xfs: rename xfs_buf_get_nodaddr to be more appropriate
[deliverable/linux.git] / fs / xfs / xfs_log_recover.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_error.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_dinode.h"
33 #include "xfs_inode.h"
34 #include "xfs_inode_item.h"
35 #include "xfs_alloc.h"
36 #include "xfs_ialloc.h"
37 #include "xfs_log_priv.h"
38 #include "xfs_buf_item.h"
39 #include "xfs_log_recover.h"
40 #include "xfs_extfree_item.h"
41 #include "xfs_trans_priv.h"
42 #include "xfs_quota.h"
43 #include "xfs_rw.h"
44 #include "xfs_utils.h"
45 #include "xfs_trace.h"
46
47 STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
48 STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
49 #if defined(DEBUG)
50 STATIC void xlog_recover_check_summary(xlog_t *);
51 #else
52 #define xlog_recover_check_summary(log)
53 #endif
54
55 /*
56 * Sector aligned buffer routines for buffer create/read/write/access
57 */
58
59 /*
60 * Verify the given count of basic blocks is valid number of blocks
61 * to specify for an operation involving the given XFS log buffer.
62 * Returns nonzero if the count is valid, 0 otherwise.
63 */
64
65 static inline int
66 xlog_buf_bbcount_valid(
67 xlog_t *log,
68 int bbcount)
69 {
70 return bbcount > 0 && bbcount <= log->l_logBBsize;
71 }
72
73 /*
74 * Allocate a buffer to hold log data. The buffer needs to be able
75 * to map to a range of nbblks basic blocks at any valid (basic
76 * block) offset within the log.
77 */
78 STATIC xfs_buf_t *
79 xlog_get_bp(
80 xlog_t *log,
81 int nbblks)
82 {
83 if (!xlog_buf_bbcount_valid(log, nbblks)) {
84 xlog_warn("XFS: Invalid block length (0x%x) given for buffer",
85 nbblks);
86 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
87 return NULL;
88 }
89
90 /*
91 * We do log I/O in units of log sectors (a power-of-2
92 * multiple of the basic block size), so we round up the
93 * requested size to acommodate the basic blocks required
94 * for complete log sectors.
95 *
96 * In addition, the buffer may be used for a non-sector-
97 * aligned block offset, in which case an I/O of the
98 * requested size could extend beyond the end of the
99 * buffer. If the requested size is only 1 basic block it
100 * will never straddle a sector boundary, so this won't be
101 * an issue. Nor will this be a problem if the log I/O is
102 * done in basic blocks (sector size 1). But otherwise we
103 * extend the buffer by one extra log sector to ensure
104 * there's space to accomodate this possiblility.
105 */
106 if (nbblks > 1 && log->l_sectBBsize > 1)
107 nbblks += log->l_sectBBsize;
108 nbblks = round_up(nbblks, log->l_sectBBsize);
109
110 return xfs_buf_get_uncached(log->l_mp->m_logdev_targp,
111 BBTOB(nbblks), 0);
112 }
113
114 STATIC void
115 xlog_put_bp(
116 xfs_buf_t *bp)
117 {
118 xfs_buf_free(bp);
119 }
120
121 /*
122 * Return the address of the start of the given block number's data
123 * in a log buffer. The buffer covers a log sector-aligned region.
124 */
125 STATIC xfs_caddr_t
126 xlog_align(
127 xlog_t *log,
128 xfs_daddr_t blk_no,
129 int nbblks,
130 xfs_buf_t *bp)
131 {
132 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
133
134 ASSERT(BBTOB(offset + nbblks) <= XFS_BUF_SIZE(bp));
135 return XFS_BUF_PTR(bp) + BBTOB(offset);
136 }
137
138
139 /*
140 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
141 */
142 STATIC int
143 xlog_bread_noalign(
144 xlog_t *log,
145 xfs_daddr_t blk_no,
146 int nbblks,
147 xfs_buf_t *bp)
148 {
149 int error;
150
151 if (!xlog_buf_bbcount_valid(log, nbblks)) {
152 xlog_warn("XFS: Invalid block length (0x%x) given for buffer",
153 nbblks);
154 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
155 return EFSCORRUPTED;
156 }
157
158 blk_no = round_down(blk_no, log->l_sectBBsize);
159 nbblks = round_up(nbblks, log->l_sectBBsize);
160
161 ASSERT(nbblks > 0);
162 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
163
164 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
165 XFS_BUF_READ(bp);
166 XFS_BUF_BUSY(bp);
167 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
168 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
169
170 xfsbdstrat(log->l_mp, bp);
171 error = xfs_iowait(bp);
172 if (error)
173 xfs_ioerror_alert("xlog_bread", log->l_mp,
174 bp, XFS_BUF_ADDR(bp));
175 return error;
176 }
177
178 STATIC int
179 xlog_bread(
180 xlog_t *log,
181 xfs_daddr_t blk_no,
182 int nbblks,
183 xfs_buf_t *bp,
184 xfs_caddr_t *offset)
185 {
186 int error;
187
188 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
189 if (error)
190 return error;
191
192 *offset = xlog_align(log, blk_no, nbblks, bp);
193 return 0;
194 }
195
196 /*
197 * Write out the buffer at the given block for the given number of blocks.
198 * The buffer is kept locked across the write and is returned locked.
199 * This can only be used for synchronous log writes.
200 */
201 STATIC int
202 xlog_bwrite(
203 xlog_t *log,
204 xfs_daddr_t blk_no,
205 int nbblks,
206 xfs_buf_t *bp)
207 {
208 int error;
209
210 if (!xlog_buf_bbcount_valid(log, nbblks)) {
211 xlog_warn("XFS: Invalid block length (0x%x) given for buffer",
212 nbblks);
213 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
214 return EFSCORRUPTED;
215 }
216
217 blk_no = round_down(blk_no, log->l_sectBBsize);
218 nbblks = round_up(nbblks, log->l_sectBBsize);
219
220 ASSERT(nbblks > 0);
221 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
222
223 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
224 XFS_BUF_ZEROFLAGS(bp);
225 XFS_BUF_BUSY(bp);
226 XFS_BUF_HOLD(bp);
227 XFS_BUF_PSEMA(bp, PRIBIO);
228 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
229 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
230
231 if ((error = xfs_bwrite(log->l_mp, bp)))
232 xfs_ioerror_alert("xlog_bwrite", log->l_mp,
233 bp, XFS_BUF_ADDR(bp));
234 return error;
235 }
236
237 #ifdef DEBUG
238 /*
239 * dump debug superblock and log record information
240 */
241 STATIC void
242 xlog_header_check_dump(
243 xfs_mount_t *mp,
244 xlog_rec_header_t *head)
245 {
246 cmn_err(CE_DEBUG, "%s: SB : uuid = %pU, fmt = %d\n",
247 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
248 cmn_err(CE_DEBUG, " log : uuid = %pU, fmt = %d\n",
249 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
250 }
251 #else
252 #define xlog_header_check_dump(mp, head)
253 #endif
254
255 /*
256 * check log record header for recovery
257 */
258 STATIC int
259 xlog_header_check_recover(
260 xfs_mount_t *mp,
261 xlog_rec_header_t *head)
262 {
263 ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
264
265 /*
266 * IRIX doesn't write the h_fmt field and leaves it zeroed
267 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
268 * a dirty log created in IRIX.
269 */
270 if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) {
271 xlog_warn(
272 "XFS: dirty log written in incompatible format - can't recover");
273 xlog_header_check_dump(mp, head);
274 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
275 XFS_ERRLEVEL_HIGH, mp);
276 return XFS_ERROR(EFSCORRUPTED);
277 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
278 xlog_warn(
279 "XFS: dirty log entry has mismatched uuid - can't recover");
280 xlog_header_check_dump(mp, head);
281 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
282 XFS_ERRLEVEL_HIGH, mp);
283 return XFS_ERROR(EFSCORRUPTED);
284 }
285 return 0;
286 }
287
288 /*
289 * read the head block of the log and check the header
290 */
291 STATIC int
292 xlog_header_check_mount(
293 xfs_mount_t *mp,
294 xlog_rec_header_t *head)
295 {
296 ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
297
298 if (uuid_is_nil(&head->h_fs_uuid)) {
299 /*
300 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
301 * h_fs_uuid is nil, we assume this log was last mounted
302 * by IRIX and continue.
303 */
304 xlog_warn("XFS: nil uuid in log - IRIX style log");
305 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
306 xlog_warn("XFS: log has mismatched uuid - can't recover");
307 xlog_header_check_dump(mp, head);
308 XFS_ERROR_REPORT("xlog_header_check_mount",
309 XFS_ERRLEVEL_HIGH, mp);
310 return XFS_ERROR(EFSCORRUPTED);
311 }
312 return 0;
313 }
314
315 STATIC void
316 xlog_recover_iodone(
317 struct xfs_buf *bp)
318 {
319 if (XFS_BUF_GETERROR(bp)) {
320 /*
321 * We're not going to bother about retrying
322 * this during recovery. One strike!
323 */
324 xfs_ioerror_alert("xlog_recover_iodone",
325 bp->b_mount, bp, XFS_BUF_ADDR(bp));
326 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
327 }
328 bp->b_mount = NULL;
329 XFS_BUF_CLR_IODONE_FUNC(bp);
330 xfs_biodone(bp);
331 }
332
333 /*
334 * This routine finds (to an approximation) the first block in the physical
335 * log which contains the given cycle. It uses a binary search algorithm.
336 * Note that the algorithm can not be perfect because the disk will not
337 * necessarily be perfect.
338 */
339 STATIC int
340 xlog_find_cycle_start(
341 xlog_t *log,
342 xfs_buf_t *bp,
343 xfs_daddr_t first_blk,
344 xfs_daddr_t *last_blk,
345 uint cycle)
346 {
347 xfs_caddr_t offset;
348 xfs_daddr_t mid_blk;
349 xfs_daddr_t end_blk;
350 uint mid_cycle;
351 int error;
352
353 end_blk = *last_blk;
354 mid_blk = BLK_AVG(first_blk, end_blk);
355 while (mid_blk != first_blk && mid_blk != end_blk) {
356 error = xlog_bread(log, mid_blk, 1, bp, &offset);
357 if (error)
358 return error;
359 mid_cycle = xlog_get_cycle(offset);
360 if (mid_cycle == cycle)
361 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
362 else
363 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
364 mid_blk = BLK_AVG(first_blk, end_blk);
365 }
366 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
367 (mid_blk == end_blk && mid_blk-1 == first_blk));
368
369 *last_blk = end_blk;
370
371 return 0;
372 }
373
374 /*
375 * Check that a range of blocks does not contain stop_on_cycle_no.
376 * Fill in *new_blk with the block offset where such a block is
377 * found, or with -1 (an invalid block number) if there is no such
378 * block in the range. The scan needs to occur from front to back
379 * and the pointer into the region must be updated since a later
380 * routine will need to perform another test.
381 */
382 STATIC int
383 xlog_find_verify_cycle(
384 xlog_t *log,
385 xfs_daddr_t start_blk,
386 int nbblks,
387 uint stop_on_cycle_no,
388 xfs_daddr_t *new_blk)
389 {
390 xfs_daddr_t i, j;
391 uint cycle;
392 xfs_buf_t *bp;
393 xfs_daddr_t bufblks;
394 xfs_caddr_t buf = NULL;
395 int error = 0;
396
397 /*
398 * Greedily allocate a buffer big enough to handle the full
399 * range of basic blocks we'll be examining. If that fails,
400 * try a smaller size. We need to be able to read at least
401 * a log sector, or we're out of luck.
402 */
403 bufblks = 1 << ffs(nbblks);
404 while (!(bp = xlog_get_bp(log, bufblks))) {
405 bufblks >>= 1;
406 if (bufblks < log->l_sectBBsize)
407 return ENOMEM;
408 }
409
410 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
411 int bcount;
412
413 bcount = min(bufblks, (start_blk + nbblks - i));
414
415 error = xlog_bread(log, i, bcount, bp, &buf);
416 if (error)
417 goto out;
418
419 for (j = 0; j < bcount; j++) {
420 cycle = xlog_get_cycle(buf);
421 if (cycle == stop_on_cycle_no) {
422 *new_blk = i+j;
423 goto out;
424 }
425
426 buf += BBSIZE;
427 }
428 }
429
430 *new_blk = -1;
431
432 out:
433 xlog_put_bp(bp);
434 return error;
435 }
436
437 /*
438 * Potentially backup over partial log record write.
439 *
440 * In the typical case, last_blk is the number of the block directly after
441 * a good log record. Therefore, we subtract one to get the block number
442 * of the last block in the given buffer. extra_bblks contains the number
443 * of blocks we would have read on a previous read. This happens when the
444 * last log record is split over the end of the physical log.
445 *
446 * extra_bblks is the number of blocks potentially verified on a previous
447 * call to this routine.
448 */
449 STATIC int
450 xlog_find_verify_log_record(
451 xlog_t *log,
452 xfs_daddr_t start_blk,
453 xfs_daddr_t *last_blk,
454 int extra_bblks)
455 {
456 xfs_daddr_t i;
457 xfs_buf_t *bp;
458 xfs_caddr_t offset = NULL;
459 xlog_rec_header_t *head = NULL;
460 int error = 0;
461 int smallmem = 0;
462 int num_blks = *last_blk - start_blk;
463 int xhdrs;
464
465 ASSERT(start_blk != 0 || *last_blk != start_blk);
466
467 if (!(bp = xlog_get_bp(log, num_blks))) {
468 if (!(bp = xlog_get_bp(log, 1)))
469 return ENOMEM;
470 smallmem = 1;
471 } else {
472 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
473 if (error)
474 goto out;
475 offset += ((num_blks - 1) << BBSHIFT);
476 }
477
478 for (i = (*last_blk) - 1; i >= 0; i--) {
479 if (i < start_blk) {
480 /* valid log record not found */
481 xlog_warn(
482 "XFS: Log inconsistent (didn't find previous header)");
483 ASSERT(0);
484 error = XFS_ERROR(EIO);
485 goto out;
486 }
487
488 if (smallmem) {
489 error = xlog_bread(log, i, 1, bp, &offset);
490 if (error)
491 goto out;
492 }
493
494 head = (xlog_rec_header_t *)offset;
495
496 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno))
497 break;
498
499 if (!smallmem)
500 offset -= BBSIZE;
501 }
502
503 /*
504 * We hit the beginning of the physical log & still no header. Return
505 * to caller. If caller can handle a return of -1, then this routine
506 * will be called again for the end of the physical log.
507 */
508 if (i == -1) {
509 error = -1;
510 goto out;
511 }
512
513 /*
514 * We have the final block of the good log (the first block
515 * of the log record _before_ the head. So we check the uuid.
516 */
517 if ((error = xlog_header_check_mount(log->l_mp, head)))
518 goto out;
519
520 /*
521 * We may have found a log record header before we expected one.
522 * last_blk will be the 1st block # with a given cycle #. We may end
523 * up reading an entire log record. In this case, we don't want to
524 * reset last_blk. Only when last_blk points in the middle of a log
525 * record do we update last_blk.
526 */
527 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
528 uint h_size = be32_to_cpu(head->h_size);
529
530 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
531 if (h_size % XLOG_HEADER_CYCLE_SIZE)
532 xhdrs++;
533 } else {
534 xhdrs = 1;
535 }
536
537 if (*last_blk - i + extra_bblks !=
538 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
539 *last_blk = i;
540
541 out:
542 xlog_put_bp(bp);
543 return error;
544 }
545
546 /*
547 * Head is defined to be the point of the log where the next log write
548 * write could go. This means that incomplete LR writes at the end are
549 * eliminated when calculating the head. We aren't guaranteed that previous
550 * LR have complete transactions. We only know that a cycle number of
551 * current cycle number -1 won't be present in the log if we start writing
552 * from our current block number.
553 *
554 * last_blk contains the block number of the first block with a given
555 * cycle number.
556 *
557 * Return: zero if normal, non-zero if error.
