xfs: decouple log and transaction headers
[deliverable/linux.git] / fs / xfs / xfs_log_recover.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_inum.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_mount.h"
29 #include "xfs_da_format.h"
30 #include "xfs_error.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_btree.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_trans.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_alloc.h"
40 #include "xfs_ialloc.h"
41 #include "xfs_log.h"
42 #include "xfs_log_priv.h"
43 #include "xfs_log_recover.h"
44 #include "xfs_extfree_item.h"
45 #include "xfs_trans_priv.h"
46 #include "xfs_quota.h"
47 #include "xfs_cksum.h"
48 #include "xfs_trace.h"
49 #include "xfs_icache.h"
50
51 /* Need all the magic numbers and buffer ops structures from these headers */
52 #include "xfs_da_btree.h"
53 #include "xfs_dir2.h"
54
55 #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1)
56
57 STATIC int
58 xlog_find_zeroed(
59 struct xlog *,
60 xfs_daddr_t *);
61 STATIC int
62 xlog_clear_stale_blocks(
63 struct xlog *,
64 xfs_lsn_t);
65 #if defined(DEBUG)
66 STATIC void
67 xlog_recover_check_summary(
68 struct xlog *);
69 #else
70 #define xlog_recover_check_summary(log)
71 #endif
72
73 /*
74 * This structure is used during recovery to record the buf log items which
75 * have been canceled and should not be replayed.
76 */
77 struct xfs_buf_cancel {
78 xfs_daddr_t bc_blkno;
79 uint bc_len;
80 int bc_refcount;
81 struct list_head bc_list;
82 };
83
84 /*
85 * Sector aligned buffer routines for buffer create/read/write/access
86 */
87
88 /*
89 * Verify the given count of basic blocks is valid number of blocks
90 * to specify for an operation involving the given XFS log buffer.
91 * Returns nonzero if the count is valid, 0 otherwise.
92 */
93
94 static inline int
95 xlog_buf_bbcount_valid(
96 struct xlog *log,
97 int bbcount)
98 {
99 return bbcount > 0 && bbcount <= log->l_logBBsize;
100 }
101
102 /*
103 * Allocate a buffer to hold log data. The buffer needs to be able
104 * to map to a range of nbblks basic blocks at any valid (basic
105 * block) offset within the log.
106 */
107 STATIC xfs_buf_t *
108 xlog_get_bp(
109 struct xlog *log,
110 int nbblks)
111 {
112 struct xfs_buf *bp;
113
114 if (!xlog_buf_bbcount_valid(log, nbblks)) {
115 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
116 nbblks);
117 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
118 return NULL;
119 }
120
121 /*
122 * We do log I/O in units of log sectors (a power-of-2
123 * multiple of the basic block size), so we round up the
124 * requested size to accommodate the basic blocks required
125 * for complete log sectors.
126 *
127 * In addition, the buffer may be used for a non-sector-
128 * aligned block offset, in which case an I/O of the
129 * requested size could extend beyond the end of the
130 * buffer. If the requested size is only 1 basic block it
131 * will never straddle a sector boundary, so this won't be
132 * an issue. Nor will this be a problem if the log I/O is
133 * done in basic blocks (sector size 1). But otherwise we
134 * extend the buffer by one extra log sector to ensure
135 * there's space to accommodate this possibility.
136 */
137 if (nbblks > 1 && log->l_sectBBsize > 1)
138 nbblks += log->l_sectBBsize;
139 nbblks = round_up(nbblks, log->l_sectBBsize);
140
141 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
142 if (bp)
143 xfs_buf_unlock(bp);
144 return bp;
145 }
146
147 STATIC void
148 xlog_put_bp(
149 xfs_buf_t *bp)
150 {
151 xfs_buf_free(bp);
152 }
153
154 /*
155 * Return the address of the start of the given block number's data
156 * in a log buffer. The buffer covers a log sector-aligned region.
157 */
158 STATIC xfs_caddr_t
159 xlog_align(
160 struct xlog *log,
161 xfs_daddr_t blk_no,
162 int nbblks,
163 struct xfs_buf *bp)
164 {
165 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
166
167 ASSERT(offset + nbblks <= bp->b_length);
168 return bp->b_addr + BBTOB(offset);
169 }
170
171
172 /*
173 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
174 */
175 STATIC int
176 xlog_bread_noalign(
177 struct xlog *log,
178 xfs_daddr_t blk_no,
179 int nbblks,
180 struct xfs_buf *bp)
181 {
182 int error;
183
184 if (!xlog_buf_bbcount_valid(log, nbblks)) {
185 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
186 nbblks);
187 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
188 return EFSCORRUPTED;
189 }
190
191 blk_no = round_down(blk_no, log->l_sectBBsize);
192 nbblks = round_up(nbblks, log->l_sectBBsize);
193
194 ASSERT(nbblks > 0);
195 ASSERT(nbblks <= bp->b_length);
196
197 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
198 XFS_BUF_READ(bp);
199 bp->b_io_length = nbblks;
200 bp->b_error = 0;
201
202 xfsbdstrat(log->l_mp, bp);
203 error = xfs_buf_iowait(bp);
204 if (error)
205 xfs_buf_ioerror_alert(bp, __func__);
206 return error;
207 }
208
209 STATIC int
210 xlog_bread(
211 struct xlog *log,
212 xfs_daddr_t blk_no,
213 int nbblks,
214 struct xfs_buf *bp,
215 xfs_caddr_t *offset)
216 {
217 int error;
218
219 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
220 if (error)
221 return error;
222
223 *offset = xlog_align(log, blk_no, nbblks, bp);
224 return 0;
225 }
226
227 /*
228 * Read at an offset into the buffer. Returns with the buffer in it's original
229 * state regardless of the result of the read.
230 */
231 STATIC int
232 xlog_bread_offset(
233 struct xlog *log,
234 xfs_daddr_t blk_no, /* block to read from */
235 int nbblks, /* blocks to read */
236 struct xfs_buf *bp,
237 xfs_caddr_t offset)
238 {
239 xfs_caddr_t orig_offset = bp->b_addr;
240 int orig_len = BBTOB(bp->b_length);
241 int error, error2;
242
243 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
244 if (error)
245 return error;
246
247 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
248
249 /* must reset buffer pointer even on error */
250 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
251 if (error)
252 return error;
253 return error2;
254 }
255
256 /*
257 * Write out the buffer at the given block for the given number of blocks.
258 * The buffer is kept locked across the write and is returned locked.
259 * This can only be used for synchronous log writes.
260 */
261 STATIC int
262 xlog_bwrite(
263 struct xlog *log,
264 xfs_daddr_t blk_no,
265 int nbblks,
266 struct xfs_buf *bp)
267 {
268 int error;
269
270 if (!xlog_buf_bbcount_valid(log, nbblks)) {
271 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
272 nbblks);
273 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
274 return EFSCORRUPTED;
275 }
276
277 blk_no = round_down(blk_no, log->l_sectBBsize);
278 nbblks = round_up(nbblks, log->l_sectBBsize);
279
280 ASSERT(nbblks > 0);
281 ASSERT(nbblks <= bp->b_length);
282
283 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
284 XFS_BUF_ZEROFLAGS(bp);
285 xfs_buf_hold(bp);
286 xfs_buf_lock(bp);
287 bp->b_io_length = nbblks;
288 bp->b_error = 0;
289
290 error = xfs_bwrite(bp);
291 if (error)
292 xfs_buf_ioerror_alert(bp, __func__);
293 xfs_buf_relse(bp);
294 return error;
295 }
296
297 #ifdef DEBUG
298 /*
299 * dump debug superblock and log record information
300 */
301 STATIC void
302 xlog_header_check_dump(
303 xfs_mount_t *mp,
304 xlog_rec_header_t *head)
305 {
306 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d",
307 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
308 xfs_debug(mp, " log : uuid = %pU, fmt = %d",
309 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
310 }
311 #else
312 #define xlog_header_check_dump(mp, head)
313 #endif
314
315 /*
316 * check log record header for recovery
317 */
318 STATIC int
319 xlog_header_check_recover(
320 xfs_mount_t *mp,
321 xlog_rec_header_t *head)
322 {
323 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
324
325 /*
326 * IRIX doesn't write the h_fmt field and leaves it zeroed
327 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
328 * a dirty log created in IRIX.
329 */
330 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
331 xfs_warn(mp,
332 "dirty log written in incompatible format - can't recover");
333 xlog_header_check_dump(mp, head);
334 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
335 XFS_ERRLEVEL_HIGH, mp);
336 return XFS_ERROR(EFSCORRUPTED);
337 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
338 xfs_warn(mp,
339 "dirty log entry has mismatched uuid - can't recover");
340 xlog_header_check_dump(mp, head);
341 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
342 XFS_ERRLEVEL_HIGH, mp);
343 return XFS_ERROR(EFSCORRUPTED);
344 }
345 return 0;
346 }
347
348 /*
349 * read the head block of the log and check the header
350 */
351 STATIC int
352 xlog_header_check_mount(
353 xfs_mount_t *mp,
354 xlog_rec_header_t *head)
355 {
356 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
357
358 if (uuid_is_nil(&head->h_fs_uuid)) {
359 /*
360 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
361 * h_fs_uuid is nil, we assume this log was last mounted
362 * by IRIX and continue.
363 */
364 xfs_warn(mp, "nil uuid in log - IRIX style log");
365 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
366 xfs_warn(mp, "log has mismatched uuid - can't recover");
367 xlog_header_check_dump(mp, head);
368 XFS_ERROR_REPORT("xlog_header_check_mount",
369 XFS_ERRLEVEL_HIGH, mp);
370 return XFS_ERROR(EFSCORRUPTED);
371 }
372 return 0;
373 }
374
375 STATIC void
376 xlog_recover_iodone(
377 struct xfs_buf *bp)
378 {
379 if (bp->b_error) {
380 /*
381 * We're not going to bother about retrying
382 * this during recovery. One strike!
383 */
384 xfs_buf_ioerror_alert(bp, __func__);
385 xfs_force_shutdown(bp->b_target->bt_mount,
386 SHUTDOWN_META_IO_ERROR);
387 }
388 bp->b_iodone = NULL;
389 xfs_buf_ioend(bp, 0);
390 }
391
392 /*
393 * This routine finds (to an approximation) the first block in the physical
394 * log which contains the given cycle. It uses a binary search algorithm.
395 * Note that the algorithm can not be perfect because the disk will not
396 * necessarily be perfect.
397 */
398 STATIC int
399 xlog_find_cycle_start(
400 struct xlog *log,
401 struct xfs_buf *bp,
402 xfs_daddr_t first_blk,
403 xfs_daddr_t *last_blk,
404 uint cycle)
405 {
406 xfs_caddr_t offset;
407 xfs_daddr_t mid_blk;
408 xfs_daddr_t end_blk;
409 uint mid_cycle;
410 int error;
411
412 end_blk = *last_blk;
413 mid_blk = BLK_AVG(first_blk, end_blk);
414 while (mid_blk != first_blk && mid_blk != end_blk) {
415 error = xlog_bread(log, mid_blk, 1, bp, &offset);
416 if (error)
417 return error;
418 mid_cycle = xlog_get_cycle(offset);
419 if (mid_cycle == cycle)
420 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
421 else
422 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
423 mid_blk = BLK_AVG(first_blk, end_blk);
424 }
425 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
426 (mid_blk == end_blk && mid_blk-1 == first_blk));
427
428 *last_blk = end_blk;
429
430 return 0;
431 }
432
433 /*
434 * Check that a range of blocks does not contain stop_on_cycle_no.
435 * Fill in *new_blk with the block offset where such a block is
436 * found, or with -1 (an invalid block number) if there is no such
437 * block in the range. The scan needs to occur from front to back
438 * and the pointer into the region must be updated since a later
439 * routine will need to perform another test.
440 */
441 STATIC int
442 xlog_find_verify_cycle(
443 struct xlog *log,
444 xfs_daddr_t start_blk,
445 int nbblks,
446 uint stop_on_cycle_no,
447 xfs_daddr_t *new_blk)
448 {
449 xfs_daddr_t i, j;
450 uint cycle;
451 xfs_buf_t *bp;
452 xfs_daddr_t bufblks;
453 xfs_caddr_t buf = NULL;
454 int error = 0;
455
456 /*
457 * Greedily allocate a buffer big enough to handle the full
458 * range of basic blocks we'll be examining. If that fails,
459 * try a smaller size. We need to be able to read at least
460 * a log sector, or we're out of luck.
461 */
462 bufblks = 1 << ffs(nbblks);
463 while (bufblks > log->l_logBBsize)
464 bufblks >>= 1;
465 while (!(bp = xlog_get_bp(log, bufblks))) {
466 bufblks >>= 1;
467 if (bufblks < log->l_sectBBsize)
468 return ENOMEM;
469 }
470
471 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
472 int bcount;
473
474 bcount = min(bufblks, (start_blk + nbblks - i));
475
476 error = xlog_bread(log, i, bcount, bp, &buf);
477 if (error)
478 goto out;
479
480 for (j = 0; j < bcount; j++) {
481 cycle = xlog_get_cycle(buf);
482 if (cycle == stop_on_cycle_no) {
483 *new_blk = i+j;
484 goto out;
485 }
486
487 buf += BBSIZE;
488 }
489 }
490
491 *new_blk = -1;
492
493 out:
494 xlog_put_bp(bp);
495 return error;
496 }
497
498 /*
499 * Potentially backup over partial log record write.
500 *
501 * In the typical case, last_blk is the number of the block directly after
502 * a good log record. Therefore, we subtract one to get the block number
503 * of the last block in the given buffer. extra_bblks contains the number
504 * of blocks we would have read on a previous read. This happens when the
505 * last log record is split over the end of the physical log.
506 *
507 * extra_bblks is the number of blocks potentially verified on a previous
508 * call to this routine.
