xfs: add CRC checks to the AGI
[deliverable/linux.git] / fs / xfs / xfs_log_recover.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_error.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_btree.h"
33 #include "xfs_dinode.h"
34 #include "xfs_inode.h"
35 #include "xfs_inode_item.h"
36 #include "xfs_alloc.h"
37 #include "xfs_ialloc.h"
38 #include "xfs_log_priv.h"
39 #include "xfs_buf_item.h"
40 #include "xfs_log_recover.h"
41 #include "xfs_extfree_item.h"
42 #include "xfs_trans_priv.h"
43 #include "xfs_quota.h"
44 #include "xfs_utils.h"
45 #include "xfs_cksum.h"
46 #include "xfs_trace.h"
47 #include "xfs_icache.h"
48
49 STATIC int
50 xlog_find_zeroed(
51 struct xlog *,
52 xfs_daddr_t *);
53 STATIC int
54 xlog_clear_stale_blocks(
55 struct xlog *,
56 xfs_lsn_t);
57 #if defined(DEBUG)
58 STATIC void
59 xlog_recover_check_summary(
60 struct xlog *);
61 #else
62 #define xlog_recover_check_summary(log)
63 #endif
64
65 /*
66 * This structure is used during recovery to record the buf log items which
67 * have been canceled and should not be replayed.
68 */
69 struct xfs_buf_cancel {
70 xfs_daddr_t bc_blkno;
71 uint bc_len;
72 int bc_refcount;
73 struct list_head bc_list;
74 };
75
76 /*
77 * Sector aligned buffer routines for buffer create/read/write/access
78 */
79
80 /*
81 * Verify the given count of basic blocks is valid number of blocks
82 * to specify for an operation involving the given XFS log buffer.
83 * Returns nonzero if the count is valid, 0 otherwise.
84 */
85
86 static inline int
87 xlog_buf_bbcount_valid(
88 struct xlog *log,
89 int bbcount)
90 {
91 return bbcount > 0 && bbcount <= log->l_logBBsize;
92 }
93
94 /*
95 * Allocate a buffer to hold log data. The buffer needs to be able
96 * to map to a range of nbblks basic blocks at any valid (basic
97 * block) offset within the log.
98 */
99 STATIC xfs_buf_t *
100 xlog_get_bp(
101 struct xlog *log,
102 int nbblks)
103 {
104 struct xfs_buf *bp;
105
106 if (!xlog_buf_bbcount_valid(log, nbblks)) {
107 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
108 nbblks);
109 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
110 return NULL;
111 }
112
113 /*
114 * We do log I/O in units of log sectors (a power-of-2
115 * multiple of the basic block size), so we round up the
116 * requested size to accommodate the basic blocks required
117 * for complete log sectors.
118 *
119 * In addition, the buffer may be used for a non-sector-
120 * aligned block offset, in which case an I/O of the
121 * requested size could extend beyond the end of the
122 * buffer. If the requested size is only 1 basic block it
123 * will never straddle a sector boundary, so this won't be
124 * an issue. Nor will this be a problem if the log I/O is
125 * done in basic blocks (sector size 1). But otherwise we
126 * extend the buffer by one extra log sector to ensure
127 * there's space to accommodate this possibility.
128 */
129 if (nbblks > 1 && log->l_sectBBsize > 1)
130 nbblks += log->l_sectBBsize;
131 nbblks = round_up(nbblks, log->l_sectBBsize);
132
133 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
134 if (bp)
135 xfs_buf_unlock(bp);
136 return bp;
137 }
138
139 STATIC void
140 xlog_put_bp(
141 xfs_buf_t *bp)
142 {
143 xfs_buf_free(bp);
144 }
145
146 /*
147 * Return the address of the start of the given block number's data
148 * in a log buffer. The buffer covers a log sector-aligned region.
149 */
150 STATIC xfs_caddr_t
151 xlog_align(
152 struct xlog *log,
153 xfs_daddr_t blk_no,
154 int nbblks,
155 struct xfs_buf *bp)
156 {
157 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
158
159 ASSERT(offset + nbblks <= bp->b_length);
160 return bp->b_addr + BBTOB(offset);
161 }
162
163
164 /*
165 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
166 */
167 STATIC int
168 xlog_bread_noalign(
169 struct xlog *log,
170 xfs_daddr_t blk_no,
171 int nbblks,
172 struct xfs_buf *bp)
173 {
174 int error;
175
176 if (!xlog_buf_bbcount_valid(log, nbblks)) {
177 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
178 nbblks);
179 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
180 return EFSCORRUPTED;
181 }
182
183 blk_no = round_down(blk_no, log->l_sectBBsize);
184 nbblks = round_up(nbblks, log->l_sectBBsize);
185
186 ASSERT(nbblks > 0);
187 ASSERT(nbblks <= bp->b_length);
188
189 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
190 XFS_BUF_READ(bp);
191 bp->b_io_length = nbblks;
192 bp->b_error = 0;
193
194 xfsbdstrat(log->l_mp, bp);
195 error = xfs_buf_iowait(bp);
196 if (error)
197 xfs_buf_ioerror_alert(bp, __func__);
198 return error;
199 }
200
201 STATIC int
202 xlog_bread(
203 struct xlog *log,
204 xfs_daddr_t blk_no,
205 int nbblks,
206 struct xfs_buf *bp,
207 xfs_caddr_t *offset)
208 {
209 int error;
210
211 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
212 if (error)
213 return error;
214
215 *offset = xlog_align(log, blk_no, nbblks, bp);
216 return 0;
217 }
218
219 /*
220 * Read at an offset into the buffer. Returns with the buffer in it's original
221 * state regardless of the result of the read.
222 */
223 STATIC int
224 xlog_bread_offset(
225 struct xlog *log,
226 xfs_daddr_t blk_no, /* block to read from */
227 int nbblks, /* blocks to read */
228 struct xfs_buf *bp,
229 xfs_caddr_t offset)
230 {
231 xfs_caddr_t orig_offset = bp->b_addr;
232 int orig_len = BBTOB(bp->b_length);
233 int error, error2;
234
235 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
236 if (error)
237 return error;
238
239 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
240
241 /* must reset buffer pointer even on error */
242 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
243 if (error)
244 return error;
245 return error2;
246 }
247
248 /*
249 * Write out the buffer at the given block for the given number of blocks.
250 * The buffer is kept locked across the write and is returned locked.
251 * This can only be used for synchronous log writes.
252 */
253 STATIC int
254 xlog_bwrite(
255 struct xlog *log,
256 xfs_daddr_t blk_no,
257 int nbblks,
258 struct xfs_buf *bp)
259 {
260 int error;
261
262 if (!xlog_buf_bbcount_valid(log, nbblks)) {
263 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
264 nbblks);
265 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
266 return EFSCORRUPTED;
267 }
268
269 blk_no = round_down(blk_no, log->l_sectBBsize);
270 nbblks = round_up(nbblks, log->l_sectBBsize);
271
272 ASSERT(nbblks > 0);
273 ASSERT(nbblks <= bp->b_length);
274
275 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
276 XFS_BUF_ZEROFLAGS(bp);
277 xfs_buf_hold(bp);
278 xfs_buf_lock(bp);
279 bp->b_io_length = nbblks;
280 bp->b_error = 0;
281
282 error = xfs_bwrite(bp);
283 if (error)
284 xfs_buf_ioerror_alert(bp, __func__);
285 xfs_buf_relse(bp);
286 return error;
287 }
288
289 #ifdef DEBUG
290 /*
291 * dump debug superblock and log record information
292 */
293 STATIC void
294 xlog_header_check_dump(
295 xfs_mount_t *mp,
296 xlog_rec_header_t *head)
297 {
298 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d\n",
299 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
300 xfs_debug(mp, " log : uuid = %pU, fmt = %d\n",
301 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
302 }
303 #else
304 #define xlog_header_check_dump(mp, head)
305 #endif
306
307 /*
308 * check log record header for recovery
309 */
310 STATIC int
311 xlog_header_check_recover(
312 xfs_mount_t *mp,
313 xlog_rec_header_t *head)
314 {
315 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
316
317 /*
318 * IRIX doesn't write the h_fmt field and leaves it zeroed
319 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
320 * a dirty log created in IRIX.
321 */
322 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
323 xfs_warn(mp,
324 "dirty log written in incompatible format - can't recover");
325 xlog_header_check_dump(mp, head);
326 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
327 XFS_ERRLEVEL_HIGH, mp);
328 return XFS_ERROR(EFSCORRUPTED);
329 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
330 xfs_warn(mp,
331 "dirty log entry has mismatched uuid - can't recover");
332 xlog_header_check_dump(mp, head);
333 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
334 XFS_ERRLEVEL_HIGH, mp);
335 return XFS_ERROR(EFSCORRUPTED);
336 }
337 return 0;
338 }
339
340 /*
341 * read the head block of the log and check the header
342 */
343 STATIC int
344 xlog_header_check_mount(
345 xfs_mount_t *mp,
346 xlog_rec_header_t *head)
347 {
348 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
349
350 if (uuid_is_nil(&head->h_fs_uuid)) {
351 /*
352 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
353 * h_fs_uuid is nil, we assume this log was last mounted
354 * by IRIX and continue.
355 */
356 xfs_warn(mp, "nil uuid in log - IRIX style log");
357 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
358 xfs_warn(mp, "log has mismatched uuid - can't recover");
359 xlog_header_check_dump(mp, head);
360 XFS_ERROR_REPORT("xlog_header_check_mount",
361 XFS_ERRLEVEL_HIGH, mp);
362 return XFS_ERROR(EFSCORRUPTED);
363 }
364 return 0;
365 }
366
367 STATIC void
368 xlog_recover_iodone(
369 struct xfs_buf *bp)
370 {
371 if (bp->b_error) {
372 /*
373 * We're not going to bother about retrying
374 * this during recovery. One strike!
375 */
376 xfs_buf_ioerror_alert(bp, __func__);
377 xfs_force_shutdown(bp->b_target->bt_mount,
378 SHUTDOWN_META_IO_ERROR);
379 }
380 bp->b_iodone = NULL;
381 xfs_buf_ioend(bp, 0);
382 }
383
384 /*
385 * This routine finds (to an approximation) the first block in the physical
386 * log which contains the given cycle. It uses a binary search algorithm.
387 * Note that the algorithm can not be perfect because the disk will not
388 * necessarily be perfect.
389 */
390 STATIC int
391 xlog_find_cycle_start(
392 struct xlog *log,
393 struct xfs_buf *bp,
394 xfs_daddr_t first_blk,
395 xfs_daddr_t *last_blk,
396 uint cycle)
397 {
398 xfs_caddr_t offset;
399 xfs_daddr_t mid_blk;
400 xfs_daddr_t end_blk;
401 uint mid_cycle;
402 int error;
403
404 end_blk = *last_blk;
405 mid_blk = BLK_AVG(first_blk, end_blk);
406 while (mid_blk != first_blk && mid_blk != end_blk) {
407 error = xlog_bread(log, mid_blk, 1, bp, &offset);
408 if (error)
409 return error;
410 mid_cycle = xlog_get_cycle(offset);
411 if (mid_cycle == cycle)
412 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
413 else
414 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
415 mid_blk = BLK_AVG(first_blk, end_blk);
416 }
417 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
418 (mid_blk == end_blk && mid_blk-1 == first_blk));
419
420 *last_blk = end_blk;
421
422 return 0;
423 }
424
425 /*
426 * Check that a range of blocks does not contain stop_on_cycle_no.
427 * Fill in *new_blk with the block offset where such a block is
428 * found, or with -1 (an invalid block number) if there is no such
429 * block in the range. The scan needs to occur from front to back
430 * and the pointer into the region must be updated since a later
431 * routine will need to perform another test.
432 */
433 STATIC int
434 xlog_find_verify_cycle(
435 struct xlog *log,
436 xfs_daddr_t start_blk,
437 int nbblks,
438 uint stop_on_cycle_no,
439 xfs_daddr_t *new_blk)
440 {
441 xfs_daddr_t i, j;
442 uint cycle;
443 xfs_buf_t *bp;
444 xfs_daddr_t bufblks;
445 xfs_caddr_t buf = NULL;
446 int error = 0;
447
448 /*
449 * Greedily allocate a buffer big enough to handle the full
450 * range of basic blocks we'll be examining. If that fails,
451 * try a smaller size. We need to be able to read at least
452 * a log sector, or we're out of luck.
453 */
454 bufblks = 1 << ffs(nbblks);
455 while (bufblks > log->l_logBBsize)
456 bufblks >>= 1;
457 while (!(bp = xlog_get_bp(log, bufblks))) {
458 bufblks >>= 1;
459 if (bufblks < log->l_sectBBsize)
460 return ENOMEM;
461 }
462
463 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
464 int bcount;
465
466 bcount = min(bufblks, (start_blk + nbblks - i));
467
468 error = xlog_bread(log, i, bcount, bp, &buf);
469 if (error)
470 goto out;
471
472 for (j = 0; j < bcount; j++) {
473 cycle = xlog_get_cycle(buf);
474 if (cycle == stop_on_cycle_no) {
475 *new_blk = i+j;
476 goto out;
477 }
478
479 buf += BBSIZE;
480 }
481 }
482
483 *new_blk = -1;
484
485 out:
486 xlog_put_bp(bp);
487 return error;
488 }
489
490 /*
491 * Potentially backup over partial log record write.
492 *
493 * In the typical case, last_blk is the number of the block directly after
494 * a good log record. Therefore, we subtract one to get the block number
495 * of the last block in the given buffer. extra_bblks contains the number
496 * of blocks we would have read on a previous read. This happens when the
497 * last log record is split over the end of the physical log.
498 *
499 * extra_bblks is the number of blocks potentially verified on a previous
500 * call to this routine.
501 */
502 STATIC int
503 xlog_find_verify_log_record(
504 struct xlog *log,
505 xfs_daddr_t start_blk,
506 xfs_daddr_t *last_blk,
507 int extra_bblks)
508 {
509 xfs_daddr_t i;
510 xfs_buf_t *bp;
511 xfs_caddr_t offset = NULL;
512 xlog_rec_header_t *head = NULL;
513 int error = 0;
514 int smallmem = 0;
515 int num_blks = *last_blk - start_blk;
516 int xhdrs;
517
518 ASSERT(start_blk != 0 || *last_blk != start_blk);
519
520 if (!(bp = xlog_get_bp(log, num_blks))) {
521 if (!(bp = xlog_get_bp(log, 1)))
522 return ENOMEM;
523 smallmem = 1;
524 } else {
525 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
526 if (error)
527 goto out;
528 offset += ((num_blks - 1) << BBSHIFT);
529 }
530
531 for (i = (*last_blk) - 1; i >= 0; i--) {
532 if (i < start_blk) {
533 /* valid log record not found */
534 xfs_warn(log->l_mp,
535 "Log inconsistent (didn't find previous header)");
536 ASSERT(0);
537 error = XFS_ERROR(EIO);
538 goto out;
539 }
540
541 if (smallmem) {
542 error = xlog_bread(log, i, 1, bp, &offset);
543 if (error)
544 goto out;
545 }
546
547 head = (xlog_rec_header_t *)offset;
548
549 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
550 break;
551
552 if (!smallmem)
553 offset -= BBSIZE;
554 }
555
556 /*
557 * We hit the beginning of the physical log & still no header. Return
558 * to caller. If caller can handle a return of -1, then this routine
559 * will be called again for the end of the physical log.
560 */
561 if (i == -1) {
562 error = -1;
563 goto out;
564 }
565
566 /*
567 * We have the final block of the good log (the first block
568 * of the log record _before_ the head. So we check the uuid.