558 */
559 STATIC int
560 xlog_find_head(
561 xlog_t *log,
562 xfs_daddr_t *return_head_blk)
563 {
564 xfs_buf_t *bp;
565 xfs_caddr_t offset;
566 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
567 int num_scan_bblks;
568 uint first_half_cycle, last_half_cycle;
569 uint stop_on_cycle;
570 int error, log_bbnum = log->l_logBBsize;
571
572 /* Is the end of the log device zeroed? */
573 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
574 *return_head_blk = first_blk;
575
576 /* Is the whole lot zeroed? */
577 if (!first_blk) {
578 /* Linux XFS shouldn't generate totally zeroed logs -
579 * mkfs etc write a dummy unmount record to a fresh
580 * log so we can store the uuid in there
581 */
582 xlog_warn("XFS: totally zeroed log");
583 }
584
585 return 0;
586 } else if (error) {
587 xlog_warn("XFS: empty log check failed");
588 return error;
589 }
590
591 first_blk = 0; /* get cycle # of 1st block */
592 bp = xlog_get_bp(log, 1);
593 if (!bp)
594 return ENOMEM;
595
596 error = xlog_bread(log, 0, 1, bp, &offset);
597 if (error)
598 goto bp_err;
599
600 first_half_cycle = xlog_get_cycle(offset);
601
602 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
603 error = xlog_bread(log, last_blk, 1, bp, &offset);
604 if (error)
605 goto bp_err;
606
607 last_half_cycle = xlog_get_cycle(offset);
608 ASSERT(last_half_cycle != 0);
609
610 /*
611 * If the 1st half cycle number is equal to the last half cycle number,
612 * then the entire log is stamped with the same cycle number. In this
613 * case, head_blk can't be set to zero (which makes sense). The below
614 * math doesn't work out properly with head_blk equal to zero. Instead,
615 * we set it to log_bbnum which is an invalid block number, but this
616 * value makes the math correct. If head_blk doesn't changed through
617 * all the tests below, *head_blk is set to zero at the very end rather
618 * than log_bbnum. In a sense, log_bbnum and zero are the same block
619 * in a circular file.
620 */
621 if (first_half_cycle == last_half_cycle) {
622 /*
623 * In this case we believe that the entire log should have
624 * cycle number last_half_cycle. We need to scan backwards
625 * from the end verifying that there are no holes still
626 * containing last_half_cycle - 1. If we find such a hole,
627 * then the start of that hole will be the new head. The
628 * simple case looks like
629 * x | x ... | x - 1 | x
630 * Another case that fits this picture would be
631 * x | x + 1 | x ... | x
632 * In this case the head really is somewhere at the end of the
633 * log, as one of the latest writes at the beginning was
634 * incomplete.
635 * One more case is
636 * x | x + 1 | x ... | x - 1 | x
637 * This is really the combination of the above two cases, and
638 * the head has to end up at the start of the x-1 hole at the
639 * end of the log.
640 *
641 * In the 256k log case, we will read from the beginning to the
642 * end of the log and search for cycle numbers equal to x-1.
643 * We don't worry about the x+1 blocks that we encounter,
644 * because we know that they cannot be the head since the log
645 * started with x.
646 */
647 head_blk = log_bbnum;
648 stop_on_cycle = last_half_cycle - 1;
649 } else {
650 /*
651 * In this case we want to find the first block with cycle
652 * number matching last_half_cycle. We expect the log to be
653 * some variation on
654 * x + 1 ... | x ... | x
655 * The first block with cycle number x (last_half_cycle) will
656 * be where the new head belongs. First we do a binary search
657 * for the first occurrence of last_half_cycle. The binary
658 * search may not be totally accurate, so then we scan back
659 * from there looking for occurrences of last_half_cycle before
660 * us. If that backwards scan wraps around the beginning of
661 * the log, then we look for occurrences of last_half_cycle - 1
662 * at the end of the log. The cases we're looking for look
663 * like
664 * v binary search stopped here
665 * x + 1 ... | x | x + 1 | x ... | x
666 * ^ but we want to locate this spot
667 * or
668 * <---------> less than scan distance
669 * x + 1 ... | x ... | x - 1 | x
670 * ^ we want to locate this spot
671 */
672 stop_on_cycle = last_half_cycle;
673 if ((error = xlog_find_cycle_start(log, bp, first_blk,
674 &head_blk, last_half_cycle)))
675 goto bp_err;
676 }
677
678 /*
679 * Now validate the answer. Scan back some number of maximum possible
680 * blocks and make sure each one has the expected cycle number. The
681 * maximum is determined by the total possible amount of buffering
682 * in the in-core log. The following number can be made tighter if
683 * we actually look at the block size of the filesystem.
684 */
685 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
686 if (head_blk >= num_scan_bblks) {
687 /*
688 * We are guaranteed that the entire check can be performed
689 * in one buffer.
690 */
691 start_blk = head_blk - num_scan_bblks;
692 if ((error = xlog_find_verify_cycle(log,
693 start_blk, num_scan_bblks,
694 stop_on_cycle, &new_blk)))
695 goto bp_err;
696 if (new_blk != -1)
697 head_blk = new_blk;
698 } else { /* need to read 2 parts of log */
699 /*
700 * We are going to scan backwards in the log in two parts.
701 * First we scan the physical end of the log. In this part
702 * of the log, we are looking for blocks with cycle number
703 * last_half_cycle - 1.
704 * If we find one, then we know that the log starts there, as
705 * we've found a hole that didn't get written in going around
706 * the end of the physical log. The simple case for this is
707 * x + 1 ... | x ... | x - 1 | x
708 * <---------> less than scan distance
709 * If all of the blocks at the end of the log have cycle number
710 * last_half_cycle, then we check the blocks at the start of
711 * the log looking for occurrences of last_half_cycle. If we
712 * find one, then our current estimate for the location of the
713 * first occurrence of last_half_cycle is wrong and we move
714 * back to the hole we've found. This case looks like
715 * x + 1 ... | x | x + 1 | x ...
716 * ^ binary search stopped here
717 * Another case we need to handle that only occurs in 256k
718 * logs is
719 * x + 1 ... | x ... | x+1 | x ...
720 * ^ binary search stops here
721 * In a 256k log, the scan at the end of the log will see the
722 * x + 1 blocks. We need to skip past those since that is
723 * certainly not the head of the log. By searching for
724 * last_half_cycle-1 we accomplish that.
725 */
726 ASSERT(head_blk <= INT_MAX &&
727 (xfs_daddr_t) num_scan_bblks >= head_blk);
728 start_blk = log_bbnum - (num_scan_bblks - head_blk);
729 if ((error = xlog_find_verify_cycle(log, start_blk,
730 num_scan_bblks - (int)head_blk,
731 (stop_on_cycle - 1), &new_blk)))
732 goto bp_err;
733 if (new_blk != -1) {
734 head_blk = new_blk;
735 goto validate_head;
736 }
737
738 /*
739 * Scan beginning of log now. The last part of the physical
740 * log is good. This scan needs to verify that it doesn't find
741 * the last_half_cycle.
742 */
743 start_blk = 0;
744 ASSERT(head_blk <= INT_MAX);
745 if ((error = xlog_find_verify_cycle(log,
746 start_blk, (int)head_blk,
747 stop_on_cycle, &new_blk)))
748 goto bp_err;
749 if (new_blk != -1)
750 head_blk = new_blk;
751 }
752
753 validate_head:
754 /*
755 * Now we need to make sure head_blk is not pointing to a block in
756 * the middle of a log record.
757 */
758 num_scan_bblks = XLOG_REC_SHIFT(log);
759 if (head_blk >= num_scan_bblks) {
760 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
761
762 /* start ptr at last block ptr before head_blk */
763 if ((error = xlog_find_verify_log_record(log, start_blk,
764 &head_blk, 0)) == -1) {
765 error = XFS_ERROR(EIO);
766 goto bp_err;
767 } else if (error)
768 goto bp_err;
769 } else {
770 start_blk = 0;
771 ASSERT(head_blk <= INT_MAX);
772 if ((error = xlog_find_verify_log_record(log, start_blk,
773 &head_blk, 0)) == -1) {
774 /* We hit the beginning of the log during our search */
775 start_blk = log_bbnum - (num_scan_bblks - head_blk);
776 new_blk = log_bbnum;
777 ASSERT(start_blk <= INT_MAX &&
778 (xfs_daddr_t) log_bbnum-start_blk >= 0);
779 ASSERT(head_blk <= INT_MAX);
780 if ((error = xlog_find_verify_log_record(log,
781 start_blk, &new_blk,
782 (int)head_blk)) == -1) {
783 error = XFS_ERROR(EIO);
784 goto bp_err;
785 } else if (error)
786 goto bp_err;
787 if (new_blk != log_bbnum)
788 head_blk = new_blk;
789 } else if (error)
790 goto bp_err;
791 }
792
793 xlog_put_bp(bp);
794 if (head_blk == log_bbnum)
795 *return_head_blk = 0;
796 else
797 *return_head_blk = head_blk;
798 /*
799 * When returning here, we have a good block number. Bad block
800 * means that during a previous crash, we didn't have a clean break
801 * from cycle number N to cycle number N-1. In this case, we need
802 * to find the first block with cycle number N-1.
803 */
804 return 0;
805
806 bp_err:
807 xlog_put_bp(bp);
808
809 if (error)
810 xlog_warn("XFS: failed to find log head");
811 return error;
812 }
813
814 /*
815 * Find the sync block number or the tail of the log.
816 *
817 * This will be the block number of the last record to have its
818 * associated buffers synced to disk. Every log record header has
819 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
820 * to get a sync block number. The only concern is to figure out which
821 * log record header to believe.
822 *
823 * The following algorithm uses the log record header with the largest
824 * lsn. The entire log record does not need to be valid. We only care
825 * that the header is valid.
826 *
827 * We could speed up search by using current head_blk buffer, but it is not
828 * available.
829 */
830 STATIC int
831 xlog_find_tail(
832 xlog_t *log,
833 xfs_daddr_t *head_blk,
834 xfs_daddr_t *tail_blk)
835 {
836 xlog_rec_header_t *rhead;
837 xlog_op_header_t *op_head;
838 xfs_caddr_t offset = NULL;
839 xfs_buf_t *bp;
840 int error, i, found;
841 xfs_daddr_t umount_data_blk;
842 xfs_daddr_t after_umount_blk;
843 xfs_lsn_t tail_lsn;
844 int hblks;
845
846 found = 0;
847
848 /*
849 * Find previous log record
850 */
851 if ((error = xlog_find_head(log, head_blk)))
852 return error;
853
854 bp = xlog_get_bp(log, 1);
855 if (!bp)
856 return ENOMEM;
857 if (*head_blk == 0) { /* special case */
858 error = xlog_bread(log, 0, 1, bp, &offset);
859 if (error)
860 goto done;
861
862 if (xlog_get_cycle(offset) == 0) {
863 *tail_blk = 0;
864 /* leave all other log inited values alone */
865 goto done;
866 }
867 }
868
869 /*
870 * Search backwards looking for log record header block
871 */
872 ASSERT(*head_blk < INT_MAX);
873 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
874 error = xlog_bread(log, i, 1, bp, &offset);
875 if (error)
876 goto done;
877
878 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) {
879 found = 1;
880 break;
881 }
882 }
883 /*
884 * If we haven't found the log record header block, start looking
885 * again from the end of the physical log. XXXmiken: There should be
886 * a check here to make sure we didn't search more than N blocks in
887 * the previous code.
888 */
889 if (!found) {
890 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
891 error = xlog_bread(log, i, 1, bp, &offset);
892 if (error)
893 goto done;
894
895 if (XLOG_HEADER_MAGIC_NUM ==
896 be32_to_cpu(*(__be32 *)offset)) {
897 found = 2;
898 break;
899 }
900 }
901 }
902 if (!found) {
903 xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
904 ASSERT(0);
905 return XFS_ERROR(EIO);
906 }
907
908 /* find blk_no of tail of log */
909 rhead = (xlog_rec_header_t *)offset;
910 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
911
912 /*
913 * Reset log values according to the state of the log when we
914 * crashed. In the case where head_blk == 0, we bump curr_cycle
915 * one because the next write starts a new cycle rather than
916 * continuing the cycle of the last good log record. At this
917 * point we have guaranteed that all partial log records have been
918 * accounted for. Therefore, we know that the last good log record
919 * written was complete and ended exactly on the end boundary
920 * of the physical log.
921 */
922 log->l_prev_block = i;
923 log->l_curr_block = (int)*head_blk;
924 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
925 if (found == 2)
926 log->l_curr_cycle++;
927 log->l_tail_lsn = be64_to_cpu(rhead->h_tail_lsn);
928 log->l_last_sync_lsn = be64_to_cpu(rhead->h_lsn);
929 log->l_grant_reserve_cycle = log->l_curr_cycle;
930 log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
931 log->l_grant_write_cycle = log->l_curr_cycle;
932 log->l_grant_write_bytes = BBTOB(log->l_curr_block);
933
934 /*
935 * Look for unmount record. If we find it, then we know there
936 * was a clean unmount. Since 'i' could be the last block in
937 * the physical log, we convert to a log block before comparing
938 * to the head_blk.
939 *
940 * Save the current tail lsn to use to pass to
941 * xlog_clear_stale_blocks() below. We won't want to clear the
942 * unmount record if there is one, so we pass the lsn of the
943 * unmount record rather than the block after it.
944 */
945 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
946 int h_size = be32_to_cpu(rhead->h_size);
947 int h_version = be32_to_cpu(rhead->h_version);
948
949 if ((h_version & XLOG_VERSION_2) &&
950 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
951 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
952 if (h_size % XLOG_HEADER_CYCLE_SIZE)
953 hblks++;
954 } else {
955 hblks = 1;
956 }
957 } else {
958 hblks = 1;
959 }
960 after_umount_blk = (i + hblks + (int)
961 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
962 tail_lsn = log->l_tail_lsn;
963 if (*head_blk == after_umount_blk &&
964 be32_to_cpu(rhead->h_num_logops) == 1) {
965 umount_data_blk = (i + hblks) % log->l_logBBsize;
966 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
967 if (error)
968 goto done;
969
970 op_head = (xlog_op_header_t *)offset;
971 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
972 /*
973 * Set tail and last sync so that newly written
974 * log records will point recovery to after the
975 * current unmount record.
976 */
977 log->l_tail_lsn =
978 xlog_assign_lsn(log->l_curr_cycle,
979 after_umount_blk);
980 log->l_last_sync_lsn =
981 xlog_assign_lsn(log->l_curr_cycle,
982 after_umount_blk);
983 *tail_blk = after_umount_blk;
984
985 /*
986 * Note that the unmount was clean. If the unmount
987 * was not clean, we need to know this to rebuild the
988 * superblock counters from the perag headers if we
989 * have a filesystem using non-persistent counters.
990 */
991 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
992 }
993 }
994
995 /*
996 * Make sure that there are no blocks in front of the head
997 * with the same cycle number as the head. This can happen
998 * because we allow multiple outstanding log writes concurrently,
999 * and the later writes might make it out before earlier ones.
1000 *
1001 * We use the lsn from before modifying it so that we'll never
1002 * overwrite the unmount record after a clean unmount.
1003 *
1004 * Do this only if we are going to recover the filesystem
1005 *
1006 * NOTE: This used to say "if (!readonly)"
1007 * However on Linux, we can & do recover a read-only filesystem.
1008 * We only skip recovery if NORECOVERY is specified on mount,
1009 * in which case we would not be here.
1010 *
1011 * But... if the -device- itself is readonly, just skip this.
1012 * We can't recover this device anyway, so it won't matter.
1013 */
1014 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1015 error = xlog_clear_stale_blocks(log, tail_lsn);
1016
1017 done:
1018 xlog_put_bp(bp);
1019
1020 if (error)
1021 xlog_warn("XFS: failed to locate log tail");
1022 return error;
1023 }
1024
1025 /*
1026 * Is the log zeroed at all?