509 */
510 STATIC int
511 xlog_find_verify_log_record(
512 struct xlog *log,
513 xfs_daddr_t start_blk,
514 xfs_daddr_t *last_blk,
515 int extra_bblks)
516 {
517 xfs_daddr_t i;
518 xfs_buf_t *bp;
519 xfs_caddr_t offset = NULL;
520 xlog_rec_header_t *head = NULL;
521 int error = 0;
522 int smallmem = 0;
523 int num_blks = *last_blk - start_blk;
524 int xhdrs;
525
526 ASSERT(start_blk != 0 || *last_blk != start_blk);
527
528 if (!(bp = xlog_get_bp(log, num_blks))) {
529 if (!(bp = xlog_get_bp(log, 1)))
530 return ENOMEM;
531 smallmem = 1;
532 } else {
533 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
534 if (error)
535 goto out;
536 offset += ((num_blks - 1) << BBSHIFT);
537 }
538
539 for (i = (*last_blk) - 1; i >= 0; i--) {
540 if (i < start_blk) {
541 /* valid log record not found */
542 xfs_warn(log->l_mp,
543 "Log inconsistent (didn't find previous header)");
544 ASSERT(0);
545 error = XFS_ERROR(EIO);
546 goto out;
547 }
548
549 if (smallmem) {
550 error = xlog_bread(log, i, 1, bp, &offset);
551 if (error)
552 goto out;
553 }
554
555 head = (xlog_rec_header_t *)offset;
556
557 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
558 break;
559
560 if (!smallmem)
561 offset -= BBSIZE;
562 }
563
564 /*
565 * We hit the beginning of the physical log & still no header. Return
566 * to caller. If caller can handle a return of -1, then this routine
567 * will be called again for the end of the physical log.
568 */
569 if (i == -1) {
570 error = -1;
571 goto out;
572 }
573
574 /*
575 * We have the final block of the good log (the first block
576 * of the log record _before_ the head. So we check the uuid.
577 */
578 if ((error = xlog_header_check_mount(log->l_mp, head)))
579 goto out;
580
581 /*
582 * We may have found a log record header before we expected one.
583 * last_blk will be the 1st block # with a given cycle #. We may end
584 * up reading an entire log record. In this case, we don't want to
585 * reset last_blk. Only when last_blk points in the middle of a log
586 * record do we update last_blk.
587 */
588 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
589 uint h_size = be32_to_cpu(head->h_size);
590
591 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
592 if (h_size % XLOG_HEADER_CYCLE_SIZE)
593 xhdrs++;
594 } else {
595 xhdrs = 1;
596 }
597
598 if (*last_blk - i + extra_bblks !=
599 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
600 *last_blk = i;
601
602 out:
603 xlog_put_bp(bp);
604 return error;
605 }
606
607 /*
608 * Head is defined to be the point of the log where the next log write
609 * could go. This means that incomplete LR writes at the end are
610 * eliminated when calculating the head. We aren't guaranteed that previous
611 * LR have complete transactions. We only know that a cycle number of
612 * current cycle number -1 won't be present in the log if we start writing
613 * from our current block number.
614 *
615 * last_blk contains the block number of the first block with a given
616 * cycle number.
617 *
618 * Return: zero if normal, non-zero if error.
619 */
620 STATIC int
621 xlog_find_head(
622 struct xlog *log,
623 xfs_daddr_t *return_head_blk)
624 {
625 xfs_buf_t *bp;
626 xfs_caddr_t offset;
627 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
628 int num_scan_bblks;
629 uint first_half_cycle, last_half_cycle;
630 uint stop_on_cycle;
631 int error, log_bbnum = log->l_logBBsize;
632
633 /* Is the end of the log device zeroed? */
634 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
635 *return_head_blk = first_blk;
636
637 /* Is the whole lot zeroed? */
638 if (!first_blk) {
639 /* Linux XFS shouldn't generate totally zeroed logs -
640 * mkfs etc write a dummy unmount record to a fresh
641 * log so we can store the uuid in there
642 */
643 xfs_warn(log->l_mp, "totally zeroed log");
644 }
645
646 return 0;
647 } else if (error) {
648 xfs_warn(log->l_mp, "empty log check failed");
649 return error;
650 }
651
652 first_blk = 0; /* get cycle # of 1st block */
653 bp = xlog_get_bp(log, 1);
654 if (!bp)
655 return ENOMEM;
656
657 error = xlog_bread(log, 0, 1, bp, &offset);
658 if (error)
659 goto bp_err;
660
661 first_half_cycle = xlog_get_cycle(offset);
662
663 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
664 error = xlog_bread(log, last_blk, 1, bp, &offset);
665 if (error)
666 goto bp_err;
667
668 last_half_cycle = xlog_get_cycle(offset);
669 ASSERT(last_half_cycle != 0);
670
671 /*
672 * If the 1st half cycle number is equal to the last half cycle number,
673 * then the entire log is stamped with the same cycle number. In this
674 * case, head_blk can't be set to zero (which makes sense). The below
675 * math doesn't work out properly with head_blk equal to zero. Instead,
676 * we set it to log_bbnum which is an invalid block number, but this
677 * value makes the math correct. If head_blk doesn't changed through
678 * all the tests below, *head_blk is set to zero at the very end rather
679 * than log_bbnum. In a sense, log_bbnum and zero are the same block
680 * in a circular file.
681 */
682 if (first_half_cycle == last_half_cycle) {
683 /*
684 * In this case we believe that the entire log should have
685 * cycle number last_half_cycle. We need to scan backwards
686 * from the end verifying that there are no holes still
687 * containing last_half_cycle - 1. If we find such a hole,
688 * then the start of that hole will be the new head. The
689 * simple case looks like
690 * x | x ... | x - 1 | x
691 * Another case that fits this picture would be
692 * x | x + 1 | x ... | x
693 * In this case the head really is somewhere at the end of the
694 * log, as one of the latest writes at the beginning was
695 * incomplete.
696 * One more case is
697 * x | x + 1 | x ... | x - 1 | x
698 * This is really the combination of the above two cases, and
699 * the head has to end up at the start of the x-1 hole at the
700 * end of the log.
701 *
702 * In the 256k log case, we will read from the beginning to the
703 * end of the log and search for cycle numbers equal to x-1.
704 * We don't worry about the x+1 blocks that we encounter,
705 * because we know that they cannot be the head since the log
706 * started with x.
707 */
708 head_blk = log_bbnum;
709 stop_on_cycle = last_half_cycle - 1;
710 } else {
711 /*
712 * In this case we want to find the first block with cycle
713 * number matching last_half_cycle. We expect the log to be
714 * some variation on
715 * x + 1 ... | x ... | x
716 * The first block with cycle number x (last_half_cycle) will
717 * be where the new head belongs. First we do a binary search
718 * for the first occurrence of last_half_cycle. The binary
719 * search may not be totally accurate, so then we scan back
720 * from there looking for occurrences of last_half_cycle before
721 * us. If that backwards scan wraps around the beginning of
722 * the log, then we look for occurrences of last_half_cycle - 1
723 * at the end of the log. The cases we're looking for look
724 * like
725 * v binary search stopped here
726 * x + 1 ... | x | x + 1 | x ... | x
727 * ^ but we want to locate this spot
728 * or
729 * <---------> less than scan distance
730 * x + 1 ... | x ... | x - 1 | x
731 * ^ we want to locate this spot
732 */
733 stop_on_cycle = last_half_cycle;
734 if ((error = xlog_find_cycle_start(log, bp, first_blk,
735 &head_blk, last_half_cycle)))
736 goto bp_err;
737 }
738
739 /*
740 * Now validate the answer. Scan back some number of maximum possible
741 * blocks and make sure each one has the expected cycle number. The
742 * maximum is determined by the total possible amount of buffering
743 * in the in-core log. The following number can be made tighter if
744 * we actually look at the block size of the filesystem.
745 */
746 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
747 if (head_blk >= num_scan_bblks) {
748 /*
749 * We are guaranteed that the entire check can be performed
750 * in one buffer.
751 */
752 start_blk = head_blk - num_scan_bblks;
753 if ((error = xlog_find_verify_cycle(log,
754 start_blk, num_scan_bblks,
755 stop_on_cycle, &new_blk)))
756 goto bp_err;
757 if (new_blk != -1)
758 head_blk = new_blk;
759 } else { /* need to read 2 parts of log */
760 /*
761 * We are going to scan backwards in the log in two parts.
762 * First we scan the physical end of the log. In this part
763 * of the log, we are looking for blocks with cycle number
764 * last_half_cycle - 1.
765 * If we find one, then we know that the log starts there, as
766 * we've found a hole that didn't get written in going around
767 * the end of the physical log. The simple case for this is
768 * x + 1 ... | x ... | x - 1 | x
769 * <---------> less than scan distance
770 * If all of the blocks at the end of the log have cycle number
771 * last_half_cycle, then we check the blocks at the start of
772 * the log looking for occurrences of last_half_cycle. If we
773 * find one, then our current estimate for the location of the
774 * first occurrence of last_half_cycle is wrong and we move
775 * back to the hole we've found. This case looks like
776 * x + 1 ... | x | x + 1 | x ...
777 * ^ binary search stopped here
778 * Another case we need to handle that only occurs in 256k
779 * logs is
780 * x + 1 ... | x ... | x+1 | x ...
781 * ^ binary search stops here
782 * In a 256k log, the scan at the end of the log will see the
783 * x + 1 blocks. We need to skip past those since that is
784 * certainly not the head of the log. By searching for
785 * last_half_cycle-1 we accomplish that.
786 */
787 ASSERT(head_blk <= INT_MAX &&
788 (xfs_daddr_t) num_scan_bblks >= head_blk);
789 start_blk = log_bbnum - (num_scan_bblks - head_blk);
790 if ((error = xlog_find_verify_cycle(log, start_blk,
791 num_scan_bblks - (int)head_blk,
792 (stop_on_cycle - 1), &new_blk)))
793 goto bp_err;
794 if (new_blk != -1) {
795 head_blk = new_blk;
796 goto validate_head;
797 }
798
799 /*
800 * Scan beginning of log now. The last part of the physical
801 * log is good. This scan needs to verify that it doesn't find
802 * the last_half_cycle.
803 */
804 start_blk = 0;
805 ASSERT(head_blk <= INT_MAX);
806 if ((error = xlog_find_verify_cycle(log,
807 start_blk, (int)head_blk,
808 stop_on_cycle, &new_blk)))
809 goto bp_err;
810 if (new_blk != -1)
811 head_blk = new_blk;
812 }
813
814 validate_head:
815 /*
816 * Now we need to make sure head_blk is not pointing to a block in
817 * the middle of a log record.
818 */
819 num_scan_bblks = XLOG_REC_SHIFT(log);
820 if (head_blk >= num_scan_bblks) {
821 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
822
823 /* start ptr at last block ptr before head_blk */
824 if ((error = xlog_find_verify_log_record(log, start_blk,
825 &head_blk, 0)) == -1) {
826 error = XFS_ERROR(EIO);
827 goto bp_err;
828 } else if (error)
829 goto bp_err;
830 } else {
831 start_blk = 0;
832 ASSERT(head_blk <= INT_MAX);
833 if ((error = xlog_find_verify_log_record(log, start_blk,
834 &head_blk, 0)) == -1) {
835 /* We hit the beginning of the log during our search */
836 start_blk = log_bbnum - (num_scan_bblks - head_blk);
837 new_blk = log_bbnum;
838 ASSERT(start_blk <= INT_MAX &&
839 (xfs_daddr_t) log_bbnum-start_blk >= 0);
840 ASSERT(head_blk <= INT_MAX);
841 if ((error = xlog_find_verify_log_record(log,
842 start_blk, &new_blk,
843 (int)head_blk)) == -1) {
844 error = XFS_ERROR(EIO);
845 goto bp_err;
846 } else if (error)
847 goto bp_err;
848 if (new_blk != log_bbnum)
849 head_blk = new_blk;
850 } else if (error)
851 goto bp_err;
852 }
853
854 xlog_put_bp(bp);
855 if (head_blk == log_bbnum)
856 *return_head_blk = 0;
857 else
858 *return_head_blk = head_blk;
859 /*
860 * When returning here, we have a good block number. Bad block
861 * means that during a previous crash, we didn't have a clean break
862 * from cycle number N to cycle number N-1. In this case, we need
863 * to find the first block with cycle number N-1.
864 */
865 return 0;
866
867 bp_err:
868 xlog_put_bp(bp);
869
870 if (error)
871 xfs_warn(log->l_mp, "failed to find log head");
872 return error;
873 }
874
875 /*
876 * Find the sync block number or the tail of the log.
877 *
878 * This will be the block number of the last record to have its
879 * associated buffers synced to disk. Every log record header has
880 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
881 * to get a sync block number. The only concern is to figure out which
882 * log record header to believe.
883 *
884 * The following algorithm uses the log record header with the largest
885 * lsn. The entire log record does not need to be valid. We only care
886 * that the header is valid.
887 *
888 * We could speed up search by using current head_blk buffer, but it is not
889 * available.
890 */
891 STATIC int
892 xlog_find_tail(
893 struct xlog *log,
894 xfs_daddr_t *head_blk,
895 xfs_daddr_t *tail_blk)
896 {
897 xlog_rec_header_t *rhead;
898 xlog_op_header_t *op_head;
899 xfs_caddr_t offset = NULL;
900 xfs_buf_t *bp;
901 int error, i, found;
902 xfs_daddr_t umount_data_blk;
903 xfs_daddr_t after_umount_blk;
904 xfs_lsn_t tail_lsn;
905 int hblks;
906
907 found = 0;
908
909 /*
910 * Find previous log record
911 */
912 if ((error = xlog_find_head(log, head_blk)))
913 return error;
914
915 bp = xlog_get_bp(log, 1);
916 if (!bp)
917 return ENOMEM;
918 if (*head_blk == 0) { /* special case */
919 error = xlog_bread(log, 0, 1, bp, &offset);
920 if (error)
921 goto done;
922
923 if (xlog_get_cycle(offset) == 0) {
924 *tail_blk = 0;
925 /* leave all other log inited values alone */
926 goto done;
927 }
928 }
929
930 /*
931 * Search backwards looking for log record header block
932 */
933 ASSERT(*head_blk < INT_MAX);
934 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
935 error = xlog_bread(log, i, 1, bp, &offset);
936 if (error)
937 goto done;
938
939 if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
940 found = 1;
941 break;
942 }
943 }
944 /*
945 * If we haven't found the log record header block, start looking
946 * again from the end of the physical log. XXXmiken: There should be
947 * a check here to make sure we didn't search more than N blocks in
948 * the previous code.
