Merge tag 'dm-3.17-fix2' of git://git.kernel.org/pub/scm/linux/kernel/git/device...
[deliverable/linux.git] / fs / xfs / xfs_log_recover.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_inum.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_mount.h"
29 #include "xfs_da_format.h"
30 #include "xfs_inode.h"
31 #include "xfs_trans.h"
32 #include "xfs_log.h"
33 #include "xfs_log_priv.h"
34 #include "xfs_log_recover.h"
35 #include "xfs_inode_item.h"
36 #include "xfs_extfree_item.h"
37 #include "xfs_trans_priv.h"
38 #include "xfs_alloc.h"
39 #include "xfs_ialloc.h"
40 #include "xfs_quota.h"
41 #include "xfs_cksum.h"
42 #include "xfs_trace.h"
43 #include "xfs_icache.h"
44 #include "xfs_bmap_btree.h"
45 #include "xfs_dinode.h"
46 #include "xfs_error.h"
47 #include "xfs_dir2.h"
48
49 #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1)
50
51 STATIC int
52 xlog_find_zeroed(
53 struct xlog *,
54 xfs_daddr_t *);
55 STATIC int
56 xlog_clear_stale_blocks(
57 struct xlog *,
58 xfs_lsn_t);
59 #if defined(DEBUG)
60 STATIC void
61 xlog_recover_check_summary(
62 struct xlog *);
63 #else
64 #define xlog_recover_check_summary(log)
65 #endif
66
67 /*
68 * This structure is used during recovery to record the buf log items which
69 * have been canceled and should not be replayed.
70 */
71 struct xfs_buf_cancel {
72 xfs_daddr_t bc_blkno;
73 uint bc_len;
74 int bc_refcount;
75 struct list_head bc_list;
76 };
77
78 /*
79 * Sector aligned buffer routines for buffer create/read/write/access
80 */
81
82 /*
83 * Verify the given count of basic blocks is valid number of blocks
84 * to specify for an operation involving the given XFS log buffer.
85 * Returns nonzero if the count is valid, 0 otherwise.
86 */
87
88 static inline int
89 xlog_buf_bbcount_valid(
90 struct xlog *log,
91 int bbcount)
92 {
93 return bbcount > 0 && bbcount <= log->l_logBBsize;
94 }
95
96 /*
97 * Allocate a buffer to hold log data. The buffer needs to be able
98 * to map to a range of nbblks basic blocks at any valid (basic
99 * block) offset within the log.
100 */
101 STATIC xfs_buf_t *
102 xlog_get_bp(
103 struct xlog *log,
104 int nbblks)
105 {
106 struct xfs_buf *bp;
107
108 if (!xlog_buf_bbcount_valid(log, nbblks)) {
109 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
110 nbblks);
111 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
112 return NULL;
113 }
114
115 /*
116 * We do log I/O in units of log sectors (a power-of-2
117 * multiple of the basic block size), so we round up the
118 * requested size to accommodate the basic blocks required
119 * for complete log sectors.
120 *
121 * In addition, the buffer may be used for a non-sector-
122 * aligned block offset, in which case an I/O of the
123 * requested size could extend beyond the end of the
124 * buffer. If the requested size is only 1 basic block it
125 * will never straddle a sector boundary, so this won't be
126 * an issue. Nor will this be a problem if the log I/O is
127 * done in basic blocks (sector size 1). But otherwise we
128 * extend the buffer by one extra log sector to ensure
129 * there's space to accommodate this possibility.
130 */
131 if (nbblks > 1 && log->l_sectBBsize > 1)
132 nbblks += log->l_sectBBsize;
133 nbblks = round_up(nbblks, log->l_sectBBsize);
134
135 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
136 if (bp)
137 xfs_buf_unlock(bp);
138 return bp;
139 }
140
141 STATIC void
142 xlog_put_bp(
143 xfs_buf_t *bp)
144 {
145 xfs_buf_free(bp);
146 }
147
148 /*
149 * Return the address of the start of the given block number's data
150 * in a log buffer. The buffer covers a log sector-aligned region.
151 */
152 STATIC xfs_caddr_t
153 xlog_align(
154 struct xlog *log,
155 xfs_daddr_t blk_no,
156 int nbblks,
157 struct xfs_buf *bp)
158 {
159 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
160
161 ASSERT(offset + nbblks <= bp->b_length);
162 return bp->b_addr + BBTOB(offset);
163 }
164
165
166 /*
167 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
168 */
169 STATIC int
170 xlog_bread_noalign(
171 struct xlog *log,
172 xfs_daddr_t blk_no,
173 int nbblks,
174 struct xfs_buf *bp)
175 {
176 int error;
177
178 if (!xlog_buf_bbcount_valid(log, nbblks)) {
179 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
180 nbblks);
181 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
182 return -EFSCORRUPTED;
183 }
184
185 blk_no = round_down(blk_no, log->l_sectBBsize);
186 nbblks = round_up(nbblks, log->l_sectBBsize);
187
188 ASSERT(nbblks > 0);
189 ASSERT(nbblks <= bp->b_length);
190
191 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
192 XFS_BUF_READ(bp);
193 bp->b_io_length = nbblks;
194 bp->b_error = 0;
195
196 if (XFS_FORCED_SHUTDOWN(log->l_mp))
197 return -EIO;
198
199 xfs_buf_iorequest(bp);
200 error = xfs_buf_iowait(bp);
201 if (error)
202 xfs_buf_ioerror_alert(bp, __func__);
203 return error;
204 }
205
206 STATIC int
207 xlog_bread(
208 struct xlog *log,
209 xfs_daddr_t blk_no,
210 int nbblks,
211 struct xfs_buf *bp,
212 xfs_caddr_t *offset)
213 {
214 int error;
215
216 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
217 if (error)
218 return error;
219
220 *offset = xlog_align(log, blk_no, nbblks, bp);
221 return 0;
222 }
223
224 /*
225 * Read at an offset into the buffer. Returns with the buffer in it's original
226 * state regardless of the result of the read.
227 */
228 STATIC int
229 xlog_bread_offset(
230 struct xlog *log,
231 xfs_daddr_t blk_no, /* block to read from */
232 int nbblks, /* blocks to read */
233 struct xfs_buf *bp,
234 xfs_caddr_t offset)
235 {
236 xfs_caddr_t orig_offset = bp->b_addr;
237 int orig_len = BBTOB(bp->b_length);
238 int error, error2;
239
240 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
241 if (error)
242 return error;
243
244 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
245
246 /* must reset buffer pointer even on error */
247 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
248 if (error)
249 return error;
250 return error2;
251 }
252
253 /*
254 * Write out the buffer at the given block for the given number of blocks.
255 * The buffer is kept locked across the write and is returned locked.
256 * This can only be used for synchronous log writes.
257 */
258 STATIC int
259 xlog_bwrite(
260 struct xlog *log,
261 xfs_daddr_t blk_no,
262 int nbblks,
263 struct xfs_buf *bp)
264 {
265 int error;
266
267 if (!xlog_buf_bbcount_valid(log, nbblks)) {
268 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
269 nbblks);
270 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
271 return -EFSCORRUPTED;
272 }
273
274 blk_no = round_down(blk_no, log->l_sectBBsize);
275 nbblks = round_up(nbblks, log->l_sectBBsize);
276
277 ASSERT(nbblks > 0);
278 ASSERT(nbblks <= bp->b_length);
279
280 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
281 XFS_BUF_ZEROFLAGS(bp);
282 xfs_buf_hold(bp);
283 xfs_buf_lock(bp);
284 bp->b_io_length = nbblks;
285 bp->b_error = 0;
286
287 error = xfs_bwrite(bp);
288 if (error)
289 xfs_buf_ioerror_alert(bp, __func__);
290 xfs_buf_relse(bp);
291 return error;
292 }
293
294 #ifdef DEBUG
295 /*
296 * dump debug superblock and log record information
297 */
298 STATIC void
299 xlog_header_check_dump(
300 xfs_mount_t *mp,
301 xlog_rec_header_t *head)
302 {
303 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d",
304 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
305 xfs_debug(mp, " log : uuid = %pU, fmt = %d",
306 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
307 }
308 #else
309 #define xlog_header_check_dump(mp, head)
310 #endif
311
312 /*
313 * check log record header for recovery
314 */
315 STATIC int
316 xlog_header_check_recover(
317 xfs_mount_t *mp,
318 xlog_rec_header_t *head)
319 {
320 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
321
322 /*
323 * IRIX doesn't write the h_fmt field and leaves it zeroed
324 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
325 * a dirty log created in IRIX.
326 */
327 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
328 xfs_warn(mp,
329 "dirty log written in incompatible format - can't recover");
330 xlog_header_check_dump(mp, head);
331 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
332 XFS_ERRLEVEL_HIGH, mp);
333 return -EFSCORRUPTED;
334 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
335 xfs_warn(mp,
336 "dirty log entry has mismatched uuid - can't recover");
337 xlog_header_check_dump(mp, head);
338 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
339 XFS_ERRLEVEL_HIGH, mp);
340 return -EFSCORRUPTED;
341 }
342 return 0;
343 }
344
345 /*
346 * read the head block of the log and check the header
347 */
348 STATIC int
349 xlog_header_check_mount(
350 xfs_mount_t *mp,
351 xlog_rec_header_t *head)
352 {
353 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
354
355 if (uuid_is_nil(&head->h_fs_uuid)) {
356 /*
357 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
358 * h_fs_uuid is nil, we assume this log was last mounted
359 * by IRIX and continue.
360 */
361 xfs_warn(mp, "nil uuid in log - IRIX style log");
362 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
363 xfs_warn(mp, "log has mismatched uuid - can't recover");
364 xlog_header_check_dump(mp, head);
365 XFS_ERROR_REPORT("xlog_header_check_mount",
366 XFS_ERRLEVEL_HIGH, mp);
367 return -EFSCORRUPTED;
368 }
369 return 0;
370 }
371
372 STATIC void
373 xlog_recover_iodone(
374 struct xfs_buf *bp)
375 {
376 if (bp->b_error) {
377 /*
378 * We're not going to bother about retrying
379 * this during recovery. One strike!
380 */
381 xfs_buf_ioerror_alert(bp, __func__);
382 xfs_force_shutdown(bp->b_target->bt_mount,
383 SHUTDOWN_META_IO_ERROR);
384 }
385 bp->b_iodone = NULL;
386 xfs_buf_ioend(bp, 0);
387 }
388
389 /*
390 * This routine finds (to an approximation) the first block in the physical
391 * log which contains the given cycle. It uses a binary search algorithm.
392 * Note that the algorithm can not be perfect because the disk will not
393 * necessarily be perfect.
394 */
395 STATIC int
396 xlog_find_cycle_start(
397 struct xlog *log,
398 struct xfs_buf *bp,
399 xfs_daddr_t first_blk,
400 xfs_daddr_t *last_blk,
401 uint cycle)
402 {
403 xfs_caddr_t offset;
404 xfs_daddr_t mid_blk;
405 xfs_daddr_t end_blk;
406 uint mid_cycle;
407 int error;
408
409 end_blk = *last_blk;
410 mid_blk = BLK_AVG(first_blk, end_blk);
411 while (mid_blk != first_blk && mid_blk != end_blk) {
412 error = xlog_bread(log, mid_blk, 1, bp, &offset);
413 if (error)
414 return error;
415 mid_cycle = xlog_get_cycle(offset);
416 if (mid_cycle == cycle)
417 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
418 else
419 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
420 mid_blk = BLK_AVG(first_blk, end_blk);
421 }
422 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
423 (mid_blk == end_blk && mid_blk-1 == first_blk));
424
425 *last_blk = end_blk;
426
427 return 0;
428 }
429
430 /*
431 * Check that a range of blocks does not contain stop_on_cycle_no.
432 * Fill in *new_blk with the block offset where such a block is
433 * found, or with -1 (an invalid block number) if there is no such
434 * block in the range. The scan needs to occur from front to back
435 * and the pointer into the region must be updated since a later
436 * routine will need to perform another test.
437 */
438 STATIC int
439 xlog_find_verify_cycle(
440 struct xlog *log,
441 xfs_daddr_t start_blk,
442 int nbblks,
443 uint stop_on_cycle_no,
444 xfs_daddr_t *new_blk)
445 {
446 xfs_daddr_t i, j;
447 uint cycle;
448 xfs_buf_t *bp;
449 xfs_daddr_t bufblks;
450 xfs_caddr_t buf = NULL;
451 int error = 0;
452
453 /*
454 * Greedily allocate a buffer big enough to handle the full
455 * range of basic blocks we'll be examining. If that fails,
456 * try a smaller size. We need to be able to read at least
457 * a log sector, or we're out of luck.
458 */
459 bufblks = 1 << ffs(nbblks);
460 while (bufblks > log->l_logBBsize)
461 bufblks >>= 1;
462 while (!(bp = xlog_get_bp(log, bufblks))) {
463 bufblks >>= 1;
464 if (bufblks < log->l_sectBBsize)
465 return -ENOMEM;
466 }
467
468 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
469 int bcount;
470
471 bcount = min(bufblks, (start_blk + nbblks - i));
472
473 error = xlog_bread(log, i, bcount, bp, &buf);
474 if (error)
475 goto out;
476
477 for (j = 0; j < bcount; j++) {
478 cycle = xlog_get_cycle(buf);
479 if (cycle == stop_on_cycle_no) {
480 *new_blk = i+j;
481 goto out;
482 }
483
484 buf += BBSIZE;
485 }
486 }
487
488 *new_blk = -1;
489
490 out:
491 xlog_put_bp(bp);
492 return error;
493 }
494
495 /*
496 * Potentially backup over partial log record write.
497 *
498 * In the typical case, last_blk is the number of the block directly after
499 * a good log record. Therefore, we subtract one to get the block number
500 * of the last block in the given buffer. extra_bblks contains the number
501 * of blocks we would have read on a previous read. This happens when the
502 * last log record is split over the end of the physical log.
503 *
504 * extra_bblks is the number of blocks potentially verified on a previous
505 * call to this routine.
506 */
507 STATIC int
508 xlog_find_verify_log_record(
509 struct xlog *log,
510 xfs_daddr_t start_blk,
511 xfs_daddr_t *last_blk,
512 int extra_bblks)
513 {
514 xfs_daddr_t i;
515 xfs_buf_t *bp;
516 xfs_caddr_t offset = NULL;
517 xlog_rec_header_t *head = NULL;
518 int error = 0;
519 int smallmem = 0;
520 int num_blks = *last_blk - start_blk;
521 int xhdrs;
522
523 ASSERT(start_blk != 0 || *last_blk != start_blk);
524
525 if (!(bp = xlog_get_bp(log, num_blks))) {
526 if (!(bp = xlog_get_bp(log, 1)))
527 return -ENOMEM;
528 smallmem = 1;
529 } else {
530 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
531 if (error)
532 goto out;
533 offset += ((num_blks - 1) << BBSHIFT);
534 }
535
536 for (i = (*last_blk) - 1; i >= 0; i--) {
537 if (i < start_blk) {
538 /* valid log record not found */
539 xfs_warn(log->l_mp,
540 "Log inconsistent (didn't find previous header)");
541 ASSERT(0);
542 error = -EIO;
543 goto out;
544 }
545
546 if (smallmem) {
547 error = xlog_bread(log, i, 1, bp, &offset);
548 if (error)
549 goto out;
550 }
551
552 head = (xlog_rec_header_t *)offset;
553
554 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
555 break;
556
557 if (!smallmem)
558 offset -= BBSIZE;
559 }
560
561 /*
562 * We hit the beginning of the physical log & still no header. Return
563 * to caller. If caller can handle a return of -1, then this routine
564 * will be called again for the end of the physical log.
565 */
566 if (i == -1) {
567 error = 1;
568 goto out;
569 }
570
571 /*
572 * We have the final block of the good log (the first block
573 * of the log record _before_ the head. So we check the uuid.
574 */
575 if ((error = xlog_header_check_mount(log->l_mp, head)))
576 goto out;
577
578 /*
579 * We may have found a log record header before we expected one.
580 * last_blk will be the 1st block # with a given cycle #. We may end
581 * up reading an entire log record. In this case, we don't want to
582 * reset last_blk. Only when last_blk points in the middle of a log
583 * record do we update last_blk.
584 */
585 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
586 uint h_size = be32_to_cpu(head->h_size);
587
588 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
589 if (h_size % XLOG_HEADER_CYCLE_SIZE)
590 xhdrs++;
591 } else {
592 xhdrs = 1;
593 }
594
595 if (*last_blk - i + extra_bblks !=
596 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
597 *last_blk = i;
598
599 out:
600 xlog_put_bp(bp);
601 return error;
602 }
603
604 /*
605 * Head is defined to be the point of the log where the next log write
606 * could go. This means that incomplete LR writes at the end are
607 * eliminated when calculating the head. We aren't guaranteed that previous
608 * LR have complete transactions. We only know that a cycle number of
609 * current cycle number -1 won't be present in the log if we start writing
610 * from our current block number.
611 *
612 * last_blk contains the block number of the first block with a given
613 * cycle number.
614 *
615 * Return: zero if normal, non-zero if error.
616 */
617 STATIC int
618 xlog_find_head(
619 struct xlog *log,
620 xfs_daddr_t *return_head_blk)
621 {
622 xfs_buf_t *bp;
623 xfs_caddr_t offset;
624 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
625 int num_scan_bblks;
626 uint first_half_cycle, last_half_cycle;
627 uint stop_on_cycle;
628 int error, log_bbnum = log->l_logBBsize;
629
630 /* Is the end of the log device zeroed? */
631 error = xlog_find_zeroed(log, &first_blk);
632 if (error < 0) {
633 xfs_warn(log->l_mp, "empty log check failed");
634 return error;
635 }
636 if (error == 1) {
637 *return_head_blk = first_blk;
638
639 /* Is the whole lot zeroed? */
640 if (!first_blk) {
641 /* Linux XFS shouldn't generate totally zeroed logs -
642 * mkfs etc write a dummy unmount record to a fresh
643 * log so we can store the uuid in there
644 */
645 xfs_warn(log->l_mp, "totally zeroed log");
646 }
647
648 return 0;
649 }
650
651 first_blk = 0; /* get cycle # of 1st block */
652 bp = xlog_get_bp(log, 1);
653 if (!bp)
654 return -ENOMEM;
655
656 error = xlog_bread(log, 0, 1, bp, &offset);
657 if (error)
658 goto bp_err;
659
660 first_half_cycle = xlog_get_cycle(offset);
661
662 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
663 error = xlog_bread(log, last_blk, 1, bp, &offset);
664 if (error)
665 goto bp_err;
666
667 last_half_cycle = xlog_get_cycle(offset);
668 ASSERT(last_half_cycle != 0);
669
670 /*
671 * If the 1st half cycle number is equal to the last half cycle number,
672 * then the entire log is stamped with the same cycle number. In this
673 * case, head_blk can't be set to zero (which makes sense). The below
674 * math doesn't work out properly with head_blk equal to zero. Instead,
675 * we set it to log_bbnum which is an invalid block number, but this
676 * value makes the math correct. If head_blk doesn't changed through
677 * all the tests below, *head_blk is set to zero at the very end rather
678 * than log_bbnum. In a sense, log_bbnum and zero are the same block
679 * in a circular file.