1027 *
1028 * The last binary search should be changed to perform an X block read
1029 * once X becomes small enough. You can then search linearly through
1030 * the X blocks. This will cut down on the number of reads we need to do.
1031 *
1032 * If the log is partially zeroed, this routine will pass back the blkno
1033 * of the first block with cycle number 0. It won't have a complete LR
1034 * preceding it.
1035 *
1036 * Return:
1037 * 0 => the log is completely written to
1038 * -1 => use *blk_no as the first block of the log
1039 * >0 => error has occurred
1040 */
1041 STATIC int
1042 xlog_find_zeroed(
1043 xlog_t *log,
1044 xfs_daddr_t *blk_no)
1045 {
1046 xfs_buf_t *bp;
1047 xfs_caddr_t offset;
1048 uint first_cycle, last_cycle;
1049 xfs_daddr_t new_blk, last_blk, start_blk;
1050 xfs_daddr_t num_scan_bblks;
1051 int error, log_bbnum = log->l_logBBsize;
1052
1053 *blk_no = 0;
1054
1055 /* check totally zeroed log */
1056 bp = xlog_get_bp(log, 1);
1057 if (!bp)
1058 return ENOMEM;
1059 error = xlog_bread(log, 0, 1, bp, &offset);
1060 if (error)
1061 goto bp_err;
1062
1063 first_cycle = xlog_get_cycle(offset);
1064 if (first_cycle == 0) { /* completely zeroed log */
1065 *blk_no = 0;
1066 xlog_put_bp(bp);
1067 return -1;
1068 }
1069
1070 /* check partially zeroed log */
1071 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1072 if (error)
1073 goto bp_err;
1074
1075 last_cycle = xlog_get_cycle(offset);
1076 if (last_cycle != 0) { /* log completely written to */
1077 xlog_put_bp(bp);
1078 return 0;
1079 } else if (first_cycle != 1) {
1080 /*
1081 * If the cycle of the last block is zero, the cycle of
1082 * the first block must be 1. If it's not, maybe we're
1083 * not looking at a log... Bail out.
1084 */
1085 xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
1086 return XFS_ERROR(EINVAL);
1087 }
1088
1089 /* we have a partially zeroed log */
1090 last_blk = log_bbnum-1;
1091 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1092 goto bp_err;
1093
1094 /*
1095 * Validate the answer. Because there is no way to guarantee that
1096 * the entire log is made up of log records which are the same size,
1097 * we scan over the defined maximum blocks. At this point, the maximum
1098 * is not chosen to mean anything special. XXXmiken
1099 */
1100 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1101 ASSERT(num_scan_bblks <= INT_MAX);
1102
1103 if (last_blk < num_scan_bblks)
1104 num_scan_bblks = last_blk;
1105 start_blk = last_blk - num_scan_bblks;
1106
1107 /*
1108 * We search for any instances of cycle number 0 that occur before
1109 * our current estimate of the head. What we're trying to detect is
1110 * 1 ... | 0 | 1 | 0...
1111 * ^ binary search ends here
1112 */
1113 if ((error = xlog_find_verify_cycle(log, start_blk,
1114 (int)num_scan_bblks, 0, &new_blk)))
1115 goto bp_err;
1116 if (new_blk != -1)
1117 last_blk = new_blk;
1118
1119 /*
1120 * Potentially backup over partial log record write. We don't need
1121 * to search the end of the log because we know it is zero.
1122 */
1123 if ((error = xlog_find_verify_log_record(log, start_blk,
1124 &last_blk, 0)) == -1) {
1125 error = XFS_ERROR(EIO);
1126 goto bp_err;
1127 } else if (error)
1128 goto bp_err;
1129
1130 *blk_no = last_blk;
1131 bp_err:
1132 xlog_put_bp(bp);
1133 if (error)
1134 return error;
1135 return -1;
1136 }
1137
1138 /*
1139 * These are simple subroutines used by xlog_clear_stale_blocks() below
1140 * to initialize a buffer full of empty log record headers and write
1141 * them into the log.
1142 */
1143 STATIC void
1144 xlog_add_record(
1145 xlog_t *log,
1146 xfs_caddr_t buf,
1147 int cycle,
1148 int block,
1149 int tail_cycle,
1150 int tail_block)
1151 {
1152 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1153
1154 memset(buf, 0, BBSIZE);
1155 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1156 recp->h_cycle = cpu_to_be32(cycle);
1157 recp->h_version = cpu_to_be32(
1158 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1159 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1160 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1161 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1162 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1163 }
1164
1165 STATIC int
1166 xlog_write_log_records(
1167 xlog_t *log,
1168 int cycle,
1169 int start_block,
1170 int blocks,
1171 int tail_cycle,
1172 int tail_block)
1173 {
1174 xfs_caddr_t offset;
1175 xfs_buf_t *bp;
1176 int balign, ealign;
1177 int sectbb = log->l_sectBBsize;
1178 int end_block = start_block + blocks;
1179 int bufblks;
1180 int error = 0;
1181 int i, j = 0;
1182
1183 /*
1184 * Greedily allocate a buffer big enough to handle the full
1185 * range of basic blocks to be written. If that fails, try
1186 * a smaller size. We need to be able to write at least a
1187 * log sector, or we're out of luck.
1188 */
1189 bufblks = 1 << ffs(blocks);
1190 while (!(bp = xlog_get_bp(log, bufblks))) {
1191 bufblks >>= 1;
1192 if (bufblks < sectbb)
1193 return ENOMEM;
1194 }
1195
1196 /* We may need to do a read at the start to fill in part of
1197 * the buffer in the starting sector not covered by the first
1198 * write below.
1199 */
1200 balign = round_down(start_block, sectbb);
1201 if (balign != start_block) {
1202 error = xlog_bread_noalign(log, start_block, 1, bp);
1203 if (error)
1204 goto out_put_bp;
1205
1206 j = start_block - balign;
1207 }
1208
1209 for (i = start_block; i < end_block; i += bufblks) {
1210 int bcount, endcount;
1211
1212 bcount = min(bufblks, end_block - start_block);
1213 endcount = bcount - j;
1214
1215 /* We may need to do a read at the end to fill in part of
1216 * the buffer in the final sector not covered by the write.
1217 * If this is the same sector as the above read, skip it.
1218 */
1219 ealign = round_down(end_block, sectbb);
1220 if (j == 0 && (start_block + endcount > ealign)) {
1221 offset = XFS_BUF_PTR(bp);
1222 balign = BBTOB(ealign - start_block);
1223 error = XFS_BUF_SET_PTR(bp, offset + balign,
1224 BBTOB(sectbb));
1225 if (error)
1226 break;
1227
1228 error = xlog_bread_noalign(log, ealign, sectbb, bp);
1229 if (error)
1230 break;
1231
1232 error = XFS_BUF_SET_PTR(bp, offset, bufblks);
1233 if (error)
1234 break;
1235 }
1236
1237 offset = xlog_align(log, start_block, endcount, bp);
1238 for (; j < endcount; j++) {
1239 xlog_add_record(log, offset, cycle, i+j,
1240 tail_cycle, tail_block);
1241 offset += BBSIZE;
1242 }
1243 error = xlog_bwrite(log, start_block, endcount, bp);
1244 if (error)
1245 break;
1246 start_block += endcount;
1247 j = 0;
1248 }
1249
1250 out_put_bp:
1251 xlog_put_bp(bp);
1252 return error;
1253 }
1254
1255 /*
1256 * This routine is called to blow away any incomplete log writes out
1257 * in front of the log head. We do this so that we won't become confused
1258 * if we come up, write only a little bit more, and then crash again.
1259 * If we leave the partial log records out there, this situation could
1260 * cause us to think those partial writes are valid blocks since they
1261 * have the current cycle number. We get rid of them by overwriting them
1262 * with empty log records with the old cycle number rather than the
1263 * current one.
1264 *
1265 * The tail lsn is passed in rather than taken from
1266 * the log so that we will not write over the unmount record after a
1267 * clean unmount in a 512 block log. Doing so would leave the log without
1268 * any valid log records in it until a new one was written. If we crashed
1269 * during that time we would not be able to recover.
1270 */
1271 STATIC int
1272 xlog_clear_stale_blocks(
1273 xlog_t *log,
1274 xfs_lsn_t tail_lsn)
1275 {
1276 int tail_cycle, head_cycle;
1277 int tail_block, head_block;
1278 int tail_distance, max_distance;
1279 int distance;
1280 int error;
1281
1282 tail_cycle = CYCLE_LSN(tail_lsn);
1283 tail_block = BLOCK_LSN(tail_lsn);
1284 head_cycle = log->l_curr_cycle;
1285 head_block = log->l_curr_block;
1286
1287 /*
1288 * Figure out the distance between the new head of the log
1289 * and the tail. We want to write over any blocks beyond the
1290 * head that we may have written just before the crash, but
1291 * we don't want to overwrite the tail of the log.
1292 */
1293 if (head_cycle == tail_cycle) {
1294 /*
1295 * The tail is behind the head in the physical log,
1296 * so the distance from the head to the tail is the
1297 * distance from the head to the end of the log plus
1298 * the distance from the beginning of the log to the
1299 * tail.
1300 */
1301 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1302 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1303 XFS_ERRLEVEL_LOW, log->l_mp);
1304 return XFS_ERROR(EFSCORRUPTED);
1305 }
1306 tail_distance = tail_block + (log->l_logBBsize - head_block);
1307 } else {
1308 /*
1309 * The head is behind the tail in the physical log,
1310 * so the distance from the head to the tail is just
1311 * the tail block minus the head block.
1312 */
1313 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1314 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1315 XFS_ERRLEVEL_LOW, log->l_mp);
1316 return XFS_ERROR(EFSCORRUPTED);
1317 }
1318 tail_distance = tail_block - head_block;
1319 }
1320
1321 /*
1322 * If the head is right up against the tail, we can't clear
1323 * anything.
1324 */
1325 if (tail_distance <= 0) {
1326 ASSERT(tail_distance == 0);
1327 return 0;
1328 }
1329
1330 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1331 /*
1332 * Take the smaller of the maximum amount of outstanding I/O
1333 * we could have and the distance to the tail to clear out.
1334 * We take the smaller so that we don't overwrite the tail and
1335 * we don't waste all day writing from the head to the tail
1336 * for no reason.
1337 */
1338 max_distance = MIN(max_distance, tail_distance);
1339
1340 if ((head_block + max_distance) <= log->l_logBBsize) {
1341 /*
1342 * We can stomp all the blocks we need to without
1343 * wrapping around the end of the log. Just do it
1344 * in a single write. Use the cycle number of the
1345 * current cycle minus one so that the log will look like:
1346 * n ... | n - 1 ...
1347 */
1348 error = xlog_write_log_records(log, (head_cycle - 1),
1349 head_block, max_distance, tail_cycle,
1350 tail_block);
1351 if (error)
1352 return error;
1353 } else {
1354 /*
1355 * We need to wrap around the end of the physical log in
1356 * order to clear all the blocks. Do it in two separate
1357 * I/Os. The first write should be from the head to the
1358 * end of the physical log, and it should use the current
1359 * cycle number minus one just like above.
1360 */
1361 distance = log->l_logBBsize - head_block;
1362 error = xlog_write_log_records(log, (head_cycle - 1),
1363 head_block, distance, tail_cycle,
1364 tail_block);
1365
1366 if (error)
1367 return error;
1368
1369 /*
1370 * Now write the blocks at the start of the physical log.
1371 * This writes the remainder of the blocks we want to clear.
1372 * It uses the current cycle number since we're now on the
1373 * same cycle as the head so that we get:
1374 * n ... n ... | n - 1 ...
1375 * ^^^^^ blocks we're writing
1376 */
1377 distance = max_distance - (log->l_logBBsize - head_block);
1378 error = xlog_write_log_records(log, head_cycle, 0, distance,
1379 tail_cycle, tail_block);
1380 if (error)
1381 return error;
1382 }
1383
1384 return 0;
1385 }
1386
1387 /******************************************************************************
1388 *
1389 * Log recover routines
1390 *
1391 ******************************************************************************
1392 */
1393
1394 STATIC xlog_recover_t *
1395 xlog_recover_find_tid(
1396 struct hlist_head *head,
1397 xlog_tid_t tid)
1398 {
1399 xlog_recover_t *trans;
1400 struct hlist_node *n;
1401
1402 hlist_for_each_entry(trans, n, head, r_list) {
1403 if (trans->r_log_tid == tid)
1404 return trans;
1405 }
1406 return NULL;
1407 }
1408
1409 STATIC void
1410 xlog_recover_new_tid(
1411 struct hlist_head *head,
1412 xlog_tid_t tid,
1413 xfs_lsn_t lsn)
1414 {
1415 xlog_recover_t *trans;
1416
1417 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1418 trans->r_log_tid = tid;
1419 trans->r_lsn = lsn;
1420 INIT_LIST_HEAD(&trans->r_itemq);
1421
1422 INIT_HLIST_NODE(&trans->r_list);
1423 hlist_add_head(&trans->r_list, head);
1424 }
1425
1426 STATIC void
1427 xlog_recover_add_item(
1428 struct list_head *head)
1429 {
1430 xlog_recover_item_t *item;
1431
1432 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1433 INIT_LIST_HEAD(&item->ri_list);
1434 list_add_tail(&item->ri_list, head);
1435 }
1436
1437 STATIC int
1438 xlog_recover_add_to_cont_trans(
1439 struct log *log,
1440 xlog_recover_t *trans,
1441 xfs_caddr_t dp,
1442 int len)
1443 {
1444 xlog_recover_item_t *item;
1445 xfs_caddr_t ptr, old_ptr;
1446 int old_len;
1447
1448 if (list_empty(&trans->r_itemq)) {
1449 /* finish copying rest of trans header */
1450 xlog_recover_add_item(&trans->r_itemq);
1451 ptr = (xfs_caddr_t) &trans->r_theader +
1452 sizeof(xfs_trans_header_t) - len;
1453 memcpy(ptr, dp, len); /* d, s, l */
1454 return 0;
1455 }
1456 /* take the tail entry */
1457 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1458
1459 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1460 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1461
1462 ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
1463 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1464 item->ri_buf[item->ri_cnt-1].i_len += len;
1465 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1466 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1467 return 0;
1468 }
1469
1470 /*
1471 * The next region to add is the start of a new region. It could be
1472 * a whole region or it could be the first part of a new region. Because
1473 * of this, the assumption here is that the type and size fields of all
1474 * format structures fit into the first 32 bits of the structure.
1475 *
1476 * This works because all regions must be 32 bit aligned. Therefore, we
1477 * either have both fields or we have neither field. In the case we have
1478 * neither field, the data part of the region is zero length. We only have
1479 * a log_op_header and can throw away the header since a new one will appear
1480 * later. If we have at least 4 bytes, then we can determine how many regions
1481 * will appear in the current log item.
