953 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
954 error = xlog_bread(log, i, 1, bp, &offset);
955 if (error)
956 goto done;
957
958 if (*(__be32 *)offset ==
959 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
960 found = 2;
961 break;
962 }
963 }
964 }
965 if (!found) {
966 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
967 xlog_put_bp(bp);
968 ASSERT(0);
969 return XFS_ERROR(EIO);
970 }
971
972 /* find blk_no of tail of log */
973 rhead = (xlog_rec_header_t *)offset;
974 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
975
976 /*
977 * Reset log values according to the state of the log when we
978 * crashed. In the case where head_blk == 0, we bump curr_cycle
979 * one because the next write starts a new cycle rather than
980 * continuing the cycle of the last good log record. At this
981 * point we have guaranteed that all partial log records have been
982 * accounted for. Therefore, we know that the last good log record
983 * written was complete and ended exactly on the end boundary
984 * of the physical log.
985 */
986 log->l_prev_block = i;
987 log->l_curr_block = (int)*head_blk;
988 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
989 if (found == 2)
990 log->l_curr_cycle++;
991 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
992 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
993 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
994 BBTOB(log->l_curr_block));
995 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
996 BBTOB(log->l_curr_block));
997
998 /*
999 * Look for unmount record. If we find it, then we know there
1000 * was a clean unmount. Since 'i' could be the last block in
1001 * the physical log, we convert to a log block before comparing
1002 * to the head_blk.
1003 *
1004 * Save the current tail lsn to use to pass to
1005 * xlog_clear_stale_blocks() below. We won't want to clear the
1006 * unmount record if there is one, so we pass the lsn of the
1007 * unmount record rather than the block after it.
1008 */
1009 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1010 int h_size = be32_to_cpu(rhead->h_size);
1011 int h_version = be32_to_cpu(rhead->h_version);
1012
1013 if ((h_version & XLOG_VERSION_2) &&
1014 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1015 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1016 if (h_size % XLOG_HEADER_CYCLE_SIZE)
1017 hblks++;
1018 } else {
1019 hblks = 1;
1020 }
1021 } else {
1022 hblks = 1;
1023 }
1024 after_umount_blk = (i + hblks + (int)
1025 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1026 tail_lsn = atomic64_read(&log->l_tail_lsn);
1027 if (*head_blk == after_umount_blk &&
1028 be32_to_cpu(rhead->h_num_logops) == 1) {
1029 umount_data_blk = (i + hblks) % log->l_logBBsize;
1030 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1031 if (error)
1032 goto done;
1033
1034 op_head = (xlog_op_header_t *)offset;
1035 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1036 /*
1037 * Set tail and last sync so that newly written
1038 * log records will point recovery to after the
1039 * current unmount record.
1040 */
1041 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1042 log->l_curr_cycle, after_umount_blk);
1043 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1044 log->l_curr_cycle, after_umount_blk);
1045 *tail_blk = after_umount_blk;
1046
1047 /*
1048 * Note that the unmount was clean. If the unmount
1049 * was not clean, we need to know this to rebuild the
1050 * superblock counters from the perag headers if we
1051 * have a filesystem using non-persistent counters.
1052 */
1053 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1054 }
1055 }
1056
1057 /*
1058 * Make sure that there are no blocks in front of the head
1059 * with the same cycle number as the head. This can happen
1060 * because we allow multiple outstanding log writes concurrently,
1061 * and the later writes might make it out before earlier ones.
1062 *
1063 * We use the lsn from before modifying it so that we'll never
1064 * overwrite the unmount record after a clean unmount.
1065 *
1066 * Do this only if we are going to recover the filesystem
1067 *
1068 * NOTE: This used to say "if (!readonly)"
1069 * However on Linux, we can & do recover a read-only filesystem.
1070 * We only skip recovery if NORECOVERY is specified on mount,
1071 * in which case we would not be here.
1072 *
1073 * But... if the -device- itself is readonly, just skip this.
1074 * We can't recover this device anyway, so it won't matter.
1075 */
1076 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1077 error = xlog_clear_stale_blocks(log, tail_lsn);
1078
1079 done:
1080 xlog_put_bp(bp);
1081
1082 if (error)
1083 xfs_warn(log->l_mp, "failed to locate log tail");
1084 return error;
1085 }
1086
1087 /*
1088 * Is the log zeroed at all?
1089 *
1090 * The last binary search should be changed to perform an X block read
1091 * once X becomes small enough. You can then search linearly through
1092 * the X blocks. This will cut down on the number of reads we need to do.
1093 *
1094 * If the log is partially zeroed, this routine will pass back the blkno
1095 * of the first block with cycle number 0. It won't have a complete LR
1096 * preceding it.
1097 *
1098 * Return:
1099 * 0 => the log is completely written to
1100 * -1 => use *blk_no as the first block of the log
1101 * >0 => error has occurred
1102 */
1103 STATIC int
1104 xlog_find_zeroed(
1105 struct xlog *log,
1106 xfs_daddr_t *blk_no)
1107 {
1108 xfs_buf_t *bp;
1109 xfs_caddr_t offset;
1110 uint first_cycle, last_cycle;
1111 xfs_daddr_t new_blk, last_blk, start_blk;
1112 xfs_daddr_t num_scan_bblks;
1113 int error, log_bbnum = log->l_logBBsize;
1114
1115 *blk_no = 0;
1116
1117 /* check totally zeroed log */
1118 bp = xlog_get_bp(log, 1);
1119 if (!bp)
1120 return ENOMEM;
1121 error = xlog_bread(log, 0, 1, bp, &offset);
1122 if (error)
1123 goto bp_err;
1124
1125 first_cycle = xlog_get_cycle(offset);
1126 if (first_cycle == 0) { /* completely zeroed log */
1127 *blk_no = 0;
1128 xlog_put_bp(bp);
1129 return -1;
1130 }
1131
1132 /* check partially zeroed log */
1133 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1134 if (error)
1135 goto bp_err;
1136
1137 last_cycle = xlog_get_cycle(offset);
1138 if (last_cycle != 0) { /* log completely written to */
1139 xlog_put_bp(bp);
1140 return 0;
1141 } else if (first_cycle != 1) {
1142 /*
1143 * If the cycle of the last block is zero, the cycle of
1144 * the first block must be 1. If it's not, maybe we're
1145 * not looking at a log... Bail out.
1146 */
1147 xfs_warn(log->l_mp,
1148 "Log inconsistent or not a log (last==0, first!=1)");
1149 error = XFS_ERROR(EINVAL);
1150 goto bp_err;
1151 }
1152
1153 /* we have a partially zeroed log */
1154 last_blk = log_bbnum-1;
1155 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1156 goto bp_err;
1157
1158 /*
1159 * Validate the answer. Because there is no way to guarantee that
1160 * the entire log is made up of log records which are the same size,
1161 * we scan over the defined maximum blocks. At this point, the maximum
1162 * is not chosen to mean anything special. XXXmiken
1163 */
1164 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1165 ASSERT(num_scan_bblks <= INT_MAX);
1166
1167 if (last_blk < num_scan_bblks)
1168 num_scan_bblks = last_blk;
1169 start_blk = last_blk - num_scan_bblks;
1170
1171 /*
1172 * We search for any instances of cycle number 0 that occur before
1173 * our current estimate of the head. What we're trying to detect is
1174 * 1 ... | 0 | 1 | 0...
1175 * ^ binary search ends here
1176 */
1177 if ((error = xlog_find_verify_cycle(log, start_blk,
1178 (int)num_scan_bblks, 0, &new_blk)))
1179 goto bp_err;
1180 if (new_blk != -1)
1181 last_blk = new_blk;
1182
1183 /*
1184 * Potentially backup over partial log record write. We don't need
1185 * to search the end of the log because we know it is zero.
1186 */
1187 if ((error = xlog_find_verify_log_record(log, start_blk,
1188 &last_blk, 0)) == -1) {
1189 error = XFS_ERROR(EIO);
1190 goto bp_err;
1191 } else if (error)
1192 goto bp_err;
1193
1194 *blk_no = last_blk;
1195 bp_err:
1196 xlog_put_bp(bp);
1197 if (error)
1198 return error;
1199 return -1;
1200 }
1201
1202 /*
1203 * These are simple subroutines used by xlog_clear_stale_blocks() below
1204 * to initialize a buffer full of empty log record headers and write
1205 * them into the log.
1206 */
1207 STATIC void
1208 xlog_add_record(
1209 struct xlog *log,
1210 xfs_caddr_t buf,
1211 int cycle,
1212 int block,
1213 int tail_cycle,
1214 int tail_block)
1215 {
1216 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1217
1218 memset(buf, 0, BBSIZE);
1219 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1220 recp->h_cycle = cpu_to_be32(cycle);
1221 recp->h_version = cpu_to_be32(
1222 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1223 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1224 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1225 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1226 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1227 }
1228
1229 STATIC int
1230 xlog_write_log_records(
1231 struct xlog *log,
1232 int cycle,
1233 int start_block,
1234 int blocks,
1235 int tail_cycle,
1236 int tail_block)
1237 {
1238 xfs_caddr_t offset;
1239 xfs_buf_t *bp;
1240 int balign, ealign;
1241 int sectbb = log->l_sectBBsize;
1242 int end_block = start_block + blocks;
1243 int bufblks;
1244 int error = 0;
1245 int i, j = 0;
1246
1247 /*
1248 * Greedily allocate a buffer big enough to handle the full
1249 * range of basic blocks to be written. If that fails, try
1250 * a smaller size. We need to be able to write at least a
1251 * log sector, or we're out of luck.
1252 */
1253 bufblks = 1 << ffs(blocks);
1254 while (bufblks > log->l_logBBsize)
1255 bufblks >>= 1;
1256 while (!(bp = xlog_get_bp(log, bufblks))) {
1257 bufblks >>= 1;
1258 if (bufblks < sectbb)
1259 return ENOMEM;
1260 }
1261
1262 /* We may need to do a read at the start to fill in part of
1263 * the buffer in the starting sector not covered by the first
1264 * write below.
1265 */
1266 balign = round_down(start_block, sectbb);
1267 if (balign != start_block) {
1268 error = xlog_bread_noalign(log, start_block, 1, bp);
1269 if (error)
1270 goto out_put_bp;
1271
1272 j = start_block - balign;
1273 }
1274
1275 for (i = start_block; i < end_block; i += bufblks) {
1276 int bcount, endcount;
1277
1278 bcount = min(bufblks, end_block - start_block);
1279 endcount = bcount - j;
1280
1281 /* We may need to do a read at the end to fill in part of
1282 * the buffer in the final sector not covered by the write.
1283 * If this is the same sector as the above read, skip it.
1284 */
1285 ealign = round_down(end_block, sectbb);
1286 if (j == 0 && (start_block + endcount > ealign)) {
1287 offset = bp->b_addr + BBTOB(ealign - start_block);
1288 error = xlog_bread_offset(log, ealign, sectbb,
1289 bp, offset);
1290 if (error)
1291 break;
1292
1293 }
1294
1295 offset = xlog_align(log, start_block, endcount, bp);
1296 for (; j < endcount; j++) {
1297 xlog_add_record(log, offset, cycle, i+j,
1298 tail_cycle, tail_block);
1299 offset += BBSIZE;
1300 }
1301 error = xlog_bwrite(log, start_block, endcount, bp);
1302 if (error)
1303 break;
1304 start_block += endcount;
1305 j = 0;
1306 }
1307
1308 out_put_bp:
1309 xlog_put_bp(bp);
1310 return error;
1311 }
1312
1313 /*
1314 * This routine is called to blow away any incomplete log writes out
1315 * in front of the log head. We do this so that we won't become confused
1316 * if we come up, write only a little bit more, and then crash again.
1317 * If we leave the partial log records out there, this situation could
1318 * cause us to think those partial writes are valid blocks since they
1319 * have the current cycle number. We get rid of them by overwriting them
1320 * with empty log records with the old cycle number rather than the
1321 * current one.
1322 *
1323 * The tail lsn is passed in rather than taken from
1324 * the log so that we will not write over the unmount record after a
1325 * clean unmount in a 512 block log. Doing so would leave the log without
1326 * any valid log records in it until a new one was written. If we crashed
1327 * during that time we would not be able to recover.
1328 */
1329 STATIC int
1330 xlog_clear_stale_blocks(
1331 struct xlog *log,
1332 xfs_lsn_t tail_lsn)
1333 {
1334 int tail_cycle, head_cycle;
1335 int tail_block, head_block;
1336 int tail_distance, max_distance;
1337 int distance;
1338 int error;
1339
1340 tail_cycle = CYCLE_LSN(tail_lsn);
1341 tail_block = BLOCK_LSN(tail_lsn);
1342 head_cycle = log->l_curr_cycle;
1343 head_block = log->l_curr_block;
1344
1345 /*
1346 * Figure out the distance between the new head of the log
1347 * and the tail. We want to write over any blocks beyond the
1348 * head that we may have written just before the crash, but
1349 * we don't want to overwrite the tail of the log.
1350 */
1351 if (head_cycle == tail_cycle) {
1352 /*
1353 * The tail is behind the head in the physical log,
1354 * so the distance from the head to the tail is the
1355 * distance from the head to the end of the log plus
1356 * the distance from the beginning of the log to the
1357 * tail.
1358 */
1359 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1360 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1361 XFS_ERRLEVEL_LOW, log->l_mp);
1362 return XFS_ERROR(EFSCORRUPTED);
1363 }
1364 tail_distance = tail_block + (log->l_logBBsize - head_block);
1365 } else {
1366 /*
1367 * The head is behind the tail in the physical log,
1368 * so the distance from the head to the tail is just
1369 * the tail block minus the head block.
1370 */
1371 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1372 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1373 XFS_ERRLEVEL_LOW, log->l_mp);
1374 return XFS_ERROR(EFSCORRUPTED);
1375 }
1376 tail_distance = tail_block - head_block;
1377 }
1378
1379 /*
1380 * If the head is right up against the tail, we can't clear
1381 * anything.
1382 */
1383 if (tail_distance <= 0) {
1384 ASSERT(tail_distance == 0);
1385 return 0;
1386 }
1387
1388 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1389 /*
1390 * Take the smaller of the maximum amount of outstanding I/O
1391 * we could have and the distance to the tail to clear out.
1392 * We take the smaller so that we don't overwrite the tail and
1393 * we don't waste all day writing from the head to the tail
1394 * for no reason.
1395 */
1396 max_distance = MIN(max_distance, tail_distance);
1397
1398 if ((head_block + max_distance) <= log->l_logBBsize) {
1399 /*
1400 * We can stomp all the blocks we need to without
1401 * wrapping around the end of the log. Just do it
1402 * in a single write. Use the cycle number of the
1403 * current cycle minus one so that the log will look like:
1404 * n ... | n - 1 ...
1405 */
1406 error = xlog_write_log_records(log, (head_cycle - 1),
1407 head_block, max_distance, tail_cycle,
1408 tail_block);
1409 if (error)
1410 return error;
1411 } else {
1412 /*
1413 * We need to wrap around the end of the physical log in
1414 * order to clear all the blocks. Do it in two separate
1415 * I/Os. The first write should be from the head to the
1416 * end of the physical log, and it should use the current
1417 * cycle number minus one just like above.
1418 */
1419 distance = log->l_logBBsize - head_block;
1420 error = xlog_write_log_records(log, (head_cycle - 1),
1421 head_block, distance, tail_cycle,
1422 tail_block);
1423
1424 if (error)
1425 return error;
1426
1427 /*
1428 * Now write the blocks at the start of the physical log.
