xfs: add CRC checks for quota blocks
[deliverable/linux.git] / fs / xfs / xfs_log_recover.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_error.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_btree.h"
33 #include "xfs_dinode.h"
34 #include "xfs_inode.h"
35 #include "xfs_inode_item.h"
36 #include "xfs_alloc.h"
37 #include "xfs_ialloc.h"
38 #include "xfs_log_priv.h"
39 #include "xfs_buf_item.h"
40 #include "xfs_log_recover.h"
41 #include "xfs_extfree_item.h"
42 #include "xfs_trans_priv.h"
43 #include "xfs_quota.h"
44 #include "xfs_utils.h"
45 #include "xfs_cksum.h"
46 #include "xfs_trace.h"
47 #include "xfs_icache.h"
48
49 STATIC int
50 xlog_find_zeroed(
51 struct xlog *,
52 xfs_daddr_t *);
53 STATIC int
54 xlog_clear_stale_blocks(
55 struct xlog *,
56 xfs_lsn_t);
57 #if defined(DEBUG)
58 STATIC void
59 xlog_recover_check_summary(
60 struct xlog *);
61 #else
62 #define xlog_recover_check_summary(log)
63 #endif
64
65 /*
66 * This structure is used during recovery to record the buf log items which
67 * have been canceled and should not be replayed.
68 */
69 struct xfs_buf_cancel {
70 xfs_daddr_t bc_blkno;
71 uint bc_len;
72 int bc_refcount;
73 struct list_head bc_list;
74 };
75
76 /*
77 * Sector aligned buffer routines for buffer create/read/write/access
78 */
79
80 /*
81 * Verify the given count of basic blocks is valid number of blocks
82 * to specify for an operation involving the given XFS log buffer.
83 * Returns nonzero if the count is valid, 0 otherwise.
84 */
85
86 static inline int
87 xlog_buf_bbcount_valid(
88 struct xlog *log,
89 int bbcount)
90 {
91 return bbcount > 0 && bbcount <= log->l_logBBsize;
92 }
93
94 /*
95 * Allocate a buffer to hold log data. The buffer needs to be able
96 * to map to a range of nbblks basic blocks at any valid (basic
97 * block) offset within the log.
98 */
99 STATIC xfs_buf_t *
100 xlog_get_bp(
101 struct xlog *log,
102 int nbblks)
103 {
104 struct xfs_buf *bp;
105
106 if (!xlog_buf_bbcount_valid(log, nbblks)) {
107 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
108 nbblks);
109 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
110 return NULL;
111 }
112
113 /*
114 * We do log I/O in units of log sectors (a power-of-2
115 * multiple of the basic block size), so we round up the
116 * requested size to accommodate the basic blocks required
117 * for complete log sectors.
118 *
119 * In addition, the buffer may be used for a non-sector-
120 * aligned block offset, in which case an I/O of the
121 * requested size could extend beyond the end of the
122 * buffer. If the requested size is only 1 basic block it
123 * will never straddle a sector boundary, so this won't be
124 * an issue. Nor will this be a problem if the log I/O is
125 * done in basic blocks (sector size 1). But otherwise we
126 * extend the buffer by one extra log sector to ensure
127 * there's space to accommodate this possibility.
128 */
129 if (nbblks > 1 && log->l_sectBBsize > 1)
130 nbblks += log->l_sectBBsize;
131 nbblks = round_up(nbblks, log->l_sectBBsize);
132
133 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
134 if (bp)
135 xfs_buf_unlock(bp);
136 return bp;
137 }
138
139 STATIC void
140 xlog_put_bp(
141 xfs_buf_t *bp)
142 {
143 xfs_buf_free(bp);
144 }
145
146 /*
147 * Return the address of the start of the given block number's data
148 * in a log buffer. The buffer covers a log sector-aligned region.
149 */
150 STATIC xfs_caddr_t
151 xlog_align(
152 struct xlog *log,
153 xfs_daddr_t blk_no,
154 int nbblks,
155 struct xfs_buf *bp)
156 {
157 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
158
159 ASSERT(offset + nbblks <= bp->b_length);
160 return bp->b_addr + BBTOB(offset);
161 }
162
163
164 /*
165 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
166 */
167 STATIC int
168 xlog_bread_noalign(
169 struct xlog *log,
170 xfs_daddr_t blk_no,
171 int nbblks,
172 struct xfs_buf *bp)
173 {
174 int error;
175
176 if (!xlog_buf_bbcount_valid(log, nbblks)) {
177 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
178 nbblks);
179 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
180 return EFSCORRUPTED;
181 }
182
183 blk_no = round_down(blk_no, log->l_sectBBsize);
184 nbblks = round_up(nbblks, log->l_sectBBsize);
185
186 ASSERT(nbblks > 0);
187 ASSERT(nbblks <= bp->b_length);
188
189 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
190 XFS_BUF_READ(bp);
191 bp->b_io_length = nbblks;
192 bp->b_error = 0;
193
194 xfsbdstrat(log->l_mp, bp);
195 error = xfs_buf_iowait(bp);
196 if (error)
197 xfs_buf_ioerror_alert(bp, __func__);
198 return error;
199 }
200
201 STATIC int
202 xlog_bread(
203 struct xlog *log,
204 xfs_daddr_t blk_no,
205 int nbblks,
206 struct xfs_buf *bp,
207 xfs_caddr_t *offset)
208 {
209 int error;
210
211 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
212 if (error)
213 return error;
214
215 *offset = xlog_align(log, blk_no, nbblks, bp);
216 return 0;
217 }
218
219 /*
220 * Read at an offset into the buffer. Returns with the buffer in it's original
221 * state regardless of the result of the read.
222 */
223 STATIC int
224 xlog_bread_offset(
225 struct xlog *log,
226 xfs_daddr_t blk_no, /* block to read from */
227 int nbblks, /* blocks to read */
228 struct xfs_buf *bp,
229 xfs_caddr_t offset)
230 {
231 xfs_caddr_t orig_offset = bp->b_addr;
232 int orig_len = BBTOB(bp->b_length);
233 int error, error2;
234
235 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
236 if (error)
237 return error;
238
239 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
240
241 /* must reset buffer pointer even on error */
242 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
243 if (error)
244 return error;
245 return error2;
246 }
247
248 /*
249 * Write out the buffer at the given block for the given number of blocks.
250 * The buffer is kept locked across the write and is returned locked.
251 * This can only be used for synchronous log writes.
252 */
253 STATIC int
254 xlog_bwrite(
255 struct xlog *log,
256 xfs_daddr_t blk_no,
257 int nbblks,
258 struct xfs_buf *bp)
259 {
260 int error;
261
262 if (!xlog_buf_bbcount_valid(log, nbblks)) {
263 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
264 nbblks);
265 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
266 return EFSCORRUPTED;
267 }
268
269 blk_no = round_down(blk_no, log->l_sectBBsize);
270 nbblks = round_up(nbblks, log->l_sectBBsize);
271
272 ASSERT(nbblks > 0);
273 ASSERT(nbblks <= bp->b_length);
274
275 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
276 XFS_BUF_ZEROFLAGS(bp);
277 xfs_buf_hold(bp);
278 xfs_buf_lock(bp);
279 bp->b_io_length = nbblks;
280 bp->b_error = 0;
281
282 error = xfs_bwrite(bp);
283 if (error)
284 xfs_buf_ioerror_alert(bp, __func__);
285 xfs_buf_relse(bp);
286 return error;
287 }
288
289 #ifdef DEBUG
290 /*
291 * dump debug superblock and log record information
292 */
293 STATIC void
294 xlog_header_check_dump(
295 xfs_mount_t *mp,
296 xlog_rec_header_t *head)
297 {
298 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d\n",
299 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
300 xfs_debug(mp, " log : uuid = %pU, fmt = %d\n",
301 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
302 }
303 #else
304 #define xlog_header_check_dump(mp, head)
305 #endif
306
307 /*
308 * check log record header for recovery
309 */
310 STATIC int
311 xlog_header_check_recover(
312 xfs_mount_t *mp,
313 xlog_rec_header_t *head)
314 {
315 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
316
317 /*
318 * IRIX doesn't write the h_fmt field and leaves it zeroed
319 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
320 * a dirty log created in IRIX.
321 */
322 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
323 xfs_warn(mp,
324 "dirty log written in incompatible format - can't recover");
325 xlog_header_check_dump(mp, head);
326 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
327 XFS_ERRLEVEL_HIGH, mp);
328 return XFS_ERROR(EFSCORRUPTED);
329 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
330 xfs_warn(mp,
331 "dirty log entry has mismatched uuid - can't recover");
332 xlog_header_check_dump(mp, head);
333 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
334 XFS_ERRLEVEL_HIGH, mp);
335 return XFS_ERROR(EFSCORRUPTED);
336 }
337 return 0;
338 }
339
340 /*
341 * read the head block of the log and check the header
342 */
343 STATIC int
344 xlog_header_check_mount(
345 xfs_mount_t *mp,
346 xlog_rec_header_t *head)
347 {
348 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
349
350 if (uuid_is_nil(&head->h_fs_uuid)) {
351 /*
352 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
353 * h_fs_uuid is nil, we assume this log was last mounted
354 * by IRIX and continue.
355 */
356 xfs_warn(mp, "nil uuid in log - IRIX style log");
357 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
358 xfs_warn(mp, "log has mismatched uuid - can't recover");
359 xlog_header_check_dump(mp, head);
360 XFS_ERROR_REPORT("xlog_header_check_mount",
361 XFS_ERRLEVEL_HIGH, mp);
362 return XFS_ERROR(EFSCORRUPTED);
363 }
364 return 0;
365 }
366
367 STATIC void
368 xlog_recover_iodone(
369 struct xfs_buf *bp)
370 {
371 if (bp->b_error) {
372 /*
373 * We're not going to bother about retrying
374 * this during recovery. One strike!
375 */
376 xfs_buf_ioerror_alert(bp, __func__);
377 xfs_force_shutdown(bp->b_target->bt_mount,
378 SHUTDOWN_META_IO_ERROR);
379 }
380 bp->b_iodone = NULL;
381 xfs_buf_ioend(bp, 0);
382 }
383
384 /*
385 * This routine finds (to an approximation) the first block in the physical
386 * log which contains the given cycle. It uses a binary search algorithm.
387 * Note that the algorithm can not be perfect because the disk will not
388 * necessarily be perfect.
389 */
390 STATIC int
391 xlog_find_cycle_start(
392 struct xlog *log,
393 struct xfs_buf *bp,
394 xfs_daddr_t first_blk,
395 xfs_daddr_t *last_blk,
396 uint cycle)
397 {
398 xfs_caddr_t offset;
399 xfs_daddr_t mid_blk;
400 xfs_daddr_t end_blk;
401 uint mid_cycle;
402 int error;
403
404 end_blk = *last_blk;
405 mid_blk = BLK_AVG(first_blk, end_blk);
406 while (mid_blk != first_blk && mid_blk != end_blk) {
407 error = xlog_bread(log, mid_blk, 1, bp, &offset);
408 if (error)
409 return error;
410 mid_cycle = xlog_get_cycle(offset);
411 if (mid_cycle == cycle)
412 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
413 else
414 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
415 mid_blk = BLK_AVG(first_blk, end_blk);
416 }
417 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
418 (mid_blk == end_blk && mid_blk-1 == first_blk));
419
420 *last_blk = end_blk;
421
422 return 0;
423 }
424
425 /*
426 * Check that a range of blocks does not contain stop_on_cycle_no.
427 * Fill in *new_blk with the block offset where such a block is
428 * found, or with -1 (an invalid block number) if there is no such
429 * block in the range. The scan needs to occur from front to back
430 * and the pointer into the region must be updated since a later
431 * routine will need to perform another test.
432 */
433 STATIC int
434 xlog_find_verify_cycle(
435 struct xlog *log,
436 xfs_daddr_t start_blk,
437 int nbblks,
438 uint stop_on_cycle_no,
439 xfs_daddr_t *new_blk)
440 {
441 xfs_daddr_t i, j;
442 uint cycle;
443 xfs_buf_t *bp;
444 xfs_daddr_t bufblks;
445 xfs_caddr_t buf = NULL;
446 int error = 0;
447
448 /*
449 * Greedily allocate a buffer big enough to handle the full
450 * range of basic blocks we'll be examining. If that fails,
451 * try a smaller size. We need to be able to read at least
452 * a log sector, or we're out of luck.
453 */
454 bufblks = 1 << ffs(nbblks);
455 while (bufblks > log->l_logBBsize)
456 bufblks >>= 1;
457 while (!(bp = xlog_get_bp(log, bufblks))) {
458 bufblks >>= 1;
459 if (bufblks < log->l_sectBBsize)
460 return ENOMEM;
461 }
462
463 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
464 int bcount;
465
466 bcount = min(bufblks, (start_blk + nbblks - i));
467
468 error = xlog_bread(log, i, bcount, bp, &buf);
469 if (error)
470 goto out;
471
472 for (j = 0; j < bcount; j++) {
473 cycle = xlog_get_cycle(buf);
474 if (cycle == stop_on_cycle_no) {
475 *new_blk = i+j;
476 goto out;
477 }
478
479 buf += BBSIZE;
480 }
481 }
482
483 *new_blk = -1;
484
485 out:
486 xlog_put_bp(bp);
487 return error;
488 }
489
490 /*
491 * Potentially backup over partial log record write.
492 *
493 * In the typical case, last_blk is the number of the block directly after
494 * a good log record. Therefore, we subtract one to get the block number
495 * of the last block in the given buffer. extra_bblks contains the number
496 * of blocks we would have read on a previous read. This happens when the
497 * last log record is split over the end of the physical log.
498 *
499 * extra_bblks is the number of blocks potentially verified on a previous
500 * call to this routine.
501 */
502 STATIC int
503 xlog_find_verify_log_record(
504 struct xlog *log,
505 xfs_daddr_t start_blk,
506 xfs_daddr_t *last_blk,
507 int extra_bblks)
508 {
509 xfs_daddr_t i;
510 xfs_buf_t *bp;
511 xfs_caddr_t offset = NULL;
512 xlog_rec_header_t *head = NULL;
513 int error = 0;
514 int smallmem = 0;
515 int num_blks = *last_blk - start_blk;
516 int xhdrs;
517
518 ASSERT(start_blk != 0 || *last_blk != start_blk);
519
520 if (!(bp = xlog_get_bp(log, num_blks))) {
521 if (!(bp = xlog_get_bp(log, 1)))
522 return ENOMEM;
523 smallmem = 1;
524 } else {
525 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
526 if (error)
527 goto out;
528 offset += ((num_blks - 1) << BBSHIFT);
529 }
530
531 for (i = (*last_blk) - 1; i >= 0; i--) {
532 if (i < start_blk) {
533 /* valid log record not found */
534 xfs_warn(log->l_mp,
535 "Log inconsistent (didn't find previous header)");
536 ASSERT(0);
537 error = XFS_ERROR(EIO);
538 goto out;
539 }
540
541 if (smallmem) {
542 error = xlog_bread(log, i, 1, bp, &offset);
543 if (error)
544 goto out;
545 }
546
547 head = (xlog_rec_header_t *)offset;
548
549 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
550 break;
551
552 if (!smallmem)
553 offset -= BBSIZE;
554 }
555
556 /*
557 * We hit the beginning of the physical log & still no header. Return
558 * to caller. If caller can handle a return of -1, then this routine
559 * will be called again for the end of the physical log.
560 */
561 if (i == -1) {
562 error = -1;
563 goto out;
564 }
565
566 /*
567 * We have the final block of the good log (the first block
568 * of the log record _before_ the head. So we check the uuid.