1482 */
1483 STATIC int
1484 xlog_recover_add_to_trans(
1485 struct log *log,
1486 xlog_recover_t *trans,
1487 xfs_caddr_t dp,
1488 int len)
1489 {
1490 xfs_inode_log_format_t *in_f; /* any will do */
1491 xlog_recover_item_t *item;
1492 xfs_caddr_t ptr;
1493
1494 if (!len)
1495 return 0;
1496 if (list_empty(&trans->r_itemq)) {
1497 /* we need to catch log corruptions here */
1498 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1499 xlog_warn("XFS: xlog_recover_add_to_trans: "
1500 "bad header magic number");
1501 ASSERT(0);
1502 return XFS_ERROR(EIO);
1503 }
1504 if (len == sizeof(xfs_trans_header_t))
1505 xlog_recover_add_item(&trans->r_itemq);
1506 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1507 return 0;
1508 }
1509
1510 ptr = kmem_alloc(len, KM_SLEEP);
1511 memcpy(ptr, dp, len);
1512 in_f = (xfs_inode_log_format_t *)ptr;
1513
1514 /* take the tail entry */
1515 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1516 if (item->ri_total != 0 &&
1517 item->ri_total == item->ri_cnt) {
1518 /* tail item is in use, get a new one */
1519 xlog_recover_add_item(&trans->r_itemq);
1520 item = list_entry(trans->r_itemq.prev,
1521 xlog_recover_item_t, ri_list);
1522 }
1523
1524 if (item->ri_total == 0) { /* first region to be added */
1525 if (in_f->ilf_size == 0 ||
1526 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
1527 xlog_warn(
1528 "XFS: bad number of regions (%d) in inode log format",
1529 in_f->ilf_size);
1530 ASSERT(0);
1531 return XFS_ERROR(EIO);
1532 }
1533
1534 item->ri_total = in_f->ilf_size;
1535 item->ri_buf =
1536 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1537 KM_SLEEP);
1538 }
1539 ASSERT(item->ri_total > item->ri_cnt);
1540 /* Description region is ri_buf[0] */
1541 item->ri_buf[item->ri_cnt].i_addr = ptr;
1542 item->ri_buf[item->ri_cnt].i_len = len;
1543 item->ri_cnt++;
1544 trace_xfs_log_recover_item_add(log, trans, item, 0);
1545 return 0;
1546 }
1547
1548 /*
1549 * Sort the log items in the transaction. Cancelled buffers need
1550 * to be put first so they are processed before any items that might
1551 * modify the buffers. If they are cancelled, then the modifications
1552 * don't need to be replayed.
1553 */
1554 STATIC int
1555 xlog_recover_reorder_trans(
1556 struct log *log,
1557 xlog_recover_t *trans,
1558 int pass)
1559 {
1560 xlog_recover_item_t *item, *n;
1561 LIST_HEAD(sort_list);
1562
1563 list_splice_init(&trans->r_itemq, &sort_list);
1564 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1565 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1566
1567 switch (ITEM_TYPE(item)) {
1568 case XFS_LI_BUF:
1569 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1570 trace_xfs_log_recover_item_reorder_head(log,
1571 trans, item, pass);
1572 list_move(&item->ri_list, &trans->r_itemq);
1573 break;
1574 }
1575 case XFS_LI_INODE:
1576 case XFS_LI_DQUOT:
1577 case XFS_LI_QUOTAOFF:
1578 case XFS_LI_EFD:
1579 case XFS_LI_EFI:
1580 trace_xfs_log_recover_item_reorder_tail(log,
1581 trans, item, pass);
1582 list_move_tail(&item->ri_list, &trans->r_itemq);
1583 break;
1584 default:
1585 xlog_warn(
1586 "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
1587 ASSERT(0);
1588 return XFS_ERROR(EIO);
1589 }
1590 }
1591 ASSERT(list_empty(&sort_list));
1592 return 0;
1593 }
1594
1595 /*
1596 * Build up the table of buf cancel records so that we don't replay
1597 * cancelled data in the second pass. For buffer records that are
1598 * not cancel records, there is nothing to do here so we just return.
1599 *
1600 * If we get a cancel record which is already in the table, this indicates
1601 * that the buffer was cancelled multiple times. In order to ensure
1602 * that during pass 2 we keep the record in the table until we reach its
1603 * last occurrence in the log, we keep a reference count in the cancel
1604 * record in the table to tell us how many times we expect to see this
1605 * record during the second pass.
1606 */
1607 STATIC void
1608 xlog_recover_do_buffer_pass1(
1609 xlog_t *log,
1610 xfs_buf_log_format_t *buf_f)
1611 {
1612 xfs_buf_cancel_t *bcp;
1613 xfs_buf_cancel_t *nextp;
1614 xfs_buf_cancel_t *prevp;
1615 xfs_buf_cancel_t **bucket;
1616 xfs_daddr_t blkno = 0;
1617 uint len = 0;
1618 ushort flags = 0;
1619
1620 switch (buf_f->blf_type) {
1621 case XFS_LI_BUF:
1622 blkno = buf_f->blf_blkno;
1623 len = buf_f->blf_len;
1624 flags = buf_f->blf_flags;
1625 break;
1626 }
1627
1628 /*
1629 * If this isn't a cancel buffer item, then just return.
1630 */
1631 if (!(flags & XFS_BLF_CANCEL)) {
1632 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1633 return;
1634 }
1635
1636 /*
1637 * Insert an xfs_buf_cancel record into the hash table of
1638 * them. If there is already an identical record, bump
1639 * its reference count.
1640 */
1641 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1642 XLOG_BC_TABLE_SIZE];
1643 /*
1644 * If the hash bucket is empty then just insert a new record into
1645 * the bucket.
1646 */
1647 if (*bucket == NULL) {
1648 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1649 KM_SLEEP);
1650 bcp->bc_blkno = blkno;
1651 bcp->bc_len = len;
1652 bcp->bc_refcount = 1;
1653 bcp->bc_next = NULL;
1654 *bucket = bcp;
1655 return;
1656 }
1657
1658 /*
1659 * The hash bucket is not empty, so search for duplicates of our
1660 * record. If we find one them just bump its refcount. If not
1661 * then add us at the end of the list.
1662 */
1663 prevp = NULL;
1664 nextp = *bucket;
1665 while (nextp != NULL) {
1666 if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
1667 nextp->bc_refcount++;
1668 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1669 return;
1670 }
1671 prevp = nextp;
1672 nextp = nextp->bc_next;
1673 }
1674 ASSERT(prevp != NULL);
1675 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1676 KM_SLEEP);
1677 bcp->bc_blkno = blkno;
1678 bcp->bc_len = len;
1679 bcp->bc_refcount = 1;
1680 bcp->bc_next = NULL;
1681 prevp->bc_next = bcp;
1682 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1683 }
1684
1685 /*
1686 * Check to see whether the buffer being recovered has a corresponding
1687 * entry in the buffer cancel record table. If it does then return 1
1688 * so that it will be cancelled, otherwise return 0. If the buffer is
1689 * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
1690 * the refcount on the entry in the table and remove it from the table
1691 * if this is the last reference.
1692 *
1693 * We remove the cancel record from the table when we encounter its
1694 * last occurrence in the log so that if the same buffer is re-used
1695 * again after its last cancellation we actually replay the changes
1696 * made at that point.
1697 */
1698 STATIC int
1699 xlog_check_buffer_cancelled(
1700 xlog_t *log,
1701 xfs_daddr_t blkno,
1702 uint len,
1703 ushort flags)
1704 {
1705 xfs_buf_cancel_t *bcp;
1706 xfs_buf_cancel_t *prevp;
1707 xfs_buf_cancel_t **bucket;
1708
1709 if (log->l_buf_cancel_table == NULL) {
1710 /*
1711 * There is nothing in the table built in pass one,
1712 * so this buffer must not be cancelled.
1713 */
1714 ASSERT(!(flags & XFS_BLF_CANCEL));
1715 return 0;
1716 }
1717
1718 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1719 XLOG_BC_TABLE_SIZE];
1720 bcp = *bucket;
1721 if (bcp == NULL) {
1722 /*
1723 * There is no corresponding entry in the table built
1724 * in pass one, so this buffer has not been cancelled.
1725 */
1726 ASSERT(!(flags & XFS_BLF_CANCEL));
1727 return 0;
1728 }
1729
1730 /*
1731 * Search for an entry in the buffer cancel table that
1732 * matches our buffer.
1733 */
1734 prevp = NULL;
1735 while (bcp != NULL) {
1736 if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
1737 /*
1738 * We've go a match, so return 1 so that the
1739 * recovery of this buffer is cancelled.
1740 * If this buffer is actually a buffer cancel
1741 * log item, then decrement the refcount on the
1742 * one in the table and remove it if this is the
1743 * last reference.
1744 */
1745 if (flags & XFS_BLF_CANCEL) {
1746 bcp->bc_refcount--;
1747 if (bcp->bc_refcount == 0) {
1748 if (prevp == NULL) {
1749 *bucket = bcp->bc_next;
1750 } else {
1751 prevp->bc_next = bcp->bc_next;
1752 }
1753 kmem_free(bcp);
1754 }
1755 }
1756 return 1;
1757 }
1758 prevp = bcp;
1759 bcp = bcp->bc_next;
1760 }
1761 /*
1762 * We didn't find a corresponding entry in the table, so
1763 * return 0 so that the buffer is NOT cancelled.
1764 */
1765 ASSERT(!(flags & XFS_BLF_CANCEL));
1766 return 0;
1767 }
1768
1769 STATIC int
1770 xlog_recover_do_buffer_pass2(
1771 xlog_t *log,
1772 xfs_buf_log_format_t *buf_f)
1773 {
1774 xfs_daddr_t blkno = 0;
1775 ushort flags = 0;
1776 uint len = 0;
1777
1778 switch (buf_f->blf_type) {
1779 case XFS_LI_BUF:
1780 blkno = buf_f->blf_blkno;
1781 flags = buf_f->blf_flags;
1782 len = buf_f->blf_len;
1783 break;
1784 }
1785
1786 return xlog_check_buffer_cancelled(log, blkno, len, flags);
1787 }
1788
1789 /*
1790 * Perform recovery for a buffer full of inodes. In these buffers,
1791 * the only data which should be recovered is that which corresponds
1792 * to the di_next_unlinked pointers in the on disk inode structures.
1793 * The rest of the data for the inodes is always logged through the
1794 * inodes themselves rather than the inode buffer and is recovered
1795 * in xlog_recover_do_inode_trans().
1796 *
1797 * The only time when buffers full of inodes are fully recovered is
1798 * when the buffer is full of newly allocated inodes. In this case
1799 * the buffer will not be marked as an inode buffer and so will be
1800 * sent to xlog_recover_do_reg_buffer() below during recovery.
1801 */
1802 STATIC int
1803 xlog_recover_do_inode_buffer(
1804 xfs_mount_t *mp,
1805 xlog_recover_item_t *item,
1806 xfs_buf_t *bp,
1807 xfs_buf_log_format_t *buf_f)
1808 {
1809 int i;
1810 int item_index;
1811 int bit;
1812 int nbits;
1813 int reg_buf_offset;
1814 int reg_buf_bytes;
1815 int next_unlinked_offset;
1816 int inodes_per_buf;
1817 xfs_agino_t *logged_nextp;
1818 xfs_agino_t *buffer_nextp;
1819 unsigned int *data_map = NULL;
1820 unsigned int map_size = 0;
1821
1822 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
1823
1824 switch (buf_f->blf_type) {
1825 case XFS_LI_BUF:
1826 data_map = buf_f->blf_data_map;
1827 map_size = buf_f->blf_map_size;
1828 break;
1829 }
1830 /*
1831 * Set the variables corresponding to the current region to
1832 * 0 so that we'll initialize them on the first pass through
1833 * the loop.
1834 */
1835 reg_buf_offset = 0;
1836 reg_buf_bytes = 0;
1837 bit = 0;
1838 nbits = 0;
1839 item_index = 0;
1840 inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1841 for (i = 0; i < inodes_per_buf; i++) {
1842 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1843 offsetof(xfs_dinode_t, di_next_unlinked);
1844
1845 while (next_unlinked_offset >=
1846 (reg_buf_offset + reg_buf_bytes)) {
1847 /*
1848 * The next di_next_unlinked field is beyond
1849 * the current logged region. Find the next
1850 * logged region that contains or is beyond
1851 * the current di_next_unlinked field.
1852 */
1853 bit += nbits;
1854 bit = xfs_next_bit(data_map, map_size, bit);
1855
1856 /*
1857 * If there are no more logged regions in the
1858 * buffer, then we're done.
1859 */
1860 if (bit == -1) {
1861 return 0;
1862 }
1863
1864 nbits = xfs_contig_bits(data_map, map_size,
1865 bit);
1866 ASSERT(nbits > 0);
1867 reg_buf_offset = bit << XFS_BLF_SHIFT;
1868 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1869 item_index++;
1870 }
1871
1872 /*
1873 * If the current logged region starts after the current
1874 * di_next_unlinked field, then move on to the next
1875 * di_next_unlinked field.
1876 */
1877 if (next_unlinked_offset < reg_buf_offset) {
1878 continue;
1879 }
1880
1881 ASSERT(item->ri_buf[item_index].i_addr != NULL);
1882 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
1883 ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1884
1885 /*
1886 * The current logged region contains a copy of the
1887 * current di_next_unlinked field. Extract its value
1888 * and copy it to the buffer copy.
1889 */
1890 logged_nextp = item->ri_buf[item_index].i_addr +
1891 next_unlinked_offset - reg_buf_offset;
1892 if (unlikely(*logged_nextp == 0)) {
1893 xfs_fs_cmn_err(CE_ALERT, mp,
1894 "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field",
1895 item, bp);
1896 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1897 XFS_ERRLEVEL_LOW, mp);
1898 return XFS_ERROR(EFSCORRUPTED);
1899 }
1900
1901 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1902 next_unlinked_offset);
1903 *buffer_nextp = *logged_nextp;
1904 }
1905
1906 return 0;
1907 }
1908
1909 /*
1910 * Perform a 'normal' buffer recovery. Each logged region of the
1911 * buffer should be copied over the corresponding region in the
1912 * given buffer. The bitmap in the buf log format structure indicates
1913 * where to place the logged data.
1914 */
1915 /*ARGSUSED*/
1916 STATIC void
1917 xlog_recover_do_reg_buffer(
1918 struct xfs_mount *mp,
1919 xlog_recover_item_t *item,
1920 xfs_buf_t *bp,
1921 xfs_buf_log_format_t *buf_f)
1922 {
1923 int i;
1924 int bit;
1925 int nbits;
1926 unsigned int *data_map = NULL;
1927 unsigned int map_size = 0;
1928 int error;
1929
1930 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
1931
1932 switch (buf_f->blf_type) {
1933 case XFS_LI_BUF:
1934 data_map = buf_f->blf_data_map;
1935 map_size = buf_f->blf_map_size;
1936 break;
1937 }
1938 bit = 0;
1939 i = 1; /* 0 is the buf format structure */
1940 while (1) {
1941 bit = xfs_next_bit(data_map, map_size, bit);
1942 if (bit == -1)
1943 break;
1944 nbits = xfs_contig_bits(data_map, map_size, bit);
1945 ASSERT(nbits > 0);
1946 ASSERT(item->ri_buf[i].i_addr != NULL);
1947 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
1948 ASSERT(XFS_BUF_COUNT(bp) >=
1949 ((uint)bit << XFS_BLF_SHIFT)+(nbits<<XFS_BLF_SHIFT));
1950
1951 /*
1952 * Do a sanity check if this is a dquot buffer. Just checking
1953 * the first dquot in the buffer should do. XXXThis is
1954 * probably a good thing to do for other buf types also.
1955 */
1956 error = 0;
1957 if (buf_f->blf_flags &
1958 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
1959 if (item->ri_buf[i].i_addr == NULL) {
1960 cmn_err(CE_ALERT,
1961 "XFS: NULL dquot in %s.", __func__);
1962 goto next;
1963 }
1964 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
1965 cmn_err(CE_ALERT,
1966 "XFS: dquot too small (%d) in %s.",
1967 item->ri_buf[i].i_len, __func__);
1968 goto next;
1969 }
1970 error = xfs_qm_dqcheck(item->ri_buf[i].i_addr,
1971 -1, 0, XFS_QMOPT_DOWARN,
1972 "dquot_buf_recover");
1973 if (error)
1974 goto next;
1975 }
1976
1977 memcpy(xfs_buf_offset(bp,
1978 (uint)bit << XFS_BLF_SHIFT), /* dest */
1979 item->ri_buf[i].i_addr, /* source */
1980 nbits<<XFS_BLF_SHIFT); /* length */
1981 next:
1982 i++;
1983 bit += nbits;
1984 }
1985
1986 /* Shouldn't be any more regions */
1987 ASSERT(i == item->ri_total);
1988 }
1989
1990 /*
1991 * Do some primitive error checking on ondisk dquot data structures.