680 */
681 if (first_half_cycle == last_half_cycle) {
682 /*
683 * In this case we believe that the entire log should have
684 * cycle number last_half_cycle. We need to scan backwards
685 * from the end verifying that there are no holes still
686 * containing last_half_cycle - 1. If we find such a hole,
687 * then the start of that hole will be the new head. The
688 * simple case looks like
689 * x | x ... | x - 1 | x
690 * Another case that fits this picture would be
691 * x | x + 1 | x ... | x
692 * In this case the head really is somewhere at the end of the
693 * log, as one of the latest writes at the beginning was
694 * incomplete.
695 * One more case is
696 * x | x + 1 | x ... | x - 1 | x
697 * This is really the combination of the above two cases, and
698 * the head has to end up at the start of the x-1 hole at the
699 * end of the log.
700 *
701 * In the 256k log case, we will read from the beginning to the
702 * end of the log and search for cycle numbers equal to x-1.
703 * We don't worry about the x+1 blocks that we encounter,
704 * because we know that they cannot be the head since the log
705 * started with x.
706 */
707 head_blk = log_bbnum;
708 stop_on_cycle = last_half_cycle - 1;
709 } else {
710 /*
711 * In this case we want to find the first block with cycle
712 * number matching last_half_cycle. We expect the log to be
713 * some variation on
714 * x + 1 ... | x ... | x
715 * The first block with cycle number x (last_half_cycle) will
716 * be where the new head belongs. First we do a binary search
717 * for the first occurrence of last_half_cycle. The binary
718 * search may not be totally accurate, so then we scan back
719 * from there looking for occurrences of last_half_cycle before
720 * us. If that backwards scan wraps around the beginning of
721 * the log, then we look for occurrences of last_half_cycle - 1
722 * at the end of the log. The cases we're looking for look
723 * like
724 * v binary search stopped here
725 * x + 1 ... | x | x + 1 | x ... | x
726 * ^ but we want to locate this spot
727 * or
728 * <---------> less than scan distance
729 * x + 1 ... | x ... | x - 1 | x
730 * ^ we want to locate this spot
731 */
732 stop_on_cycle = last_half_cycle;
733 if ((error = xlog_find_cycle_start(log, bp, first_blk,
734 &head_blk, last_half_cycle)))
735 goto bp_err;
736 }
737
738 /*
739 * Now validate the answer. Scan back some number of maximum possible
740 * blocks and make sure each one has the expected cycle number. The
741 * maximum is determined by the total possible amount of buffering
742 * in the in-core log. The following number can be made tighter if
743 * we actually look at the block size of the filesystem.
744 */
745 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
746 if (head_blk >= num_scan_bblks) {
747 /*
748 * We are guaranteed that the entire check can be performed
749 * in one buffer.
750 */
751 start_blk = head_blk - num_scan_bblks;
752 if ((error = xlog_find_verify_cycle(log,
753 start_blk, num_scan_bblks,
754 stop_on_cycle, &new_blk)))
755 goto bp_err;
756 if (new_blk != -1)
757 head_blk = new_blk;
758 } else { /* need to read 2 parts of log */
759 /*
760 * We are going to scan backwards in the log in two parts.
761 * First we scan the physical end of the log. In this part
762 * of the log, we are looking for blocks with cycle number
763 * last_half_cycle - 1.
764 * If we find one, then we know that the log starts there, as
765 * we've found a hole that didn't get written in going around
766 * the end of the physical log. The simple case for this is
767 * x + 1 ... | x ... | x - 1 | x
768 * <---------> less than scan distance
769 * If all of the blocks at the end of the log have cycle number
770 * last_half_cycle, then we check the blocks at the start of
771 * the log looking for occurrences of last_half_cycle. If we
772 * find one, then our current estimate for the location of the
773 * first occurrence of last_half_cycle is wrong and we move
774 * back to the hole we've found. This case looks like
775 * x + 1 ... | x | x + 1 | x ...
776 * ^ binary search stopped here
777 * Another case we need to handle that only occurs in 256k
778 * logs is
779 * x + 1 ... | x ... | x+1 | x ...
780 * ^ binary search stops here
781 * In a 256k log, the scan at the end of the log will see the
782 * x + 1 blocks. We need to skip past those since that is
783 * certainly not the head of the log. By searching for
784 * last_half_cycle-1 we accomplish that.
785 */
786 ASSERT(head_blk <= INT_MAX &&
787 (xfs_daddr_t) num_scan_bblks >= head_blk);
788 start_blk = log_bbnum - (num_scan_bblks - head_blk);
789 if ((error = xlog_find_verify_cycle(log, start_blk,
790 num_scan_bblks - (int)head_blk,
791 (stop_on_cycle - 1), &new_blk)))
792 goto bp_err;
793 if (new_blk != -1) {
794 head_blk = new_blk;
795 goto validate_head;
796 }
797
798 /*
799 * Scan beginning of log now. The last part of the physical
800 * log is good. This scan needs to verify that it doesn't find
801 * the last_half_cycle.
802 */
803 start_blk = 0;
804 ASSERT(head_blk <= INT_MAX);
805 if ((error = xlog_find_verify_cycle(log,
806 start_blk, (int)head_blk,
807 stop_on_cycle, &new_blk)))
808 goto bp_err;
809 if (new_blk != -1)
810 head_blk = new_blk;
811 }
812
813 validate_head:
814 /*
815 * Now we need to make sure head_blk is not pointing to a block in
816 * the middle of a log record.
817 */
818 num_scan_bblks = XLOG_REC_SHIFT(log);
819 if (head_blk >= num_scan_bblks) {
820 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
821
822 /* start ptr at last block ptr before head_blk */
823 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
824 if (error == 1)
825 error = -EIO;
826 if (error)
827 goto bp_err;
828 } else {
829 start_blk = 0;
830 ASSERT(head_blk <= INT_MAX);
831 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
832 if (error < 0)
833 goto bp_err;
834 if (error == 1) {
835 /* We hit the beginning of the log during our search */
836 start_blk = log_bbnum - (num_scan_bblks - head_blk);
837 new_blk = log_bbnum;
838 ASSERT(start_blk <= INT_MAX &&
839 (xfs_daddr_t) log_bbnum-start_blk >= 0);
840 ASSERT(head_blk <= INT_MAX);
841 error = xlog_find_verify_log_record(log, start_blk,
842 &new_blk, (int)head_blk);
843 if (error == 1)
844 error = -EIO;
845 if (error)
846 goto bp_err;
847 if (new_blk != log_bbnum)
848 head_blk = new_blk;
849 } else if (error)
850 goto bp_err;
851 }
852
853 xlog_put_bp(bp);
854 if (head_blk == log_bbnum)
855 *return_head_blk = 0;
856 else
857 *return_head_blk = head_blk;
858 /*
859 * When returning here, we have a good block number. Bad block
860 * means that during a previous crash, we didn't have a clean break
861 * from cycle number N to cycle number N-1. In this case, we need
862 * to find the first block with cycle number N-1.
863 */
864 return 0;
865
866 bp_err:
867 xlog_put_bp(bp);
868
869 if (error)
870 xfs_warn(log->l_mp, "failed to find log head");
871 return error;
872 }
873
874 /*
875 * Find the sync block number or the tail of the log.
876 *
877 * This will be the block number of the last record to have its
878 * associated buffers synced to disk. Every log record header has
879 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
880 * to get a sync block number. The only concern is to figure out which
881 * log record header to believe.
882 *
883 * The following algorithm uses the log record header with the largest
884 * lsn. The entire log record does not need to be valid. We only care
885 * that the header is valid.
886 *
887 * We could speed up search by using current head_blk buffer, but it is not
888 * available.
889 */
890 STATIC int
891 xlog_find_tail(
892 struct xlog *log,
893 xfs_daddr_t *head_blk,
894 xfs_daddr_t *tail_blk)
895 {
896 xlog_rec_header_t *rhead;
897 xlog_op_header_t *op_head;
898 xfs_caddr_t offset = NULL;
899 xfs_buf_t *bp;
900 int error, i, found;
901 xfs_daddr_t umount_data_blk;
902 xfs_daddr_t after_umount_blk;
903 xfs_lsn_t tail_lsn;
904 int hblks;
905
906 found = 0;
907
908 /*
909 * Find previous log record
910 */
911 if ((error = xlog_find_head(log, head_blk)))
912 return error;
913
914 bp = xlog_get_bp(log, 1);
915 if (!bp)
916 return -ENOMEM;
917 if (*head_blk == 0) { /* special case */
918 error = xlog_bread(log, 0, 1, bp, &offset);
919 if (error)
920 goto done;
921
922 if (xlog_get_cycle(offset) == 0) {
923 *tail_blk = 0;
924 /* leave all other log inited values alone */
925 goto done;
926 }
927 }
928
929 /*
930 * Search backwards looking for log record header block
931 */
932 ASSERT(*head_blk < INT_MAX);
933 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
934 error = xlog_bread(log, i, 1, bp, &offset);
935 if (error)
936 goto done;
937
938 if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
939 found = 1;
940 break;
941 }
942 }
943 /*
944 * If we haven't found the log record header block, start looking
945 * again from the end of the physical log. XXXmiken: There should be
946 * a check here to make sure we didn't search more than N blocks in
947 * the previous code.
948 */
949 if (!found) {
950 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
951 error = xlog_bread(log, i, 1, bp, &offset);
952 if (error)
953 goto done;
954
955 if (*(__be32 *)offset ==
956 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
957 found = 2;
958 break;
959 }
960 }
961 }
962 if (!found) {
963 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
964 xlog_put_bp(bp);
965 ASSERT(0);
966 return -EIO;
967 }
968
969 /* find blk_no of tail of log */
970 rhead = (xlog_rec_header_t *)offset;
971 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
972
973 /*
974 * Reset log values according to the state of the log when we
975 * crashed. In the case where head_blk == 0, we bump curr_cycle
976 * one because the next write starts a new cycle rather than
977 * continuing the cycle of the last good log record. At this
978 * point we have guaranteed that all partial log records have been
979 * accounted for. Therefore, we know that the last good log record
980 * written was complete and ended exactly on the end boundary
981 * of the physical log.
982 */
983 log->l_prev_block = i;
984 log->l_curr_block = (int)*head_blk;
985 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
986 if (found == 2)
987 log->l_curr_cycle++;
988 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
989 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
990 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
991 BBTOB(log->l_curr_block));
992 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
993 BBTOB(log->l_curr_block));
994
995 /*
996 * Look for unmount record. If we find it, then we know there
997 * was a clean unmount. Since 'i' could be the last block in
998 * the physical log, we convert to a log block before comparing
999 * to the head_blk.
1000 *
1001 * Save the current tail lsn to use to pass to
1002 * xlog_clear_stale_blocks() below. We won't want to clear the
1003 * unmount record if there is one, so we pass the lsn of the
1004 * unmount record rather than the block after it.
1005 */
1006 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1007 int h_size = be32_to_cpu(rhead->h_size);
1008 int h_version = be32_to_cpu(rhead->h_version);
1009
1010 if ((h_version & XLOG_VERSION_2) &&
1011 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1012 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1013 if (h_size % XLOG_HEADER_CYCLE_SIZE)
1014 hblks++;
1015 } else {
1016 hblks = 1;
1017 }
1018 } else {
1019 hblks = 1;
1020 }
1021 after_umount_blk = (i + hblks + (int)
1022 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1023 tail_lsn = atomic64_read(&log->l_tail_lsn);
1024 if (*head_blk == after_umount_blk &&
1025 be32_to_cpu(rhead->h_num_logops) == 1) {
1026 umount_data_blk = (i + hblks) % log->l_logBBsize;
1027 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1028 if (error)
1029 goto done;
1030
1031 op_head = (xlog_op_header_t *)offset;
1032 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1033 /*
1034 * Set tail and last sync so that newly written
1035 * log records will point recovery to after the
1036 * current unmount record.
1037 */
1038 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1039 log->l_curr_cycle, after_umount_blk);
1040 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1041 log->l_curr_cycle, after_umount_blk);
1042 *tail_blk = after_umount_blk;
1043
1044 /*
1045 * Note that the unmount was clean. If the unmount
1046 * was not clean, we need to know this to rebuild the
1047 * superblock counters from the perag headers if we
1048 * have a filesystem using non-persistent counters.
1049 */
1050 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1051 }
1052 }
1053
1054 /*
1055 * Make sure that there are no blocks in front of the head
1056 * with the same cycle number as the head. This can happen
1057 * because we allow multiple outstanding log writes concurrently,
1058 * and the later writes might make it out before earlier ones.
1059 *
1060 * We use the lsn from before modifying it so that we'll never
1061 * overwrite the unmount record after a clean unmount.
1062 *
1063 * Do this only if we are going to recover the filesystem
1064 *
1065 * NOTE: This used to say "if (!readonly)"
1066 * However on Linux, we can & do recover a read-only filesystem.
1067 * We only skip recovery if NORECOVERY is specified on mount,
1068 * in which case we would not be here.
1069 *
1070 * But... if the -device- itself is readonly, just skip this.
1071 * We can't recover this device anyway, so it won't matter.
1072 */
1073 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1074 error = xlog_clear_stale_blocks(log, tail_lsn);
1075
1076 done:
1077 xlog_put_bp(bp);
1078
1079 if (error)
1080 xfs_warn(log->l_mp, "failed to locate log tail");
1081 return error;
1082 }
1083
1084 /*
1085 * Is the log zeroed at all?
1086 *
1087 * The last binary search should be changed to perform an X block read
1088 * once X becomes small enough. You can then search linearly through
1089 * the X blocks. This will cut down on the number of reads we need to do.
1090 *
1091 * If the log is partially zeroed, this routine will pass back the blkno
1092 * of the first block with cycle number 0. It won't have a complete LR
1093 * preceding it.
1094 *
1095 * Return:
1096 * 0 => the log is completely written to
1097 * 1 => use *blk_no as the first block of the log
1098 * <0 => error has occurred
1099 */
1100 STATIC int
1101 xlog_find_zeroed(
1102 struct xlog *log,
1103 xfs_daddr_t *blk_no)
1104 {
1105 xfs_buf_t *bp;
1106 xfs_caddr_t offset;
1107 uint first_cycle, last_cycle;
1108 xfs_daddr_t new_blk, last_blk, start_blk;
1109 xfs_daddr_t num_scan_bblks;
1110 int error, log_bbnum = log->l_logBBsize;
1111
1112 *blk_no = 0;
1113
1114 /* check totally zeroed log */
1115 bp = xlog_get_bp(log, 1);
1116 if (!bp)
1117 return -ENOMEM;
1118 error = xlog_bread(log, 0, 1, bp, &offset);
1119 if (error)
1120 goto bp_err;
1121
1122 first_cycle = xlog_get_cycle(offset);
1123 if (first_cycle == 0) { /* completely zeroed log */
1124 *blk_no = 0;
1125 xlog_put_bp(bp);
1126 return 1;
1127 }
1128
1129 /* check partially zeroed log */
1130 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1131 if (error)
1132 goto bp_err;
1133
1134 last_cycle = xlog_get_cycle(offset);
1135 if (last_cycle != 0) { /* log completely written to */
1136 xlog_put_bp(bp);
1137 return 0;
1138 } else if (first_cycle != 1) {
1139 /*
1140 * If the cycle of the last block is zero, the cycle of
1141 * the first block must be 1. If it's not, maybe we're
1142 * not looking at a log... Bail out.
1143 */
1144 xfs_warn(log->l_mp,
1145 "Log inconsistent or not a log (last==0, first!=1)");
1146 error = -EINVAL;
1147 goto bp_err;
1148 }
1149
1150 /* we have a partially zeroed log */
1151 last_blk = log_bbnum-1;
1152 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1153 goto bp_err;
1154
1155 /*
1156 * Validate the answer. Because there is no way to guarantee that
1157 * the entire log is made up of log records which are the same size,
1158 * we scan over the defined maximum blocks. At this point, the maximum
1159 * is not chosen to mean anything special. XXXmiken
1160 */
1161 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1162 ASSERT(num_scan_bblks <= INT_MAX);
1163
1164 if (last_blk < num_scan_bblks)
1165 num_scan_bblks = last_blk;
1166 start_blk = last_blk - num_scan_bblks;
1167
1168 /*
1169 * We search for any instances of cycle number 0 that occur before
1170 * our current estimate of the head. What we're trying to detect is
1171 * 1 ... | 0 | 1 | 0...
1172 * ^ binary search ends here
1173 */
1174 if ((error = xlog_find_verify_cycle(log, start_blk,
1175 (int)num_scan_bblks, 0, &new_blk)))
1176 goto bp_err;
1177 if (new_blk != -1)
1178 last_blk = new_blk;
1179
1180 /*
1181 * Potentially backup over partial log record write. We don't need
1182 * to search the end of the log because we know it is zero.
1183 */
1184 error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1185 if (error == 1)
1186 error = -EIO;
1187 if (error)
1188 goto bp_err;
1189
1190 *blk_no = last_blk;
1191 bp_err:
1192 xlog_put_bp(bp);
1193 if (error)
1194 return error;
1195 return 1;
1196 }
1197
1198 /*
1199 * These are simple subroutines used by xlog_clear_stale_blocks() below
1200 * to initialize a buffer full of empty log record headers and write
1201 * them into the log.
1202 */
1203 STATIC void
1204 xlog_add_record(
1205 struct xlog *log,
1206 xfs_caddr_t buf,
1207 int cycle,
1208 int block,
1209 int tail_cycle,
1210 int tail_block)
1211 {
1212 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1213
1214 memset(buf, 0, BBSIZE);
1215 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1216 recp->h_cycle = cpu_to_be32(cycle);
1217 recp->h_version = cpu_to_be32(
1218 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1219 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1220 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1221 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1222 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1223 }
1224
1225 STATIC int
1226 xlog_write_log_records(
1227 struct xlog *log,
1228 int cycle,
1229 int start_block,
1230 int blocks,
1231 int tail_cycle,
1232 int tail_block)
1233 {
1234 xfs_caddr_t offset;
1235 xfs_buf_t *bp;
1236 int balign, ealign;
1237 int sectbb = log->l_sectBBsize;
1238 int end_block = start_block + blocks;
1239 int bufblks;
1240 int error = 0;
1241 int i, j = 0;
1242
1243 /*
1244 * Greedily allocate a buffer big enough to handle the full
1245 * range of basic blocks to be written. If that fails, try
1246 * a smaller size. We need to be able to write at least a
1247 * log sector, or we're out of luck.