569 */
570 if ((error = xlog_header_check_mount(log->l_mp, head)))
571 goto out;
572
573 /*
574 * We may have found a log record header before we expected one.
575 * last_blk will be the 1st block # with a given cycle #. We may end
576 * up reading an entire log record. In this case, we don't want to
577 * reset last_blk. Only when last_blk points in the middle of a log
578 * record do we update last_blk.
579 */
580 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
581 uint h_size = be32_to_cpu(head->h_size);
582
583 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
584 if (h_size % XLOG_HEADER_CYCLE_SIZE)
585 xhdrs++;
586 } else {
587 xhdrs = 1;
588 }
589
590 if (*last_blk - i + extra_bblks !=
591 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
592 *last_blk = i;
593
594 out:
595 xlog_put_bp(bp);
596 return error;
597 }
598
599 /*
600 * Head is defined to be the point of the log where the next log write
601 * write could go. This means that incomplete LR writes at the end are
602 * eliminated when calculating the head. We aren't guaranteed that previous
603 * LR have complete transactions. We only know that a cycle number of
604 * current cycle number -1 won't be present in the log if we start writing
605 * from our current block number.
606 *
607 * last_blk contains the block number of the first block with a given
608 * cycle number.
609 *
610 * Return: zero if normal, non-zero if error.
611 */
612 STATIC int
613 xlog_find_head(
614 struct xlog *log,
615 xfs_daddr_t *return_head_blk)
616 {
617 xfs_buf_t *bp;
618 xfs_caddr_t offset;
619 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
620 int num_scan_bblks;
621 uint first_half_cycle, last_half_cycle;
622 uint stop_on_cycle;
623 int error, log_bbnum = log->l_logBBsize;
624
625 /* Is the end of the log device zeroed? */
626 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
627 *return_head_blk = first_blk;
628
629 /* Is the whole lot zeroed? */
630 if (!first_blk) {
631 /* Linux XFS shouldn't generate totally zeroed logs -
632 * mkfs etc write a dummy unmount record to a fresh
633 * log so we can store the uuid in there
634 */
635 xfs_warn(log->l_mp, "totally zeroed log");
636 }
637
638 return 0;
639 } else if (error) {
640 xfs_warn(log->l_mp, "empty log check failed");
641 return error;
642 }
643
644 first_blk = 0; /* get cycle # of 1st block */
645 bp = xlog_get_bp(log, 1);
646 if (!bp)
647 return ENOMEM;
648
649 error = xlog_bread(log, 0, 1, bp, &offset);
650 if (error)
651 goto bp_err;
652
653 first_half_cycle = xlog_get_cycle(offset);
654
655 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
656 error = xlog_bread(log, last_blk, 1, bp, &offset);
657 if (error)
658 goto bp_err;
659
660 last_half_cycle = xlog_get_cycle(offset);
661 ASSERT(last_half_cycle != 0);
662
663 /*
664 * If the 1st half cycle number is equal to the last half cycle number,
665 * then the entire log is stamped with the same cycle number. In this
666 * case, head_blk can't be set to zero (which makes sense). The below
667 * math doesn't work out properly with head_blk equal to zero. Instead,
668 * we set it to log_bbnum which is an invalid block number, but this
669 * value makes the math correct. If head_blk doesn't changed through
670 * all the tests below, *head_blk is set to zero at the very end rather
671 * than log_bbnum. In a sense, log_bbnum and zero are the same block
672 * in a circular file.
673 */
674 if (first_half_cycle == last_half_cycle) {
675 /*
676 * In this case we believe that the entire log should have
677 * cycle number last_half_cycle. We need to scan backwards
678 * from the end verifying that there are no holes still
679 * containing last_half_cycle - 1. If we find such a hole,
680 * then the start of that hole will be the new head. The
681 * simple case looks like
682 * x | x ... | x - 1 | x
683 * Another case that fits this picture would be
684 * x | x + 1 | x ... | x
685 * In this case the head really is somewhere at the end of the
686 * log, as one of the latest writes at the beginning was
687 * incomplete.
688 * One more case is
689 * x | x + 1 | x ... | x - 1 | x
690 * This is really the combination of the above two cases, and
691 * the head has to end up at the start of the x-1 hole at the
692 * end of the log.
693 *
694 * In the 256k log case, we will read from the beginning to the
695 * end of the log and search for cycle numbers equal to x-1.
696 * We don't worry about the x+1 blocks that we encounter,
697 * because we know that they cannot be the head since the log
698 * started with x.
699 */
700 head_blk = log_bbnum;
701 stop_on_cycle = last_half_cycle - 1;
702 } else {
703 /*
704 * In this case we want to find the first block with cycle
705 * number matching last_half_cycle. We expect the log to be
706 * some variation on
707 * x + 1 ... | x ... | x
708 * The first block with cycle number x (last_half_cycle) will
709 * be where the new head belongs. First we do a binary search
710 * for the first occurrence of last_half_cycle. The binary
711 * search may not be totally accurate, so then we scan back
712 * from there looking for occurrences of last_half_cycle before
713 * us. If that backwards scan wraps around the beginning of
714 * the log, then we look for occurrences of last_half_cycle - 1
715 * at the end of the log. The cases we're looking for look
716 * like
717 * v binary search stopped here
718 * x + 1 ... | x | x + 1 | x ... | x
719 * ^ but we want to locate this spot
720 * or
721 * <---------> less than scan distance
722 * x + 1 ... | x ... | x - 1 | x
723 * ^ we want to locate this spot
724 */
725 stop_on_cycle = last_half_cycle;
726 if ((error = xlog_find_cycle_start(log, bp, first_blk,
727 &head_blk, last_half_cycle)))
728 goto bp_err;
729 }
730
731 /*
732 * Now validate the answer. Scan back some number of maximum possible
733 * blocks and make sure each one has the expected cycle number. The
734 * maximum is determined by the total possible amount of buffering
735 * in the in-core log. The following number can be made tighter if
736 * we actually look at the block size of the filesystem.
737 */
738 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
739 if (head_blk >= num_scan_bblks) {
740 /*
741 * We are guaranteed that the entire check can be performed
742 * in one buffer.
743 */
744 start_blk = head_blk - num_scan_bblks;
745 if ((error = xlog_find_verify_cycle(log,
746 start_blk, num_scan_bblks,
747 stop_on_cycle, &new_blk)))
748 goto bp_err;
749 if (new_blk != -1)
750 head_blk = new_blk;
751 } else { /* need to read 2 parts of log */
752 /*
753 * We are going to scan backwards in the log in two parts.
754 * First we scan the physical end of the log. In this part
755 * of the log, we are looking for blocks with cycle number
756 * last_half_cycle - 1.
757 * If we find one, then we know that the log starts there, as
758 * we've found a hole that didn't get written in going around
759 * the end of the physical log. The simple case for this is
760 * x + 1 ... | x ... | x - 1 | x
761 * <---------> less than scan distance
762 * If all of the blocks at the end of the log have cycle number
763 * last_half_cycle, then we check the blocks at the start of
764 * the log looking for occurrences of last_half_cycle. If we
765 * find one, then our current estimate for the location of the
766 * first occurrence of last_half_cycle is wrong and we move
767 * back to the hole we've found. This case looks like
768 * x + 1 ... | x | x + 1 | x ...
769 * ^ binary search stopped here
770 * Another case we need to handle that only occurs in 256k
771 * logs is
772 * x + 1 ... | x ... | x+1 | x ...
773 * ^ binary search stops here
774 * In a 256k log, the scan at the end of the log will see the
775 * x + 1 blocks. We need to skip past those since that is
776 * certainly not the head of the log. By searching for
777 * last_half_cycle-1 we accomplish that.
778 */
779 ASSERT(head_blk <= INT_MAX &&
780 (xfs_daddr_t) num_scan_bblks >= head_blk);
781 start_blk = log_bbnum - (num_scan_bblks - head_blk);
782 if ((error = xlog_find_verify_cycle(log, start_blk,
783 num_scan_bblks - (int)head_blk,
784 (stop_on_cycle - 1), &new_blk)))
785 goto bp_err;
786 if (new_blk != -1) {
787 head_blk = new_blk;
788 goto validate_head;
789 }
790
791 /*
792 * Scan beginning of log now. The last part of the physical
793 * log is good. This scan needs to verify that it doesn't find
794 * the last_half_cycle.
795 */
796 start_blk = 0;
797 ASSERT(head_blk <= INT_MAX);
798 if ((error = xlog_find_verify_cycle(log,
799 start_blk, (int)head_blk,
800 stop_on_cycle, &new_blk)))
801 goto bp_err;
802 if (new_blk != -1)
803 head_blk = new_blk;
804 }
805
806 validate_head:
807 /*
808 * Now we need to make sure head_blk is not pointing to a block in
809 * the middle of a log record.
810 */
811 num_scan_bblks = XLOG_REC_SHIFT(log);
812 if (head_blk >= num_scan_bblks) {
813 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
814
815 /* start ptr at last block ptr before head_blk */
816 if ((error = xlog_find_verify_log_record(log, start_blk,
817 &head_blk, 0)) == -1) {
818 error = XFS_ERROR(EIO);
819 goto bp_err;
820 } else if (error)
821 goto bp_err;
822 } else {
823 start_blk = 0;
824 ASSERT(head_blk <= INT_MAX);
825 if ((error = xlog_find_verify_log_record(log, start_blk,
826 &head_blk, 0)) == -1) {
827 /* We hit the beginning of the log during our search */
828 start_blk = log_bbnum - (num_scan_bblks - head_blk);
829 new_blk = log_bbnum;
830 ASSERT(start_blk <= INT_MAX &&
831 (xfs_daddr_t) log_bbnum-start_blk >= 0);
832 ASSERT(head_blk <= INT_MAX);
833 if ((error = xlog_find_verify_log_record(log,
834 start_blk, &new_blk,
835 (int)head_blk)) == -1) {
836 error = XFS_ERROR(EIO);
837 goto bp_err;
838 } else if (error)
839 goto bp_err;
840 if (new_blk != log_bbnum)
841 head_blk = new_blk;
842 } else if (error)
843 goto bp_err;
844 }
845
846 xlog_put_bp(bp);
847 if (head_blk == log_bbnum)
848 *return_head_blk = 0;
849 else
850 *return_head_blk = head_blk;
851 /*
852 * When returning here, we have a good block number. Bad block
853 * means that during a previous crash, we didn't have a clean break
854 * from cycle number N to cycle number N-1. In this case, we need
855 * to find the first block with cycle number N-1.
856 */
857 return 0;
858
859 bp_err:
860 xlog_put_bp(bp);
861
862 if (error)
863 xfs_warn(log->l_mp, "failed to find log head");
864 return error;
865 }
866
867 /*
868 * Find the sync block number or the tail of the log.
869 *
870 * This will be the block number of the last record to have its
871 * associated buffers synced to disk. Every log record header has
872 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
873 * to get a sync block number. The only concern is to figure out which
874 * log record header to believe.
875 *
876 * The following algorithm uses the log record header with the largest
877 * lsn. The entire log record does not need to be valid. We only care
878 * that the header is valid.
879 *
880 * We could speed up search by using current head_blk buffer, but it is not
881 * available.
882 */
883 STATIC int
884 xlog_find_tail(
885 struct xlog *log,
886 xfs_daddr_t *head_blk,
887 xfs_daddr_t *tail_blk)
888 {
889 xlog_rec_header_t *rhead;
890 xlog_op_header_t *op_head;
891 xfs_caddr_t offset = NULL;
892 xfs_buf_t *bp;
893 int error, i, found;
894 xfs_daddr_t umount_data_blk;
895 xfs_daddr_t after_umount_blk;
896 xfs_lsn_t tail_lsn;
897 int hblks;
898
899 found = 0;
900
901 /*
902 * Find previous log record
903 */
904 if ((error = xlog_find_head(log, head_blk)))
905 return error;
906
907 bp = xlog_get_bp(log, 1);
908 if (!bp)
909 return ENOMEM;
910 if (*head_blk == 0) { /* special case */
911 error = xlog_bread(log, 0, 1, bp, &offset);
912 if (error)
913 goto done;
914
915 if (xlog_get_cycle(offset) == 0) {
916 *tail_blk = 0;
917 /* leave all other log inited values alone */
918 goto done;
919 }
920 }
921
922 /*
923 * Search backwards looking for log record header block
924 */
925 ASSERT(*head_blk < INT_MAX);
926 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
927 error = xlog_bread(log, i, 1, bp, &offset);
928 if (error)
929 goto done;
930
931 if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
932 found = 1;
933 break;
934 }
935 }
936 /*
937 * If we haven't found the log record header block, start looking
938 * again from the end of the physical log. XXXmiken: There should be
939 * a check here to make sure we didn't search more than N blocks in
940 * the previous code.
941 */
942 if (!found) {
943 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
944 error = xlog_bread(log, i, 1, bp, &offset);
945 if (error)
946 goto done;
947
948 if (*(__be32 *)offset ==
949 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
950 found = 2;
951 break;
952 }
953 }
954 }
955 if (!found) {
956 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
957 ASSERT(0);
958 return XFS_ERROR(EIO);
959 }
960
961 /* find blk_no of tail of log */
962 rhead = (xlog_rec_header_t *)offset;
963 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
964
965 /*
966 * Reset log values according to the state of the log when we
967 * crashed. In the case where head_blk == 0, we bump curr_cycle
968 * one because the next write starts a new cycle rather than
969 * continuing the cycle of the last good log record. At this
970 * point we have guaranteed that all partial log records have been
971 * accounted for. Therefore, we know that the last good log record
972 * written was complete and ended exactly on the end boundary
973 * of the physical log.
974 */
975 log->l_prev_block = i;
976 log->l_curr_block = (int)*head_blk;
977 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
978 if (found == 2)
979 log->l_curr_cycle++;
980 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
981 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
982 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
983 BBTOB(log->l_curr_block));
984 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
985 BBTOB(log->l_curr_block));
986
987 /*
988 * Look for unmount record. If we find it, then we know there
989 * was a clean unmount. Since 'i' could be the last block in
990 * the physical log, we convert to a log block before comparing
991 * to the head_blk.
992 *
993 * Save the current tail lsn to use to pass to
994 * xlog_clear_stale_blocks() below. We won't want to clear the
995 * unmount record if there is one, so we pass the lsn of the
996 * unmount record rather than the block after it.
997 */
998 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
999 int h_size = be32_to_cpu(rhead->h_size);
1000 int h_version = be32_to_cpu(rhead->h_version);
1001
1002 if ((h_version & XLOG_VERSION_2) &&
1003 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1004 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1005 if (h_size % XLOG_HEADER_CYCLE_SIZE)
1006 hblks++;
1007 } else {
1008 hblks = 1;
1009 }
1010 } else {
1011 hblks = 1;
1012 }
1013 after_umount_blk = (i + hblks + (int)
1014 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1015 tail_lsn = atomic64_read(&log->l_tail_lsn);
1016 if (*head_blk == after_umount_blk &&
1017 be32_to_cpu(rhead->h_num_logops) == 1) {
1018 umount_data_blk = (i + hblks) % log->l_logBBsize;
1019 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1020 if (error)
1021 goto done;
1022
1023 op_head = (xlog_op_header_t *)offset;
1024 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1025 /*
1026 * Set tail and last sync so that newly written
1027 * log records will point recovery to after the
1028 * current unmount record.