1429 * This writes the remainder of the blocks we want to clear.
1430 * It uses the current cycle number since we're now on the
1431 * same cycle as the head so that we get:
1432 * n ... n ... | n - 1 ...
1433 * ^^^^^ blocks we're writing
1434 */
1435 distance = max_distance - (log->l_logBBsize - head_block);
1436 error = xlog_write_log_records(log, head_cycle, 0, distance,
1437 tail_cycle, tail_block);
1438 if (error)
1439 return error;
1440 }
1441
1442 return 0;
1443 }
1444
1445 /******************************************************************************
1446 *
1447 * Log recover routines
1448 *
1449 ******************************************************************************
1450 */
1451
1452 STATIC xlog_recover_t *
1453 xlog_recover_find_tid(
1454 struct hlist_head *head,
1455 xlog_tid_t tid)
1456 {
1457 xlog_recover_t *trans;
1458
1459 hlist_for_each_entry(trans, head, r_list) {
1460 if (trans->r_log_tid == tid)
1461 return trans;
1462 }
1463 return NULL;
1464 }
1465
1466 STATIC void
1467 xlog_recover_new_tid(
1468 struct hlist_head *head,
1469 xlog_tid_t tid,
1470 xfs_lsn_t lsn)
1471 {
1472 xlog_recover_t *trans;
1473
1474 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1475 trans->r_log_tid = tid;
1476 trans->r_lsn = lsn;
1477 INIT_LIST_HEAD(&trans->r_itemq);
1478
1479 INIT_HLIST_NODE(&trans->r_list);
1480 hlist_add_head(&trans->r_list, head);
1481 }
1482
1483 STATIC void
1484 xlog_recover_add_item(
1485 struct list_head *head)
1486 {
1487 xlog_recover_item_t *item;
1488
1489 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1490 INIT_LIST_HEAD(&item->ri_list);
1491 list_add_tail(&item->ri_list, head);
1492 }
1493
1494 STATIC int
1495 xlog_recover_add_to_cont_trans(
1496 struct xlog *log,
1497 struct xlog_recover *trans,
1498 xfs_caddr_t dp,
1499 int len)
1500 {
1501 xlog_recover_item_t *item;
1502 xfs_caddr_t ptr, old_ptr;
1503 int old_len;
1504
1505 if (list_empty(&trans->r_itemq)) {
1506 /* finish copying rest of trans header */
1507 xlog_recover_add_item(&trans->r_itemq);
1508 ptr = (xfs_caddr_t) &trans->r_theader +
1509 sizeof(xfs_trans_header_t) - len;
1510 memcpy(ptr, dp, len); /* d, s, l */
1511 return 0;
1512 }
1513 /* take the tail entry */
1514 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1515
1516 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1517 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1518
1519 ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
1520 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1521 item->ri_buf[item->ri_cnt-1].i_len += len;
1522 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1523 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1524 return 0;
1525 }
1526
1527 /*
1528 * The next region to add is the start of a new region. It could be
1529 * a whole region or it could be the first part of a new region. Because
1530 * of this, the assumption here is that the type and size fields of all
1531 * format structures fit into the first 32 bits of the structure.
1532 *
1533 * This works because all regions must be 32 bit aligned. Therefore, we
1534 * either have both fields or we have neither field. In the case we have
1535 * neither field, the data part of the region is zero length. We only have
1536 * a log_op_header and can throw away the header since a new one will appear
1537 * later. If we have at least 4 bytes, then we can determine how many regions
1538 * will appear in the current log item.
1539 */
1540 STATIC int
1541 xlog_recover_add_to_trans(
1542 struct xlog *log,
1543 struct xlog_recover *trans,
1544 xfs_caddr_t dp,
1545 int len)
1546 {
1547 xfs_inode_log_format_t *in_f; /* any will do */
1548 xlog_recover_item_t *item;
1549 xfs_caddr_t ptr;
1550
1551 if (!len)
1552 return 0;
1553 if (list_empty(&trans->r_itemq)) {
1554 /* we need to catch log corruptions here */
1555 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1556 xfs_warn(log->l_mp, "%s: bad header magic number",
1557 __func__);
1558 ASSERT(0);
1559 return XFS_ERROR(EIO);
1560 }
1561 if (len == sizeof(xfs_trans_header_t))
1562 xlog_recover_add_item(&trans->r_itemq);
1563 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1564 return 0;
1565 }
1566
1567 ptr = kmem_alloc(len, KM_SLEEP);
1568 memcpy(ptr, dp, len);
1569 in_f = (xfs_inode_log_format_t *)ptr;
1570
1571 /* take the tail entry */
1572 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1573 if (item->ri_total != 0 &&
1574 item->ri_total == item->ri_cnt) {
1575 /* tail item is in use, get a new one */
1576 xlog_recover_add_item(&trans->r_itemq);
1577 item = list_entry(trans->r_itemq.prev,
1578 xlog_recover_item_t, ri_list);
1579 }
1580
1581 if (item->ri_total == 0) { /* first region to be added */
1582 if (in_f->ilf_size == 0 ||
1583 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
1584 xfs_warn(log->l_mp,
1585 "bad number of regions (%d) in inode log format",
1586 in_f->ilf_size);
1587 ASSERT(0);
1588 return XFS_ERROR(EIO);
1589 }
1590
1591 item->ri_total = in_f->ilf_size;
1592 item->ri_buf =
1593 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1594 KM_SLEEP);
1595 }
1596 ASSERT(item->ri_total > item->ri_cnt);
1597 /* Description region is ri_buf[0] */
1598 item->ri_buf[item->ri_cnt].i_addr = ptr;
1599 item->ri_buf[item->ri_cnt].i_len = len;
1600 item->ri_cnt++;
1601 trace_xfs_log_recover_item_add(log, trans, item, 0);
1602 return 0;
1603 }
1604
1605 /*
1606 * Sort the log items in the transaction.
1607 *
1608 * The ordering constraints are defined by the inode allocation and unlink
1609 * behaviour. The rules are:
1610 *
1611 * 1. Every item is only logged once in a given transaction. Hence it
1612 * represents the last logged state of the item. Hence ordering is
1613 * dependent on the order in which operations need to be performed so
1614 * required initial conditions are always met.
1615 *
1616 * 2. Cancelled buffers are recorded in pass 1 in a separate table and
1617 * there's nothing to replay from them so we can simply cull them
1618 * from the transaction. However, we can't do that until after we've
1619 * replayed all the other items because they may be dependent on the
1620 * cancelled buffer and replaying the cancelled buffer can remove it
1621 * form the cancelled buffer table. Hence they have tobe done last.
1622 *
1623 * 3. Inode allocation buffers must be replayed before inode items that
1624 * read the buffer and replay changes into it. For filesystems using the
1625 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1626 * treated the same as inode allocation buffers as they create and
1627 * initialise the buffers directly.
1628 *
1629 * 4. Inode unlink buffers must be replayed after inode items are replayed.
1630 * This ensures that inodes are completely flushed to the inode buffer
1631 * in a "free" state before we remove the unlinked inode list pointer.
1632 *
1633 * Hence the ordering needs to be inode allocation buffers first, inode items
1634 * second, inode unlink buffers third and cancelled buffers last.
1635 *
1636 * But there's a problem with that - we can't tell an inode allocation buffer
1637 * apart from a regular buffer, so we can't separate them. We can, however,
1638 * tell an inode unlink buffer from the others, and so we can separate them out
1639 * from all the other buffers and move them to last.
1640 *
1641 * Hence, 4 lists, in order from head to tail:
1642 * - buffer_list for all buffers except cancelled/inode unlink buffers
1643 * - item_list for all non-buffer items
1644 * - inode_buffer_list for inode unlink buffers
1645 * - cancel_list for the cancelled buffers
1646 *
1647 * Note that we add objects to the tail of the lists so that first-to-last
1648 * ordering is preserved within the lists. Adding objects to the head of the
1649 * list means when we traverse from the head we walk them in last-to-first
1650 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1651 * but for all other items there may be specific ordering that we need to
1652 * preserve.
1653 */
1654 STATIC int
1655 xlog_recover_reorder_trans(
1656 struct xlog *log,
1657 struct xlog_recover *trans,
1658 int pass)
1659 {
1660 xlog_recover_item_t *item, *n;
1661 LIST_HEAD(sort_list);
1662 LIST_HEAD(cancel_list);
1663 LIST_HEAD(buffer_list);
1664 LIST_HEAD(inode_buffer_list);
1665 LIST_HEAD(inode_list);
1666
1667 list_splice_init(&trans->r_itemq, &sort_list);
1668 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1669 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1670
1671 switch (ITEM_TYPE(item)) {
1672 case XFS_LI_ICREATE:
1673 list_move_tail(&item->ri_list, &buffer_list);
1674 break;
1675 case XFS_LI_BUF:
1676 if (buf_f->blf_flags & XFS_BLF_CANCEL) {
1677 trace_xfs_log_recover_item_reorder_head(log,
1678 trans, item, pass);
1679 list_move(&item->ri_list, &cancel_list);
1680 break;
1681 }
1682 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1683 list_move(&item->ri_list, &inode_buffer_list);
1684 break;
1685 }
1686 list_move_tail(&item->ri_list, &buffer_list);
1687 break;
1688 case XFS_LI_INODE:
1689 case XFS_LI_DQUOT:
1690 case XFS_LI_QUOTAOFF:
1691 case XFS_LI_EFD:
1692 case XFS_LI_EFI:
1693 trace_xfs_log_recover_item_reorder_tail(log,
1694 trans, item, pass);
1695 list_move_tail(&item->ri_list, &inode_list);
1696 break;
1697 default:
1698 xfs_warn(log->l_mp,
1699 "%s: unrecognized type of log operation",
1700 __func__);
1701 ASSERT(0);
1702 return XFS_ERROR(EIO);
1703 }
1704 }
1705 ASSERT(list_empty(&sort_list));
1706 if (!list_empty(&buffer_list))
1707 list_splice(&buffer_list, &trans->r_itemq);
1708 if (!list_empty(&inode_list))
1709 list_splice_tail(&inode_list, &trans->r_itemq);
1710 if (!list_empty(&inode_buffer_list))
1711 list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1712 if (!list_empty(&cancel_list))
1713 list_splice_tail(&cancel_list, &trans->r_itemq);
1714 return 0;
1715 }
1716
1717 /*
1718 * Build up the table of buf cancel records so that we don't replay
1719 * cancelled data in the second pass. For buffer records that are
1720 * not cancel records, there is nothing to do here so we just return.
1721 *
1722 * If we get a cancel record which is already in the table, this indicates
1723 * that the buffer was cancelled multiple times. In order to ensure
1724 * that during pass 2 we keep the record in the table until we reach its
1725 * last occurrence in the log, we keep a reference count in the cancel
1726 * record in the table to tell us how many times we expect to see this
1727 * record during the second pass.
1728 */
1729 STATIC int
1730 xlog_recover_buffer_pass1(
1731 struct xlog *log,
1732 struct xlog_recover_item *item)
1733 {
1734 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1735 struct list_head *bucket;
1736 struct xfs_buf_cancel *bcp;
1737
1738 /*
1739 * If this isn't a cancel buffer item, then just return.
1740 */
1741 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1742 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1743 return 0;
1744 }
1745
1746 /*
1747 * Insert an xfs_buf_cancel record into the hash table of them.
1748 * If there is already an identical record, bump its reference count.
1749 */
1750 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1751 list_for_each_entry(bcp, bucket, bc_list) {
1752 if (bcp->bc_blkno == buf_f->blf_blkno &&
1753 bcp->bc_len == buf_f->blf_len) {
1754 bcp->bc_refcount++;
1755 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1756 return 0;
1757 }
1758 }
1759
1760 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1761 bcp->bc_blkno = buf_f->blf_blkno;
1762 bcp->bc_len = buf_f->blf_len;
1763 bcp->bc_refcount = 1;
1764 list_add_tail(&bcp->bc_list, bucket);
1765
1766 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1767 return 0;
1768 }
1769
1770 /*
1771 * Check to see whether the buffer being recovered has a corresponding
1772 * entry in the buffer cancel record table. If it is, return the cancel
1773 * buffer structure to the caller.
1774 */
1775 STATIC struct xfs_buf_cancel *
1776 xlog_peek_buffer_cancelled(
1777 struct xlog *log,
1778 xfs_daddr_t blkno,
1779 uint len,
1780 ushort flags)
1781 {
1782 struct list_head *bucket;
1783 struct xfs_buf_cancel *bcp;
1784
1785 if (!log->l_buf_cancel_table) {
1786 /* empty table means no cancelled buffers in the log */
1787 ASSERT(!(flags & XFS_BLF_CANCEL));
1788 return NULL;
1789 }
1790
1791 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1792 list_for_each_entry(bcp, bucket, bc_list) {
1793 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
1794 return bcp;
1795 }
1796
1797 /*
1798 * We didn't find a corresponding entry in the table, so return 0 so
1799 * that the buffer is NOT cancelled.
1800 */
1801 ASSERT(!(flags & XFS_BLF_CANCEL));
1802 return NULL;
1803 }
1804
1805 /*
1806 * If the buffer is being cancelled then return 1 so that it will be cancelled,
1807 * otherwise return 0. If the buffer is actually a buffer cancel item
1808 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
1809 * table and remove it from the table if this is the last reference.
1810 *
1811 * We remove the cancel record from the table when we encounter its last
1812 * occurrence in the log so that if the same buffer is re-used again after its
1813 * last cancellation we actually replay the changes made at that point.
1814 */
1815 STATIC int
1816 xlog_check_buffer_cancelled(
1817 struct xlog *log,
1818 xfs_daddr_t blkno,
1819 uint len,
1820 ushort flags)
1821 {
1822 struct xfs_buf_cancel *bcp;
1823
1824 bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
1825 if (!bcp)
1826 return 0;
1827
1828 /*
1829 * We've go a match, so return 1 so that the recovery of this buffer
1830 * is cancelled. If this buffer is actually a buffer cancel log
1831 * item, then decrement the refcount on the one in the table and
1832 * remove it if this is the last reference.
1833 */
1834 if (flags & XFS_BLF_CANCEL) {
1835 if (--bcp->bc_refcount == 0) {
1836 list_del(&bcp->bc_list);
1837 kmem_free(bcp);
1838 }
1839 }
1840 return 1;
1841 }
1842
1843 /*
1844 * Perform recovery for a buffer full of inodes. In these buffers, the only
1845 * data which should be recovered is that which corresponds to the
1846 * di_next_unlinked pointers in the on disk inode structures. The rest of the
1847 * data for the inodes is always logged through the inodes themselves rather
1848 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1849 *
1850 * The only time when buffers full of inodes are fully recovered is when the
1851 * buffer is full of newly allocated inodes. In this case the buffer will
1852 * not be marked as an inode buffer and so will be sent to
1853 * xlog_recover_do_reg_buffer() below during recovery.
1854 */
1855 STATIC int
1856 xlog_recover_do_inode_buffer(
1857 struct xfs_mount *mp,
1858 xlog_recover_item_t *item,
1859 struct xfs_buf *bp,
1860 xfs_buf_log_format_t *buf_f)
1861 {
1862 int i;
1863 int item_index = 0;
1864 int bit = 0;
1865 int nbits = 0;
1866 int reg_buf_offset = 0;
1867 int reg_buf_bytes = 0;
1868 int next_unlinked_offset;
1869 int inodes_per_buf;
1870 xfs_agino_t *logged_nextp;
1871 xfs_agino_t *buffer_nextp;
1872
1873 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
1874
1875 /*
1876 * Post recovery validation only works properly on CRC enabled
1877 * filesystems.