1248 */
1249 bufblks = 1 << ffs(blocks);
1250 while (bufblks > log->l_logBBsize)
1251 bufblks >>= 1;
1252 while (!(bp = xlog_get_bp(log, bufblks))) {
1253 bufblks >>= 1;
1254 if (bufblks < sectbb)
1255 return -ENOMEM;
1256 }
1257
1258 /* We may need to do a read at the start to fill in part of
1259 * the buffer in the starting sector not covered by the first
1260 * write below.
1261 */
1262 balign = round_down(start_block, sectbb);
1263 if (balign != start_block) {
1264 error = xlog_bread_noalign(log, start_block, 1, bp);
1265 if (error)
1266 goto out_put_bp;
1267
1268 j = start_block - balign;
1269 }
1270
1271 for (i = start_block; i < end_block; i += bufblks) {
1272 int bcount, endcount;
1273
1274 bcount = min(bufblks, end_block - start_block);
1275 endcount = bcount - j;
1276
1277 /* We may need to do a read at the end to fill in part of
1278 * the buffer in the final sector not covered by the write.
1279 * If this is the same sector as the above read, skip it.
1280 */
1281 ealign = round_down(end_block, sectbb);
1282 if (j == 0 && (start_block + endcount > ealign)) {
1283 offset = bp->b_addr + BBTOB(ealign - start_block);
1284 error = xlog_bread_offset(log, ealign, sectbb,
1285 bp, offset);
1286 if (error)
1287 break;
1288
1289 }
1290
1291 offset = xlog_align(log, start_block, endcount, bp);
1292 for (; j < endcount; j++) {
1293 xlog_add_record(log, offset, cycle, i+j,
1294 tail_cycle, tail_block);
1295 offset += BBSIZE;
1296 }
1297 error = xlog_bwrite(log, start_block, endcount, bp);
1298 if (error)
1299 break;
1300 start_block += endcount;
1301 j = 0;
1302 }
1303
1304 out_put_bp:
1305 xlog_put_bp(bp);
1306 return error;
1307 }
1308
1309 /*
1310 * This routine is called to blow away any incomplete log writes out
1311 * in front of the log head. We do this so that we won't become confused
1312 * if we come up, write only a little bit more, and then crash again.
1313 * If we leave the partial log records out there, this situation could
1314 * cause us to think those partial writes are valid blocks since they
1315 * have the current cycle number. We get rid of them by overwriting them
1316 * with empty log records with the old cycle number rather than the
1317 * current one.
1318 *
1319 * The tail lsn is passed in rather than taken from
1320 * the log so that we will not write over the unmount record after a
1321 * clean unmount in a 512 block log. Doing so would leave the log without
1322 * any valid log records in it until a new one was written. If we crashed
1323 * during that time we would not be able to recover.
1324 */
1325 STATIC int
1326 xlog_clear_stale_blocks(
1327 struct xlog *log,
1328 xfs_lsn_t tail_lsn)
1329 {
1330 int tail_cycle, head_cycle;
1331 int tail_block, head_block;
1332 int tail_distance, max_distance;
1333 int distance;
1334 int error;
1335
1336 tail_cycle = CYCLE_LSN(tail_lsn);
1337 tail_block = BLOCK_LSN(tail_lsn);
1338 head_cycle = log->l_curr_cycle;
1339 head_block = log->l_curr_block;
1340
1341 /*
1342 * Figure out the distance between the new head of the log
1343 * and the tail. We want to write over any blocks beyond the
1344 * head that we may have written just before the crash, but
1345 * we don't want to overwrite the tail of the log.
1346 */
1347 if (head_cycle == tail_cycle) {
1348 /*
1349 * The tail is behind the head in the physical log,
1350 * so the distance from the head to the tail is the
1351 * distance from the head to the end of the log plus
1352 * the distance from the beginning of the log to the
1353 * tail.
1354 */
1355 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1356 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1357 XFS_ERRLEVEL_LOW, log->l_mp);
1358 return -EFSCORRUPTED;
1359 }
1360 tail_distance = tail_block + (log->l_logBBsize - head_block);
1361 } else {
1362 /*
1363 * The head is behind the tail in the physical log,
1364 * so the distance from the head to the tail is just
1365 * the tail block minus the head block.
1366 */
1367 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1368 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1369 XFS_ERRLEVEL_LOW, log->l_mp);
1370 return -EFSCORRUPTED;
1371 }
1372 tail_distance = tail_block - head_block;
1373 }
1374
1375 /*
1376 * If the head is right up against the tail, we can't clear
1377 * anything.
1378 */
1379 if (tail_distance <= 0) {
1380 ASSERT(tail_distance == 0);
1381 return 0;
1382 }
1383
1384 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1385 /*
1386 * Take the smaller of the maximum amount of outstanding I/O
1387 * we could have and the distance to the tail to clear out.
1388 * We take the smaller so that we don't overwrite the tail and
1389 * we don't waste all day writing from the head to the tail
1390 * for no reason.
1391 */
1392 max_distance = MIN(max_distance, tail_distance);
1393
1394 if ((head_block + max_distance) <= log->l_logBBsize) {
1395 /*
1396 * We can stomp all the blocks we need to without
1397 * wrapping around the end of the log. Just do it
1398 * in a single write. Use the cycle number of the
1399 * current cycle minus one so that the log will look like:
1400 * n ... | n - 1 ...
1401 */
1402 error = xlog_write_log_records(log, (head_cycle - 1),
1403 head_block, max_distance, tail_cycle,
1404 tail_block);
1405 if (error)
1406 return error;
1407 } else {
1408 /*
1409 * We need to wrap around the end of the physical log in
1410 * order to clear all the blocks. Do it in two separate
1411 * I/Os. The first write should be from the head to the
1412 * end of the physical log, and it should use the current
1413 * cycle number minus one just like above.
1414 */
1415 distance = log->l_logBBsize - head_block;
1416 error = xlog_write_log_records(log, (head_cycle - 1),
1417 head_block, distance, tail_cycle,
1418 tail_block);
1419
1420 if (error)
1421 return error;
1422
1423 /*
1424 * Now write the blocks at the start of the physical log.
1425 * This writes the remainder of the blocks we want to clear.
1426 * It uses the current cycle number since we're now on the
1427 * same cycle as the head so that we get:
1428 * n ... n ... | n - 1 ...
1429 * ^^^^^ blocks we're writing
1430 */
1431 distance = max_distance - (log->l_logBBsize - head_block);
1432 error = xlog_write_log_records(log, head_cycle, 0, distance,
1433 tail_cycle, tail_block);
1434 if (error)
1435 return error;
1436 }
1437
1438 return 0;
1439 }
1440
1441 /******************************************************************************
1442 *
1443 * Log recover routines
1444 *
1445 ******************************************************************************
1446 */
1447
1448 STATIC xlog_recover_t *
1449 xlog_recover_find_tid(
1450 struct hlist_head *head,
1451 xlog_tid_t tid)
1452 {
1453 xlog_recover_t *trans;
1454
1455 hlist_for_each_entry(trans, head, r_list) {
1456 if (trans->r_log_tid == tid)
1457 return trans;
1458 }
1459 return NULL;
1460 }
1461
1462 STATIC void
1463 xlog_recover_new_tid(
1464 struct hlist_head *head,
1465 xlog_tid_t tid,
1466 xfs_lsn_t lsn)
1467 {
1468 xlog_recover_t *trans;
1469
1470 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1471 trans->r_log_tid = tid;
1472 trans->r_lsn = lsn;
1473 INIT_LIST_HEAD(&trans->r_itemq);
1474
1475 INIT_HLIST_NODE(&trans->r_list);
1476 hlist_add_head(&trans->r_list, head);
1477 }
1478
1479 STATIC void
1480 xlog_recover_add_item(
1481 struct list_head *head)
1482 {
1483 xlog_recover_item_t *item;
1484
1485 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1486 INIT_LIST_HEAD(&item->ri_list);
1487 list_add_tail(&item->ri_list, head);
1488 }
1489
1490 STATIC int
1491 xlog_recover_add_to_cont_trans(
1492 struct xlog *log,
1493 struct xlog_recover *trans,
1494 xfs_caddr_t dp,
1495 int len)
1496 {
1497 xlog_recover_item_t *item;
1498 xfs_caddr_t ptr, old_ptr;
1499 int old_len;
1500
1501 if (list_empty(&trans->r_itemq)) {
1502 /* finish copying rest of trans header */
1503 xlog_recover_add_item(&trans->r_itemq);
1504 ptr = (xfs_caddr_t) &trans->r_theader +
1505 sizeof(xfs_trans_header_t) - len;
1506 memcpy(ptr, dp, len); /* d, s, l */
1507 return 0;
1508 }
1509 /* take the tail entry */
1510 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1511
1512 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1513 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1514
1515 ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
1516 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1517 item->ri_buf[item->ri_cnt-1].i_len += len;
1518 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1519 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1520 return 0;
1521 }
1522
1523 /*
1524 * The next region to add is the start of a new region. It could be
1525 * a whole region or it could be the first part of a new region. Because
1526 * of this, the assumption here is that the type and size fields of all
1527 * format structures fit into the first 32 bits of the structure.
1528 *
1529 * This works because all regions must be 32 bit aligned. Therefore, we
1530 * either have both fields or we have neither field. In the case we have
1531 * neither field, the data part of the region is zero length. We only have
1532 * a log_op_header and can throw away the header since a new one will appear
1533 * later. If we have at least 4 bytes, then we can determine how many regions
1534 * will appear in the current log item.
1535 */
1536 STATIC int
1537 xlog_recover_add_to_trans(
1538 struct xlog *log,
1539 struct xlog_recover *trans,
1540 xfs_caddr_t dp,
1541 int len)
1542 {
1543 xfs_inode_log_format_t *in_f; /* any will do */
1544 xlog_recover_item_t *item;
1545 xfs_caddr_t ptr;
1546
1547 if (!len)
1548 return 0;
1549 if (list_empty(&trans->r_itemq)) {
1550 /* we need to catch log corruptions here */
1551 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1552 xfs_warn(log->l_mp, "%s: bad header magic number",
1553 __func__);
1554 ASSERT(0);
1555 return -EIO;
1556 }
1557 if (len == sizeof(xfs_trans_header_t))
1558 xlog_recover_add_item(&trans->r_itemq);
1559 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1560 return 0;
1561 }
1562
1563 ptr = kmem_alloc(len, KM_SLEEP);
1564 memcpy(ptr, dp, len);
1565 in_f = (xfs_inode_log_format_t *)ptr;
1566
1567 /* take the tail entry */
1568 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1569 if (item->ri_total != 0 &&
1570 item->ri_total == item->ri_cnt) {
1571 /* tail item is in use, get a new one */
1572 xlog_recover_add_item(&trans->r_itemq);
1573 item = list_entry(trans->r_itemq.prev,
1574 xlog_recover_item_t, ri_list);
1575 }
1576
1577 if (item->ri_total == 0) { /* first region to be added */
1578 if (in_f->ilf_size == 0 ||
1579 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
1580 xfs_warn(log->l_mp,
1581 "bad number of regions (%d) in inode log format",
1582 in_f->ilf_size);
1583 ASSERT(0);
1584 kmem_free(ptr);
1585 return -EIO;
1586 }
1587
1588 item->ri_total = in_f->ilf_size;
1589 item->ri_buf =
1590 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1591 KM_SLEEP);
1592 }
1593 ASSERT(item->ri_total > item->ri_cnt);
1594 /* Description region is ri_buf[0] */
1595 item->ri_buf[item->ri_cnt].i_addr = ptr;
1596 item->ri_buf[item->ri_cnt].i_len = len;
1597 item->ri_cnt++;
1598 trace_xfs_log_recover_item_add(log, trans, item, 0);
1599 return 0;
1600 }
1601
1602 /*
1603 * Sort the log items in the transaction.
1604 *
1605 * The ordering constraints are defined by the inode allocation and unlink
1606 * behaviour. The rules are:
1607 *
1608 * 1. Every item is only logged once in a given transaction. Hence it
1609 * represents the last logged state of the item. Hence ordering is
1610 * dependent on the order in which operations need to be performed so
1611 * required initial conditions are always met.
1612 *
1613 * 2. Cancelled buffers are recorded in pass 1 in a separate table and
1614 * there's nothing to replay from them so we can simply cull them
1615 * from the transaction. However, we can't do that until after we've
1616 * replayed all the other items because they may be dependent on the
1617 * cancelled buffer and replaying the cancelled buffer can remove it
1618 * form the cancelled buffer table. Hence they have tobe done last.
1619 *
1620 * 3. Inode allocation buffers must be replayed before inode items that
1621 * read the buffer and replay changes into it. For filesystems using the
1622 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1623 * treated the same as inode allocation buffers as they create and
1624 * initialise the buffers directly.
1625 *
1626 * 4. Inode unlink buffers must be replayed after inode items are replayed.
1627 * This ensures that inodes are completely flushed to the inode buffer
1628 * in a "free" state before we remove the unlinked inode list pointer.
1629 *
1630 * Hence the ordering needs to be inode allocation buffers first, inode items
1631 * second, inode unlink buffers third and cancelled buffers last.
1632 *
1633 * But there's a problem with that - we can't tell an inode allocation buffer
1634 * apart from a regular buffer, so we can't separate them. We can, however,
1635 * tell an inode unlink buffer from the others, and so we can separate them out
1636 * from all the other buffers and move them to last.
1637 *
1638 * Hence, 4 lists, in order from head to tail:
1639 * - buffer_list for all buffers except cancelled/inode unlink buffers
1640 * - item_list for all non-buffer items
1641 * - inode_buffer_list for inode unlink buffers
1642 * - cancel_list for the cancelled buffers
1643 *
1644 * Note that we add objects to the tail of the lists so that first-to-last
1645 * ordering is preserved within the lists. Adding objects to the head of the
1646 * list means when we traverse from the head we walk them in last-to-first
1647 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1648 * but for all other items there may be specific ordering that we need to
1649 * preserve.
1650 */
1651 STATIC int
1652 xlog_recover_reorder_trans(
1653 struct xlog *log,
1654 struct xlog_recover *trans,
1655 int pass)
1656 {
1657 xlog_recover_item_t *item, *n;
1658 int error = 0;
1659 LIST_HEAD(sort_list);
1660 LIST_HEAD(cancel_list);
1661 LIST_HEAD(buffer_list);
1662 LIST_HEAD(inode_buffer_list);
1663 LIST_HEAD(inode_list);
1664
1665 list_splice_init(&trans->r_itemq, &sort_list);
1666 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1667 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1668
1669 switch (ITEM_TYPE(item)) {
1670 case XFS_LI_ICREATE:
1671 list_move_tail(&item->ri_list, &buffer_list);
1672 break;
1673 case XFS_LI_BUF:
1674 if (buf_f->blf_flags & XFS_BLF_CANCEL) {
1675 trace_xfs_log_recover_item_reorder_head(log,
1676 trans, item, pass);
1677 list_move(&item->ri_list, &cancel_list);
1678 break;
1679 }
1680 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1681 list_move(&item->ri_list, &inode_buffer_list);
1682 break;
1683 }
1684 list_move_tail(&item->ri_list, &buffer_list);
1685 break;
1686 case XFS_LI_INODE:
1687 case XFS_LI_DQUOT:
1688 case XFS_LI_QUOTAOFF:
1689 case XFS_LI_EFD:
1690 case XFS_LI_EFI:
1691 trace_xfs_log_recover_item_reorder_tail(log,
1692 trans, item, pass);
1693 list_move_tail(&item->ri_list, &inode_list);
1694 break;
1695 default:
1696 xfs_warn(log->l_mp,
1697 "%s: unrecognized type of log operation",
1698 __func__);
1699 ASSERT(0);
1700 /*
1701 * return the remaining items back to the transaction
1702 * item list so they can be freed in caller.
1703 */
1704 if (!list_empty(&sort_list))
1705 list_splice_init(&sort_list, &trans->r_itemq);
1706 error = -EIO;
1707 goto out;
1708 }
1709 }
1710 out:
1711 ASSERT(list_empty(&sort_list));
1712 if (!list_empty(&buffer_list))
1713 list_splice(&buffer_list, &trans->r_itemq);
1714 if (!list_empty(&inode_list))
1715 list_splice_tail(&inode_list, &trans->r_itemq);
1716 if (!list_empty(&inode_buffer_list))
1717 list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1718 if (!list_empty(&cancel_list))
1719 list_splice_tail(&cancel_list, &trans->r_itemq);
1720 return error;
1721 }
1722
1723 /*
1724 * Build up the table of buf cancel records so that we don't replay
1725 * cancelled data in the second pass. For buffer records that are
1726 * not cancel records, there is nothing to do here so we just return.
1727 *
1728 * If we get a cancel record which is already in the table, this indicates
1729 * that the buffer was cancelled multiple times. In order to ensure
1730 * that during pass 2 we keep the record in the table until we reach its
1731 * last occurrence in the log, we keep a reference count in the cancel
1732 * record in the table to tell us how many times we expect to see this
1733 * record during the second pass.
1734 */
1735 STATIC int
1736 xlog_recover_buffer_pass1(
1737 struct xlog *log,
1738 struct xlog_recover_item *item)
1739 {
1740 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1741 struct list_head *bucket;
1742 struct xfs_buf_cancel *bcp;
1743
1744 /*
1745 * If this isn't a cancel buffer item, then just return.
1746 */
1747 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1748 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1749 return 0;
1750 }
1751
1752 /*
1753 * Insert an xfs_buf_cancel record into the hash table of them.
1754 * If there is already an identical record, bump its reference count.
1755 */
1756 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1757 list_for_each_entry(bcp, bucket, bc_list) {
1758 if (bcp->bc_blkno == buf_f->blf_blkno &&
1759 bcp->bc_len == buf_f->blf_len) {
1760 bcp->bc_refcount++;
1761 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1762 return 0;
1763 }
1764 }
1765
1766 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1767 bcp->bc_blkno = buf_f->blf_blkno;
1768 bcp->bc_len = buf_f->blf_len;
1769 bcp->bc_refcount = 1;
1770 list_add_tail(&bcp->bc_list, bucket);
1771
1772 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1773 return 0;
1774 }
1775
1776 /*
1777 * Check to see whether the buffer being recovered has a corresponding
1778 * entry in the buffer cancel record table. If it is, return the cancel
1779 * buffer structure to the caller.