949 */
950 if (!found) {
951 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
952 error = xlog_bread(log, i, 1, bp, &offset);
953 if (error)
954 goto done;
955
956 if (*(__be32 *)offset ==
957 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
958 found = 2;
959 break;
960 }
961 }
962 }
963 if (!found) {
964 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
965 xlog_put_bp(bp);
966 ASSERT(0);
967 return XFS_ERROR(EIO);
968 }
969
970 /* find blk_no of tail of log */
971 rhead = (xlog_rec_header_t *)offset;
972 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
973
974 /*
975 * Reset log values according to the state of the log when we
976 * crashed. In the case where head_blk == 0, we bump curr_cycle
977 * one because the next write starts a new cycle rather than
978 * continuing the cycle of the last good log record. At this
979 * point we have guaranteed that all partial log records have been
980 * accounted for. Therefore, we know that the last good log record
981 * written was complete and ended exactly on the end boundary
982 * of the physical log.
983 */
984 log->l_prev_block = i;
985 log->l_curr_block = (int)*head_blk;
986 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
987 if (found == 2)
988 log->l_curr_cycle++;
989 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
990 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
991 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
992 BBTOB(log->l_curr_block));
993 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
994 BBTOB(log->l_curr_block));
995
996 /*
997 * Look for unmount record. If we find it, then we know there
998 * was a clean unmount. Since 'i' could be the last block in
999 * the physical log, we convert to a log block before comparing
1000 * to the head_blk.
1001 *
1002 * Save the current tail lsn to use to pass to
1003 * xlog_clear_stale_blocks() below. We won't want to clear the
1004 * unmount record if there is one, so we pass the lsn of the
1005 * unmount record rather than the block after it.
1006 */
1007 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1008 int h_size = be32_to_cpu(rhead->h_size);
1009 int h_version = be32_to_cpu(rhead->h_version);
1010
1011 if ((h_version & XLOG_VERSION_2) &&
1012 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1013 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1014 if (h_size % XLOG_HEADER_CYCLE_SIZE)
1015 hblks++;
1016 } else {
1017 hblks = 1;
1018 }
1019 } else {
1020 hblks = 1;
1021 }
1022 after_umount_blk = (i + hblks + (int)
1023 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1024 tail_lsn = atomic64_read(&log->l_tail_lsn);
1025 if (*head_blk == after_umount_blk &&
1026 be32_to_cpu(rhead->h_num_logops) == 1) {
1027 umount_data_blk = (i + hblks) % log->l_logBBsize;
1028 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1029 if (error)
1030 goto done;
1031
1032 op_head = (xlog_op_header_t *)offset;
1033 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1034 /*
1035 * Set tail and last sync so that newly written
1036 * log records will point recovery to after the
1037 * current unmount record.
1038 */
1039 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1040 log->l_curr_cycle, after_umount_blk);
1041 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1042 log->l_curr_cycle, after_umount_blk);
1043 *tail_blk = after_umount_blk;
1044
1045 /*
1046 * Note that the unmount was clean. If the unmount
1047 * was not clean, we need to know this to rebuild the
1048 * superblock counters from the perag headers if we
1049 * have a filesystem using non-persistent counters.
1050 */
1051 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1052 }
1053 }
1054
1055 /*
1056 * Make sure that there are no blocks in front of the head
1057 * with the same cycle number as the head. This can happen
1058 * because we allow multiple outstanding log writes concurrently,
1059 * and the later writes might make it out before earlier ones.
1060 *
1061 * We use the lsn from before modifying it so that we'll never
1062 * overwrite the unmount record after a clean unmount.
1063 *
1064 * Do this only if we are going to recover the filesystem
1065 *
1066 * NOTE: This used to say "if (!readonly)"
1067 * However on Linux, we can & do recover a read-only filesystem.
1068 * We only skip recovery if NORECOVERY is specified on mount,
1069 * in which case we would not be here.
1070 *
1071 * But... if the -device- itself is readonly, just skip this.
1072 * We can't recover this device anyway, so it won't matter.
1073 */
1074 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1075 error = xlog_clear_stale_blocks(log, tail_lsn);
1076
1077 done:
1078 xlog_put_bp(bp);
1079
1080 if (error)
1081 xfs_warn(log->l_mp, "failed to locate log tail");
1082 return error;
1083 }
1084
1085 /*
1086 * Is the log zeroed at all?
1087 *
1088 * The last binary search should be changed to perform an X block read
1089 * once X becomes small enough. You can then search linearly through
1090 * the X blocks. This will cut down on the number of reads we need to do.
1091 *
1092 * If the log is partially zeroed, this routine will pass back the blkno
1093 * of the first block with cycle number 0. It won't have a complete LR
1094 * preceding it.
1095 *
1096 * Return:
1097 * 0 => the log is completely written to
1098 * -1 => use *blk_no as the first block of the log
1099 * >0 => error has occurred
1100 */
1101 STATIC int
1102 xlog_find_zeroed(
1103 struct xlog *log,
1104 xfs_daddr_t *blk_no)
1105 {
1106 xfs_buf_t *bp;
1107 xfs_caddr_t offset;
1108 uint first_cycle, last_cycle;
1109 xfs_daddr_t new_blk, last_blk, start_blk;
1110 xfs_daddr_t num_scan_bblks;
1111 int error, log_bbnum = log->l_logBBsize;
1112
1113 *blk_no = 0;
1114
1115 /* check totally zeroed log */
1116 bp = xlog_get_bp(log, 1);
1117 if (!bp)
1118 return ENOMEM;
1119 error = xlog_bread(log, 0, 1, bp, &offset);
1120 if (error)
1121 goto bp_err;
1122
1123 first_cycle = xlog_get_cycle(offset);
1124 if (first_cycle == 0) { /* completely zeroed log */
1125 *blk_no = 0;
1126 xlog_put_bp(bp);
1127 return -1;
1128 }
1129
1130 /* check partially zeroed log */
1131 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1132 if (error)
1133 goto bp_err;
1134
1135 last_cycle = xlog_get_cycle(offset);
1136 if (last_cycle != 0) { /* log completely written to */
1137 xlog_put_bp(bp);
1138 return 0;
1139 } else if (first_cycle != 1) {
1140 /*
1141 * If the cycle of the last block is zero, the cycle of
1142 * the first block must be 1. If it's not, maybe we're
1143 * not looking at a log... Bail out.
1144 */
1145 xfs_warn(log->l_mp,
1146 "Log inconsistent or not a log (last==0, first!=1)");
1147 error = XFS_ERROR(EINVAL);
1148 goto bp_err;
1149 }
1150
1151 /* we have a partially zeroed log */
1152 last_blk = log_bbnum-1;
1153 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1154 goto bp_err;
1155
1156 /*
1157 * Validate the answer. Because there is no way to guarantee that
1158 * the entire log is made up of log records which are the same size,
1159 * we scan over the defined maximum blocks. At this point, the maximum
1160 * is not chosen to mean anything special. XXXmiken
1161 */
1162 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1163 ASSERT(num_scan_bblks <= INT_MAX);
1164
1165 if (last_blk < num_scan_bblks)
1166 num_scan_bblks = last_blk;
1167 start_blk = last_blk - num_scan_bblks;
1168
1169 /*
1170 * We search for any instances of cycle number 0 that occur before
1171 * our current estimate of the head. What we're trying to detect is
1172 * 1 ... | 0 | 1 | 0...
1173 * ^ binary search ends here
1174 */
1175 if ((error = xlog_find_verify_cycle(log, start_blk,
1176 (int)num_scan_bblks, 0, &new_blk)))
1177 goto bp_err;
1178 if (new_blk != -1)
1179 last_blk = new_blk;
1180
1181 /*
1182 * Potentially backup over partial log record write. We don't need
1183 * to search the end of the log because we know it is zero.
1184 */
1185 if ((error = xlog_find_verify_log_record(log, start_blk,
1186 &last_blk, 0)) == -1) {
1187 error = XFS_ERROR(EIO);
1188 goto bp_err;
1189 } else if (error)
1190 goto bp_err;
1191
1192 *blk_no = last_blk;
1193 bp_err:
1194 xlog_put_bp(bp);
1195 if (error)
1196 return error;
1197 return -1;
1198 }
1199
1200 /*
1201 * These are simple subroutines used by xlog_clear_stale_blocks() below
1202 * to initialize a buffer full of empty log record headers and write
1203 * them into the log.
1204 */
1205 STATIC void
1206 xlog_add_record(
1207 struct xlog *log,
1208 xfs_caddr_t buf,
1209 int cycle,
1210 int block,
1211 int tail_cycle,
1212 int tail_block)
1213 {
1214 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1215
1216 memset(buf, 0, BBSIZE);
1217 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1218 recp->h_cycle = cpu_to_be32(cycle);
1219 recp->h_version = cpu_to_be32(
1220 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1221 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1222 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1223 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1224 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1225 }
1226
1227 STATIC int
1228 xlog_write_log_records(
1229 struct xlog *log,
1230 int cycle,
1231 int start_block,
1232 int blocks,
1233 int tail_cycle,
1234 int tail_block)
1235 {
1236 xfs_caddr_t offset;
1237 xfs_buf_t *bp;
1238 int balign, ealign;
1239 int sectbb = log->l_sectBBsize;
1240 int end_block = start_block + blocks;
1241 int bufblks;
1242 int error = 0;
1243 int i, j = 0;
1244
1245 /*
1246 * Greedily allocate a buffer big enough to handle the full
1247 * range of basic blocks to be written. If that fails, try
1248 * a smaller size. We need to be able to write at least a
1249 * log sector, or we're out of luck.
1250 */
1251 bufblks = 1 << ffs(blocks);
1252 while (bufblks > log->l_logBBsize)
1253 bufblks >>= 1;
1254 while (!(bp = xlog_get_bp(log, bufblks))) {
1255 bufblks >>= 1;
1256 if (bufblks < sectbb)
1257 return ENOMEM;
1258 }
1259
1260 /* We may need to do a read at the start to fill in part of
1261 * the buffer in the starting sector not covered by the first
1262 * write below.
1263 */
1264 balign = round_down(start_block, sectbb);
1265 if (balign != start_block) {
1266 error = xlog_bread_noalign(log, start_block, 1, bp);
1267 if (error)
1268 goto out_put_bp;
1269
1270 j = start_block - balign;
1271 }
1272
1273 for (i = start_block; i < end_block; i += bufblks) {
1274 int bcount, endcount;
1275
1276 bcount = min(bufblks, end_block - start_block);
1277 endcount = bcount - j;
1278
1279 /* We may need to do a read at the end to fill in part of
1280 * the buffer in the final sector not covered by the write.
1281 * If this is the same sector as the above read, skip it.
1282 */
1283 ealign = round_down(end_block, sectbb);
1284 if (j == 0 && (start_block + endcount > ealign)) {
1285 offset = bp->b_addr + BBTOB(ealign - start_block);
1286 error = xlog_bread_offset(log, ealign, sectbb,
1287 bp, offset);
1288 if (error)
1289 break;
1290
1291 }
1292
1293 offset = xlog_align(log, start_block, endcount, bp);
1294 for (; j < endcount; j++) {
1295 xlog_add_record(log, offset, cycle, i+j,
1296 tail_cycle, tail_block);
1297 offset += BBSIZE;
1298 }
1299 error = xlog_bwrite(log, start_block, endcount, bp);
1300 if (error)
1301 break;
1302 start_block += endcount;
1303 j = 0;
1304 }
1305
1306 out_put_bp:
1307 xlog_put_bp(bp);
1308 return error;
1309 }
1310
1311 /*
1312 * This routine is called to blow away any incomplete log writes out
1313 * in front of the log head. We do this so that we won't become confused
1314 * if we come up, write only a little bit more, and then crash again.
1315 * If we leave the partial log records out there, this situation could
1316 * cause us to think those partial writes are valid blocks since they
1317 * have the current cycle number. We get rid of them by overwriting them
1318 * with empty log records with the old cycle number rather than the
1319 * current one.
1320 *
1321 * The tail lsn is passed in rather than taken from
1322 * the log so that we will not write over the unmount record after a
1323 * clean unmount in a 512 block log. Doing so would leave the log without
1324 * any valid log records in it until a new one was written. If we crashed
1325 * during that time we would not be able to recover.
1326 */
1327 STATIC int
1328 xlog_clear_stale_blocks(
1329 struct xlog *log,
1330 xfs_lsn_t tail_lsn)
1331 {
1332 int tail_cycle, head_cycle;
1333 int tail_block, head_block;
1334 int tail_distance, max_distance;
1335 int distance;
1336 int error;
1337
1338 tail_cycle = CYCLE_LSN(tail_lsn);
1339 tail_block = BLOCK_LSN(tail_lsn);
1340 head_cycle = log->l_curr_cycle;
1341 head_block = log->l_curr_block;
1342
1343 /*
1344 * Figure out the distance between the new head of the log
1345 * and the tail. We want to write over any blocks beyond the
1346 * head that we may have written just before the crash, but
1347 * we don't want to overwrite the tail of the log.
1348 */
1349 if (head_cycle == tail_cycle) {
1350 /*
1351 * The tail is behind the head in the physical log,
1352 * so the distance from the head to the tail is the
1353 * distance from the head to the end of the log plus
1354 * the distance from the beginning of the log to the
1355 * tail.
1356 */
1357 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1358 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1359 XFS_ERRLEVEL_LOW, log->l_mp);
1360 return XFS_ERROR(EFSCORRUPTED);
1361 }
1362 tail_distance = tail_block + (log->l_logBBsize - head_block);
1363 } else {
1364 /*
1365 * The head is behind the tail in the physical log,
1366 * so the distance from the head to the tail is just
1367 * the tail block minus the head block.