1029 */
1030 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1031 log->l_curr_cycle, after_umount_blk);
1032 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1033 log->l_curr_cycle, after_umount_blk);
1034 *tail_blk = after_umount_blk;
1035
1036 /*
1037 * Note that the unmount was clean. If the unmount
1038 * was not clean, we need to know this to rebuild the
1039 * superblock counters from the perag headers if we
1040 * have a filesystem using non-persistent counters.
1041 */
1042 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1043 }
1044 }
1045
1046 /*
1047 * Make sure that there are no blocks in front of the head
1048 * with the same cycle number as the head. This can happen
1049 * because we allow multiple outstanding log writes concurrently,
1050 * and the later writes might make it out before earlier ones.
1051 *
1052 * We use the lsn from before modifying it so that we'll never
1053 * overwrite the unmount record after a clean unmount.
1054 *
1055 * Do this only if we are going to recover the filesystem
1056 *
1057 * NOTE: This used to say "if (!readonly)"
1058 * However on Linux, we can & do recover a read-only filesystem.
1059 * We only skip recovery if NORECOVERY is specified on mount,
1060 * in which case we would not be here.
1061 *
1062 * But... if the -device- itself is readonly, just skip this.
1063 * We can't recover this device anyway, so it won't matter.
1064 */
1065 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1066 error = xlog_clear_stale_blocks(log, tail_lsn);
1067
1068 done:
1069 xlog_put_bp(bp);
1070
1071 if (error)
1072 xfs_warn(log->l_mp, "failed to locate log tail");
1073 return error;
1074 }
1075
1076 /*
1077 * Is the log zeroed at all?
1078 *
1079 * The last binary search should be changed to perform an X block read
1080 * once X becomes small enough. You can then search linearly through
1081 * the X blocks. This will cut down on the number of reads we need to do.
1082 *
1083 * If the log is partially zeroed, this routine will pass back the blkno
1084 * of the first block with cycle number 0. It won't have a complete LR
1085 * preceding it.
1086 *
1087 * Return:
1088 * 0 => the log is completely written to
1089 * -1 => use *blk_no as the first block of the log
1090 * >0 => error has occurred
1091 */
1092 STATIC int
1093 xlog_find_zeroed(
1094 struct xlog *log,
1095 xfs_daddr_t *blk_no)
1096 {
1097 xfs_buf_t *bp;
1098 xfs_caddr_t offset;
1099 uint first_cycle, last_cycle;
1100 xfs_daddr_t new_blk, last_blk, start_blk;
1101 xfs_daddr_t num_scan_bblks;
1102 int error, log_bbnum = log->l_logBBsize;
1103
1104 *blk_no = 0;
1105
1106 /* check totally zeroed log */
1107 bp = xlog_get_bp(log, 1);
1108 if (!bp)
1109 return ENOMEM;
1110 error = xlog_bread(log, 0, 1, bp, &offset);
1111 if (error)
1112 goto bp_err;
1113
1114 first_cycle = xlog_get_cycle(offset);
1115 if (first_cycle == 0) { /* completely zeroed log */
1116 *blk_no = 0;
1117 xlog_put_bp(bp);
1118 return -1;
1119 }
1120
1121 /* check partially zeroed log */
1122 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1123 if (error)
1124 goto bp_err;
1125
1126 last_cycle = xlog_get_cycle(offset);
1127 if (last_cycle != 0) { /* log completely written to */
1128 xlog_put_bp(bp);
1129 return 0;
1130 } else if (first_cycle != 1) {
1131 /*
1132 * If the cycle of the last block is zero, the cycle of
1133 * the first block must be 1. If it's not, maybe we're
1134 * not looking at a log... Bail out.
1135 */
1136 xfs_warn(log->l_mp,
1137 "Log inconsistent or not a log (last==0, first!=1)");
1138 return XFS_ERROR(EINVAL);
1139 }
1140
1141 /* we have a partially zeroed log */
1142 last_blk = log_bbnum-1;
1143 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1144 goto bp_err;
1145
1146 /*
1147 * Validate the answer. Because there is no way to guarantee that
1148 * the entire log is made up of log records which are the same size,
1149 * we scan over the defined maximum blocks. At this point, the maximum
1150 * is not chosen to mean anything special. XXXmiken
1151 */
1152 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1153 ASSERT(num_scan_bblks <= INT_MAX);
1154
1155 if (last_blk < num_scan_bblks)
1156 num_scan_bblks = last_blk;
1157 start_blk = last_blk - num_scan_bblks;
1158
1159 /*
1160 * We search for any instances of cycle number 0 that occur before
1161 * our current estimate of the head. What we're trying to detect is
1162 * 1 ... | 0 | 1 | 0...
1163 * ^ binary search ends here
1164 */
1165 if ((error = xlog_find_verify_cycle(log, start_blk,
1166 (int)num_scan_bblks, 0, &new_blk)))
1167 goto bp_err;
1168 if (new_blk != -1)
1169 last_blk = new_blk;
1170
1171 /*
1172 * Potentially backup over partial log record write. We don't need
1173 * to search the end of the log because we know it is zero.
1174 */
1175 if ((error = xlog_find_verify_log_record(log, start_blk,
1176 &last_blk, 0)) == -1) {
1177 error = XFS_ERROR(EIO);
1178 goto bp_err;
1179 } else if (error)
1180 goto bp_err;
1181
1182 *blk_no = last_blk;
1183 bp_err:
1184 xlog_put_bp(bp);
1185 if (error)
1186 return error;
1187 return -1;
1188 }
1189
1190 /*
1191 * These are simple subroutines used by xlog_clear_stale_blocks() below
1192 * to initialize a buffer full of empty log record headers and write
1193 * them into the log.
1194 */
1195 STATIC void
1196 xlog_add_record(
1197 struct xlog *log,
1198 xfs_caddr_t buf,
1199 int cycle,
1200 int block,
1201 int tail_cycle,
1202 int tail_block)
1203 {
1204 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1205
1206 memset(buf, 0, BBSIZE);
1207 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1208 recp->h_cycle = cpu_to_be32(cycle);
1209 recp->h_version = cpu_to_be32(
1210 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1211 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1212 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1213 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1214 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1215 }
1216
1217 STATIC int
1218 xlog_write_log_records(
1219 struct xlog *log,
1220 int cycle,
1221 int start_block,
1222 int blocks,
1223 int tail_cycle,
1224 int tail_block)
1225 {
1226 xfs_caddr_t offset;
1227 xfs_buf_t *bp;
1228 int balign, ealign;
1229 int sectbb = log->l_sectBBsize;
1230 int end_block = start_block + blocks;
1231 int bufblks;
1232 int error = 0;
1233 int i, j = 0;
1234
1235 /*
1236 * Greedily allocate a buffer big enough to handle the full
1237 * range of basic blocks to be written. If that fails, try
1238 * a smaller size. We need to be able to write at least a
1239 * log sector, or we're out of luck.
1240 */
1241 bufblks = 1 << ffs(blocks);
1242 while (bufblks > log->l_logBBsize)
1243 bufblks >>= 1;
1244 while (!(bp = xlog_get_bp(log, bufblks))) {
1245 bufblks >>= 1;
1246 if (bufblks < sectbb)
1247 return ENOMEM;
1248 }
1249
1250 /* We may need to do a read at the start to fill in part of
1251 * the buffer in the starting sector not covered by the first
1252 * write below.
1253 */
1254 balign = round_down(start_block, sectbb);
1255 if (balign != start_block) {
1256 error = xlog_bread_noalign(log, start_block, 1, bp);
1257 if (error)
1258 goto out_put_bp;
1259
1260 j = start_block - balign;
1261 }
1262
1263 for (i = start_block; i < end_block; i += bufblks) {
1264 int bcount, endcount;
1265
1266 bcount = min(bufblks, end_block - start_block);
1267 endcount = bcount - j;
1268
1269 /* We may need to do a read at the end to fill in part of
1270 * the buffer in the final sector not covered by the write.
1271 * If this is the same sector as the above read, skip it.
1272 */
1273 ealign = round_down(end_block, sectbb);
1274 if (j == 0 && (start_block + endcount > ealign)) {
1275 offset = bp->b_addr + BBTOB(ealign - start_block);
1276 error = xlog_bread_offset(log, ealign, sectbb,
1277 bp, offset);
1278 if (error)
1279 break;
1280
1281 }
1282
1283 offset = xlog_align(log, start_block, endcount, bp);
1284 for (; j < endcount; j++) {
1285 xlog_add_record(log, offset, cycle, i+j,
1286 tail_cycle, tail_block);
1287 offset += BBSIZE;
1288 }
1289 error = xlog_bwrite(log, start_block, endcount, bp);
1290 if (error)
1291 break;
1292 start_block += endcount;
1293 j = 0;
1294 }
1295
1296 out_put_bp:
1297 xlog_put_bp(bp);
1298 return error;
1299 }
1300
1301 /*
1302 * This routine is called to blow away any incomplete log writes out
1303 * in front of the log head. We do this so that we won't become confused
1304 * if we come up, write only a little bit more, and then crash again.
1305 * If we leave the partial log records out there, this situation could
1306 * cause us to think those partial writes are valid blocks since they
1307 * have the current cycle number. We get rid of them by overwriting them
1308 * with empty log records with the old cycle number rather than the
1309 * current one.
1310 *
1311 * The tail lsn is passed in rather than taken from
1312 * the log so that we will not write over the unmount record after a
1313 * clean unmount in a 512 block log. Doing so would leave the log without
1314 * any valid log records in it until a new one was written. If we crashed
1315 * during that time we would not be able to recover.
1316 */
1317 STATIC int
1318 xlog_clear_stale_blocks(
1319 struct xlog *log,
1320 xfs_lsn_t tail_lsn)
1321 {
1322 int tail_cycle, head_cycle;
1323 int tail_block, head_block;
1324 int tail_distance, max_distance;
1325 int distance;
1326 int error;
1327
1328 tail_cycle = CYCLE_LSN(tail_lsn);
1329 tail_block = BLOCK_LSN(tail_lsn);
1330 head_cycle = log->l_curr_cycle;
1331 head_block = log->l_curr_block;
1332
1333 /*
1334 * Figure out the distance between the new head of the log
1335 * and the tail. We want to write over any blocks beyond the
1336 * head that we may have written just before the crash, but
1337 * we don't want to overwrite the tail of the log.
1338 */
1339 if (head_cycle == tail_cycle) {
1340 /*
1341 * The tail is behind the head in the physical log,
1342 * so the distance from the head to the tail is the
1343 * distance from the head to the end of the log plus
1344 * the distance from the beginning of the log to the
1345 * tail.
1346 */
1347 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1348 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1349 XFS_ERRLEVEL_LOW, log->l_mp);
1350 return XFS_ERROR(EFSCORRUPTED);
1351 }
1352 tail_distance = tail_block + (log->l_logBBsize - head_block);
1353 } else {
1354 /*
1355 * The head is behind the tail in the physical log,
1356 * so the distance from the head to the tail is just
1357 * the tail block minus the head block.
1358 */
1359 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1360 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1361 XFS_ERRLEVEL_LOW, log->l_mp);
1362 return XFS_ERROR(EFSCORRUPTED);
1363 }
1364 tail_distance = tail_block - head_block;
1365 }
1366
1367 /*
1368 * If the head is right up against the tail, we can't clear
1369 * anything.
1370 */
1371 if (tail_distance <= 0) {
1372 ASSERT(tail_distance == 0);
1373 return 0;
1374 }
1375
1376 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1377 /*
1378 * Take the smaller of the maximum amount of outstanding I/O
1379 * we could have and the distance to the tail to clear out.
1380 * We take the smaller so that we don't overwrite the tail and
1381 * we don't waste all day writing from the head to the tail
1382 * for no reason.
1383 */
1384 max_distance = MIN(max_distance, tail_distance);
1385
1386 if ((head_block + max_distance) <= log->l_logBBsize) {
1387 /*
1388 * We can stomp all the blocks we need to without
1389 * wrapping around the end of the log. Just do it
1390 * in a single write. Use the cycle number of the
1391 * current cycle minus one so that the log will look like:
1392 * n ... | n - 1 ...
1393 */
1394 error = xlog_write_log_records(log, (head_cycle - 1),
1395 head_block, max_distance, tail_cycle,
1396 tail_block);
1397 if (error)
1398 return error;
1399 } else {
1400 /*
1401 * We need to wrap around the end of the physical log in
1402 * order to clear all the blocks. Do it in two separate
1403 * I/Os. The first write should be from the head to the
1404 * end of the physical log, and it should use the current
1405 * cycle number minus one just like above.
1406 */
1407 distance = log->l_logBBsize - head_block;
1408 error = xlog_write_log_records(log, (head_cycle - 1),
1409 head_block, distance, tail_cycle,
1410 tail_block);
1411
1412 if (error)
1413 return error;
1414
1415 /*
1416 * Now write the blocks at the start of the physical log.
1417 * This writes the remainder of the blocks we want to clear.
1418 * It uses the current cycle number since we're now on the
1419 * same cycle as the head so that we get:
1420 * n ... n ... | n - 1 ...
1421 * ^^^^^ blocks we're writing
1422 */
1423 distance = max_distance - (log->l_logBBsize - head_block);
1424 error = xlog_write_log_records(log, head_cycle, 0, distance,
1425 tail_cycle, tail_block);
1426 if (error)
1427 return error;
1428 }
1429
1430 return 0;
1431 }
1432
1433 /******************************************************************************
1434 *
1435 * Log recover routines
1436 *
1437 ******************************************************************************
1438 */
1439
1440 STATIC xlog_recover_t *
1441 xlog_recover_find_tid(
1442 struct hlist_head *head,
1443 xlog_tid_t tid)
1444 {
1445 xlog_recover_t *trans;
1446
1447 hlist_for_each_entry(trans, head, r_list) {
1448 if (trans->r_log_tid == tid)
1449 return trans;
1450 }
1451 return NULL;
1452 }
1453
1454 STATIC void
1455 xlog_recover_new_tid(
1456 struct hlist_head *head,
1457 xlog_tid_t tid,
1458 xfs_lsn_t lsn)
1459 {
1460 xlog_recover_t *trans;
1461
1462 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1463 trans->r_log_tid = tid;
1464 trans->r_lsn = lsn;
1465 INIT_LIST_HEAD(&trans->r_itemq);
1466
1467 INIT_HLIST_NODE(&trans->r_list);
1468 hlist_add_head(&trans->r_list, head);
1469 }
1470
1471 STATIC void
1472 xlog_recover_add_item(
1473 struct list_head *head)
1474 {
1475 xlog_recover_item_t *item;
1476
1477 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1478 INIT_LIST_HEAD(&item->ri_list);
1479 list_add_tail(&item->ri_list, head);
1480 }
1481
1482 STATIC int
1483 xlog_recover_add_to_cont_trans(
1484 struct xlog *log,
1485 struct xlog_recover *trans,
1486 xfs_caddr_t dp,
1487 int len)
1488 {
1489 xlog_recover_item_t *item;
1490 xfs_caddr_t ptr, old_ptr;
1491 int old_len;
1492
1493 if (list_empty(&trans->r_itemq)) {
1494 /* finish copying rest of trans header */
1495 xlog_recover_add_item(&trans->r_itemq);
1496 ptr = (xfs_caddr_t) &trans->r_theader +
1497 sizeof(xfs_trans_header_t) - len;
1498 memcpy(ptr, dp, len); /* d, s, l */
1499 return 0;
1500 }
1501 /* take the tail entry */
1502 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1503
1504 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1505 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1506
1507 ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
1508 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1509 item->ri_buf[item->ri_cnt-1].i_len += len;
1510 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1511 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1512 return 0;
1513 }
1514
1515 /*
1516 * The next region to add is the start of a new region. It could be
1517 * a whole region or it could be the first part of a new region. Because
1518 * of this, the assumption here is that the type and size fields of all
1519 * format structures fit into the first 32 bits of the structure.