1780 */
1781 STATIC struct xfs_buf_cancel *
1782 xlog_peek_buffer_cancelled(
1783 struct xlog *log,
1784 xfs_daddr_t blkno,
1785 uint len,
1786 ushort flags)
1787 {
1788 struct list_head *bucket;
1789 struct xfs_buf_cancel *bcp;
1790
1791 if (!log->l_buf_cancel_table) {
1792 /* empty table means no cancelled buffers in the log */
1793 ASSERT(!(flags & XFS_BLF_CANCEL));
1794 return NULL;
1795 }
1796
1797 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1798 list_for_each_entry(bcp, bucket, bc_list) {
1799 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
1800 return bcp;
1801 }
1802
1803 /*
1804 * We didn't find a corresponding entry in the table, so return 0 so
1805 * that the buffer is NOT cancelled.
1806 */
1807 ASSERT(!(flags & XFS_BLF_CANCEL));
1808 return NULL;
1809 }
1810
1811 /*
1812 * If the buffer is being cancelled then return 1 so that it will be cancelled,
1813 * otherwise return 0. If the buffer is actually a buffer cancel item
1814 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
1815 * table and remove it from the table if this is the last reference.
1816 *
1817 * We remove the cancel record from the table when we encounter its last
1818 * occurrence in the log so that if the same buffer is re-used again after its
1819 * last cancellation we actually replay the changes made at that point.
1820 */
1821 STATIC int
1822 xlog_check_buffer_cancelled(
1823 struct xlog *log,
1824 xfs_daddr_t blkno,
1825 uint len,
1826 ushort flags)
1827 {
1828 struct xfs_buf_cancel *bcp;
1829
1830 bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
1831 if (!bcp)
1832 return 0;
1833
1834 /*
1835 * We've go a match, so return 1 so that the recovery of this buffer
1836 * is cancelled. If this buffer is actually a buffer cancel log
1837 * item, then decrement the refcount on the one in the table and
1838 * remove it if this is the last reference.
1839 */
1840 if (flags & XFS_BLF_CANCEL) {
1841 if (--bcp->bc_refcount == 0) {
1842 list_del(&bcp->bc_list);
1843 kmem_free(bcp);
1844 }
1845 }
1846 return 1;
1847 }
1848
1849 /*
1850 * Perform recovery for a buffer full of inodes. In these buffers, the only
1851 * data which should be recovered is that which corresponds to the
1852 * di_next_unlinked pointers in the on disk inode structures. The rest of the
1853 * data for the inodes is always logged through the inodes themselves rather
1854 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1855 *
1856 * The only time when buffers full of inodes are fully recovered is when the
1857 * buffer is full of newly allocated inodes. In this case the buffer will
1858 * not be marked as an inode buffer and so will be sent to
1859 * xlog_recover_do_reg_buffer() below during recovery.
1860 */
1861 STATIC int
1862 xlog_recover_do_inode_buffer(
1863 struct xfs_mount *mp,
1864 xlog_recover_item_t *item,
1865 struct xfs_buf *bp,
1866 xfs_buf_log_format_t *buf_f)
1867 {
1868 int i;
1869 int item_index = 0;
1870 int bit = 0;
1871 int nbits = 0;
1872 int reg_buf_offset = 0;
1873 int reg_buf_bytes = 0;
1874 int next_unlinked_offset;
1875 int inodes_per_buf;
1876 xfs_agino_t *logged_nextp;
1877 xfs_agino_t *buffer_nextp;
1878
1879 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
1880
1881 /*
1882 * Post recovery validation only works properly on CRC enabled
1883 * filesystems.
1884 */
1885 if (xfs_sb_version_hascrc(&mp->m_sb))
1886 bp->b_ops = &xfs_inode_buf_ops;
1887
1888 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
1889 for (i = 0; i < inodes_per_buf; i++) {
1890 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1891 offsetof(xfs_dinode_t, di_next_unlinked);
1892
1893 while (next_unlinked_offset >=
1894 (reg_buf_offset + reg_buf_bytes)) {
1895 /*
1896 * The next di_next_unlinked field is beyond
1897 * the current logged region. Find the next
1898 * logged region that contains or is beyond
1899 * the current di_next_unlinked field.
1900 */
1901 bit += nbits;
1902 bit = xfs_next_bit(buf_f->blf_data_map,
1903 buf_f->blf_map_size, bit);
1904
1905 /*
1906 * If there are no more logged regions in the
1907 * buffer, then we're done.
1908 */
1909 if (bit == -1)
1910 return 0;
1911
1912 nbits = xfs_contig_bits(buf_f->blf_data_map,
1913 buf_f->blf_map_size, bit);
1914 ASSERT(nbits > 0);
1915 reg_buf_offset = bit << XFS_BLF_SHIFT;
1916 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1917 item_index++;
1918 }
1919
1920 /*
1921 * If the current logged region starts after the current
1922 * di_next_unlinked field, then move on to the next
1923 * di_next_unlinked field.
1924 */
1925 if (next_unlinked_offset < reg_buf_offset)
1926 continue;
1927
1928 ASSERT(item->ri_buf[item_index].i_addr != NULL);
1929 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
1930 ASSERT((reg_buf_offset + reg_buf_bytes) <=
1931 BBTOB(bp->b_io_length));
1932
1933 /*
1934 * The current logged region contains a copy of the
1935 * current di_next_unlinked field. Extract its value
1936 * and copy it to the buffer copy.
1937 */
1938 logged_nextp = item->ri_buf[item_index].i_addr +
1939 next_unlinked_offset - reg_buf_offset;
1940 if (unlikely(*logged_nextp == 0)) {
1941 xfs_alert(mp,
1942 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1943 "Trying to replay bad (0) inode di_next_unlinked field.",
1944 item, bp);
1945 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1946 XFS_ERRLEVEL_LOW, mp);
1947 return -EFSCORRUPTED;
1948 }
1949
1950 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1951 next_unlinked_offset);
1952 *buffer_nextp = *logged_nextp;
1953
1954 /*
1955 * If necessary, recalculate the CRC in the on-disk inode. We
1956 * have to leave the inode in a consistent state for whoever
1957 * reads it next....
1958 */
1959 xfs_dinode_calc_crc(mp, (struct xfs_dinode *)
1960 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
1961
1962 }
1963
1964 return 0;
1965 }
1966
1967 /*
1968 * V5 filesystems know the age of the buffer on disk being recovered. We can
1969 * have newer objects on disk than we are replaying, and so for these cases we
1970 * don't want to replay the current change as that will make the buffer contents
1971 * temporarily invalid on disk.
1972 *
1973 * The magic number might not match the buffer type we are going to recover
1974 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence
1975 * extract the LSN of the existing object in the buffer based on it's current
1976 * magic number. If we don't recognise the magic number in the buffer, then
1977 * return a LSN of -1 so that the caller knows it was an unrecognised block and
1978 * so can recover the buffer.
1979 *
1980 * Note: we cannot rely solely on magic number matches to determine that the
1981 * buffer has a valid LSN - we also need to verify that it belongs to this
1982 * filesystem, so we need to extract the object's LSN and compare it to that
1983 * which we read from the superblock. If the UUIDs don't match, then we've got a
1984 * stale metadata block from an old filesystem instance that we need to recover
1985 * over the top of.
1986 */
1987 static xfs_lsn_t
1988 xlog_recover_get_buf_lsn(
1989 struct xfs_mount *mp,
1990 struct xfs_buf *bp)
1991 {
1992 __uint32_t magic32;
1993 __uint16_t magic16;
1994 __uint16_t magicda;
1995 void *blk = bp->b_addr;
1996 uuid_t *uuid;
1997 xfs_lsn_t lsn = -1;
1998
1999 /* v4 filesystems always recover immediately */
2000 if (!xfs_sb_version_hascrc(&mp->m_sb))
2001 goto recover_immediately;
2002
2003 magic32 = be32_to_cpu(*(__be32 *)blk);
2004 switch (magic32) {
2005 case XFS_ABTB_CRC_MAGIC:
2006 case XFS_ABTC_CRC_MAGIC:
2007 case XFS_ABTB_MAGIC:
2008 case XFS_ABTC_MAGIC:
2009 case XFS_IBT_CRC_MAGIC:
2010 case XFS_IBT_MAGIC: {
2011 struct xfs_btree_block *btb = blk;
2012
2013 lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
2014 uuid = &btb->bb_u.s.bb_uuid;
2015 break;
2016 }
2017 case XFS_BMAP_CRC_MAGIC:
2018 case XFS_BMAP_MAGIC: {
2019 struct xfs_btree_block *btb = blk;
2020
2021 lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
2022 uuid = &btb->bb_u.l.bb_uuid;
2023 break;
2024 }
2025 case XFS_AGF_MAGIC:
2026 lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
2027 uuid = &((struct xfs_agf *)blk)->agf_uuid;
2028 break;
2029 case XFS_AGFL_MAGIC:
2030 lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
2031 uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
2032 break;
2033 case XFS_AGI_MAGIC:
2034 lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
2035 uuid = &((struct xfs_agi *)blk)->agi_uuid;
2036 break;
2037 case XFS_SYMLINK_MAGIC:
2038 lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
2039 uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
2040 break;
2041 case XFS_DIR3_BLOCK_MAGIC:
2042 case XFS_DIR3_DATA_MAGIC:
2043 case XFS_DIR3_FREE_MAGIC:
2044 lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
2045 uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
2046 break;
2047 case XFS_ATTR3_RMT_MAGIC:
2048 lsn = be64_to_cpu(((struct xfs_attr3_rmt_hdr *)blk)->rm_lsn);
2049 uuid = &((struct xfs_attr3_rmt_hdr *)blk)->rm_uuid;
2050 break;
2051 case XFS_SB_MAGIC:
2052 lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
2053 uuid = &((struct xfs_dsb *)blk)->sb_uuid;
2054 break;
2055 default:
2056 break;
2057 }
2058
2059 if (lsn != (xfs_lsn_t)-1) {
2060 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2061 goto recover_immediately;
2062 return lsn;
2063 }
2064
2065 magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
2066 switch (magicda) {
2067 case XFS_DIR3_LEAF1_MAGIC:
2068 case XFS_DIR3_LEAFN_MAGIC:
2069 case XFS_DA3_NODE_MAGIC:
2070 lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
2071 uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
2072 break;
2073 default:
2074 break;
2075 }
2076
2077 if (lsn != (xfs_lsn_t)-1) {
2078 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2079 goto recover_immediately;
2080 return lsn;
2081 }
2082
2083 /*
2084 * We do individual object checks on dquot and inode buffers as they
2085 * have their own individual LSN records. Also, we could have a stale
2086 * buffer here, so we have to at least recognise these buffer types.
2087 *
2088 * A notd complexity here is inode unlinked list processing - it logs
2089 * the inode directly in the buffer, but we don't know which inodes have
2090 * been modified, and there is no global buffer LSN. Hence we need to
2091 * recover all inode buffer types immediately. This problem will be
2092 * fixed by logical logging of the unlinked list modifications.
2093 */
2094 magic16 = be16_to_cpu(*(__be16 *)blk);
2095 switch (magic16) {
2096 case XFS_DQUOT_MAGIC:
2097 case XFS_DINODE_MAGIC:
2098 goto recover_immediately;
2099 default:
2100 break;
2101 }
2102
2103 /* unknown buffer contents, recover immediately */
2104
2105 recover_immediately:
2106 return (xfs_lsn_t)-1;
2107
2108 }
2109
2110 /*
2111 * Validate the recovered buffer is of the correct type and attach the
2112 * appropriate buffer operations to them for writeback. Magic numbers are in a
2113 * few places:
2114 * the first 16 bits of the buffer (inode buffer, dquot buffer),
2115 * the first 32 bits of the buffer (most blocks),
2116 * inside a struct xfs_da_blkinfo at the start of the buffer.
2117 */
2118 static void
2119 xlog_recover_validate_buf_type(
2120 struct xfs_mount *mp,
2121 struct xfs_buf *bp,
2122 xfs_buf_log_format_t *buf_f)
2123 {
2124 struct xfs_da_blkinfo *info = bp->b_addr;
2125 __uint32_t magic32;
2126 __uint16_t magic16;
2127 __uint16_t magicda;
2128
2129 /*
2130 * We can only do post recovery validation on items on CRC enabled
2131 * fielsystems as we need to know when the buffer was written to be able
2132 * to determine if we should have replayed the item. If we replay old
2133 * metadata over a newer buffer, then it will enter a temporarily
2134 * inconsistent state resulting in verification failures. Hence for now
2135 * just avoid the verification stage for non-crc filesystems
2136 */
2137 if (!xfs_sb_version_hascrc(&mp->m_sb))
2138 return;
2139
2140 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
2141 magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
2142 magicda = be16_to_cpu(info->magic);
2143 switch (xfs_blft_from_flags(buf_f)) {
2144 case XFS_BLFT_BTREE_BUF:
2145 switch (magic32) {
2146 case XFS_ABTB_CRC_MAGIC:
2147 case XFS_ABTC_CRC_MAGIC:
2148 case XFS_ABTB_MAGIC:
2149 case XFS_ABTC_MAGIC:
2150 bp->b_ops = &xfs_allocbt_buf_ops;
2151 break;
2152 case XFS_IBT_CRC_MAGIC:
2153 case XFS_FIBT_CRC_MAGIC:
2154 case XFS_IBT_MAGIC:
2155 case XFS_FIBT_MAGIC:
2156 bp->b_ops = &xfs_inobt_buf_ops;
2157 break;
2158 case XFS_BMAP_CRC_MAGIC:
2159 case XFS_BMAP_MAGIC:
2160 bp->b_ops = &xfs_bmbt_buf_ops;
2161 break;
2162 default:
2163 xfs_warn(mp, "Bad btree block magic!");
2164 ASSERT(0);
2165 break;
2166 }
2167 break;
2168 case XFS_BLFT_AGF_BUF:
2169 if (magic32 != XFS_AGF_MAGIC) {
2170 xfs_warn(mp, "Bad AGF block magic!");
2171 ASSERT(0);
2172 break;
2173 }
2174 bp->b_ops = &xfs_agf_buf_ops;
2175 break;
2176 case XFS_BLFT_AGFL_BUF:
2177 if (magic32 != XFS_AGFL_MAGIC) {
2178 xfs_warn(mp, "Bad AGFL block magic!");
2179 ASSERT(0);
2180 break;
2181 }
2182 bp->b_ops = &xfs_agfl_buf_ops;
2183 break;
2184 case XFS_BLFT_AGI_BUF:
2185 if (magic32 != XFS_AGI_MAGIC) {
2186 xfs_warn(mp, "Bad AGI block magic!");
2187 ASSERT(0);
2188 break;
2189 }
2190 bp->b_ops = &xfs_agi_buf_ops;
2191 break;
2192 case XFS_BLFT_UDQUOT_BUF:
2193 case XFS_BLFT_PDQUOT_BUF:
2194 case XFS_BLFT_GDQUOT_BUF:
2195 #ifdef CONFIG_XFS_QUOTA
2196 if (magic16 != XFS_DQUOT_MAGIC) {
2197 xfs_warn(mp, "Bad DQUOT block magic!");
2198 ASSERT(0);
2199 break;
2200 }
2201 bp->b_ops = &xfs_dquot_buf_ops;
2202 #else
2203 xfs_alert(mp,
2204 "Trying to recover dquots without QUOTA support built in!");
2205 ASSERT(0);
2206 #endif
2207 break;
2208 case XFS_BLFT_DINO_BUF:
2209 if (magic16 != XFS_DINODE_MAGIC) {
2210 xfs_warn(mp, "Bad INODE block magic!");
2211 ASSERT(0);
2212 break;
2213 }
2214 bp->b_ops = &xfs_inode_buf_ops;
2215 break;
2216 case XFS_BLFT_SYMLINK_BUF:
2217 if (magic32 != XFS_SYMLINK_MAGIC) {
2218 xfs_warn(mp, "Bad symlink block magic!");
2219 ASSERT(0);
2220 break;
2221 }
2222 bp->b_ops = &xfs_symlink_buf_ops;
2223 break;
2224 case XFS_BLFT_DIR_BLOCK_BUF:
2225 if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2226 magic32 != XFS_DIR3_BLOCK_MAGIC) {
2227 xfs_warn(mp, "Bad dir block magic!");
2228 ASSERT(0);
2229 break;
2230 }
2231 bp->b_ops = &xfs_dir3_block_buf_ops;
2232 break;
2233 case XFS_BLFT_DIR_DATA_BUF:
2234 if (magic32 != XFS_DIR2_DATA_MAGIC &&
2235 magic32 != XFS_DIR3_DATA_MAGIC) {
2236 xfs_warn(mp, "Bad dir data magic!");
2237 ASSERT(0);
2238 break;
2239 }
2240 bp->b_ops = &xfs_dir3_data_buf_ops;
2241 break;
2242 case XFS_BLFT_DIR_FREE_BUF:
2243 if (magic32 != XFS_DIR2_FREE_MAGIC &&
2244 magic32 != XFS_DIR3_FREE_MAGIC) {
2245 xfs_warn(mp, "Bad dir3 free magic!");
2246 ASSERT(0);
2247 break;
2248 }
2249 bp->b_ops = &xfs_dir3_free_buf_ops;
2250 break;
2251 case XFS_BLFT_DIR_LEAF1_BUF:
2252 if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2253 magicda != XFS_DIR3_LEAF1_MAGIC) {
2254 xfs_warn(mp, "Bad dir leaf1 magic!");
2255 ASSERT(0);
2256 break;
2257 }
2258 bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2259 break;
2260 case XFS_BLFT_DIR_LEAFN_BUF:
2261 if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2262 magicda != XFS_DIR3_LEAFN_MAGIC) {
2263 xfs_warn(mp, "Bad dir leafn magic!");
2264 ASSERT(0);
2265 break;
2266 }
2267 bp->b_ops = &xfs_dir3_leafn_buf_ops;
2268 break;
2269 case XFS_BLFT_DA_NODE_BUF:
2270 if (magicda != XFS_DA_NODE_MAGIC &&
2271 magicda != XFS_DA3_NODE_MAGIC) {
2272 xfs_warn(mp, "Bad da node magic!");
2273 ASSERT(0);
2274 break;
2275 }
2276 bp->b_ops = &xfs_da3_node_buf_ops;
2277 break;
2278 case XFS_BLFT_ATTR_LEAF_BUF:
2279 if (magicda != XFS_ATTR_LEAF_MAGIC &&
2280 magicda != XFS_ATTR3_LEAF_MAGIC) {
2281 xfs_warn(mp, "Bad attr leaf magic!");
2282 ASSERT(0);
2283 break;
2284 }
2285 bp->b_ops = &xfs_attr3_leaf_buf_ops;
2286 break;
2287 case XFS_BLFT_ATTR_RMT_BUF:
2288 if (magic32 != XFS_ATTR3_RMT_MAGIC) {
2289 xfs_warn(mp, "Bad attr remote magic!");
2290 ASSERT(0);
2291 break;
2292 }
2293 bp->b_ops = &xfs_attr3_rmt_buf_ops;
2294 break;
2295 case XFS_BLFT_SB_BUF:
2296 if (magic32 != XFS_SB_MAGIC) {
2297 xfs_warn(mp, "Bad SB block magic!");
2298 ASSERT(0);
2299 break;
2300 }
2301 bp->b_ops = &xfs_sb_buf_ops;
2302 break;
2303 default:
2304 xfs_warn(mp, "Unknown buffer type %d!",
2305 xfs_blft_from_flags(buf_f));
2306 break;
2307 }
2308 }
2309
2310 /*
2311 * Perform a 'normal' buffer recovery. Each logged region of the
2312 * buffer should be copied over the corresponding region in the
2313 * given buffer. The bitmap in the buf log format structure indicates
2314 * where to place the logged data.