1878 */
1879 if (xfs_sb_version_hascrc(&mp->m_sb))
1880 bp->b_ops = &xfs_inode_buf_ops;
1881
1882 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
1883 for (i = 0; i < inodes_per_buf; i++) {
1884 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1885 offsetof(xfs_dinode_t, di_next_unlinked);
1886
1887 while (next_unlinked_offset >=
1888 (reg_buf_offset + reg_buf_bytes)) {
1889 /*
1890 * The next di_next_unlinked field is beyond
1891 * the current logged region. Find the next
1892 * logged region that contains or is beyond
1893 * the current di_next_unlinked field.
1894 */
1895 bit += nbits;
1896 bit = xfs_next_bit(buf_f->blf_data_map,
1897 buf_f->blf_map_size, bit);
1898
1899 /*
1900 * If there are no more logged regions in the
1901 * buffer, then we're done.
1902 */
1903 if (bit == -1)
1904 return 0;
1905
1906 nbits = xfs_contig_bits(buf_f->blf_data_map,
1907 buf_f->blf_map_size, bit);
1908 ASSERT(nbits > 0);
1909 reg_buf_offset = bit << XFS_BLF_SHIFT;
1910 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1911 item_index++;
1912 }
1913
1914 /*
1915 * If the current logged region starts after the current
1916 * di_next_unlinked field, then move on to the next
1917 * di_next_unlinked field.
1918 */
1919 if (next_unlinked_offset < reg_buf_offset)
1920 continue;
1921
1922 ASSERT(item->ri_buf[item_index].i_addr != NULL);
1923 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
1924 ASSERT((reg_buf_offset + reg_buf_bytes) <=
1925 BBTOB(bp->b_io_length));
1926
1927 /*
1928 * The current logged region contains a copy of the
1929 * current di_next_unlinked field. Extract its value
1930 * and copy it to the buffer copy.
1931 */
1932 logged_nextp = item->ri_buf[item_index].i_addr +
1933 next_unlinked_offset - reg_buf_offset;
1934 if (unlikely(*logged_nextp == 0)) {
1935 xfs_alert(mp,
1936 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1937 "Trying to replay bad (0) inode di_next_unlinked field.",
1938 item, bp);
1939 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1940 XFS_ERRLEVEL_LOW, mp);
1941 return XFS_ERROR(EFSCORRUPTED);
1942 }
1943
1944 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1945 next_unlinked_offset);
1946 *buffer_nextp = *logged_nextp;
1947
1948 /*
1949 * If necessary, recalculate the CRC in the on-disk inode. We
1950 * have to leave the inode in a consistent state for whoever
1951 * reads it next....
1952 */
1953 xfs_dinode_calc_crc(mp, (struct xfs_dinode *)
1954 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
1955
1956 }
1957
1958 return 0;
1959 }
1960
1961 /*
1962 * V5 filesystems know the age of the buffer on disk being recovered. We can
1963 * have newer objects on disk than we are replaying, and so for these cases we
1964 * don't want to replay the current change as that will make the buffer contents
1965 * temporarily invalid on disk.
1966 *
1967 * The magic number might not match the buffer type we are going to recover
1968 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence
1969 * extract the LSN of the existing object in the buffer based on it's current
1970 * magic number. If we don't recognise the magic number in the buffer, then
1971 * return a LSN of -1 so that the caller knows it was an unrecognised block and
1972 * so can recover the buffer.
1973 */
1974 static xfs_lsn_t
1975 xlog_recover_get_buf_lsn(
1976 struct xfs_mount *mp,
1977 struct xfs_buf *bp)
1978 {
1979 __uint32_t magic32;
1980 __uint16_t magic16;
1981 __uint16_t magicda;
1982 void *blk = bp->b_addr;
1983
1984 /* v4 filesystems always recover immediately */
1985 if (!xfs_sb_version_hascrc(&mp->m_sb))
1986 goto recover_immediately;
1987
1988 magic32 = be32_to_cpu(*(__be32 *)blk);
1989 switch (magic32) {
1990 case XFS_ABTB_CRC_MAGIC:
1991 case XFS_ABTC_CRC_MAGIC:
1992 case XFS_ABTB_MAGIC:
1993 case XFS_ABTC_MAGIC:
1994 case XFS_IBT_CRC_MAGIC:
1995 case XFS_IBT_MAGIC:
1996 return be64_to_cpu(
1997 ((struct xfs_btree_block *)blk)->bb_u.s.bb_lsn);
1998 case XFS_BMAP_CRC_MAGIC:
1999 case XFS_BMAP_MAGIC:
2000 return be64_to_cpu(
2001 ((struct xfs_btree_block *)blk)->bb_u.l.bb_lsn);
2002 case XFS_AGF_MAGIC:
2003 return be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
2004 case XFS_AGFL_MAGIC:
2005 return be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
2006 case XFS_AGI_MAGIC:
2007 return be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
2008 case XFS_SYMLINK_MAGIC:
2009 return be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
2010 case XFS_DIR3_BLOCK_MAGIC:
2011 case XFS_DIR3_DATA_MAGIC:
2012 case XFS_DIR3_FREE_MAGIC:
2013 return be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
2014 case XFS_ATTR3_RMT_MAGIC:
2015 return be64_to_cpu(((struct xfs_attr3_rmt_hdr *)blk)->rm_lsn);
2016 case XFS_SB_MAGIC:
2017 return be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
2018 default:
2019 break;
2020 }
2021
2022 magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
2023 switch (magicda) {
2024 case XFS_DIR3_LEAF1_MAGIC:
2025 case XFS_DIR3_LEAFN_MAGIC:
2026 case XFS_DA3_NODE_MAGIC:
2027 return be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
2028 default:
2029 break;
2030 }
2031
2032 /*
2033 * We do individual object checks on dquot and inode buffers as they
2034 * have their own individual LSN records. Also, we could have a stale
2035 * buffer here, so we have to at least recognise these buffer types.
2036 *
2037 * A notd complexity here is inode unlinked list processing - it logs
2038 * the inode directly in the buffer, but we don't know which inodes have
2039 * been modified, and there is no global buffer LSN. Hence we need to
2040 * recover all inode buffer types immediately. This problem will be
2041 * fixed by logical logging of the unlinked list modifications.
2042 */
2043 magic16 = be16_to_cpu(*(__be16 *)blk);
2044 switch (magic16) {
2045 case XFS_DQUOT_MAGIC:
2046 case XFS_DINODE_MAGIC:
2047 goto recover_immediately;
2048 default:
2049 break;
2050 }
2051
2052 /* unknown buffer contents, recover immediately */
2053
2054 recover_immediately:
2055 return (xfs_lsn_t)-1;
2056
2057 }
2058
2059 /*
2060 * Validate the recovered buffer is of the correct type and attach the
2061 * appropriate buffer operations to them for writeback. Magic numbers are in a
2062 * few places:
2063 * the first 16 bits of the buffer (inode buffer, dquot buffer),
2064 * the first 32 bits of the buffer (most blocks),
2065 * inside a struct xfs_da_blkinfo at the start of the buffer.
2066 */
2067 static void
2068 xlog_recover_validate_buf_type(
2069 struct xfs_mount *mp,
2070 struct xfs_buf *bp,
2071 xfs_buf_log_format_t *buf_f)
2072 {
2073 struct xfs_da_blkinfo *info = bp->b_addr;
2074 __uint32_t magic32;
2075 __uint16_t magic16;
2076 __uint16_t magicda;
2077
2078 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
2079 magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
2080 magicda = be16_to_cpu(info->magic);
2081 switch (xfs_blft_from_flags(buf_f)) {
2082 case XFS_BLFT_BTREE_BUF:
2083 switch (magic32) {
2084 case XFS_ABTB_CRC_MAGIC:
2085 case XFS_ABTC_CRC_MAGIC:
2086 case XFS_ABTB_MAGIC:
2087 case XFS_ABTC_MAGIC:
2088 bp->b_ops = &xfs_allocbt_buf_ops;
2089 break;
2090 case XFS_IBT_CRC_MAGIC:
2091 case XFS_IBT_MAGIC:
2092 bp->b_ops = &xfs_inobt_buf_ops;
2093 break;
2094 case XFS_BMAP_CRC_MAGIC:
2095 case XFS_BMAP_MAGIC:
2096 bp->b_ops = &xfs_bmbt_buf_ops;
2097 break;
2098 default:
2099 xfs_warn(mp, "Bad btree block magic!");
2100 ASSERT(0);
2101 break;
2102 }
2103 break;
2104 case XFS_BLFT_AGF_BUF:
2105 if (magic32 != XFS_AGF_MAGIC) {
2106 xfs_warn(mp, "Bad AGF block magic!");
2107 ASSERT(0);
2108 break;
2109 }
2110 bp->b_ops = &xfs_agf_buf_ops;
2111 break;
2112 case XFS_BLFT_AGFL_BUF:
2113 if (!xfs_sb_version_hascrc(&mp->m_sb))
2114 break;
2115 if (magic32 != XFS_AGFL_MAGIC) {
2116 xfs_warn(mp, "Bad AGFL block magic!");
2117 ASSERT(0);
2118 break;
2119 }
2120 bp->b_ops = &xfs_agfl_buf_ops;
2121 break;
2122 case XFS_BLFT_AGI_BUF:
2123 if (magic32 != XFS_AGI_MAGIC) {
2124 xfs_warn(mp, "Bad AGI block magic!");
2125 ASSERT(0);
2126 break;
2127 }
2128 bp->b_ops = &xfs_agi_buf_ops;
2129 break;
2130 case XFS_BLFT_UDQUOT_BUF:
2131 case XFS_BLFT_PDQUOT_BUF:
2132 case XFS_BLFT_GDQUOT_BUF:
2133 #ifdef CONFIG_XFS_QUOTA
2134 if (magic16 != XFS_DQUOT_MAGIC) {
2135 xfs_warn(mp, "Bad DQUOT block magic!");
2136 ASSERT(0);
2137 break;
2138 }
2139 bp->b_ops = &xfs_dquot_buf_ops;
2140 #else
2141 xfs_alert(mp,
2142 "Trying to recover dquots without QUOTA support built in!");
2143 ASSERT(0);
2144 #endif
2145 break;
2146 case XFS_BLFT_DINO_BUF:
2147 /*
2148 * we get here with inode allocation buffers, not buffers that
2149 * track unlinked list changes.
2150 */
2151 if (magic16 != XFS_DINODE_MAGIC) {
2152 xfs_warn(mp, "Bad INODE block magic!");
2153 ASSERT(0);
2154 break;
2155 }
2156 bp->b_ops = &xfs_inode_buf_ops;
2157 break;
2158 case XFS_BLFT_SYMLINK_BUF:
2159 if (magic32 != XFS_SYMLINK_MAGIC) {
2160 xfs_warn(mp, "Bad symlink block magic!");
2161 ASSERT(0);
2162 break;
2163 }
2164 bp->b_ops = &xfs_symlink_buf_ops;
2165 break;
2166 case XFS_BLFT_DIR_BLOCK_BUF:
2167 if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2168 magic32 != XFS_DIR3_BLOCK_MAGIC) {
2169 xfs_warn(mp, "Bad dir block magic!");
2170 ASSERT(0);
2171 break;
2172 }
2173 bp->b_ops = &xfs_dir3_block_buf_ops;
2174 break;
2175 case XFS_BLFT_DIR_DATA_BUF:
2176 if (magic32 != XFS_DIR2_DATA_MAGIC &&
2177 magic32 != XFS_DIR3_DATA_MAGIC) {
2178 xfs_warn(mp, "Bad dir data magic!");
2179 ASSERT(0);
2180 break;
2181 }
2182 bp->b_ops = &xfs_dir3_data_buf_ops;
2183 break;
2184 case XFS_BLFT_DIR_FREE_BUF:
2185 if (magic32 != XFS_DIR2_FREE_MAGIC &&
2186 magic32 != XFS_DIR3_FREE_MAGIC) {
2187 xfs_warn(mp, "Bad dir3 free magic!");
2188 ASSERT(0);
2189 break;
2190 }
2191 bp->b_ops = &xfs_dir3_free_buf_ops;
2192 break;
2193 case XFS_BLFT_DIR_LEAF1_BUF:
2194 if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2195 magicda != XFS_DIR3_LEAF1_MAGIC) {
2196 xfs_warn(mp, "Bad dir leaf1 magic!");
2197 ASSERT(0);
2198 break;
2199 }
2200 bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2201 break;
2202 case XFS_BLFT_DIR_LEAFN_BUF:
2203 if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2204 magicda != XFS_DIR3_LEAFN_MAGIC) {
2205 xfs_warn(mp, "Bad dir leafn magic!");
2206 ASSERT(0);
2207 break;
2208 }
2209 bp->b_ops = &xfs_dir3_leafn_buf_ops;
2210 break;
2211 case XFS_BLFT_DA_NODE_BUF:
2212 if (magicda != XFS_DA_NODE_MAGIC &&
2213 magicda != XFS_DA3_NODE_MAGIC) {
2214 xfs_warn(mp, "Bad da node magic!");
2215 ASSERT(0);
2216 break;
2217 }
2218 bp->b_ops = &xfs_da3_node_buf_ops;
2219 break;
2220 case XFS_BLFT_ATTR_LEAF_BUF:
2221 if (magicda != XFS_ATTR_LEAF_MAGIC &&
2222 magicda != XFS_ATTR3_LEAF_MAGIC) {
2223 xfs_warn(mp, "Bad attr leaf magic!");
2224 ASSERT(0);
2225 break;
2226 }
2227 bp->b_ops = &xfs_attr3_leaf_buf_ops;
2228 break;
2229 case XFS_BLFT_ATTR_RMT_BUF:
2230 if (!xfs_sb_version_hascrc(&mp->m_sb))
2231 break;
2232 if (magic32 != XFS_ATTR3_RMT_MAGIC) {
2233 xfs_warn(mp, "Bad attr remote magic!");
2234 ASSERT(0);
2235 break;
2236 }
2237 bp->b_ops = &xfs_attr3_rmt_buf_ops;
2238 break;
2239 case XFS_BLFT_SB_BUF:
2240 if (magic32 != XFS_SB_MAGIC) {
2241 xfs_warn(mp, "Bad SB block magic!");
2242 ASSERT(0);
2243 break;
2244 }
2245 bp->b_ops = &xfs_sb_buf_ops;
2246 break;
2247 default:
2248 xfs_warn(mp, "Unknown buffer type %d!",
2249 xfs_blft_from_flags(buf_f));
2250 break;
2251 }
2252 }
2253
2254 /*
2255 * Perform a 'normal' buffer recovery. Each logged region of the
2256 * buffer should be copied over the corresponding region in the
2257 * given buffer. The bitmap in the buf log format structure indicates
2258 * where to place the logged data.