569 */
570 if ((error = xlog_header_check_mount(log->l_mp, head)))
571 goto out;
572
573 /*
574 * We may have found a log record header before we expected one.
575 * last_blk will be the 1st block # with a given cycle #. We may end
576 * up reading an entire log record. In this case, we don't want to
577 * reset last_blk. Only when last_blk points in the middle of a log
578 * record do we update last_blk.
579 */
580 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
581 uint h_size = be32_to_cpu(head->h_size);
582
583 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
584 if (h_size % XLOG_HEADER_CYCLE_SIZE)
585 xhdrs++;
586 } else {
587 xhdrs = 1;
588 }
589
590 if (*last_blk - i + extra_bblks !=
591 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
592 *last_blk = i;
593
594 out:
595 xlog_put_bp(bp);
596 return error;
597 }
598
599 /*
600 * Head is defined to be the point of the log where the next log write
601 * write could go. This means that incomplete LR writes at the end are
602 * eliminated when calculating the head. We aren't guaranteed that previous
603 * LR have complete transactions. We only know that a cycle number of
604 * current cycle number -1 won't be present in the log if we start writing
605 * from our current block number.
606 *
607 * last_blk contains the block number of the first block with a given
608 * cycle number.
609 *
610 * Return: zero if normal, non-zero if error.
611 */
612 STATIC int
613 xlog_find_head(
614 struct xlog *log,
615 xfs_daddr_t *return_head_blk)
616 {
617 xfs_buf_t *bp;
618 xfs_caddr_t offset;
619 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
620 int num_scan_bblks;
621 uint first_half_cycle, last_half_cycle;
622 uint stop_on_cycle;
623 int error, log_bbnum = log->l_logBBsize;
624
625 /* Is the end of the log device zeroed? */
626 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
627 *return_head_blk = first_blk;
628
629 /* Is the whole lot zeroed? */
630 if (!first_blk) {
631 /* Linux XFS shouldn't generate totally zeroed logs -
632 * mkfs etc write a dummy unmount record to a fresh
633 * log so we can store the uuid in there
634 */
635 xfs_warn(log->l_mp, "totally zeroed log");
636 }
637
638 return 0;
639 } else if (error) {
640 xfs_warn(log->l_mp, "empty log check failed");
641 return error;
642 }
643
644 first_blk = 0; /* get cycle # of 1st block */
645 bp = xlog_get_bp(log, 1);
646 if (!bp)
647 return ENOMEM;
648
649 error = xlog_bread(log, 0, 1, bp, &offset);
650 if (error)
651 goto bp_err;
652
653 first_half_cycle = xlog_get_cycle(offset);
654
655 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
656 error = xlog_bread(log, last_blk, 1, bp, &offset);
657 if (error)
658 goto bp_err;
659
660 last_half_cycle = xlog_get_cycle(offset);
661 ASSERT(last_half_cycle != 0);
662
663 /*
664 * If the 1st half cycle number is equal to the last half cycle number,
665 * then the entire log is stamped with the same cycle number. In this
666 * case, head_blk can't be set to zero (which makes sense). The below
667 * math doesn't work out properly with head_blk equal to zero. Instead,
668 * we set it to log_bbnum which is an invalid block number, but this
669 * value makes the math correct. If head_blk doesn't changed through
670 * all the tests below, *head_blk is set to zero at the very end rather
671 * than log_bbnum. In a sense, log_bbnum and zero are the same block
672 * in a circular file.
673 */
674 if (first_half_cycle == last_half_cycle) {
675 /*
676 * In this case we believe that the entire log should have
677 * cycle number last_half_cycle. We need to scan backwards
678 * from the end verifying that there are no holes still
679 * containing last_half_cycle - 1. If we find such a hole,
680 * then the start of that hole will be the new head. The
681 * simple case looks like
682 * x | x ... | x - 1 | x
683 * Another case that fits this picture would be
684 * x | x + 1 | x ... | x
685 * In this case the head really is somewhere at the end of the
686 * log, as one of the latest writes at the beginning was
687 * incomplete.
688 * One more case is
689 * x | x + 1 | x ... | x - 1 | x
690 * This is really the combination of the above two cases, and
691 * the head has to end up at the start of the x-1 hole at the
692 * end of the log.
693 *
694 * In the 256k log case, we will read from the beginning to the
695 * end of the log and search for cycle numbers equal to x-1.
696 * We don't worry about the x+1 blocks that we encounter,
697 * because we know that they cannot be the head since the log
698 * started with x.
699 */
700 head_blk = log_bbnum;
701 stop_on_cycle = last_half_cycle - 1;
702 } else {
703 /*
704 * In this case we want to find the first block with cycle
705 * number matching last_half_cycle. We expect the log to be
706 * some variation on
707 * x + 1 ... | x ... | x
708 * The first block with cycle number x (last_half_cycle) will
709 * be where the new head belongs. First we do a binary search
710 * for the first occurrence of last_half_cycle. The binary
711 * search may not be totally accurate, so then we scan back
712 * from there looking for occurrences of last_half_cycle before
713 * us. If that backwards scan wraps around the beginning of
714 * the log, then we look for occurrences of last_half_cycle - 1
715 * at the end of the log. The cases we're looking for look
716 * like
717 * v binary search stopped here
718 * x + 1 ... | x | x + 1 | x ... | x
719 * ^ but we want to locate this spot
720 * or
721 * <---------> less than scan distance
722 * x + 1 ... | x ... | x - 1 | x
723 * ^ we want to locate this spot
724 */
725 stop_on_cycle = last_half_cycle;
726 if ((error = xlog_find_cycle_start(log, bp, first_blk,
727 &head_blk, last_half_cycle)))
728 goto bp_err;
729 }
730
731 /*
732 * Now validate the answer. Scan back some number of maximum possible
733 * blocks and make sure each one has the expected cycle number. The
734 * maximum is determined by the total possible amount of buffering
735 * in the in-core log. The following number can be made tighter if
736 * we actually look at the block size of the filesystem.
737 */
738 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
739 if (head_blk >= num_scan_bblks) {
740 /*
741 * We are guaranteed that the entire check can be performed
742 * in one buffer.
743 */
744 start_blk = head_blk - num_scan_bblks;
745 if ((error = xlog_find_verify_cycle(log,
746 start_blk, num_scan_bblks,
747 stop_on_cycle, &new_blk)))
748 goto bp_err;
749 if (new_blk != -1)
750 head_blk = new_blk;
751 } else { /* need to read 2 parts of log */
752 /*
753 * We are going to scan backwards in the log in two parts.
754 * First we scan the physical end of the log. In this part
755 * of the log, we are looking for blocks with cycle number
756 * last_half_cycle - 1.
757 * If we find one, then we know that the log starts there, as
758 * we've found a hole that didn't get written in going around
759 * the end of the physical log. The simple case for this is
760 * x + 1 ... | x ... | x - 1 | x
761 * <---------> less than scan distance
762 * If all of the blocks at the end of the log have cycle number
763 * last_half_cycle, then we check the blocks at the start of
764 * the log looking for occurrences of last_half_cycle. If we
765 * find one, then our current estimate for the location of the
766 * first occurrence of last_half_cycle is wrong and we move
767 * back to the hole we've found. This case looks like
768 * x + 1 ... | x | x + 1 | x ...
769 * ^ binary search stopped here
770 * Another case we need to handle that only occurs in 256k
771 * logs is
772 * x + 1 ... | x ... | x+1 | x ...
773 * ^ binary search stops here
774 * In a 256k log, the scan at the end of the log will see the
775 * x + 1 blocks. We need to skip past those since that is
776 * certainly not the head of the log. By searching for
777 * last_half_cycle-1 we accomplish that.
778 */
779 ASSERT(head_blk <= INT_MAX &&
780 (xfs_daddr_t) num_scan_bblks >= head_blk);
781 start_blk = log_bbnum - (num_scan_bblks - head_blk);
782 if ((error = xlog_find_verify_cycle(log, start_blk,
783 num_scan_bblks - (int)head_blk,
784 (stop_on_cycle - 1), &new_blk)))
785 goto bp_err;
786 if (new_blk != -1) {
787 head_blk = new_blk;
788 goto validate_head;
789 }
790
791 /*
792 * Scan beginning of log now. The last part of the physical
793 * log is good. This scan needs to verify that it doesn't find
794 * the last_half_cycle.
795 */
796 start_blk = 0;
797 ASSERT(head_blk <= INT_MAX);
798 if ((error = xlog_find_verify_cycle(log,
799 start_blk, (int)head_blk,
800 stop_on_cycle, &new_blk)))
801 goto bp_err;
802 if (new_blk != -1)
803 head_blk = new_blk;
804 }
805
806 validate_head:
807 /*
808 * Now we need to make sure head_blk is not pointing to a block in
809 * the middle of a log record.
810 */
811 num_scan_bblks = XLOG_REC_SHIFT(log);
812 if (head_blk >= num_scan_bblks) {
813 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
814
815 /* start ptr at last block ptr before head_blk */
816 if ((error = xlog_find_verify_log_record(log, start_blk,
817 &head_blk, 0)) == -1) {
818 error = XFS_ERROR(EIO);
819 goto bp_err;
820 } else if (error)
821 goto bp_err;
822 } else {
823 start_blk = 0;
824 ASSERT(head_blk <= INT_MAX);
825 if ((error = xlog_find_verify_log_record(log, start_blk,
826 &head_blk, 0)) == -1) {
827 /* We hit the beginning of the log during our search */
828 start_blk = log_bbnum - (num_scan_bblks - head_blk);
829 new_blk = log_bbnum;
830 ASSERT(start_blk <= INT_MAX &&
831 (xfs_daddr_t) log_bbnum-start_blk >= 0);
832 ASSERT(head_blk <= INT_MAX);
833 if ((error = xlog_find_verify_log_record(log,
834 start_blk, &new_blk,
835 (int)head_blk)) == -1) {
836 error = XFS_ERROR(EIO);
837 goto bp_err;
838 } else if (error)
839 goto bp_err;
840 if (new_blk != log_bbnum)
841 head_blk = new_blk;
842 } else if (error)
843 goto bp_err;
844 }
845
846 xlog_put_bp(bp);
847 if (head_blk == log_bbnum)
848 *return_head_blk = 0;
849 else
850 *return_head_blk = head_blk;
851 /*
852 * When returning here, we have a good block number. Bad block
853 * means that during a previous crash, we didn't have a clean break
854 * from cycle number N to cycle number N-1. In this case, we need
855 * to find the first block with cycle number N-1.
856 */
857 return 0;
858
859 bp_err:
860 xlog_put_bp(bp);
861
862 if (error)
863 xfs_warn(log->l_mp, "failed to find log head");
864 return error;
865 }
866
867 /*
868 * Find the sync block number or the tail of the log.
869 *
870 * This will be the block number of the last record to have its
871 * associated buffers synced to disk. Every log record header has
872 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
873 * to get a sync block number. The only concern is to figure out which
874 * log record header to believe.
875 *
876 * The following algorithm uses the log record header with the largest
877 * lsn. The entire log record does not need to be valid. We only care
878 * that the header is valid.
879 *
880 * We could speed up search by using current head_blk buffer, but it is not
881 * available.
882 */
883 STATIC int
884 xlog_find_tail(
885 struct xlog *log,
886 xfs_daddr_t *head_blk,
887 xfs_daddr_t *tail_blk)
888 {
889 xlog_rec_header_t *rhead;
890 xlog_op_header_t *op_head;
891 xfs_caddr_t offset = NULL;
892 xfs_buf_t *bp;
893 int error, i, found;
894 xfs_daddr_t umount_data_blk;
895 xfs_daddr_t after_umount_blk;
896 xfs_lsn_t tail_lsn;
897 int hblks;
898
899 found = 0;
900
901 /*
902 * Find previous log record
903 */
904 if ((error = xlog_find_head(log, head_blk)))
905 return error;
906
907 bp = xlog_get_bp(log, 1);
908 if (!bp)
909 return ENOMEM;
910 if (*head_blk == 0) { /* special case */
911 error = xlog_bread(log, 0, 1, bp, &offset);
912 if (error)
913 goto done;
914
915 if (xlog_get_cycle(offset) == 0) {
916 *tail_blk = 0;
917 /* leave all other log inited values alone */
918 goto done;
919 }
920 }
921
922 /*
923 * Search backwards looking for log record header block
924 */
925 ASSERT(*head_blk < INT_MAX);
926 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
927 error = xlog_bread(log, i, 1, bp, &offset);
928 if (error)
929 goto done;
930
931 if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
932 found = 1;
933 break;
934 }
935 }
936 /*
937 * If we haven't found the log record header block, start looking
938 * again from the end of the physical log. XXXmiken: There should be
939 * a check here to make sure we didn't search more than N blocks in
940 * the previous code.
941 */
942 if (!found) {
943 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
944 error = xlog_bread(log, i, 1, bp, &offset);
945 if (error)
946 goto done;
947
948 if (*(__be32 *)offset ==
949 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
950 found = 2;
951 break;
952 }
953 }
954 }
955 if (!found) {
956 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
957 ASSERT(0);
958 return XFS_ERROR(EIO);
959 }
960
961 /* find blk_no of tail of log */
962 rhead = (xlog_rec_header_t *)offset;
963 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
964
965 /*
966 * Reset log values according to the state of the log when we
967 * crashed. In the case where head_blk == 0, we bump curr_cycle
968 * one because the next write starts a new cycle rather than
969 * continuing the cycle of the last good log record. At this
970 * point we have guaranteed that all partial log records have been
971 * accounted for. Therefore, we know that the last good log record
972 * written was complete and ended exactly on the end boundary
973 * of the physical log.
974 */
975 log->l_prev_block = i;
976 log->l_curr_block = (int)*head_blk;
977 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
978 if (found == 2)
979 log->l_curr_cycle++;
980 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
981 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
982 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
983 BBTOB(log->l_curr_block));
984 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
985 BBTOB(log->l_curr_block));
986
987 /*
988 * Look for unmount record. If we find it, then we know there
989 * was a clean unmount. Since 'i' could be the last block in
990 * the physical log, we convert to a log block before comparing
991 * to the head_blk.
992 *
993 * Save the current tail lsn to use to pass to
994 * xlog_clear_stale_blocks() below. We won't want to clear the
995 * unmount record if there is one, so we pass the lsn of the
996 * unmount record rather than the block after it.
997 */
998 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
999 int h_size = be32_to_cpu(rhead->h_size);
1000 int h_version = be32_to_cpu(rhead->h_version);
1001
1002 if ((h_version & XLOG_VERSION_2) &&
1003 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1004 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1005 if (h_size % XLOG_HEADER_CYCLE_SIZE)
1006 hblks++;
1007 } else {
1008 hblks = 1;
1009 }
1010 } else {
1011 hblks = 1;
1012 }
1013 after_umount_blk = (i + hblks + (int)
1014 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1015 tail_lsn = atomic64_read(&log->l_tail_lsn);
1016 if (*head_blk == after_umount_blk &&
1017 be32_to_cpu(rhead->h_num_logops) == 1) {
1018 umount_data_blk = (i + hblks) % log->l_logBBsize;
1019 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1020 if (error)
1021 goto done;
1022
1023 op_head = (xlog_op_header_t *)offset;
1024 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1025 /*
1026 * Set tail and last sync so that newly written
1027 * log records will point recovery to after the
1028 * current unmount record.
1029 */
1030 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1031 log->l_curr_cycle, after_umount_blk);
1032 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1033 log->l_curr_cycle, after_umount_blk);
1034 *tail_blk = after_umount_blk;
1035
1036 /*
1037 * Note that the unmount was clean. If the unmount
1038 * was not clean, we need to know this to rebuild the
1039 * superblock counters from the perag headers if we
1040 * have a filesystem using non-persistent counters.