1368 */
1369 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1370 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1371 XFS_ERRLEVEL_LOW, log->l_mp);
1372 return XFS_ERROR(EFSCORRUPTED);
1373 }
1374 tail_distance = tail_block - head_block;
1375 }
1376
1377 /*
1378 * If the head is right up against the tail, we can't clear
1379 * anything.
1380 */
1381 if (tail_distance <= 0) {
1382 ASSERT(tail_distance == 0);
1383 return 0;
1384 }
1385
1386 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1387 /*
1388 * Take the smaller of the maximum amount of outstanding I/O
1389 * we could have and the distance to the tail to clear out.
1390 * We take the smaller so that we don't overwrite the tail and
1391 * we don't waste all day writing from the head to the tail
1392 * for no reason.
1393 */
1394 max_distance = MIN(max_distance, tail_distance);
1395
1396 if ((head_block + max_distance) <= log->l_logBBsize) {
1397 /*
1398 * We can stomp all the blocks we need to without
1399 * wrapping around the end of the log. Just do it
1400 * in a single write. Use the cycle number of the
1401 * current cycle minus one so that the log will look like:
1402 * n ... | n - 1 ...
1403 */
1404 error = xlog_write_log_records(log, (head_cycle - 1),
1405 head_block, max_distance, tail_cycle,
1406 tail_block);
1407 if (error)
1408 return error;
1409 } else {
1410 /*
1411 * We need to wrap around the end of the physical log in
1412 * order to clear all the blocks. Do it in two separate
1413 * I/Os. The first write should be from the head to the
1414 * end of the physical log, and it should use the current
1415 * cycle number minus one just like above.
1416 */
1417 distance = log->l_logBBsize - head_block;
1418 error = xlog_write_log_records(log, (head_cycle - 1),
1419 head_block, distance, tail_cycle,
1420 tail_block);
1421
1422 if (error)
1423 return error;
1424
1425 /*
1426 * Now write the blocks at the start of the physical log.
1427 * This writes the remainder of the blocks we want to clear.
1428 * It uses the current cycle number since we're now on the
1429 * same cycle as the head so that we get:
1430 * n ... n ... | n - 1 ...
1431 * ^^^^^ blocks we're writing
1432 */
1433 distance = max_distance - (log->l_logBBsize - head_block);
1434 error = xlog_write_log_records(log, head_cycle, 0, distance,
1435 tail_cycle, tail_block);
1436 if (error)
1437 return error;
1438 }
1439
1440 return 0;
1441 }
1442
1443 /******************************************************************************
1444 *
1445 * Log recover routines
1446 *
1447 ******************************************************************************
1448 */
1449
1450 STATIC xlog_recover_t *
1451 xlog_recover_find_tid(
1452 struct hlist_head *head,
1453 xlog_tid_t tid)
1454 {
1455 xlog_recover_t *trans;
1456
1457 hlist_for_each_entry(trans, head, r_list) {
1458 if (trans->r_log_tid == tid)
1459 return trans;
1460 }
1461 return NULL;
1462 }
1463
1464 STATIC void
1465 xlog_recover_new_tid(
1466 struct hlist_head *head,
1467 xlog_tid_t tid,
1468 xfs_lsn_t lsn)
1469 {
1470 xlog_recover_t *trans;
1471
1472 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1473 trans->r_log_tid = tid;
1474 trans->r_lsn = lsn;
1475 INIT_LIST_HEAD(&trans->r_itemq);
1476
1477 INIT_HLIST_NODE(&trans->r_list);
1478 hlist_add_head(&trans->r_list, head);
1479 }
1480
1481 STATIC void
1482 xlog_recover_add_item(
1483 struct list_head *head)
1484 {
1485 xlog_recover_item_t *item;
1486
1487 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1488 INIT_LIST_HEAD(&item->ri_list);
1489 list_add_tail(&item->ri_list, head);
1490 }
1491
1492 STATIC int
1493 xlog_recover_add_to_cont_trans(
1494 struct xlog *log,
1495 struct xlog_recover *trans,
1496 xfs_caddr_t dp,
1497 int len)
1498 {
1499 xlog_recover_item_t *item;
1500 xfs_caddr_t ptr, old_ptr;
1501 int old_len;
1502
1503 if (list_empty(&trans->r_itemq)) {
1504 /* finish copying rest of trans header */
1505 xlog_recover_add_item(&trans->r_itemq);
1506 ptr = (xfs_caddr_t) &trans->r_theader +
1507 sizeof(xfs_trans_header_t) - len;
1508 memcpy(ptr, dp, len); /* d, s, l */
1509 return 0;
1510 }
1511 /* take the tail entry */
1512 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1513
1514 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1515 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1516
1517 ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
1518 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1519 item->ri_buf[item->ri_cnt-1].i_len += len;
1520 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1521 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1522 return 0;
1523 }
1524
1525 /*
1526 * The next region to add is the start of a new region. It could be
1527 * a whole region or it could be the first part of a new region. Because
1528 * of this, the assumption here is that the type and size fields of all
1529 * format structures fit into the first 32 bits of the structure.
1530 *
1531 * This works because all regions must be 32 bit aligned. Therefore, we
1532 * either have both fields or we have neither field. In the case we have
1533 * neither field, the data part of the region is zero length. We only have
1534 * a log_op_header and can throw away the header since a new one will appear
1535 * later. If we have at least 4 bytes, then we can determine how many regions
1536 * will appear in the current log item.
1537 */
1538 STATIC int
1539 xlog_recover_add_to_trans(
1540 struct xlog *log,
1541 struct xlog_recover *trans,
1542 xfs_caddr_t dp,
1543 int len)
1544 {
1545 xfs_inode_log_format_t *in_f; /* any will do */
1546 xlog_recover_item_t *item;
1547 xfs_caddr_t ptr;
1548
1549 if (!len)
1550 return 0;
1551 if (list_empty(&trans->r_itemq)) {
1552 /* we need to catch log corruptions here */
1553 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1554 xfs_warn(log->l_mp, "%s: bad header magic number",
1555 __func__);
1556 ASSERT(0);
1557 return XFS_ERROR(EIO);
1558 }
1559 if (len == sizeof(xfs_trans_header_t))
1560 xlog_recover_add_item(&trans->r_itemq);
1561 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1562 return 0;
1563 }
1564
1565 ptr = kmem_alloc(len, KM_SLEEP);
1566 memcpy(ptr, dp, len);
1567 in_f = (xfs_inode_log_format_t *)ptr;
1568
1569 /* take the tail entry */
1570 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1571 if (item->ri_total != 0 &&
1572 item->ri_total == item->ri_cnt) {
1573 /* tail item is in use, get a new one */
1574 xlog_recover_add_item(&trans->r_itemq);
1575 item = list_entry(trans->r_itemq.prev,
1576 xlog_recover_item_t, ri_list);
1577 }
1578
1579 if (item->ri_total == 0) { /* first region to be added */
1580 if (in_f->ilf_size == 0 ||
1581 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
1582 xfs_warn(log->l_mp,
1583 "bad number of regions (%d) in inode log format",
1584 in_f->ilf_size);
1585 ASSERT(0);
1586 kmem_free(ptr);
1587 return XFS_ERROR(EIO);
1588 }
1589
1590 item->ri_total = in_f->ilf_size;
1591 item->ri_buf =
1592 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1593 KM_SLEEP);
1594 }
1595 ASSERT(item->ri_total > item->ri_cnt);
1596 /* Description region is ri_buf[0] */
1597 item->ri_buf[item->ri_cnt].i_addr = ptr;
1598 item->ri_buf[item->ri_cnt].i_len = len;
1599 item->ri_cnt++;
1600 trace_xfs_log_recover_item_add(log, trans, item, 0);
1601 return 0;
1602 }
1603
1604 /*
1605 * Sort the log items in the transaction.
1606 *
1607 * The ordering constraints are defined by the inode allocation and unlink
1608 * behaviour. The rules are:
1609 *
1610 * 1. Every item is only logged once in a given transaction. Hence it
1611 * represents the last logged state of the item. Hence ordering is
1612 * dependent on the order in which operations need to be performed so
1613 * required initial conditions are always met.
1614 *
1615 * 2. Cancelled buffers are recorded in pass 1 in a separate table and
1616 * there's nothing to replay from them so we can simply cull them
1617 * from the transaction. However, we can't do that until after we've
1618 * replayed all the other items because they may be dependent on the
1619 * cancelled buffer and replaying the cancelled buffer can remove it
1620 * form the cancelled buffer table. Hence they have tobe done last.
1621 *
1622 * 3. Inode allocation buffers must be replayed before inode items that
1623 * read the buffer and replay changes into it. For filesystems using the
1624 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1625 * treated the same as inode allocation buffers as they create and
1626 * initialise the buffers directly.
1627 *
1628 * 4. Inode unlink buffers must be replayed after inode items are replayed.
1629 * This ensures that inodes are completely flushed to the inode buffer
1630 * in a "free" state before we remove the unlinked inode list pointer.
1631 *
1632 * Hence the ordering needs to be inode allocation buffers first, inode items
1633 * second, inode unlink buffers third and cancelled buffers last.
1634 *
1635 * But there's a problem with that - we can't tell an inode allocation buffer
1636 * apart from a regular buffer, so we can't separate them. We can, however,
1637 * tell an inode unlink buffer from the others, and so we can separate them out
1638 * from all the other buffers and move them to last.
1639 *
1640 * Hence, 4 lists, in order from head to tail:
1641 * - buffer_list for all buffers except cancelled/inode unlink buffers
1642 * - item_list for all non-buffer items
1643 * - inode_buffer_list for inode unlink buffers
1644 * - cancel_list for the cancelled buffers
1645 *
1646 * Note that we add objects to the tail of the lists so that first-to-last
1647 * ordering is preserved within the lists. Adding objects to the head of the
1648 * list means when we traverse from the head we walk them in last-to-first
1649 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1650 * but for all other items there may be specific ordering that we need to
1651 * preserve.
1652 */
1653 STATIC int
1654 xlog_recover_reorder_trans(
1655 struct xlog *log,
1656 struct xlog_recover *trans,
1657 int pass)
1658 {
1659 xlog_recover_item_t *item, *n;
1660 LIST_HEAD(sort_list);
1661 LIST_HEAD(cancel_list);
1662 LIST_HEAD(buffer_list);
1663 LIST_HEAD(inode_buffer_list);
1664 LIST_HEAD(inode_list);
1665
1666 list_splice_init(&trans->r_itemq, &sort_list);
1667 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1668 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1669
1670 switch (ITEM_TYPE(item)) {
1671 case XFS_LI_ICREATE:
1672 list_move_tail(&item->ri_list, &buffer_list);
1673 break;
1674 case XFS_LI_BUF:
1675 if (buf_f->blf_flags & XFS_BLF_CANCEL) {
1676 trace_xfs_log_recover_item_reorder_head(log,
1677 trans, item, pass);
1678 list_move(&item->ri_list, &cancel_list);
1679 break;
1680 }
1681 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1682 list_move(&item->ri_list, &inode_buffer_list);
1683 break;
1684 }
1685 list_move_tail(&item->ri_list, &buffer_list);
1686 break;
1687 case XFS_LI_INODE:
1688 case XFS_LI_DQUOT:
1689 case XFS_LI_QUOTAOFF:
1690 case XFS_LI_EFD:
1691 case XFS_LI_EFI:
1692 trace_xfs_log_recover_item_reorder_tail(log,
1693 trans, item, pass);
1694 list_move_tail(&item->ri_list, &inode_list);
1695 break;
1696 default:
1697 xfs_warn(log->l_mp,
1698 "%s: unrecognized type of log operation",
1699 __func__);
1700 ASSERT(0);
1701 return XFS_ERROR(EIO);
1702 }
1703 }
1704 ASSERT(list_empty(&sort_list));
1705 if (!list_empty(&buffer_list))
1706 list_splice(&buffer_list, &trans->r_itemq);
1707 if (!list_empty(&inode_list))
1708 list_splice_tail(&inode_list, &trans->r_itemq);
1709 if (!list_empty(&inode_buffer_list))
1710 list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1711 if (!list_empty(&cancel_list))
1712 list_splice_tail(&cancel_list, &trans->r_itemq);
1713 return 0;
1714 }
1715
1716 /*
1717 * Build up the table of buf cancel records so that we don't replay
1718 * cancelled data in the second pass. For buffer records that are
1719 * not cancel records, there is nothing to do here so we just return.
1720 *
1721 * If we get a cancel record which is already in the table, this indicates
1722 * that the buffer was cancelled multiple times. In order to ensure
1723 * that during pass 2 we keep the record in the table until we reach its
1724 * last occurrence in the log, we keep a reference count in the cancel
1725 * record in the table to tell us how many times we expect to see this
1726 * record during the second pass.
1727 */
1728 STATIC int
1729 xlog_recover_buffer_pass1(
1730 struct xlog *log,
1731 struct xlog_recover_item *item)
1732 {
1733 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1734 struct list_head *bucket;
1735 struct xfs_buf_cancel *bcp;
1736
1737 /*
1738 * If this isn't a cancel buffer item, then just return.
1739 */
1740 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1741 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1742 return 0;
1743 }
1744
1745 /*
1746 * Insert an xfs_buf_cancel record into the hash table of them.
1747 * If there is already an identical record, bump its reference count.
1748 */
1749 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1750 list_for_each_entry(bcp, bucket, bc_list) {
1751 if (bcp->bc_blkno == buf_f->blf_blkno &&
1752 bcp->bc_len == buf_f->blf_len) {
1753 bcp->bc_refcount++;
1754 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1755 return 0;
1756 }
1757 }
1758
1759 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1760 bcp->bc_blkno = buf_f->blf_blkno;
1761 bcp->bc_len = buf_f->blf_len;
1762 bcp->bc_refcount = 1;
1763 list_add_tail(&bcp->bc_list, bucket);
1764
1765 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1766 return 0;
1767 }
1768
1769 /*
1770 * Check to see whether the buffer being recovered has a corresponding
1771 * entry in the buffer cancel record table. If it is, return the cancel
1772 * buffer structure to the caller.