1992 */
1993 int
1994 xfs_qm_dqcheck(
1995 xfs_disk_dquot_t *ddq,
1996 xfs_dqid_t id,
1997 uint type, /* used only when IO_dorepair is true */
1998 uint flags,
1999 char *str)
2000 {
2001 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
2002 int errs = 0;
2003
2004 /*
2005 * We can encounter an uninitialized dquot buffer for 2 reasons:
2006 * 1. If we crash while deleting the quotainode(s), and those blks got
2007 * used for user data. This is because we take the path of regular
2008 * file deletion; however, the size field of quotainodes is never
2009 * updated, so all the tricks that we play in itruncate_finish
2010 * don't quite matter.
2011 *
2012 * 2. We don't play the quota buffers when there's a quotaoff logitem.
2013 * But the allocation will be replayed so we'll end up with an
2014 * uninitialized quota block.
2015 *
2016 * This is all fine; things are still consistent, and we haven't lost
2017 * any quota information. Just don't complain about bad dquot blks.
2018 */
2019 if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
2020 if (flags & XFS_QMOPT_DOWARN)
2021 cmn_err(CE_ALERT,
2022 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
2023 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
2024 errs++;
2025 }
2026 if (ddq->d_version != XFS_DQUOT_VERSION) {
2027 if (flags & XFS_QMOPT_DOWARN)
2028 cmn_err(CE_ALERT,
2029 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
2030 str, id, ddq->d_version, XFS_DQUOT_VERSION);
2031 errs++;
2032 }
2033
2034 if (ddq->d_flags != XFS_DQ_USER &&
2035 ddq->d_flags != XFS_DQ_PROJ &&
2036 ddq->d_flags != XFS_DQ_GROUP) {
2037 if (flags & XFS_QMOPT_DOWARN)
2038 cmn_err(CE_ALERT,
2039 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
2040 str, id, ddq->d_flags);
2041 errs++;
2042 }
2043
2044 if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
2045 if (flags & XFS_QMOPT_DOWARN)
2046 cmn_err(CE_ALERT,
2047 "%s : ondisk-dquot 0x%p, ID mismatch: "
2048 "0x%x expected, found id 0x%x",
2049 str, ddq, id, be32_to_cpu(ddq->d_id));
2050 errs++;
2051 }
2052
2053 if (!errs && ddq->d_id) {
2054 if (ddq->d_blk_softlimit &&
2055 be64_to_cpu(ddq->d_bcount) >=
2056 be64_to_cpu(ddq->d_blk_softlimit)) {
2057 if (!ddq->d_btimer) {
2058 if (flags & XFS_QMOPT_DOWARN)
2059 cmn_err(CE_ALERT,
2060 "%s : Dquot ID 0x%x (0x%p) "
2061 "BLK TIMER NOT STARTED",
2062 str, (int)be32_to_cpu(ddq->d_id), ddq);
2063 errs++;
2064 }
2065 }
2066 if (ddq->d_ino_softlimit &&
2067 be64_to_cpu(ddq->d_icount) >=
2068 be64_to_cpu(ddq->d_ino_softlimit)) {
2069 if (!ddq->d_itimer) {
2070 if (flags & XFS_QMOPT_DOWARN)
2071 cmn_err(CE_ALERT,
2072 "%s : Dquot ID 0x%x (0x%p) "
2073 "INODE TIMER NOT STARTED",
2074 str, (int)be32_to_cpu(ddq->d_id), ddq);
2075 errs++;
2076 }
2077 }
2078 if (ddq->d_rtb_softlimit &&
2079 be64_to_cpu(ddq->d_rtbcount) >=
2080 be64_to_cpu(ddq->d_rtb_softlimit)) {
2081 if (!ddq->d_rtbtimer) {
2082 if (flags & XFS_QMOPT_DOWARN)
2083 cmn_err(CE_ALERT,
2084 "%s : Dquot ID 0x%x (0x%p) "
2085 "RTBLK TIMER NOT STARTED",
2086 str, (int)be32_to_cpu(ddq->d_id), ddq);
2087 errs++;
2088 }
2089 }
2090 }
2091
2092 if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2093 return errs;
2094
2095 if (flags & XFS_QMOPT_DOWARN)
2096 cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
2097
2098 /*
2099 * Typically, a repair is only requested by quotacheck.
2100 */
2101 ASSERT(id != -1);
2102 ASSERT(flags & XFS_QMOPT_DQREPAIR);
2103 memset(d, 0, sizeof(xfs_dqblk_t));
2104
2105 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2106 d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2107 d->dd_diskdq.d_flags = type;
2108 d->dd_diskdq.d_id = cpu_to_be32(id);
2109
2110 return errs;
2111 }
2112
2113 /*
2114 * Perform a dquot buffer recovery.
2115 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2116 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2117 * Else, treat it as a regular buffer and do recovery.
2118 */
2119 STATIC void
2120 xlog_recover_do_dquot_buffer(
2121 xfs_mount_t *mp,
2122 xlog_t *log,
2123 xlog_recover_item_t *item,
2124 xfs_buf_t *bp,
2125 xfs_buf_log_format_t *buf_f)
2126 {
2127 uint type;
2128
2129 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2130
2131 /*
2132 * Filesystems are required to send in quota flags at mount time.
2133 */
2134 if (mp->m_qflags == 0) {
2135 return;
2136 }
2137
2138 type = 0;
2139 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2140 type |= XFS_DQ_USER;
2141 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2142 type |= XFS_DQ_PROJ;
2143 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2144 type |= XFS_DQ_GROUP;
2145 /*
2146 * This type of quotas was turned off, so ignore this buffer
2147 */
2148 if (log->l_quotaoffs_flag & type)
2149 return;
2150
2151 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2152 }
2153
2154 /*
2155 * This routine replays a modification made to a buffer at runtime.
2156 * There are actually two types of buffer, regular and inode, which
2157 * are handled differently. Inode buffers are handled differently
2158 * in that we only recover a specific set of data from them, namely
2159 * the inode di_next_unlinked fields. This is because all other inode
2160 * data is actually logged via inode records and any data we replay
2161 * here which overlaps that may be stale.
2162 *
2163 * When meta-data buffers are freed at run time we log a buffer item
2164 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2165 * of the buffer in the log should not be replayed at recovery time.
2166 * This is so that if the blocks covered by the buffer are reused for
2167 * file data before we crash we don't end up replaying old, freed
2168 * meta-data into a user's file.
2169 *
2170 * To handle the cancellation of buffer log items, we make two passes
2171 * over the log during recovery. During the first we build a table of
2172 * those buffers which have been cancelled, and during the second we
2173 * only replay those buffers which do not have corresponding cancel
2174 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2175 * for more details on the implementation of the table of cancel records.
2176 */
2177 STATIC int
2178 xlog_recover_do_buffer_trans(
2179 xlog_t *log,
2180 xlog_recover_item_t *item,
2181 int pass)
2182 {
2183 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
2184 xfs_mount_t *mp;
2185 xfs_buf_t *bp;
2186 int error;
2187 int cancel;
2188 xfs_daddr_t blkno;
2189 int len;
2190 ushort flags;
2191 uint buf_flags;
2192
2193 if (pass == XLOG_RECOVER_PASS1) {
2194 /*
2195 * In this pass we're only looking for buf items
2196 * with the XFS_BLF_CANCEL bit set.
2197 */
2198 xlog_recover_do_buffer_pass1(log, buf_f);
2199 return 0;
2200 } else {
2201 /*
2202 * In this pass we want to recover all the buffers
2203 * which have not been cancelled and are not
2204 * cancellation buffers themselves. The routine
2205 * we call here will tell us whether or not to
2206 * continue with the replay of this buffer.
2207 */
2208 cancel = xlog_recover_do_buffer_pass2(log, buf_f);
2209 if (cancel) {
2210 trace_xfs_log_recover_buf_cancel(log, buf_f);
2211 return 0;
2212 }
2213 }
2214 trace_xfs_log_recover_buf_recover(log, buf_f);
2215 switch (buf_f->blf_type) {
2216 case XFS_LI_BUF:
2217 blkno = buf_f->blf_blkno;
2218 len = buf_f->blf_len;
2219 flags = buf_f->blf_flags;
2220 break;
2221 default:
2222 xfs_fs_cmn_err(CE_ALERT, log->l_mp,
2223 "xfs_log_recover: unknown buffer type 0x%x, logdev %s",
2224 buf_f->blf_type, log->l_mp->m_logname ?
2225 log->l_mp->m_logname : "internal");
2226 XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
2227 XFS_ERRLEVEL_LOW, log->l_mp);
2228 return XFS_ERROR(EFSCORRUPTED);
2229 }
2230
2231 mp = log->l_mp;
2232 buf_flags = XBF_LOCK;
2233 if (!(flags & XFS_BLF_INODE_BUF))
2234 buf_flags |= XBF_MAPPED;
2235
2236 bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, buf_flags);
2237 if (XFS_BUF_ISERROR(bp)) {
2238 xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
2239 bp, blkno);
2240 error = XFS_BUF_GETERROR(bp);
2241 xfs_buf_relse(bp);
2242 return error;
2243 }
2244
2245 error = 0;
2246 if (flags & XFS_BLF_INODE_BUF) {
2247 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2248 } else if (flags &
2249 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2250 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2251 } else {
2252 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2253 }
2254 if (error)
2255 return XFS_ERROR(error);
2256
2257 /*
2258 * Perform delayed write on the buffer. Asynchronous writes will be
2259 * slower when taking into account all the buffers to be flushed.
2260 *
2261 * Also make sure that only inode buffers with good sizes stay in
2262 * the buffer cache. The kernel moves inodes in buffers of 1 block
2263 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2264 * buffers in the log can be a different size if the log was generated
2265 * by an older kernel using unclustered inode buffers or a newer kernel
2266 * running with a different inode cluster size. Regardless, if the
2267 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2268 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2269 * the buffer out of the buffer cache so that the buffer won't
2270 * overlap with future reads of those inodes.
2271 */
2272 if (XFS_DINODE_MAGIC ==
2273 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2274 (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2275 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2276 XFS_BUF_STALE(bp);
2277 error = xfs_bwrite(mp, bp);
2278 } else {
2279 ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2280 bp->b_mount = mp;
2281 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2282 xfs_bdwrite(mp, bp);
2283 }
2284
2285 return (error);
2286 }
2287
2288 STATIC int
2289 xlog_recover_do_inode_trans(
2290 xlog_t *log,
2291 xlog_recover_item_t *item,
2292 int pass)
2293 {
2294 xfs_inode_log_format_t *in_f;
2295 xfs_mount_t *mp;
2296 xfs_buf_t *bp;
2297 xfs_dinode_t *dip;
2298 xfs_ino_t ino;
2299 int len;
2300 xfs_caddr_t src;
2301 xfs_caddr_t dest;
2302 int error;
2303 int attr_index;
2304 uint fields;
2305 xfs_icdinode_t *dicp;
2306 int need_free = 0;
2307
2308 if (pass == XLOG_RECOVER_PASS1) {
2309 return 0;
2310 }
2311
2312 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2313 in_f = item->ri_buf[0].i_addr;
2314 } else {
2315 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2316 need_free = 1;
2317 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2318 if (error)
2319 goto error;
2320 }
2321 ino = in_f->ilf_ino;
2322 mp = log->l_mp;
2323
2324 /*
2325 * Inode buffers can be freed, look out for it,
2326 * and do not replay the inode.
2327 */
2328 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2329 in_f->ilf_len, 0)) {
2330 error = 0;
2331 trace_xfs_log_recover_inode_cancel(log, in_f);
2332 goto error;
2333 }
2334 trace_xfs_log_recover_inode_recover(log, in_f);
2335
2336 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len,
2337 XBF_LOCK);
2338 if (XFS_BUF_ISERROR(bp)) {
2339 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
2340 bp, in_f->ilf_blkno);
2341 error = XFS_BUF_GETERROR(bp);
2342 xfs_buf_relse(bp);
2343 goto error;
2344 }
2345 error = 0;
2346 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2347 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
2348
2349 /*
2350 * Make sure the place we're flushing out to really looks
2351 * like an inode!
2352 */
2353 if (unlikely(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC)) {
2354 xfs_buf_relse(bp);
2355 xfs_fs_cmn_err(CE_ALERT, mp,
2356 "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
2357 dip, bp, ino);
2358 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
2359 XFS_ERRLEVEL_LOW, mp);
2360 error = EFSCORRUPTED;
2361 goto error;
2362 }
2363 dicp = item->ri_buf[1].i_addr;
2364 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2365 xfs_buf_relse(bp);
2366 xfs_fs_cmn_err(CE_ALERT, mp,
2367 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
2368 item, ino);
2369 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
2370 XFS_ERRLEVEL_LOW, mp);
2371 error = EFSCORRUPTED;
2372 goto error;
2373 }
2374
2375 /* Skip replay when the on disk inode is newer than the log one */
2376 if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2377 /*
2378 * Deal with the wrap case, DI_MAX_FLUSH is less
2379 * than smaller numbers
2380 */
2381 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2382 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2383 /* do nothing */
2384 } else {
2385 xfs_buf_relse(bp);
2386 trace_xfs_log_recover_inode_skip(log, in_f);
2387 error = 0;
2388 goto error;
2389 }
2390 }
2391 /* Take the opportunity to reset the flush iteration count */
2392 dicp->di_flushiter = 0;
2393
2394 if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
2395 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2396 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2397 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
2398 XFS_ERRLEVEL_LOW, mp, dicp);
2399 xfs_buf_relse(bp);
2400 xfs_fs_cmn_err(CE_ALERT, mp,
2401 "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2402 item, dip, bp, ino);
2403 error = EFSCORRUPTED;
2404 goto error;
2405 }
2406 } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
2407 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2408 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2409 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2410 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
2411 XFS_ERRLEVEL_LOW, mp, dicp);
2412 xfs_buf_relse(bp);
2413 xfs_fs_cmn_err(CE_ALERT, mp,
2414 "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2415 item, dip, bp, ino);
2416 error = EFSCORRUPTED;
2417 goto error;
2418 }
2419 }
2420 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2421 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
2422 XFS_ERRLEVEL_LOW, mp, dicp);
2423 xfs_buf_relse(bp);
2424 xfs_fs_cmn_err(CE_ALERT, mp,
2425 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2426 item, dip, bp, ino,
2427 dicp->di_nextents + dicp->di_anextents,
2428 dicp->di_nblocks);
2429 error = EFSCORRUPTED;
2430 goto error;
2431 }
2432 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2433 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
2434 XFS_ERRLEVEL_LOW, mp, dicp);
2435 xfs_buf_relse(bp);
2436 xfs_fs_cmn_err(CE_ALERT, mp,
2437 "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
2438 item, dip, bp, ino, dicp->di_forkoff);
2439 error = EFSCORRUPTED;
2440 goto error;
2441 }
2442 if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
2443 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
2444 XFS_ERRLEVEL_LOW, mp, dicp);
2445 xfs_buf_relse(bp);
2446 xfs_fs_cmn_err(CE_ALERT, mp,
2447 "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
2448 item->ri_buf[1].i_len, item);
2449 error = EFSCORRUPTED;
2450 goto error;
2451 }
2452
2453 /* The core is in in-core format */
2454 xfs_dinode_to_disk(dip, item->ri_buf[1].i_addr);
2455
2456 /* the rest is in on-disk format */
2457 if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
2458 memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
2459 item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
2460 item->ri_buf[1].i_len - sizeof(struct xfs_icdinode));
2461 }
2462
2463 fields = in_f->ilf_fields;
2464 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2465 case XFS_ILOG_DEV:
2466 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
2467 break;
2468 case XFS_ILOG_UUID:
2469 memcpy(XFS_DFORK_DPTR(dip),
2470 &in_f->ilf_u.ilfu_uuid,
2471 sizeof(uuid_t));
2472 break;
2473 }
2474
2475 if (in_f->ilf_size == 2)
2476 goto write_inode_buffer;
2477 len = item->ri_buf[2].i_len;
2478 src = item->ri_buf[2].i_addr;
2479 ASSERT(in_f->ilf_size <= 4);
2480 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2481 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2482 (len == in_f->ilf_dsize));
2483
2484 switch (fields & XFS_ILOG_DFORK) {
2485 case XFS_ILOG_DDATA:
2486 case XFS_ILOG_DEXT:
2487 memcpy(XFS_DFORK_DPTR(dip), src, len);
2488 break;
2489
2490 case XFS_ILOG_DBROOT:
2491 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2492 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
2493 XFS_DFORK_DSIZE(dip, mp));
2494 break;
2495
2496 default:
2497 /*
2498 * There are no data fork flags set.