1041 */
1042 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1043 }
1044 }
1045
1046 /*
1047 * Make sure that there are no blocks in front of the head
1048 * with the same cycle number as the head. This can happen
1049 * because we allow multiple outstanding log writes concurrently,
1050 * and the later writes might make it out before earlier ones.
1051 *
1052 * We use the lsn from before modifying it so that we'll never
1053 * overwrite the unmount record after a clean unmount.
1054 *
1055 * Do this only if we are going to recover the filesystem
1056 *
1057 * NOTE: This used to say "if (!readonly)"
1058 * However on Linux, we can & do recover a read-only filesystem.
1059 * We only skip recovery if NORECOVERY is specified on mount,
1060 * in which case we would not be here.
1061 *
1062 * But... if the -device- itself is readonly, just skip this.
1063 * We can't recover this device anyway, so it won't matter.
1064 */
1065 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1066 error = xlog_clear_stale_blocks(log, tail_lsn);
1067
1068 done:
1069 xlog_put_bp(bp);
1070
1071 if (error)
1072 xfs_warn(log->l_mp, "failed to locate log tail");
1073 return error;
1074 }
1075
1076 /*
1077 * Is the log zeroed at all?
1078 *
1079 * The last binary search should be changed to perform an X block read
1080 * once X becomes small enough. You can then search linearly through
1081 * the X blocks. This will cut down on the number of reads we need to do.
1082 *
1083 * If the log is partially zeroed, this routine will pass back the blkno
1084 * of the first block with cycle number 0. It won't have a complete LR
1085 * preceding it.
1086 *
1087 * Return:
1088 * 0 => the log is completely written to
1089 * -1 => use *blk_no as the first block of the log
1090 * >0 => error has occurred
1091 */
1092 STATIC int
1093 xlog_find_zeroed(
1094 struct xlog *log,
1095 xfs_daddr_t *blk_no)
1096 {
1097 xfs_buf_t *bp;
1098 xfs_caddr_t offset;
1099 uint first_cycle, last_cycle;
1100 xfs_daddr_t new_blk, last_blk, start_blk;
1101 xfs_daddr_t num_scan_bblks;
1102 int error, log_bbnum = log->l_logBBsize;
1103
1104 *blk_no = 0;
1105
1106 /* check totally zeroed log */
1107 bp = xlog_get_bp(log, 1);
1108 if (!bp)
1109 return ENOMEM;
1110 error = xlog_bread(log, 0, 1, bp, &offset);
1111 if (error)
1112 goto bp_err;
1113
1114 first_cycle = xlog_get_cycle(offset);
1115 if (first_cycle == 0) { /* completely zeroed log */
1116 *blk_no = 0;
1117 xlog_put_bp(bp);
1118 return -1;
1119 }
1120
1121 /* check partially zeroed log */
1122 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1123 if (error)
1124 goto bp_err;
1125
1126 last_cycle = xlog_get_cycle(offset);
1127 if (last_cycle != 0) { /* log completely written to */
1128 xlog_put_bp(bp);
1129 return 0;
1130 } else if (first_cycle != 1) {
1131 /*
1132 * If the cycle of the last block is zero, the cycle of
1133 * the first block must be 1. If it's not, maybe we're
1134 * not looking at a log... Bail out.
1135 */
1136 xfs_warn(log->l_mp,
1137 "Log inconsistent or not a log (last==0, first!=1)");
1138 return XFS_ERROR(EINVAL);
1139 }
1140
1141 /* we have a partially zeroed log */
1142 last_blk = log_bbnum-1;
1143 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1144 goto bp_err;
1145
1146 /*
1147 * Validate the answer. Because there is no way to guarantee that
1148 * the entire log is made up of log records which are the same size,
1149 * we scan over the defined maximum blocks. At this point, the maximum
1150 * is not chosen to mean anything special. XXXmiken
1151 */
1152 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1153 ASSERT(num_scan_bblks <= INT_MAX);
1154
1155 if (last_blk < num_scan_bblks)
1156 num_scan_bblks = last_blk;
1157 start_blk = last_blk - num_scan_bblks;
1158
1159 /*
1160 * We search for any instances of cycle number 0 that occur before
1161 * our current estimate of the head. What we're trying to detect is
1162 * 1 ... | 0 | 1 | 0...
1163 * ^ binary search ends here
1164 */
1165 if ((error = xlog_find_verify_cycle(log, start_blk,
1166 (int)num_scan_bblks, 0, &new_blk)))
1167 goto bp_err;
1168 if (new_blk != -1)
1169 last_blk = new_blk;
1170
1171 /*
1172 * Potentially backup over partial log record write. We don't need
1173 * to search the end of the log because we know it is zero.
1174 */
1175 if ((error = xlog_find_verify_log_record(log, start_blk,
1176 &last_blk, 0)) == -1) {
1177 error = XFS_ERROR(EIO);
1178 goto bp_err;
1179 } else if (error)
1180 goto bp_err;
1181
1182 *blk_no = last_blk;
1183 bp_err:
1184 xlog_put_bp(bp);
1185 if (error)
1186 return error;
1187 return -1;
1188 }
1189
1190 /*
1191 * These are simple subroutines used by xlog_clear_stale_blocks() below
1192 * to initialize a buffer full of empty log record headers and write
1193 * them into the log.
1194 */
1195 STATIC void
1196 xlog_add_record(
1197 struct xlog *log,
1198 xfs_caddr_t buf,
1199 int cycle,
1200 int block,
1201 int tail_cycle,
1202 int tail_block)
1203 {
1204 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1205
1206 memset(buf, 0, BBSIZE);
1207 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1208 recp->h_cycle = cpu_to_be32(cycle);
1209 recp->h_version = cpu_to_be32(
1210 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1211 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1212 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1213 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1214 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1215 }
1216
1217 STATIC int
1218 xlog_write_log_records(
1219 struct xlog *log,
1220 int cycle,
1221 int start_block,
1222 int blocks,
1223 int tail_cycle,
1224 int tail_block)
1225 {
1226 xfs_caddr_t offset;
1227 xfs_buf_t *bp;
1228 int balign, ealign;
1229 int sectbb = log->l_sectBBsize;
1230 int end_block = start_block + blocks;
1231 int bufblks;
1232 int error = 0;
1233 int i, j = 0;
1234
1235 /*
1236 * Greedily allocate a buffer big enough to handle the full
1237 * range of basic blocks to be written. If that fails, try
1238 * a smaller size. We need to be able to write at least a
1239 * log sector, or we're out of luck.
1240 */
1241 bufblks = 1 << ffs(blocks);
1242 while (bufblks > log->l_logBBsize)
1243 bufblks >>= 1;
1244 while (!(bp = xlog_get_bp(log, bufblks))) {
1245 bufblks >>= 1;
1246 if (bufblks < sectbb)
1247 return ENOMEM;
1248 }
1249
1250 /* We may need to do a read at the start to fill in part of
1251 * the buffer in the starting sector not covered by the first
1252 * write below.
1253 */
1254 balign = round_down(start_block, sectbb);
1255 if (balign != start_block) {
1256 error = xlog_bread_noalign(log, start_block, 1, bp);
1257 if (error)
1258 goto out_put_bp;
1259
1260 j = start_block - balign;
1261 }
1262
1263 for (i = start_block; i < end_block; i += bufblks) {
1264 int bcount, endcount;
1265
1266 bcount = min(bufblks, end_block - start_block);
1267 endcount = bcount - j;
1268
1269 /* We may need to do a read at the end to fill in part of
1270 * the buffer in the final sector not covered by the write.
1271 * If this is the same sector as the above read, skip it.
1272 */
1273 ealign = round_down(end_block, sectbb);
1274 if (j == 0 && (start_block + endcount > ealign)) {
1275 offset = bp->b_addr + BBTOB(ealign - start_block);
1276 error = xlog_bread_offset(log, ealign, sectbb,
1277 bp, offset);
1278 if (error)
1279 break;
1280
1281 }
1282
1283 offset = xlog_align(log, start_block, endcount, bp);
1284 for (; j < endcount; j++) {
1285 xlog_add_record(log, offset, cycle, i+j,
1286 tail_cycle, tail_block);
1287 offset += BBSIZE;
1288 }
1289 error = xlog_bwrite(log, start_block, endcount, bp);
1290 if (error)
1291 break;
1292 start_block += endcount;
1293 j = 0;
1294 }
1295
1296 out_put_bp:
1297 xlog_put_bp(bp);
1298 return error;
1299 }
1300
1301 /*
1302 * This routine is called to blow away any incomplete log writes out
1303 * in front of the log head. We do this so that we won't become confused
1304 * if we come up, write only a little bit more, and then crash again.
1305 * If we leave the partial log records out there, this situation could
1306 * cause us to think those partial writes are valid blocks since they
1307 * have the current cycle number. We get rid of them by overwriting them
1308 * with empty log records with the old cycle number rather than the
1309 * current one.
1310 *
1311 * The tail lsn is passed in rather than taken from
1312 * the log so that we will not write over the unmount record after a
1313 * clean unmount in a 512 block log. Doing so would leave the log without
1314 * any valid log records in it until a new one was written. If we crashed
1315 * during that time we would not be able to recover.
1316 */
1317 STATIC int
1318 xlog_clear_stale_blocks(
1319 struct xlog *log,
1320 xfs_lsn_t tail_lsn)
1321 {
1322 int tail_cycle, head_cycle;
1323 int tail_block, head_block;
1324 int tail_distance, max_distance;
1325 int distance;
1326 int error;
1327
1328 tail_cycle = CYCLE_LSN(tail_lsn);
1329 tail_block = BLOCK_LSN(tail_lsn);
1330 head_cycle = log->l_curr_cycle;
1331 head_block = log->l_curr_block;
1332
1333 /*
1334 * Figure out the distance between the new head of the log
1335 * and the tail. We want to write over any blocks beyond the
1336 * head that we may have written just before the crash, but
1337 * we don't want to overwrite the tail of the log.
1338 */
1339 if (head_cycle == tail_cycle) {
1340 /*
1341 * The tail is behind the head in the physical log,
1342 * so the distance from the head to the tail is the
1343 * distance from the head to the end of the log plus
1344 * the distance from the beginning of the log to the
1345 * tail.
1346 */
1347 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1348 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1349 XFS_ERRLEVEL_LOW, log->l_mp);
1350 return XFS_ERROR(EFSCORRUPTED);
1351 }
1352 tail_distance = tail_block + (log->l_logBBsize - head_block);
1353 } else {
1354 /*
1355 * The head is behind the tail in the physical log,
1356 * so the distance from the head to the tail is just
1357 * the tail block minus the head block.
1358 */
1359 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1360 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1361 XFS_ERRLEVEL_LOW, log->l_mp);
1362 return XFS_ERROR(EFSCORRUPTED);
1363 }
1364 tail_distance = tail_block - head_block;
1365 }
1366
1367 /*
1368 * If the head is right up against the tail, we can't clear
1369 * anything.
1370 */
1371 if (tail_distance <= 0) {
1372 ASSERT(tail_distance == 0);
1373 return 0;
1374 }
1375
1376 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1377 /*
1378 * Take the smaller of the maximum amount of outstanding I/O
1379 * we could have and the distance to the tail to clear out.
1380 * We take the smaller so that we don't overwrite the tail and
1381 * we don't waste all day writing from the head to the tail
1382 * for no reason.
1383 */
1384 max_distance = MIN(max_distance, tail_distance);
1385
1386 if ((head_block + max_distance) <= log->l_logBBsize) {
1387 /*
1388 * We can stomp all the blocks we need to without
1389 * wrapping around the end of the log. Just do it
1390 * in a single write. Use the cycle number of the
1391 * current cycle minus one so that the log will look like:
1392 * n ... | n - 1 ...
1393 */
1394 error = xlog_write_log_records(log, (head_cycle - 1),
1395 head_block, max_distance, tail_cycle,
1396 tail_block);
1397 if (error)
1398 return error;
1399 } else {
1400 /*
1401 * We need to wrap around the end of the physical log in
1402 * order to clear all the blocks. Do it in two separate
1403 * I/Os. The first write should be from the head to the
1404 * end of the physical log, and it should use the current
1405 * cycle number minus one just like above.
1406 */
1407 distance = log->l_logBBsize - head_block;
1408 error = xlog_write_log_records(log, (head_cycle - 1),
1409 head_block, distance, tail_cycle,
1410 tail_block);
1411
1412 if (error)
1413 return error;
1414
1415 /*
1416 * Now write the blocks at the start of the physical log.
1417 * This writes the remainder of the blocks we want to clear.
1418 * It uses the current cycle number since we're now on the
1419 * same cycle as the head so that we get:
1420 * n ... n ... | n - 1 ...
1421 * ^^^^^ blocks we're writing
1422 */
1423 distance = max_distance - (log->l_logBBsize - head_block);
1424 error = xlog_write_log_records(log, head_cycle, 0, distance,
1425 tail_cycle, tail_block);
1426 if (error)
1427 return error;
1428 }
1429
1430 return 0;
1431 }
1432
1433 /******************************************************************************
1434 *
1435 * Log recover routines
1436 *
1437 ******************************************************************************
1438 */
1439
1440 STATIC xlog_recover_t *
1441 xlog_recover_find_tid(
1442 struct hlist_head *head,
1443 xlog_tid_t tid)
1444 {
1445 xlog_recover_t *trans;
1446
1447 hlist_for_each_entry(trans, head, r_list) {
1448 if (trans->r_log_tid == tid)
1449 return trans;
1450 }
1451 return NULL;
1452 }
1453
1454 STATIC void
1455 xlog_recover_new_tid(
1456 struct hlist_head *head,
1457 xlog_tid_t tid,
1458 xfs_lsn_t lsn)
1459 {
1460 xlog_recover_t *trans;
1461
1462 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1463 trans->r_log_tid = tid;
1464 trans->r_lsn = lsn;
1465 INIT_LIST_HEAD(&trans->r_itemq);
1466
1467 INIT_HLIST_NODE(&trans->r_list);
1468 hlist_add_head(&trans->r_list, head);
1469 }
1470
1471 STATIC void
1472 xlog_recover_add_item(
1473 struct list_head *head)
1474 {
1475 xlog_recover_item_t *item;
1476
1477 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1478 INIT_LIST_HEAD(&item->ri_list);
1479 list_add_tail(&item->ri_list, head);
1480 }
1481
1482 STATIC int
1483 xlog_recover_add_to_cont_trans(
1484 struct xlog *log,
1485 struct xlog_recover *trans,
1486 xfs_caddr_t dp,
1487 int len)
1488 {
1489 xlog_recover_item_t *item;
1490 xfs_caddr_t ptr, old_ptr;
1491 int old_len;
1492
1493 if (list_empty(&trans->r_itemq)) {
1494 /* finish copying rest of trans header */
1495 xlog_recover_add_item(&trans->r_itemq);
1496 ptr = (xfs_caddr_t) &trans->r_theader +
1497 sizeof(xfs_trans_header_t) - len;
1498 memcpy(ptr, dp, len); /* d, s, l */
1499 return 0;
1500 }
1501 /* take the tail entry */
1502 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1503
1504 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1505 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1506
1507 ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
1508 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1509 item->ri_buf[item->ri_cnt-1].i_len += len;
1510 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1511 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1512 return 0;
1513 }
1514
1515 /*
1516 * The next region to add is the start of a new region. It could be
1517 * a whole region or it could be the first part of a new region. Because
1518 * of this, the assumption here is that the type and size fields of all
1519 * format structures fit into the first 32 bits of the structure.