2259 */
2260 STATIC void
2261 xlog_recover_do_reg_buffer(
2262 struct xfs_mount *mp,
2263 xlog_recover_item_t *item,
2264 struct xfs_buf *bp,
2265 xfs_buf_log_format_t *buf_f)
2266 {
2267 int i;
2268 int bit;
2269 int nbits;
2270 int error;
2271
2272 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2273
2274 bit = 0;
2275 i = 1; /* 0 is the buf format structure */
2276 while (1) {
2277 bit = xfs_next_bit(buf_f->blf_data_map,
2278 buf_f->blf_map_size, bit);
2279 if (bit == -1)
2280 break;
2281 nbits = xfs_contig_bits(buf_f->blf_data_map,
2282 buf_f->blf_map_size, bit);
2283 ASSERT(nbits > 0);
2284 ASSERT(item->ri_buf[i].i_addr != NULL);
2285 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2286 ASSERT(BBTOB(bp->b_io_length) >=
2287 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2288
2289 /*
2290 * The dirty regions logged in the buffer, even though
2291 * contiguous, may span multiple chunks. This is because the
2292 * dirty region may span a physical page boundary in a buffer
2293 * and hence be split into two separate vectors for writing into
2294 * the log. Hence we need to trim nbits back to the length of
2295 * the current region being copied out of the log.
2296 */
2297 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2298 nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2299
2300 /*
2301 * Do a sanity check if this is a dquot buffer. Just checking
2302 * the first dquot in the buffer should do. XXXThis is
2303 * probably a good thing to do for other buf types also.
2304 */
2305 error = 0;
2306 if (buf_f->blf_flags &
2307 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2308 if (item->ri_buf[i].i_addr == NULL) {
2309 xfs_alert(mp,
2310 "XFS: NULL dquot in %s.", __func__);
2311 goto next;
2312 }
2313 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2314 xfs_alert(mp,
2315 "XFS: dquot too small (%d) in %s.",
2316 item->ri_buf[i].i_len, __func__);
2317 goto next;
2318 }
2319 error = xfs_qm_dqcheck(mp, item->ri_buf[i].i_addr,
2320 -1, 0, XFS_QMOPT_DOWARN,
2321 "dquot_buf_recover");
2322 if (error)
2323 goto next;
2324 }
2325
2326 memcpy(xfs_buf_offset(bp,
2327 (uint)bit << XFS_BLF_SHIFT), /* dest */
2328 item->ri_buf[i].i_addr, /* source */
2329 nbits<<XFS_BLF_SHIFT); /* length */
2330 next:
2331 i++;
2332 bit += nbits;
2333 }
2334
2335 /* Shouldn't be any more regions */
2336 ASSERT(i == item->ri_total);
2337
2338 /*
2339 * We can only do post recovery validation on items on CRC enabled
2340 * fielsystems as we need to know when the buffer was written to be able
2341 * to determine if we should have replayed the item. If we replay old
2342 * metadata over a newer buffer, then it will enter a temporarily
2343 * inconsistent state resulting in verification failures. Hence for now
2344 * just avoid the verification stage for non-crc filesystems
2345 */
2346 if (xfs_sb_version_hascrc(&mp->m_sb))
2347 xlog_recover_validate_buf_type(mp, bp, buf_f);
2348 }
2349
2350 /*
2351 * Do some primitive error checking on ondisk dquot data structures.
2352 */
2353 int
2354 xfs_qm_dqcheck(
2355 struct xfs_mount *mp,
2356 xfs_disk_dquot_t *ddq,
2357 xfs_dqid_t id,
2358 uint type, /* used only when IO_dorepair is true */
2359 uint flags,
2360 char *str)
2361 {
2362 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
2363 int errs = 0;
2364
2365 /*
2366 * We can encounter an uninitialized dquot buffer for 2 reasons:
2367 * 1. If we crash while deleting the quotainode(s), and those blks got
2368 * used for user data. This is because we take the path of regular
2369 * file deletion; however, the size field of quotainodes is never
2370 * updated, so all the tricks that we play in itruncate_finish
2371 * don't quite matter.
2372 *
2373 * 2. We don't play the quota buffers when there's a quotaoff logitem.
2374 * But the allocation will be replayed so we'll end up with an
2375 * uninitialized quota block.
2376 *
2377 * This is all fine; things are still consistent, and we haven't lost
2378 * any quota information. Just don't complain about bad dquot blks.
2379 */
2380 if (ddq->d_magic != cpu_to_be16(XFS_DQUOT_MAGIC)) {
2381 if (flags & XFS_QMOPT_DOWARN)
2382 xfs_alert(mp,
2383 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
2384 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
2385 errs++;
2386 }
2387 if (ddq->d_version != XFS_DQUOT_VERSION) {
2388 if (flags & XFS_QMOPT_DOWARN)
2389 xfs_alert(mp,
2390 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
2391 str, id, ddq->d_version, XFS_DQUOT_VERSION);
2392 errs++;
2393 }
2394
2395 if (ddq->d_flags != XFS_DQ_USER &&
2396 ddq->d_flags != XFS_DQ_PROJ &&
2397 ddq->d_flags != XFS_DQ_GROUP) {
2398 if (flags & XFS_QMOPT_DOWARN)
2399 xfs_alert(mp,
2400 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
2401 str, id, ddq->d_flags);
2402 errs++;
2403 }
2404
2405 if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
2406 if (flags & XFS_QMOPT_DOWARN)
2407 xfs_alert(mp,
2408 "%s : ondisk-dquot 0x%p, ID mismatch: "
2409 "0x%x expected, found id 0x%x",
2410 str, ddq, id, be32_to_cpu(ddq->d_id));
2411 errs++;
2412 }
2413
2414 if (!errs && ddq->d_id) {
2415 if (ddq->d_blk_softlimit &&
2416 be64_to_cpu(ddq->d_bcount) >
2417 be64_to_cpu(ddq->d_blk_softlimit)) {
2418 if (!ddq->d_btimer) {
2419 if (flags & XFS_QMOPT_DOWARN)
2420 xfs_alert(mp,
2421 "%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED",
2422 str, (int)be32_to_cpu(ddq->d_id), ddq);
2423 errs++;
2424 }
2425 }
2426 if (ddq->d_ino_softlimit &&
2427 be64_to_cpu(ddq->d_icount) >
2428 be64_to_cpu(ddq->d_ino_softlimit)) {
2429 if (!ddq->d_itimer) {
2430 if (flags & XFS_QMOPT_DOWARN)
2431 xfs_alert(mp,
2432 "%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED",
2433 str, (int)be32_to_cpu(ddq->d_id), ddq);
2434 errs++;
2435 }
2436 }
2437 if (ddq->d_rtb_softlimit &&
2438 be64_to_cpu(ddq->d_rtbcount) >
2439 be64_to_cpu(ddq->d_rtb_softlimit)) {
2440 if (!ddq->d_rtbtimer) {
2441 if (flags & XFS_QMOPT_DOWARN)
2442 xfs_alert(mp,
2443 "%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED",
2444 str, (int)be32_to_cpu(ddq->d_id), ddq);
2445 errs++;
2446 }
2447 }
2448 }
2449
2450 if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2451 return errs;
2452
2453 if (flags & XFS_QMOPT_DOWARN)
2454 xfs_notice(mp, "Re-initializing dquot ID 0x%x", id);
2455
2456 /*
2457 * Typically, a repair is only requested by quotacheck.
2458 */
2459 ASSERT(id != -1);
2460 ASSERT(flags & XFS_QMOPT_DQREPAIR);
2461 memset(d, 0, sizeof(xfs_dqblk_t));
2462
2463 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2464 d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2465 d->dd_diskdq.d_flags = type;
2466 d->dd_diskdq.d_id = cpu_to_be32(id);
2467
2468 if (xfs_sb_version_hascrc(&mp->m_sb)) {
2469 uuid_copy(&d->dd_uuid, &mp->m_sb.sb_uuid);
2470 xfs_update_cksum((char *)d, sizeof(struct xfs_dqblk),
2471 XFS_DQUOT_CRC_OFF);
2472 }
2473
2474 return errs;
2475 }
2476
2477 /*
2478 * Perform a dquot buffer recovery.
2479 * Simple algorithm: if we have found a QUOTAOFF log item of the same type
2480 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2481 * Else, treat it as a regular buffer and do recovery.
2482 */
2483 STATIC void
2484 xlog_recover_do_dquot_buffer(
2485 struct xfs_mount *mp,
2486 struct xlog *log,
2487 struct xlog_recover_item *item,
2488 struct xfs_buf *bp,
2489 struct xfs_buf_log_format *buf_f)
2490 {
2491 uint type;
2492
2493 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2494
2495 /*
2496 * Filesystems are required to send in quota flags at mount time.
2497 */
2498 if (mp->m_qflags == 0) {
2499 return;
2500 }
2501
2502 type = 0;
2503 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2504 type |= XFS_DQ_USER;
2505 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2506 type |= XFS_DQ_PROJ;
2507 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2508 type |= XFS_DQ_GROUP;
2509 /*
2510 * This type of quotas was turned off, so ignore this buffer
2511 */
2512 if (log->l_quotaoffs_flag & type)
2513 return;
2514
2515 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2516 }
2517
2518 /*
2519 * This routine replays a modification made to a buffer at runtime.
2520 * There are actually two types of buffer, regular and inode, which
2521 * are handled differently. Inode buffers are handled differently
2522 * in that we only recover a specific set of data from them, namely
2523 * the inode di_next_unlinked fields. This is because all other inode
2524 * data is actually logged via inode records and any data we replay
2525 * here which overlaps that may be stale.
2526 *
2527 * When meta-data buffers are freed at run time we log a buffer item
2528 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2529 * of the buffer in the log should not be replayed at recovery time.
2530 * This is so that if the blocks covered by the buffer are reused for
2531 * file data before we crash we don't end up replaying old, freed
2532 * meta-data into a user's file.
2533 *
2534 * To handle the cancellation of buffer log items, we make two passes
2535 * over the log during recovery. During the first we build a table of
2536 * those buffers which have been cancelled, and during the second we
2537 * only replay those buffers which do not have corresponding cancel
2538 * records in the table. See xlog_recover_buffer_pass[1,2] above
2539 * for more details on the implementation of the table of cancel records.
2540 */
2541 STATIC int
2542 xlog_recover_buffer_pass2(
2543 struct xlog *log,
2544 struct list_head *buffer_list,
2545 struct xlog_recover_item *item,
2546 xfs_lsn_t current_lsn)
2547 {
2548 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
2549 xfs_mount_t *mp = log->l_mp;
2550 xfs_buf_t *bp;
2551 int error;
2552 uint buf_flags;
2553 xfs_lsn_t lsn;
2554
2555 /*
2556 * In this pass we only want to recover all the buffers which have
2557 * not been cancelled and are not cancellation buffers themselves.
2558 */
2559 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2560 buf_f->blf_len, buf_f->blf_flags)) {
2561 trace_xfs_log_recover_buf_cancel(log, buf_f);
2562 return 0;
2563 }
2564
2565 trace_xfs_log_recover_buf_recover(log, buf_f);
2566
2567 buf_flags = 0;
2568 if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2569 buf_flags |= XBF_UNMAPPED;
2570
2571 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2572 buf_flags, NULL);
2573 if (!bp)
2574 return XFS_ERROR(ENOMEM);
2575 error = bp->b_error;
2576 if (error) {
2577 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
2578 goto out_release;
2579 }
2580
2581 /*
2582 * recover the buffer only if we get an LSN from it and it's less than
2583 * the lsn of the transaction we are replaying.
2584 */
2585 lsn = xlog_recover_get_buf_lsn(mp, bp);
2586 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0)
2587 goto out_release;
2588
2589 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2590 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2591 } else if (buf_f->blf_flags &
2592 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2593 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2594 } else {
2595 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2596 }
2597 if (error)
2598 goto out_release;
2599
2600 /*
2601 * Perform delayed write on the buffer. Asynchronous writes will be
2602 * slower when taking into account all the buffers to be flushed.
2603 *
2604 * Also make sure that only inode buffers with good sizes stay in
2605 * the buffer cache. The kernel moves inodes in buffers of 1 block
2606 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2607 * buffers in the log can be a different size if the log was generated
2608 * by an older kernel using unclustered inode buffers or a newer kernel
2609 * running with a different inode cluster size. Regardless, if the
2610 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2611 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2612 * the buffer out of the buffer cache so that the buffer won't
2613 * overlap with future reads of those inodes.
2614 */
2615 if (XFS_DINODE_MAGIC ==
2616 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2617 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
2618 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2619 xfs_buf_stale(bp);
2620 error = xfs_bwrite(bp);
2621 } else {
2622 ASSERT(bp->b_target->bt_mount == mp);
2623 bp->b_iodone = xlog_recover_iodone;
2624 xfs_buf_delwri_queue(bp, buffer_list);
2625 }
2626
2627 out_release:
2628 xfs_buf_relse(bp);
2629 return error;
2630 }
2631
2632 /*
2633 * Inode fork owner changes
2634 *
2635 * If we have been told that we have to reparent the inode fork, it's because an
2636 * extent swap operation on a CRC enabled filesystem has been done and we are
2637 * replaying it. We need to walk the BMBT of the appropriate fork and change the
2638 * owners of it.
2639 *
2640 * The complexity here is that we don't have an inode context to work with, so
2641 * after we've replayed the inode we need to instantiate one. This is where the
2642 * fun begins.
2643 *
2644 * We are in the middle of log recovery, so we can't run transactions. That
2645 * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2646 * that will result in the corresponding iput() running the inode through
2647 * xfs_inactive(). If we've just replayed an inode core that changes the link
2648 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2649 * transactions (bad!).
2650 *
2651 * So, to avoid this, we instantiate an inode directly from the inode core we've
2652 * just recovered. We have the buffer still locked, and all we really need to
2653 * instantiate is the inode core and the forks being modified. We can do this
2654 * manually, then run the inode btree owner change, and then tear down the
2655 * xfs_inode without having to run any transactions at all.
2656 *
2657 * Also, because we don't have a transaction context available here but need to
2658 * gather all the buffers we modify for writeback so we pass the buffer_list
2659 * instead for the operation to use.
2660 */
2661
2662 STATIC int
2663 xfs_recover_inode_owner_change(
2664 struct xfs_mount *mp,
2665 struct xfs_dinode *dip,
2666 struct xfs_inode_log_format *in_f,
2667 struct list_head *buffer_list)
2668 {
2669 struct xfs_inode *ip;
2670 int error;
2671
2672 ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
2673
2674 ip = xfs_inode_alloc(mp, in_f->ilf_ino);
2675 if (!ip)
2676 return ENOMEM;
2677
2678 /* instantiate the inode */
2679 xfs_dinode_from_disk(&ip->i_d, dip);
2680 ASSERT(ip->i_d.di_version >= 3);
2681
2682 error = xfs_iformat_fork(ip, dip);
2683 if (error)
2684 goto out_free_ip;
2685
2686
2687 if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
2688 ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
2689 error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
2690 ip->i_ino, buffer_list);
2691 if (error)
2692 goto out_free_ip;
2693 }
2694
2695 if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
2696 ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
2697 error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
2698 ip->i_ino, buffer_list);
2699 if (error)
2700 goto out_free_ip;
2701 }
2702
2703 out_free_ip:
2704 xfs_inode_free(ip);
2705 return error;
2706 }
2707
2708 STATIC int
2709 xlog_recover_inode_pass2(
2710 struct xlog *log,
2711 struct list_head *buffer_list,
2712 struct xlog_recover_item *item,
2713 xfs_lsn_t current_lsn)
2714 {
2715 xfs_inode_log_format_t *in_f;
2716 xfs_mount_t *mp = log->l_mp;
2717 xfs_buf_t *bp;
2718 xfs_dinode_t *dip;
2719 int len;
2720 xfs_caddr_t src;
2721 xfs_caddr_t dest;
2722 int error;
2723 int attr_index;
2724 uint fields;
2725 xfs_icdinode_t *dicp;
2726 uint isize;
2727 int need_free = 0;
2728
2729 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2730 in_f = item->ri_buf[0].i_addr;
2731 } else {
2732 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2733 need_free = 1;
2734 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2735 if (error)
2736 goto error;
2737 }
2738
2739 /*
2740 * Inode buffers can be freed, look out for it,
2741 * and do not replay the inode.