1520 *
1521 * This works because all regions must be 32 bit aligned. Therefore, we
1522 * either have both fields or we have neither field. In the case we have
1523 * neither field, the data part of the region is zero length. We only have
1524 * a log_op_header and can throw away the header since a new one will appear
1525 * later. If we have at least 4 bytes, then we can determine how many regions
1526 * will appear in the current log item.
1527 */
1528 STATIC int
1529 xlog_recover_add_to_trans(
1530 struct xlog *log,
1531 struct xlog_recover *trans,
1532 xfs_caddr_t dp,
1533 int len)
1534 {
1535 xfs_inode_log_format_t *in_f; /* any will do */
1536 xlog_recover_item_t *item;
1537 xfs_caddr_t ptr;
1538
1539 if (!len)
1540 return 0;
1541 if (list_empty(&trans->r_itemq)) {
1542 /* we need to catch log corruptions here */
1543 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1544 xfs_warn(log->l_mp, "%s: bad header magic number",
1545 __func__);
1546 ASSERT(0);
1547 return XFS_ERROR(EIO);
1548 }
1549 if (len == sizeof(xfs_trans_header_t))
1550 xlog_recover_add_item(&trans->r_itemq);
1551 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1552 return 0;
1553 }
1554
1555 ptr = kmem_alloc(len, KM_SLEEP);
1556 memcpy(ptr, dp, len);
1557 in_f = (xfs_inode_log_format_t *)ptr;
1558
1559 /* take the tail entry */
1560 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1561 if (item->ri_total != 0 &&
1562 item->ri_total == item->ri_cnt) {
1563 /* tail item is in use, get a new one */
1564 xlog_recover_add_item(&trans->r_itemq);
1565 item = list_entry(trans->r_itemq.prev,
1566 xlog_recover_item_t, ri_list);
1567 }
1568
1569 if (item->ri_total == 0) { /* first region to be added */
1570 if (in_f->ilf_size == 0 ||
1571 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
1572 xfs_warn(log->l_mp,
1573 "bad number of regions (%d) in inode log format",
1574 in_f->ilf_size);
1575 ASSERT(0);
1576 return XFS_ERROR(EIO);
1577 }
1578
1579 item->ri_total = in_f->ilf_size;
1580 item->ri_buf =
1581 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1582 KM_SLEEP);
1583 }
1584 ASSERT(item->ri_total > item->ri_cnt);
1585 /* Description region is ri_buf[0] */
1586 item->ri_buf[item->ri_cnt].i_addr = ptr;
1587 item->ri_buf[item->ri_cnt].i_len = len;
1588 item->ri_cnt++;
1589 trace_xfs_log_recover_item_add(log, trans, item, 0);
1590 return 0;
1591 }
1592
1593 /*
1594 * Sort the log items in the transaction. Cancelled buffers need
1595 * to be put first so they are processed before any items that might
1596 * modify the buffers. If they are cancelled, then the modifications
1597 * don't need to be replayed.
1598 */
1599 STATIC int
1600 xlog_recover_reorder_trans(
1601 struct xlog *log,
1602 struct xlog_recover *trans,
1603 int pass)
1604 {
1605 xlog_recover_item_t *item, *n;
1606 LIST_HEAD(sort_list);
1607
1608 list_splice_init(&trans->r_itemq, &sort_list);
1609 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1610 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1611
1612 switch (ITEM_TYPE(item)) {
1613 case XFS_LI_BUF:
1614 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1615 trace_xfs_log_recover_item_reorder_head(log,
1616 trans, item, pass);
1617 list_move(&item->ri_list, &trans->r_itemq);
1618 break;
1619 }
1620 case XFS_LI_INODE:
1621 case XFS_LI_DQUOT:
1622 case XFS_LI_QUOTAOFF:
1623 case XFS_LI_EFD:
1624 case XFS_LI_EFI:
1625 trace_xfs_log_recover_item_reorder_tail(log,
1626 trans, item, pass);
1627 list_move_tail(&item->ri_list, &trans->r_itemq);
1628 break;
1629 default:
1630 xfs_warn(log->l_mp,
1631 "%s: unrecognized type of log operation",
1632 __func__);
1633 ASSERT(0);
1634 return XFS_ERROR(EIO);
1635 }
1636 }
1637 ASSERT(list_empty(&sort_list));
1638 return 0;
1639 }
1640
1641 /*
1642 * Build up the table of buf cancel records so that we don't replay
1643 * cancelled data in the second pass. For buffer records that are
1644 * not cancel records, there is nothing to do here so we just return.
1645 *
1646 * If we get a cancel record which is already in the table, this indicates
1647 * that the buffer was cancelled multiple times. In order to ensure
1648 * that during pass 2 we keep the record in the table until we reach its
1649 * last occurrence in the log, we keep a reference count in the cancel
1650 * record in the table to tell us how many times we expect to see this
1651 * record during the second pass.
1652 */
1653 STATIC int
1654 xlog_recover_buffer_pass1(
1655 struct xlog *log,
1656 struct xlog_recover_item *item)
1657 {
1658 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1659 struct list_head *bucket;
1660 struct xfs_buf_cancel *bcp;
1661
1662 /*
1663 * If this isn't a cancel buffer item, then just return.
1664 */
1665 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1666 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1667 return 0;
1668 }
1669
1670 /*
1671 * Insert an xfs_buf_cancel record into the hash table of them.
1672 * If there is already an identical record, bump its reference count.
1673 */
1674 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1675 list_for_each_entry(bcp, bucket, bc_list) {
1676 if (bcp->bc_blkno == buf_f->blf_blkno &&
1677 bcp->bc_len == buf_f->blf_len) {
1678 bcp->bc_refcount++;
1679 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1680 return 0;
1681 }
1682 }
1683
1684 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1685 bcp->bc_blkno = buf_f->blf_blkno;
1686 bcp->bc_len = buf_f->blf_len;
1687 bcp->bc_refcount = 1;
1688 list_add_tail(&bcp->bc_list, bucket);
1689
1690 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1691 return 0;
1692 }
1693
1694 /*
1695 * Check to see whether the buffer being recovered has a corresponding
1696 * entry in the buffer cancel record table. If it does then return 1
1697 * so that it will be cancelled, otherwise return 0. If the buffer is
1698 * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
1699 * the refcount on the entry in the table and remove it from the table
1700 * if this is the last reference.
1701 *
1702 * We remove the cancel record from the table when we encounter its
1703 * last occurrence in the log so that if the same buffer is re-used
1704 * again after its last cancellation we actually replay the changes
1705 * made at that point.
1706 */
1707 STATIC int
1708 xlog_check_buffer_cancelled(
1709 struct xlog *log,
1710 xfs_daddr_t blkno,
1711 uint len,
1712 ushort flags)
1713 {
1714 struct list_head *bucket;
1715 struct xfs_buf_cancel *bcp;
1716
1717 if (log->l_buf_cancel_table == NULL) {
1718 /*
1719 * There is nothing in the table built in pass one,
1720 * so this buffer must not be cancelled.
1721 */
1722 ASSERT(!(flags & XFS_BLF_CANCEL));
1723 return 0;
1724 }
1725
1726 /*
1727 * Search for an entry in the cancel table that matches our buffer.
1728 */
1729 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1730 list_for_each_entry(bcp, bucket, bc_list) {
1731 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
1732 goto found;
1733 }
1734
1735 /*
1736 * We didn't find a corresponding entry in the table, so return 0 so
1737 * that the buffer is NOT cancelled.
1738 */
1739 ASSERT(!(flags & XFS_BLF_CANCEL));
1740 return 0;
1741
1742 found:
1743 /*
1744 * We've go a match, so return 1 so that the recovery of this buffer
1745 * is cancelled. If this buffer is actually a buffer cancel log
1746 * item, then decrement the refcount on the one in the table and
1747 * remove it if this is the last reference.
1748 */
1749 if (flags & XFS_BLF_CANCEL) {
1750 if (--bcp->bc_refcount == 0) {
1751 list_del(&bcp->bc_list);
1752 kmem_free(bcp);
1753 }
1754 }
1755 return 1;
1756 }
1757
1758 /*
1759 * Perform recovery for a buffer full of inodes. In these buffers, the only
1760 * data which should be recovered is that which corresponds to the
1761 * di_next_unlinked pointers in the on disk inode structures. The rest of the
1762 * data for the inodes is always logged through the inodes themselves rather
1763 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1764 *
1765 * The only time when buffers full of inodes are fully recovered is when the
1766 * buffer is full of newly allocated inodes. In this case the buffer will
1767 * not be marked as an inode buffer and so will be sent to
1768 * xlog_recover_do_reg_buffer() below during recovery.
1769 */
1770 STATIC int
1771 xlog_recover_do_inode_buffer(
1772 struct xfs_mount *mp,
1773 xlog_recover_item_t *item,
1774 struct xfs_buf *bp,
1775 xfs_buf_log_format_t *buf_f)
1776 {
1777 int i;
1778 int item_index = 0;
1779 int bit = 0;
1780 int nbits = 0;
1781 int reg_buf_offset = 0;
1782 int reg_buf_bytes = 0;
1783 int next_unlinked_offset;
1784 int inodes_per_buf;
1785 xfs_agino_t *logged_nextp;
1786 xfs_agino_t *buffer_nextp;
1787
1788 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
1789
1790 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
1791 for (i = 0; i < inodes_per_buf; i++) {
1792 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1793 offsetof(xfs_dinode_t, di_next_unlinked);
1794
1795 while (next_unlinked_offset >=
1796 (reg_buf_offset + reg_buf_bytes)) {
1797 /*
1798 * The next di_next_unlinked field is beyond
1799 * the current logged region. Find the next
1800 * logged region that contains or is beyond
1801 * the current di_next_unlinked field.
1802 */
1803 bit += nbits;
1804 bit = xfs_next_bit(buf_f->blf_data_map,
1805 buf_f->blf_map_size, bit);
1806
1807 /*
1808 * If there are no more logged regions in the
1809 * buffer, then we're done.
1810 */
1811 if (bit == -1)
1812 return 0;
1813
1814 nbits = xfs_contig_bits(buf_f->blf_data_map,
1815 buf_f->blf_map_size, bit);
1816 ASSERT(nbits > 0);
1817 reg_buf_offset = bit << XFS_BLF_SHIFT;
1818 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1819 item_index++;
1820 }
1821
1822 /*
1823 * If the current logged region starts after the current
1824 * di_next_unlinked field, then move on to the next
1825 * di_next_unlinked field.
1826 */
1827 if (next_unlinked_offset < reg_buf_offset)
1828 continue;
1829
1830 ASSERT(item->ri_buf[item_index].i_addr != NULL);
1831 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
1832 ASSERT((reg_buf_offset + reg_buf_bytes) <=
1833 BBTOB(bp->b_io_length));
1834
1835 /*
1836 * The current logged region contains a copy of the
1837 * current di_next_unlinked field. Extract its value
1838 * and copy it to the buffer copy.
1839 */
1840 logged_nextp = item->ri_buf[item_index].i_addr +
1841 next_unlinked_offset - reg_buf_offset;
1842 if (unlikely(*logged_nextp == 0)) {
1843 xfs_alert(mp,
1844 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1845 "Trying to replay bad (0) inode di_next_unlinked field.",
1846 item, bp);
1847 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1848 XFS_ERRLEVEL_LOW, mp);
1849 return XFS_ERROR(EFSCORRUPTED);
1850 }
1851
1852 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1853 next_unlinked_offset);
1854 *buffer_nextp = *logged_nextp;
1855 }
1856
1857 return 0;
1858 }
1859
1860 /*
1861 * Perform a 'normal' buffer recovery. Each logged region of the
1862 * buffer should be copied over the corresponding region in the
1863 * given buffer. The bitmap in the buf log format structure indicates
1864 * where to place the logged data.
1865 */
1866 STATIC void
1867 xlog_recover_do_reg_buffer(
1868 struct xfs_mount *mp,
1869 xlog_recover_item_t *item,
1870 struct xfs_buf *bp,
1871 xfs_buf_log_format_t *buf_f)
1872 {
1873 int i;
1874 int bit;
1875 int nbits;
1876 int error;
1877
1878 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
1879
1880 bit = 0;
1881 i = 1; /* 0 is the buf format structure */
1882 while (1) {
1883 bit = xfs_next_bit(buf_f->blf_data_map,
1884 buf_f->blf_map_size, bit);
1885 if (bit == -1)
1886 break;
1887 nbits = xfs_contig_bits(buf_f->blf_data_map,
1888 buf_f->blf_map_size, bit);
1889 ASSERT(nbits > 0);
1890 ASSERT(item->ri_buf[i].i_addr != NULL);
1891 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
1892 ASSERT(BBTOB(bp->b_io_length) >=
1893 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
1894
1895 /*
1896 * Do a sanity check if this is a dquot buffer. Just checking
1897 * the first dquot in the buffer should do. XXXThis is
1898 * probably a good thing to do for other buf types also.
1899 */
1900 error = 0;
1901 if (buf_f->blf_flags &
1902 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
1903 if (item->ri_buf[i].i_addr == NULL) {
1904 xfs_alert(mp,
1905 "XFS: NULL dquot in %s.", __func__);
1906 goto next;
1907 }
1908 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
1909 xfs_alert(mp,
1910 "XFS: dquot too small (%d) in %s.",
1911 item->ri_buf[i].i_len, __func__);
1912 goto next;
1913 }
1914 error = xfs_qm_dqcheck(mp, item->ri_buf[i].i_addr,
1915 -1, 0, XFS_QMOPT_DOWARN,
1916 "dquot_buf_recover");
1917 if (error)
1918 goto next;
1919 }
1920
1921 memcpy(xfs_buf_offset(bp,
1922 (uint)bit << XFS_BLF_SHIFT), /* dest */
1923 item->ri_buf[i].i_addr, /* source */
1924 nbits<<XFS_BLF_SHIFT); /* length */
1925 next:
1926 i++;
1927 bit += nbits;
1928 }
1929
1930 /* Shouldn't be any more regions */
1931 ASSERT(i == item->ri_total);
1932
1933 switch (buf_f->blf_flags & XFS_BLF_TYPE_MASK) {
1934 case XFS_BLF_BTREE_BUF:
1935 switch (be32_to_cpu(*(__be32 *)bp->b_addr)) {
1936 case XFS_ABTB_CRC_MAGIC:
1937 case XFS_ABTC_CRC_MAGIC:
1938 case XFS_ABTB_MAGIC:
1939 case XFS_ABTC_MAGIC:
1940 bp->b_ops = &xfs_allocbt_buf_ops;
1941 break;
1942 case XFS_IBT_CRC_MAGIC:
1943 case XFS_IBT_MAGIC:
1944 bp->b_ops = &xfs_inobt_buf_ops;
1945 break;
1946 case XFS_BMAP_CRC_MAGIC:
1947 case XFS_BMAP_MAGIC:
1948 bp->b_ops = &xfs_bmbt_buf_ops;
1949 break;
1950 default:
1951 xfs_warn(mp, "Bad btree block magic!");
1952 ASSERT(0);
1953 break;
1954 }
1955 break;
1956 case XFS_BLF_AGF_BUF:
1957 if (*(__be32 *)bp->b_addr != cpu_to_be32(XFS_AGF_MAGIC)) {
1958 xfs_warn(mp, "Bad AGF block magic!");
1959 ASSERT(0);
1960 break;
1961 }
1962 bp->b_ops = &xfs_agf_buf_ops;
1963 break;
1964 case XFS_BLF_AGFL_BUF:
1965 if (!xfs_sb_version_hascrc(&mp->m_sb))
1966 break;
1967 if (*(__be32 *)bp->b_addr != cpu_to_be32(XFS_AGFL_MAGIC)) {
1968 xfs_warn(mp, "Bad AGFL block magic!");
1969 ASSERT(0);
1970 break;
1971 }
1972 bp->b_ops = &xfs_agfl_buf_ops;
1973 break;
1974 case XFS_BLF_AGI_BUF:
1975 if (*(__be32 *)bp->b_addr != cpu_to_be32(XFS_AGI_MAGIC)) {
1976 xfs_warn(mp, "Bad AGI block magic!");
1977 ASSERT(0);
1978 break;
1979 }
1980 bp->b_ops = &xfs_agi_buf_ops;
1981 break;
1982 default:
1983 break;
1984 }
1985 }
1986
1987 /*
1988 * Do some primitive error checking on ondisk dquot data structures.