1520 *
1521 * This works because all regions must be 32 bit aligned. Therefore, we
1522 * either have both fields or we have neither field. In the case we have
1523 * neither field, the data part of the region is zero length. We only have
1524 * a log_op_header and can throw away the header since a new one will appear
1525 * later. If we have at least 4 bytes, then we can determine how many regions
1526 * will appear in the current log item.
1527 */
1528 STATIC int
1529 xlog_recover_add_to_trans(
1530 struct xlog *log,
1531 struct xlog_recover *trans,
1532 xfs_caddr_t dp,
1533 int len)
1534 {
1535 xfs_inode_log_format_t *in_f; /* any will do */
1536 xlog_recover_item_t *item;
1537 xfs_caddr_t ptr;
1538
1539 if (!len)
1540 return 0;
1541 if (list_empty(&trans->r_itemq)) {
1542 /* we need to catch log corruptions here */
1543 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1544 xfs_warn(log->l_mp, "%s: bad header magic number",
1545 __func__);
1546 ASSERT(0);
1547 return XFS_ERROR(EIO);
1548 }
1549 if (len == sizeof(xfs_trans_header_t))
1550 xlog_recover_add_item(&trans->r_itemq);
1551 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1552 return 0;
1553 }
1554
1555 ptr = kmem_alloc(len, KM_SLEEP);
1556 memcpy(ptr, dp, len);
1557 in_f = (xfs_inode_log_format_t *)ptr;
1558
1559 /* take the tail entry */
1560 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1561 if (item->ri_total != 0 &&
1562 item->ri_total == item->ri_cnt) {
1563 /* tail item is in use, get a new one */
1564 xlog_recover_add_item(&trans->r_itemq);
1565 item = list_entry(trans->r_itemq.prev,
1566 xlog_recover_item_t, ri_list);
1567 }
1568
1569 if (item->ri_total == 0) { /* first region to be added */
1570 if (in_f->ilf_size == 0 ||
1571 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
1572 xfs_warn(log->l_mp,
1573 "bad number of regions (%d) in inode log format",
1574 in_f->ilf_size);
1575 ASSERT(0);
1576 return XFS_ERROR(EIO);
1577 }
1578
1579 item->ri_total = in_f->ilf_size;
1580 item->ri_buf =
1581 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1582 KM_SLEEP);
1583 }
1584 ASSERT(item->ri_total > item->ri_cnt);
1585 /* Description region is ri_buf[0] */
1586 item->ri_buf[item->ri_cnt].i_addr = ptr;
1587 item->ri_buf[item->ri_cnt].i_len = len;
1588 item->ri_cnt++;
1589 trace_xfs_log_recover_item_add(log, trans, item, 0);
1590 return 0;
1591 }
1592
1593 /*
1594 * Sort the log items in the transaction. Cancelled buffers need
1595 * to be put first so they are processed before any items that might
1596 * modify the buffers. If they are cancelled, then the modifications
1597 * don't need to be replayed.
1598 */
1599 STATIC int
1600 xlog_recover_reorder_trans(
1601 struct xlog *log,
1602 struct xlog_recover *trans,
1603 int pass)
1604 {
1605 xlog_recover_item_t *item, *n;
1606 LIST_HEAD(sort_list);
1607
1608 list_splice_init(&trans->r_itemq, &sort_list);
1609 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1610 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1611
1612 switch (ITEM_TYPE(item)) {
1613 case XFS_LI_BUF:
1614 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1615 trace_xfs_log_recover_item_reorder_head(log,
1616 trans, item, pass);
1617 list_move(&item->ri_list, &trans->r_itemq);
1618 break;
1619 }
1620 case XFS_LI_INODE:
1621 case XFS_LI_DQUOT:
1622 case XFS_LI_QUOTAOFF:
1623 case XFS_LI_EFD:
1624 case XFS_LI_EFI:
1625 trace_xfs_log_recover_item_reorder_tail(log,
1626 trans, item, pass);
1627 list_move_tail(&item->ri_list, &trans->r_itemq);
1628 break;
1629 default:
1630 xfs_warn(log->l_mp,
1631 "%s: unrecognized type of log operation",
1632 __func__);
1633 ASSERT(0);
1634 return XFS_ERROR(EIO);
1635 }
1636 }
1637 ASSERT(list_empty(&sort_list));
1638 return 0;
1639 }
1640
1641 /*
1642 * Build up the table of buf cancel records so that we don't replay
1643 * cancelled data in the second pass. For buffer records that are
1644 * not cancel records, there is nothing to do here so we just return.
1645 *
1646 * If we get a cancel record which is already in the table, this indicates
1647 * that the buffer was cancelled multiple times. In order to ensure
1648 * that during pass 2 we keep the record in the table until we reach its
1649 * last occurrence in the log, we keep a reference count in the cancel
1650 * record in the table to tell us how many times we expect to see this
1651 * record during the second pass.
1652 */
1653 STATIC int
1654 xlog_recover_buffer_pass1(
1655 struct xlog *log,
1656 struct xlog_recover_item *item)
1657 {
1658 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1659 struct list_head *bucket;
1660 struct xfs_buf_cancel *bcp;
1661
1662 /*
1663 * If this isn't a cancel buffer item, then just return.
1664 */
1665 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1666 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1667 return 0;
1668 }
1669
1670 /*
1671 * Insert an xfs_buf_cancel record into the hash table of them.
1672 * If there is already an identical record, bump its reference count.
1673 */
1674 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1675 list_for_each_entry(bcp, bucket, bc_list) {
1676 if (bcp->bc_blkno == buf_f->blf_blkno &&
1677 bcp->bc_len == buf_f->blf_len) {
1678 bcp->bc_refcount++;
1679 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1680 return 0;
1681 }
1682 }
1683
1684 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1685 bcp->bc_blkno = buf_f->blf_blkno;
1686 bcp->bc_len = buf_f->blf_len;
1687 bcp->bc_refcount = 1;
1688 list_add_tail(&bcp->bc_list, bucket);
1689
1690 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1691 return 0;
1692 }
1693
1694 /*
1695 * Check to see whether the buffer being recovered has a corresponding
1696 * entry in the buffer cancel record table. If it does then return 1
1697 * so that it will be cancelled, otherwise return 0. If the buffer is
1698 * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
1699 * the refcount on the entry in the table and remove it from the table
1700 * if this is the last reference.
1701 *
1702 * We remove the cancel record from the table when we encounter its
1703 * last occurrence in the log so that if the same buffer is re-used
1704 * again after its last cancellation we actually replay the changes
1705 * made at that point.
1706 */
1707 STATIC int
1708 xlog_check_buffer_cancelled(
1709 struct xlog *log,
1710 xfs_daddr_t blkno,
1711 uint len,
1712 ushort flags)
1713 {
1714 struct list_head *bucket;
1715 struct xfs_buf_cancel *bcp;
1716
1717 if (log->l_buf_cancel_table == NULL) {
1718 /*
1719 * There is nothing in the table built in pass one,
1720 * so this buffer must not be cancelled.
1721 */
1722 ASSERT(!(flags & XFS_BLF_CANCEL));
1723 return 0;
1724 }
1725
1726 /*
1727 * Search for an entry in the cancel table that matches our buffer.
1728 */
1729 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1730 list_for_each_entry(bcp, bucket, bc_list) {
1731 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
1732 goto found;
1733 }
1734
1735 /*
1736 * We didn't find a corresponding entry in the table, so return 0 so
1737 * that the buffer is NOT cancelled.
1738 */
1739 ASSERT(!(flags & XFS_BLF_CANCEL));
1740 return 0;
1741
1742 found:
1743 /*
1744 * We've go a match, so return 1 so that the recovery of this buffer
1745 * is cancelled. If this buffer is actually a buffer cancel log
1746 * item, then decrement the refcount on the one in the table and
1747 * remove it if this is the last reference.
1748 */
1749 if (flags & XFS_BLF_CANCEL) {
1750 if (--bcp->bc_refcount == 0) {
1751 list_del(&bcp->bc_list);
1752 kmem_free(bcp);
1753 }
1754 }
1755 return 1;
1756 }
1757
1758 /*
1759 * Perform recovery for a buffer full of inodes. In these buffers, the only
1760 * data which should be recovered is that which corresponds to the
1761 * di_next_unlinked pointers in the on disk inode structures. The rest of the
1762 * data for the inodes is always logged through the inodes themselves rather
1763 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1764 *
1765 * The only time when buffers full of inodes are fully recovered is when the
1766 * buffer is full of newly allocated inodes. In this case the buffer will
1767 * not be marked as an inode buffer and so will be sent to
1768 * xlog_recover_do_reg_buffer() below during recovery.
1769 */
1770 STATIC int
1771 xlog_recover_do_inode_buffer(
1772 struct xfs_mount *mp,
1773 xlog_recover_item_t *item,
1774 struct xfs_buf *bp,
1775 xfs_buf_log_format_t *buf_f)
1776 {
1777 int i;
1778 int item_index = 0;
1779 int bit = 0;
1780 int nbits = 0;
1781 int reg_buf_offset = 0;
1782 int reg_buf_bytes = 0;
1783 int next_unlinked_offset;
1784 int inodes_per_buf;
1785 xfs_agino_t *logged_nextp;
1786 xfs_agino_t *buffer_nextp;
1787
1788 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
1789
1790 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
1791 for (i = 0; i < inodes_per_buf; i++) {
1792 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1793 offsetof(xfs_dinode_t, di_next_unlinked);
1794
1795 while (next_unlinked_offset >=
1796 (reg_buf_offset + reg_buf_bytes)) {
1797 /*
1798 * The next di_next_unlinked field is beyond
1799 * the current logged region. Find the next
1800 * logged region that contains or is beyond
1801 * the current di_next_unlinked field.
1802 */
1803 bit += nbits;
1804 bit = xfs_next_bit(buf_f->blf_data_map,
1805 buf_f->blf_map_size, bit);
1806
1807 /*
1808 * If there are no more logged regions in the
1809 * buffer, then we're done.
1810 */
1811 if (bit == -1)
1812 return 0;
1813
1814 nbits = xfs_contig_bits(buf_f->blf_data_map,
1815 buf_f->blf_map_size, bit);
1816 ASSERT(nbits > 0);
1817 reg_buf_offset = bit << XFS_BLF_SHIFT;
1818 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1819 item_index++;
1820 }
1821
1822 /*
1823 * If the current logged region starts after the current
1824 * di_next_unlinked field, then move on to the next
1825 * di_next_unlinked field.
1826 */
1827 if (next_unlinked_offset < reg_buf_offset)
1828 continue;
1829
1830 ASSERT(item->ri_buf[item_index].i_addr != NULL);
1831 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
1832 ASSERT((reg_buf_offset + reg_buf_bytes) <=
1833 BBTOB(bp->b_io_length));
1834
1835 /*
1836 * The current logged region contains a copy of the
1837 * current di_next_unlinked field. Extract its value
1838 * and copy it to the buffer copy.
1839 */
1840 logged_nextp = item->ri_buf[item_index].i_addr +
1841 next_unlinked_offset - reg_buf_offset;
1842 if (unlikely(*logged_nextp == 0)) {
1843 xfs_alert(mp,
1844 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1845 "Trying to replay bad (0) inode di_next_unlinked field.",
1846 item, bp);
1847 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1848 XFS_ERRLEVEL_LOW, mp);
1849 return XFS_ERROR(EFSCORRUPTED);
1850 }
1851
1852 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1853 next_unlinked_offset);
1854 *buffer_nextp = *logged_nextp;
1855 }
1856
1857 return 0;
1858 }
1859
1860 /*
1861 * Perform a 'normal' buffer recovery. Each logged region of the
1862 * buffer should be copied over the corresponding region in the
1863 * given buffer. The bitmap in the buf log format structure indicates
1864 * where to place the logged data.
1865 */
1866 STATIC void
1867 xlog_recover_do_reg_buffer(
1868 struct xfs_mount *mp,
1869 xlog_recover_item_t *item,
1870 struct xfs_buf *bp,
1871 xfs_buf_log_format_t *buf_f)
1872 {
1873 int i;
1874 int bit;
1875 int nbits;
1876 int error;
1877
1878 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
1879
1880 bit = 0;
1881 i = 1; /* 0 is the buf format structure */
1882 while (1) {
1883 bit = xfs_next_bit(buf_f->blf_data_map,
1884 buf_f->blf_map_size, bit);
1885 if (bit == -1)
1886 break;
1887 nbits = xfs_contig_bits(buf_f->blf_data_map,
1888 buf_f->blf_map_size, bit);
1889 ASSERT(nbits > 0);
1890 ASSERT(item->ri_buf[i].i_addr != NULL);
1891 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
1892 ASSERT(BBTOB(bp->b_io_length) >=
1893 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
1894
1895 /*
1896 * Do a sanity check if this is a dquot buffer. Just checking
1897 * the first dquot in the buffer should do. XXXThis is
1898 * probably a good thing to do for other buf types also.
1899 */
1900 error = 0;
1901 if (buf_f->blf_flags &
1902 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
1903 if (item->ri_buf[i].i_addr == NULL) {
1904 xfs_alert(mp,
1905 "XFS: NULL dquot in %s.", __func__);
1906 goto next;
1907 }
1908 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
1909 xfs_alert(mp,
1910 "XFS: dquot too small (%d) in %s.",
1911 item->ri_buf[i].i_len, __func__);
1912 goto next;
1913 }
1914 error = xfs_qm_dqcheck(mp, item->ri_buf[i].i_addr,
1915 -1, 0, XFS_QMOPT_DOWARN,
1916 "dquot_buf_recover");
1917 if (error)
1918 goto next;
1919 }
1920
1921 memcpy(xfs_buf_offset(bp,
1922 (uint)bit << XFS_BLF_SHIFT), /* dest */
1923 item->ri_buf[i].i_addr, /* source */
1924 nbits<<XFS_BLF_SHIFT); /* length */
1925 next:
1926 i++;
1927 bit += nbits;
1928 }
1929
1930 /* Shouldn't be any more regions */
1931 ASSERT(i == item->ri_total);
1932
1933 switch (buf_f->blf_flags & XFS_BLF_TYPE_MASK) {
1934 case XFS_BLF_BTREE_BUF:
1935 switch (be32_to_cpu(*(__be32 *)bp->b_addr)) {
1936 case XFS_ABTB_CRC_MAGIC:
1937 case XFS_ABTC_CRC_MAGIC:
1938 case XFS_ABTB_MAGIC:
1939 case XFS_ABTC_MAGIC:
1940 bp->b_ops = &xfs_allocbt_buf_ops;
1941 break;
1942 case XFS_IBT_CRC_MAGIC:
1943 case XFS_IBT_MAGIC:
1944 bp->b_ops = &xfs_inobt_buf_ops;
1945 break;
1946 case XFS_BMAP_CRC_MAGIC:
1947 case XFS_BMAP_MAGIC:
1948 bp->b_ops = &xfs_bmbt_buf_ops;
1949 break;
1950 default:
1951 xfs_warn(mp, "Bad btree block magic!");
1952 ASSERT(0);
1953 break;
1954 }
1955 break;
1956 case XFS_BLF_AGF_BUF:
1957 if (*(__be32 *)bp->b_addr != cpu_to_be32(XFS_AGF_MAGIC)) {
1958 xfs_warn(mp, "Bad AGF block magic!");
1959 ASSERT(0);
1960 break;
1961 }
1962 bp->b_ops = &xfs_agf_buf_ops;
1963 break;
1964 case XFS_BLF_AGFL_BUF:
1965 if (!xfs_sb_version_hascrc(&mp->m_sb))
1966 break;
1967 if (*(__be32 *)bp->b_addr != cpu_to_be32(XFS_AGFL_MAGIC)) {
1968 xfs_warn(mp, "Bad AGFL block magic!");
1969 ASSERT(0);
1970 break;
1971 }
1972 bp->b_ops = &xfs_agfl_buf_ops;
1973 break;
1974 case XFS_BLF_AGI_BUF:
1975 if (*(__be32 *)bp->b_addr != cpu_to_be32(XFS_AGI_MAGIC)) {
1976 xfs_warn(mp, "Bad AGI block magic!");
1977 ASSERT(0);
1978 break;
1979 }
1980 bp->b_ops = &xfs_agi_buf_ops;
1981 break;
1982 case XFS_BLF_UDQUOT_BUF:
1983 case XFS_BLF_PDQUOT_BUF:
1984 case XFS_BLF_GDQUOT_BUF:
1985 if (*(__be16 *)bp->b_addr != cpu_to_be16(XFS_DQUOT_MAGIC)) {
1986 xfs_warn(mp, "Bad DQUOT block magic!");
1987 ASSERT(0);
1988 break;
1989 }
1990 bp->b_ops = &xfs_dquot_buf_ops;
1991 break;
1992 default:
1993 break;
1994 }
1995 }
1996
1997 /*
1998 * Do some primitive error checking on ondisk dquot data structures.