2315 */
2316 STATIC void
2317 xlog_recover_do_reg_buffer(
2318 struct xfs_mount *mp,
2319 xlog_recover_item_t *item,
2320 struct xfs_buf *bp,
2321 xfs_buf_log_format_t *buf_f)
2322 {
2323 int i;
2324 int bit;
2325 int nbits;
2326 int error;
2327
2328 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2329
2330 bit = 0;
2331 i = 1; /* 0 is the buf format structure */
2332 while (1) {
2333 bit = xfs_next_bit(buf_f->blf_data_map,
2334 buf_f->blf_map_size, bit);
2335 if (bit == -1)
2336 break;
2337 nbits = xfs_contig_bits(buf_f->blf_data_map,
2338 buf_f->blf_map_size, bit);
2339 ASSERT(nbits > 0);
2340 ASSERT(item->ri_buf[i].i_addr != NULL);
2341 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2342 ASSERT(BBTOB(bp->b_io_length) >=
2343 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2344
2345 /*
2346 * The dirty regions logged in the buffer, even though
2347 * contiguous, may span multiple chunks. This is because the
2348 * dirty region may span a physical page boundary in a buffer
2349 * and hence be split into two separate vectors for writing into
2350 * the log. Hence we need to trim nbits back to the length of
2351 * the current region being copied out of the log.
2352 */
2353 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2354 nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2355
2356 /*
2357 * Do a sanity check if this is a dquot buffer. Just checking
2358 * the first dquot in the buffer should do. XXXThis is
2359 * probably a good thing to do for other buf types also.
2360 */
2361 error = 0;
2362 if (buf_f->blf_flags &
2363 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2364 if (item->ri_buf[i].i_addr == NULL) {
2365 xfs_alert(mp,
2366 "XFS: NULL dquot in %s.", __func__);
2367 goto next;
2368 }
2369 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2370 xfs_alert(mp,
2371 "XFS: dquot too small (%d) in %s.",
2372 item->ri_buf[i].i_len, __func__);
2373 goto next;
2374 }
2375 error = xfs_dqcheck(mp, item->ri_buf[i].i_addr,
2376 -1, 0, XFS_QMOPT_DOWARN,
2377 "dquot_buf_recover");
2378 if (error)
2379 goto next;
2380 }
2381
2382 memcpy(xfs_buf_offset(bp,
2383 (uint)bit << XFS_BLF_SHIFT), /* dest */
2384 item->ri_buf[i].i_addr, /* source */
2385 nbits<<XFS_BLF_SHIFT); /* length */
2386 next:
2387 i++;
2388 bit += nbits;
2389 }
2390
2391 /* Shouldn't be any more regions */
2392 ASSERT(i == item->ri_total);
2393
2394 xlog_recover_validate_buf_type(mp, bp, buf_f);
2395 }
2396
2397 /*
2398 * Perform a dquot buffer recovery.
2399 * Simple algorithm: if we have found a QUOTAOFF log item of the same type
2400 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2401 * Else, treat it as a regular buffer and do recovery.
2402 *
2403 * Return false if the buffer was tossed and true if we recovered the buffer to
2404 * indicate to the caller if the buffer needs writing.
2405 */
2406 STATIC bool
2407 xlog_recover_do_dquot_buffer(
2408 struct xfs_mount *mp,
2409 struct xlog *log,
2410 struct xlog_recover_item *item,
2411 struct xfs_buf *bp,
2412 struct xfs_buf_log_format *buf_f)
2413 {
2414 uint type;
2415
2416 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2417
2418 /*
2419 * Filesystems are required to send in quota flags at mount time.
2420 */
2421 if (!mp->m_qflags)
2422 return false;
2423
2424 type = 0;
2425 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2426 type |= XFS_DQ_USER;
2427 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2428 type |= XFS_DQ_PROJ;
2429 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2430 type |= XFS_DQ_GROUP;
2431 /*
2432 * This type of quotas was turned off, so ignore this buffer
2433 */
2434 if (log->l_quotaoffs_flag & type)
2435 return false;
2436
2437 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2438 return true;
2439 }
2440
2441 /*
2442 * This routine replays a modification made to a buffer at runtime.
2443 * There are actually two types of buffer, regular and inode, which
2444 * are handled differently. Inode buffers are handled differently
2445 * in that we only recover a specific set of data from them, namely
2446 * the inode di_next_unlinked fields. This is because all other inode
2447 * data is actually logged via inode records and any data we replay
2448 * here which overlaps that may be stale.
2449 *
2450 * When meta-data buffers are freed at run time we log a buffer item
2451 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2452 * of the buffer in the log should not be replayed at recovery time.
2453 * This is so that if the blocks covered by the buffer are reused for
2454 * file data before we crash we don't end up replaying old, freed
2455 * meta-data into a user's file.
2456 *
2457 * To handle the cancellation of buffer log items, we make two passes
2458 * over the log during recovery. During the first we build a table of
2459 * those buffers which have been cancelled, and during the second we
2460 * only replay those buffers which do not have corresponding cancel
2461 * records in the table. See xlog_recover_buffer_pass[1,2] above
2462 * for more details on the implementation of the table of cancel records.
2463 */
2464 STATIC int
2465 xlog_recover_buffer_pass2(
2466 struct xlog *log,
2467 struct list_head *buffer_list,
2468 struct xlog_recover_item *item,
2469 xfs_lsn_t current_lsn)
2470 {
2471 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
2472 xfs_mount_t *mp = log->l_mp;
2473 xfs_buf_t *bp;
2474 int error;
2475 uint buf_flags;
2476 xfs_lsn_t lsn;
2477
2478 /*
2479 * In this pass we only want to recover all the buffers which have
2480 * not been cancelled and are not cancellation buffers themselves.
2481 */
2482 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2483 buf_f->blf_len, buf_f->blf_flags)) {
2484 trace_xfs_log_recover_buf_cancel(log, buf_f);
2485 return 0;
2486 }
2487
2488 trace_xfs_log_recover_buf_recover(log, buf_f);
2489
2490 buf_flags = 0;
2491 if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2492 buf_flags |= XBF_UNMAPPED;
2493
2494 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2495 buf_flags, NULL);
2496 if (!bp)
2497 return -ENOMEM;
2498 error = bp->b_error;
2499 if (error) {
2500 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
2501 goto out_release;
2502 }
2503
2504 /*
2505 * Recover the buffer only if we get an LSN from it and it's less than
2506 * the lsn of the transaction we are replaying.
2507 *
2508 * Note that we have to be extremely careful of readahead here.
2509 * Readahead does not attach verfiers to the buffers so if we don't
2510 * actually do any replay after readahead because of the LSN we found
2511 * in the buffer if more recent than that current transaction then we
2512 * need to attach the verifier directly. Failure to do so can lead to
2513 * future recovery actions (e.g. EFI and unlinked list recovery) can
2514 * operate on the buffers and they won't get the verifier attached. This
2515 * can lead to blocks on disk having the correct content but a stale
2516 * CRC.
2517 *
2518 * It is safe to assume these clean buffers are currently up to date.
2519 * If the buffer is dirtied by a later transaction being replayed, then
2520 * the verifier will be reset to match whatever recover turns that
2521 * buffer into.
2522 */
2523 lsn = xlog_recover_get_buf_lsn(mp, bp);
2524 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2525 xlog_recover_validate_buf_type(mp, bp, buf_f);
2526 goto out_release;
2527 }
2528
2529 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2530 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2531 if (error)
2532 goto out_release;
2533 } else if (buf_f->blf_flags &
2534 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2535 bool dirty;
2536
2537 dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2538 if (!dirty)
2539 goto out_release;
2540 } else {
2541 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2542 }
2543
2544 /*
2545 * Perform delayed write on the buffer. Asynchronous writes will be
2546 * slower when taking into account all the buffers to be flushed.
2547 *
2548 * Also make sure that only inode buffers with good sizes stay in
2549 * the buffer cache. The kernel moves inodes in buffers of 1 block
2550 * or mp->m_inode_cluster_size bytes, whichever is bigger. The inode
2551 * buffers in the log can be a different size if the log was generated
2552 * by an older kernel using unclustered inode buffers or a newer kernel
2553 * running with a different inode cluster size. Regardless, if the
2554 * the inode buffer size isn't MAX(blocksize, mp->m_inode_cluster_size)
2555 * for *our* value of mp->m_inode_cluster_size, then we need to keep
2556 * the buffer out of the buffer cache so that the buffer won't
2557 * overlap with future reads of those inodes.
2558 */
2559 if (XFS_DINODE_MAGIC ==
2560 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2561 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
2562 (__uint32_t)log->l_mp->m_inode_cluster_size))) {
2563 xfs_buf_stale(bp);
2564 error = xfs_bwrite(bp);
2565 } else {
2566 ASSERT(bp->b_target->bt_mount == mp);
2567 bp->b_iodone = xlog_recover_iodone;
2568 xfs_buf_delwri_queue(bp, buffer_list);
2569 }
2570
2571 out_release:
2572 xfs_buf_relse(bp);
2573 return error;
2574 }
2575
2576 /*
2577 * Inode fork owner changes
2578 *
2579 * If we have been told that we have to reparent the inode fork, it's because an
2580 * extent swap operation on a CRC enabled filesystem has been done and we are
2581 * replaying it. We need to walk the BMBT of the appropriate fork and change the
2582 * owners of it.
2583 *
2584 * The complexity here is that we don't have an inode context to work with, so
2585 * after we've replayed the inode we need to instantiate one. This is where the
2586 * fun begins.
2587 *
2588 * We are in the middle of log recovery, so we can't run transactions. That
2589 * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2590 * that will result in the corresponding iput() running the inode through
2591 * xfs_inactive(). If we've just replayed an inode core that changes the link
2592 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2593 * transactions (bad!).
2594 *
2595 * So, to avoid this, we instantiate an inode directly from the inode core we've
2596 * just recovered. We have the buffer still locked, and all we really need to
2597 * instantiate is the inode core and the forks being modified. We can do this
2598 * manually, then run the inode btree owner change, and then tear down the
2599 * xfs_inode without having to run any transactions at all.
2600 *
2601 * Also, because we don't have a transaction context available here but need to
2602 * gather all the buffers we modify for writeback so we pass the buffer_list
2603 * instead for the operation to use.
2604 */
2605
2606 STATIC int
2607 xfs_recover_inode_owner_change(
2608 struct xfs_mount *mp,
2609 struct xfs_dinode *dip,
2610 struct xfs_inode_log_format *in_f,
2611 struct list_head *buffer_list)
2612 {
2613 struct xfs_inode *ip;
2614 int error;
2615
2616 ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
2617
2618 ip = xfs_inode_alloc(mp, in_f->ilf_ino);
2619 if (!ip)
2620 return -ENOMEM;
2621
2622 /* instantiate the inode */
2623 xfs_dinode_from_disk(&ip->i_d, dip);
2624 ASSERT(ip->i_d.di_version >= 3);
2625
2626 error = xfs_iformat_fork(ip, dip);
2627 if (error)
2628 goto out_free_ip;
2629
2630
2631 if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
2632 ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
2633 error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
2634 ip->i_ino, buffer_list);
2635 if (error)
2636 goto out_free_ip;
2637 }
2638
2639 if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
2640 ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
2641 error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
2642 ip->i_ino, buffer_list);
2643 if (error)
2644 goto out_free_ip;
2645 }
2646
2647 out_free_ip:
2648 xfs_inode_free(ip);
2649 return error;
2650 }
2651
2652 STATIC int
2653 xlog_recover_inode_pass2(
2654 struct xlog *log,
2655 struct list_head *buffer_list,
2656 struct xlog_recover_item *item,
2657 xfs_lsn_t current_lsn)
2658 {
2659 xfs_inode_log_format_t *in_f;
2660 xfs_mount_t *mp = log->l_mp;
2661 xfs_buf_t *bp;
2662 xfs_dinode_t *dip;
2663 int len;
2664 xfs_caddr_t src;
2665 xfs_caddr_t dest;
2666 int error;
2667 int attr_index;
2668 uint fields;
2669 xfs_icdinode_t *dicp;
2670 uint isize;
2671 int need_free = 0;
2672
2673 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2674 in_f = item->ri_buf[0].i_addr;
2675 } else {
2676 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2677 need_free = 1;
2678 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2679 if (error)
2680 goto error;
2681 }
2682
2683 /*
2684 * Inode buffers can be freed, look out for it,
2685 * and do not replay the inode.
2686 */
2687 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2688 in_f->ilf_len, 0)) {
2689 error = 0;
2690 trace_xfs_log_recover_inode_cancel(log, in_f);
2691 goto error;
2692 }
2693 trace_xfs_log_recover_inode_recover(log, in_f);
2694
2695 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
2696 &xfs_inode_buf_ops);
2697 if (!bp) {
2698 error = -ENOMEM;
2699 goto error;
2700 }
2701 error = bp->b_error;
2702 if (error) {
2703 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
2704 goto out_release;
2705 }
2706 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2707 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
2708
2709 /*
2710 * Make sure the place we're flushing out to really looks
2711 * like an inode!
2712 */
2713 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
2714 xfs_alert(mp,
2715 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2716 __func__, dip, bp, in_f->ilf_ino);
2717 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2718 XFS_ERRLEVEL_LOW, mp);
2719 error = -EFSCORRUPTED;
2720 goto out_release;
2721 }
2722 dicp = item->ri_buf[1].i_addr;
2723 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2724 xfs_alert(mp,
2725 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2726 __func__, item, in_f->ilf_ino);
2727 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2728 XFS_ERRLEVEL_LOW, mp);
2729 error = -EFSCORRUPTED;
2730 goto out_release;
2731 }
2732
2733 /*
2734 * If the inode has an LSN in it, recover the inode only if it's less
2735 * than the lsn of the transaction we are replaying. Note: we still
2736 * need to replay an owner change even though the inode is more recent
2737 * than the transaction as there is no guarantee that all the btree
2738 * blocks are more recent than this transaction, too.
2739 */
2740 if (dip->di_version >= 3) {
2741 xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn);
2742
2743 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2744 trace_xfs_log_recover_inode_skip(log, in_f);
2745 error = 0;
2746 goto out_owner_change;
2747 }
2748 }
2749
2750 /*
2751 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
2752 * are transactional and if ordering is necessary we can determine that
2753 * more accurately by the LSN field in the V3 inode core. Don't trust
2754 * the inode versions we might be changing them here - use the
2755 * superblock flag to determine whether we need to look at di_flushiter
2756 * to skip replay when the on disk inode is newer than the log one
2757 */
2758 if (!xfs_sb_version_hascrc(&mp->m_sb) &&
2759 dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2760 /*
2761 * Deal with the wrap case, DI_MAX_FLUSH is less
2762 * than smaller numbers
2763 */
2764 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2765 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2766 /* do nothing */
2767 } else {
2768 trace_xfs_log_recover_inode_skip(log, in_f);
2769 error = 0;
2770 goto out_release;
2771 }
2772 }
2773
2774 /* Take the opportunity to reset the flush iteration count */
2775 dicp->di_flushiter = 0;
2776
2777 if (unlikely(S_ISREG(dicp->di_mode))) {
2778 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2779 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2780 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
2781 XFS_ERRLEVEL_LOW, mp, dicp);
2782 xfs_alert(mp,
2783 "%s: Bad regular inode log record, rec ptr 0x%p, "
2784 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2785 __func__, item, dip, bp, in_f->ilf_ino);
2786 error = -EFSCORRUPTED;
2787 goto out_release;
2788 }
2789 } else if (unlikely(S_ISDIR(dicp->di_mode))) {
2790 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2791 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2792 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2793 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
2794 XFS_ERRLEVEL_LOW, mp, dicp);
2795 xfs_alert(mp,
2796 "%s: Bad dir inode log record, rec ptr 0x%p, "
2797 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2798 __func__, item, dip, bp, in_f->ilf_ino);
2799 error = -EFSCORRUPTED;
2800 goto out_release;
2801 }
2802 }
2803 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2804 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
2805 XFS_ERRLEVEL_LOW, mp, dicp);
2806 xfs_alert(mp,
2807 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2808 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2809 __func__, item, dip, bp, in_f->ilf_ino,
2810 dicp->di_nextents + dicp->di_anextents,
2811 dicp->di_nblocks);
2812 error = -EFSCORRUPTED;
2813 goto out_release;
2814 }
2815 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2816 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
2817 XFS_ERRLEVEL_LOW, mp, dicp);
2818 xfs_alert(mp,
2819 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2820 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
2821 item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
2822 error = -EFSCORRUPTED;
2823 goto out_release;
2824 }
2825 isize = xfs_icdinode_size(dicp->di_version);
2826 if (unlikely(item->ri_buf[1].i_len > isize)) {
2827 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
2828 XFS_ERRLEVEL_LOW, mp, dicp);
2829 xfs_alert(mp,
2830 "%s: Bad inode log record length %d, rec ptr 0x%p",
2831 __func__, item->ri_buf[1].i_len, item);
2832 error = -EFSCORRUPTED;
2833 goto out_release;
2834 }
2835
2836 /* The core is in in-core format */
2837 xfs_dinode_to_disk(dip, dicp);
2838
2839 /* the rest is in on-disk format */
2840 if (item->ri_buf[1].i_len > isize) {
2841 memcpy((char *)dip + isize,
2842 item->ri_buf[1].i_addr + isize,
2843 item->ri_buf[1].i_len - isize);
2844 }
2845
2846 fields = in_f->ilf_fields;
2847 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2848 case XFS_ILOG_DEV:
2849 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
2850 break;
2851 case XFS_ILOG_UUID:
2852 memcpy(XFS_DFORK_DPTR(dip),
2853 &in_f->ilf_u.ilfu_uuid,
2854 sizeof(uuid_t));
2855 break;
2856 }
2857
2858 if (in_f->ilf_size == 2)
2859 goto out_owner_change;
2860 len = item->ri_buf[2].i_len;
2861 src = item->ri_buf[2].i_addr;
2862 ASSERT(in_f->ilf_size <= 4);
2863 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2864 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2865 (len == in_f->ilf_dsize));
2866
2867 switch (fields & XFS_ILOG_DFORK) {
2868 case XFS_ILOG_DDATA:
2869 case XFS_ILOG_DEXT:
2870 memcpy(XFS_DFORK_DPTR(dip), src, len);
2871 break;
2872
2873 case XFS_ILOG_DBROOT:
2874 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2875 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
2876 XFS_DFORK_DSIZE(dip, mp));
2877 break;
2878
2879 default:
2880 /*
2881 * There are no data fork flags set.