1989 */
1990 int
1991 xfs_qm_dqcheck(
1992 struct xfs_mount *mp,
1993 xfs_disk_dquot_t *ddq,
1994 xfs_dqid_t id,
1995 uint type, /* used only when IO_dorepair is true */
1996 uint flags,
1997 char *str)
1998 {
1999 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
2000 int errs = 0;
2001
2002 /*
2003 * We can encounter an uninitialized dquot buffer for 2 reasons:
2004 * 1. If we crash while deleting the quotainode(s), and those blks got
2005 * used for user data. This is because we take the path of regular
2006 * file deletion; however, the size field of quotainodes is never
2007 * updated, so all the tricks that we play in itruncate_finish
2008 * don't quite matter.
2009 *
2010 * 2. We don't play the quota buffers when there's a quotaoff logitem.
2011 * But the allocation will be replayed so we'll end up with an
2012 * uninitialized quota block.
2013 *
2014 * This is all fine; things are still consistent, and we haven't lost
2015 * any quota information. Just don't complain about bad dquot blks.
2016 */
2017 if (ddq->d_magic != cpu_to_be16(XFS_DQUOT_MAGIC)) {
2018 if (flags & XFS_QMOPT_DOWARN)
2019 xfs_alert(mp,
2020 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
2021 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
2022 errs++;
2023 }
2024 if (ddq->d_version != XFS_DQUOT_VERSION) {
2025 if (flags & XFS_QMOPT_DOWARN)
2026 xfs_alert(mp,
2027 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
2028 str, id, ddq->d_version, XFS_DQUOT_VERSION);
2029 errs++;
2030 }
2031
2032 if (ddq->d_flags != XFS_DQ_USER &&
2033 ddq->d_flags != XFS_DQ_PROJ &&
2034 ddq->d_flags != XFS_DQ_GROUP) {
2035 if (flags & XFS_QMOPT_DOWARN)
2036 xfs_alert(mp,
2037 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
2038 str, id, ddq->d_flags);
2039 errs++;
2040 }
2041
2042 if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
2043 if (flags & XFS_QMOPT_DOWARN)
2044 xfs_alert(mp,
2045 "%s : ondisk-dquot 0x%p, ID mismatch: "
2046 "0x%x expected, found id 0x%x",
2047 str, ddq, id, be32_to_cpu(ddq->d_id));
2048 errs++;
2049 }
2050
2051 if (!errs && ddq->d_id) {
2052 if (ddq->d_blk_softlimit &&
2053 be64_to_cpu(ddq->d_bcount) >
2054 be64_to_cpu(ddq->d_blk_softlimit)) {
2055 if (!ddq->d_btimer) {
2056 if (flags & XFS_QMOPT_DOWARN)
2057 xfs_alert(mp,
2058 "%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED",
2059 str, (int)be32_to_cpu(ddq->d_id), ddq);
2060 errs++;
2061 }
2062 }
2063 if (ddq->d_ino_softlimit &&
2064 be64_to_cpu(ddq->d_icount) >
2065 be64_to_cpu(ddq->d_ino_softlimit)) {
2066 if (!ddq->d_itimer) {
2067 if (flags & XFS_QMOPT_DOWARN)
2068 xfs_alert(mp,
2069 "%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED",
2070 str, (int)be32_to_cpu(ddq->d_id), ddq);
2071 errs++;
2072 }
2073 }
2074 if (ddq->d_rtb_softlimit &&
2075 be64_to_cpu(ddq->d_rtbcount) >
2076 be64_to_cpu(ddq->d_rtb_softlimit)) {
2077 if (!ddq->d_rtbtimer) {
2078 if (flags & XFS_QMOPT_DOWARN)
2079 xfs_alert(mp,
2080 "%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED",
2081 str, (int)be32_to_cpu(ddq->d_id), ddq);
2082 errs++;
2083 }
2084 }
2085 }
2086
2087 if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2088 return errs;
2089
2090 if (flags & XFS_QMOPT_DOWARN)
2091 xfs_notice(mp, "Re-initializing dquot ID 0x%x", id);
2092
2093 /*
2094 * Typically, a repair is only requested by quotacheck.
2095 */
2096 ASSERT(id != -1);
2097 ASSERT(flags & XFS_QMOPT_DQREPAIR);
2098 memset(d, 0, sizeof(xfs_dqblk_t));
2099
2100 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2101 d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2102 d->dd_diskdq.d_flags = type;
2103 d->dd_diskdq.d_id = cpu_to_be32(id);
2104
2105 return errs;
2106 }
2107
2108 /*
2109 * Perform a dquot buffer recovery.
2110 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2111 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2112 * Else, treat it as a regular buffer and do recovery.
2113 */
2114 STATIC void
2115 xlog_recover_do_dquot_buffer(
2116 struct xfs_mount *mp,
2117 struct xlog *log,
2118 struct xlog_recover_item *item,
2119 struct xfs_buf *bp,
2120 struct xfs_buf_log_format *buf_f)
2121 {
2122 uint type;
2123
2124 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2125
2126 /*
2127 * Filesystems are required to send in quota flags at mount time.
2128 */
2129 if (mp->m_qflags == 0) {
2130 return;
2131 }
2132
2133 type = 0;
2134 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2135 type |= XFS_DQ_USER;
2136 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2137 type |= XFS_DQ_PROJ;
2138 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2139 type |= XFS_DQ_GROUP;
2140 /*
2141 * This type of quotas was turned off, so ignore this buffer
2142 */
2143 if (log->l_quotaoffs_flag & type)
2144 return;
2145
2146 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2147 }
2148
2149 /*
2150 * This routine replays a modification made to a buffer at runtime.
2151 * There are actually two types of buffer, regular and inode, which
2152 * are handled differently. Inode buffers are handled differently
2153 * in that we only recover a specific set of data from them, namely
2154 * the inode di_next_unlinked fields. This is because all other inode
2155 * data is actually logged via inode records and any data we replay
2156 * here which overlaps that may be stale.
2157 *
2158 * When meta-data buffers are freed at run time we log a buffer item
2159 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2160 * of the buffer in the log should not be replayed at recovery time.
2161 * This is so that if the blocks covered by the buffer are reused for
2162 * file data before we crash we don't end up replaying old, freed
2163 * meta-data into a user's file.
2164 *
2165 * To handle the cancellation of buffer log items, we make two passes
2166 * over the log during recovery. During the first we build a table of
2167 * those buffers which have been cancelled, and during the second we
2168 * only replay those buffers which do not have corresponding cancel
2169 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2170 * for more details on the implementation of the table of cancel records.
2171 */
2172 STATIC int
2173 xlog_recover_buffer_pass2(
2174 struct xlog *log,
2175 struct list_head *buffer_list,
2176 struct xlog_recover_item *item)
2177 {
2178 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
2179 xfs_mount_t *mp = log->l_mp;
2180 xfs_buf_t *bp;
2181 int error;
2182 uint buf_flags;
2183
2184 /*
2185 * In this pass we only want to recover all the buffers which have
2186 * not been cancelled and are not cancellation buffers themselves.
2187 */
2188 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2189 buf_f->blf_len, buf_f->blf_flags)) {
2190 trace_xfs_log_recover_buf_cancel(log, buf_f);
2191 return 0;
2192 }
2193
2194 trace_xfs_log_recover_buf_recover(log, buf_f);
2195
2196 buf_flags = 0;
2197 if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2198 buf_flags |= XBF_UNMAPPED;
2199
2200 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2201 buf_flags, NULL);
2202 if (!bp)
2203 return XFS_ERROR(ENOMEM);
2204 error = bp->b_error;
2205 if (error) {
2206 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
2207 xfs_buf_relse(bp);
2208 return error;
2209 }
2210
2211 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2212 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2213 } else if (buf_f->blf_flags &
2214 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2215 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2216 } else {
2217 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2218 }
2219 if (error)
2220 return XFS_ERROR(error);
2221
2222 /*
2223 * Perform delayed write on the buffer. Asynchronous writes will be
2224 * slower when taking into account all the buffers to be flushed.
2225 *
2226 * Also make sure that only inode buffers with good sizes stay in
2227 * the buffer cache. The kernel moves inodes in buffers of 1 block
2228 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2229 * buffers in the log can be a different size if the log was generated
2230 * by an older kernel using unclustered inode buffers or a newer kernel
2231 * running with a different inode cluster size. Regardless, if the
2232 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2233 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2234 * the buffer out of the buffer cache so that the buffer won't
2235 * overlap with future reads of those inodes.
2236 */
2237 if (XFS_DINODE_MAGIC ==
2238 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2239 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
2240 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2241 xfs_buf_stale(bp);
2242 error = xfs_bwrite(bp);
2243 } else {
2244 ASSERT(bp->b_target->bt_mount == mp);
2245 bp->b_iodone = xlog_recover_iodone;
2246 xfs_buf_delwri_queue(bp, buffer_list);
2247 }
2248
2249 xfs_buf_relse(bp);
2250 return error;
2251 }
2252
2253 STATIC int
2254 xlog_recover_inode_pass2(
2255 struct xlog *log,
2256 struct list_head *buffer_list,
2257 struct xlog_recover_item *item)
2258 {
2259 xfs_inode_log_format_t *in_f;
2260 xfs_mount_t *mp = log->l_mp;
2261 xfs_buf_t *bp;
2262 xfs_dinode_t *dip;
2263 int len;
2264 xfs_caddr_t src;
2265 xfs_caddr_t dest;
2266 int error;
2267 int attr_index;
2268 uint fields;
2269 xfs_icdinode_t *dicp;
2270 int need_free = 0;
2271
2272 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2273 in_f = item->ri_buf[0].i_addr;
2274 } else {
2275 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2276 need_free = 1;
2277 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2278 if (error)
2279 goto error;
2280 }
2281
2282 /*
2283 * Inode buffers can be freed, look out for it,
2284 * and do not replay the inode.
2285 */
2286 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2287 in_f->ilf_len, 0)) {
2288 error = 0;
2289 trace_xfs_log_recover_inode_cancel(log, in_f);
2290 goto error;
2291 }
2292 trace_xfs_log_recover_inode_recover(log, in_f);
2293
2294 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
2295 NULL);
2296 if (!bp) {
2297 error = ENOMEM;
2298 goto error;
2299 }
2300 error = bp->b_error;
2301 if (error) {
2302 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
2303 xfs_buf_relse(bp);
2304 goto error;
2305 }
2306 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2307 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
2308
2309 /*
2310 * Make sure the place we're flushing out to really looks
2311 * like an inode!
2312 */
2313 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
2314 xfs_buf_relse(bp);
2315 xfs_alert(mp,
2316 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2317 __func__, dip, bp, in_f->ilf_ino);
2318 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2319 XFS_ERRLEVEL_LOW, mp);
2320 error = EFSCORRUPTED;
2321 goto error;
2322 }
2323 dicp = item->ri_buf[1].i_addr;
2324 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2325 xfs_buf_relse(bp);
2326 xfs_alert(mp,
2327 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2328 __func__, item, in_f->ilf_ino);
2329 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2330 XFS_ERRLEVEL_LOW, mp);
2331 error = EFSCORRUPTED;
2332 goto error;
2333 }
2334
2335 /* Skip replay when the on disk inode is newer than the log one */
2336 if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2337 /*
2338 * Deal with the wrap case, DI_MAX_FLUSH is less
2339 * than smaller numbers
2340 */
2341 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2342 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2343 /* do nothing */
2344 } else {
2345 xfs_buf_relse(bp);
2346 trace_xfs_log_recover_inode_skip(log, in_f);
2347 error = 0;
2348 goto error;
2349 }
2350 }
2351 /* Take the opportunity to reset the flush iteration count */
2352 dicp->di_flushiter = 0;
2353
2354 if (unlikely(S_ISREG(dicp->di_mode))) {
2355 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2356 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2357 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
2358 XFS_ERRLEVEL_LOW, mp, dicp);
2359 xfs_buf_relse(bp);
2360 xfs_alert(mp,
2361 "%s: Bad regular inode log record, rec ptr 0x%p, "
2362 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2363 __func__, item, dip, bp, in_f->ilf_ino);
2364 error = EFSCORRUPTED;
2365 goto error;
2366 }
2367 } else if (unlikely(S_ISDIR(dicp->di_mode))) {
2368 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2369 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2370 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2371 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
2372 XFS_ERRLEVEL_LOW, mp, dicp);
2373 xfs_buf_relse(bp);
2374 xfs_alert(mp,
2375 "%s: Bad dir inode log record, rec ptr 0x%p, "
2376 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2377 __func__, item, dip, bp, in_f->ilf_ino);
2378 error = EFSCORRUPTED;
2379 goto error;
2380 }
2381 }
2382 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2383 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
2384 XFS_ERRLEVEL_LOW, mp, dicp);
2385 xfs_buf_relse(bp);
2386 xfs_alert(mp,
2387 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2388 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2389 __func__, item, dip, bp, in_f->ilf_ino,
2390 dicp->di_nextents + dicp->di_anextents,
2391 dicp->di_nblocks);
2392 error = EFSCORRUPTED;
2393 goto error;
2394 }
2395 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2396 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
2397 XFS_ERRLEVEL_LOW, mp, dicp);
2398 xfs_buf_relse(bp);
2399 xfs_alert(mp,
2400 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2401 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
2402 item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
2403 error = EFSCORRUPTED;
2404 goto error;
2405 }
2406 if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
2407 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
2408 XFS_ERRLEVEL_LOW, mp, dicp);
2409 xfs_buf_relse(bp);
2410 xfs_alert(mp,
2411 "%s: Bad inode log record length %d, rec ptr 0x%p",
2412 __func__, item->ri_buf[1].i_len, item);
2413 error = EFSCORRUPTED;
2414 goto error;
2415 }
2416
2417 /* The core is in in-core format */
2418 xfs_dinode_to_disk(dip, item->ri_buf[1].i_addr);
2419
2420 /* the rest is in on-disk format */
2421 if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
2422 memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
2423 item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
2424 item->ri_buf[1].i_len - sizeof(struct xfs_icdinode));
2425 }
2426
2427 fields = in_f->ilf_fields;
2428 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2429 case XFS_ILOG_DEV:
2430 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
2431 break;
2432 case XFS_ILOG_UUID:
2433 memcpy(XFS_DFORK_DPTR(dip),
2434 &in_f->ilf_u.ilfu_uuid,
2435 sizeof(uuid_t));
2436 break;
2437 }
2438
2439 if (in_f->ilf_size == 2)
2440 goto write_inode_buffer;
2441 len = item->ri_buf[2].i_len;
2442 src = item->ri_buf[2].i_addr;
2443 ASSERT(in_f->ilf_size <= 4);
2444 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2445 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2446 (len == in_f->ilf_dsize));
2447
2448 switch (fields & XFS_ILOG_DFORK) {
2449 case XFS_ILOG_DDATA:
2450 case XFS_ILOG_DEXT:
2451 memcpy(XFS_DFORK_DPTR(dip), src, len);
2452 break;
2453
2454 case XFS_ILOG_DBROOT:
2455 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2456 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
2457 XFS_DFORK_DSIZE(dip, mp));
2458 break;
2459
2460 default:
2461 /*
2462 * There are no data fork flags set.