1999 */
2000 int
2001 xfs_qm_dqcheck(
2002 struct xfs_mount *mp,
2003 xfs_disk_dquot_t *ddq,
2004 xfs_dqid_t id,
2005 uint type, /* used only when IO_dorepair is true */
2006 uint flags,
2007 char *str)
2008 {
2009 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
2010 int errs = 0;
2011
2012 /*
2013 * We can encounter an uninitialized dquot buffer for 2 reasons:
2014 * 1. If we crash while deleting the quotainode(s), and those blks got
2015 * used for user data. This is because we take the path of regular
2016 * file deletion; however, the size field of quotainodes is never
2017 * updated, so all the tricks that we play in itruncate_finish
2018 * don't quite matter.
2019 *
2020 * 2. We don't play the quota buffers when there's a quotaoff logitem.
2021 * But the allocation will be replayed so we'll end up with an
2022 * uninitialized quota block.
2023 *
2024 * This is all fine; things are still consistent, and we haven't lost
2025 * any quota information. Just don't complain about bad dquot blks.
2026 */
2027 if (ddq->d_magic != cpu_to_be16(XFS_DQUOT_MAGIC)) {
2028 if (flags & XFS_QMOPT_DOWARN)
2029 xfs_alert(mp,
2030 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
2031 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
2032 errs++;
2033 }
2034 if (ddq->d_version != XFS_DQUOT_VERSION) {
2035 if (flags & XFS_QMOPT_DOWARN)
2036 xfs_alert(mp,
2037 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
2038 str, id, ddq->d_version, XFS_DQUOT_VERSION);
2039 errs++;
2040 }
2041
2042 if (ddq->d_flags != XFS_DQ_USER &&
2043 ddq->d_flags != XFS_DQ_PROJ &&
2044 ddq->d_flags != XFS_DQ_GROUP) {
2045 if (flags & XFS_QMOPT_DOWARN)
2046 xfs_alert(mp,
2047 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
2048 str, id, ddq->d_flags);
2049 errs++;
2050 }
2051
2052 if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
2053 if (flags & XFS_QMOPT_DOWARN)
2054 xfs_alert(mp,
2055 "%s : ondisk-dquot 0x%p, ID mismatch: "
2056 "0x%x expected, found id 0x%x",
2057 str, ddq, id, be32_to_cpu(ddq->d_id));
2058 errs++;
2059 }
2060
2061 if (!errs && ddq->d_id) {
2062 if (ddq->d_blk_softlimit &&
2063 be64_to_cpu(ddq->d_bcount) >
2064 be64_to_cpu(ddq->d_blk_softlimit)) {
2065 if (!ddq->d_btimer) {
2066 if (flags & XFS_QMOPT_DOWARN)
2067 xfs_alert(mp,
2068 "%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED",
2069 str, (int)be32_to_cpu(ddq->d_id), ddq);
2070 errs++;
2071 }
2072 }
2073 if (ddq->d_ino_softlimit &&
2074 be64_to_cpu(ddq->d_icount) >
2075 be64_to_cpu(ddq->d_ino_softlimit)) {
2076 if (!ddq->d_itimer) {
2077 if (flags & XFS_QMOPT_DOWARN)
2078 xfs_alert(mp,
2079 "%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED",
2080 str, (int)be32_to_cpu(ddq->d_id), ddq);
2081 errs++;
2082 }
2083 }
2084 if (ddq->d_rtb_softlimit &&
2085 be64_to_cpu(ddq->d_rtbcount) >
2086 be64_to_cpu(ddq->d_rtb_softlimit)) {
2087 if (!ddq->d_rtbtimer) {
2088 if (flags & XFS_QMOPT_DOWARN)
2089 xfs_alert(mp,
2090 "%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED",
2091 str, (int)be32_to_cpu(ddq->d_id), ddq);
2092 errs++;
2093 }
2094 }
2095 }
2096
2097 if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2098 return errs;
2099
2100 if (flags & XFS_QMOPT_DOWARN)
2101 xfs_notice(mp, "Re-initializing dquot ID 0x%x", id);
2102
2103 /*
2104 * Typically, a repair is only requested by quotacheck.
2105 */
2106 ASSERT(id != -1);
2107 ASSERT(flags & XFS_QMOPT_DQREPAIR);
2108 memset(d, 0, sizeof(xfs_dqblk_t));
2109
2110 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2111 d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2112 d->dd_diskdq.d_flags = type;
2113 d->dd_diskdq.d_id = cpu_to_be32(id);
2114
2115 return errs;
2116 }
2117
2118 /*
2119 * Perform a dquot buffer recovery.
2120 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2121 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2122 * Else, treat it as a regular buffer and do recovery.
2123 */
2124 STATIC void
2125 xlog_recover_do_dquot_buffer(
2126 struct xfs_mount *mp,
2127 struct xlog *log,
2128 struct xlog_recover_item *item,
2129 struct xfs_buf *bp,
2130 struct xfs_buf_log_format *buf_f)
2131 {
2132 uint type;
2133
2134 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2135
2136 /*
2137 * Filesystems are required to send in quota flags at mount time.
2138 */
2139 if (mp->m_qflags == 0) {
2140 return;
2141 }
2142
2143 type = 0;
2144 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2145 type |= XFS_DQ_USER;
2146 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2147 type |= XFS_DQ_PROJ;
2148 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2149 type |= XFS_DQ_GROUP;
2150 /*
2151 * This type of quotas was turned off, so ignore this buffer
2152 */
2153 if (log->l_quotaoffs_flag & type)
2154 return;
2155
2156 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2157 }
2158
2159 /*
2160 * This routine replays a modification made to a buffer at runtime.
2161 * There are actually two types of buffer, regular and inode, which
2162 * are handled differently. Inode buffers are handled differently
2163 * in that we only recover a specific set of data from them, namely
2164 * the inode di_next_unlinked fields. This is because all other inode
2165 * data is actually logged via inode records and any data we replay
2166 * here which overlaps that may be stale.
2167 *
2168 * When meta-data buffers are freed at run time we log a buffer item
2169 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2170 * of the buffer in the log should not be replayed at recovery time.
2171 * This is so that if the blocks covered by the buffer are reused for
2172 * file data before we crash we don't end up replaying old, freed
2173 * meta-data into a user's file.
2174 *
2175 * To handle the cancellation of buffer log items, we make two passes
2176 * over the log during recovery. During the first we build a table of
2177 * those buffers which have been cancelled, and during the second we
2178 * only replay those buffers which do not have corresponding cancel
2179 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2180 * for more details on the implementation of the table of cancel records.
2181 */
2182 STATIC int
2183 xlog_recover_buffer_pass2(
2184 struct xlog *log,
2185 struct list_head *buffer_list,
2186 struct xlog_recover_item *item)
2187 {
2188 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
2189 xfs_mount_t *mp = log->l_mp;
2190 xfs_buf_t *bp;
2191 int error;
2192 uint buf_flags;
2193
2194 /*
2195 * In this pass we only want to recover all the buffers which have
2196 * not been cancelled and are not cancellation buffers themselves.
2197 */
2198 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2199 buf_f->blf_len, buf_f->blf_flags)) {
2200 trace_xfs_log_recover_buf_cancel(log, buf_f);
2201 return 0;
2202 }
2203
2204 trace_xfs_log_recover_buf_recover(log, buf_f);
2205
2206 buf_flags = 0;
2207 if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2208 buf_flags |= XBF_UNMAPPED;
2209
2210 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2211 buf_flags, NULL);
2212 if (!bp)
2213 return XFS_ERROR(ENOMEM);
2214 error = bp->b_error;
2215 if (error) {
2216 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
2217 xfs_buf_relse(bp);
2218 return error;
2219 }
2220
2221 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2222 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2223 } else if (buf_f->blf_flags &
2224 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2225 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2226 } else {
2227 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2228 }
2229 if (error)
2230 return XFS_ERROR(error);
2231
2232 /*
2233 * Perform delayed write on the buffer. Asynchronous writes will be
2234 * slower when taking into account all the buffers to be flushed.
2235 *
2236 * Also make sure that only inode buffers with good sizes stay in
2237 * the buffer cache. The kernel moves inodes in buffers of 1 block
2238 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2239 * buffers in the log can be a different size if the log was generated
2240 * by an older kernel using unclustered inode buffers or a newer kernel
2241 * running with a different inode cluster size. Regardless, if the
2242 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2243 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2244 * the buffer out of the buffer cache so that the buffer won't
2245 * overlap with future reads of those inodes.
2246 */
2247 if (XFS_DINODE_MAGIC ==
2248 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2249 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
2250 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2251 xfs_buf_stale(bp);
2252 error = xfs_bwrite(bp);
2253 } else {
2254 ASSERT(bp->b_target->bt_mount == mp);
2255 bp->b_iodone = xlog_recover_iodone;
2256 xfs_buf_delwri_queue(bp, buffer_list);
2257 }
2258
2259 xfs_buf_relse(bp);
2260 return error;
2261 }
2262
2263 STATIC int
2264 xlog_recover_inode_pass2(
2265 struct xlog *log,
2266 struct list_head *buffer_list,
2267 struct xlog_recover_item *item)
2268 {
2269 xfs_inode_log_format_t *in_f;
2270 xfs_mount_t *mp = log->l_mp;
2271 xfs_buf_t *bp;
2272 xfs_dinode_t *dip;
2273 int len;
2274 xfs_caddr_t src;
2275 xfs_caddr_t dest;
2276 int error;
2277 int attr_index;
2278 uint fields;
2279 xfs_icdinode_t *dicp;
2280 int need_free = 0;
2281
2282 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2283 in_f = item->ri_buf[0].i_addr;
2284 } else {
2285 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2286 need_free = 1;
2287 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2288 if (error)
2289 goto error;
2290 }
2291
2292 /*
2293 * Inode buffers can be freed, look out for it,
2294 * and do not replay the inode.
2295 */
2296 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2297 in_f->ilf_len, 0)) {
2298 error = 0;
2299 trace_xfs_log_recover_inode_cancel(log, in_f);
2300 goto error;
2301 }
2302 trace_xfs_log_recover_inode_recover(log, in_f);
2303
2304 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
2305 NULL);
2306 if (!bp) {
2307 error = ENOMEM;
2308 goto error;
2309 }
2310 error = bp->b_error;
2311 if (error) {
2312 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
2313 xfs_buf_relse(bp);
2314 goto error;
2315 }
2316 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2317 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
2318
2319 /*
2320 * Make sure the place we're flushing out to really looks
2321 * like an inode!
2322 */
2323 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
2324 xfs_buf_relse(bp);
2325 xfs_alert(mp,
2326 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2327 __func__, dip, bp, in_f->ilf_ino);
2328 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2329 XFS_ERRLEVEL_LOW, mp);
2330 error = EFSCORRUPTED;
2331 goto error;
2332 }
2333 dicp = item->ri_buf[1].i_addr;
2334 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2335 xfs_buf_relse(bp);
2336 xfs_alert(mp,
2337 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2338 __func__, item, in_f->ilf_ino);
2339 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2340 XFS_ERRLEVEL_LOW, mp);
2341 error = EFSCORRUPTED;
2342 goto error;
2343 }
2344
2345 /* Skip replay when the on disk inode is newer than the log one */
2346 if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2347 /*
2348 * Deal with the wrap case, DI_MAX_FLUSH is less
2349 * than smaller numbers
2350 */
2351 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2352 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2353 /* do nothing */
2354 } else {
2355 xfs_buf_relse(bp);
2356 trace_xfs_log_recover_inode_skip(log, in_f);
2357 error = 0;
2358 goto error;
2359 }
2360 }
2361 /* Take the opportunity to reset the flush iteration count */
2362 dicp->di_flushiter = 0;
2363
2364 if (unlikely(S_ISREG(dicp->di_mode))) {
2365 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2366 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2367 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
2368 XFS_ERRLEVEL_LOW, mp, dicp);
2369 xfs_buf_relse(bp);
2370 xfs_alert(mp,
2371 "%s: Bad regular inode log record, rec ptr 0x%p, "
2372 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2373 __func__, item, dip, bp, in_f->ilf_ino);
2374 error = EFSCORRUPTED;
2375 goto error;
2376 }
2377 } else if (unlikely(S_ISDIR(dicp->di_mode))) {
2378 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2379 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2380 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2381 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
2382 XFS_ERRLEVEL_LOW, mp, dicp);
2383 xfs_buf_relse(bp);
2384 xfs_alert(mp,
2385 "%s: Bad dir inode log record, rec ptr 0x%p, "
2386 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2387 __func__, item, dip, bp, in_f->ilf_ino);
2388 error = EFSCORRUPTED;
2389 goto error;
2390 }
2391 }
2392 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2393 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
2394 XFS_ERRLEVEL_LOW, mp, dicp);
2395 xfs_buf_relse(bp);
2396 xfs_alert(mp,
2397 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2398 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2399 __func__, item, dip, bp, in_f->ilf_ino,
2400 dicp->di_nextents + dicp->di_anextents,
2401 dicp->di_nblocks);
2402 error = EFSCORRUPTED;
2403 goto error;
2404 }
2405 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2406 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
2407 XFS_ERRLEVEL_LOW, mp, dicp);
2408 xfs_buf_relse(bp);
2409 xfs_alert(mp,
2410 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2411 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
2412 item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
2413 error = EFSCORRUPTED;
2414 goto error;
2415 }
2416 if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
2417 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
2418 XFS_ERRLEVEL_LOW, mp, dicp);
2419 xfs_buf_relse(bp);
2420 xfs_alert(mp,
2421 "%s: Bad inode log record length %d, rec ptr 0x%p",
2422 __func__, item->ri_buf[1].i_len, item);
2423 error = EFSCORRUPTED;
2424 goto error;
2425 }
2426
2427 /* The core is in in-core format */
2428 xfs_dinode_to_disk(dip, item->ri_buf[1].i_addr);
2429
2430 /* the rest is in on-disk format */
2431 if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
2432 memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
2433 item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
2434 item->ri_buf[1].i_len - sizeof(struct xfs_icdinode));
2435 }
2436
2437 fields = in_f->ilf_fields;
2438 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2439 case XFS_ILOG_DEV:
2440 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
2441 break;
2442 case XFS_ILOG_UUID:
2443 memcpy(XFS_DFORK_DPTR(dip),
2444 &in_f->ilf_u.ilfu_uuid,
2445 sizeof(uuid_t));
2446 break;
2447 }
2448
2449 if (in_f->ilf_size == 2)
2450 goto write_inode_buffer;
2451 len = item->ri_buf[2].i_len;
2452 src = item->ri_buf[2].i_addr;
2453 ASSERT(in_f->ilf_size <= 4);
2454 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2455 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2456 (len == in_f->ilf_dsize));
2457
2458 switch (fields & XFS_ILOG_DFORK) {
2459 case XFS_ILOG_DDATA:
2460 case XFS_ILOG_DEXT:
2461 memcpy(XFS_DFORK_DPTR(dip), src, len);
2462 break;
2463
2464 case XFS_ILOG_DBROOT:
2465 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2466 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
2467 XFS_DFORK_DSIZE(dip, mp));
2468 break;
2469
2470 default:
2471 /*
2472 * There are no data fork flags set.