2742 */
2743 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2744 in_f->ilf_len, 0)) {
2745 error = 0;
2746 trace_xfs_log_recover_inode_cancel(log, in_f);
2747 goto error;
2748 }
2749 trace_xfs_log_recover_inode_recover(log, in_f);
2750
2751 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
2752 &xfs_inode_buf_ops);
2753 if (!bp) {
2754 error = ENOMEM;
2755 goto error;
2756 }
2757 error = bp->b_error;
2758 if (error) {
2759 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
2760 goto out_release;
2761 }
2762 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2763 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
2764
2765 /*
2766 * Make sure the place we're flushing out to really looks
2767 * like an inode!
2768 */
2769 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
2770 xfs_alert(mp,
2771 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2772 __func__, dip, bp, in_f->ilf_ino);
2773 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2774 XFS_ERRLEVEL_LOW, mp);
2775 error = EFSCORRUPTED;
2776 goto out_release;
2777 }
2778 dicp = item->ri_buf[1].i_addr;
2779 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2780 xfs_alert(mp,
2781 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2782 __func__, item, in_f->ilf_ino);
2783 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2784 XFS_ERRLEVEL_LOW, mp);
2785 error = EFSCORRUPTED;
2786 goto out_release;
2787 }
2788
2789 /*
2790 * If the inode has an LSN in it, recover the inode only if it's less
2791 * than the lsn of the transaction we are replaying. Note: we still
2792 * need to replay an owner change even though the inode is more recent
2793 * than the transaction as there is no guarantee that all the btree
2794 * blocks are more recent than this transaction, too.
2795 */
2796 if (dip->di_version >= 3) {
2797 xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn);
2798
2799 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2800 trace_xfs_log_recover_inode_skip(log, in_f);
2801 error = 0;
2802 goto out_owner_change;
2803 }
2804 }
2805
2806 /*
2807 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
2808 * are transactional and if ordering is necessary we can determine that
2809 * more accurately by the LSN field in the V3 inode core. Don't trust
2810 * the inode versions we might be changing them here - use the
2811 * superblock flag to determine whether we need to look at di_flushiter
2812 * to skip replay when the on disk inode is newer than the log one
2813 */
2814 if (!xfs_sb_version_hascrc(&mp->m_sb) &&
2815 dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2816 /*
2817 * Deal with the wrap case, DI_MAX_FLUSH is less
2818 * than smaller numbers
2819 */
2820 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2821 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2822 /* do nothing */
2823 } else {
2824 trace_xfs_log_recover_inode_skip(log, in_f);
2825 error = 0;
2826 goto out_release;
2827 }
2828 }
2829
2830 /* Take the opportunity to reset the flush iteration count */
2831 dicp->di_flushiter = 0;
2832
2833 if (unlikely(S_ISREG(dicp->di_mode))) {
2834 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2835 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2836 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
2837 XFS_ERRLEVEL_LOW, mp, dicp);
2838 xfs_alert(mp,
2839 "%s: Bad regular inode log record, rec ptr 0x%p, "
2840 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2841 __func__, item, dip, bp, in_f->ilf_ino);
2842 error = EFSCORRUPTED;
2843 goto out_release;
2844 }
2845 } else if (unlikely(S_ISDIR(dicp->di_mode))) {
2846 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2847 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2848 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2849 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
2850 XFS_ERRLEVEL_LOW, mp, dicp);
2851 xfs_alert(mp,
2852 "%s: Bad dir inode log record, rec ptr 0x%p, "
2853 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2854 __func__, item, dip, bp, in_f->ilf_ino);
2855 error = EFSCORRUPTED;
2856 goto out_release;
2857 }
2858 }
2859 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2860 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
2861 XFS_ERRLEVEL_LOW, mp, dicp);
2862 xfs_alert(mp,
2863 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2864 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2865 __func__, item, dip, bp, in_f->ilf_ino,
2866 dicp->di_nextents + dicp->di_anextents,
2867 dicp->di_nblocks);
2868 error = EFSCORRUPTED;
2869 goto out_release;
2870 }
2871 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2872 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
2873 XFS_ERRLEVEL_LOW, mp, dicp);
2874 xfs_alert(mp,
2875 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2876 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
2877 item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
2878 error = EFSCORRUPTED;
2879 goto out_release;
2880 }
2881 isize = xfs_icdinode_size(dicp->di_version);
2882 if (unlikely(item->ri_buf[1].i_len > isize)) {
2883 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
2884 XFS_ERRLEVEL_LOW, mp, dicp);
2885 xfs_alert(mp,
2886 "%s: Bad inode log record length %d, rec ptr 0x%p",
2887 __func__, item->ri_buf[1].i_len, item);
2888 error = EFSCORRUPTED;
2889 goto out_release;
2890 }
2891
2892 /* The core is in in-core format */
2893 xfs_dinode_to_disk(dip, dicp);
2894
2895 /* the rest is in on-disk format */
2896 if (item->ri_buf[1].i_len > isize) {
2897 memcpy((char *)dip + isize,
2898 item->ri_buf[1].i_addr + isize,
2899 item->ri_buf[1].i_len - isize);
2900 }
2901
2902 fields = in_f->ilf_fields;
2903 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2904 case XFS_ILOG_DEV:
2905 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
2906 break;
2907 case XFS_ILOG_UUID:
2908 memcpy(XFS_DFORK_DPTR(dip),
2909 &in_f->ilf_u.ilfu_uuid,
2910 sizeof(uuid_t));
2911 break;
2912 }
2913
2914 if (in_f->ilf_size == 2)
2915 goto out_owner_change;
2916 len = item->ri_buf[2].i_len;
2917 src = item->ri_buf[2].i_addr;
2918 ASSERT(in_f->ilf_size <= 4);
2919 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2920 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2921 (len == in_f->ilf_dsize));
2922
2923 switch (fields & XFS_ILOG_DFORK) {
2924 case XFS_ILOG_DDATA:
2925 case XFS_ILOG_DEXT:
2926 memcpy(XFS_DFORK_DPTR(dip), src, len);
2927 break;
2928
2929 case XFS_ILOG_DBROOT:
2930 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2931 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
2932 XFS_DFORK_DSIZE(dip, mp));
2933 break;
2934
2935 default:
2936 /*
2937 * There are no data fork flags set.
2938 */
2939 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2940 break;
2941 }
2942
2943 /*
2944 * If we logged any attribute data, recover it. There may or
2945 * may not have been any other non-core data logged in this
2946 * transaction.
2947 */
2948 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2949 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2950 attr_index = 3;
2951 } else {
2952 attr_index = 2;
2953 }
2954 len = item->ri_buf[attr_index].i_len;
2955 src = item->ri_buf[attr_index].i_addr;
2956 ASSERT(len == in_f->ilf_asize);
2957
2958 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2959 case XFS_ILOG_ADATA:
2960 case XFS_ILOG_AEXT:
2961 dest = XFS_DFORK_APTR(dip);
2962 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2963 memcpy(dest, src, len);
2964 break;
2965
2966 case XFS_ILOG_ABROOT:
2967 dest = XFS_DFORK_APTR(dip);
2968 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2969 len, (xfs_bmdr_block_t*)dest,
2970 XFS_DFORK_ASIZE(dip, mp));
2971 break;
2972
2973 default:
2974 xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
2975 ASSERT(0);
2976 error = EIO;
2977 goto out_release;
2978 }
2979 }
2980
2981 out_owner_change:
2982 if (in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER))
2983 error = xfs_recover_inode_owner_change(mp, dip, in_f,
2984 buffer_list);
2985 /* re-generate the checksum. */
2986 xfs_dinode_calc_crc(log->l_mp, dip);
2987
2988 ASSERT(bp->b_target->bt_mount == mp);
2989 bp->b_iodone = xlog_recover_iodone;
2990 xfs_buf_delwri_queue(bp, buffer_list);
2991
2992 out_release:
2993 xfs_buf_relse(bp);
2994 error:
2995 if (need_free)
2996 kmem_free(in_f);
2997 return XFS_ERROR(error);
2998
2999 xfs_buf_relse(bp);
3000 goto error;
3001 }
3002
3003 /*
3004 * Recover QUOTAOFF records. We simply make a note of it in the xlog
3005 * structure, so that we know not to do any dquot item or dquot buffer recovery,
3006 * of that type.
3007 */
3008 STATIC int
3009 xlog_recover_quotaoff_pass1(
3010 struct xlog *log,
3011 struct xlog_recover_item *item)
3012 {
3013 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
3014 ASSERT(qoff_f);
3015
3016 /*
3017 * The logitem format's flag tells us if this was user quotaoff,
3018 * group/project quotaoff or both.
3019 */
3020 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
3021 log->l_quotaoffs_flag |= XFS_DQ_USER;
3022 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
3023 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
3024 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
3025 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
3026
3027 return (0);
3028 }
3029
3030 /*
3031 * Recover a dquot record
3032 */
3033 STATIC int
3034 xlog_recover_dquot_pass2(
3035 struct xlog *log,
3036 struct list_head *buffer_list,
3037 struct xlog_recover_item *item,
3038 xfs_lsn_t current_lsn)
3039 {
3040 xfs_mount_t *mp = log->l_mp;
3041 xfs_buf_t *bp;
3042 struct xfs_disk_dquot *ddq, *recddq;
3043 int error;
3044 xfs_dq_logformat_t *dq_f;
3045 uint type;
3046
3047
3048 /*
3049 * Filesystems are required to send in quota flags at mount time.
3050 */
3051 if (mp->m_qflags == 0)
3052 return (0);
3053
3054 recddq = item->ri_buf[1].i_addr;
3055 if (recddq == NULL) {
3056 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
3057 return XFS_ERROR(EIO);
3058 }
3059 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
3060 xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
3061 item->ri_buf[1].i_len, __func__);
3062 return XFS_ERROR(EIO);
3063 }
3064
3065 /*
3066 * This type of quotas was turned off, so ignore this record.
3067 */
3068 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3069 ASSERT(type);
3070 if (log->l_quotaoffs_flag & type)
3071 return (0);
3072
3073 /*
3074 * At this point we know that quota was _not_ turned off.
3075 * Since the mount flags are not indicating to us otherwise, this
3076 * must mean that quota is on, and the dquot needs to be replayed.
3077 * Remember that we may not have fully recovered the superblock yet,
3078 * so we can't do the usual trick of looking at the SB quota bits.
3079 *
3080 * The other possibility, of course, is that the quota subsystem was
3081 * removed since the last mount - ENOSYS.
3082 */
3083 dq_f = item->ri_buf[0].i_addr;
3084 ASSERT(dq_f);
3085 error = xfs_qm_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
3086 "xlog_recover_dquot_pass2 (log copy)");
3087 if (error)
3088 return XFS_ERROR(EIO);
3089 ASSERT(dq_f->qlf_len == 1);
3090
3091 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
3092 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
3093 NULL);
3094 if (error)
3095 return error;
3096
3097 ASSERT(bp);
3098 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
3099
3100 /*
3101 * At least the magic num portion should be on disk because this
3102 * was among a chunk of dquots created earlier, and we did some
3103 * minimal initialization then.
3104 */
3105 error = xfs_qm_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
3106 "xlog_recover_dquot_pass2");
3107 if (error) {
3108 xfs_buf_relse(bp);
3109 return XFS_ERROR(EIO);
3110 }
3111
3112 /*
3113 * If the dquot has an LSN in it, recover the dquot only if it's less
3114 * than the lsn of the transaction we are replaying.
3115 */
3116 if (xfs_sb_version_hascrc(&mp->m_sb)) {
3117 struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
3118 xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn);
3119
3120 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3121 goto out_release;
3122 }
3123 }
3124
3125 memcpy(ddq, recddq, item->ri_buf[1].i_len);
3126 if (xfs_sb_version_hascrc(&mp->m_sb)) {
3127 xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
3128 XFS_DQUOT_CRC_OFF);
3129 }
3130
3131 ASSERT(dq_f->qlf_size == 2);
3132 ASSERT(bp->b_target->bt_mount == mp);
3133 bp->b_iodone = xlog_recover_iodone;
3134 xfs_buf_delwri_queue(bp, buffer_list);
3135
3136 out_release:
3137 xfs_buf_relse(bp);
3138 return 0;
3139 }
3140
3141 /*
3142 * This routine is called to create an in-core extent free intent
3143 * item from the efi format structure which was logged on disk.
3144 * It allocates an in-core efi, copies the extents from the format
3145 * structure into it, and adds the efi to the AIL with the given
3146 * LSN.
3147 */
3148 STATIC int
3149 xlog_recover_efi_pass2(
3150 struct xlog *log,
3151 struct xlog_recover_item *item,
3152 xfs_lsn_t lsn)
3153 {
3154 int error;
3155 xfs_mount_t *mp = log->l_mp;
3156 xfs_efi_log_item_t *efip;
3157 xfs_efi_log_format_t *efi_formatp;
3158
3159 efi_formatp = item->ri_buf[0].i_addr;
3160
3161 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
3162 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
3163 &(efip->efi_format)))) {
3164 xfs_efi_item_free(efip);
3165 return error;
3166 }
3167 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
3168
3169 spin_lock(&log->l_ailp->xa_lock);
3170 /*
3171 * xfs_trans_ail_update() drops the AIL lock.
3172 */
3173 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
3174 return 0;
3175 }
3176
3177
3178 /*
3179 * This routine is called when an efd format structure is found in
3180 * a committed transaction in the log. It's purpose is to cancel
3181 * the corresponding efi if it was still in the log. To do this
3182 * it searches the AIL for the efi with an id equal to that in the
3183 * efd format structure. If we find it, we remove the efi from the
3184 * AIL and free it.
3185 */
3186 STATIC int
3187 xlog_recover_efd_pass2(
3188 struct xlog *log,
3189 struct xlog_recover_item *item)
3190 {
3191 xfs_efd_log_format_t *efd_formatp;
3192 xfs_efi_log_item_t *efip = NULL;
3193 xfs_log_item_t *lip;
3194 __uint64_t efi_id;
3195 struct xfs_ail_cursor cur;
3196 struct xfs_ail *ailp = log->l_ailp;
3197
3198 efd_formatp = item->ri_buf[0].i_addr;
3199 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
3200 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
3201 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
3202 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
3203 efi_id = efd_formatp->efd_efi_id;
3204
3205 /*
3206 * Search for the efi with the id in the efd format structure
3207 * in the AIL.
3208 */
3209 spin_lock(&ailp->xa_lock);
3210 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3211 while (lip != NULL) {
3212 if (lip->li_type == XFS_LI_EFI) {
3213 efip = (xfs_efi_log_item_t *)lip;
3214 if (efip->efi_format.efi_id == efi_id) {
3215 /*
3216 * xfs_trans_ail_delete() drops the
3217 * AIL lock.