2499 */
2500 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2501 break;
2502 }
2503
2504 /*
2505 * If we logged any attribute data, recover it. There may or
2506 * may not have been any other non-core data logged in this
2507 * transaction.
2508 */
2509 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2510 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2511 attr_index = 3;
2512 } else {
2513 attr_index = 2;
2514 }
2515 len = item->ri_buf[attr_index].i_len;
2516 src = item->ri_buf[attr_index].i_addr;
2517 ASSERT(len == in_f->ilf_asize);
2518
2519 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2520 case XFS_ILOG_ADATA:
2521 case XFS_ILOG_AEXT:
2522 dest = XFS_DFORK_APTR(dip);
2523 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2524 memcpy(dest, src, len);
2525 break;
2526
2527 case XFS_ILOG_ABROOT:
2528 dest = XFS_DFORK_APTR(dip);
2529 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2530 len, (xfs_bmdr_block_t*)dest,
2531 XFS_DFORK_ASIZE(dip, mp));
2532 break;
2533
2534 default:
2535 xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
2536 ASSERT(0);
2537 xfs_buf_relse(bp);
2538 error = EIO;
2539 goto error;
2540 }
2541 }
2542
2543 write_inode_buffer:
2544 ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2545 bp->b_mount = mp;
2546 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2547 xfs_bdwrite(mp, bp);
2548 error:
2549 if (need_free)
2550 kmem_free(in_f);
2551 return XFS_ERROR(error);
2552 }
2553
2554 /*
2555 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2556 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2557 * of that type.
2558 */
2559 STATIC int
2560 xlog_recover_do_quotaoff_trans(
2561 xlog_t *log,
2562 xlog_recover_item_t *item,
2563 int pass)
2564 {
2565 xfs_qoff_logformat_t *qoff_f;
2566
2567 if (pass == XLOG_RECOVER_PASS2) {
2568 return (0);
2569 }
2570
2571 qoff_f = item->ri_buf[0].i_addr;
2572 ASSERT(qoff_f);
2573
2574 /*
2575 * The logitem format's flag tells us if this was user quotaoff,
2576 * group/project quotaoff or both.
2577 */
2578 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2579 log->l_quotaoffs_flag |= XFS_DQ_USER;
2580 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2581 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2582 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2583 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2584
2585 return (0);
2586 }
2587
2588 /*
2589 * Recover a dquot record
2590 */
2591 STATIC int
2592 xlog_recover_do_dquot_trans(
2593 xlog_t *log,
2594 xlog_recover_item_t *item,
2595 int pass)
2596 {
2597 xfs_mount_t *mp;
2598 xfs_buf_t *bp;
2599 struct xfs_disk_dquot *ddq, *recddq;
2600 int error;
2601 xfs_dq_logformat_t *dq_f;
2602 uint type;
2603
2604 if (pass == XLOG_RECOVER_PASS1) {
2605 return 0;
2606 }
2607 mp = log->l_mp;
2608
2609 /*
2610 * Filesystems are required to send in quota flags at mount time.
2611 */
2612 if (mp->m_qflags == 0)
2613 return (0);
2614
2615 recddq = item->ri_buf[1].i_addr;
2616 if (recddq == NULL) {
2617 cmn_err(CE_ALERT,
2618 "XFS: NULL dquot in %s.", __func__);
2619 return XFS_ERROR(EIO);
2620 }
2621 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
2622 cmn_err(CE_ALERT,
2623 "XFS: dquot too small (%d) in %s.",
2624 item->ri_buf[1].i_len, __func__);
2625 return XFS_ERROR(EIO);
2626 }
2627
2628 /*
2629 * This type of quotas was turned off, so ignore this record.
2630 */
2631 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2632 ASSERT(type);
2633 if (log->l_quotaoffs_flag & type)
2634 return (0);
2635
2636 /*
2637 * At this point we know that quota was _not_ turned off.
2638 * Since the mount flags are not indicating to us otherwise, this
2639 * must mean that quota is on, and the dquot needs to be replayed.
2640 * Remember that we may not have fully recovered the superblock yet,
2641 * so we can't do the usual trick of looking at the SB quota bits.
2642 *
2643 * The other possibility, of course, is that the quota subsystem was
2644 * removed since the last mount - ENOSYS.
2645 */
2646 dq_f = item->ri_buf[0].i_addr;
2647 ASSERT(dq_f);
2648 if ((error = xfs_qm_dqcheck(recddq,
2649 dq_f->qlf_id,
2650 0, XFS_QMOPT_DOWARN,
2651 "xlog_recover_do_dquot_trans (log copy)"))) {
2652 return XFS_ERROR(EIO);
2653 }
2654 ASSERT(dq_f->qlf_len == 1);
2655
2656 error = xfs_read_buf(mp, mp->m_ddev_targp,
2657 dq_f->qlf_blkno,
2658 XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2659 0, &bp);
2660 if (error) {
2661 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2662 bp, dq_f->qlf_blkno);
2663 return error;
2664 }
2665 ASSERT(bp);
2666 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2667
2668 /*
2669 * At least the magic num portion should be on disk because this
2670 * was among a chunk of dquots created earlier, and we did some
2671 * minimal initialization then.
2672 */
2673 if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2674 "xlog_recover_do_dquot_trans")) {
2675 xfs_buf_relse(bp);
2676 return XFS_ERROR(EIO);
2677 }
2678
2679 memcpy(ddq, recddq, item->ri_buf[1].i_len);
2680
2681 ASSERT(dq_f->qlf_size == 2);
2682 ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2683 bp->b_mount = mp;
2684 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2685 xfs_bdwrite(mp, bp);
2686
2687 return (0);
2688 }
2689
2690 /*
2691 * This routine is called to create an in-core extent free intent
2692 * item from the efi format structure which was logged on disk.
2693 * It allocates an in-core efi, copies the extents from the format
2694 * structure into it, and adds the efi to the AIL with the given
2695 * LSN.
2696 */
2697 STATIC int
2698 xlog_recover_do_efi_trans(
2699 xlog_t *log,
2700 xlog_recover_item_t *item,
2701 xfs_lsn_t lsn,
2702 int pass)
2703 {
2704 int error;
2705 xfs_mount_t *mp;
2706 xfs_efi_log_item_t *efip;
2707 xfs_efi_log_format_t *efi_formatp;
2708
2709 if (pass == XLOG_RECOVER_PASS1) {
2710 return 0;
2711 }
2712
2713 efi_formatp = item->ri_buf[0].i_addr;
2714
2715 mp = log->l_mp;
2716 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2717 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2718 &(efip->efi_format)))) {
2719 xfs_efi_item_free(efip);
2720 return error;
2721 }
2722 efip->efi_next_extent = efi_formatp->efi_nextents;
2723 efip->efi_flags |= XFS_EFI_COMMITTED;
2724
2725 spin_lock(&log->l_ailp->xa_lock);
2726 /*
2727 * xfs_trans_ail_update() drops the AIL lock.
2728 */
2729 xfs_trans_ail_update(log->l_ailp, (xfs_log_item_t *)efip, lsn);
2730 return 0;
2731 }
2732
2733
2734 /*
2735 * This routine is called when an efd format structure is found in
2736 * a committed transaction in the log. It's purpose is to cancel
2737 * the corresponding efi if it was still in the log. To do this
2738 * it searches the AIL for the efi with an id equal to that in the
2739 * efd format structure. If we find it, we remove the efi from the
2740 * AIL and free it.
2741 */
2742 STATIC void
2743 xlog_recover_do_efd_trans(
2744 xlog_t *log,
2745 xlog_recover_item_t *item,
2746 int pass)
2747 {
2748 xfs_efd_log_format_t *efd_formatp;
2749 xfs_efi_log_item_t *efip = NULL;
2750 xfs_log_item_t *lip;
2751 __uint64_t efi_id;
2752 struct xfs_ail_cursor cur;
2753 struct xfs_ail *ailp = log->l_ailp;
2754
2755 if (pass == XLOG_RECOVER_PASS1) {
2756 return;
2757 }
2758
2759 efd_formatp = item->ri_buf[0].i_addr;
2760 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2761 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2762 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2763 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2764 efi_id = efd_formatp->efd_efi_id;
2765
2766 /*
2767 * Search for the efi with the id in the efd format structure
2768 * in the AIL.
2769 */
2770 spin_lock(&ailp->xa_lock);
2771 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2772 while (lip != NULL) {
2773 if (lip->li_type == XFS_LI_EFI) {
2774 efip = (xfs_efi_log_item_t *)lip;
2775 if (efip->efi_format.efi_id == efi_id) {
2776 /*
2777 * xfs_trans_ail_delete() drops the
2778 * AIL lock.
2779 */
2780 xfs_trans_ail_delete(ailp, lip);
2781 xfs_efi_item_free(efip);
2782 spin_lock(&ailp->xa_lock);
2783 break;
2784 }
2785 }
2786 lip = xfs_trans_ail_cursor_next(ailp, &cur);
2787 }
2788 xfs_trans_ail_cursor_done(ailp, &cur);
2789 spin_unlock(&ailp->xa_lock);
2790 }
2791
2792 /*
2793 * Perform the transaction
2794 *
2795 * If the transaction modifies a buffer or inode, do it now. Otherwise,
2796 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2797 */
2798 STATIC int
2799 xlog_recover_do_trans(
2800 xlog_t *log,
2801 xlog_recover_t *trans,
2802 int pass)
2803 {
2804 int error = 0;
2805 xlog_recover_item_t *item;
2806
2807 error = xlog_recover_reorder_trans(log, trans, pass);
2808 if (error)
2809 return error;
2810
2811 list_for_each_entry(item, &trans->r_itemq, ri_list) {
2812 trace_xfs_log_recover_item_recover(log, trans, item, pass);
2813 switch (ITEM_TYPE(item)) {
2814 case XFS_LI_BUF:
2815 error = xlog_recover_do_buffer_trans(log, item, pass);
2816 break;
2817 case XFS_LI_INODE:
2818 error = xlog_recover_do_inode_trans(log, item, pass);
2819 break;
2820 case XFS_LI_EFI:
2821 error = xlog_recover_do_efi_trans(log, item,
2822 trans->r_lsn, pass);
2823 break;
2824 case XFS_LI_EFD:
2825 xlog_recover_do_efd_trans(log, item, pass);
2826 error = 0;
2827 break;
2828 case XFS_LI_DQUOT:
2829 error = xlog_recover_do_dquot_trans(log, item, pass);
2830 break;
2831 case XFS_LI_QUOTAOFF:
2832 error = xlog_recover_do_quotaoff_trans(log, item,
2833 pass);
2834 break;
2835 default:
2836 xlog_warn(
2837 "XFS: invalid item type (%d) xlog_recover_do_trans", ITEM_TYPE(item));
2838 ASSERT(0);
2839 error = XFS_ERROR(EIO);
2840 break;
2841 }
2842
2843 if (error)
2844 return error;
2845 }
2846
2847 return 0;
2848 }
2849
2850 /*
2851 * Free up any resources allocated by the transaction
2852 *
2853 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2854 */
2855 STATIC void
2856 xlog_recover_free_trans(
2857 xlog_recover_t *trans)
2858 {
2859 xlog_recover_item_t *item, *n;
2860 int i;
2861
2862 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2863 /* Free the regions in the item. */
2864 list_del(&item->ri_list);
2865 for (i = 0; i < item->ri_cnt; i++)
2866 kmem_free(item->ri_buf[i].i_addr);
2867 /* Free the item itself */
2868 kmem_free(item->ri_buf);
2869 kmem_free(item);
2870 }
2871 /* Free the transaction recover structure */
2872 kmem_free(trans);
2873 }
2874
2875 STATIC int
2876 xlog_recover_commit_trans(
2877 xlog_t *log,
2878 xlog_recover_t *trans,
2879 int pass)
2880 {
2881 int error;
2882
2883 hlist_del(&trans->r_list);
2884 if ((error = xlog_recover_do_trans(log, trans, pass)))
2885 return error;
2886 xlog_recover_free_trans(trans); /* no error */
2887 return 0;
2888 }
2889
2890 STATIC int
2891 xlog_recover_unmount_trans(
2892 xlog_recover_t *trans)
2893 {
2894 /* Do nothing now */
2895 xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
2896 return 0;
2897 }
2898
2899 /*
2900 * There are two valid states of the r_state field. 0 indicates that the
2901 * transaction structure is in a normal state. We have either seen the
2902 * start of the transaction or the last operation we added was not a partial
2903 * operation. If the last operation we added to the transaction was a
2904 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2905 *
2906 * NOTE: skip LRs with 0 data length.
2907 */
2908 STATIC int
2909 xlog_recover_process_data(
2910 xlog_t *log,
2911 struct hlist_head rhash[],
2912 xlog_rec_header_t *rhead,
2913 xfs_caddr_t dp,
2914 int pass)
2915 {
2916 xfs_caddr_t lp;
2917 int num_logops;
2918 xlog_op_header_t *ohead;
2919 xlog_recover_t *trans;
2920 xlog_tid_t tid;
2921 int error;
2922 unsigned long hash;
2923 uint flags;
2924
2925 lp = dp + be32_to_cpu(rhead->h_len);
2926 num_logops = be32_to_cpu(rhead->h_num_logops);
2927
2928 /* check the log format matches our own - else we can't recover */
2929 if (xlog_header_check_recover(log->l_mp, rhead))
2930 return (XFS_ERROR(EIO));
2931
2932 while ((dp < lp) && num_logops) {
2933 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2934 ohead = (xlog_op_header_t *)dp;
2935 dp += sizeof(xlog_op_header_t);
2936 if (ohead->oh_clientid != XFS_TRANSACTION &&
2937 ohead->oh_clientid != XFS_LOG) {
2938 xlog_warn(
2939 "XFS: xlog_recover_process_data: bad clientid");
2940 ASSERT(0);
2941 return (XFS_ERROR(EIO));
2942 }
2943 tid = be32_to_cpu(ohead->oh_tid);
2944 hash = XLOG_RHASH(tid);
2945 trans = xlog_recover_find_tid(&rhash[hash], tid);
2946 if (trans == NULL) { /* not found; add new tid */
2947 if (ohead->oh_flags & XLOG_START_TRANS)
2948 xlog_recover_new_tid(&rhash[hash], tid,
2949 be64_to_cpu(rhead->h_lsn));
2950 } else {
2951 if (dp + be32_to_cpu(ohead->oh_len) > lp) {
2952 xlog_warn(
2953 "XFS: xlog_recover_process_data: bad length");
2954 WARN_ON(1);
2955 return (XFS_ERROR(EIO));
2956 }
2957 flags = ohead->oh_flags & ~XLOG_END_TRANS;
2958 if (flags & XLOG_WAS_CONT_TRANS)
2959 flags &= ~XLOG_CONTINUE_TRANS;
2960 switch (flags) {
2961 case XLOG_COMMIT_TRANS:
2962 error = xlog_recover_commit_trans(log,
2963 trans, pass);
2964 break;
2965 case XLOG_UNMOUNT_TRANS:
2966 error = xlog_recover_unmount_trans(trans);
2967 break;
2968 case XLOG_WAS_CONT_TRANS:
2969 error = xlog_recover_add_to_cont_trans(log,
2970 trans, dp,
2971 be32_to_cpu(ohead->oh_len));
2972 break;
2973 case XLOG_START_TRANS:
2974 xlog_warn(
2975 "XFS: xlog_recover_process_data: bad transaction");
2976 ASSERT(0);
2977 error = XFS_ERROR(EIO);
2978 break;
2979 case 0:
2980 case XLOG_CONTINUE_TRANS:
2981 error = xlog_recover_add_to_trans(log, trans,
2982 dp, be32_to_cpu(ohead->oh_len));
2983 break;
2984 default:
2985 xlog_warn(
2986 "XFS: xlog_recover_process_data: bad flag");
2987 ASSERT(0);
2988 error = XFS_ERROR(EIO);
2989 break;
2990 }
2991 if (error)
2992 return error;
2993 }
2994 dp += be32_to_cpu(ohead->oh_len);
2995 num_logops--;
2996 }
2997 return 0;
2998 }
2999
3000 /*
3001 * Process an extent free intent item that was recovered from
3002 * the log. We need to free the extents that it describes.