2882 */
2883 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2884 break;
2885 }
2886
2887 /*
2888 * If we logged any attribute data, recover it. There may or
2889 * may not have been any other non-core data logged in this
2890 * transaction.
2891 */
2892 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2893 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2894 attr_index = 3;
2895 } else {
2896 attr_index = 2;
2897 }
2898 len = item->ri_buf[attr_index].i_len;
2899 src = item->ri_buf[attr_index].i_addr;
2900 ASSERT(len == in_f->ilf_asize);
2901
2902 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2903 case XFS_ILOG_ADATA:
2904 case XFS_ILOG_AEXT:
2905 dest = XFS_DFORK_APTR(dip);
2906 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2907 memcpy(dest, src, len);
2908 break;
2909
2910 case XFS_ILOG_ABROOT:
2911 dest = XFS_DFORK_APTR(dip);
2912 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2913 len, (xfs_bmdr_block_t*)dest,
2914 XFS_DFORK_ASIZE(dip, mp));
2915 break;
2916
2917 default:
2918 xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
2919 ASSERT(0);
2920 error = -EIO;
2921 goto out_release;
2922 }
2923 }
2924
2925 out_owner_change:
2926 if (in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER))
2927 error = xfs_recover_inode_owner_change(mp, dip, in_f,
2928 buffer_list);
2929 /* re-generate the checksum. */
2930 xfs_dinode_calc_crc(log->l_mp, dip);
2931
2932 ASSERT(bp->b_target->bt_mount == mp);
2933 bp->b_iodone = xlog_recover_iodone;
2934 xfs_buf_delwri_queue(bp, buffer_list);
2935
2936 out_release:
2937 xfs_buf_relse(bp);
2938 error:
2939 if (need_free)
2940 kmem_free(in_f);
2941 return error;
2942 }
2943
2944 /*
2945 * Recover QUOTAOFF records. We simply make a note of it in the xlog
2946 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2947 * of that type.
2948 */
2949 STATIC int
2950 xlog_recover_quotaoff_pass1(
2951 struct xlog *log,
2952 struct xlog_recover_item *item)
2953 {
2954 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
2955 ASSERT(qoff_f);
2956
2957 /*
2958 * The logitem format's flag tells us if this was user quotaoff,
2959 * group/project quotaoff or both.
2960 */
2961 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2962 log->l_quotaoffs_flag |= XFS_DQ_USER;
2963 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2964 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2965 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2966 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2967
2968 return 0;
2969 }
2970
2971 /*
2972 * Recover a dquot record
2973 */
2974 STATIC int
2975 xlog_recover_dquot_pass2(
2976 struct xlog *log,
2977 struct list_head *buffer_list,
2978 struct xlog_recover_item *item,
2979 xfs_lsn_t current_lsn)
2980 {
2981 xfs_mount_t *mp = log->l_mp;
2982 xfs_buf_t *bp;
2983 struct xfs_disk_dquot *ddq, *recddq;
2984 int error;
2985 xfs_dq_logformat_t *dq_f;
2986 uint type;
2987
2988
2989 /*
2990 * Filesystems are required to send in quota flags at mount time.
2991 */
2992 if (mp->m_qflags == 0)
2993 return 0;
2994
2995 recddq = item->ri_buf[1].i_addr;
2996 if (recddq == NULL) {
2997 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
2998 return -EIO;
2999 }
3000 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
3001 xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
3002 item->ri_buf[1].i_len, __func__);
3003 return -EIO;
3004 }
3005
3006 /*
3007 * This type of quotas was turned off, so ignore this record.
3008 */
3009 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3010 ASSERT(type);
3011 if (log->l_quotaoffs_flag & type)
3012 return 0;
3013
3014 /*
3015 * At this point we know that quota was _not_ turned off.
3016 * Since the mount flags are not indicating to us otherwise, this
3017 * must mean that quota is on, and the dquot needs to be replayed.
3018 * Remember that we may not have fully recovered the superblock yet,
3019 * so we can't do the usual trick of looking at the SB quota bits.
3020 *
3021 * The other possibility, of course, is that the quota subsystem was
3022 * removed since the last mount - ENOSYS.
3023 */
3024 dq_f = item->ri_buf[0].i_addr;
3025 ASSERT(dq_f);
3026 error = xfs_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
3027 "xlog_recover_dquot_pass2 (log copy)");
3028 if (error)
3029 return -EIO;
3030 ASSERT(dq_f->qlf_len == 1);
3031
3032 /*
3033 * At this point we are assuming that the dquots have been allocated
3034 * and hence the buffer has valid dquots stamped in it. It should,
3035 * therefore, pass verifier validation. If the dquot is bad, then the
3036 * we'll return an error here, so we don't need to specifically check
3037 * the dquot in the buffer after the verifier has run.
3038 */
3039 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
3040 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
3041 &xfs_dquot_buf_ops);
3042 if (error)
3043 return error;
3044
3045 ASSERT(bp);
3046 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
3047
3048 /*
3049 * If the dquot has an LSN in it, recover the dquot only if it's less
3050 * than the lsn of the transaction we are replaying.
3051 */
3052 if (xfs_sb_version_hascrc(&mp->m_sb)) {
3053 struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
3054 xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn);
3055
3056 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3057 goto out_release;
3058 }
3059 }
3060
3061 memcpy(ddq, recddq, item->ri_buf[1].i_len);
3062 if (xfs_sb_version_hascrc(&mp->m_sb)) {
3063 xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
3064 XFS_DQUOT_CRC_OFF);
3065 }
3066
3067 ASSERT(dq_f->qlf_size == 2);
3068 ASSERT(bp->b_target->bt_mount == mp);
3069 bp->b_iodone = xlog_recover_iodone;
3070 xfs_buf_delwri_queue(bp, buffer_list);
3071
3072 out_release:
3073 xfs_buf_relse(bp);
3074 return 0;
3075 }
3076
3077 /*
3078 * This routine is called to create an in-core extent free intent
3079 * item from the efi format structure which was logged on disk.
3080 * It allocates an in-core efi, copies the extents from the format
3081 * structure into it, and adds the efi to the AIL with the given
3082 * LSN.
3083 */
3084 STATIC int
3085 xlog_recover_efi_pass2(
3086 struct xlog *log,
3087 struct xlog_recover_item *item,
3088 xfs_lsn_t lsn)
3089 {
3090 int error;
3091 xfs_mount_t *mp = log->l_mp;
3092 xfs_efi_log_item_t *efip;
3093 xfs_efi_log_format_t *efi_formatp;
3094
3095 efi_formatp = item->ri_buf[0].i_addr;
3096
3097 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
3098 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
3099 &(efip->efi_format)))) {
3100 xfs_efi_item_free(efip);
3101 return error;
3102 }
3103 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
3104
3105 spin_lock(&log->l_ailp->xa_lock);
3106 /*
3107 * xfs_trans_ail_update() drops the AIL lock.
3108 */
3109 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
3110 return 0;
3111 }
3112
3113
3114 /*
3115 * This routine is called when an efd format structure is found in
3116 * a committed transaction in the log. It's purpose is to cancel
3117 * the corresponding efi if it was still in the log. To do this
3118 * it searches the AIL for the efi with an id equal to that in the
3119 * efd format structure. If we find it, we remove the efi from the
3120 * AIL and free it.
3121 */
3122 STATIC int
3123 xlog_recover_efd_pass2(
3124 struct xlog *log,
3125 struct xlog_recover_item *item)
3126 {
3127 xfs_efd_log_format_t *efd_formatp;
3128 xfs_efi_log_item_t *efip = NULL;
3129 xfs_log_item_t *lip;
3130 __uint64_t efi_id;
3131 struct xfs_ail_cursor cur;
3132 struct xfs_ail *ailp = log->l_ailp;
3133
3134 efd_formatp = item->ri_buf[0].i_addr;
3135 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
3136 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
3137 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
3138 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
3139 efi_id = efd_formatp->efd_efi_id;
3140
3141 /*
3142 * Search for the efi with the id in the efd format structure
3143 * in the AIL.
3144 */
3145 spin_lock(&ailp->xa_lock);
3146 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3147 while (lip != NULL) {
3148 if (lip->li_type == XFS_LI_EFI) {
3149 efip = (xfs_efi_log_item_t *)lip;
3150 if (efip->efi_format.efi_id == efi_id) {
3151 /*
3152 * xfs_trans_ail_delete() drops the
3153 * AIL lock.
3154 */
3155 xfs_trans_ail_delete(ailp, lip,
3156 SHUTDOWN_CORRUPT_INCORE);
3157 xfs_efi_item_free(efip);
3158 spin_lock(&ailp->xa_lock);
3159 break;
3160 }
3161 }
3162 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3163 }
3164 xfs_trans_ail_cursor_done(&cur);
3165 spin_unlock(&ailp->xa_lock);
3166
3167 return 0;
3168 }
3169
3170 /*
3171 * This routine is called when an inode create format structure is found in a
3172 * committed transaction in the log. It's purpose is to initialise the inodes
3173 * being allocated on disk. This requires us to get inode cluster buffers that
3174 * match the range to be intialised, stamped with inode templates and written
3175 * by delayed write so that subsequent modifications will hit the cached buffer
3176 * and only need writing out at the end of recovery.
3177 */
3178 STATIC int
3179 xlog_recover_do_icreate_pass2(
3180 struct xlog *log,
3181 struct list_head *buffer_list,
3182 xlog_recover_item_t *item)
3183 {
3184 struct xfs_mount *mp = log->l_mp;
3185 struct xfs_icreate_log *icl;
3186 xfs_agnumber_t agno;
3187 xfs_agblock_t agbno;
3188 unsigned int count;
3189 unsigned int isize;
3190 xfs_agblock_t length;
3191
3192 icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3193 if (icl->icl_type != XFS_LI_ICREATE) {
3194 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
3195 return -EINVAL;
3196 }
3197
3198 if (icl->icl_size != 1) {
3199 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
3200 return -EINVAL;
3201 }
3202
3203 agno = be32_to_cpu(icl->icl_ag);
3204 if (agno >= mp->m_sb.sb_agcount) {
3205 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
3206 return -EINVAL;
3207 }
3208 agbno = be32_to_cpu(icl->icl_agbno);
3209 if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3210 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
3211 return -EINVAL;
3212 }
3213 isize = be32_to_cpu(icl->icl_isize);
3214 if (isize != mp->m_sb.sb_inodesize) {
3215 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
3216 return -EINVAL;
3217 }
3218 count = be32_to_cpu(icl->icl_count);
3219 if (!count) {
3220 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
3221 return -EINVAL;
3222 }
3223 length = be32_to_cpu(icl->icl_length);
3224 if (!length || length >= mp->m_sb.sb_agblocks) {
3225 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
3226 return -EINVAL;
3227 }
3228
3229 /* existing allocation is fixed value */
3230 ASSERT(count == mp->m_ialloc_inos);
3231 ASSERT(length == mp->m_ialloc_blks);
3232 if (count != mp->m_ialloc_inos ||
3233 length != mp->m_ialloc_blks) {
3234 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count 2");
3235 return -EINVAL;
3236 }
3237
3238 /*
3239 * Inode buffers can be freed. Do not replay the inode initialisation as
3240 * we could be overwriting something written after this inode buffer was
3241 * cancelled.
3242 *
3243 * XXX: we need to iterate all buffers and only init those that are not
3244 * cancelled. I think that a more fine grained factoring of
3245 * xfs_ialloc_inode_init may be appropriate here to enable this to be
3246 * done easily.
3247 */
3248 if (xlog_check_buffer_cancelled(log,
3249 XFS_AGB_TO_DADDR(mp, agno, agbno), length, 0))
3250 return 0;
3251
3252 xfs_ialloc_inode_init(mp, NULL, buffer_list, agno, agbno, length,
3253 be32_to_cpu(icl->icl_gen));
3254 return 0;
3255 }
3256
3257 /*
3258 * Free up any resources allocated by the transaction
3259 *
3260 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
3261 */
3262 STATIC void
3263 xlog_recover_free_trans(
3264 struct xlog_recover *trans)
3265 {
3266 xlog_recover_item_t *item, *n;
3267 int i;
3268
3269 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
3270 /* Free the regions in the item. */
3271 list_del(&item->ri_list);
3272 for (i = 0; i < item->ri_cnt; i++)
3273 kmem_free(item->ri_buf[i].i_addr);
3274 /* Free the item itself */
3275 kmem_free(item->ri_buf);
3276 kmem_free(item);
3277 }
3278 /* Free the transaction recover structure */
3279 kmem_free(trans);
3280 }
3281
3282 STATIC void
3283 xlog_recover_buffer_ra_pass2(
3284 struct xlog *log,
3285 struct xlog_recover_item *item)
3286 {
3287 struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr;
3288 struct xfs_mount *mp = log->l_mp;
3289
3290 if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
3291 buf_f->blf_len, buf_f->blf_flags)) {
3292 return;
3293 }
3294
3295 xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
3296 buf_f->blf_len, NULL);
3297 }
3298
3299 STATIC void
3300 xlog_recover_inode_ra_pass2(
3301 struct xlog *log,
3302 struct xlog_recover_item *item)
3303 {
3304 struct xfs_inode_log_format ilf_buf;
3305 struct xfs_inode_log_format *ilfp;
3306 struct xfs_mount *mp = log->l_mp;
3307 int error;
3308
3309 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3310 ilfp = item->ri_buf[0].i_addr;
3311 } else {
3312 ilfp = &ilf_buf;
3313 memset(ilfp, 0, sizeof(*ilfp));
3314 error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
3315 if (error)
3316 return;
3317 }
3318
3319 if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
3320 return;
3321
3322 xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
3323 ilfp->ilf_len, &xfs_inode_buf_ra_ops);
3324 }
3325
3326 STATIC void
3327 xlog_recover_dquot_ra_pass2(
3328 struct xlog *log,
3329 struct xlog_recover_item *item)
3330 {
3331 struct xfs_mount *mp = log->l_mp;
3332 struct xfs_disk_dquot *recddq;
3333 struct xfs_dq_logformat *dq_f;
3334 uint type;
3335
3336
3337 if (mp->m_qflags == 0)
3338 return;
3339
3340 recddq = item->ri_buf[1].i_addr;
3341 if (recddq == NULL)
3342 return;
3343 if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
3344 return;
3345
3346 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3347 ASSERT(type);
3348 if (log->l_quotaoffs_flag & type)
3349 return;
3350
3351 dq_f = item->ri_buf[0].i_addr;
3352 ASSERT(dq_f);
3353 ASSERT(dq_f->qlf_len == 1);
3354
3355 xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno,
3356 XFS_FSB_TO_BB(mp, dq_f->qlf_len), NULL);
3357 }
3358
3359 STATIC void
3360 xlog_recover_ra_pass2(
3361 struct xlog *log,
3362 struct xlog_recover_item *item)
3363 {
3364 switch (ITEM_TYPE(item)) {
3365 case XFS_LI_BUF:
3366 xlog_recover_buffer_ra_pass2(log, item);
3367 break;
3368 case XFS_LI_INODE:
3369 xlog_recover_inode_ra_pass2(log, item);
3370 break;
3371 case XFS_LI_DQUOT:
3372 xlog_recover_dquot_ra_pass2(log, item);
3373 break;
3374 case XFS_LI_EFI:
3375 case XFS_LI_EFD:
3376 case XFS_LI_QUOTAOFF:
3377 default:
3378 break;
3379 }
3380 }
3381
3382 STATIC int
3383 xlog_recover_commit_pass1(
3384 struct xlog *log,
3385 struct xlog_recover *trans,
3386 struct xlog_recover_item *item)
3387 {
3388 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
3389
3390 switch (ITEM_TYPE(item)) {
3391 case XFS_LI_BUF:
3392 return xlog_recover_buffer_pass1(log, item);
3393 case XFS_LI_QUOTAOFF:
3394 return xlog_recover_quotaoff_pass1(log, item);
3395 case XFS_LI_INODE:
3396 case XFS_LI_EFI:
3397 case XFS_LI_EFD:
3398 case XFS_LI_DQUOT:
3399 case XFS_LI_ICREATE:
3400 /* nothing to do in pass 1 */
3401 return 0;
3402 default:
3403 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3404 __func__, ITEM_TYPE(item));
3405 ASSERT(0);
3406 return -EIO;
3407 }
3408 }
3409
3410 STATIC int
3411 xlog_recover_commit_pass2(
3412 struct xlog *log,
3413 struct xlog_recover *trans,
3414 struct list_head *buffer_list,
3415 struct xlog_recover_item *item)
3416 {
3417 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
3418
3419 switch (ITEM_TYPE(item)) {
3420 case XFS_LI_BUF:
3421 return xlog_recover_buffer_pass2(log, buffer_list, item,
3422 trans->r_lsn);
3423 case XFS_LI_INODE:
3424 return xlog_recover_inode_pass2(log, buffer_list, item,
3425 trans->r_lsn);
3426 case XFS_LI_EFI:
3427 return xlog_recover_efi_pass2(log, item, trans->r_lsn);
3428 case XFS_LI_EFD:
3429 return xlog_recover_efd_pass2(log, item);
3430 case XFS_LI_DQUOT:
3431 return xlog_recover_dquot_pass2(log, buffer_list, item,
3432 trans->r_lsn);
3433 case XFS_LI_ICREATE:
3434 return xlog_recover_do_icreate_pass2(log, buffer_list, item);
3435 case XFS_LI_QUOTAOFF:
3436 /* nothing to do in pass2 */
3437 return 0;
3438 default:
3439 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3440 __func__, ITEM_TYPE(item));
3441 ASSERT(0);
3442 return -EIO;
3443 }
3444 }
3445
3446 STATIC int
3447 xlog_recover_items_pass2(
3448 struct xlog *log,
3449 struct xlog_recover *trans,
3450 struct list_head *buffer_list,
3451 struct list_head *item_list)
3452 {
3453 struct xlog_recover_item *item;
3454 int error = 0;
3455
3456 list_for_each_entry(item, item_list, ri_list) {
3457 error = xlog_recover_commit_pass2(log, trans,
3458 buffer_list, item);
3459 if (error)
3460 return error;
3461 }
3462
3463 return error;
3464 }
3465
3466 /*
3467 * Perform the transaction.