2473 */
2474 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2475 break;
2476 }
2477
2478 /*
2479 * If we logged any attribute data, recover it. There may or
2480 * may not have been any other non-core data logged in this
2481 * transaction.
2482 */
2483 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2484 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2485 attr_index = 3;
2486 } else {
2487 attr_index = 2;
2488 }
2489 len = item->ri_buf[attr_index].i_len;
2490 src = item->ri_buf[attr_index].i_addr;
2491 ASSERT(len == in_f->ilf_asize);
2492
2493 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2494 case XFS_ILOG_ADATA:
2495 case XFS_ILOG_AEXT:
2496 dest = XFS_DFORK_APTR(dip);
2497 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2498 memcpy(dest, src, len);
2499 break;
2500
2501 case XFS_ILOG_ABROOT:
2502 dest = XFS_DFORK_APTR(dip);
2503 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2504 len, (xfs_bmdr_block_t*)dest,
2505 XFS_DFORK_ASIZE(dip, mp));
2506 break;
2507
2508 default:
2509 xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
2510 ASSERT(0);
2511 xfs_buf_relse(bp);
2512 error = EIO;
2513 goto error;
2514 }
2515 }
2516
2517 write_inode_buffer:
2518 ASSERT(bp->b_target->bt_mount == mp);
2519 bp->b_iodone = xlog_recover_iodone;
2520 xfs_buf_delwri_queue(bp, buffer_list);
2521 xfs_buf_relse(bp);
2522 error:
2523 if (need_free)
2524 kmem_free(in_f);
2525 return XFS_ERROR(error);
2526 }
2527
2528 /*
2529 * Recover QUOTAOFF records. We simply make a note of it in the xlog
2530 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2531 * of that type.
2532 */
2533 STATIC int
2534 xlog_recover_quotaoff_pass1(
2535 struct xlog *log,
2536 struct xlog_recover_item *item)
2537 {
2538 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
2539 ASSERT(qoff_f);
2540
2541 /*
2542 * The logitem format's flag tells us if this was user quotaoff,
2543 * group/project quotaoff or both.
2544 */
2545 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2546 log->l_quotaoffs_flag |= XFS_DQ_USER;
2547 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2548 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2549 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2550 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2551
2552 return (0);
2553 }
2554
2555 /*
2556 * Recover a dquot record
2557 */
2558 STATIC int
2559 xlog_recover_dquot_pass2(
2560 struct xlog *log,
2561 struct list_head *buffer_list,
2562 struct xlog_recover_item *item)
2563 {
2564 xfs_mount_t *mp = log->l_mp;
2565 xfs_buf_t *bp;
2566 struct xfs_disk_dquot *ddq, *recddq;
2567 int error;
2568 xfs_dq_logformat_t *dq_f;
2569 uint type;
2570
2571
2572 /*
2573 * Filesystems are required to send in quota flags at mount time.
2574 */
2575 if (mp->m_qflags == 0)
2576 return (0);
2577
2578 recddq = item->ri_buf[1].i_addr;
2579 if (recddq == NULL) {
2580 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
2581 return XFS_ERROR(EIO);
2582 }
2583 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
2584 xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
2585 item->ri_buf[1].i_len, __func__);
2586 return XFS_ERROR(EIO);
2587 }
2588
2589 /*
2590 * This type of quotas was turned off, so ignore this record.
2591 */
2592 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2593 ASSERT(type);
2594 if (log->l_quotaoffs_flag & type)
2595 return (0);
2596
2597 /*
2598 * At this point we know that quota was _not_ turned off.
2599 * Since the mount flags are not indicating to us otherwise, this
2600 * must mean that quota is on, and the dquot needs to be replayed.
2601 * Remember that we may not have fully recovered the superblock yet,
2602 * so we can't do the usual trick of looking at the SB quota bits.
2603 *
2604 * The other possibility, of course, is that the quota subsystem was
2605 * removed since the last mount - ENOSYS.
2606 */
2607 dq_f = item->ri_buf[0].i_addr;
2608 ASSERT(dq_f);
2609 error = xfs_qm_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2610 "xlog_recover_dquot_pass2 (log copy)");
2611 if (error)
2612 return XFS_ERROR(EIO);
2613 ASSERT(dq_f->qlf_len == 1);
2614
2615 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
2616 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
2617 NULL);
2618 if (error)
2619 return error;
2620
2621 ASSERT(bp);
2622 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2623
2624 /*
2625 * At least the magic num portion should be on disk because this
2626 * was among a chunk of dquots created earlier, and we did some
2627 * minimal initialization then.
2628 */
2629 error = xfs_qm_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2630 "xlog_recover_dquot_pass2");
2631 if (error) {
2632 xfs_buf_relse(bp);
2633 return XFS_ERROR(EIO);
2634 }
2635
2636 memcpy(ddq, recddq, item->ri_buf[1].i_len);
2637
2638 ASSERT(dq_f->qlf_size == 2);
2639 ASSERT(bp->b_target->bt_mount == mp);
2640 bp->b_iodone = xlog_recover_iodone;
2641 xfs_buf_delwri_queue(bp, buffer_list);
2642 xfs_buf_relse(bp);
2643
2644 return (0);
2645 }
2646
2647 /*
2648 * This routine is called to create an in-core extent free intent
2649 * item from the efi format structure which was logged on disk.
2650 * It allocates an in-core efi, copies the extents from the format
2651 * structure into it, and adds the efi to the AIL with the given
2652 * LSN.
2653 */
2654 STATIC int
2655 xlog_recover_efi_pass2(
2656 struct xlog *log,
2657 struct xlog_recover_item *item,
2658 xfs_lsn_t lsn)
2659 {
2660 int error;
2661 xfs_mount_t *mp = log->l_mp;
2662 xfs_efi_log_item_t *efip;
2663 xfs_efi_log_format_t *efi_formatp;
2664
2665 efi_formatp = item->ri_buf[0].i_addr;
2666
2667 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2668 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2669 &(efip->efi_format)))) {
2670 xfs_efi_item_free(efip);
2671 return error;
2672 }
2673 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
2674
2675 spin_lock(&log->l_ailp->xa_lock);
2676 /*
2677 * xfs_trans_ail_update() drops the AIL lock.
2678 */
2679 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
2680 return 0;
2681 }
2682
2683
2684 /*
2685 * This routine is called when an efd format structure is found in
2686 * a committed transaction in the log. It's purpose is to cancel
2687 * the corresponding efi if it was still in the log. To do this
2688 * it searches the AIL for the efi with an id equal to that in the
2689 * efd format structure. If we find it, we remove the efi from the
2690 * AIL and free it.
2691 */
2692 STATIC int
2693 xlog_recover_efd_pass2(
2694 struct xlog *log,
2695 struct xlog_recover_item *item)
2696 {
2697 xfs_efd_log_format_t *efd_formatp;
2698 xfs_efi_log_item_t *efip = NULL;
2699 xfs_log_item_t *lip;
2700 __uint64_t efi_id;
2701 struct xfs_ail_cursor cur;
2702 struct xfs_ail *ailp = log->l_ailp;
2703
2704 efd_formatp = item->ri_buf[0].i_addr;
2705 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2706 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2707 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2708 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2709 efi_id = efd_formatp->efd_efi_id;
2710
2711 /*
2712 * Search for the efi with the id in the efd format structure
2713 * in the AIL.
2714 */
2715 spin_lock(&ailp->xa_lock);
2716 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2717 while (lip != NULL) {
2718 if (lip->li_type == XFS_LI_EFI) {
2719 efip = (xfs_efi_log_item_t *)lip;
2720 if (efip->efi_format.efi_id == efi_id) {
2721 /*
2722 * xfs_trans_ail_delete() drops the
2723 * AIL lock.
2724 */
2725 xfs_trans_ail_delete(ailp, lip,
2726 SHUTDOWN_CORRUPT_INCORE);
2727 xfs_efi_item_free(efip);
2728 spin_lock(&ailp->xa_lock);
2729 break;
2730 }
2731 }
2732 lip = xfs_trans_ail_cursor_next(ailp, &cur);
2733 }
2734 xfs_trans_ail_cursor_done(ailp, &cur);
2735 spin_unlock(&ailp->xa_lock);
2736
2737 return 0;
2738 }
2739
2740 /*
2741 * Free up any resources allocated by the transaction
2742 *
2743 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2744 */
2745 STATIC void
2746 xlog_recover_free_trans(
2747 struct xlog_recover *trans)
2748 {
2749 xlog_recover_item_t *item, *n;
2750 int i;
2751
2752 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2753 /* Free the regions in the item. */
2754 list_del(&item->ri_list);
2755 for (i = 0; i < item->ri_cnt; i++)
2756 kmem_free(item->ri_buf[i].i_addr);
2757 /* Free the item itself */
2758 kmem_free(item->ri_buf);
2759 kmem_free(item);
2760 }
2761 /* Free the transaction recover structure */
2762 kmem_free(trans);
2763 }
2764
2765 STATIC int
2766 xlog_recover_commit_pass1(
2767 struct xlog *log,
2768 struct xlog_recover *trans,
2769 struct xlog_recover_item *item)
2770 {
2771 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
2772
2773 switch (ITEM_TYPE(item)) {
2774 case XFS_LI_BUF:
2775 return xlog_recover_buffer_pass1(log, item);
2776 case XFS_LI_QUOTAOFF:
2777 return xlog_recover_quotaoff_pass1(log, item);
2778 case XFS_LI_INODE:
2779 case XFS_LI_EFI:
2780 case XFS_LI_EFD:
2781 case XFS_LI_DQUOT:
2782 /* nothing to do in pass 1 */
2783 return 0;
2784 default:
2785 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
2786 __func__, ITEM_TYPE(item));
2787 ASSERT(0);
2788 return XFS_ERROR(EIO);
2789 }
2790 }
2791
2792 STATIC int
2793 xlog_recover_commit_pass2(
2794 struct xlog *log,
2795 struct xlog_recover *trans,
2796 struct list_head *buffer_list,
2797 struct xlog_recover_item *item)
2798 {
2799 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
2800
2801 switch (ITEM_TYPE(item)) {
2802 case XFS_LI_BUF:
2803 return xlog_recover_buffer_pass2(log, buffer_list, item);
2804 case XFS_LI_INODE:
2805 return xlog_recover_inode_pass2(log, buffer_list, item);
2806 case XFS_LI_EFI:
2807 return xlog_recover_efi_pass2(log, item, trans->r_lsn);
2808 case XFS_LI_EFD:
2809 return xlog_recover_efd_pass2(log, item);
2810 case XFS_LI_DQUOT:
2811 return xlog_recover_dquot_pass2(log, buffer_list, item);
2812 case XFS_LI_QUOTAOFF:
2813 /* nothing to do in pass2 */
2814 return 0;
2815 default:
2816 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
2817 __func__, ITEM_TYPE(item));
2818 ASSERT(0);
2819 return XFS_ERROR(EIO);
2820 }
2821 }
2822
2823 /*
2824 * Perform the transaction.
2825 *
2826 * If the transaction modifies a buffer or inode, do it now. Otherwise,
2827 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2828 */
2829 STATIC int
2830 xlog_recover_commit_trans(
2831 struct xlog *log,
2832 struct xlog_recover *trans,
2833 int pass)
2834 {
2835 int error = 0, error2;
2836 xlog_recover_item_t *item;
2837 LIST_HEAD (buffer_list);
2838
2839 hlist_del(&trans->r_list);
2840
2841 error = xlog_recover_reorder_trans(log, trans, pass);
2842 if (error)
2843 return error;
2844
2845 list_for_each_entry(item, &trans->r_itemq, ri_list) {
2846 switch (pass) {
2847 case XLOG_RECOVER_PASS1:
2848 error = xlog_recover_commit_pass1(log, trans, item);
2849 break;
2850 case XLOG_RECOVER_PASS2:
2851 error = xlog_recover_commit_pass2(log, trans,
2852 &buffer_list, item);
2853 break;
2854 default:
2855 ASSERT(0);
2856 }
2857
2858 if (error)
2859 goto out;
2860 }
2861
2862 xlog_recover_free_trans(trans);
2863
2864 out:
2865 error2 = xfs_buf_delwri_submit(&buffer_list);
2866 return error ? error : error2;
2867 }
2868
2869 STATIC int
2870 xlog_recover_unmount_trans(
2871 struct xlog *log,
2872 struct xlog_recover *trans)
2873 {
2874 /* Do nothing now */
2875 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
2876 return 0;
2877 }
2878
2879 /*
2880 * There are two valid states of the r_state field. 0 indicates that the
2881 * transaction structure is in a normal state. We have either seen the
2882 * start of the transaction or the last operation we added was not a partial
2883 * operation. If the last operation we added to the transaction was a
2884 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2885 *
2886 * NOTE: skip LRs with 0 data length.
2887 */
2888 STATIC int
2889 xlog_recover_process_data(
2890 struct xlog *log,
2891 struct hlist_head rhash[],
2892 struct xlog_rec_header *rhead,
2893 xfs_caddr_t dp,
2894 int pass)
2895 {
2896 xfs_caddr_t lp;
2897 int num_logops;
2898 xlog_op_header_t *ohead;
2899 xlog_recover_t *trans;
2900 xlog_tid_t tid;
2901 int error;
2902 unsigned long hash;
2903 uint flags;
2904
2905 lp = dp + be32_to_cpu(rhead->h_len);
2906 num_logops = be32_to_cpu(rhead->h_num_logops);
2907
2908 /* check the log format matches our own - else we can't recover */
2909 if (xlog_header_check_recover(log->l_mp, rhead))
2910 return (XFS_ERROR(EIO));
2911
2912 while ((dp < lp) && num_logops) {
2913 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2914 ohead = (xlog_op_header_t *)dp;
2915 dp += sizeof(xlog_op_header_t);
2916 if (ohead->oh_clientid != XFS_TRANSACTION &&
2917 ohead->oh_clientid != XFS_LOG) {
2918 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
2919 __func__, ohead->oh_clientid);
2920 ASSERT(0);
2921 return (XFS_ERROR(EIO));
2922 }
2923 tid = be32_to_cpu(ohead->oh_tid);
2924 hash = XLOG_RHASH(tid);
2925 trans = xlog_recover_find_tid(&rhash[hash], tid);
2926 if (trans == NULL) { /* not found; add new tid */
2927 if (ohead->oh_flags & XLOG_START_TRANS)
2928 xlog_recover_new_tid(&rhash[hash], tid,
2929 be64_to_cpu(rhead->h_lsn));
2930 } else {
2931 if (dp + be32_to_cpu(ohead->oh_len) > lp) {
2932 xfs_warn(log->l_mp, "%s: bad length 0x%x",
2933 __func__, be32_to_cpu(ohead->oh_len));
2934 WARN_ON(1);
2935 return (XFS_ERROR(EIO));
2936 }
2937 flags = ohead->oh_flags & ~XLOG_END_TRANS;
2938 if (flags & XLOG_WAS_CONT_TRANS)
2939 flags &= ~XLOG_CONTINUE_TRANS;
2940 switch (flags) {
2941 case XLOG_COMMIT_TRANS:
2942 error = xlog_recover_commit_trans(log,
2943 trans, pass);
2944 break;
2945 case XLOG_UNMOUNT_TRANS:
2946 error = xlog_recover_unmount_trans(log, trans);
2947 break;
2948 case XLOG_WAS_CONT_TRANS:
2949 error = xlog_recover_add_to_cont_trans(log,
2950 trans, dp,
2951 be32_to_cpu(ohead->oh_len));
2952 break;
2953 case XLOG_START_TRANS:
2954 xfs_warn(log->l_mp, "%s: bad transaction",
2955 __func__);
2956 ASSERT(0);
2957 error = XFS_ERROR(EIO);
2958 break;
2959 case 0:
2960 case XLOG_CONTINUE_TRANS:
2961 error = xlog_recover_add_to_trans(log, trans,
2962 dp, be32_to_cpu(ohead->oh_len));
2963 break;
2964 default:
2965 xfs_warn(log->l_mp, "%s: bad flag 0x%x",
2966 __func__, flags);
2967 ASSERT(0);
2968 error = XFS_ERROR(EIO);
2969 break;
2970 }
2971 if (error)
2972 return error;
2973 }
2974 dp += be32_to_cpu(ohead->oh_len);
2975 num_logops--;
2976 }
2977 return 0;
2978 }
2979
2980 /*
2981 * Process an extent free intent item that was recovered from
2982 * the log. We need to free the extents that it describes.