2463 */
2464 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2465 break;
2466 }
2467
2468 /*
2469 * If we logged any attribute data, recover it. There may or
2470 * may not have been any other non-core data logged in this
2471 * transaction.
2472 */
2473 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2474 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2475 attr_index = 3;
2476 } else {
2477 attr_index = 2;
2478 }
2479 len = item->ri_buf[attr_index].i_len;
2480 src = item->ri_buf[attr_index].i_addr;
2481 ASSERT(len == in_f->ilf_asize);
2482
2483 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2484 case XFS_ILOG_ADATA:
2485 case XFS_ILOG_AEXT:
2486 dest = XFS_DFORK_APTR(dip);
2487 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2488 memcpy(dest, src, len);
2489 break;
2490
2491 case XFS_ILOG_ABROOT:
2492 dest = XFS_DFORK_APTR(dip);
2493 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2494 len, (xfs_bmdr_block_t*)dest,
2495 XFS_DFORK_ASIZE(dip, mp));
2496 break;
2497
2498 default:
2499 xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
2500 ASSERT(0);
2501 xfs_buf_relse(bp);
2502 error = EIO;
2503 goto error;
2504 }
2505 }
2506
2507 write_inode_buffer:
2508 ASSERT(bp->b_target->bt_mount == mp);
2509 bp->b_iodone = xlog_recover_iodone;
2510 xfs_buf_delwri_queue(bp, buffer_list);
2511 xfs_buf_relse(bp);
2512 error:
2513 if (need_free)
2514 kmem_free(in_f);
2515 return XFS_ERROR(error);
2516 }
2517
2518 /*
2519 * Recover QUOTAOFF records. We simply make a note of it in the xlog
2520 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2521 * of that type.
2522 */
2523 STATIC int
2524 xlog_recover_quotaoff_pass1(
2525 struct xlog *log,
2526 struct xlog_recover_item *item)
2527 {
2528 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
2529 ASSERT(qoff_f);
2530
2531 /*
2532 * The logitem format's flag tells us if this was user quotaoff,
2533 * group/project quotaoff or both.
2534 */
2535 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2536 log->l_quotaoffs_flag |= XFS_DQ_USER;
2537 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2538 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2539 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2540 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2541
2542 return (0);
2543 }
2544
2545 /*
2546 * Recover a dquot record
2547 */
2548 STATIC int
2549 xlog_recover_dquot_pass2(
2550 struct xlog *log,
2551 struct list_head *buffer_list,
2552 struct xlog_recover_item *item)
2553 {
2554 xfs_mount_t *mp = log->l_mp;
2555 xfs_buf_t *bp;
2556 struct xfs_disk_dquot *ddq, *recddq;
2557 int error;
2558 xfs_dq_logformat_t *dq_f;
2559 uint type;
2560
2561
2562 /*
2563 * Filesystems are required to send in quota flags at mount time.
2564 */
2565 if (mp->m_qflags == 0)
2566 return (0);
2567
2568 recddq = item->ri_buf[1].i_addr;
2569 if (recddq == NULL) {
2570 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
2571 return XFS_ERROR(EIO);
2572 }
2573 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
2574 xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
2575 item->ri_buf[1].i_len, __func__);
2576 return XFS_ERROR(EIO);
2577 }
2578
2579 /*
2580 * This type of quotas was turned off, so ignore this record.
2581 */
2582 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2583 ASSERT(type);
2584 if (log->l_quotaoffs_flag & type)
2585 return (0);
2586
2587 /*
2588 * At this point we know that quota was _not_ turned off.
2589 * Since the mount flags are not indicating to us otherwise, this
2590 * must mean that quota is on, and the dquot needs to be replayed.
2591 * Remember that we may not have fully recovered the superblock yet,
2592 * so we can't do the usual trick of looking at the SB quota bits.
2593 *
2594 * The other possibility, of course, is that the quota subsystem was
2595 * removed since the last mount - ENOSYS.
2596 */
2597 dq_f = item->ri_buf[0].i_addr;
2598 ASSERT(dq_f);
2599 error = xfs_qm_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2600 "xlog_recover_dquot_pass2 (log copy)");
2601 if (error)
2602 return XFS_ERROR(EIO);
2603 ASSERT(dq_f->qlf_len == 1);
2604
2605 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
2606 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
2607 NULL);
2608 if (error)
2609 return error;
2610
2611 ASSERT(bp);
2612 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2613
2614 /*
2615 * At least the magic num portion should be on disk because this
2616 * was among a chunk of dquots created earlier, and we did some
2617 * minimal initialization then.
2618 */
2619 error = xfs_qm_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2620 "xlog_recover_dquot_pass2");
2621 if (error) {
2622 xfs_buf_relse(bp);
2623 return XFS_ERROR(EIO);
2624 }
2625
2626 memcpy(ddq, recddq, item->ri_buf[1].i_len);
2627
2628 ASSERT(dq_f->qlf_size == 2);
2629 ASSERT(bp->b_target->bt_mount == mp);
2630 bp->b_iodone = xlog_recover_iodone;
2631 xfs_buf_delwri_queue(bp, buffer_list);
2632 xfs_buf_relse(bp);
2633
2634 return (0);
2635 }
2636
2637 /*
2638 * This routine is called to create an in-core extent free intent
2639 * item from the efi format structure which was logged on disk.
2640 * It allocates an in-core efi, copies the extents from the format
2641 * structure into it, and adds the efi to the AIL with the given
2642 * LSN.
2643 */
2644 STATIC int
2645 xlog_recover_efi_pass2(
2646 struct xlog *log,
2647 struct xlog_recover_item *item,
2648 xfs_lsn_t lsn)
2649 {
2650 int error;
2651 xfs_mount_t *mp = log->l_mp;
2652 xfs_efi_log_item_t *efip;
2653 xfs_efi_log_format_t *efi_formatp;
2654
2655 efi_formatp = item->ri_buf[0].i_addr;
2656
2657 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2658 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2659 &(efip->efi_format)))) {
2660 xfs_efi_item_free(efip);
2661 return error;
2662 }
2663 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
2664
2665 spin_lock(&log->l_ailp->xa_lock);
2666 /*
2667 * xfs_trans_ail_update() drops the AIL lock.
2668 */
2669 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
2670 return 0;
2671 }
2672
2673
2674 /*
2675 * This routine is called when an efd format structure is found in
2676 * a committed transaction in the log. It's purpose is to cancel
2677 * the corresponding efi if it was still in the log. To do this
2678 * it searches the AIL for the efi with an id equal to that in the
2679 * efd format structure. If we find it, we remove the efi from the
2680 * AIL and free it.
2681 */
2682 STATIC int
2683 xlog_recover_efd_pass2(
2684 struct xlog *log,
2685 struct xlog_recover_item *item)
2686 {
2687 xfs_efd_log_format_t *efd_formatp;
2688 xfs_efi_log_item_t *efip = NULL;
2689 xfs_log_item_t *lip;
2690 __uint64_t efi_id;
2691 struct xfs_ail_cursor cur;
2692 struct xfs_ail *ailp = log->l_ailp;
2693
2694 efd_formatp = item->ri_buf[0].i_addr;
2695 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2696 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2697 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2698 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2699 efi_id = efd_formatp->efd_efi_id;
2700
2701 /*
2702 * Search for the efi with the id in the efd format structure
2703 * in the AIL.
2704 */
2705 spin_lock(&ailp->xa_lock);
2706 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2707 while (lip != NULL) {
2708 if (lip->li_type == XFS_LI_EFI) {
2709 efip = (xfs_efi_log_item_t *)lip;
2710 if (efip->efi_format.efi_id == efi_id) {
2711 /*
2712 * xfs_trans_ail_delete() drops the
2713 * AIL lock.
2714 */
2715 xfs_trans_ail_delete(ailp, lip,
2716 SHUTDOWN_CORRUPT_INCORE);
2717 xfs_efi_item_free(efip);
2718 spin_lock(&ailp->xa_lock);
2719 break;
2720 }
2721 }
2722 lip = xfs_trans_ail_cursor_next(ailp, &cur);
2723 }
2724 xfs_trans_ail_cursor_done(ailp, &cur);
2725 spin_unlock(&ailp->xa_lock);
2726
2727 return 0;
2728 }
2729
2730 /*
2731 * Free up any resources allocated by the transaction
2732 *
2733 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2734 */
2735 STATIC void
2736 xlog_recover_free_trans(
2737 struct xlog_recover *trans)
2738 {
2739 xlog_recover_item_t *item, *n;
2740 int i;
2741
2742 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2743 /* Free the regions in the item. */
2744 list_del(&item->ri_list);
2745 for (i = 0; i < item->ri_cnt; i++)
2746 kmem_free(item->ri_buf[i].i_addr);
2747 /* Free the item itself */
2748 kmem_free(item->ri_buf);
2749 kmem_free(item);
2750 }
2751 /* Free the transaction recover structure */
2752 kmem_free(trans);
2753 }
2754
2755 STATIC int
2756 xlog_recover_commit_pass1(
2757 struct xlog *log,
2758 struct xlog_recover *trans,
2759 struct xlog_recover_item *item)
2760 {
2761 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
2762
2763 switch (ITEM_TYPE(item)) {
2764 case XFS_LI_BUF:
2765 return xlog_recover_buffer_pass1(log, item);
2766 case XFS_LI_QUOTAOFF:
2767 return xlog_recover_quotaoff_pass1(log, item);
2768 case XFS_LI_INODE:
2769 case XFS_LI_EFI:
2770 case XFS_LI_EFD:
2771 case XFS_LI_DQUOT:
2772 /* nothing to do in pass 1 */
2773 return 0;
2774 default:
2775 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
2776 __func__, ITEM_TYPE(item));
2777 ASSERT(0);
2778 return XFS_ERROR(EIO);
2779 }
2780 }
2781
2782 STATIC int
2783 xlog_recover_commit_pass2(
2784 struct xlog *log,
2785 struct xlog_recover *trans,
2786 struct list_head *buffer_list,
2787 struct xlog_recover_item *item)
2788 {
2789 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
2790
2791 switch (ITEM_TYPE(item)) {
2792 case XFS_LI_BUF:
2793 return xlog_recover_buffer_pass2(log, buffer_list, item);
2794 case XFS_LI_INODE:
2795 return xlog_recover_inode_pass2(log, buffer_list, item);
2796 case XFS_LI_EFI:
2797 return xlog_recover_efi_pass2(log, item, trans->r_lsn);
2798 case XFS_LI_EFD:
2799 return xlog_recover_efd_pass2(log, item);
2800 case XFS_LI_DQUOT:
2801 return xlog_recover_dquot_pass2(log, buffer_list, item);
2802 case XFS_LI_QUOTAOFF:
2803 /* nothing to do in pass2 */
2804 return 0;
2805 default:
2806 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
2807 __func__, ITEM_TYPE(item));
2808 ASSERT(0);
2809 return XFS_ERROR(EIO);
2810 }
2811 }
2812
2813 /*
2814 * Perform the transaction.
2815 *
2816 * If the transaction modifies a buffer or inode, do it now. Otherwise,
2817 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2818 */
2819 STATIC int
2820 xlog_recover_commit_trans(
2821 struct xlog *log,
2822 struct xlog_recover *trans,
2823 int pass)
2824 {
2825 int error = 0, error2;
2826 xlog_recover_item_t *item;
2827 LIST_HEAD (buffer_list);
2828
2829 hlist_del(&trans->r_list);
2830
2831 error = xlog_recover_reorder_trans(log, trans, pass);
2832 if (error)
2833 return error;
2834
2835 list_for_each_entry(item, &trans->r_itemq, ri_list) {
2836 switch (pass) {
2837 case XLOG_RECOVER_PASS1:
2838 error = xlog_recover_commit_pass1(log, trans, item);
2839 break;
2840 case XLOG_RECOVER_PASS2:
2841 error = xlog_recover_commit_pass2(log, trans,
2842 &buffer_list, item);
2843 break;
2844 default:
2845 ASSERT(0);
2846 }
2847
2848 if (error)
2849 goto out;
2850 }
2851
2852 xlog_recover_free_trans(trans);
2853
2854 out:
2855 error2 = xfs_buf_delwri_submit(&buffer_list);
2856 return error ? error : error2;
2857 }
2858
2859 STATIC int
2860 xlog_recover_unmount_trans(
2861 struct xlog *log,
2862 struct xlog_recover *trans)
2863 {
2864 /* Do nothing now */
2865 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
2866 return 0;
2867 }
2868
2869 /*
2870 * There are two valid states of the r_state field. 0 indicates that the
2871 * transaction structure is in a normal state. We have either seen the
2872 * start of the transaction or the last operation we added was not a partial
2873 * operation. If the last operation we added to the transaction was a
2874 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2875 *
2876 * NOTE: skip LRs with 0 data length.
2877 */
2878 STATIC int
2879 xlog_recover_process_data(
2880 struct xlog *log,
2881 struct hlist_head rhash[],
2882 struct xlog_rec_header *rhead,
2883 xfs_caddr_t dp,
2884 int pass)
2885 {
2886 xfs_caddr_t lp;
2887 int num_logops;
2888 xlog_op_header_t *ohead;
2889 xlog_recover_t *trans;
2890 xlog_tid_t tid;
2891 int error;
2892 unsigned long hash;
2893 uint flags;
2894
2895 lp = dp + be32_to_cpu(rhead->h_len);
2896 num_logops = be32_to_cpu(rhead->h_num_logops);
2897
2898 /* check the log format matches our own - else we can't recover */
2899 if (xlog_header_check_recover(log->l_mp, rhead))
2900 return (XFS_ERROR(EIO));
2901
2902 while ((dp < lp) && num_logops) {
2903 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2904 ohead = (xlog_op_header_t *)dp;
2905 dp += sizeof(xlog_op_header_t);
2906 if (ohead->oh_clientid != XFS_TRANSACTION &&
2907 ohead->oh_clientid != XFS_LOG) {
2908 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
2909 __func__, ohead->oh_clientid);
2910 ASSERT(0);
2911 return (XFS_ERROR(EIO));
2912 }
2913 tid = be32_to_cpu(ohead->oh_tid);
2914 hash = XLOG_RHASH(tid);
2915 trans = xlog_recover_find_tid(&rhash[hash], tid);
2916 if (trans == NULL) { /* not found; add new tid */
2917 if (ohead->oh_flags & XLOG_START_TRANS)
2918 xlog_recover_new_tid(&rhash[hash], tid,
2919 be64_to_cpu(rhead->h_lsn));
2920 } else {
2921 if (dp + be32_to_cpu(ohead->oh_len) > lp) {
2922 xfs_warn(log->l_mp, "%s: bad length 0x%x",
2923 __func__, be32_to_cpu(ohead->oh_len));
2924 WARN_ON(1);
2925 return (XFS_ERROR(EIO));
2926 }
2927 flags = ohead->oh_flags & ~XLOG_END_TRANS;
2928 if (flags & XLOG_WAS_CONT_TRANS)
2929 flags &= ~XLOG_CONTINUE_TRANS;
2930 switch (flags) {
2931 case XLOG_COMMIT_TRANS:
2932 error = xlog_recover_commit_trans(log,
2933 trans, pass);
2934 break;
2935 case XLOG_UNMOUNT_TRANS:
2936 error = xlog_recover_unmount_trans(log, trans);
2937 break;
2938 case XLOG_WAS_CONT_TRANS:
2939 error = xlog_recover_add_to_cont_trans(log,
2940 trans, dp,
2941 be32_to_cpu(ohead->oh_len));
2942 break;
2943 case XLOG_START_TRANS:
2944 xfs_warn(log->l_mp, "%s: bad transaction",
2945 __func__);
2946 ASSERT(0);
2947 error = XFS_ERROR(EIO);
2948 break;
2949 case 0:
2950 case XLOG_CONTINUE_TRANS:
2951 error = xlog_recover_add_to_trans(log, trans,
2952 dp, be32_to_cpu(ohead->oh_len));
2953 break;
2954 default:
2955 xfs_warn(log->l_mp, "%s: bad flag 0x%x",
2956 __func__, flags);
2957 ASSERT(0);
2958 error = XFS_ERROR(EIO);
2959 break;
2960 }
2961 if (error)
2962 return error;
2963 }
2964 dp += be32_to_cpu(ohead->oh_len);
2965 num_logops--;
2966 }
2967 return 0;
2968 }
2969
2970 /*
2971 * Process an extent free intent item that was recovered from
2972 * the log. We need to free the extents that it describes.