3218 */
3219 xfs_trans_ail_delete(ailp, lip,
3220 SHUTDOWN_CORRUPT_INCORE);
3221 xfs_efi_item_free(efip);
3222 spin_lock(&ailp->xa_lock);
3223 break;
3224 }
3225 }
3226 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3227 }
3228 xfs_trans_ail_cursor_done(ailp, &cur);
3229 spin_unlock(&ailp->xa_lock);
3230
3231 return 0;
3232 }
3233
3234 /*
3235 * This routine is called when an inode create format structure is found in a
3236 * committed transaction in the log. It's purpose is to initialise the inodes
3237 * being allocated on disk. This requires us to get inode cluster buffers that
3238 * match the range to be intialised, stamped with inode templates and written
3239 * by delayed write so that subsequent modifications will hit the cached buffer
3240 * and only need writing out at the end of recovery.
3241 */
3242 STATIC int
3243 xlog_recover_do_icreate_pass2(
3244 struct xlog *log,
3245 struct list_head *buffer_list,
3246 xlog_recover_item_t *item)
3247 {
3248 struct xfs_mount *mp = log->l_mp;
3249 struct xfs_icreate_log *icl;
3250 xfs_agnumber_t agno;
3251 xfs_agblock_t agbno;
3252 unsigned int count;
3253 unsigned int isize;
3254 xfs_agblock_t length;
3255
3256 icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3257 if (icl->icl_type != XFS_LI_ICREATE) {
3258 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
3259 return EINVAL;
3260 }
3261
3262 if (icl->icl_size != 1) {
3263 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
3264 return EINVAL;
3265 }
3266
3267 agno = be32_to_cpu(icl->icl_ag);
3268 if (agno >= mp->m_sb.sb_agcount) {
3269 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
3270 return EINVAL;
3271 }
3272 agbno = be32_to_cpu(icl->icl_agbno);
3273 if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3274 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
3275 return EINVAL;
3276 }
3277 isize = be32_to_cpu(icl->icl_isize);
3278 if (isize != mp->m_sb.sb_inodesize) {
3279 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
3280 return EINVAL;
3281 }
3282 count = be32_to_cpu(icl->icl_count);
3283 if (!count) {
3284 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
3285 return EINVAL;
3286 }
3287 length = be32_to_cpu(icl->icl_length);
3288 if (!length || length >= mp->m_sb.sb_agblocks) {
3289 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
3290 return EINVAL;
3291 }
3292
3293 /* existing allocation is fixed value */
3294 ASSERT(count == XFS_IALLOC_INODES(mp));
3295 ASSERT(length == XFS_IALLOC_BLOCKS(mp));
3296 if (count != XFS_IALLOC_INODES(mp) ||
3297 length != XFS_IALLOC_BLOCKS(mp)) {
3298 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count 2");
3299 return EINVAL;
3300 }
3301
3302 /*
3303 * Inode buffers can be freed. Do not replay the inode initialisation as
3304 * we could be overwriting something written after this inode buffer was
3305 * cancelled.
3306 *
3307 * XXX: we need to iterate all buffers and only init those that are not
3308 * cancelled. I think that a more fine grained factoring of
3309 * xfs_ialloc_inode_init may be appropriate here to enable this to be
3310 * done easily.
3311 */
3312 if (xlog_check_buffer_cancelled(log,
3313 XFS_AGB_TO_DADDR(mp, agno, agbno), length, 0))
3314 return 0;
3315
3316 xfs_ialloc_inode_init(mp, NULL, buffer_list, agno, agbno, length,
3317 be32_to_cpu(icl->icl_gen));
3318 return 0;
3319 }
3320
3321 /*
3322 * Free up any resources allocated by the transaction
3323 *
3324 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
3325 */
3326 STATIC void
3327 xlog_recover_free_trans(
3328 struct xlog_recover *trans)
3329 {
3330 xlog_recover_item_t *item, *n;
3331 int i;
3332
3333 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
3334 /* Free the regions in the item. */
3335 list_del(&item->ri_list);
3336 for (i = 0; i < item->ri_cnt; i++)
3337 kmem_free(item->ri_buf[i].i_addr);
3338 /* Free the item itself */
3339 kmem_free(item->ri_buf);
3340 kmem_free(item);
3341 }
3342 /* Free the transaction recover structure */
3343 kmem_free(trans);
3344 }
3345
3346 STATIC void
3347 xlog_recover_buffer_ra_pass2(
3348 struct xlog *log,
3349 struct xlog_recover_item *item)
3350 {
3351 struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr;
3352 struct xfs_mount *mp = log->l_mp;
3353
3354 if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
3355 buf_f->blf_len, buf_f->blf_flags)) {
3356 return;
3357 }
3358
3359 xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
3360 buf_f->blf_len, NULL);
3361 }
3362
3363 STATIC void
3364 xlog_recover_inode_ra_pass2(
3365 struct xlog *log,
3366 struct xlog_recover_item *item)
3367 {
3368 struct xfs_inode_log_format ilf_buf;
3369 struct xfs_inode_log_format *ilfp;
3370 struct xfs_mount *mp = log->l_mp;
3371 int error;
3372
3373 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3374 ilfp = item->ri_buf[0].i_addr;
3375 } else {
3376 ilfp = &ilf_buf;
3377 memset(ilfp, 0, sizeof(*ilfp));
3378 error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
3379 if (error)
3380 return;
3381 }
3382
3383 if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
3384 return;
3385
3386 xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
3387 ilfp->ilf_len, &xfs_inode_buf_ra_ops);
3388 }
3389
3390 STATIC void
3391 xlog_recover_dquot_ra_pass2(
3392 struct xlog *log,
3393 struct xlog_recover_item *item)
3394 {
3395 struct xfs_mount *mp = log->l_mp;
3396 struct xfs_disk_dquot *recddq;
3397 struct xfs_dq_logformat *dq_f;
3398 uint type;
3399
3400
3401 if (mp->m_qflags == 0)
3402 return;
3403
3404 recddq = item->ri_buf[1].i_addr;
3405 if (recddq == NULL)
3406 return;
3407 if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
3408 return;
3409
3410 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3411 ASSERT(type);
3412 if (log->l_quotaoffs_flag & type)
3413 return;
3414
3415 dq_f = item->ri_buf[0].i_addr;
3416 ASSERT(dq_f);
3417 ASSERT(dq_f->qlf_len == 1);
3418
3419 xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno,
3420 XFS_FSB_TO_BB(mp, dq_f->qlf_len), NULL);
3421 }
3422
3423 STATIC void
3424 xlog_recover_ra_pass2(
3425 struct xlog *log,
3426 struct xlog_recover_item *item)
3427 {
3428 switch (ITEM_TYPE(item)) {
3429 case XFS_LI_BUF:
3430 xlog_recover_buffer_ra_pass2(log, item);
3431 break;
3432 case XFS_LI_INODE:
3433 xlog_recover_inode_ra_pass2(log, item);
3434 break;
3435 case XFS_LI_DQUOT:
3436 xlog_recover_dquot_ra_pass2(log, item);
3437 break;
3438 case XFS_LI_EFI:
3439 case XFS_LI_EFD:
3440 case XFS_LI_QUOTAOFF:
3441 default:
3442 break;
3443 }
3444 }
3445
3446 STATIC int
3447 xlog_recover_commit_pass1(
3448 struct xlog *log,
3449 struct xlog_recover *trans,
3450 struct xlog_recover_item *item)
3451 {
3452 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
3453
3454 switch (ITEM_TYPE(item)) {
3455 case XFS_LI_BUF:
3456 return xlog_recover_buffer_pass1(log, item);
3457 case XFS_LI_QUOTAOFF:
3458 return xlog_recover_quotaoff_pass1(log, item);
3459 case XFS_LI_INODE:
3460 case XFS_LI_EFI:
3461 case XFS_LI_EFD:
3462 case XFS_LI_DQUOT:
3463 case XFS_LI_ICREATE:
3464 /* nothing to do in pass 1 */
3465 return 0;
3466 default:
3467 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3468 __func__, ITEM_TYPE(item));
3469 ASSERT(0);
3470 return XFS_ERROR(EIO);
3471 }
3472 }
3473
3474 STATIC int
3475 xlog_recover_commit_pass2(
3476 struct xlog *log,
3477 struct xlog_recover *trans,
3478 struct list_head *buffer_list,
3479 struct xlog_recover_item *item)
3480 {
3481 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
3482
3483 switch (ITEM_TYPE(item)) {
3484 case XFS_LI_BUF:
3485 return xlog_recover_buffer_pass2(log, buffer_list, item,
3486 trans->r_lsn);
3487 case XFS_LI_INODE:
3488 return xlog_recover_inode_pass2(log, buffer_list, item,
3489 trans->r_lsn);
3490 case XFS_LI_EFI:
3491 return xlog_recover_efi_pass2(log, item, trans->r_lsn);
3492 case XFS_LI_EFD:
3493 return xlog_recover_efd_pass2(log, item);
3494 case XFS_LI_DQUOT:
3495 return xlog_recover_dquot_pass2(log, buffer_list, item,
3496 trans->r_lsn);
3497 case XFS_LI_ICREATE:
3498 return xlog_recover_do_icreate_pass2(log, buffer_list, item);
3499 case XFS_LI_QUOTAOFF:
3500 /* nothing to do in pass2 */
3501 return 0;
3502 default:
3503 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3504 __func__, ITEM_TYPE(item));
3505 ASSERT(0);
3506 return XFS_ERROR(EIO);
3507 }
3508 }
3509
3510 STATIC int
3511 xlog_recover_items_pass2(
3512 struct xlog *log,
3513 struct xlog_recover *trans,
3514 struct list_head *buffer_list,
3515 struct list_head *item_list)
3516 {
3517 struct xlog_recover_item *item;
3518 int error = 0;
3519
3520 list_for_each_entry(item, item_list, ri_list) {
3521 error = xlog_recover_commit_pass2(log, trans,
3522 buffer_list, item);
3523 if (error)
3524 return error;
3525 }
3526
3527 return error;
3528 }
3529
3530 /*
3531 * Perform the transaction.
3532 *
3533 * If the transaction modifies a buffer or inode, do it now. Otherwise,
3534 * EFIs and EFDs get queued up by adding entries into the AIL for them.
3535 */
3536 STATIC int
3537 xlog_recover_commit_trans(
3538 struct xlog *log,
3539 struct xlog_recover *trans,
3540 int pass)
3541 {
3542 int error = 0;
3543 int error2;
3544 int items_queued = 0;
3545 struct xlog_recover_item *item;
3546 struct xlog_recover_item *next;
3547 LIST_HEAD (buffer_list);
3548 LIST_HEAD (ra_list);
3549 LIST_HEAD (done_list);
3550
3551 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
3552
3553 hlist_del(&trans->r_list);
3554
3555 error = xlog_recover_reorder_trans(log, trans, pass);
3556 if (error)
3557 return error;
3558
3559 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
3560 switch (pass) {
3561 case XLOG_RECOVER_PASS1:
3562 error = xlog_recover_commit_pass1(log, trans, item);
3563 break;
3564 case XLOG_RECOVER_PASS2:
3565 xlog_recover_ra_pass2(log, item);
3566 list_move_tail(&item->ri_list, &ra_list);
3567 items_queued++;
3568 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
3569 error = xlog_recover_items_pass2(log, trans,
3570 &buffer_list, &ra_list);
3571 list_splice_tail_init(&ra_list, &done_list);
3572 items_queued = 0;
3573 }
3574
3575 break;
3576 default:
3577 ASSERT(0);
3578 }
3579
3580 if (error)
3581 goto out;
3582 }
3583
3584 out:
3585 if (!list_empty(&ra_list)) {
3586 if (!error)
3587 error = xlog_recover_items_pass2(log, trans,
3588 &buffer_list, &ra_list);
3589 list_splice_tail_init(&ra_list, &done_list);
3590 }
3591
3592 if (!list_empty(&done_list))
3593 list_splice_init(&done_list, &trans->r_itemq);
3594
3595 xlog_recover_free_trans(trans);
3596
3597 error2 = xfs_buf_delwri_submit(&buffer_list);
3598 return error ? error : error2;
3599 }
3600
3601 STATIC int
3602 xlog_recover_unmount_trans(
3603 struct xlog *log,
3604 struct xlog_recover *trans)
3605 {
3606 /* Do nothing now */
3607 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
3608 return 0;
3609 }
3610
3611 /*
3612 * There are two valid states of the r_state field. 0 indicates that the
3613 * transaction structure is in a normal state. We have either seen the
3614 * start of the transaction or the last operation we added was not a partial
3615 * operation. If the last operation we added to the transaction was a
3616 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
3617 *
3618 * NOTE: skip LRs with 0 data length.
3619 */
3620 STATIC int
3621 xlog_recover_process_data(
3622 struct xlog *log,
3623 struct hlist_head rhash[],
3624 struct xlog_rec_header *rhead,
3625 xfs_caddr_t dp,
3626 int pass)
3627 {
3628 xfs_caddr_t lp;
3629 int num_logops;
3630 xlog_op_header_t *ohead;
3631 xlog_recover_t *trans;
3632 xlog_tid_t tid;
3633 int error;
3634 unsigned long hash;
3635 uint flags;
3636
3637 lp = dp + be32_to_cpu(rhead->h_len);
3638 num_logops = be32_to_cpu(rhead->h_num_logops);
3639
3640 /* check the log format matches our own - else we can't recover */
3641 if (xlog_header_check_recover(log->l_mp, rhead))
3642 return (XFS_ERROR(EIO));
3643
3644 while ((dp < lp) && num_logops) {
3645 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
3646 ohead = (xlog_op_header_t *)dp;
3647 dp += sizeof(xlog_op_header_t);
3648 if (ohead->oh_clientid != XFS_TRANSACTION &&
3649 ohead->oh_clientid != XFS_LOG) {
3650 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
3651 __func__, ohead->oh_clientid);
3652 ASSERT(0);
3653 return (XFS_ERROR(EIO));
3654 }
3655 tid = be32_to_cpu(ohead->oh_tid);
3656 hash = XLOG_RHASH(tid);
3657 trans = xlog_recover_find_tid(&rhash[hash], tid);
3658 if (trans == NULL) { /* not found; add new tid */
3659 if (ohead->oh_flags & XLOG_START_TRANS)
3660 xlog_recover_new_tid(&rhash[hash], tid,
3661 be64_to_cpu(rhead->h_lsn));
3662 } else {
3663 if (dp + be32_to_cpu(ohead->oh_len) > lp) {
3664 xfs_warn(log->l_mp, "%s: bad length 0x%x",
3665 __func__, be32_to_cpu(ohead->oh_len));
3666 WARN_ON(1);
3667 return (XFS_ERROR(EIO));
3668 }
3669 flags = ohead->oh_flags & ~XLOG_END_TRANS;
3670 if (flags & XLOG_WAS_CONT_TRANS)
3671 flags &= ~XLOG_CONTINUE_TRANS;
3672 switch (flags) {
3673 case XLOG_COMMIT_TRANS:
3674 error = xlog_recover_commit_trans(log,
3675 trans, pass);
3676 break;
3677 case XLOG_UNMOUNT_TRANS:
3678 error = xlog_recover_unmount_trans(log, trans);
3679 break;
3680 case XLOG_WAS_CONT_TRANS:
3681 error = xlog_recover_add_to_cont_trans(log,
3682 trans, dp,
3683 be32_to_cpu(ohead->oh_len));
3684 break;
3685 case XLOG_START_TRANS:
3686 xfs_warn(log->l_mp, "%s: bad transaction",
3687 __func__);
3688 ASSERT(0);
3689 error = XFS_ERROR(EIO);
3690 break;
3691 case 0:
3692 case XLOG_CONTINUE_TRANS:
3693 error = xlog_recover_add_to_trans(log, trans,
3694 dp, be32_to_cpu(ohead->oh_len));
3695 break;
3696 default:
3697 xfs_warn(log->l_mp, "%s: bad flag 0x%x",
3698 __func__, flags);
3699 ASSERT(0);
3700 error = XFS_ERROR(EIO);
3701 break;
3702 }
3703 if (error)
3704 return error;
3705 }
3706 dp += be32_to_cpu(ohead->oh_len);
3707 num_logops--;
3708 }
3709 return 0;
3710 }
3711
3712 /*
3713 * Process an extent free intent item that was recovered from
3714 * the log. We need to free the extents that it describes.