2983 */
2984 STATIC int
2985 xlog_recover_process_efi(
2986 xfs_mount_t *mp,
2987 xfs_efi_log_item_t *efip)
2988 {
2989 xfs_efd_log_item_t *efdp;
2990 xfs_trans_t *tp;
2991 int i;
2992 int error = 0;
2993 xfs_extent_t *extp;
2994 xfs_fsblock_t startblock_fsb;
2995
2996 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
2997
2998 /*
2999 * First check the validity of the extents described by the
3000 * EFI. If any are bad, then assume that all are bad and
3001 * just toss the EFI.
3002 */
3003 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3004 extp = &(efip->efi_format.efi_extents[i]);
3005 startblock_fsb = XFS_BB_TO_FSB(mp,
3006 XFS_FSB_TO_DADDR(mp, extp->ext_start));
3007 if ((startblock_fsb == 0) ||
3008 (extp->ext_len == 0) ||
3009 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3010 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3011 /*
3012 * This will pull the EFI from the AIL and
3013 * free the memory associated with it.
3014 */
3015 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
3016 xfs_efi_release(efip, efip->efi_format.efi_nextents);
3017 return XFS_ERROR(EIO);
3018 }
3019 }
3020
3021 tp = xfs_trans_alloc(mp, 0);
3022 error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
3023 if (error)
3024 goto abort_error;
3025 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3026
3027 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3028 extp = &(efip->efi_format.efi_extents[i]);
3029 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3030 if (error)
3031 goto abort_error;
3032 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3033 extp->ext_len);
3034 }
3035
3036 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
3037 error = xfs_trans_commit(tp, 0);
3038 return error;
3039
3040 abort_error:
3041 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3042 return error;
3043 }
3044
3045 /*
3046 * When this is called, all of the EFIs which did not have
3047 * corresponding EFDs should be in the AIL. What we do now
3048 * is free the extents associated with each one.
3049 *
3050 * Since we process the EFIs in normal transactions, they
3051 * will be removed at some point after the commit. This prevents
3052 * us from just walking down the list processing each one.
3053 * We'll use a flag in the EFI to skip those that we've already
3054 * processed and use the AIL iteration mechanism's generation
3055 * count to try to speed this up at least a bit.
3056 *
3057 * When we start, we know that the EFIs are the only things in
3058 * the AIL. As we process them, however, other items are added
3059 * to the AIL. Since everything added to the AIL must come after
3060 * everything already in the AIL, we stop processing as soon as
3061 * we see something other than an EFI in the AIL.
3062 */
3063 STATIC int
3064 xlog_recover_process_efis(
3065 struct xlog *log)
3066 {
3067 xfs_log_item_t *lip;
3068 xfs_efi_log_item_t *efip;
3069 int error = 0;
3070 struct xfs_ail_cursor cur;
3071 struct xfs_ail *ailp;
3072
3073 ailp = log->l_ailp;
3074 spin_lock(&ailp->xa_lock);
3075 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3076 while (lip != NULL) {
3077 /*
3078 * We're done when we see something other than an EFI.
3079 * There should be no EFIs left in the AIL now.
3080 */
3081 if (lip->li_type != XFS_LI_EFI) {
3082 #ifdef DEBUG
3083 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
3084 ASSERT(lip->li_type != XFS_LI_EFI);
3085 #endif
3086 break;
3087 }
3088
3089 /*
3090 * Skip EFIs that we've already processed.
3091 */
3092 efip = (xfs_efi_log_item_t *)lip;
3093 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
3094 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3095 continue;
3096 }
3097
3098 spin_unlock(&ailp->xa_lock);
3099 error = xlog_recover_process_efi(log->l_mp, efip);
3100 spin_lock(&ailp->xa_lock);
3101 if (error)
3102 goto out;
3103 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3104 }
3105 out:
3106 xfs_trans_ail_cursor_done(ailp, &cur);
3107 spin_unlock(&ailp->xa_lock);
3108 return error;
3109 }
3110
3111 /*
3112 * This routine performs a transaction to null out a bad inode pointer
3113 * in an agi unlinked inode hash bucket.
3114 */
3115 STATIC void
3116 xlog_recover_clear_agi_bucket(
3117 xfs_mount_t *mp,
3118 xfs_agnumber_t agno,
3119 int bucket)
3120 {
3121 xfs_trans_t *tp;
3122 xfs_agi_t *agi;
3123 xfs_buf_t *agibp;
3124 int offset;
3125 int error;
3126
3127 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3128 error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
3129 0, 0, 0);
3130 if (error)
3131 goto out_abort;
3132
3133 error = xfs_read_agi(mp, tp, agno, &agibp);
3134 if (error)
3135 goto out_abort;
3136
3137 agi = XFS_BUF_TO_AGI(agibp);
3138 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3139 offset = offsetof(xfs_agi_t, agi_unlinked) +
3140 (sizeof(xfs_agino_t) * bucket);
3141 xfs_trans_log_buf(tp, agibp, offset,
3142 (offset + sizeof(xfs_agino_t) - 1));
3143
3144 error = xfs_trans_commit(tp, 0);
3145 if (error)
3146 goto out_error;
3147 return;
3148
3149 out_abort:
3150 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3151 out_error:
3152 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
3153 return;
3154 }
3155
3156 STATIC xfs_agino_t
3157 xlog_recover_process_one_iunlink(
3158 struct xfs_mount *mp,
3159 xfs_agnumber_t agno,
3160 xfs_agino_t agino,
3161 int bucket)
3162 {
3163 struct xfs_buf *ibp;
3164 struct xfs_dinode *dip;
3165 struct xfs_inode *ip;
3166 xfs_ino_t ino;
3167 int error;
3168
3169 ino = XFS_AGINO_TO_INO(mp, agno, agino);
3170 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
3171 if (error)
3172 goto fail;
3173
3174 /*
3175 * Get the on disk inode to find the next inode in the bucket.
3176 */
3177 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
3178 if (error)
3179 goto fail_iput;
3180
3181 ASSERT(ip->i_d.di_nlink == 0);
3182 ASSERT(ip->i_d.di_mode != 0);
3183
3184 /* setup for the next pass */
3185 agino = be32_to_cpu(dip->di_next_unlinked);
3186 xfs_buf_relse(ibp);
3187
3188 /*
3189 * Prevent any DMAPI event from being sent when the reference on
3190 * the inode is dropped.
3191 */
3192 ip->i_d.di_dmevmask = 0;
3193
3194 IRELE(ip);
3195 return agino;
3196
3197 fail_iput:
3198 IRELE(ip);
3199 fail:
3200 /*
3201 * We can't read in the inode this bucket points to, or this inode
3202 * is messed up. Just ditch this bucket of inodes. We will lose
3203 * some inodes and space, but at least we won't hang.
3204 *
3205 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3206 * clear the inode pointer in the bucket.
3207 */
3208 xlog_recover_clear_agi_bucket(mp, agno, bucket);
3209 return NULLAGINO;
3210 }
3211
3212 /*
3213 * xlog_iunlink_recover
3214 *
3215 * This is called during recovery to process any inodes which
3216 * we unlinked but not freed when the system crashed. These
3217 * inodes will be on the lists in the AGI blocks. What we do
3218 * here is scan all the AGIs and fully truncate and free any
3219 * inodes found on the lists. Each inode is removed from the
3220 * lists when it has been fully truncated and is freed. The
3221 * freeing of the inode and its removal from the list must be
3222 * atomic.
3223 */
3224 STATIC void
3225 xlog_recover_process_iunlinks(
3226 struct xlog *log)
3227 {
3228 xfs_mount_t *mp;
3229 xfs_agnumber_t agno;
3230 xfs_agi_t *agi;
3231 xfs_buf_t *agibp;
3232 xfs_agino_t agino;
3233 int bucket;
3234 int error;
3235 uint mp_dmevmask;
3236
3237 mp = log->l_mp;
3238
3239 /*
3240 * Prevent any DMAPI event from being sent while in this function.
3241 */
3242 mp_dmevmask = mp->m_dmevmask;
3243 mp->m_dmevmask = 0;
3244
3245 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3246 /*
3247 * Find the agi for this ag.
3248 */
3249 error = xfs_read_agi(mp, NULL, agno, &agibp);
3250 if (error) {
3251 /*
3252 * AGI is b0rked. Don't process it.
3253 *
3254 * We should probably mark the filesystem as corrupt
3255 * after we've recovered all the ag's we can....
3256 */
3257 continue;
3258 }
3259 /*
3260 * Unlock the buffer so that it can be acquired in the normal
3261 * course of the transaction to truncate and free each inode.
3262 * Because we are not racing with anyone else here for the AGI
3263 * buffer, we don't even need to hold it locked to read the
3264 * initial unlinked bucket entries out of the buffer. We keep
3265 * buffer reference though, so that it stays pinned in memory
3266 * while we need the buffer.
3267 */
3268 agi = XFS_BUF_TO_AGI(agibp);
3269 xfs_buf_unlock(agibp);
3270
3271 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3272 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3273 while (agino != NULLAGINO) {
3274 agino = xlog_recover_process_one_iunlink(mp,
3275 agno, agino, bucket);
3276 }
3277 }
3278 xfs_buf_rele(agibp);
3279 }
3280
3281 mp->m_dmevmask = mp_dmevmask;
3282 }
3283
3284 /*
3285 * Upack the log buffer data and crc check it. If the check fails, issue a
3286 * warning if and only if the CRC in the header is non-zero. This makes the
3287 * check an advisory warning, and the zero CRC check will prevent failure
3288 * warnings from being emitted when upgrading the kernel from one that does not
3289 * add CRCs by default.
3290 *
3291 * When filesystems are CRC enabled, this CRC mismatch becomes a fatal log
3292 * corruption failure
3293 */
3294 STATIC int
3295 xlog_unpack_data_crc(
3296 struct xlog_rec_header *rhead,
3297 xfs_caddr_t dp,
3298 struct xlog *log)
3299 {
3300 __le32 crc;
3301
3302 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
3303 if (crc != rhead->h_crc) {
3304 if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
3305 xfs_alert(log->l_mp,
3306 "log record CRC mismatch: found 0x%x, expected 0x%x.\n",
3307 le32_to_cpu(rhead->h_crc),
3308 le32_to_cpu(crc));
3309 xfs_hex_dump(dp, 32);
3310 }
3311
3312 /*
3313 * If we've detected a log record corruption, then we can't
3314 * recover past this point. Abort recovery if we are enforcing
3315 * CRC protection by punting an error back up the stack.
3316 */
3317 if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
3318 return EFSCORRUPTED;
3319 }
3320
3321 return 0;
3322 }
3323
3324 STATIC int
3325 xlog_unpack_data(
3326 struct xlog_rec_header *rhead,
3327 xfs_caddr_t dp,
3328 struct xlog *log)
3329 {
3330 int i, j, k;
3331 int error;
3332
3333 error = xlog_unpack_data_crc(rhead, dp, log);
3334 if (error)
3335 return error;
3336
3337 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
3338 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3339 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
3340 dp += BBSIZE;
3341 }
3342
3343 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3344 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
3345 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
3346 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3347 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3348 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3349 dp += BBSIZE;
3350 }
3351 }
3352
3353 return 0;
3354 }
3355
3356 STATIC int
3357 xlog_valid_rec_header(
3358 struct xlog *log,
3359 struct xlog_rec_header *rhead,
3360 xfs_daddr_t blkno)
3361 {
3362 int hlen;
3363
3364 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
3365 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3366 XFS_ERRLEVEL_LOW, log->l_mp);
3367 return XFS_ERROR(EFSCORRUPTED);
3368 }
3369 if (unlikely(
3370 (!rhead->h_version ||
3371 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
3372 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
3373 __func__, be32_to_cpu(rhead->h_version));
3374 return XFS_ERROR(EIO);
3375 }
3376
3377 /* LR body must have data or it wouldn't have been written */
3378 hlen = be32_to_cpu(rhead->h_len);
3379 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3380 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3381 XFS_ERRLEVEL_LOW, log->l_mp);
3382 return XFS_ERROR(EFSCORRUPTED);
3383 }
3384 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3385 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3386 XFS_ERRLEVEL_LOW, log->l_mp);
3387 return XFS_ERROR(EFSCORRUPTED);
3388 }
3389 return 0;
3390 }
3391
3392 /*
3393 * Read the log from tail to head and process the log records found.
3394 * Handle the two cases where the tail and head are in the same cycle
3395 * and where the active portion of the log wraps around the end of
3396 * the physical log separately. The pass parameter is passed through
3397 * to the routines called to process the data and is not looked at
3398 * here.
3399 */
3400 STATIC int
3401 xlog_do_recovery_pass(
3402 struct xlog *log,
3403 xfs_daddr_t head_blk,
3404 xfs_daddr_t tail_blk,
3405 int pass)
3406 {
3407 xlog_rec_header_t *rhead;
3408 xfs_daddr_t blk_no;
3409 xfs_caddr_t offset;
3410 xfs_buf_t *hbp, *dbp;
3411 int error = 0, h_size;
3412 int bblks, split_bblks;
3413 int hblks, split_hblks, wrapped_hblks;
3414 struct hlist_head rhash[XLOG_RHASH_SIZE];
3415
3416 ASSERT(head_blk != tail_blk);
3417
3418 /*
3419 * Read the header of the tail block and get the iclog buffer size from
3420 * h_size. Use this to tell how many sectors make up the log header.
3421 */
3422 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3423 /*
3424 * When using variable length iclogs, read first sector of
3425 * iclog header and extract the header size from it. Get a
3426 * new hbp that is the correct size.