2973 */
2974 STATIC int
2975 xlog_recover_process_efi(
2976 xfs_mount_t *mp,
2977 xfs_efi_log_item_t *efip)
2978 {
2979 xfs_efd_log_item_t *efdp;
2980 xfs_trans_t *tp;
2981 int i;
2982 int error = 0;
2983 xfs_extent_t *extp;
2984 xfs_fsblock_t startblock_fsb;
2985
2986 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
2987
2988 /*
2989 * First check the validity of the extents described by the
2990 * EFI. If any are bad, then assume that all are bad and
2991 * just toss the EFI.
2992 */
2993 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2994 extp = &(efip->efi_format.efi_extents[i]);
2995 startblock_fsb = XFS_BB_TO_FSB(mp,
2996 XFS_FSB_TO_DADDR(mp, extp->ext_start));
2997 if ((startblock_fsb == 0) ||
2998 (extp->ext_len == 0) ||
2999 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3000 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3001 /*
3002 * This will pull the EFI from the AIL and
3003 * free the memory associated with it.
3004 */
3005 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
3006 xfs_efi_release(efip, efip->efi_format.efi_nextents);
3007 return XFS_ERROR(EIO);
3008 }
3009 }
3010
3011 tp = xfs_trans_alloc(mp, 0);
3012 error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
3013 if (error)
3014 goto abort_error;
3015 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3016
3017 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3018 extp = &(efip->efi_format.efi_extents[i]);
3019 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3020 if (error)
3021 goto abort_error;
3022 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3023 extp->ext_len);
3024 }
3025
3026 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
3027 error = xfs_trans_commit(tp, 0);
3028 return error;
3029
3030 abort_error:
3031 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3032 return error;
3033 }
3034
3035 /*
3036 * When this is called, all of the EFIs which did not have
3037 * corresponding EFDs should be in the AIL. What we do now
3038 * is free the extents associated with each one.
3039 *
3040 * Since we process the EFIs in normal transactions, they
3041 * will be removed at some point after the commit. This prevents
3042 * us from just walking down the list processing each one.
3043 * We'll use a flag in the EFI to skip those that we've already
3044 * processed and use the AIL iteration mechanism's generation
3045 * count to try to speed this up at least a bit.
3046 *
3047 * When we start, we know that the EFIs are the only things in
3048 * the AIL. As we process them, however, other items are added
3049 * to the AIL. Since everything added to the AIL must come after
3050 * everything already in the AIL, we stop processing as soon as
3051 * we see something other than an EFI in the AIL.
3052 */
3053 STATIC int
3054 xlog_recover_process_efis(
3055 struct xlog *log)
3056 {
3057 xfs_log_item_t *lip;
3058 xfs_efi_log_item_t *efip;
3059 int error = 0;
3060 struct xfs_ail_cursor cur;
3061 struct xfs_ail *ailp;
3062
3063 ailp = log->l_ailp;
3064 spin_lock(&ailp->xa_lock);
3065 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3066 while (lip != NULL) {
3067 /*
3068 * We're done when we see something other than an EFI.
3069 * There should be no EFIs left in the AIL now.
3070 */
3071 if (lip->li_type != XFS_LI_EFI) {
3072 #ifdef DEBUG
3073 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
3074 ASSERT(lip->li_type != XFS_LI_EFI);
3075 #endif
3076 break;
3077 }
3078
3079 /*
3080 * Skip EFIs that we've already processed.
3081 */
3082 efip = (xfs_efi_log_item_t *)lip;
3083 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
3084 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3085 continue;
3086 }
3087
3088 spin_unlock(&ailp->xa_lock);
3089 error = xlog_recover_process_efi(log->l_mp, efip);
3090 spin_lock(&ailp->xa_lock);
3091 if (error)
3092 goto out;
3093 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3094 }
3095 out:
3096 xfs_trans_ail_cursor_done(ailp, &cur);
3097 spin_unlock(&ailp->xa_lock);
3098 return error;
3099 }
3100
3101 /*
3102 * This routine performs a transaction to null out a bad inode pointer
3103 * in an agi unlinked inode hash bucket.
3104 */
3105 STATIC void
3106 xlog_recover_clear_agi_bucket(
3107 xfs_mount_t *mp,
3108 xfs_agnumber_t agno,
3109 int bucket)
3110 {
3111 xfs_trans_t *tp;
3112 xfs_agi_t *agi;
3113 xfs_buf_t *agibp;
3114 int offset;
3115 int error;
3116
3117 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3118 error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
3119 0, 0, 0);
3120 if (error)
3121 goto out_abort;
3122
3123 error = xfs_read_agi(mp, tp, agno, &agibp);
3124 if (error)
3125 goto out_abort;
3126
3127 agi = XFS_BUF_TO_AGI(agibp);
3128 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3129 offset = offsetof(xfs_agi_t, agi_unlinked) +
3130 (sizeof(xfs_agino_t) * bucket);
3131 xfs_trans_log_buf(tp, agibp, offset,
3132 (offset + sizeof(xfs_agino_t) - 1));
3133
3134 error = xfs_trans_commit(tp, 0);
3135 if (error)
3136 goto out_error;
3137 return;
3138
3139 out_abort:
3140 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3141 out_error:
3142 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
3143 return;
3144 }
3145
3146 STATIC xfs_agino_t
3147 xlog_recover_process_one_iunlink(
3148 struct xfs_mount *mp,
3149 xfs_agnumber_t agno,
3150 xfs_agino_t agino,
3151 int bucket)
3152 {
3153 struct xfs_buf *ibp;
3154 struct xfs_dinode *dip;
3155 struct xfs_inode *ip;
3156 xfs_ino_t ino;
3157 int error;
3158
3159 ino = XFS_AGINO_TO_INO(mp, agno, agino);
3160 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
3161 if (error)
3162 goto fail;
3163
3164 /*
3165 * Get the on disk inode to find the next inode in the bucket.
3166 */
3167 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
3168 if (error)
3169 goto fail_iput;
3170
3171 ASSERT(ip->i_d.di_nlink == 0);
3172 ASSERT(ip->i_d.di_mode != 0);
3173
3174 /* setup for the next pass */
3175 agino = be32_to_cpu(dip->di_next_unlinked);
3176 xfs_buf_relse(ibp);
3177
3178 /*
3179 * Prevent any DMAPI event from being sent when the reference on
3180 * the inode is dropped.
3181 */
3182 ip->i_d.di_dmevmask = 0;
3183
3184 IRELE(ip);
3185 return agino;
3186
3187 fail_iput:
3188 IRELE(ip);
3189 fail:
3190 /*
3191 * We can't read in the inode this bucket points to, or this inode
3192 * is messed up. Just ditch this bucket of inodes. We will lose
3193 * some inodes and space, but at least we won't hang.
3194 *
3195 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3196 * clear the inode pointer in the bucket.
3197 */
3198 xlog_recover_clear_agi_bucket(mp, agno, bucket);
3199 return NULLAGINO;
3200 }
3201
3202 /*
3203 * xlog_iunlink_recover
3204 *
3205 * This is called during recovery to process any inodes which
3206 * we unlinked but not freed when the system crashed. These
3207 * inodes will be on the lists in the AGI blocks. What we do
3208 * here is scan all the AGIs and fully truncate and free any
3209 * inodes found on the lists. Each inode is removed from the
3210 * lists when it has been fully truncated and is freed. The
3211 * freeing of the inode and its removal from the list must be
3212 * atomic.
3213 */
3214 STATIC void
3215 xlog_recover_process_iunlinks(
3216 struct xlog *log)
3217 {
3218 xfs_mount_t *mp;
3219 xfs_agnumber_t agno;
3220 xfs_agi_t *agi;
3221 xfs_buf_t *agibp;
3222 xfs_agino_t agino;
3223 int bucket;
3224 int error;
3225 uint mp_dmevmask;
3226
3227 mp = log->l_mp;
3228
3229 /*
3230 * Prevent any DMAPI event from being sent while in this function.
3231 */
3232 mp_dmevmask = mp->m_dmevmask;
3233 mp->m_dmevmask = 0;
3234
3235 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3236 /*
3237 * Find the agi for this ag.
3238 */
3239 error = xfs_read_agi(mp, NULL, agno, &agibp);
3240 if (error) {
3241 /*
3242 * AGI is b0rked. Don't process it.
3243 *
3244 * We should probably mark the filesystem as corrupt
3245 * after we've recovered all the ag's we can....
3246 */
3247 continue;
3248 }
3249 /*
3250 * Unlock the buffer so that it can be acquired in the normal
3251 * course of the transaction to truncate and free each inode.
3252 * Because we are not racing with anyone else here for the AGI
3253 * buffer, we don't even need to hold it locked to read the
3254 * initial unlinked bucket entries out of the buffer. We keep
3255 * buffer reference though, so that it stays pinned in memory
3256 * while we need the buffer.
3257 */
3258 agi = XFS_BUF_TO_AGI(agibp);
3259 xfs_buf_unlock(agibp);
3260
3261 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3262 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3263 while (agino != NULLAGINO) {
3264 agino = xlog_recover_process_one_iunlink(mp,
3265 agno, agino, bucket);
3266 }
3267 }
3268 xfs_buf_rele(agibp);
3269 }
3270
3271 mp->m_dmevmask = mp_dmevmask;
3272 }
3273
3274 /*
3275 * Upack the log buffer data and crc check it. If the check fails, issue a
3276 * warning if and only if the CRC in the header is non-zero. This makes the
3277 * check an advisory warning, and the zero CRC check will prevent failure
3278 * warnings from being emitted when upgrading the kernel from one that does not
3279 * add CRCs by default.
3280 *
3281 * When filesystems are CRC enabled, this CRC mismatch becomes a fatal log
3282 * corruption failure
3283 */
3284 STATIC int
3285 xlog_unpack_data_crc(
3286 struct xlog_rec_header *rhead,
3287 xfs_caddr_t dp,
3288 struct xlog *log)
3289 {
3290 __le32 crc;
3291
3292 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
3293 if (crc != rhead->h_crc) {
3294 if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
3295 xfs_alert(log->l_mp,
3296 "log record CRC mismatch: found 0x%x, expected 0x%x.\n",
3297 le32_to_cpu(rhead->h_crc),
3298 le32_to_cpu(crc));
3299 xfs_hex_dump(dp, 32);
3300 }
3301
3302 /*
3303 * If we've detected a log record corruption, then we can't
3304 * recover past this point. Abort recovery if we are enforcing
3305 * CRC protection by punting an error back up the stack.
3306 */
3307 if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
3308 return EFSCORRUPTED;
3309 }
3310
3311 return 0;
3312 }
3313
3314 STATIC int
3315 xlog_unpack_data(
3316 struct xlog_rec_header *rhead,
3317 xfs_caddr_t dp,
3318 struct xlog *log)
3319 {
3320 int i, j, k;
3321 int error;
3322
3323 error = xlog_unpack_data_crc(rhead, dp, log);
3324 if (error)
3325 return error;
3326
3327 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
3328 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3329 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
3330 dp += BBSIZE;
3331 }
3332
3333 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3334 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
3335 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
3336 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3337 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3338 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3339 dp += BBSIZE;
3340 }
3341 }
3342
3343 return 0;
3344 }
3345
3346 STATIC int
3347 xlog_valid_rec_header(
3348 struct xlog *log,
3349 struct xlog_rec_header *rhead,
3350 xfs_daddr_t blkno)
3351 {
3352 int hlen;
3353
3354 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
3355 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3356 XFS_ERRLEVEL_LOW, log->l_mp);
3357 return XFS_ERROR(EFSCORRUPTED);
3358 }
3359 if (unlikely(
3360 (!rhead->h_version ||
3361 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
3362 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
3363 __func__, be32_to_cpu(rhead->h_version));
3364 return XFS_ERROR(EIO);
3365 }
3366
3367 /* LR body must have data or it wouldn't have been written */
3368 hlen = be32_to_cpu(rhead->h_len);
3369 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3370 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3371 XFS_ERRLEVEL_LOW, log->l_mp);
3372 return XFS_ERROR(EFSCORRUPTED);
3373 }
3374 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3375 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3376 XFS_ERRLEVEL_LOW, log->l_mp);
3377 return XFS_ERROR(EFSCORRUPTED);
3378 }
3379 return 0;
3380 }
3381
3382 /*
3383 * Read the log from tail to head and process the log records found.
3384 * Handle the two cases where the tail and head are in the same cycle
3385 * and where the active portion of the log wraps around the end of
3386 * the physical log separately. The pass parameter is passed through
3387 * to the routines called to process the data and is not looked at
3388 * here.
3389 */
3390 STATIC int
3391 xlog_do_recovery_pass(
3392 struct xlog *log,
3393 xfs_daddr_t head_blk,
3394 xfs_daddr_t tail_blk,
3395 int pass)
3396 {
3397 xlog_rec_header_t *rhead;
3398 xfs_daddr_t blk_no;
3399 xfs_caddr_t offset;
3400 xfs_buf_t *hbp, *dbp;
3401 int error = 0, h_size;
3402 int bblks, split_bblks;
3403 int hblks, split_hblks, wrapped_hblks;
3404 struct hlist_head rhash[XLOG_RHASH_SIZE];
3405
3406 ASSERT(head_blk != tail_blk);
3407
3408 /*
3409 * Read the header of the tail block and get the iclog buffer size from
3410 * h_size. Use this to tell how many sectors make up the log header.
3411 */
3412 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3413 /*
3414 * When using variable length iclogs, read first sector of
3415 * iclog header and extract the header size from it. Get a
3416 * new hbp that is the correct size.