3715 */
3716 STATIC int
3717 xlog_recover_process_efi(
3718 xfs_mount_t *mp,
3719 xfs_efi_log_item_t *efip)
3720 {
3721 xfs_efd_log_item_t *efdp;
3722 xfs_trans_t *tp;
3723 int i;
3724 int error = 0;
3725 xfs_extent_t *extp;
3726 xfs_fsblock_t startblock_fsb;
3727
3728 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
3729
3730 /*
3731 * First check the validity of the extents described by the
3732 * EFI. If any are bad, then assume that all are bad and
3733 * just toss the EFI.
3734 */
3735 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3736 extp = &(efip->efi_format.efi_extents[i]);
3737 startblock_fsb = XFS_BB_TO_FSB(mp,
3738 XFS_FSB_TO_DADDR(mp, extp->ext_start));
3739 if ((startblock_fsb == 0) ||
3740 (extp->ext_len == 0) ||
3741 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3742 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3743 /*
3744 * This will pull the EFI from the AIL and
3745 * free the memory associated with it.
3746 */
3747 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
3748 xfs_efi_release(efip, efip->efi_format.efi_nextents);
3749 return XFS_ERROR(EIO);
3750 }
3751 }
3752
3753 tp = xfs_trans_alloc(mp, 0);
3754 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
3755 if (error)
3756 goto abort_error;
3757 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3758
3759 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3760 extp = &(efip->efi_format.efi_extents[i]);
3761 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3762 if (error)
3763 goto abort_error;
3764 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3765 extp->ext_len);
3766 }
3767
3768 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
3769 error = xfs_trans_commit(tp, 0);
3770 return error;
3771
3772 abort_error:
3773 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3774 return error;
3775 }
3776
3777 /*
3778 * When this is called, all of the EFIs which did not have
3779 * corresponding EFDs should be in the AIL. What we do now
3780 * is free the extents associated with each one.
3781 *
3782 * Since we process the EFIs in normal transactions, they
3783 * will be removed at some point after the commit. This prevents
3784 * us from just walking down the list processing each one.
3785 * We'll use a flag in the EFI to skip those that we've already
3786 * processed and use the AIL iteration mechanism's generation
3787 * count to try to speed this up at least a bit.
3788 *
3789 * When we start, we know that the EFIs are the only things in
3790 * the AIL. As we process them, however, other items are added
3791 * to the AIL. Since everything added to the AIL must come after
3792 * everything already in the AIL, we stop processing as soon as
3793 * we see something other than an EFI in the AIL.
3794 */
3795 STATIC int
3796 xlog_recover_process_efis(
3797 struct xlog *log)
3798 {
3799 xfs_log_item_t *lip;
3800 xfs_efi_log_item_t *efip;
3801 int error = 0;
3802 struct xfs_ail_cursor cur;
3803 struct xfs_ail *ailp;
3804
3805 ailp = log->l_ailp;
3806 spin_lock(&ailp->xa_lock);
3807 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3808 while (lip != NULL) {
3809 /*
3810 * We're done when we see something other than an EFI.
3811 * There should be no EFIs left in the AIL now.
3812 */
3813 if (lip->li_type != XFS_LI_EFI) {
3814 #ifdef DEBUG
3815 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
3816 ASSERT(lip->li_type != XFS_LI_EFI);
3817 #endif
3818 break;
3819 }
3820
3821 /*
3822 * Skip EFIs that we've already processed.
3823 */
3824 efip = (xfs_efi_log_item_t *)lip;
3825 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
3826 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3827 continue;
3828 }
3829
3830 spin_unlock(&ailp->xa_lock);
3831 error = xlog_recover_process_efi(log->l_mp, efip);
3832 spin_lock(&ailp->xa_lock);
3833 if (error)
3834 goto out;
3835 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3836 }
3837 out:
3838 xfs_trans_ail_cursor_done(ailp, &cur);
3839 spin_unlock(&ailp->xa_lock);
3840 return error;
3841 }
3842
3843 /*
3844 * This routine performs a transaction to null out a bad inode pointer
3845 * in an agi unlinked inode hash bucket.
3846 */
3847 STATIC void
3848 xlog_recover_clear_agi_bucket(
3849 xfs_mount_t *mp,
3850 xfs_agnumber_t agno,
3851 int bucket)
3852 {
3853 xfs_trans_t *tp;
3854 xfs_agi_t *agi;
3855 xfs_buf_t *agibp;
3856 int offset;
3857 int error;
3858
3859 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3860 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_clearagi, 0, 0);
3861 if (error)
3862 goto out_abort;
3863
3864 error = xfs_read_agi(mp, tp, agno, &agibp);
3865 if (error)
3866 goto out_abort;
3867
3868 agi = XFS_BUF_TO_AGI(agibp);
3869 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3870 offset = offsetof(xfs_agi_t, agi_unlinked) +
3871 (sizeof(xfs_agino_t) * bucket);
3872 xfs_trans_log_buf(tp, agibp, offset,
3873 (offset + sizeof(xfs_agino_t) - 1));
3874
3875 error = xfs_trans_commit(tp, 0);
3876 if (error)
3877 goto out_error;
3878 return;
3879
3880 out_abort:
3881 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3882 out_error:
3883 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
3884 return;
3885 }
3886
3887 STATIC xfs_agino_t
3888 xlog_recover_process_one_iunlink(
3889 struct xfs_mount *mp,
3890 xfs_agnumber_t agno,
3891 xfs_agino_t agino,
3892 int bucket)
3893 {
3894 struct xfs_buf *ibp;
3895 struct xfs_dinode *dip;
3896 struct xfs_inode *ip;
3897 xfs_ino_t ino;
3898 int error;
3899
3900 ino = XFS_AGINO_TO_INO(mp, agno, agino);
3901 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
3902 if (error)
3903 goto fail;
3904
3905 /*
3906 * Get the on disk inode to find the next inode in the bucket.
3907 */
3908 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
3909 if (error)
3910 goto fail_iput;
3911
3912 ASSERT(ip->i_d.di_nlink == 0);
3913 ASSERT(ip->i_d.di_mode != 0);
3914
3915 /* setup for the next pass */
3916 agino = be32_to_cpu(dip->di_next_unlinked);
3917 xfs_buf_relse(ibp);
3918
3919 /*
3920 * Prevent any DMAPI event from being sent when the reference on
3921 * the inode is dropped.
3922 */
3923 ip->i_d.di_dmevmask = 0;
3924
3925 IRELE(ip);
3926 return agino;
3927
3928 fail_iput:
3929 IRELE(ip);
3930 fail:
3931 /*
3932 * We can't read in the inode this bucket points to, or this inode
3933 * is messed up. Just ditch this bucket of inodes. We will lose
3934 * some inodes and space, but at least we won't hang.
3935 *
3936 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3937 * clear the inode pointer in the bucket.
3938 */
3939 xlog_recover_clear_agi_bucket(mp, agno, bucket);
3940 return NULLAGINO;
3941 }
3942
3943 /*
3944 * xlog_iunlink_recover
3945 *
3946 * This is called during recovery to process any inodes which
3947 * we unlinked but not freed when the system crashed. These
3948 * inodes will be on the lists in the AGI blocks. What we do
3949 * here is scan all the AGIs and fully truncate and free any
3950 * inodes found on the lists. Each inode is removed from the
3951 * lists when it has been fully truncated and is freed. The
3952 * freeing of the inode and its removal from the list must be
3953 * atomic.
3954 */
3955 STATIC void
3956 xlog_recover_process_iunlinks(
3957 struct xlog *log)
3958 {
3959 xfs_mount_t *mp;
3960 xfs_agnumber_t agno;
3961 xfs_agi_t *agi;
3962 xfs_buf_t *agibp;
3963 xfs_agino_t agino;
3964 int bucket;
3965 int error;
3966 uint mp_dmevmask;
3967
3968 mp = log->l_mp;
3969
3970 /*
3971 * Prevent any DMAPI event from being sent while in this function.
3972 */
3973 mp_dmevmask = mp->m_dmevmask;
3974 mp->m_dmevmask = 0;
3975
3976 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3977 /*
3978 * Find the agi for this ag.
3979 */
3980 error = xfs_read_agi(mp, NULL, agno, &agibp);
3981 if (error) {
3982 /*
3983 * AGI is b0rked. Don't process it.
3984 *
3985 * We should probably mark the filesystem as corrupt
3986 * after we've recovered all the ag's we can....
3987 */
3988 continue;
3989 }
3990 /*
3991 * Unlock the buffer so that it can be acquired in the normal
3992 * course of the transaction to truncate and free each inode.
3993 * Because we are not racing with anyone else here for the AGI
3994 * buffer, we don't even need to hold it locked to read the
3995 * initial unlinked bucket entries out of the buffer. We keep
3996 * buffer reference though, so that it stays pinned in memory
3997 * while we need the buffer.
3998 */
3999 agi = XFS_BUF_TO_AGI(agibp);
4000 xfs_buf_unlock(agibp);
4001
4002 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
4003 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
4004 while (agino != NULLAGINO) {
4005 agino = xlog_recover_process_one_iunlink(mp,
4006 agno, agino, bucket);
4007 }
4008 }
4009 xfs_buf_rele(agibp);
4010 }
4011
4012 mp->m_dmevmask = mp_dmevmask;
4013 }
4014
4015 /*
4016 * Upack the log buffer data and crc check it. If the check fails, issue a
4017 * warning if and only if the CRC in the header is non-zero. This makes the
4018 * check an advisory warning, and the zero CRC check will prevent failure
4019 * warnings from being emitted when upgrading the kernel from one that does not
4020 * add CRCs by default.
4021 *
4022 * When filesystems are CRC enabled, this CRC mismatch becomes a fatal log
4023 * corruption failure
4024 */
4025 STATIC int
4026 xlog_unpack_data_crc(
4027 struct xlog_rec_header *rhead,
4028 xfs_caddr_t dp,
4029 struct xlog *log)
4030 {
4031 __le32 crc;
4032
4033 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
4034 if (crc != rhead->h_crc) {
4035 if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
4036 xfs_alert(log->l_mp,
4037 "log record CRC mismatch: found 0x%x, expected 0x%x.\n",
4038 le32_to_cpu(rhead->h_crc),
4039 le32_to_cpu(crc));
4040 xfs_hex_dump(dp, 32);
4041 }
4042
4043 /*
4044 * If we've detected a log record corruption, then we can't
4045 * recover past this point. Abort recovery if we are enforcing
4046 * CRC protection by punting an error back up the stack.
4047 */
4048 if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
4049 return EFSCORRUPTED;
4050 }
4051
4052 return 0;
4053 }
4054
4055 STATIC int
4056 xlog_unpack_data(
4057 struct xlog_rec_header *rhead,
4058 xfs_caddr_t dp,
4059 struct xlog *log)
4060 {
4061 int i, j, k;
4062 int error;
4063
4064 error = xlog_unpack_data_crc(rhead, dp, log);
4065 if (error)
4066 return error;
4067
4068 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
4069 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
4070 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
4071 dp += BBSIZE;
4072 }
4073
4074 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
4075 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
4076 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
4077 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
4078 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
4079 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
4080 dp += BBSIZE;
4081 }
4082 }
4083
4084 return 0;
4085 }
4086
4087 STATIC int
4088 xlog_valid_rec_header(
4089 struct xlog *log,
4090 struct xlog_rec_header *rhead,
4091 xfs_daddr_t blkno)
4092 {
4093 int hlen;
4094
4095 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
4096 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
4097 XFS_ERRLEVEL_LOW, log->l_mp);
4098 return XFS_ERROR(EFSCORRUPTED);
4099 }
4100 if (unlikely(
4101 (!rhead->h_version ||
4102 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
4103 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
4104 __func__, be32_to_cpu(rhead->h_version));
4105 return XFS_ERROR(EIO);
4106 }
4107
4108 /* LR body must have data or it wouldn't have been written */
4109 hlen = be32_to_cpu(rhead->h_len);
4110 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
4111 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
4112 XFS_ERRLEVEL_LOW, log->l_mp);
4113 return XFS_ERROR(EFSCORRUPTED);
4114 }
4115 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
4116 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
4117 XFS_ERRLEVEL_LOW, log->l_mp);
4118 return XFS_ERROR(EFSCORRUPTED);
4119 }
4120 return 0;
4121 }
4122
4123 /*
4124 * Read the log from tail to head and process the log records found.
4125 * Handle the two cases where the tail and head are in the same cycle
4126 * and where the active portion of the log wraps around the end of
4127 * the physical log separately. The pass parameter is passed through
4128 * to the routines called to process the data and is not looked at
4129 * here.
4130 */
4131 STATIC int
4132 xlog_do_recovery_pass(
4133 struct xlog *log,
4134 xfs_daddr_t head_blk,
4135 xfs_daddr_t tail_blk,
4136 int pass)
4137 {
4138 xlog_rec_header_t *rhead;
4139 xfs_daddr_t blk_no;
4140 xfs_caddr_t offset;
4141 xfs_buf_t *hbp, *dbp;
4142 int error = 0, h_size;
4143 int bblks, split_bblks;
4144 int hblks, split_hblks, wrapped_hblks;
4145 struct hlist_head rhash[XLOG_RHASH_SIZE];
4146
4147 ASSERT(head_blk != tail_blk);
4148
4149 /*
4150 * Read the header of the tail block and get the iclog buffer size from
4151 * h_size. Use this to tell how many sectors make up the log header.
4152 */
4153 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
4154 /*
4155 * When using variable length iclogs, read first sector of
4156 * iclog header and extract the header size from it. Get a
4157 * new hbp that is the correct size.
4158 */
4159 hbp = xlog_get_bp(log, 1);
4160 if (!hbp)
4161 return ENOMEM;
4162
4163 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
4164 if (error)
4165 goto bread_err1;
4166
4167 rhead = (xlog_rec_header_t *)offset;
4168 error = xlog_valid_rec_header(log, rhead, tail_blk);
4169 if (error)
4170 goto bread_err1;
4171 h_size = be32_to_cpu(rhead->h_size);
4172 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
4173 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
4174 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
4175 if (h_size % XLOG_HEADER_CYCLE_SIZE)
4176 hblks++;
4177 xlog_put_bp(hbp);
4178 hbp = xlog_get_bp(log, hblks);
4179 } else {
4180 hblks = 1;
4181 }
4182 } else {
4183 ASSERT(log->l_sectBBsize == 1);
4184 hblks = 1;
4185 hbp = xlog_get_bp(log, 1);
4186 h_size = XLOG_BIG_RECORD_BSIZE;
4187 }
4188
4189 if (!hbp)
4190 return ENOMEM;
4191 dbp = xlog_get_bp(log, BTOBB(h_size));
4192 if (!dbp) {
4193 xlog_put_bp(hbp);
4194 return ENOMEM;
4195 }
4196
4197 memset(rhash, 0, sizeof(rhash));
4198 if (tail_blk <= head_blk) {
4199 for (blk_no = tail_blk; blk_no < head_blk; ) {
4200 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
4201 if (error)
4202 goto bread_err2;
4203
4204 rhead = (xlog_rec_header_t *)offset;
4205 error = xlog_valid_rec_header(log, rhead, blk_no);
4206 if (error)
4207 goto bread_err2;
4208
4209 /* blocks in data section */
4210 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
4211 error = xlog_bread(log, blk_no + hblks, bblks, dbp,
4212 &offset);
4213 if (error)
4214 goto bread_err2;
4215
4216 error = xlog_unpack_data(rhead, offset, log);
4217 if (error)
4218 goto bread_err2;
4219
4220 error = xlog_recover_process_data(log,
4221 rhash, rhead, offset, pass);
4222 if (error)
4223 goto bread_err2;
4224 blk_no += bblks + hblks;
4225 }
4226 } else {
4227 /*
4228 * Perform recovery around the end of the physical log.