1773 */
1774 STATIC struct xfs_buf_cancel *
1775 xlog_peek_buffer_cancelled(
1776 struct xlog *log,
1777 xfs_daddr_t blkno,
1778 uint len,
1779 ushort flags)
1780 {
1781 struct list_head *bucket;
1782 struct xfs_buf_cancel *bcp;
1783
1784 if (!log->l_buf_cancel_table) {
1785 /* empty table means no cancelled buffers in the log */
1786 ASSERT(!(flags & XFS_BLF_CANCEL));
1787 return NULL;
1788 }
1789
1790 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1791 list_for_each_entry(bcp, bucket, bc_list) {
1792 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
1793 return bcp;
1794 }
1795
1796 /*
1797 * We didn't find a corresponding entry in the table, so return 0 so
1798 * that the buffer is NOT cancelled.
1799 */
1800 ASSERT(!(flags & XFS_BLF_CANCEL));
1801 return NULL;
1802 }
1803
1804 /*
1805 * If the buffer is being cancelled then return 1 so that it will be cancelled,
1806 * otherwise return 0. If the buffer is actually a buffer cancel item
1807 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
1808 * table and remove it from the table if this is the last reference.
1809 *
1810 * We remove the cancel record from the table when we encounter its last
1811 * occurrence in the log so that if the same buffer is re-used again after its
1812 * last cancellation we actually replay the changes made at that point.
1813 */
1814 STATIC int
1815 xlog_check_buffer_cancelled(
1816 struct xlog *log,
1817 xfs_daddr_t blkno,
1818 uint len,
1819 ushort flags)
1820 {
1821 struct xfs_buf_cancel *bcp;
1822
1823 bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
1824 if (!bcp)
1825 return 0;
1826
1827 /*
1828 * We've go a match, so return 1 so that the recovery of this buffer
1829 * is cancelled. If this buffer is actually a buffer cancel log
1830 * item, then decrement the refcount on the one in the table and
1831 * remove it if this is the last reference.
1832 */
1833 if (flags & XFS_BLF_CANCEL) {
1834 if (--bcp->bc_refcount == 0) {
1835 list_del(&bcp->bc_list);
1836 kmem_free(bcp);
1837 }
1838 }
1839 return 1;
1840 }
1841
1842 /*
1843 * Perform recovery for a buffer full of inodes. In these buffers, the only
1844 * data which should be recovered is that which corresponds to the
1845 * di_next_unlinked pointers in the on disk inode structures. The rest of the
1846 * data for the inodes is always logged through the inodes themselves rather
1847 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1848 *
1849 * The only time when buffers full of inodes are fully recovered is when the
1850 * buffer is full of newly allocated inodes. In this case the buffer will
1851 * not be marked as an inode buffer and so will be sent to
1852 * xlog_recover_do_reg_buffer() below during recovery.
1853 */
1854 STATIC int
1855 xlog_recover_do_inode_buffer(
1856 struct xfs_mount *mp,
1857 xlog_recover_item_t *item,
1858 struct xfs_buf *bp,
1859 xfs_buf_log_format_t *buf_f)
1860 {
1861 int i;
1862 int item_index = 0;
1863 int bit = 0;
1864 int nbits = 0;
1865 int reg_buf_offset = 0;
1866 int reg_buf_bytes = 0;
1867 int next_unlinked_offset;
1868 int inodes_per_buf;
1869 xfs_agino_t *logged_nextp;
1870 xfs_agino_t *buffer_nextp;
1871
1872 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
1873
1874 /*
1875 * Post recovery validation only works properly on CRC enabled
1876 * filesystems.
1877 */
1878 if (xfs_sb_version_hascrc(&mp->m_sb))
1879 bp->b_ops = &xfs_inode_buf_ops;
1880
1881 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
1882 for (i = 0; i < inodes_per_buf; i++) {
1883 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1884 offsetof(xfs_dinode_t, di_next_unlinked);
1885
1886 while (next_unlinked_offset >=
1887 (reg_buf_offset + reg_buf_bytes)) {
1888 /*
1889 * The next di_next_unlinked field is beyond
1890 * the current logged region. Find the next
1891 * logged region that contains or is beyond
1892 * the current di_next_unlinked field.
1893 */
1894 bit += nbits;
1895 bit = xfs_next_bit(buf_f->blf_data_map,
1896 buf_f->blf_map_size, bit);
1897
1898 /*
1899 * If there are no more logged regions in the
1900 * buffer, then we're done.
1901 */
1902 if (bit == -1)
1903 return 0;
1904
1905 nbits = xfs_contig_bits(buf_f->blf_data_map,
1906 buf_f->blf_map_size, bit);
1907 ASSERT(nbits > 0);
1908 reg_buf_offset = bit << XFS_BLF_SHIFT;
1909 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1910 item_index++;
1911 }
1912
1913 /*
1914 * If the current logged region starts after the current
1915 * di_next_unlinked field, then move on to the next
1916 * di_next_unlinked field.
1917 */
1918 if (next_unlinked_offset < reg_buf_offset)
1919 continue;
1920
1921 ASSERT(item->ri_buf[item_index].i_addr != NULL);
1922 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
1923 ASSERT((reg_buf_offset + reg_buf_bytes) <=
1924 BBTOB(bp->b_io_length));
1925
1926 /*
1927 * The current logged region contains a copy of the
1928 * current di_next_unlinked field. Extract its value
1929 * and copy it to the buffer copy.
1930 */
1931 logged_nextp = item->ri_buf[item_index].i_addr +
1932 next_unlinked_offset - reg_buf_offset;
1933 if (unlikely(*logged_nextp == 0)) {
1934 xfs_alert(mp,
1935 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1936 "Trying to replay bad (0) inode di_next_unlinked field.",
1937 item, bp);
1938 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1939 XFS_ERRLEVEL_LOW, mp);
1940 return XFS_ERROR(EFSCORRUPTED);
1941 }
1942
1943 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1944 next_unlinked_offset);
1945 *buffer_nextp = *logged_nextp;
1946
1947 /*
1948 * If necessary, recalculate the CRC in the on-disk inode. We
1949 * have to leave the inode in a consistent state for whoever
1950 * reads it next....
1951 */
1952 xfs_dinode_calc_crc(mp, (struct xfs_dinode *)
1953 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
1954
1955 }
1956
1957 return 0;
1958 }
1959
1960 /*
1961 * V5 filesystems know the age of the buffer on disk being recovered. We can
1962 * have newer objects on disk than we are replaying, and so for these cases we
1963 * don't want to replay the current change as that will make the buffer contents
1964 * temporarily invalid on disk.
1965 *
1966 * The magic number might not match the buffer type we are going to recover
1967 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence
1968 * extract the LSN of the existing object in the buffer based on it's current
1969 * magic number. If we don't recognise the magic number in the buffer, then
1970 * return a LSN of -1 so that the caller knows it was an unrecognised block and
1971 * so can recover the buffer.
1972 *
1973 * Note: we cannot rely solely on magic number matches to determine that the
1974 * buffer has a valid LSN - we also need to verify that it belongs to this
1975 * filesystem, so we need to extract the object's LSN and compare it to that
1976 * which we read from the superblock. If the UUIDs don't match, then we've got a
1977 * stale metadata block from an old filesystem instance that we need to recover
1978 * over the top of.
1979 */
1980 static xfs_lsn_t
1981 xlog_recover_get_buf_lsn(
1982 struct xfs_mount *mp,
1983 struct xfs_buf *bp)
1984 {
1985 __uint32_t magic32;
1986 __uint16_t magic16;
1987 __uint16_t magicda;
1988 void *blk = bp->b_addr;
1989 uuid_t *uuid;
1990 xfs_lsn_t lsn = -1;
1991
1992 /* v4 filesystems always recover immediately */
1993 if (!xfs_sb_version_hascrc(&mp->m_sb))
1994 goto recover_immediately;
1995
1996 magic32 = be32_to_cpu(*(__be32 *)blk);
1997 switch (magic32) {
1998 case XFS_ABTB_CRC_MAGIC:
1999 case XFS_ABTC_CRC_MAGIC:
2000 case XFS_ABTB_MAGIC:
2001 case XFS_ABTC_MAGIC:
2002 case XFS_IBT_CRC_MAGIC:
2003 case XFS_IBT_MAGIC: {
2004 struct xfs_btree_block *btb = blk;
2005
2006 lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
2007 uuid = &btb->bb_u.s.bb_uuid;
2008 break;
2009 }
2010 case XFS_BMAP_CRC_MAGIC:
2011 case XFS_BMAP_MAGIC: {
2012 struct xfs_btree_block *btb = blk;
2013
2014 lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
2015 uuid = &btb->bb_u.l.bb_uuid;
2016 break;
2017 }
2018 case XFS_AGF_MAGIC:
2019 lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
2020 uuid = &((struct xfs_agf *)blk)->agf_uuid;
2021 break;
2022 case XFS_AGFL_MAGIC:
2023 lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
2024 uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
2025 break;
2026 case XFS_AGI_MAGIC:
2027 lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
2028 uuid = &((struct xfs_agi *)blk)->agi_uuid;
2029 break;
2030 case XFS_SYMLINK_MAGIC:
2031 lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
2032 uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
2033 break;
2034 case XFS_DIR3_BLOCK_MAGIC:
2035 case XFS_DIR3_DATA_MAGIC:
2036 case XFS_DIR3_FREE_MAGIC:
2037 lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
2038 uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
2039 break;
2040 case XFS_ATTR3_RMT_MAGIC:
2041 lsn = be64_to_cpu(((struct xfs_attr3_rmt_hdr *)blk)->rm_lsn);
2042 uuid = &((struct xfs_attr3_rmt_hdr *)blk)->rm_uuid;
2043 break;
2044 case XFS_SB_MAGIC:
2045 lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
2046 uuid = &((struct xfs_dsb *)blk)->sb_uuid;
2047 break;
2048 default:
2049 break;
2050 }
2051
2052 if (lsn != (xfs_lsn_t)-1) {
2053 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2054 goto recover_immediately;
2055 return lsn;
2056 }
2057
2058 magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
2059 switch (magicda) {
2060 case XFS_DIR3_LEAF1_MAGIC:
2061 case XFS_DIR3_LEAFN_MAGIC:
2062 case XFS_DA3_NODE_MAGIC:
2063 lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
2064 uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
2065 break;
2066 default:
2067 break;
2068 }
2069
2070 if (lsn != (xfs_lsn_t)-1) {
2071 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2072 goto recover_immediately;
2073 return lsn;
2074 }
2075
2076 /*
2077 * We do individual object checks on dquot and inode buffers as they
2078 * have their own individual LSN records. Also, we could have a stale
2079 * buffer here, so we have to at least recognise these buffer types.
2080 *
2081 * A notd complexity here is inode unlinked list processing - it logs
2082 * the inode directly in the buffer, but we don't know which inodes have
2083 * been modified, and there is no global buffer LSN. Hence we need to
2084 * recover all inode buffer types immediately. This problem will be
2085 * fixed by logical logging of the unlinked list modifications.
2086 */
2087 magic16 = be16_to_cpu(*(__be16 *)blk);
2088 switch (magic16) {
2089 case XFS_DQUOT_MAGIC:
2090 case XFS_DINODE_MAGIC:
2091 goto recover_immediately;
2092 default:
2093 break;
2094 }
2095
2096 /* unknown buffer contents, recover immediately */
2097
2098 recover_immediately:
2099 return (xfs_lsn_t)-1;
2100
2101 }
2102
2103 /*
2104 * Validate the recovered buffer is of the correct type and attach the
2105 * appropriate buffer operations to them for writeback. Magic numbers are in a
2106 * few places:
2107 * the first 16 bits of the buffer (inode buffer, dquot buffer),
2108 * the first 32 bits of the buffer (most blocks),
2109 * inside a struct xfs_da_blkinfo at the start of the buffer.
2110 */
2111 static void
2112 xlog_recover_validate_buf_type(
2113 struct xfs_mount *mp,
2114 struct xfs_buf *bp,
2115 xfs_buf_log_format_t *buf_f)
2116 {
2117 struct xfs_da_blkinfo *info = bp->b_addr;
2118 __uint32_t magic32;
2119 __uint16_t magic16;
2120 __uint16_t magicda;
2121
2122 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
2123 magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
2124 magicda = be16_to_cpu(info->magic);
2125 switch (xfs_blft_from_flags(buf_f)) {
2126 case XFS_BLFT_BTREE_BUF:
2127 switch (magic32) {
2128 case XFS_ABTB_CRC_MAGIC:
2129 case XFS_ABTC_CRC_MAGIC:
2130 case XFS_ABTB_MAGIC:
2131 case XFS_ABTC_MAGIC:
2132 bp->b_ops = &xfs_allocbt_buf_ops;
2133 break;
2134 case XFS_IBT_CRC_MAGIC:
2135 case XFS_IBT_MAGIC:
2136 bp->b_ops = &xfs_inobt_buf_ops;
2137 break;
2138 case XFS_BMAP_CRC_MAGIC:
2139 case XFS_BMAP_MAGIC:
2140 bp->b_ops = &xfs_bmbt_buf_ops;
2141 break;
2142 default:
2143 xfs_warn(mp, "Bad btree block magic!");
2144 ASSERT(0);
2145 break;
2146 }
2147 break;
2148 case XFS_BLFT_AGF_BUF:
2149 if (magic32 != XFS_AGF_MAGIC) {
2150 xfs_warn(mp, "Bad AGF block magic!");
2151 ASSERT(0);
2152 break;
2153 }
2154 bp->b_ops = &xfs_agf_buf_ops;
2155 break;
2156 case XFS_BLFT_AGFL_BUF:
2157 if (!xfs_sb_version_hascrc(&mp->m_sb))
2158 break;
2159 if (magic32 != XFS_AGFL_MAGIC) {
2160 xfs_warn(mp, "Bad AGFL block magic!");
2161 ASSERT(0);
2162 break;
2163 }
2164 bp->b_ops = &xfs_agfl_buf_ops;
2165 break;
2166 case XFS_BLFT_AGI_BUF:
2167 if (magic32 != XFS_AGI_MAGIC) {
2168 xfs_warn(mp, "Bad AGI block magic!");
2169 ASSERT(0);
2170 break;
2171 }
2172 bp->b_ops = &xfs_agi_buf_ops;
2173 break;
2174 case XFS_BLFT_UDQUOT_BUF:
2175 case XFS_BLFT_PDQUOT_BUF:
2176 case XFS_BLFT_GDQUOT_BUF:
2177 #ifdef CONFIG_XFS_QUOTA
2178 if (magic16 != XFS_DQUOT_MAGIC) {
2179 xfs_warn(mp, "Bad DQUOT block magic!");
2180 ASSERT(0);
2181 break;
2182 }
2183 bp->b_ops = &xfs_dquot_buf_ops;
2184 #else
2185 xfs_alert(mp,
2186 "Trying to recover dquots without QUOTA support built in!");
2187 ASSERT(0);
2188 #endif
2189 break;
2190 case XFS_BLFT_DINO_BUF:
2191 /*
2192 * we get here with inode allocation buffers, not buffers that
2193 * track unlinked list changes.