3417 */
3418 hbp = xlog_get_bp(log, 1);
3419 if (!hbp)
3420 return ENOMEM;
3421
3422 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
3423 if (error)
3424 goto bread_err1;
3425
3426 rhead = (xlog_rec_header_t *)offset;
3427 error = xlog_valid_rec_header(log, rhead, tail_blk);
3428 if (error)
3429 goto bread_err1;
3430 h_size = be32_to_cpu(rhead->h_size);
3431 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
3432 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3433 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3434 if (h_size % XLOG_HEADER_CYCLE_SIZE)
3435 hblks++;
3436 xlog_put_bp(hbp);
3437 hbp = xlog_get_bp(log, hblks);
3438 } else {
3439 hblks = 1;
3440 }
3441 } else {
3442 ASSERT(log->l_sectBBsize == 1);
3443 hblks = 1;
3444 hbp = xlog_get_bp(log, 1);
3445 h_size = XLOG_BIG_RECORD_BSIZE;
3446 }
3447
3448 if (!hbp)
3449 return ENOMEM;
3450 dbp = xlog_get_bp(log, BTOBB(h_size));
3451 if (!dbp) {
3452 xlog_put_bp(hbp);
3453 return ENOMEM;
3454 }
3455
3456 memset(rhash, 0, sizeof(rhash));
3457 if (tail_blk <= head_blk) {
3458 for (blk_no = tail_blk; blk_no < head_blk; ) {
3459 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3460 if (error)
3461 goto bread_err2;
3462
3463 rhead = (xlog_rec_header_t *)offset;
3464 error = xlog_valid_rec_header(log, rhead, blk_no);
3465 if (error)
3466 goto bread_err2;
3467
3468 /* blocks in data section */
3469 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3470 error = xlog_bread(log, blk_no + hblks, bblks, dbp,
3471 &offset);
3472 if (error)
3473 goto bread_err2;
3474
3475 error = xlog_unpack_data(rhead, offset, log);
3476 if (error)
3477 goto bread_err2;
3478
3479 error = xlog_recover_process_data(log,
3480 rhash, rhead, offset, pass);
3481 if (error)
3482 goto bread_err2;
3483 blk_no += bblks + hblks;
3484 }
3485 } else {
3486 /*
3487 * Perform recovery around the end of the physical log.
3488 * When the head is not on the same cycle number as the tail,
3489 * we can't do a sequential recovery as above.
3490 */
3491 blk_no = tail_blk;
3492 while (blk_no < log->l_logBBsize) {
3493 /*
3494 * Check for header wrapping around physical end-of-log
3495 */
3496 offset = hbp->b_addr;
3497 split_hblks = 0;
3498 wrapped_hblks = 0;
3499 if (blk_no + hblks <= log->l_logBBsize) {
3500 /* Read header in one read */
3501 error = xlog_bread(log, blk_no, hblks, hbp,
3502 &offset);
3503 if (error)
3504 goto bread_err2;
3505 } else {
3506 /* This LR is split across physical log end */
3507 if (blk_no != log->l_logBBsize) {
3508 /* some data before physical log end */
3509 ASSERT(blk_no <= INT_MAX);
3510 split_hblks = log->l_logBBsize - (int)blk_no;
3511 ASSERT(split_hblks > 0);
3512 error = xlog_bread(log, blk_no,
3513 split_hblks, hbp,
3514 &offset);
3515 if (error)
3516 goto bread_err2;
3517 }
3518
3519 /*
3520 * Note: this black magic still works with
3521 * large sector sizes (non-512) only because:
3522 * - we increased the buffer size originally
3523 * by 1 sector giving us enough extra space
3524 * for the second read;
3525 * - the log start is guaranteed to be sector
3526 * aligned;
3527 * - we read the log end (LR header start)
3528 * _first_, then the log start (LR header end)
3529 * - order is important.
3530 */
3531 wrapped_hblks = hblks - split_hblks;
3532 error = xlog_bread_offset(log, 0,
3533 wrapped_hblks, hbp,
3534 offset + BBTOB(split_hblks));
3535 if (error)
3536 goto bread_err2;
3537 }
3538 rhead = (xlog_rec_header_t *)offset;
3539 error = xlog_valid_rec_header(log, rhead,
3540 split_hblks ? blk_no : 0);
3541 if (error)
3542 goto bread_err2;
3543
3544 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3545 blk_no += hblks;
3546
3547 /* Read in data for log record */
3548 if (blk_no + bblks <= log->l_logBBsize) {
3549 error = xlog_bread(log, blk_no, bblks, dbp,
3550 &offset);
3551 if (error)
3552 goto bread_err2;
3553 } else {
3554 /* This log record is split across the
3555 * physical end of log */
3556 offset = dbp->b_addr;
3557 split_bblks = 0;
3558 if (blk_no != log->l_logBBsize) {
3559 /* some data is before the physical
3560 * end of log */
3561 ASSERT(!wrapped_hblks);
3562 ASSERT(blk_no <= INT_MAX);
3563 split_bblks =
3564 log->l_logBBsize - (int)blk_no;
3565 ASSERT(split_bblks > 0);
3566 error = xlog_bread(log, blk_no,
3567 split_bblks, dbp,
3568 &offset);
3569 if (error)
3570 goto bread_err2;
3571 }
3572
3573 /*
3574 * Note: this black magic still works with
3575 * large sector sizes (non-512) only because:
3576 * - we increased the buffer size originally
3577 * by 1 sector giving us enough extra space
3578 * for the second read;
3579 * - the log start is guaranteed to be sector
3580 * aligned;
3581 * - we read the log end (LR header start)
3582 * _first_, then the log start (LR header end)
3583 * - order is important.
3584 */
3585 error = xlog_bread_offset(log, 0,
3586 bblks - split_bblks, dbp,
3587 offset + BBTOB(split_bblks));
3588 if (error)
3589 goto bread_err2;
3590 }
3591
3592 error = xlog_unpack_data(rhead, offset, log);
3593 if (error)
3594 goto bread_err2;
3595
3596 error = xlog_recover_process_data(log, rhash,
3597 rhead, offset, pass);
3598 if (error)
3599 goto bread_err2;
3600 blk_no += bblks;
3601 }
3602
3603 ASSERT(blk_no >= log->l_logBBsize);
3604 blk_no -= log->l_logBBsize;
3605
3606 /* read first part of physical log */
3607 while (blk_no < head_blk) {
3608 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3609 if (error)
3610 goto bread_err2;
3611
3612 rhead = (xlog_rec_header_t *)offset;
3613 error = xlog_valid_rec_header(log, rhead, blk_no);
3614 if (error)
3615 goto bread_err2;
3616
3617 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3618 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3619 &offset);
3620 if (error)
3621 goto bread_err2;
3622
3623 error = xlog_unpack_data(rhead, offset, log);
3624 if (error)
3625 goto bread_err2;
3626
3627 error = xlog_recover_process_data(log, rhash,
3628 rhead, offset, pass);
3629 if (error)
3630 goto bread_err2;
3631 blk_no += bblks + hblks;
3632 }
3633 }
3634
3635 bread_err2:
3636 xlog_put_bp(dbp);
3637 bread_err1:
3638 xlog_put_bp(hbp);
3639 return error;
3640 }
3641
3642 /*
3643 * Do the recovery of the log. We actually do this in two phases.
3644 * The two passes are necessary in order to implement the function
3645 * of cancelling a record written into the log. The first pass
3646 * determines those things which have been cancelled, and the
3647 * second pass replays log items normally except for those which
3648 * have been cancelled. The handling of the replay and cancellations
3649 * takes place in the log item type specific routines.
3650 *
3651 * The table of items which have cancel records in the log is allocated
3652 * and freed at this level, since only here do we know when all of
3653 * the log recovery has been completed.
3654 */
3655 STATIC int
3656 xlog_do_log_recovery(
3657 struct xlog *log,
3658 xfs_daddr_t head_blk,
3659 xfs_daddr_t tail_blk)
3660 {
3661 int error, i;
3662
3663 ASSERT(head_blk != tail_blk);
3664
3665 /*
3666 * First do a pass to find all of the cancelled buf log items.
3667 * Store them in the buf_cancel_table for use in the second pass.
3668 */
3669 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
3670 sizeof(struct list_head),
3671 KM_SLEEP);
3672 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3673 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
3674
3675 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3676 XLOG_RECOVER_PASS1);
3677 if (error != 0) {
3678 kmem_free(log->l_buf_cancel_table);
3679 log->l_buf_cancel_table = NULL;
3680 return error;
3681 }
3682 /*
3683 * Then do a second pass to actually recover the items in the log.
3684 * When it is complete free the table of buf cancel items.
3685 */
3686 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3687 XLOG_RECOVER_PASS2);
3688 #ifdef DEBUG
3689 if (!error) {
3690 int i;
3691
3692 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3693 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
3694 }
3695 #endif /* DEBUG */
3696
3697 kmem_free(log->l_buf_cancel_table);
3698 log->l_buf_cancel_table = NULL;
3699
3700 return error;
3701 }
3702
3703 /*
3704 * Do the actual recovery
3705 */
3706 STATIC int
3707 xlog_do_recover(
3708 struct xlog *log,
3709 xfs_daddr_t head_blk,
3710 xfs_daddr_t tail_blk)
3711 {
3712 int error;
3713 xfs_buf_t *bp;
3714 xfs_sb_t *sbp;
3715
3716 /*
3717 * First replay the images in the log.
3718 */
3719 error = xlog_do_log_recovery(log, head_blk, tail_blk);
3720 if (error)
3721 return error;
3722
3723 /*
3724 * If IO errors happened during recovery, bail out.
3725 */
3726 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3727 return (EIO);
3728 }
3729
3730 /*
3731 * We now update the tail_lsn since much of the recovery has completed
3732 * and there may be space available to use. If there were no extent
3733 * or iunlinks, we can free up the entire log and set the tail_lsn to
3734 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3735 * lsn of the last known good LR on disk. If there are extent frees
3736 * or iunlinks they will have some entries in the AIL; so we look at
3737 * the AIL to determine how to set the tail_lsn.
3738 */
3739 xlog_assign_tail_lsn(log->l_mp);
3740
3741 /*
3742 * Now that we've finished replaying all buffer and inode
3743 * updates, re-read in the superblock and reverify it.
3744 */
3745 bp = xfs_getsb(log->l_mp, 0);
3746 XFS_BUF_UNDONE(bp);
3747 ASSERT(!(XFS_BUF_ISWRITE(bp)));
3748 XFS_BUF_READ(bp);
3749 XFS_BUF_UNASYNC(bp);
3750 bp->b_ops = &xfs_sb_buf_ops;
3751 xfsbdstrat(log->l_mp, bp);
3752 error = xfs_buf_iowait(bp);
3753 if (error) {
3754 xfs_buf_ioerror_alert(bp, __func__);
3755 ASSERT(0);
3756 xfs_buf_relse(bp);
3757 return error;
3758 }
3759
3760 /* Convert superblock from on-disk format */
3761 sbp = &log->l_mp->m_sb;
3762 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
3763 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3764 ASSERT(xfs_sb_good_version(sbp));
3765 xfs_buf_relse(bp);
3766
3767 /* We've re-read the superblock so re-initialize per-cpu counters */
3768 xfs_icsb_reinit_counters(log->l_mp);
3769
3770 xlog_recover_check_summary(log);
3771
3772 /* Normal transactions can now occur */
3773 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3774 return 0;
3775 }
3776
3777 /*
3778 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3779 *
3780 * Return error or zero.
3781 */
3782 int
3783 xlog_recover(
3784 struct xlog *log)
3785 {
3786 xfs_daddr_t head_blk, tail_blk;
3787 int error;
3788
3789 /* find the tail of the log */
3790 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
3791 return error;
3792
3793 if (tail_blk != head_blk) {
3794 /* There used to be a comment here:
3795 *
3796 * disallow recovery on read-only mounts. note -- mount
3797 * checks for ENOSPC and turns it into an intelligent
3798 * error message.
3799 * ...but this is no longer true. Now, unless you specify
3800 * NORECOVERY (in which case this function would never be
3801 * called), we just go ahead and recover. We do this all
3802 * under the vfs layer, so we can get away with it unless
3803 * the device itself is read-only, in which case we fail.
3804 */
3805 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3806 return error;
3807 }
3808
3809 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
3810 log->l_mp->m_logname ? log->l_mp->m_logname
3811 : "internal");
3812
3813 error = xlog_do_recover(log, head_blk, tail_blk);
3814 log->l_flags |= XLOG_RECOVERY_NEEDED;
3815 }
3816 return error;
3817 }
3818
3819 /*
3820 * In the first part of recovery we replay inodes and buffers and build
3821 * up the list of extent free items which need to be processed. Here
3822 * we process the extent free items and clean up the on disk unlinked
3823 * inode lists. This is separated from the first part of recovery so
3824 * that the root and real-time bitmap inodes can be read in from disk in
3825 * between the two stages. This is necessary so that we can free space
3826 * in the real-time portion of the file system.
3827 */
3828 int
3829 xlog_recover_finish(
3830 struct xlog *log)
3831 {
3832 /*
3833 * Now we're ready to do the transactions needed for the
3834 * rest of recovery. Start with completing all the extent
3835 * free intent records and then process the unlinked inode
3836 * lists. At this point, we essentially run in normal mode
3837 * except that we're still performing recovery actions
3838 * rather than accepting new requests.
3839 */
3840 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3841 int error;
3842 error = xlog_recover_process_efis(log);
3843 if (error) {
3844 xfs_alert(log->l_mp, "Failed to recover EFIs");
3845 return error;
3846 }
3847 /*
3848 * Sync the log to get all the EFIs out of the AIL.
3849 * This isn't absolutely necessary, but it helps in
3850 * case the unlink transactions would have problems
3851 * pushing the EFIs out of the way.
3852 */
3853 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3854
3855 xlog_recover_process_iunlinks(log);
3856
3857 xlog_recover_check_summary(log);
3858
3859 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
3860 log->l_mp->m_logname ? log->l_mp->m_logname
3861 : "internal");
3862 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3863 } else {
3864 xfs_info(log->l_mp, "Ending clean mount");
3865 }
3866 return 0;
3867 }
3868
3869
3870 #if defined(DEBUG)
3871 /*
3872 * Read all of the agf and agi counters and check that they
3873 * are consistent with the superblock counters.
3874 */
3875 void
3876 xlog_recover_check_summary(
3877 struct xlog *log)
3878 {
3879 xfs_mount_t *mp;
3880 xfs_agf_t *agfp;
3881 xfs_buf_t *agfbp;
3882 xfs_buf_t *agibp;
3883 xfs_agnumber_t agno;
3884 __uint64_t freeblks;
3885 __uint64_t itotal;
3886 __uint64_t ifree;
3887 int error;
3888
3889 mp = log->l_mp;
3890
3891 freeblks = 0LL;
3892 itotal = 0LL;
3893 ifree = 0LL;
3894 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3895 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
3896 if (error) {
3897 xfs_alert(mp, "%s agf read failed agno %d error %d",
3898 __func__, agno, error);
3899 } else {
3900 agfp = XFS_BUF_TO_AGF(agfbp);
3901 freeblks += be32_to_cpu(agfp->agf_freeblks) +
3902 be32_to_cpu(agfp->agf_flcount);
3903 xfs_buf_relse(agfbp);
3904 }
3905
3906 error = xfs_read_agi(mp, NULL, agno, &agibp);
3907 if (error) {
3908 xfs_alert(mp, "%s agi read failed agno %d error %d",
3909 __func__, agno, error);
3910 } else {
3911 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
3912
3913 itotal += be32_to_cpu(agi->agi_count);
3914 ifree += be32_to_cpu(agi->agi_freecount);
3915 xfs_buf_relse(agibp);
3916 }
3917 }
3918 }
3919 #endif /* DEBUG */
This page took 0.169102 seconds and 5 git commands to generate.