3003 */
3004 STATIC int
3005 xlog_recover_process_efi(
3006 xfs_mount_t *mp,
3007 xfs_efi_log_item_t *efip)
3008 {
3009 xfs_efd_log_item_t *efdp;
3010 xfs_trans_t *tp;
3011 int i;
3012 int error = 0;
3013 xfs_extent_t *extp;
3014 xfs_fsblock_t startblock_fsb;
3015
3016 ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
3017
3018 /*
3019 * First check the validity of the extents described by the
3020 * EFI. If any are bad, then assume that all are bad and
3021 * just toss the EFI.
3022 */
3023 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3024 extp = &(efip->efi_format.efi_extents[i]);
3025 startblock_fsb = XFS_BB_TO_FSB(mp,
3026 XFS_FSB_TO_DADDR(mp, extp->ext_start));
3027 if ((startblock_fsb == 0) ||
3028 (extp->ext_len == 0) ||
3029 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3030 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3031 /*
3032 * This will pull the EFI from the AIL and
3033 * free the memory associated with it.
3034 */
3035 xfs_efi_release(efip, efip->efi_format.efi_nextents);
3036 return XFS_ERROR(EIO);
3037 }
3038 }
3039
3040 tp = xfs_trans_alloc(mp, 0);
3041 error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
3042 if (error)
3043 goto abort_error;
3044 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3045
3046 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3047 extp = &(efip->efi_format.efi_extents[i]);
3048 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3049 if (error)
3050 goto abort_error;
3051 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3052 extp->ext_len);
3053 }
3054
3055 efip->efi_flags |= XFS_EFI_RECOVERED;
3056 error = xfs_trans_commit(tp, 0);
3057 return error;
3058
3059 abort_error:
3060 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3061 return error;
3062 }
3063
3064 /*
3065 * When this is called, all of the EFIs which did not have
3066 * corresponding EFDs should be in the AIL. What we do now
3067 * is free the extents associated with each one.
3068 *
3069 * Since we process the EFIs in normal transactions, they
3070 * will be removed at some point after the commit. This prevents
3071 * us from just walking down the list processing each one.
3072 * We'll use a flag in the EFI to skip those that we've already
3073 * processed and use the AIL iteration mechanism's generation
3074 * count to try to speed this up at least a bit.
3075 *
3076 * When we start, we know that the EFIs are the only things in
3077 * the AIL. As we process them, however, other items are added
3078 * to the AIL. Since everything added to the AIL must come after
3079 * everything already in the AIL, we stop processing as soon as
3080 * we see something other than an EFI in the AIL.
3081 */
3082 STATIC int
3083 xlog_recover_process_efis(
3084 xlog_t *log)
3085 {
3086 xfs_log_item_t *lip;
3087 xfs_efi_log_item_t *efip;
3088 int error = 0;
3089 struct xfs_ail_cursor cur;
3090 struct xfs_ail *ailp;
3091
3092 ailp = log->l_ailp;
3093 spin_lock(&ailp->xa_lock);
3094 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3095 while (lip != NULL) {
3096 /*
3097 * We're done when we see something other than an EFI.
3098 * There should be no EFIs left in the AIL now.
3099 */
3100 if (lip->li_type != XFS_LI_EFI) {
3101 #ifdef DEBUG
3102 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
3103 ASSERT(lip->li_type != XFS_LI_EFI);
3104 #endif
3105 break;
3106 }
3107
3108 /*
3109 * Skip EFIs that we've already processed.
3110 */
3111 efip = (xfs_efi_log_item_t *)lip;
3112 if (efip->efi_flags & XFS_EFI_RECOVERED) {
3113 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3114 continue;
3115 }
3116
3117 spin_unlock(&ailp->xa_lock);
3118 error = xlog_recover_process_efi(log->l_mp, efip);
3119 spin_lock(&ailp->xa_lock);
3120 if (error)
3121 goto out;
3122 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3123 }
3124 out:
3125 xfs_trans_ail_cursor_done(ailp, &cur);
3126 spin_unlock(&ailp->xa_lock);
3127 return error;
3128 }
3129
3130 /*
3131 * This routine performs a transaction to null out a bad inode pointer
3132 * in an agi unlinked inode hash bucket.
3133 */
3134 STATIC void
3135 xlog_recover_clear_agi_bucket(
3136 xfs_mount_t *mp,
3137 xfs_agnumber_t agno,
3138 int bucket)
3139 {
3140 xfs_trans_t *tp;
3141 xfs_agi_t *agi;
3142 xfs_buf_t *agibp;
3143 int offset;
3144 int error;
3145
3146 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3147 error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
3148 0, 0, 0);
3149 if (error)
3150 goto out_abort;
3151
3152 error = xfs_read_agi(mp, tp, agno, &agibp);
3153 if (error)
3154 goto out_abort;
3155
3156 agi = XFS_BUF_TO_AGI(agibp);
3157 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3158 offset = offsetof(xfs_agi_t, agi_unlinked) +
3159 (sizeof(xfs_agino_t) * bucket);
3160 xfs_trans_log_buf(tp, agibp, offset,
3161 (offset + sizeof(xfs_agino_t) - 1));
3162
3163 error = xfs_trans_commit(tp, 0);
3164 if (error)
3165 goto out_error;
3166 return;
3167
3168 out_abort:
3169 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3170 out_error:
3171 xfs_fs_cmn_err(CE_WARN, mp, "xlog_recover_clear_agi_bucket: "
3172 "failed to clear agi %d. Continuing.", agno);
3173 return;
3174 }
3175
3176 STATIC xfs_agino_t
3177 xlog_recover_process_one_iunlink(
3178 struct xfs_mount *mp,
3179 xfs_agnumber_t agno,
3180 xfs_agino_t agino,
3181 int bucket)
3182 {
3183 struct xfs_buf *ibp;
3184 struct xfs_dinode *dip;
3185 struct xfs_inode *ip;
3186 xfs_ino_t ino;
3187 int error;
3188
3189 ino = XFS_AGINO_TO_INO(mp, agno, agino);
3190 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
3191 if (error)
3192 goto fail;
3193
3194 /*
3195 * Get the on disk inode to find the next inode in the bucket.
3196 */
3197 error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XBF_LOCK);
3198 if (error)
3199 goto fail_iput;
3200
3201 ASSERT(ip->i_d.di_nlink == 0);
3202 ASSERT(ip->i_d.di_mode != 0);
3203
3204 /* setup for the next pass */
3205 agino = be32_to_cpu(dip->di_next_unlinked);
3206 xfs_buf_relse(ibp);
3207
3208 /*
3209 * Prevent any DMAPI event from being sent when the reference on
3210 * the inode is dropped.
3211 */
3212 ip->i_d.di_dmevmask = 0;
3213
3214 IRELE(ip);
3215 return agino;
3216
3217 fail_iput:
3218 IRELE(ip);
3219 fail:
3220 /*
3221 * We can't read in the inode this bucket points to, or this inode
3222 * is messed up. Just ditch this bucket of inodes. We will lose
3223 * some inodes and space, but at least we won't hang.
3224 *
3225 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3226 * clear the inode pointer in the bucket.
3227 */
3228 xlog_recover_clear_agi_bucket(mp, agno, bucket);
3229 return NULLAGINO;
3230 }
3231
3232 /*
3233 * xlog_iunlink_recover
3234 *
3235 * This is called during recovery to process any inodes which
3236 * we unlinked but not freed when the system crashed. These
3237 * inodes will be on the lists in the AGI blocks. What we do
3238 * here is scan all the AGIs and fully truncate and free any
3239 * inodes found on the lists. Each inode is removed from the
3240 * lists when it has been fully truncated and is freed. The
3241 * freeing of the inode and its removal from the list must be
3242 * atomic.
3243 */
3244 STATIC void
3245 xlog_recover_process_iunlinks(
3246 xlog_t *log)
3247 {
3248 xfs_mount_t *mp;
3249 xfs_agnumber_t agno;
3250 xfs_agi_t *agi;
3251 xfs_buf_t *agibp;
3252 xfs_agino_t agino;
3253 int bucket;
3254 int error;
3255 uint mp_dmevmask;
3256
3257 mp = log->l_mp;
3258
3259 /*
3260 * Prevent any DMAPI event from being sent while in this function.
3261 */
3262 mp_dmevmask = mp->m_dmevmask;
3263 mp->m_dmevmask = 0;
3264
3265 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3266 /*
3267 * Find the agi for this ag.
3268 */
3269 error = xfs_read_agi(mp, NULL, agno, &agibp);
3270 if (error) {
3271 /*
3272 * AGI is b0rked. Don't process it.
3273 *
3274 * We should probably mark the filesystem as corrupt
3275 * after we've recovered all the ag's we can....
3276 */
3277 continue;
3278 }
3279 agi = XFS_BUF_TO_AGI(agibp);
3280
3281 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3282 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3283 while (agino != NULLAGINO) {
3284 /*
3285 * Release the agi buffer so that it can
3286 * be acquired in the normal course of the
3287 * transaction to truncate and free the inode.
3288 */
3289 xfs_buf_relse(agibp);
3290
3291 agino = xlog_recover_process_one_iunlink(mp,
3292 agno, agino, bucket);
3293
3294 /*
3295 * Reacquire the agibuffer and continue around
3296 * the loop. This should never fail as we know
3297 * the buffer was good earlier on.
3298 */
3299 error = xfs_read_agi(mp, NULL, agno, &agibp);
3300 ASSERT(error == 0);
3301 agi = XFS_BUF_TO_AGI(agibp);
3302 }
3303 }
3304
3305 /*
3306 * Release the buffer for the current agi so we can
3307 * go on to the next one.
3308 */
3309 xfs_buf_relse(agibp);
3310 }
3311
3312 mp->m_dmevmask = mp_dmevmask;
3313 }
3314
3315
3316 #ifdef DEBUG
3317 STATIC void
3318 xlog_pack_data_checksum(
3319 xlog_t *log,
3320 xlog_in_core_t *iclog,
3321 int size)
3322 {
3323 int i;
3324 __be32 *up;
3325 uint chksum = 0;
3326
3327 up = (__be32 *)iclog->ic_datap;
3328 /* divide length by 4 to get # words */
3329 for (i = 0; i < (size >> 2); i++) {
3330 chksum ^= be32_to_cpu(*up);
3331 up++;
3332 }
3333 iclog->ic_header.h_chksum = cpu_to_be32(chksum);
3334 }
3335 #else
3336 #define xlog_pack_data_checksum(log, iclog, size)
3337 #endif
3338
3339 /*
3340 * Stamp cycle number in every block
3341 */
3342 void
3343 xlog_pack_data(
3344 xlog_t *log,
3345 xlog_in_core_t *iclog,
3346 int roundoff)
3347 {
3348 int i, j, k;
3349 int size = iclog->ic_offset + roundoff;
3350 __be32 cycle_lsn;
3351 xfs_caddr_t dp;
3352
3353 xlog_pack_data_checksum(log, iclog, size);
3354
3355 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3356
3357 dp = iclog->ic_datap;
3358 for (i = 0; i < BTOBB(size) &&
3359 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3360 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
3361 *(__be32 *)dp = cycle_lsn;
3362 dp += BBSIZE;
3363 }
3364
3365 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3366 xlog_in_core_2_t *xhdr = iclog->ic_data;
3367
3368 for ( ; i < BTOBB(size); i++) {
3369 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3370 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3371 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
3372 *(__be32 *)dp = cycle_lsn;
3373 dp += BBSIZE;
3374 }
3375
3376 for (i = 1; i < log->l_iclog_heads; i++) {
3377 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3378 }
3379 }
3380 }
3381
3382 STATIC void
3383 xlog_unpack_data(
3384 xlog_rec_header_t *rhead,
3385 xfs_caddr_t dp,
3386 xlog_t *log)
3387 {
3388 int i, j, k;
3389
3390 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
3391 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3392 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
3393 dp += BBSIZE;
3394 }
3395
3396 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3397 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
3398 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
3399 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3400 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3401 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3402 dp += BBSIZE;
3403 }
3404 }
3405 }
3406
3407 STATIC int
3408 xlog_valid_rec_header(
3409 xlog_t *log,
3410 xlog_rec_header_t *rhead,
3411 xfs_daddr_t blkno)
3412 {
3413 int hlen;
3414
3415 if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) {
3416 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3417 XFS_ERRLEVEL_LOW, log->l_mp);
3418 return XFS_ERROR(EFSCORRUPTED);
3419 }
3420 if (unlikely(
3421 (!rhead->h_version ||
3422 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
3423 xlog_warn("XFS: %s: unrecognised log version (%d).",
3424 __func__, be32_to_cpu(rhead->h_version));
3425 return XFS_ERROR(EIO);
3426 }
3427
3428 /* LR body must have data or it wouldn't have been written */
3429 hlen = be32_to_cpu(rhead->h_len);
3430 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3431 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3432 XFS_ERRLEVEL_LOW, log->l_mp);
3433 return XFS_ERROR(EFSCORRUPTED);
3434 }
3435 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3436 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3437 XFS_ERRLEVEL_LOW, log->l_mp);
3438 return XFS_ERROR(EFSCORRUPTED);
3439 }
3440 return 0;
3441 }
3442
3443 /*
3444 * Read the log from tail to head and process the log records found.
3445 * Handle the two cases where the tail and head are in the same cycle
3446 * and where the active portion of the log wraps around the end of
3447 * the physical log separately. The pass parameter is passed through
3448 * to the routines called to process the data and is not looked at
3449 * here.
3450 */
3451 STATIC int
3452 xlog_do_recovery_pass(
3453 xlog_t *log,
3454 xfs_daddr_t head_blk,
3455 xfs_daddr_t tail_blk,
3456 int pass)
3457 {
3458 xlog_rec_header_t *rhead;
3459 xfs_daddr_t blk_no;
3460 xfs_caddr_t offset;
3461 xfs_buf_t *hbp, *dbp;
3462 int error = 0, h_size;
3463 int bblks, split_bblks;
3464 int hblks, split_hblks, wrapped_hblks;
3465 struct hlist_head rhash[XLOG_RHASH_SIZE];
3466
3467 ASSERT(head_blk != tail_blk);
3468
3469 /*
3470 * Read the header of the tail block and get the iclog buffer size from
3471 * h_size. Use this to tell how many sectors make up the log header.
3472 */
3473 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3474 /*
3475 * When using variable length iclogs, read first sector of
3476 * iclog header and extract the header size from it. Get a
3477 * new hbp that is the correct size.