2194 */
2195 if (magic16 != XFS_DINODE_MAGIC) {
2196 xfs_warn(mp, "Bad INODE block magic!");
2197 ASSERT(0);
2198 break;
2199 }
2200 bp->b_ops = &xfs_inode_buf_ops;
2201 break;
2202 case XFS_BLFT_SYMLINK_BUF:
2203 if (magic32 != XFS_SYMLINK_MAGIC) {
2204 xfs_warn(mp, "Bad symlink block magic!");
2205 ASSERT(0);
2206 break;
2207 }
2208 bp->b_ops = &xfs_symlink_buf_ops;
2209 break;
2210 case XFS_BLFT_DIR_BLOCK_BUF:
2211 if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2212 magic32 != XFS_DIR3_BLOCK_MAGIC) {
2213 xfs_warn(mp, "Bad dir block magic!");
2214 ASSERT(0);
2215 break;
2216 }
2217 bp->b_ops = &xfs_dir3_block_buf_ops;
2218 break;
2219 case XFS_BLFT_DIR_DATA_BUF:
2220 if (magic32 != XFS_DIR2_DATA_MAGIC &&
2221 magic32 != XFS_DIR3_DATA_MAGIC) {
2222 xfs_warn(mp, "Bad dir data magic!");
2223 ASSERT(0);
2224 break;
2225 }
2226 bp->b_ops = &xfs_dir3_data_buf_ops;
2227 break;
2228 case XFS_BLFT_DIR_FREE_BUF:
2229 if (magic32 != XFS_DIR2_FREE_MAGIC &&
2230 magic32 != XFS_DIR3_FREE_MAGIC) {
2231 xfs_warn(mp, "Bad dir3 free magic!");
2232 ASSERT(0);
2233 break;
2234 }
2235 bp->b_ops = &xfs_dir3_free_buf_ops;
2236 break;
2237 case XFS_BLFT_DIR_LEAF1_BUF:
2238 if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2239 magicda != XFS_DIR3_LEAF1_MAGIC) {
2240 xfs_warn(mp, "Bad dir leaf1 magic!");
2241 ASSERT(0);
2242 break;
2243 }
2244 bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2245 break;
2246 case XFS_BLFT_DIR_LEAFN_BUF:
2247 if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2248 magicda != XFS_DIR3_LEAFN_MAGIC) {
2249 xfs_warn(mp, "Bad dir leafn magic!");
2250 ASSERT(0);
2251 break;
2252 }
2253 bp->b_ops = &xfs_dir3_leafn_buf_ops;
2254 break;
2255 case XFS_BLFT_DA_NODE_BUF:
2256 if (magicda != XFS_DA_NODE_MAGIC &&
2257 magicda != XFS_DA3_NODE_MAGIC) {
2258 xfs_warn(mp, "Bad da node magic!");
2259 ASSERT(0);
2260 break;
2261 }
2262 bp->b_ops = &xfs_da3_node_buf_ops;
2263 break;
2264 case XFS_BLFT_ATTR_LEAF_BUF:
2265 if (magicda != XFS_ATTR_LEAF_MAGIC &&
2266 magicda != XFS_ATTR3_LEAF_MAGIC) {
2267 xfs_warn(mp, "Bad attr leaf magic!");
2268 ASSERT(0);
2269 break;
2270 }
2271 bp->b_ops = &xfs_attr3_leaf_buf_ops;
2272 break;
2273 case XFS_BLFT_ATTR_RMT_BUF:
2274 if (!xfs_sb_version_hascrc(&mp->m_sb))
2275 break;
2276 if (magic32 != XFS_ATTR3_RMT_MAGIC) {
2277 xfs_warn(mp, "Bad attr remote magic!");
2278 ASSERT(0);
2279 break;
2280 }
2281 bp->b_ops = &xfs_attr3_rmt_buf_ops;
2282 break;
2283 case XFS_BLFT_SB_BUF:
2284 if (magic32 != XFS_SB_MAGIC) {
2285 xfs_warn(mp, "Bad SB block magic!");
2286 ASSERT(0);
2287 break;
2288 }
2289 bp->b_ops = &xfs_sb_buf_ops;
2290 break;
2291 default:
2292 xfs_warn(mp, "Unknown buffer type %d!",
2293 xfs_blft_from_flags(buf_f));
2294 break;
2295 }
2296 }
2297
2298 /*
2299 * Perform a 'normal' buffer recovery. Each logged region of the
2300 * buffer should be copied over the corresponding region in the
2301 * given buffer. The bitmap in the buf log format structure indicates
2302 * where to place the logged data.
2303 */
2304 STATIC void
2305 xlog_recover_do_reg_buffer(
2306 struct xfs_mount *mp,
2307 xlog_recover_item_t *item,
2308 struct xfs_buf *bp,
2309 xfs_buf_log_format_t *buf_f)
2310 {
2311 int i;
2312 int bit;
2313 int nbits;
2314 int error;
2315
2316 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2317
2318 bit = 0;
2319 i = 1; /* 0 is the buf format structure */
2320 while (1) {
2321 bit = xfs_next_bit(buf_f->blf_data_map,
2322 buf_f->blf_map_size, bit);
2323 if (bit == -1)
2324 break;
2325 nbits = xfs_contig_bits(buf_f->blf_data_map,
2326 buf_f->blf_map_size, bit);
2327 ASSERT(nbits > 0);
2328 ASSERT(item->ri_buf[i].i_addr != NULL);
2329 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2330 ASSERT(BBTOB(bp->b_io_length) >=
2331 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2332
2333 /*
2334 * The dirty regions logged in the buffer, even though
2335 * contiguous, may span multiple chunks. This is because the
2336 * dirty region may span a physical page boundary in a buffer
2337 * and hence be split into two separate vectors for writing into
2338 * the log. Hence we need to trim nbits back to the length of
2339 * the current region being copied out of the log.
2340 */
2341 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2342 nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2343
2344 /*
2345 * Do a sanity check if this is a dquot buffer. Just checking
2346 * the first dquot in the buffer should do. XXXThis is
2347 * probably a good thing to do for other buf types also.
2348 */
2349 error = 0;
2350 if (buf_f->blf_flags &
2351 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2352 if (item->ri_buf[i].i_addr == NULL) {
2353 xfs_alert(mp,
2354 "XFS: NULL dquot in %s.", __func__);
2355 goto next;
2356 }
2357 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2358 xfs_alert(mp,
2359 "XFS: dquot too small (%d) in %s.",
2360 item->ri_buf[i].i_len, __func__);
2361 goto next;
2362 }
2363 error = xfs_dqcheck(mp, item->ri_buf[i].i_addr,
2364 -1, 0, XFS_QMOPT_DOWARN,
2365 "dquot_buf_recover");
2366 if (error)
2367 goto next;
2368 }
2369
2370 memcpy(xfs_buf_offset(bp,
2371 (uint)bit << XFS_BLF_SHIFT), /* dest */
2372 item->ri_buf[i].i_addr, /* source */
2373 nbits<<XFS_BLF_SHIFT); /* length */
2374 next:
2375 i++;
2376 bit += nbits;
2377 }
2378
2379 /* Shouldn't be any more regions */
2380 ASSERT(i == item->ri_total);
2381
2382 /*
2383 * We can only do post recovery validation on items on CRC enabled
2384 * fielsystems as we need to know when the buffer was written to be able
2385 * to determine if we should have replayed the item. If we replay old
2386 * metadata over a newer buffer, then it will enter a temporarily
2387 * inconsistent state resulting in verification failures. Hence for now
2388 * just avoid the verification stage for non-crc filesystems
2389 */
2390 if (xfs_sb_version_hascrc(&mp->m_sb))
2391 xlog_recover_validate_buf_type(mp, bp, buf_f);
2392 }
2393
2394 /*
2395 * Perform a dquot buffer recovery.
2396 * Simple algorithm: if we have found a QUOTAOFF log item of the same type
2397 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2398 * Else, treat it as a regular buffer and do recovery.
2399 */
2400 STATIC void
2401 xlog_recover_do_dquot_buffer(
2402 struct xfs_mount *mp,
2403 struct xlog *log,
2404 struct xlog_recover_item *item,
2405 struct xfs_buf *bp,
2406 struct xfs_buf_log_format *buf_f)
2407 {
2408 uint type;
2409
2410 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2411
2412 /*
2413 * Filesystems are required to send in quota flags at mount time.
2414 */
2415 if (mp->m_qflags == 0) {
2416 return;
2417 }
2418
2419 type = 0;
2420 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2421 type |= XFS_DQ_USER;
2422 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2423 type |= XFS_DQ_PROJ;
2424 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2425 type |= XFS_DQ_GROUP;
2426 /*
2427 * This type of quotas was turned off, so ignore this buffer
2428 */
2429 if (log->l_quotaoffs_flag & type)
2430 return;
2431
2432 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2433 }
2434
2435 /*
2436 * This routine replays a modification made to a buffer at runtime.
2437 * There are actually two types of buffer, regular and inode, which
2438 * are handled differently. Inode buffers are handled differently
2439 * in that we only recover a specific set of data from them, namely
2440 * the inode di_next_unlinked fields. This is because all other inode
2441 * data is actually logged via inode records and any data we replay
2442 * here which overlaps that may be stale.
2443 *
2444 * When meta-data buffers are freed at run time we log a buffer item
2445 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2446 * of the buffer in the log should not be replayed at recovery time.
2447 * This is so that if the blocks covered by the buffer are reused for
2448 * file data before we crash we don't end up replaying old, freed
2449 * meta-data into a user's file.
2450 *
2451 * To handle the cancellation of buffer log items, we make two passes
2452 * over the log during recovery. During the first we build a table of
2453 * those buffers which have been cancelled, and during the second we
2454 * only replay those buffers which do not have corresponding cancel
2455 * records in the table. See xlog_recover_buffer_pass[1,2] above
2456 * for more details on the implementation of the table of cancel records.
2457 */
2458 STATIC int
2459 xlog_recover_buffer_pass2(
2460 struct xlog *log,
2461 struct list_head *buffer_list,
2462 struct xlog_recover_item *item,
2463 xfs_lsn_t current_lsn)
2464 {
2465 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
2466 xfs_mount_t *mp = log->l_mp;
2467 xfs_buf_t *bp;
2468 int error;
2469 uint buf_flags;
2470 xfs_lsn_t lsn;
2471
2472 /*
2473 * In this pass we only want to recover all the buffers which have
2474 * not been cancelled and are not cancellation buffers themselves.
2475 */
2476 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2477 buf_f->blf_len, buf_f->blf_flags)) {
2478 trace_xfs_log_recover_buf_cancel(log, buf_f);
2479 return 0;
2480 }
2481
2482 trace_xfs_log_recover_buf_recover(log, buf_f);
2483
2484 buf_flags = 0;
2485 if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2486 buf_flags |= XBF_UNMAPPED;
2487
2488 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2489 buf_flags, NULL);
2490 if (!bp)
2491 return XFS_ERROR(ENOMEM);
2492 error = bp->b_error;
2493 if (error) {
2494 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
2495 goto out_release;
2496 }
2497
2498 /*
2499 * recover the buffer only if we get an LSN from it and it's less than
2500 * the lsn of the transaction we are replaying.
2501 */
2502 lsn = xlog_recover_get_buf_lsn(mp, bp);
2503 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0)
2504 goto out_release;
2505
2506 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2507 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2508 } else if (buf_f->blf_flags &
2509 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2510 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2511 } else {
2512 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2513 }
2514 if (error)
2515 goto out_release;
2516
2517 /*
2518 * Perform delayed write on the buffer. Asynchronous writes will be
2519 * slower when taking into account all the buffers to be flushed.
2520 *
2521 * Also make sure that only inode buffers with good sizes stay in
2522 * the buffer cache. The kernel moves inodes in buffers of 1 block
2523 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2524 * buffers in the log can be a different size if the log was generated
2525 * by an older kernel using unclustered inode buffers or a newer kernel
2526 * running with a different inode cluster size. Regardless, if the
2527 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2528 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2529 * the buffer out of the buffer cache so that the buffer won't
2530 * overlap with future reads of those inodes.
2531 */
2532 if (XFS_DINODE_MAGIC ==
2533 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2534 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
2535 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2536 xfs_buf_stale(bp);
2537 error = xfs_bwrite(bp);
2538 } else {
2539 ASSERT(bp->b_target->bt_mount == mp);
2540 bp->b_iodone = xlog_recover_iodone;
2541 xfs_buf_delwri_queue(bp, buffer_list);
2542 }
2543
2544 out_release:
2545 xfs_buf_relse(bp);
2546 return error;
2547 }
2548
2549 /*
2550 * Inode fork owner changes
2551 *
2552 * If we have been told that we have to reparent the inode fork, it's because an
2553 * extent swap operation on a CRC enabled filesystem has been done and we are
2554 * replaying it. We need to walk the BMBT of the appropriate fork and change the
2555 * owners of it.