3468 *
3469 * If the transaction modifies a buffer or inode, do it now. Otherwise,
3470 * EFIs and EFDs get queued up by adding entries into the AIL for them.
3471 */
3472 STATIC int
3473 xlog_recover_commit_trans(
3474 struct xlog *log,
3475 struct xlog_recover *trans,
3476 int pass)
3477 {
3478 int error = 0;
3479 int error2;
3480 int items_queued = 0;
3481 struct xlog_recover_item *item;
3482 struct xlog_recover_item *next;
3483 LIST_HEAD (buffer_list);
3484 LIST_HEAD (ra_list);
3485 LIST_HEAD (done_list);
3486
3487 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
3488
3489 hlist_del(&trans->r_list);
3490
3491 error = xlog_recover_reorder_trans(log, trans, pass);
3492 if (error)
3493 return error;
3494
3495 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
3496 switch (pass) {
3497 case XLOG_RECOVER_PASS1:
3498 error = xlog_recover_commit_pass1(log, trans, item);
3499 break;
3500 case XLOG_RECOVER_PASS2:
3501 xlog_recover_ra_pass2(log, item);
3502 list_move_tail(&item->ri_list, &ra_list);
3503 items_queued++;
3504 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
3505 error = xlog_recover_items_pass2(log, trans,
3506 &buffer_list, &ra_list);
3507 list_splice_tail_init(&ra_list, &done_list);
3508 items_queued = 0;
3509 }
3510
3511 break;
3512 default:
3513 ASSERT(0);
3514 }
3515
3516 if (error)
3517 goto out;
3518 }
3519
3520 out:
3521 if (!list_empty(&ra_list)) {
3522 if (!error)
3523 error = xlog_recover_items_pass2(log, trans,
3524 &buffer_list, &ra_list);
3525 list_splice_tail_init(&ra_list, &done_list);
3526 }
3527
3528 if (!list_empty(&done_list))
3529 list_splice_init(&done_list, &trans->r_itemq);
3530
3531 xlog_recover_free_trans(trans);
3532
3533 error2 = xfs_buf_delwri_submit(&buffer_list);
3534 return error ? error : error2;
3535 }
3536
3537 STATIC int
3538 xlog_recover_unmount_trans(
3539 struct xlog *log)
3540 {
3541 /* Do nothing now */
3542 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
3543 return 0;
3544 }
3545
3546 /*
3547 * There are two valid states of the r_state field. 0 indicates that the
3548 * transaction structure is in a normal state. We have either seen the
3549 * start of the transaction or the last operation we added was not a partial
3550 * operation. If the last operation we added to the transaction was a
3551 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
3552 *
3553 * NOTE: skip LRs with 0 data length.
3554 */
3555 STATIC int
3556 xlog_recover_process_data(
3557 struct xlog *log,
3558 struct hlist_head rhash[],
3559 struct xlog_rec_header *rhead,
3560 xfs_caddr_t dp,
3561 int pass)
3562 {
3563 xfs_caddr_t lp;
3564 int num_logops;
3565 xlog_op_header_t *ohead;
3566 xlog_recover_t *trans;
3567 xlog_tid_t tid;
3568 int error;
3569 unsigned long hash;
3570 uint flags;
3571
3572 lp = dp + be32_to_cpu(rhead->h_len);
3573 num_logops = be32_to_cpu(rhead->h_num_logops);
3574
3575 /* check the log format matches our own - else we can't recover */
3576 if (xlog_header_check_recover(log->l_mp, rhead))
3577 return -EIO;
3578
3579 while ((dp < lp) && num_logops) {
3580 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
3581 ohead = (xlog_op_header_t *)dp;
3582 dp += sizeof(xlog_op_header_t);
3583 if (ohead->oh_clientid != XFS_TRANSACTION &&
3584 ohead->oh_clientid != XFS_LOG) {
3585 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
3586 __func__, ohead->oh_clientid);
3587 ASSERT(0);
3588 return -EIO;
3589 }
3590 tid = be32_to_cpu(ohead->oh_tid);
3591 hash = XLOG_RHASH(tid);
3592 trans = xlog_recover_find_tid(&rhash[hash], tid);
3593 if (trans == NULL) { /* not found; add new tid */
3594 if (ohead->oh_flags & XLOG_START_TRANS)
3595 xlog_recover_new_tid(&rhash[hash], tid,
3596 be64_to_cpu(rhead->h_lsn));
3597 } else {
3598 if (dp + be32_to_cpu(ohead->oh_len) > lp) {
3599 xfs_warn(log->l_mp, "%s: bad length 0x%x",
3600 __func__, be32_to_cpu(ohead->oh_len));
3601 WARN_ON(1);
3602 return -EIO;
3603 }
3604 flags = ohead->oh_flags & ~XLOG_END_TRANS;
3605 if (flags & XLOG_WAS_CONT_TRANS)
3606 flags &= ~XLOG_CONTINUE_TRANS;
3607 switch (flags) {
3608 case XLOG_COMMIT_TRANS:
3609 error = xlog_recover_commit_trans(log,
3610 trans, pass);
3611 break;
3612 case XLOG_UNMOUNT_TRANS:
3613 error = xlog_recover_unmount_trans(log);
3614 break;
3615 case XLOG_WAS_CONT_TRANS:
3616 error = xlog_recover_add_to_cont_trans(log,
3617 trans, dp,
3618 be32_to_cpu(ohead->oh_len));
3619 break;
3620 case XLOG_START_TRANS:
3621 xfs_warn(log->l_mp, "%s: bad transaction",
3622 __func__);
3623 ASSERT(0);
3624 error = -EIO;
3625 break;
3626 case 0:
3627 case XLOG_CONTINUE_TRANS:
3628 error = xlog_recover_add_to_trans(log, trans,
3629 dp, be32_to_cpu(ohead->oh_len));
3630 break;
3631 default:
3632 xfs_warn(log->l_mp, "%s: bad flag 0x%x",
3633 __func__, flags);
3634 ASSERT(0);
3635 error = -EIO;
3636 break;
3637 }
3638 if (error) {
3639 xlog_recover_free_trans(trans);
3640 return error;
3641 }
3642 }
3643 dp += be32_to_cpu(ohead->oh_len);
3644 num_logops--;
3645 }
3646 return 0;
3647 }
3648
3649 /*
3650 * Process an extent free intent item that was recovered from
3651 * the log. We need to free the extents that it describes.
3652 */
3653 STATIC int
3654 xlog_recover_process_efi(
3655 xfs_mount_t *mp,
3656 xfs_efi_log_item_t *efip)
3657 {
3658 xfs_efd_log_item_t *efdp;
3659 xfs_trans_t *tp;
3660 int i;
3661 int error = 0;
3662 xfs_extent_t *extp;
3663 xfs_fsblock_t startblock_fsb;
3664
3665 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
3666
3667 /*
3668 * First check the validity of the extents described by the
3669 * EFI. If any are bad, then assume that all are bad and
3670 * just toss the EFI.
3671 */
3672 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3673 extp = &(efip->efi_format.efi_extents[i]);
3674 startblock_fsb = XFS_BB_TO_FSB(mp,
3675 XFS_FSB_TO_DADDR(mp, extp->ext_start));
3676 if ((startblock_fsb == 0) ||
3677 (extp->ext_len == 0) ||
3678 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3679 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3680 /*
3681 * This will pull the EFI from the AIL and
3682 * free the memory associated with it.
3683 */
3684 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
3685 xfs_efi_release(efip, efip->efi_format.efi_nextents);
3686 return -EIO;
3687 }
3688 }
3689
3690 tp = xfs_trans_alloc(mp, 0);
3691 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
3692 if (error)
3693 goto abort_error;
3694 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3695
3696 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3697 extp = &(efip->efi_format.efi_extents[i]);
3698 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3699 if (error)
3700 goto abort_error;
3701 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3702 extp->ext_len);
3703 }
3704
3705 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
3706 error = xfs_trans_commit(tp, 0);
3707 return error;
3708
3709 abort_error:
3710 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3711 return error;
3712 }
3713
3714 /*
3715 * When this is called, all of the EFIs which did not have
3716 * corresponding EFDs should be in the AIL. What we do now
3717 * is free the extents associated with each one.
3718 *
3719 * Since we process the EFIs in normal transactions, they
3720 * will be removed at some point after the commit. This prevents
3721 * us from just walking down the list processing each one.
3722 * We'll use a flag in the EFI to skip those that we've already
3723 * processed and use the AIL iteration mechanism's generation
3724 * count to try to speed this up at least a bit.
3725 *
3726 * When we start, we know that the EFIs are the only things in
3727 * the AIL. As we process them, however, other items are added
3728 * to the AIL. Since everything added to the AIL must come after
3729 * everything already in the AIL, we stop processing as soon as
3730 * we see something other than an EFI in the AIL.
3731 */
3732 STATIC int
3733 xlog_recover_process_efis(
3734 struct xlog *log)
3735 {
3736 xfs_log_item_t *lip;
3737 xfs_efi_log_item_t *efip;
3738 int error = 0;
3739 struct xfs_ail_cursor cur;
3740 struct xfs_ail *ailp;
3741
3742 ailp = log->l_ailp;
3743 spin_lock(&ailp->xa_lock);
3744 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3745 while (lip != NULL) {
3746 /*
3747 * We're done when we see something other than an EFI.
3748 * There should be no EFIs left in the AIL now.
3749 */
3750 if (lip->li_type != XFS_LI_EFI) {
3751 #ifdef DEBUG
3752 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
3753 ASSERT(lip->li_type != XFS_LI_EFI);
3754 #endif
3755 break;
3756 }
3757
3758 /*
3759 * Skip EFIs that we've already processed.
3760 */
3761 efip = (xfs_efi_log_item_t *)lip;
3762 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
3763 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3764 continue;
3765 }
3766
3767 spin_unlock(&ailp->xa_lock);
3768 error = xlog_recover_process_efi(log->l_mp, efip);
3769 spin_lock(&ailp->xa_lock);
3770 if (error)
3771 goto out;
3772 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3773 }
3774 out:
3775 xfs_trans_ail_cursor_done(&cur);
3776 spin_unlock(&ailp->xa_lock);
3777 return error;
3778 }
3779
3780 /*
3781 * This routine performs a transaction to null out a bad inode pointer
3782 * in an agi unlinked inode hash bucket.
3783 */
3784 STATIC void
3785 xlog_recover_clear_agi_bucket(
3786 xfs_mount_t *mp,
3787 xfs_agnumber_t agno,
3788 int bucket)
3789 {
3790 xfs_trans_t *tp;
3791 xfs_agi_t *agi;
3792 xfs_buf_t *agibp;
3793 int offset;
3794 int error;
3795
3796 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3797 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_clearagi, 0, 0);
3798 if (error)
3799 goto out_abort;
3800
3801 error = xfs_read_agi(mp, tp, agno, &agibp);
3802 if (error)
3803 goto out_abort;
3804
3805 agi = XFS_BUF_TO_AGI(agibp);
3806 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3807 offset = offsetof(xfs_agi_t, agi_unlinked) +
3808 (sizeof(xfs_agino_t) * bucket);
3809 xfs_trans_log_buf(tp, agibp, offset,
3810 (offset + sizeof(xfs_agino_t) - 1));
3811
3812 error = xfs_trans_commit(tp, 0);
3813 if (error)
3814 goto out_error;
3815 return;
3816
3817 out_abort:
3818 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3819 out_error:
3820 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
3821 return;
3822 }
3823
3824 STATIC xfs_agino_t
3825 xlog_recover_process_one_iunlink(
3826 struct xfs_mount *mp,
3827 xfs_agnumber_t agno,
3828 xfs_agino_t agino,
3829 int bucket)
3830 {
3831 struct xfs_buf *ibp;
3832 struct xfs_dinode *dip;
3833 struct xfs_inode *ip;
3834 xfs_ino_t ino;
3835 int error;
3836
3837 ino = XFS_AGINO_TO_INO(mp, agno, agino);
3838 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
3839 if (error)
3840 goto fail;
3841
3842 /*
3843 * Get the on disk inode to find the next inode in the bucket.
3844 */
3845 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
3846 if (error)
3847 goto fail_iput;
3848
3849 ASSERT(ip->i_d.di_nlink == 0);
3850 ASSERT(ip->i_d.di_mode != 0);
3851
3852 /* setup for the next pass */
3853 agino = be32_to_cpu(dip->di_next_unlinked);
3854 xfs_buf_relse(ibp);
3855
3856 /*
3857 * Prevent any DMAPI event from being sent when the reference on
3858 * the inode is dropped.
3859 */
3860 ip->i_d.di_dmevmask = 0;
3861
3862 IRELE(ip);
3863 return agino;
3864
3865 fail_iput:
3866 IRELE(ip);
3867 fail:
3868 /*
3869 * We can't read in the inode this bucket points to, or this inode
3870 * is messed up. Just ditch this bucket of inodes. We will lose
3871 * some inodes and space, but at least we won't hang.
3872 *
3873 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3874 * clear the inode pointer in the bucket.
3875 */
3876 xlog_recover_clear_agi_bucket(mp, agno, bucket);
3877 return NULLAGINO;
3878 }
3879
3880 /*
3881 * xlog_iunlink_recover
3882 *
3883 * This is called during recovery to process any inodes which
3884 * we unlinked but not freed when the system crashed. These
3885 * inodes will be on the lists in the AGI blocks. What we do
3886 * here is scan all the AGIs and fully truncate and free any
3887 * inodes found on the lists. Each inode is removed from the
3888 * lists when it has been fully truncated and is freed. The
3889 * freeing of the inode and its removal from the list must be
3890 * atomic.
3891 */
3892 STATIC void
3893 xlog_recover_process_iunlinks(
3894 struct xlog *log)
3895 {
3896 xfs_mount_t *mp;
3897 xfs_agnumber_t agno;
3898 xfs_agi_t *agi;
3899 xfs_buf_t *agibp;
3900 xfs_agino_t agino;
3901 int bucket;
3902 int error;
3903 uint mp_dmevmask;
3904
3905 mp = log->l_mp;
3906
3907 /*
3908 * Prevent any DMAPI event from being sent while in this function.
3909 */
3910 mp_dmevmask = mp->m_dmevmask;
3911 mp->m_dmevmask = 0;
3912
3913 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3914 /*
3915 * Find the agi for this ag.
3916 */
3917 error = xfs_read_agi(mp, NULL, agno, &agibp);
3918 if (error) {
3919 /*
3920 * AGI is b0rked. Don't process it.
3921 *
3922 * We should probably mark the filesystem as corrupt
3923 * after we've recovered all the ag's we can....
3924 */
3925 continue;
3926 }
3927 /*
3928 * Unlock the buffer so that it can be acquired in the normal
3929 * course of the transaction to truncate and free each inode.
3930 * Because we are not racing with anyone else here for the AGI
3931 * buffer, we don't even need to hold it locked to read the
3932 * initial unlinked bucket entries out of the buffer. We keep
3933 * buffer reference though, so that it stays pinned in memory
3934 * while we need the buffer.
3935 */
3936 agi = XFS_BUF_TO_AGI(agibp);
3937 xfs_buf_unlock(agibp);
3938
3939 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3940 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3941 while (agino != NULLAGINO) {
3942 agino = xlog_recover_process_one_iunlink(mp,
3943 agno, agino, bucket);
3944 }
3945 }
3946 xfs_buf_rele(agibp);
3947 }
3948
3949 mp->m_dmevmask = mp_dmevmask;
3950 }
3951
3952 /*
3953 * Upack the log buffer data and crc check it. If the check fails, issue a
3954 * warning if and only if the CRC in the header is non-zero. This makes the
3955 * check an advisory warning, and the zero CRC check will prevent failure
3956 * warnings from being emitted when upgrading the kernel from one that does not
3957 * add CRCs by default.
3958 *
3959 * When filesystems are CRC enabled, this CRC mismatch becomes a fatal log
3960 * corruption failure
3961 */
3962 STATIC int
3963 xlog_unpack_data_crc(
3964 struct xlog_rec_header *rhead,
3965 xfs_caddr_t dp,
3966 struct xlog *log)
3967 {
3968 __le32 crc;
3969
3970 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
3971 if (crc != rhead->h_crc) {
3972 if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
3973 xfs_alert(log->l_mp,
3974 "log record CRC mismatch: found 0x%x, expected 0x%x.",
3975 le32_to_cpu(rhead->h_crc),
3976 le32_to_cpu(crc));
3977 xfs_hex_dump(dp, 32);
3978 }
3979
3980 /*
3981 * If we've detected a log record corruption, then we can't
3982 * recover past this point. Abort recovery if we are enforcing
3983 * CRC protection by punting an error back up the stack.
3984 */
3985 if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
3986 return -EFSCORRUPTED;
3987 }
3988
3989 return 0;
3990 }
3991
3992 STATIC int
3993 xlog_unpack_data(
3994 struct xlog_rec_header *rhead,
3995 xfs_caddr_t dp,
3996 struct xlog *log)
3997 {
3998 int i, j, k;
3999 int error;
4000
4001 error = xlog_unpack_data_crc(rhead, dp, log);
4002 if (error)
4003 return error;
4004
4005 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
4006 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
4007 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
4008 dp += BBSIZE;
4009 }
4010
4011 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
4012 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
4013 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
4014 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
4015 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
4016 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
4017 dp += BBSIZE;
4018 }
4019 }
4020
4021 return 0;
4022 }
4023
4024 STATIC int
4025 xlog_valid_rec_header(
4026 struct xlog *log,
4027 struct xlog_rec_header *rhead,
4028 xfs_daddr_t blkno)
4029 {
4030 int hlen;
4031
4032 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
4033 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
4034 XFS_ERRLEVEL_LOW, log->l_mp);
4035 return -EFSCORRUPTED;
4036 }
4037 if (unlikely(
4038 (!rhead->h_version ||
4039 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
4040 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
4041 __func__, be32_to_cpu(rhead->h_version));
4042 return -EIO;
4043 }
4044
4045 /* LR body must have data or it wouldn't have been written */
4046 hlen = be32_to_cpu(rhead->h_len);
4047 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
4048 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
4049 XFS_ERRLEVEL_LOW, log->l_mp);
4050 return -EFSCORRUPTED;
4051 }
4052 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
4053 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
4054 XFS_ERRLEVEL_LOW, log->l_mp);
4055 return -EFSCORRUPTED;
4056 }
4057 return 0;
4058 }
4059
4060 /*
4061 * Read the log from tail to head and process the log records found.