3478 */
3479 hbp = xlog_get_bp(log, 1);
3480 if (!hbp)
3481 return ENOMEM;
3482
3483 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
3484 if (error)
3485 goto bread_err1;
3486
3487 rhead = (xlog_rec_header_t *)offset;
3488 error = xlog_valid_rec_header(log, rhead, tail_blk);
3489 if (error)
3490 goto bread_err1;
3491 h_size = be32_to_cpu(rhead->h_size);
3492 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
3493 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3494 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3495 if (h_size % XLOG_HEADER_CYCLE_SIZE)
3496 hblks++;
3497 xlog_put_bp(hbp);
3498 hbp = xlog_get_bp(log, hblks);
3499 } else {
3500 hblks = 1;
3501 }
3502 } else {
3503 ASSERT(log->l_sectBBsize == 1);
3504 hblks = 1;
3505 hbp = xlog_get_bp(log, 1);
3506 h_size = XLOG_BIG_RECORD_BSIZE;
3507 }
3508
3509 if (!hbp)
3510 return ENOMEM;
3511 dbp = xlog_get_bp(log, BTOBB(h_size));
3512 if (!dbp) {
3513 xlog_put_bp(hbp);
3514 return ENOMEM;
3515 }
3516
3517 memset(rhash, 0, sizeof(rhash));
3518 if (tail_blk <= head_blk) {
3519 for (blk_no = tail_blk; blk_no < head_blk; ) {
3520 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3521 if (error)
3522 goto bread_err2;
3523
3524 rhead = (xlog_rec_header_t *)offset;
3525 error = xlog_valid_rec_header(log, rhead, blk_no);
3526 if (error)
3527 goto bread_err2;
3528
3529 /* blocks in data section */
3530 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3531 error = xlog_bread(log, blk_no + hblks, bblks, dbp,
3532 &offset);
3533 if (error)
3534 goto bread_err2;
3535
3536 xlog_unpack_data(rhead, offset, log);
3537 if ((error = xlog_recover_process_data(log,
3538 rhash, rhead, offset, pass)))
3539 goto bread_err2;
3540 blk_no += bblks + hblks;
3541 }
3542 } else {
3543 /*
3544 * Perform recovery around the end of the physical log.
3545 * When the head is not on the same cycle number as the tail,
3546 * we can't do a sequential recovery as above.
3547 */
3548 blk_no = tail_blk;
3549 while (blk_no < log->l_logBBsize) {
3550 /*
3551 * Check for header wrapping around physical end-of-log
3552 */
3553 offset = XFS_BUF_PTR(hbp);
3554 split_hblks = 0;
3555 wrapped_hblks = 0;
3556 if (blk_no + hblks <= log->l_logBBsize) {
3557 /* Read header in one read */
3558 error = xlog_bread(log, blk_no, hblks, hbp,
3559 &offset);
3560 if (error)
3561 goto bread_err2;
3562 } else {
3563 /* This LR is split across physical log end */
3564 if (blk_no != log->l_logBBsize) {
3565 /* some data before physical log end */
3566 ASSERT(blk_no <= INT_MAX);
3567 split_hblks = log->l_logBBsize - (int)blk_no;
3568 ASSERT(split_hblks > 0);
3569 error = xlog_bread(log, blk_no,
3570 split_hblks, hbp,
3571 &offset);
3572 if (error)
3573 goto bread_err2;
3574 }
3575
3576 /*
3577 * Note: this black magic still works with
3578 * large sector sizes (non-512) only because:
3579 * - we increased the buffer size originally
3580 * by 1 sector giving us enough extra space
3581 * for the second read;
3582 * - the log start is guaranteed to be sector
3583 * aligned;
3584 * - we read the log end (LR header start)
3585 * _first_, then the log start (LR header end)
3586 * - order is important.
3587 */
3588 wrapped_hblks = hblks - split_hblks;
3589 error = XFS_BUF_SET_PTR(hbp,
3590 offset + BBTOB(split_hblks),
3591 BBTOB(hblks - split_hblks));
3592 if (error)
3593 goto bread_err2;
3594
3595 error = xlog_bread_noalign(log, 0,
3596 wrapped_hblks, hbp);
3597 if (error)
3598 goto bread_err2;
3599
3600 error = XFS_BUF_SET_PTR(hbp, offset,
3601 BBTOB(hblks));
3602 if (error)
3603 goto bread_err2;
3604 }
3605 rhead = (xlog_rec_header_t *)offset;
3606 error = xlog_valid_rec_header(log, rhead,
3607 split_hblks ? blk_no : 0);
3608 if (error)
3609 goto bread_err2;
3610
3611 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3612 blk_no += hblks;
3613
3614 /* Read in data for log record */
3615 if (blk_no + bblks <= log->l_logBBsize) {
3616 error = xlog_bread(log, blk_no, bblks, dbp,
3617 &offset);
3618 if (error)
3619 goto bread_err2;
3620 } else {
3621 /* This log record is split across the
3622 * physical end of log */
3623 offset = XFS_BUF_PTR(dbp);
3624 split_bblks = 0;
3625 if (blk_no != log->l_logBBsize) {
3626 /* some data is before the physical
3627 * end of log */
3628 ASSERT(!wrapped_hblks);
3629 ASSERT(blk_no <= INT_MAX);
3630 split_bblks =
3631 log->l_logBBsize - (int)blk_no;
3632 ASSERT(split_bblks > 0);
3633 error = xlog_bread(log, blk_no,
3634 split_bblks, dbp,
3635 &offset);
3636 if (error)
3637 goto bread_err2;
3638 }
3639
3640 /*
3641 * Note: this black magic still works with
3642 * large sector sizes (non-512) only because:
3643 * - we increased the buffer size originally
3644 * by 1 sector giving us enough extra space
3645 * for the second read;
3646 * - the log start is guaranteed to be sector
3647 * aligned;
3648 * - we read the log end (LR header start)
3649 * _first_, then the log start (LR header end)
3650 * - order is important.
3651 */
3652 error = XFS_BUF_SET_PTR(dbp,
3653 offset + BBTOB(split_bblks),
3654 BBTOB(bblks - split_bblks));
3655 if (error)
3656 goto bread_err2;
3657
3658 error = xlog_bread_noalign(log, wrapped_hblks,
3659 bblks - split_bblks,
3660 dbp);
3661 if (error)
3662 goto bread_err2;
3663
3664 error = XFS_BUF_SET_PTR(dbp, offset, h_size);
3665 if (error)
3666 goto bread_err2;
3667 }
3668 xlog_unpack_data(rhead, offset, log);
3669 if ((error = xlog_recover_process_data(log, rhash,
3670 rhead, offset, pass)))
3671 goto bread_err2;
3672 blk_no += bblks;
3673 }
3674
3675 ASSERT(blk_no >= log->l_logBBsize);
3676 blk_no -= log->l_logBBsize;
3677
3678 /* read first part of physical log */
3679 while (blk_no < head_blk) {
3680 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3681 if (error)
3682 goto bread_err2;
3683
3684 rhead = (xlog_rec_header_t *)offset;
3685 error = xlog_valid_rec_header(log, rhead, blk_no);
3686 if (error)
3687 goto bread_err2;
3688
3689 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3690 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3691 &offset);
3692 if (error)
3693 goto bread_err2;
3694
3695 xlog_unpack_data(rhead, offset, log);
3696 if ((error = xlog_recover_process_data(log, rhash,
3697 rhead, offset, pass)))
3698 goto bread_err2;
3699 blk_no += bblks + hblks;
3700 }
3701 }
3702
3703 bread_err2:
3704 xlog_put_bp(dbp);
3705 bread_err1:
3706 xlog_put_bp(hbp);
3707 return error;
3708 }
3709
3710 /*
3711 * Do the recovery of the log. We actually do this in two phases.
3712 * The two passes are necessary in order to implement the function
3713 * of cancelling a record written into the log. The first pass
3714 * determines those things which have been cancelled, and the
3715 * second pass replays log items normally except for those which
3716 * have been cancelled. The handling of the replay and cancellations
3717 * takes place in the log item type specific routines.
3718 *
3719 * The table of items which have cancel records in the log is allocated
3720 * and freed at this level, since only here do we know when all of
3721 * the log recovery has been completed.
3722 */
3723 STATIC int
3724 xlog_do_log_recovery(
3725 xlog_t *log,
3726 xfs_daddr_t head_blk,
3727 xfs_daddr_t tail_blk)
3728 {
3729 int error;
3730
3731 ASSERT(head_blk != tail_blk);
3732
3733 /*
3734 * First do a pass to find all of the cancelled buf log items.
3735 * Store them in the buf_cancel_table for use in the second pass.
3736 */
3737 log->l_buf_cancel_table =
3738 (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
3739 sizeof(xfs_buf_cancel_t*),
3740 KM_SLEEP);
3741 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3742 XLOG_RECOVER_PASS1);
3743 if (error != 0) {
3744 kmem_free(log->l_buf_cancel_table);
3745 log->l_buf_cancel_table = NULL;
3746 return error;
3747 }
3748 /*
3749 * Then do a second pass to actually recover the items in the log.
3750 * When it is complete free the table of buf cancel items.
3751 */
3752 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3753 XLOG_RECOVER_PASS2);
3754 #ifdef DEBUG
3755 if (!error) {
3756 int i;
3757
3758 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3759 ASSERT(log->l_buf_cancel_table[i] == NULL);
3760 }
3761 #endif /* DEBUG */
3762
3763 kmem_free(log->l_buf_cancel_table);
3764 log->l_buf_cancel_table = NULL;
3765
3766 return error;
3767 }
3768
3769 /*
3770 * Do the actual recovery
3771 */
3772 STATIC int
3773 xlog_do_recover(
3774 xlog_t *log,
3775 xfs_daddr_t head_blk,
3776 xfs_daddr_t tail_blk)
3777 {
3778 int error;
3779 xfs_buf_t *bp;
3780 xfs_sb_t *sbp;
3781
3782 /*
3783 * First replay the images in the log.
3784 */
3785 error = xlog_do_log_recovery(log, head_blk, tail_blk);
3786 if (error) {
3787 return error;
3788 }
3789
3790 XFS_bflush(log->l_mp->m_ddev_targp);
3791
3792 /*
3793 * If IO errors happened during recovery, bail out.
3794 */
3795 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3796 return (EIO);
3797 }
3798
3799 /*
3800 * We now update the tail_lsn since much of the recovery has completed
3801 * and there may be space available to use. If there were no extent
3802 * or iunlinks, we can free up the entire log and set the tail_lsn to
3803 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3804 * lsn of the last known good LR on disk. If there are extent frees
3805 * or iunlinks they will have some entries in the AIL; so we look at
3806 * the AIL to determine how to set the tail_lsn.
3807 */
3808 xlog_assign_tail_lsn(log->l_mp);
3809
3810 /*
3811 * Now that we've finished replaying all buffer and inode
3812 * updates, re-read in the superblock.
3813 */
3814 bp = xfs_getsb(log->l_mp, 0);
3815 XFS_BUF_UNDONE(bp);
3816 ASSERT(!(XFS_BUF_ISWRITE(bp)));
3817 ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
3818 XFS_BUF_READ(bp);
3819 XFS_BUF_UNASYNC(bp);
3820 xfsbdstrat(log->l_mp, bp);
3821 error = xfs_iowait(bp);
3822 if (error) {
3823 xfs_ioerror_alert("xlog_do_recover",
3824 log->l_mp, bp, XFS_BUF_ADDR(bp));
3825 ASSERT(0);
3826 xfs_buf_relse(bp);
3827 return error;
3828 }
3829
3830 /* Convert superblock from on-disk format */
3831 sbp = &log->l_mp->m_sb;
3832 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
3833 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3834 ASSERT(xfs_sb_good_version(sbp));
3835 xfs_buf_relse(bp);
3836
3837 /* We've re-read the superblock so re-initialize per-cpu counters */
3838 xfs_icsb_reinit_counters(log->l_mp);
3839
3840 xlog_recover_check_summary(log);
3841
3842 /* Normal transactions can now occur */
3843 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3844 return 0;
3845 }
3846
3847 /*
3848 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3849 *
3850 * Return error or zero.
3851 */
3852 int
3853 xlog_recover(
3854 xlog_t *log)
3855 {
3856 xfs_daddr_t head_blk, tail_blk;
3857 int error;
3858
3859 /* find the tail of the log */
3860 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
3861 return error;
3862
3863 if (tail_blk != head_blk) {
3864 /* There used to be a comment here:
3865 *
3866 * disallow recovery on read-only mounts. note -- mount
3867 * checks for ENOSPC and turns it into an intelligent
3868 * error message.
3869 * ...but this is no longer true. Now, unless you specify
3870 * NORECOVERY (in which case this function would never be
3871 * called), we just go ahead and recover. We do this all
3872 * under the vfs layer, so we can get away with it unless
3873 * the device itself is read-only, in which case we fail.
3874 */
3875 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3876 return error;
3877 }
3878
3879 cmn_err(CE_NOTE,
3880 "Starting XFS recovery on filesystem: %s (logdev: %s)",
3881 log->l_mp->m_fsname, log->l_mp->m_logname ?
3882 log->l_mp->m_logname : "internal");
3883
3884 error = xlog_do_recover(log, head_blk, tail_blk);
3885 log->l_flags |= XLOG_RECOVERY_NEEDED;
3886 }
3887 return error;
3888 }
3889
3890 /*
3891 * In the first part of recovery we replay inodes and buffers and build
3892 * up the list of extent free items which need to be processed. Here
3893 * we process the extent free items and clean up the on disk unlinked
3894 * inode lists. This is separated from the first part of recovery so
3895 * that the root and real-time bitmap inodes can be read in from disk in
3896 * between the two stages. This is necessary so that we can free space
3897 * in the real-time portion of the file system.
3898 */
3899 int
3900 xlog_recover_finish(
3901 xlog_t *log)
3902 {
3903 /*
3904 * Now we're ready to do the transactions needed for the
3905 * rest of recovery. Start with completing all the extent
3906 * free intent records and then process the unlinked inode
3907 * lists. At this point, we essentially run in normal mode
3908 * except that we're still performing recovery actions
3909 * rather than accepting new requests.
3910 */
3911 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3912 int error;
3913 error = xlog_recover_process_efis(log);
3914 if (error) {
3915 cmn_err(CE_ALERT,
3916 "Failed to recover EFIs on filesystem: %s",
3917 log->l_mp->m_fsname);
3918 return error;
3919 }
3920 /*
3921 * Sync the log to get all the EFIs out of the AIL.
3922 * This isn't absolutely necessary, but it helps in
3923 * case the unlink transactions would have problems
3924 * pushing the EFIs out of the way.
3925 */
3926 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3927
3928 xlog_recover_process_iunlinks(log);
3929
3930 xlog_recover_check_summary(log);
3931
3932 cmn_err(CE_NOTE,
3933 "Ending XFS recovery on filesystem: %s (logdev: %s)",
3934 log->l_mp->m_fsname, log->l_mp->m_logname ?
3935 log->l_mp->m_logname : "internal");
3936 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3937 } else {
3938 cmn_err(CE_DEBUG,
3939 "!Ending clean XFS mount for filesystem: %s\n",
3940 log->l_mp->m_fsname);
3941 }
3942 return 0;
3943 }
3944
3945
3946 #if defined(DEBUG)
3947 /*
3948 * Read all of the agf and agi counters and check that they
3949 * are consistent with the superblock counters.
3950 */
3951 void
3952 xlog_recover_check_summary(
3953 xlog_t *log)
3954 {
3955 xfs_mount_t *mp;
3956 xfs_agf_t *agfp;
3957 xfs_buf_t *agfbp;
3958 xfs_buf_t *agibp;
3959 xfs_agnumber_t agno;
3960 __uint64_t freeblks;
3961 __uint64_t itotal;
3962 __uint64_t ifree;
3963 int error;
3964
3965 mp = log->l_mp;
3966
3967 freeblks = 0LL;
3968 itotal = 0LL;
3969 ifree = 0LL;
3970 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3971 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
3972 if (error) {
3973 xfs_fs_cmn_err(CE_ALERT, mp,
3974 "xlog_recover_check_summary(agf)"
3975 "agf read failed agno %d error %d",
3976 agno, error);
3977 } else {
3978 agfp = XFS_BUF_TO_AGF(agfbp);
3979 freeblks += be32_to_cpu(agfp->agf_freeblks) +
3980 be32_to_cpu(agfp->agf_flcount);
3981 xfs_buf_relse(agfbp);
3982 }
3983
3984 error = xfs_read_agi(mp, NULL, agno, &agibp);
3985 if (!error) {
3986 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
3987
3988 itotal += be32_to_cpu(agi->agi_count);
3989 ifree += be32_to_cpu(agi->agi_freecount);
3990 xfs_buf_relse(agibp);
3991 }
3992 }
3993 }
3994 #endif /* DEBUG */
This page took 0.116844 seconds and 5 git commands to generate.