2556 *
2557 * The complexity here is that we don't have an inode context to work with, so
2558 * after we've replayed the inode we need to instantiate one. This is where the
2559 * fun begins.
2560 *
2561 * We are in the middle of log recovery, so we can't run transactions. That
2562 * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2563 * that will result in the corresponding iput() running the inode through
2564 * xfs_inactive(). If we've just replayed an inode core that changes the link
2565 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2566 * transactions (bad!).
2567 *
2568 * So, to avoid this, we instantiate an inode directly from the inode core we've
2569 * just recovered. We have the buffer still locked, and all we really need to
2570 * instantiate is the inode core and the forks being modified. We can do this
2571 * manually, then run the inode btree owner change, and then tear down the
2572 * xfs_inode without having to run any transactions at all.
2573 *
2574 * Also, because we don't have a transaction context available here but need to
2575 * gather all the buffers we modify for writeback so we pass the buffer_list
2576 * instead for the operation to use.
2577 */
2578
2579 STATIC int
2580 xfs_recover_inode_owner_change(
2581 struct xfs_mount *mp,
2582 struct xfs_dinode *dip,
2583 struct xfs_inode_log_format *in_f,
2584 struct list_head *buffer_list)
2585 {
2586 struct xfs_inode *ip;
2587 int error;
2588
2589 ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
2590
2591 ip = xfs_inode_alloc(mp, in_f->ilf_ino);
2592 if (!ip)
2593 return ENOMEM;
2594
2595 /* instantiate the inode */
2596 xfs_dinode_from_disk(&ip->i_d, dip);
2597 ASSERT(ip->i_d.di_version >= 3);
2598
2599 error = xfs_iformat_fork(ip, dip);
2600 if (error)
2601 goto out_free_ip;
2602
2603
2604 if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
2605 ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
2606 error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
2607 ip->i_ino, buffer_list);
2608 if (error)
2609 goto out_free_ip;
2610 }
2611
2612 if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
2613 ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
2614 error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
2615 ip->i_ino, buffer_list);
2616 if (error)
2617 goto out_free_ip;
2618 }
2619
2620 out_free_ip:
2621 xfs_inode_free(ip);
2622 return error;
2623 }
2624
2625 STATIC int
2626 xlog_recover_inode_pass2(
2627 struct xlog *log,
2628 struct list_head *buffer_list,
2629 struct xlog_recover_item *item,
2630 xfs_lsn_t current_lsn)
2631 {
2632 xfs_inode_log_format_t *in_f;
2633 xfs_mount_t *mp = log->l_mp;
2634 xfs_buf_t *bp;
2635 xfs_dinode_t *dip;
2636 int len;
2637 xfs_caddr_t src;
2638 xfs_caddr_t dest;
2639 int error;
2640 int attr_index;
2641 uint fields;
2642 xfs_icdinode_t *dicp;
2643 uint isize;
2644 int need_free = 0;
2645
2646 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2647 in_f = item->ri_buf[0].i_addr;
2648 } else {
2649 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2650 need_free = 1;
2651 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2652 if (error)
2653 goto error;
2654 }
2655
2656 /*
2657 * Inode buffers can be freed, look out for it,
2658 * and do not replay the inode.
2659 */
2660 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2661 in_f->ilf_len, 0)) {
2662 error = 0;
2663 trace_xfs_log_recover_inode_cancel(log, in_f);
2664 goto error;
2665 }
2666 trace_xfs_log_recover_inode_recover(log, in_f);
2667
2668 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
2669 &xfs_inode_buf_ops);
2670 if (!bp) {
2671 error = ENOMEM;
2672 goto error;
2673 }
2674 error = bp->b_error;
2675 if (error) {
2676 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
2677 goto out_release;
2678 }
2679 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2680 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
2681
2682 /*
2683 * Make sure the place we're flushing out to really looks
2684 * like an inode!
2685 */
2686 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
2687 xfs_alert(mp,
2688 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2689 __func__, dip, bp, in_f->ilf_ino);
2690 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2691 XFS_ERRLEVEL_LOW, mp);
2692 error = EFSCORRUPTED;
2693 goto out_release;
2694 }
2695 dicp = item->ri_buf[1].i_addr;
2696 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2697 xfs_alert(mp,
2698 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2699 __func__, item, in_f->ilf_ino);
2700 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2701 XFS_ERRLEVEL_LOW, mp);
2702 error = EFSCORRUPTED;
2703 goto out_release;
2704 }
2705
2706 /*
2707 * If the inode has an LSN in it, recover the inode only if it's less
2708 * than the lsn of the transaction we are replaying. Note: we still
2709 * need to replay an owner change even though the inode is more recent
2710 * than the transaction as there is no guarantee that all the btree
2711 * blocks are more recent than this transaction, too.
2712 */
2713 if (dip->di_version >= 3) {
2714 xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn);
2715
2716 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2717 trace_xfs_log_recover_inode_skip(log, in_f);
2718 error = 0;
2719 goto out_owner_change;
2720 }
2721 }
2722
2723 /*
2724 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
2725 * are transactional and if ordering is necessary we can determine that
2726 * more accurately by the LSN field in the V3 inode core. Don't trust
2727 * the inode versions we might be changing them here - use the
2728 * superblock flag to determine whether we need to look at di_flushiter
2729 * to skip replay when the on disk inode is newer than the log one
2730 */
2731 if (!xfs_sb_version_hascrc(&mp->m_sb) &&
2732 dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2733 /*
2734 * Deal with the wrap case, DI_MAX_FLUSH is less
2735 * than smaller numbers
2736 */
2737 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2738 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2739 /* do nothing */
2740 } else {
2741 trace_xfs_log_recover_inode_skip(log, in_f);
2742 error = 0;
2743 goto out_release;
2744 }
2745 }
2746
2747 /* Take the opportunity to reset the flush iteration count */
2748 dicp->di_flushiter = 0;
2749
2750 if (unlikely(S_ISREG(dicp->di_mode))) {
2751 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2752 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2753 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
2754 XFS_ERRLEVEL_LOW, mp, dicp);
2755 xfs_alert(mp,
2756 "%s: Bad regular inode log record, rec ptr 0x%p, "
2757 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2758 __func__, item, dip, bp, in_f->ilf_ino);
2759 error = EFSCORRUPTED;
2760 goto out_release;
2761 }
2762 } else if (unlikely(S_ISDIR(dicp->di_mode))) {
2763 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2764 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2765 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2766 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
2767 XFS_ERRLEVEL_LOW, mp, dicp);
2768 xfs_alert(mp,
2769 "%s: Bad dir inode log record, rec ptr 0x%p, "
2770 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2771 __func__, item, dip, bp, in_f->ilf_ino);
2772 error = EFSCORRUPTED;
2773 goto out_release;
2774 }
2775 }
2776 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2777 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
2778 XFS_ERRLEVEL_LOW, mp, dicp);
2779 xfs_alert(mp,
2780 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2781 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2782 __func__, item, dip, bp, in_f->ilf_ino,
2783 dicp->di_nextents + dicp->di_anextents,
2784 dicp->di_nblocks);
2785 error = EFSCORRUPTED;
2786 goto out_release;
2787 }
2788 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2789 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
2790 XFS_ERRLEVEL_LOW, mp, dicp);
2791 xfs_alert(mp,
2792 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2793 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
2794 item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
2795 error = EFSCORRUPTED;
2796 goto out_release;
2797 }
2798 isize = xfs_icdinode_size(dicp->di_version);
2799 if (unlikely(item->ri_buf[1].i_len > isize)) {
2800 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
2801 XFS_ERRLEVEL_LOW, mp, dicp);
2802 xfs_alert(mp,
2803 "%s: Bad inode log record length %d, rec ptr 0x%p",
2804 __func__, item->ri_buf[1].i_len, item);
2805 error = EFSCORRUPTED;
2806 goto out_release;
2807 }
2808
2809 /* The core is in in-core format */
2810 xfs_dinode_to_disk(dip, dicp);
2811
2812 /* the rest is in on-disk format */
2813 if (item->ri_buf[1].i_len > isize) {
2814 memcpy((char *)dip + isize,
2815 item->ri_buf[1].i_addr + isize,
2816 item->ri_buf[1].i_len - isize);
2817 }
2818
2819 fields = in_f->ilf_fields;
2820 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2821 case XFS_ILOG_DEV:
2822 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
2823 break;
2824 case XFS_ILOG_UUID:
2825 memcpy(XFS_DFORK_DPTR(dip),
2826 &in_f->ilf_u.ilfu_uuid,
2827 sizeof(uuid_t));
2828 break;
2829 }
2830
2831 if (in_f->ilf_size == 2)
2832 goto out_owner_change;
2833 len = item->ri_buf[2].i_len;
2834 src = item->ri_buf[2].i_addr;
2835 ASSERT(in_f->ilf_size <= 4);
2836 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2837 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2838 (len == in_f->ilf_dsize));
2839
2840 switch (fields & XFS_ILOG_DFORK) {
2841 case XFS_ILOG_DDATA:
2842 case XFS_ILOG_DEXT:
2843 memcpy(XFS_DFORK_DPTR(dip), src, len);
2844 break;
2845
2846 case XFS_ILOG_DBROOT:
2847 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2848 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
2849 XFS_DFORK_DSIZE(dip, mp));
2850 break;
2851
2852 default:
2853 /*
2854 * There are no data fork flags set.
2855 */
2856 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2857 break;
2858 }
2859
2860 /*
2861 * If we logged any attribute data, recover it. There may or
2862 * may not have been any other non-core data logged in this
2863 * transaction.
2864 */
2865 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2866 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2867 attr_index = 3;
2868 } else {
2869 attr_index = 2;
2870 }
2871 len = item->ri_buf[attr_index].i_len;
2872 src = item->ri_buf[attr_index].i_addr;
2873 ASSERT(len == in_f->ilf_asize);
2874
2875 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2876 case XFS_ILOG_ADATA:
2877 case XFS_ILOG_AEXT:
2878 dest = XFS_DFORK_APTR(dip);
2879 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2880 memcpy(dest, src, len);
2881 break;
2882
2883 case XFS_ILOG_ABROOT:
2884 dest = XFS_DFORK_APTR(dip);
2885 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2886 len, (xfs_bmdr_block_t*)dest,
2887 XFS_DFORK_ASIZE(dip, mp));
2888 break;
2889
2890 default:
2891 xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
2892 ASSERT(0);
2893 error = EIO;
2894 goto out_release;
2895 }
2896 }
2897
2898 out_owner_change:
2899 if (in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER))
2900 error = xfs_recover_inode_owner_change(mp, dip, in_f,
2901 buffer_list);
2902 /* re-generate the checksum. */
2903 xfs_dinode_calc_crc(log->l_mp, dip);
2904
2905 ASSERT(bp->b_target->bt_mount == mp);
2906 bp->b_iodone = xlog_recover_iodone;
2907 xfs_buf_delwri_queue(bp, buffer_list);
2908
2909 out_release:
2910 xfs_buf_relse(bp);
2911 error:
2912 if (need_free)
2913 kmem_free(in_f);
2914 return XFS_ERROR(error);
2915 }
2916
2917 /*
2918 * Recover QUOTAOFF records. We simply make a note of it in the xlog
2919 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2920 * of that type.
2921 */
2922 STATIC int
2923 xlog_recover_quotaoff_pass1(
2924 struct xlog *log,
2925 struct xlog_recover_item *item)
2926 {
2927 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
2928 ASSERT(qoff_f);
2929
2930 /*
2931 * The logitem format's flag tells us if this was user quotaoff,
2932 * group/project quotaoff or both.
2933 */
2934 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2935 log->l_quotaoffs_flag |= XFS_DQ_USER;
2936 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2937 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2938 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2939 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2940
2941 return (0);
2942 }
2943
2944 /*
2945 * Recover a dquot record
2946 */
2947 STATIC int
2948 xlog_recover_dquot_pass2(
2949 struct xlog *log,
2950 struct list_head *buffer_list,
2951 struct xlog_recover_item *item,
2952 xfs_lsn_t current_lsn)
2953 {
2954 xfs_mount_t *mp = log->l_mp;
2955 xfs_buf_t *bp;
2956 struct xfs_disk_dquot *ddq, *recddq;
2957 int error;
2958 xfs_dq_logformat_t *dq_f;
2959 uint type;
2960
2961
2962 /*
2963 * Filesystems are required to send in quota flags at mount time.
2964 */
2965 if (mp->m_qflags == 0)
2966 return (0);
2967
2968 recddq = item->ri_buf[1].i_addr;
2969 if (recddq == NULL) {
2970 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
2971 return XFS_ERROR(EIO);
2972 }
2973 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
2974 xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
2975 item->ri_buf[1].i_len, __func__);
2976 return XFS_ERROR(EIO);
2977 }
2978
2979 /*
2980 * This type of quotas was turned off, so ignore this record.
2981 */
2982 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2983 ASSERT(type);
2984 if (log->l_quotaoffs_flag & type)
2985 return (0);
2986
2987 /*
2988 * At this point we know that quota was _not_ turned off.
2989 * Since the mount flags are not indicating to us otherwise, this
2990 * must mean that quota is on, and the dquot needs to be replayed.
2991 * Remember that we may not have fully recovered the superblock yet,
2992 * so we can't do the usual trick of looking at the SB quota bits.
2993 *
2994 * The other possibility, of course, is that the quota subsystem was
2995 * removed since the last mount - ENOSYS.
2996 */
2997 dq_f = item->ri_buf[0].i_addr;
2998 ASSERT(dq_f);
2999 error = xfs_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
3000 "xlog_recover_dquot_pass2 (log copy)");
3001 if (error)
3002 return XFS_ERROR(EIO);
3003 ASSERT(dq_f->qlf_len == 1);
3004
3005 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
3006 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
3007 NULL);
3008 if (error)
3009 return error;
3010
3011 ASSERT(bp);
3012 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
3013
3014 /*
3015 * At least the magic num portion should be on disk because this
3016 * was among a chunk of dquots created earlier, and we did some
3017 * minimal initialization then.