3427 */
3428 hbp = xlog_get_bp(log, 1);
3429 if (!hbp)
3430 return ENOMEM;
3431
3432 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
3433 if (error)
3434 goto bread_err1;
3435
3436 rhead = (xlog_rec_header_t *)offset;
3437 error = xlog_valid_rec_header(log, rhead, tail_blk);
3438 if (error)
3439 goto bread_err1;
3440 h_size = be32_to_cpu(rhead->h_size);
3441 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
3442 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3443 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3444 if (h_size % XLOG_HEADER_CYCLE_SIZE)
3445 hblks++;
3446 xlog_put_bp(hbp);
3447 hbp = xlog_get_bp(log, hblks);
3448 } else {
3449 hblks = 1;
3450 }
3451 } else {
3452 ASSERT(log->l_sectBBsize == 1);
3453 hblks = 1;
3454 hbp = xlog_get_bp(log, 1);
3455 h_size = XLOG_BIG_RECORD_BSIZE;
3456 }
3457
3458 if (!hbp)
3459 return ENOMEM;
3460 dbp = xlog_get_bp(log, BTOBB(h_size));
3461 if (!dbp) {
3462 xlog_put_bp(hbp);
3463 return ENOMEM;
3464 }
3465
3466 memset(rhash, 0, sizeof(rhash));
3467 if (tail_blk <= head_blk) {
3468 for (blk_no = tail_blk; blk_no < head_blk; ) {
3469 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3470 if (error)
3471 goto bread_err2;
3472
3473 rhead = (xlog_rec_header_t *)offset;
3474 error = xlog_valid_rec_header(log, rhead, blk_no);
3475 if (error)
3476 goto bread_err2;
3477
3478 /* blocks in data section */
3479 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3480 error = xlog_bread(log, blk_no + hblks, bblks, dbp,
3481 &offset);
3482 if (error)
3483 goto bread_err2;
3484
3485 error = xlog_unpack_data(rhead, offset, log);
3486 if (error)
3487 goto bread_err2;
3488
3489 error = xlog_recover_process_data(log,
3490 rhash, rhead, offset, pass);
3491 if (error)
3492 goto bread_err2;
3493 blk_no += bblks + hblks;
3494 }
3495 } else {
3496 /*
3497 * Perform recovery around the end of the physical log.
3498 * When the head is not on the same cycle number as the tail,
3499 * we can't do a sequential recovery as above.
3500 */
3501 blk_no = tail_blk;
3502 while (blk_no < log->l_logBBsize) {
3503 /*
3504 * Check for header wrapping around physical end-of-log
3505 */
3506 offset = hbp->b_addr;
3507 split_hblks = 0;
3508 wrapped_hblks = 0;
3509 if (blk_no + hblks <= log->l_logBBsize) {
3510 /* Read header in one read */
3511 error = xlog_bread(log, blk_no, hblks, hbp,
3512 &offset);
3513 if (error)
3514 goto bread_err2;
3515 } else {
3516 /* This LR is split across physical log end */
3517 if (blk_no != log->l_logBBsize) {
3518 /* some data before physical log end */
3519 ASSERT(blk_no <= INT_MAX);
3520 split_hblks = log->l_logBBsize - (int)blk_no;
3521 ASSERT(split_hblks > 0);
3522 error = xlog_bread(log, blk_no,
3523 split_hblks, hbp,
3524 &offset);
3525 if (error)
3526 goto bread_err2;
3527 }
3528
3529 /*
3530 * Note: this black magic still works with
3531 * large sector sizes (non-512) only because:
3532 * - we increased the buffer size originally
3533 * by 1 sector giving us enough extra space
3534 * for the second read;
3535 * - the log start is guaranteed to be sector
3536 * aligned;
3537 * - we read the log end (LR header start)
3538 * _first_, then the log start (LR header end)
3539 * - order is important.
3540 */
3541 wrapped_hblks = hblks - split_hblks;
3542 error = xlog_bread_offset(log, 0,
3543 wrapped_hblks, hbp,
3544 offset + BBTOB(split_hblks));
3545 if (error)
3546 goto bread_err2;
3547 }
3548 rhead = (xlog_rec_header_t *)offset;
3549 error = xlog_valid_rec_header(log, rhead,
3550 split_hblks ? blk_no : 0);
3551 if (error)
3552 goto bread_err2;
3553
3554 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3555 blk_no += hblks;
3556
3557 /* Read in data for log record */
3558 if (blk_no + bblks <= log->l_logBBsize) {
3559 error = xlog_bread(log, blk_no, bblks, dbp,
3560 &offset);
3561 if (error)
3562 goto bread_err2;
3563 } else {
3564 /* This log record is split across the
3565 * physical end of log */
3566 offset = dbp->b_addr;
3567 split_bblks = 0;
3568 if (blk_no != log->l_logBBsize) {
3569 /* some data is before the physical
3570 * end of log */
3571 ASSERT(!wrapped_hblks);
3572 ASSERT(blk_no <= INT_MAX);
3573 split_bblks =
3574 log->l_logBBsize - (int)blk_no;
3575 ASSERT(split_bblks > 0);
3576 error = xlog_bread(log, blk_no,
3577 split_bblks, dbp,
3578 &offset);
3579 if (error)
3580 goto bread_err2;
3581 }
3582
3583 /*
3584 * Note: this black magic still works with
3585 * large sector sizes (non-512) only because:
3586 * - we increased the buffer size originally
3587 * by 1 sector giving us enough extra space
3588 * for the second read;
3589 * - the log start is guaranteed to be sector
3590 * aligned;
3591 * - we read the log end (LR header start)
3592 * _first_, then the log start (LR header end)
3593 * - order is important.
3594 */
3595 error = xlog_bread_offset(log, 0,
3596 bblks - split_bblks, dbp,
3597 offset + BBTOB(split_bblks));
3598 if (error)
3599 goto bread_err2;
3600 }
3601
3602 error = xlog_unpack_data(rhead, offset, log);
3603 if (error)
3604 goto bread_err2;
3605
3606 error = xlog_recover_process_data(log, rhash,
3607 rhead, offset, pass);
3608 if (error)
3609 goto bread_err2;
3610 blk_no += bblks;
3611 }
3612
3613 ASSERT(blk_no >= log->l_logBBsize);
3614 blk_no -= log->l_logBBsize;
3615
3616 /* read first part of physical log */
3617 while (blk_no < head_blk) {
3618 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3619 if (error)
3620 goto bread_err2;
3621
3622 rhead = (xlog_rec_header_t *)offset;
3623 error = xlog_valid_rec_header(log, rhead, blk_no);
3624 if (error)
3625 goto bread_err2;
3626
3627 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3628 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3629 &offset);
3630 if (error)
3631 goto bread_err2;
3632
3633 error = xlog_unpack_data(rhead, offset, log);
3634 if (error)
3635 goto bread_err2;
3636
3637 error = xlog_recover_process_data(log, rhash,
3638 rhead, offset, pass);
3639 if (error)
3640 goto bread_err2;
3641 blk_no += bblks + hblks;
3642 }
3643 }
3644
3645 bread_err2:
3646 xlog_put_bp(dbp);
3647 bread_err1:
3648 xlog_put_bp(hbp);
3649 return error;
3650 }
3651
3652 /*
3653 * Do the recovery of the log. We actually do this in two phases.
3654 * The two passes are necessary in order to implement the function
3655 * of cancelling a record written into the log. The first pass
3656 * determines those things which have been cancelled, and the
3657 * second pass replays log items normally except for those which
3658 * have been cancelled. The handling of the replay and cancellations
3659 * takes place in the log item type specific routines.
3660 *
3661 * The table of items which have cancel records in the log is allocated
3662 * and freed at this level, since only here do we know when all of
3663 * the log recovery has been completed.
3664 */
3665 STATIC int
3666 xlog_do_log_recovery(
3667 struct xlog *log,
3668 xfs_daddr_t head_blk,
3669 xfs_daddr_t tail_blk)
3670 {
3671 int error, i;
3672
3673 ASSERT(head_blk != tail_blk);
3674
3675 /*
3676 * First do a pass to find all of the cancelled buf log items.
3677 * Store them in the buf_cancel_table for use in the second pass.
3678 */
3679 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
3680 sizeof(struct list_head),
3681 KM_SLEEP);
3682 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3683 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
3684
3685 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3686 XLOG_RECOVER_PASS1);
3687 if (error != 0) {
3688 kmem_free(log->l_buf_cancel_table);
3689 log->l_buf_cancel_table = NULL;
3690 return error;
3691 }
3692 /*
3693 * Then do a second pass to actually recover the items in the log.
3694 * When it is complete free the table of buf cancel items.
3695 */
3696 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3697 XLOG_RECOVER_PASS2);
3698 #ifdef DEBUG
3699 if (!error) {
3700 int i;
3701
3702 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3703 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
3704 }
3705 #endif /* DEBUG */
3706
3707 kmem_free(log->l_buf_cancel_table);
3708 log->l_buf_cancel_table = NULL;
3709
3710 return error;
3711 }
3712
3713 /*
3714 * Do the actual recovery
3715 */
3716 STATIC int
3717 xlog_do_recover(
3718 struct xlog *log,
3719 xfs_daddr_t head_blk,
3720 xfs_daddr_t tail_blk)
3721 {
3722 int error;
3723 xfs_buf_t *bp;
3724 xfs_sb_t *sbp;
3725
3726 /*
3727 * First replay the images in the log.
3728 */
3729 error = xlog_do_log_recovery(log, head_blk, tail_blk);
3730 if (error)
3731 return error;
3732
3733 /*
3734 * If IO errors happened during recovery, bail out.
3735 */
3736 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3737 return (EIO);
3738 }
3739
3740 /*
3741 * We now update the tail_lsn since much of the recovery has completed
3742 * and there may be space available to use. If there were no extent
3743 * or iunlinks, we can free up the entire log and set the tail_lsn to
3744 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3745 * lsn of the last known good LR on disk. If there are extent frees
3746 * or iunlinks they will have some entries in the AIL; so we look at
3747 * the AIL to determine how to set the tail_lsn.
3748 */
3749 xlog_assign_tail_lsn(log->l_mp);
3750
3751 /*
3752 * Now that we've finished replaying all buffer and inode
3753 * updates, re-read in the superblock and reverify it.
3754 */
3755 bp = xfs_getsb(log->l_mp, 0);
3756 XFS_BUF_UNDONE(bp);
3757 ASSERT(!(XFS_BUF_ISWRITE(bp)));
3758 XFS_BUF_READ(bp);
3759 XFS_BUF_UNASYNC(bp);
3760 bp->b_ops = &xfs_sb_buf_ops;
3761 xfsbdstrat(log->l_mp, bp);
3762 error = xfs_buf_iowait(bp);
3763 if (error) {
3764 xfs_buf_ioerror_alert(bp, __func__);
3765 ASSERT(0);
3766 xfs_buf_relse(bp);
3767 return error;
3768 }
3769
3770 /* Convert superblock from on-disk format */
3771 sbp = &log->l_mp->m_sb;
3772 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
3773 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3774 ASSERT(xfs_sb_good_version(sbp));
3775 xfs_buf_relse(bp);
3776
3777 /* We've re-read the superblock so re-initialize per-cpu counters */
3778 xfs_icsb_reinit_counters(log->l_mp);
3779
3780 xlog_recover_check_summary(log);
3781
3782 /* Normal transactions can now occur */
3783 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3784 return 0;
3785 }
3786
3787 /*
3788 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3789 *
3790 * Return error or zero.
3791 */
3792 int
3793 xlog_recover(
3794 struct xlog *log)
3795 {
3796 xfs_daddr_t head_blk, tail_blk;
3797 int error;
3798
3799 /* find the tail of the log */
3800 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
3801 return error;
3802
3803 if (tail_blk != head_blk) {
3804 /* There used to be a comment here:
3805 *
3806 * disallow recovery on read-only mounts. note -- mount
3807 * checks for ENOSPC and turns it into an intelligent
3808 * error message.
3809 * ...but this is no longer true. Now, unless you specify
3810 * NORECOVERY (in which case this function would never be
3811 * called), we just go ahead and recover. We do this all
3812 * under the vfs layer, so we can get away with it unless
3813 * the device itself is read-only, in which case we fail.
3814 */
3815 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3816 return error;
3817 }
3818
3819 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
3820 log->l_mp->m_logname ? log->l_mp->m_logname
3821 : "internal");
3822
3823 error = xlog_do_recover(log, head_blk, tail_blk);
3824 log->l_flags |= XLOG_RECOVERY_NEEDED;
3825 }
3826 return error;
3827 }
3828
3829 /*
3830 * In the first part of recovery we replay inodes and buffers and build
3831 * up the list of extent free items which need to be processed. Here
3832 * we process the extent free items and clean up the on disk unlinked
3833 * inode lists. This is separated from the first part of recovery so
3834 * that the root and real-time bitmap inodes can be read in from disk in
3835 * between the two stages. This is necessary so that we can free space
3836 * in the real-time portion of the file system.
3837 */
3838 int
3839 xlog_recover_finish(
3840 struct xlog *log)
3841 {
3842 /*
3843 * Now we're ready to do the transactions needed for the
3844 * rest of recovery. Start with completing all the extent
3845 * free intent records and then process the unlinked inode
3846 * lists. At this point, we essentially run in normal mode
3847 * except that we're still performing recovery actions
3848 * rather than accepting new requests.
3849 */
3850 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3851 int error;
3852 error = xlog_recover_process_efis(log);
3853 if (error) {
3854 xfs_alert(log->l_mp, "Failed to recover EFIs");
3855 return error;
3856 }
3857 /*
3858 * Sync the log to get all the EFIs out of the AIL.
3859 * This isn't absolutely necessary, but it helps in
3860 * case the unlink transactions would have problems
3861 * pushing the EFIs out of the way.
3862 */
3863 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3864
3865 xlog_recover_process_iunlinks(log);
3866
3867 xlog_recover_check_summary(log);
3868
3869 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
3870 log->l_mp->m_logname ? log->l_mp->m_logname
3871 : "internal");
3872 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3873 } else {
3874 xfs_info(log->l_mp, "Ending clean mount");
3875 }
3876 return 0;
3877 }
3878
3879
3880 #if defined(DEBUG)
3881 /*
3882 * Read all of the agf and agi counters and check that they
3883 * are consistent with the superblock counters.
3884 */
3885 void
3886 xlog_recover_check_summary(
3887 struct xlog *log)
3888 {
3889 xfs_mount_t *mp;
3890 xfs_agf_t *agfp;
3891 xfs_buf_t *agfbp;
3892 xfs_buf_t *agibp;
3893 xfs_agnumber_t agno;
3894 __uint64_t freeblks;
3895 __uint64_t itotal;
3896 __uint64_t ifree;
3897 int error;
3898
3899 mp = log->l_mp;
3900
3901 freeblks = 0LL;
3902 itotal = 0LL;
3903 ifree = 0LL;
3904 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3905 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
3906 if (error) {
3907 xfs_alert(mp, "%s agf read failed agno %d error %d",
3908 __func__, agno, error);
3909 } else {
3910 agfp = XFS_BUF_TO_AGF(agfbp);
3911 freeblks += be32_to_cpu(agfp->agf_freeblks) +
3912 be32_to_cpu(agfp->agf_flcount);
3913 xfs_buf_relse(agfbp);
3914 }
3915
3916 error = xfs_read_agi(mp, NULL, agno, &agibp);
3917 if (error) {
3918 xfs_alert(mp, "%s agi read failed agno %d error %d",
3919 __func__, agno, error);
3920 } else {
3921 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
3922
3923 itotal += be32_to_cpu(agi->agi_count);
3924 ifree += be32_to_cpu(agi->agi_freecount);
3925 xfs_buf_relse(agibp);
3926 }
3927 }
3928 }
3929 #endif /* DEBUG */
This page took 0.138959 seconds and 5 git commands to generate.