4229 * When the head is not on the same cycle number as the tail,
4230 * we can't do a sequential recovery as above.
4231 */
4232 blk_no = tail_blk;
4233 while (blk_no < log->l_logBBsize) {
4234 /*
4235 * Check for header wrapping around physical end-of-log
4236 */
4237 offset = hbp->b_addr;
4238 split_hblks = 0;
4239 wrapped_hblks = 0;
4240 if (blk_no + hblks <= log->l_logBBsize) {
4241 /* Read header in one read */
4242 error = xlog_bread(log, blk_no, hblks, hbp,
4243 &offset);
4244 if (error)
4245 goto bread_err2;
4246 } else {
4247 /* This LR is split across physical log end */
4248 if (blk_no != log->l_logBBsize) {
4249 /* some data before physical log end */
4250 ASSERT(blk_no <= INT_MAX);
4251 split_hblks = log->l_logBBsize - (int)blk_no;
4252 ASSERT(split_hblks > 0);
4253 error = xlog_bread(log, blk_no,
4254 split_hblks, hbp,
4255 &offset);
4256 if (error)
4257 goto bread_err2;
4258 }
4259
4260 /*
4261 * Note: this black magic still works with
4262 * large sector sizes (non-512) only because:
4263 * - we increased the buffer size originally
4264 * by 1 sector giving us enough extra space
4265 * for the second read;
4266 * - the log start is guaranteed to be sector
4267 * aligned;
4268 * - we read the log end (LR header start)
4269 * _first_, then the log start (LR header end)
4270 * - order is important.
4271 */
4272 wrapped_hblks = hblks - split_hblks;
4273 error = xlog_bread_offset(log, 0,
4274 wrapped_hblks, hbp,
4275 offset + BBTOB(split_hblks));
4276 if (error)
4277 goto bread_err2;
4278 }
4279 rhead = (xlog_rec_header_t *)offset;
4280 error = xlog_valid_rec_header(log, rhead,
4281 split_hblks ? blk_no : 0);
4282 if (error)
4283 goto bread_err2;
4284
4285 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
4286 blk_no += hblks;
4287
4288 /* Read in data for log record */
4289 if (blk_no + bblks <= log->l_logBBsize) {
4290 error = xlog_bread(log, blk_no, bblks, dbp,
4291 &offset);
4292 if (error)
4293 goto bread_err2;
4294 } else {
4295 /* This log record is split across the
4296 * physical end of log */
4297 offset = dbp->b_addr;
4298 split_bblks = 0;
4299 if (blk_no != log->l_logBBsize) {
4300 /* some data is before the physical
4301 * end of log */
4302 ASSERT(!wrapped_hblks);
4303 ASSERT(blk_no <= INT_MAX);
4304 split_bblks =
4305 log->l_logBBsize - (int)blk_no;
4306 ASSERT(split_bblks > 0);
4307 error = xlog_bread(log, blk_no,
4308 split_bblks, dbp,
4309 &offset);
4310 if (error)
4311 goto bread_err2;
4312 }
4313
4314 /*
4315 * Note: this black magic still works with
4316 * large sector sizes (non-512) only because:
4317 * - we increased the buffer size originally
4318 * by 1 sector giving us enough extra space
4319 * for the second read;
4320 * - the log start is guaranteed to be sector
4321 * aligned;
4322 * - we read the log end (LR header start)
4323 * _first_, then the log start (LR header end)
4324 * - order is important.
4325 */
4326 error = xlog_bread_offset(log, 0,
4327 bblks - split_bblks, dbp,
4328 offset + BBTOB(split_bblks));
4329 if (error)
4330 goto bread_err2;
4331 }
4332
4333 error = xlog_unpack_data(rhead, offset, log);
4334 if (error)
4335 goto bread_err2;
4336
4337 error = xlog_recover_process_data(log, rhash,
4338 rhead, offset, pass);
4339 if (error)
4340 goto bread_err2;
4341 blk_no += bblks;
4342 }
4343
4344 ASSERT(blk_no >= log->l_logBBsize);
4345 blk_no -= log->l_logBBsize;
4346
4347 /* read first part of physical log */
4348 while (blk_no < head_blk) {
4349 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
4350 if (error)
4351 goto bread_err2;
4352
4353 rhead = (xlog_rec_header_t *)offset;
4354 error = xlog_valid_rec_header(log, rhead, blk_no);
4355 if (error)
4356 goto bread_err2;
4357
4358 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
4359 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
4360 &offset);
4361 if (error)
4362 goto bread_err2;
4363
4364 error = xlog_unpack_data(rhead, offset, log);
4365 if (error)
4366 goto bread_err2;
4367
4368 error = xlog_recover_process_data(log, rhash,
4369 rhead, offset, pass);
4370 if (error)
4371 goto bread_err2;
4372 blk_no += bblks + hblks;
4373 }
4374 }
4375
4376 bread_err2:
4377 xlog_put_bp(dbp);
4378 bread_err1:
4379 xlog_put_bp(hbp);
4380 return error;
4381 }
4382
4383 /*
4384 * Do the recovery of the log. We actually do this in two phases.
4385 * The two passes are necessary in order to implement the function
4386 * of cancelling a record written into the log. The first pass
4387 * determines those things which have been cancelled, and the
4388 * second pass replays log items normally except for those which
4389 * have been cancelled. The handling of the replay and cancellations
4390 * takes place in the log item type specific routines.
4391 *
4392 * The table of items which have cancel records in the log is allocated
4393 * and freed at this level, since only here do we know when all of
4394 * the log recovery has been completed.
4395 */
4396 STATIC int
4397 xlog_do_log_recovery(
4398 struct xlog *log,
4399 xfs_daddr_t head_blk,
4400 xfs_daddr_t tail_blk)
4401 {
4402 int error, i;
4403
4404 ASSERT(head_blk != tail_blk);
4405
4406 /*
4407 * First do a pass to find all of the cancelled buf log items.
4408 * Store them in the buf_cancel_table for use in the second pass.
4409 */
4410 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
4411 sizeof(struct list_head),
4412 KM_SLEEP);
4413 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
4414 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
4415
4416 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
4417 XLOG_RECOVER_PASS1);
4418 if (error != 0) {
4419 kmem_free(log->l_buf_cancel_table);
4420 log->l_buf_cancel_table = NULL;
4421 return error;
4422 }
4423 /*
4424 * Then do a second pass to actually recover the items in the log.
4425 * When it is complete free the table of buf cancel items.
4426 */
4427 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
4428 XLOG_RECOVER_PASS2);
4429 #ifdef DEBUG
4430 if (!error) {
4431 int i;
4432
4433 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
4434 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
4435 }
4436 #endif /* DEBUG */
4437
4438 kmem_free(log->l_buf_cancel_table);
4439 log->l_buf_cancel_table = NULL;
4440
4441 return error;
4442 }
4443
4444 /*
4445 * Do the actual recovery
4446 */
4447 STATIC int
4448 xlog_do_recover(
4449 struct xlog *log,
4450 xfs_daddr_t head_blk,
4451 xfs_daddr_t tail_blk)
4452 {
4453 int error;
4454 xfs_buf_t *bp;
4455 xfs_sb_t *sbp;
4456
4457 /*
4458 * First replay the images in the log.
4459 */
4460 error = xlog_do_log_recovery(log, head_blk, tail_blk);
4461 if (error)
4462 return error;
4463
4464 /*
4465 * If IO errors happened during recovery, bail out.
4466 */
4467 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
4468 return (EIO);
4469 }
4470
4471 /*
4472 * We now update the tail_lsn since much of the recovery has completed
4473 * and there may be space available to use. If there were no extent
4474 * or iunlinks, we can free up the entire log and set the tail_lsn to
4475 * be the last_sync_lsn. This was set in xlog_find_tail to be the
4476 * lsn of the last known good LR on disk. If there are extent frees
4477 * or iunlinks they will have some entries in the AIL; so we look at
4478 * the AIL to determine how to set the tail_lsn.
4479 */
4480 xlog_assign_tail_lsn(log->l_mp);
4481
4482 /*
4483 * Now that we've finished replaying all buffer and inode
4484 * updates, re-read in the superblock and reverify it.
4485 */
4486 bp = xfs_getsb(log->l_mp, 0);
4487 XFS_BUF_UNDONE(bp);
4488 ASSERT(!(XFS_BUF_ISWRITE(bp)));
4489 XFS_BUF_READ(bp);
4490 XFS_BUF_UNASYNC(bp);
4491 bp->b_ops = &xfs_sb_buf_ops;
4492 xfsbdstrat(log->l_mp, bp);
4493 error = xfs_buf_iowait(bp);
4494 if (error) {
4495 xfs_buf_ioerror_alert(bp, __func__);
4496 ASSERT(0);
4497 xfs_buf_relse(bp);
4498 return error;
4499 }
4500
4501 /* Convert superblock from on-disk format */
4502 sbp = &log->l_mp->m_sb;
4503 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
4504 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
4505 ASSERT(xfs_sb_good_version(sbp));
4506 xfs_buf_relse(bp);
4507
4508 /* We've re-read the superblock so re-initialize per-cpu counters */
4509 xfs_icsb_reinit_counters(log->l_mp);
4510
4511 xlog_recover_check_summary(log);
4512
4513 /* Normal transactions can now occur */
4514 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
4515 return 0;
4516 }
4517
4518 /*
4519 * Perform recovery and re-initialize some log variables in xlog_find_tail.
4520 *
4521 * Return error or zero.
4522 */
4523 int
4524 xlog_recover(
4525 struct xlog *log)
4526 {
4527 xfs_daddr_t head_blk, tail_blk;
4528 int error;
4529
4530 /* find the tail of the log */
4531 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
4532 return error;
4533
4534 if (tail_blk != head_blk) {
4535 /* There used to be a comment here:
4536 *
4537 * disallow recovery on read-only mounts. note -- mount
4538 * checks for ENOSPC and turns it into an intelligent
4539 * error message.
4540 * ...but this is no longer true. Now, unless you specify
4541 * NORECOVERY (in which case this function would never be
4542 * called), we just go ahead and recover. We do this all
4543 * under the vfs layer, so we can get away with it unless
4544 * the device itself is read-only, in which case we fail.
4545 */
4546 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
4547 return error;
4548 }
4549
4550 /*
4551 * Version 5 superblock log feature mask validation. We know the
4552 * log is dirty so check if there are any unknown log features
4553 * in what we need to recover. If there are unknown features
4554 * (e.g. unsupported transactions, then simply reject the
4555 * attempt at recovery before touching anything.
4556 */
4557 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
4558 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
4559 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
4560 xfs_warn(log->l_mp,
4561 "Superblock has unknown incompatible log features (0x%x) enabled.\n"
4562 "The log can not be fully and/or safely recovered by this kernel.\n"
4563 "Please recover the log on a kernel that supports the unknown features.",
4564 (log->l_mp->m_sb.sb_features_log_incompat &
4565 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
4566 return EINVAL;
4567 }
4568
4569 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
4570 log->l_mp->m_logname ? log->l_mp->m_logname
4571 : "internal");
4572
4573 error = xlog_do_recover(log, head_blk, tail_blk);
4574 log->l_flags |= XLOG_RECOVERY_NEEDED;
4575 }
4576 return error;
4577 }
4578
4579 /*
4580 * In the first part of recovery we replay inodes and buffers and build
4581 * up the list of extent free items which need to be processed. Here
4582 * we process the extent free items and clean up the on disk unlinked
4583 * inode lists. This is separated from the first part of recovery so
4584 * that the root and real-time bitmap inodes can be read in from disk in
4585 * between the two stages. This is necessary so that we can free space
4586 * in the real-time portion of the file system.
4587 */
4588 int
4589 xlog_recover_finish(
4590 struct xlog *log)
4591 {
4592 /*
4593 * Now we're ready to do the transactions needed for the
4594 * rest of recovery. Start with completing all the extent
4595 * free intent records and then process the unlinked inode
4596 * lists. At this point, we essentially run in normal mode
4597 * except that we're still performing recovery actions
4598 * rather than accepting new requests.
4599 */
4600 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
4601 int error;
4602 error = xlog_recover_process_efis(log);
4603 if (error) {
4604 xfs_alert(log->l_mp, "Failed to recover EFIs");
4605 return error;
4606 }
4607 /*
4608 * Sync the log to get all the EFIs out of the AIL.
4609 * This isn't absolutely necessary, but it helps in
4610 * case the unlink transactions would have problems
4611 * pushing the EFIs out of the way.
4612 */
4613 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
4614
4615 xlog_recover_process_iunlinks(log);
4616
4617 xlog_recover_check_summary(log);
4618
4619 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
4620 log->l_mp->m_logname ? log->l_mp->m_logname
4621 : "internal");
4622 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
4623 } else {
4624 xfs_info(log->l_mp, "Ending clean mount");
4625 }
4626 return 0;
4627 }
4628
4629
4630 #if defined(DEBUG)
4631 /*
4632 * Read all of the agf and agi counters and check that they
4633 * are consistent with the superblock counters.
4634 */
4635 void
4636 xlog_recover_check_summary(
4637 struct xlog *log)
4638 {
4639 xfs_mount_t *mp;
4640 xfs_agf_t *agfp;
4641 xfs_buf_t *agfbp;
4642 xfs_buf_t *agibp;
4643 xfs_agnumber_t agno;
4644 __uint64_t freeblks;
4645 __uint64_t itotal;
4646 __uint64_t ifree;
4647 int error;
4648
4649 mp = log->l_mp;
4650
4651 freeblks = 0LL;
4652 itotal = 0LL;
4653 ifree = 0LL;
4654 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4655 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
4656 if (error) {
4657 xfs_alert(mp, "%s agf read failed agno %d error %d",
4658 __func__, agno, error);
4659 } else {
4660 agfp = XFS_BUF_TO_AGF(agfbp);
4661 freeblks += be32_to_cpu(agfp->agf_freeblks) +
4662 be32_to_cpu(agfp->agf_flcount);
4663 xfs_buf_relse(agfbp);
4664 }
4665
4666 error = xfs_read_agi(mp, NULL, agno, &agibp);
4667 if (error) {
4668 xfs_alert(mp, "%s agi read failed agno %d error %d",
4669 __func__, agno, error);
4670 } else {
4671 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
4672
4673 itotal += be32_to_cpu(agi->agi_count);
4674 ifree += be32_to_cpu(agi->agi_freecount);
4675 xfs_buf_relse(agibp);
4676 }
4677 }
4678 }
4679 #endif /* DEBUG */
This page took 0.134844 seconds and 5 git commands to generate.