4062 * Handle the two cases where the tail and head are in the same cycle
4063 * and where the active portion of the log wraps around the end of
4064 * the physical log separately. The pass parameter is passed through
4065 * to the routines called to process the data and is not looked at
4066 * here.
4067 */
4068 STATIC int
4069 xlog_do_recovery_pass(
4070 struct xlog *log,
4071 xfs_daddr_t head_blk,
4072 xfs_daddr_t tail_blk,
4073 int pass)
4074 {
4075 xlog_rec_header_t *rhead;
4076 xfs_daddr_t blk_no;
4077 xfs_caddr_t offset;
4078 xfs_buf_t *hbp, *dbp;
4079 int error = 0, h_size;
4080 int bblks, split_bblks;
4081 int hblks, split_hblks, wrapped_hblks;
4082 struct hlist_head rhash[XLOG_RHASH_SIZE];
4083
4084 ASSERT(head_blk != tail_blk);
4085
4086 /*
4087 * Read the header of the tail block and get the iclog buffer size from
4088 * h_size. Use this to tell how many sectors make up the log header.
4089 */
4090 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
4091 /*
4092 * When using variable length iclogs, read first sector of
4093 * iclog header and extract the header size from it. Get a
4094 * new hbp that is the correct size.
4095 */
4096 hbp = xlog_get_bp(log, 1);
4097 if (!hbp)
4098 return -ENOMEM;
4099
4100 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
4101 if (error)
4102 goto bread_err1;
4103
4104 rhead = (xlog_rec_header_t *)offset;
4105 error = xlog_valid_rec_header(log, rhead, tail_blk);
4106 if (error)
4107 goto bread_err1;
4108 h_size = be32_to_cpu(rhead->h_size);
4109 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
4110 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
4111 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
4112 if (h_size % XLOG_HEADER_CYCLE_SIZE)
4113 hblks++;
4114 xlog_put_bp(hbp);
4115 hbp = xlog_get_bp(log, hblks);
4116 } else {
4117 hblks = 1;
4118 }
4119 } else {
4120 ASSERT(log->l_sectBBsize == 1);
4121 hblks = 1;
4122 hbp = xlog_get_bp(log, 1);
4123 h_size = XLOG_BIG_RECORD_BSIZE;
4124 }
4125
4126 if (!hbp)
4127 return -ENOMEM;
4128 dbp = xlog_get_bp(log, BTOBB(h_size));
4129 if (!dbp) {
4130 xlog_put_bp(hbp);
4131 return -ENOMEM;
4132 }
4133
4134 memset(rhash, 0, sizeof(rhash));
4135 if (tail_blk <= head_blk) {
4136 for (blk_no = tail_blk; blk_no < head_blk; ) {
4137 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
4138 if (error)
4139 goto bread_err2;
4140
4141 rhead = (xlog_rec_header_t *)offset;
4142 error = xlog_valid_rec_header(log, rhead, blk_no);
4143 if (error)
4144 goto bread_err2;
4145
4146 /* blocks in data section */
4147 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
4148 error = xlog_bread(log, blk_no + hblks, bblks, dbp,
4149 &offset);
4150 if (error)
4151 goto bread_err2;
4152
4153 error = xlog_unpack_data(rhead, offset, log);
4154 if (error)
4155 goto bread_err2;
4156
4157 error = xlog_recover_process_data(log,
4158 rhash, rhead, offset, pass);
4159 if (error)
4160 goto bread_err2;
4161 blk_no += bblks + hblks;
4162 }
4163 } else {
4164 /*
4165 * Perform recovery around the end of the physical log.
4166 * When the head is not on the same cycle number as the tail,
4167 * we can't do a sequential recovery as above.
4168 */
4169 blk_no = tail_blk;
4170 while (blk_no < log->l_logBBsize) {
4171 /*
4172 * Check for header wrapping around physical end-of-log
4173 */
4174 offset = hbp->b_addr;
4175 split_hblks = 0;
4176 wrapped_hblks = 0;
4177 if (blk_no + hblks <= log->l_logBBsize) {
4178 /* Read header in one read */
4179 error = xlog_bread(log, blk_no, hblks, hbp,
4180 &offset);
4181 if (error)
4182 goto bread_err2;
4183 } else {
4184 /* This LR is split across physical log end */
4185 if (blk_no != log->l_logBBsize) {
4186 /* some data before physical log end */
4187 ASSERT(blk_no <= INT_MAX);
4188 split_hblks = log->l_logBBsize - (int)blk_no;
4189 ASSERT(split_hblks > 0);
4190 error = xlog_bread(log, blk_no,
4191 split_hblks, hbp,
4192 &offset);
4193 if (error)
4194 goto bread_err2;
4195 }
4196
4197 /*
4198 * Note: this black magic still works with
4199 * large sector sizes (non-512) only because:
4200 * - we increased the buffer size originally
4201 * by 1 sector giving us enough extra space
4202 * for the second read;
4203 * - the log start is guaranteed to be sector
4204 * aligned;
4205 * - we read the log end (LR header start)
4206 * _first_, then the log start (LR header end)
4207 * - order is important.
4208 */
4209 wrapped_hblks = hblks - split_hblks;
4210 error = xlog_bread_offset(log, 0,
4211 wrapped_hblks, hbp,
4212 offset + BBTOB(split_hblks));
4213 if (error)
4214 goto bread_err2;
4215 }
4216 rhead = (xlog_rec_header_t *)offset;
4217 error = xlog_valid_rec_header(log, rhead,
4218 split_hblks ? blk_no : 0);
4219 if (error)
4220 goto bread_err2;
4221
4222 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
4223 blk_no += hblks;
4224
4225 /* Read in data for log record */
4226 if (blk_no + bblks <= log->l_logBBsize) {
4227 error = xlog_bread(log, blk_no, bblks, dbp,
4228 &offset);
4229 if (error)
4230 goto bread_err2;
4231 } else {
4232 /* This log record is split across the
4233 * physical end of log */
4234 offset = dbp->b_addr;
4235 split_bblks = 0;
4236 if (blk_no != log->l_logBBsize) {
4237 /* some data is before the physical
4238 * end of log */
4239 ASSERT(!wrapped_hblks);
4240 ASSERT(blk_no <= INT_MAX);
4241 split_bblks =
4242 log->l_logBBsize - (int)blk_no;
4243 ASSERT(split_bblks > 0);
4244 error = xlog_bread(log, blk_no,
4245 split_bblks, dbp,
4246 &offset);
4247 if (error)
4248 goto bread_err2;
4249 }
4250
4251 /*
4252 * Note: this black magic still works with
4253 * large sector sizes (non-512) only because:
4254 * - we increased the buffer size originally
4255 * by 1 sector giving us enough extra space
4256 * for the second read;
4257 * - the log start is guaranteed to be sector
4258 * aligned;
4259 * - we read the log end (LR header start)
4260 * _first_, then the log start (LR header end)
4261 * - order is important.
4262 */
4263 error = xlog_bread_offset(log, 0,
4264 bblks - split_bblks, dbp,
4265 offset + BBTOB(split_bblks));
4266 if (error)
4267 goto bread_err2;
4268 }
4269
4270 error = xlog_unpack_data(rhead, offset, log);
4271 if (error)
4272 goto bread_err2;
4273
4274 error = xlog_recover_process_data(log, rhash,
4275 rhead, offset, pass);
4276 if (error)
4277 goto bread_err2;
4278 blk_no += bblks;
4279 }
4280
4281 ASSERT(blk_no >= log->l_logBBsize);
4282 blk_no -= log->l_logBBsize;
4283
4284 /* read first part of physical log */
4285 while (blk_no < head_blk) {
4286 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
4287 if (error)
4288 goto bread_err2;
4289
4290 rhead = (xlog_rec_header_t *)offset;
4291 error = xlog_valid_rec_header(log, rhead, blk_no);
4292 if (error)
4293 goto bread_err2;
4294
4295 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
4296 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
4297 &offset);
4298 if (error)
4299 goto bread_err2;
4300
4301 error = xlog_unpack_data(rhead, offset, log);
4302 if (error)
4303 goto bread_err2;
4304
4305 error = xlog_recover_process_data(log, rhash,
4306 rhead, offset, pass);
4307 if (error)
4308 goto bread_err2;
4309 blk_no += bblks + hblks;
4310 }
4311 }
4312
4313 bread_err2:
4314 xlog_put_bp(dbp);
4315 bread_err1:
4316 xlog_put_bp(hbp);
4317 return error;
4318 }
4319
4320 /*
4321 * Do the recovery of the log. We actually do this in two phases.
4322 * The two passes are necessary in order to implement the function
4323 * of cancelling a record written into the log. The first pass
4324 * determines those things which have been cancelled, and the
4325 * second pass replays log items normally except for those which
4326 * have been cancelled. The handling of the replay and cancellations
4327 * takes place in the log item type specific routines.
4328 *
4329 * The table of items which have cancel records in the log is allocated
4330 * and freed at this level, since only here do we know when all of
4331 * the log recovery has been completed.
4332 */
4333 STATIC int
4334 xlog_do_log_recovery(
4335 struct xlog *log,
4336 xfs_daddr_t head_blk,
4337 xfs_daddr_t tail_blk)
4338 {
4339 int error, i;
4340
4341 ASSERT(head_blk != tail_blk);
4342
4343 /*
4344 * First do a pass to find all of the cancelled buf log items.
4345 * Store them in the buf_cancel_table for use in the second pass.
4346 */
4347 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
4348 sizeof(struct list_head),
4349 KM_SLEEP);
4350 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
4351 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
4352
4353 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
4354 XLOG_RECOVER_PASS1);
4355 if (error != 0) {
4356 kmem_free(log->l_buf_cancel_table);
4357 log->l_buf_cancel_table = NULL;
4358 return error;
4359 }
4360 /*
4361 * Then do a second pass to actually recover the items in the log.
4362 * When it is complete free the table of buf cancel items.
4363 */
4364 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
4365 XLOG_RECOVER_PASS2);
4366 #ifdef DEBUG
4367 if (!error) {
4368 int i;
4369
4370 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
4371 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
4372 }
4373 #endif /* DEBUG */
4374
4375 kmem_free(log->l_buf_cancel_table);
4376 log->l_buf_cancel_table = NULL;
4377
4378 return error;
4379 }
4380
4381 /*
4382 * Do the actual recovery
4383 */
4384 STATIC int
4385 xlog_do_recover(
4386 struct xlog *log,
4387 xfs_daddr_t head_blk,
4388 xfs_daddr_t tail_blk)
4389 {
4390 int error;
4391 xfs_buf_t *bp;
4392 xfs_sb_t *sbp;
4393
4394 /*
4395 * First replay the images in the log.
4396 */
4397 error = xlog_do_log_recovery(log, head_blk, tail_blk);
4398 if (error)
4399 return error;
4400
4401 /*
4402 * If IO errors happened during recovery, bail out.
4403 */
4404 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
4405 return -EIO;
4406 }
4407
4408 /*
4409 * We now update the tail_lsn since much of the recovery has completed
4410 * and there may be space available to use. If there were no extent
4411 * or iunlinks, we can free up the entire log and set the tail_lsn to
4412 * be the last_sync_lsn. This was set in xlog_find_tail to be the
4413 * lsn of the last known good LR on disk. If there are extent frees
4414 * or iunlinks they will have some entries in the AIL; so we look at
4415 * the AIL to determine how to set the tail_lsn.
4416 */
4417 xlog_assign_tail_lsn(log->l_mp);
4418
4419 /*
4420 * Now that we've finished replaying all buffer and inode
4421 * updates, re-read in the superblock and reverify it.
4422 */
4423 bp = xfs_getsb(log->l_mp, 0);
4424 XFS_BUF_UNDONE(bp);
4425 ASSERT(!(XFS_BUF_ISWRITE(bp)));
4426 XFS_BUF_READ(bp);
4427 XFS_BUF_UNASYNC(bp);
4428 bp->b_ops = &xfs_sb_buf_ops;
4429
4430 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
4431 xfs_buf_relse(bp);
4432 return -EIO;
4433 }
4434
4435 xfs_buf_iorequest(bp);
4436 error = xfs_buf_iowait(bp);
4437 if (error) {
4438 xfs_buf_ioerror_alert(bp, __func__);
4439 ASSERT(0);
4440 xfs_buf_relse(bp);
4441 return error;
4442 }
4443
4444 /* Convert superblock from on-disk format */
4445 sbp = &log->l_mp->m_sb;
4446 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
4447 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
4448 ASSERT(xfs_sb_good_version(sbp));
4449 xfs_buf_relse(bp);
4450
4451 /* We've re-read the superblock so re-initialize per-cpu counters */
4452 xfs_icsb_reinit_counters(log->l_mp);
4453
4454 xlog_recover_check_summary(log);
4455
4456 /* Normal transactions can now occur */
4457 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
4458 return 0;
4459 }
4460
4461 /*
4462 * Perform recovery and re-initialize some log variables in xlog_find_tail.
4463 *
4464 * Return error or zero.
4465 */
4466 int
4467 xlog_recover(
4468 struct xlog *log)
4469 {
4470 xfs_daddr_t head_blk, tail_blk;
4471 int error;
4472
4473 /* find the tail of the log */
4474 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
4475 return error;
4476
4477 if (tail_blk != head_blk) {
4478 /* There used to be a comment here:
4479 *
4480 * disallow recovery on read-only mounts. note -- mount
4481 * checks for ENOSPC and turns it into an intelligent
4482 * error message.
4483 * ...but this is no longer true. Now, unless you specify
4484 * NORECOVERY (in which case this function would never be
4485 * called), we just go ahead and recover. We do this all
4486 * under the vfs layer, so we can get away with it unless
4487 * the device itself is read-only, in which case we fail.
4488 */
4489 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
4490 return error;
4491 }
4492
4493 /*
4494 * Version 5 superblock log feature mask validation. We know the
4495 * log is dirty so check if there are any unknown log features
4496 * in what we need to recover. If there are unknown features
4497 * (e.g. unsupported transactions, then simply reject the
4498 * attempt at recovery before touching anything.
4499 */
4500 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
4501 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
4502 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
4503 xfs_warn(log->l_mp,
4504 "Superblock has unknown incompatible log features (0x%x) enabled.\n"
4505 "The log can not be fully and/or safely recovered by this kernel.\n"
4506 "Please recover the log on a kernel that supports the unknown features.",
4507 (log->l_mp->m_sb.sb_features_log_incompat &
4508 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
4509 return -EINVAL;
4510 }
4511
4512 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
4513 log->l_mp->m_logname ? log->l_mp->m_logname
4514 : "internal");
4515
4516 error = xlog_do_recover(log, head_blk, tail_blk);
4517 log->l_flags |= XLOG_RECOVERY_NEEDED;
4518 }
4519 return error;
4520 }
4521
4522 /*
4523 * In the first part of recovery we replay inodes and buffers and build
4524 * up the list of extent free items which need to be processed. Here
4525 * we process the extent free items and clean up the on disk unlinked
4526 * inode lists. This is separated from the first part of recovery so
4527 * that the root and real-time bitmap inodes can be read in from disk in
4528 * between the two stages. This is necessary so that we can free space
4529 * in the real-time portion of the file system.
4530 */
4531 int
4532 xlog_recover_finish(
4533 struct xlog *log)
4534 {
4535 /*
4536 * Now we're ready to do the transactions needed for the
4537 * rest of recovery. Start with completing all the extent
4538 * free intent records and then process the unlinked inode
4539 * lists. At this point, we essentially run in normal mode
4540 * except that we're still performing recovery actions
4541 * rather than accepting new requests.
4542 */
4543 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
4544 int error;
4545 error = xlog_recover_process_efis(log);
4546 if (error) {
4547 xfs_alert(log->l_mp, "Failed to recover EFIs");
4548 return error;
4549 }
4550 /*
4551 * Sync the log to get all the EFIs out of the AIL.
4552 * This isn't absolutely necessary, but it helps in
4553 * case the unlink transactions would have problems
4554 * pushing the EFIs out of the way.
4555 */
4556 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
4557
4558 xlog_recover_process_iunlinks(log);
4559
4560 xlog_recover_check_summary(log);
4561
4562 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
4563 log->l_mp->m_logname ? log->l_mp->m_logname
4564 : "internal");
4565 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
4566 } else {
4567 xfs_info(log->l_mp, "Ending clean mount");
4568 }
4569 return 0;
4570 }
4571
4572
4573 #if defined(DEBUG)
4574 /*
4575 * Read all of the agf and agi counters and check that they
4576 * are consistent with the superblock counters.
4577 */
4578 void
4579 xlog_recover_check_summary(
4580 struct xlog *log)
4581 {
4582 xfs_mount_t *mp;
4583 xfs_agf_t *agfp;
4584 xfs_buf_t *agfbp;
4585 xfs_buf_t *agibp;
4586 xfs_agnumber_t agno;
4587 __uint64_t freeblks;
4588 __uint64_t itotal;
4589 __uint64_t ifree;
4590 int error;
4591
4592 mp = log->l_mp;
4593
4594 freeblks = 0LL;
4595 itotal = 0LL;
4596 ifree = 0LL;
4597 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4598 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
4599 if (error) {
4600 xfs_alert(mp, "%s agf read failed agno %d error %d",
4601 __func__, agno, error);
4602 } else {
4603 agfp = XFS_BUF_TO_AGF(agfbp);
4604 freeblks += be32_to_cpu(agfp->agf_freeblks) +
4605 be32_to_cpu(agfp->agf_flcount);
4606 xfs_buf_relse(agfbp);
4607 }
4608
4609 error = xfs_read_agi(mp, NULL, agno, &agibp);
4610 if (error) {
4611 xfs_alert(mp, "%s agi read failed agno %d error %d",
4612 __func__, agno, error);
4613 } else {
4614 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
4615
4616 itotal += be32_to_cpu(agi->agi_count);
4617 ifree += be32_to_cpu(agi->agi_freecount);
4618 xfs_buf_relse(agibp);
4619 }
4620 }
4621 }
4622 #endif /* DEBUG */
This page took 0.149486 seconds and 5 git commands to generate.