3018 */
3019 error = xfs_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
3020 "xlog_recover_dquot_pass2");
3021 if (error) {
3022 xfs_buf_relse(bp);
3023 return XFS_ERROR(EIO);
3024 }
3025
3026 /*
3027 * If the dquot has an LSN in it, recover the dquot only if it's less
3028 * than the lsn of the transaction we are replaying.
3029 */
3030 if (xfs_sb_version_hascrc(&mp->m_sb)) {
3031 struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
3032 xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn);
3033
3034 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3035 goto out_release;
3036 }
3037 }
3038
3039 memcpy(ddq, recddq, item->ri_buf[1].i_len);
3040 if (xfs_sb_version_hascrc(&mp->m_sb)) {
3041 xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
3042 XFS_DQUOT_CRC_OFF);
3043 }
3044
3045 ASSERT(dq_f->qlf_size == 2);
3046 ASSERT(bp->b_target->bt_mount == mp);
3047 bp->b_iodone = xlog_recover_iodone;
3048 xfs_buf_delwri_queue(bp, buffer_list);
3049
3050 out_release:
3051 xfs_buf_relse(bp);
3052 return 0;
3053 }
3054
3055 /*
3056 * This routine is called to create an in-core extent free intent
3057 * item from the efi format structure which was logged on disk.
3058 * It allocates an in-core efi, copies the extents from the format
3059 * structure into it, and adds the efi to the AIL with the given
3060 * LSN.
3061 */
3062 STATIC int
3063 xlog_recover_efi_pass2(
3064 struct xlog *log,
3065 struct xlog_recover_item *item,
3066 xfs_lsn_t lsn)
3067 {
3068 int error;
3069 xfs_mount_t *mp = log->l_mp;
3070 xfs_efi_log_item_t *efip;
3071 xfs_efi_log_format_t *efi_formatp;
3072
3073 efi_formatp = item->ri_buf[0].i_addr;
3074
3075 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
3076 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
3077 &(efip->efi_format)))) {
3078 xfs_efi_item_free(efip);
3079 return error;
3080 }
3081 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
3082
3083 spin_lock(&log->l_ailp->xa_lock);
3084 /*
3085 * xfs_trans_ail_update() drops the AIL lock.
3086 */
3087 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
3088 return 0;
3089 }
3090
3091
3092 /*
3093 * This routine is called when an efd format structure is found in
3094 * a committed transaction in the log. It's purpose is to cancel
3095 * the corresponding efi if it was still in the log. To do this
3096 * it searches the AIL for the efi with an id equal to that in the
3097 * efd format structure. If we find it, we remove the efi from the
3098 * AIL and free it.
3099 */
3100 STATIC int
3101 xlog_recover_efd_pass2(
3102 struct xlog *log,
3103 struct xlog_recover_item *item)
3104 {
3105 xfs_efd_log_format_t *efd_formatp;
3106 xfs_efi_log_item_t *efip = NULL;
3107 xfs_log_item_t *lip;
3108 __uint64_t efi_id;
3109 struct xfs_ail_cursor cur;
3110 struct xfs_ail *ailp = log->l_ailp;
3111
3112 efd_formatp = item->ri_buf[0].i_addr;
3113 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
3114 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
3115 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
3116 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
3117 efi_id = efd_formatp->efd_efi_id;
3118
3119 /*
3120 * Search for the efi with the id in the efd format structure
3121 * in the AIL.
3122 */
3123 spin_lock(&ailp->xa_lock);
3124 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3125 while (lip != NULL) {
3126 if (lip->li_type == XFS_LI_EFI) {
3127 efip = (xfs_efi_log_item_t *)lip;
3128 if (efip->efi_format.efi_id == efi_id) {
3129 /*
3130 * xfs_trans_ail_delete() drops the
3131 * AIL lock.
3132 */
3133 xfs_trans_ail_delete(ailp, lip,
3134 SHUTDOWN_CORRUPT_INCORE);
3135 xfs_efi_item_free(efip);
3136 spin_lock(&ailp->xa_lock);
3137 break;
3138 }
3139 }
3140 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3141 }
3142 xfs_trans_ail_cursor_done(ailp, &cur);
3143 spin_unlock(&ailp->xa_lock);
3144
3145 return 0;
3146 }
3147
3148 /*
3149 * This routine is called when an inode create format structure is found in a
3150 * committed transaction in the log. It's purpose is to initialise the inodes
3151 * being allocated on disk. This requires us to get inode cluster buffers that
3152 * match the range to be intialised, stamped with inode templates and written
3153 * by delayed write so that subsequent modifications will hit the cached buffer
3154 * and only need writing out at the end of recovery.
3155 */
3156 STATIC int
3157 xlog_recover_do_icreate_pass2(
3158 struct xlog *log,
3159 struct list_head *buffer_list,
3160 xlog_recover_item_t *item)
3161 {
3162 struct xfs_mount *mp = log->l_mp;
3163 struct xfs_icreate_log *icl;
3164 xfs_agnumber_t agno;
3165 xfs_agblock_t agbno;
3166 unsigned int count;
3167 unsigned int isize;
3168 xfs_agblock_t length;
3169
3170 icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3171 if (icl->icl_type != XFS_LI_ICREATE) {
3172 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
3173 return EINVAL;
3174 }
3175
3176 if (icl->icl_size != 1) {
3177 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
3178 return EINVAL;
3179 }
3180
3181 agno = be32_to_cpu(icl->icl_ag);
3182 if (agno >= mp->m_sb.sb_agcount) {
3183 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
3184 return EINVAL;
3185 }
3186 agbno = be32_to_cpu(icl->icl_agbno);
3187 if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3188 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
3189 return EINVAL;
3190 }
3191 isize = be32_to_cpu(icl->icl_isize);
3192 if (isize != mp->m_sb.sb_inodesize) {
3193 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
3194 return EINVAL;
3195 }
3196 count = be32_to_cpu(icl->icl_count);
3197 if (!count) {
3198 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
3199 return EINVAL;
3200 }
3201 length = be32_to_cpu(icl->icl_length);
3202 if (!length || length >= mp->m_sb.sb_agblocks) {
3203 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
3204 return EINVAL;
3205 }
3206
3207 /* existing allocation is fixed value */
3208 ASSERT(count == XFS_IALLOC_INODES(mp));
3209 ASSERT(length == XFS_IALLOC_BLOCKS(mp));
3210 if (count != XFS_IALLOC_INODES(mp) ||
3211 length != XFS_IALLOC_BLOCKS(mp)) {
3212 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count 2");
3213 return EINVAL;
3214 }
3215
3216 /*
3217 * Inode buffers can be freed. Do not replay the inode initialisation as
3218 * we could be overwriting something written after this inode buffer was
3219 * cancelled.
3220 *
3221 * XXX: we need to iterate all buffers and only init those that are not
3222 * cancelled. I think that a more fine grained factoring of
3223 * xfs_ialloc_inode_init may be appropriate here to enable this to be
3224 * done easily.
3225 */
3226 if (xlog_check_buffer_cancelled(log,
3227 XFS_AGB_TO_DADDR(mp, agno, agbno), length, 0))
3228 return 0;
3229
3230 xfs_ialloc_inode_init(mp, NULL, buffer_list, agno, agbno, length,
3231 be32_to_cpu(icl->icl_gen));
3232 return 0;
3233 }
3234
3235 /*
3236 * Free up any resources allocated by the transaction
3237 *
3238 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
3239 */
3240 STATIC void
3241 xlog_recover_free_trans(
3242 struct xlog_recover *trans)
3243 {
3244 xlog_recover_item_t *item, *n;
3245 int i;
3246
3247 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
3248 /* Free the regions in the item. */
3249 list_del(&item->ri_list);
3250 for (i = 0; i < item->ri_cnt; i++)
3251 kmem_free(item->ri_buf[i].i_addr);
3252 /* Free the item itself */
3253 kmem_free(item->ri_buf);
3254 kmem_free(item);
3255 }
3256 /* Free the transaction recover structure */
3257 kmem_free(trans);
3258 }
3259
3260 STATIC void
3261 xlog_recover_buffer_ra_pass2(
3262 struct xlog *log,
3263 struct xlog_recover_item *item)
3264 {
3265 struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr;
3266 struct xfs_mount *mp = log->l_mp;
3267
3268 if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
3269 buf_f->blf_len, buf_f->blf_flags)) {
3270 return;
3271 }
3272
3273 xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
3274 buf_f->blf_len, NULL);
3275 }
3276
3277 STATIC void
3278 xlog_recover_inode_ra_pass2(
3279 struct xlog *log,
3280 struct xlog_recover_item *item)
3281 {
3282 struct xfs_inode_log_format ilf_buf;
3283 struct xfs_inode_log_format *ilfp;
3284 struct xfs_mount *mp = log->l_mp;
3285 int error;
3286
3287 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3288 ilfp = item->ri_buf[0].i_addr;
3289 } else {
3290 ilfp = &ilf_buf;
3291 memset(ilfp, 0, sizeof(*ilfp));
3292 error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
3293 if (error)
3294 return;
3295 }
3296
3297 if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
3298 return;
3299
3300 xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
3301 ilfp->ilf_len, &xfs_inode_buf_ra_ops);
3302 }
3303
3304 STATIC void
3305 xlog_recover_dquot_ra_pass2(
3306 struct xlog *log,
3307 struct xlog_recover_item *item)
3308 {
3309 struct xfs_mount *mp = log->l_mp;
3310 struct xfs_disk_dquot *recddq;
3311 struct xfs_dq_logformat *dq_f;
3312 uint type;
3313
3314
3315 if (mp->m_qflags == 0)
3316 return;
3317
3318 recddq = item->ri_buf[1].i_addr;
3319 if (recddq == NULL)
3320 return;
3321 if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
3322 return;
3323
3324 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3325 ASSERT(type);
3326 if (log->l_quotaoffs_flag & type)
3327 return;
3328
3329 dq_f = item->ri_buf[0].i_addr;
3330 ASSERT(dq_f);
3331 ASSERT(dq_f->qlf_len == 1);
3332
3333 xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno,
3334 XFS_FSB_TO_BB(mp, dq_f->qlf_len), NULL);
3335 }
3336
3337 STATIC void
3338 xlog_recover_ra_pass2(
3339 struct xlog *log,
3340 struct xlog_recover_item *item)
3341 {
3342 switch (ITEM_TYPE(item)) {
3343 case XFS_LI_BUF:
3344 xlog_recover_buffer_ra_pass2(log, item);
3345 break;
3346 case XFS_LI_INODE:
3347 xlog_recover_inode_ra_pass2(log, item);
3348 break;
3349 case XFS_LI_DQUOT:
3350 xlog_recover_dquot_ra_pass2(log, item);
3351 break;
3352 case XFS_LI_EFI:
3353 case XFS_LI_EFD:
3354 case XFS_LI_QUOTAOFF:
3355 default:
3356 break;
3357 }
3358 }
3359
3360 STATIC int
3361 xlog_recover_commit_pass1(
3362 struct xlog *log,
3363 struct xlog_recover *trans,
3364 struct xlog_recover_item *item)
3365 {
3366 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
3367
3368 switch (ITEM_TYPE(item)) {
3369 case XFS_LI_BUF:
3370 return xlog_recover_buffer_pass1(log, item);
3371 case XFS_LI_QUOTAOFF:
3372 return xlog_recover_quotaoff_pass1(log, item);
3373 case XFS_LI_INODE:
3374 case XFS_LI_EFI:
3375 case XFS_LI_EFD:
3376 case XFS_LI_DQUOT:
3377 case XFS_LI_ICREATE:
3378 /* nothing to do in pass 1 */
3379 return 0;
3380 default:
3381 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3382 __func__, ITEM_TYPE(item));
3383 ASSERT(0);
3384 return XFS_ERROR(EIO);
3385 }
3386 }
3387
3388 STATIC int
3389 xlog_recover_commit_pass2(
3390 struct xlog *log,
3391 struct xlog_recover *trans,
3392 struct list_head *buffer_list,
3393 struct xlog_recover_item *item)
3394 {
3395 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
3396
3397 switch (ITEM_TYPE(item)) {
3398 case XFS_LI_BUF:
3399 return xlog_recover_buffer_pass2(log, buffer_list, item,
3400 trans->r_lsn);
3401 case XFS_LI_INODE:
3402 return xlog_recover_inode_pass2(log, buffer_list, item,
3403 trans->r_lsn);
3404 case XFS_LI_EFI:
3405 return xlog_recover_efi_pass2(log, item, trans->r_lsn);
3406 case XFS_LI_EFD:
3407 return xlog_recover_efd_pass2(log, item);
3408 case XFS_LI_DQUOT:
3409 return xlog_recover_dquot_pass2(log, buffer_list, item,
3410 trans->r_lsn);
3411 case XFS_LI_ICREATE:
3412 return xlog_recover_do_icreate_pass2(log, buffer_list, item);
3413 case XFS_LI_QUOTAOFF:
3414 /* nothing to do in pass2 */
3415 return 0;
3416 default:
3417 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3418 __func__, ITEM_TYPE(item));
3419 ASSERT(0);
3420 return XFS_ERROR(EIO);
3421 }
3422 }
3423
3424 STATIC int
3425 xlog_recover_items_pass2(
3426 struct xlog *log,
3427 struct xlog_recover *trans,
3428 struct list_head *buffer_list,
3429 struct list_head *item_list)
3430 {
3431 struct xlog_recover_item *item;
3432 int error = 0;
3433
3434 list_for_each_entry(item, item_list, ri_list) {
3435 error = xlog_recover_commit_pass2(log, trans,
3436 buffer_list, item);
3437 if (error)
3438 return error;
3439 }
3440
3441 return error;
3442 }
3443
3444 /*
3445 * Perform the transaction.
3446 *
3447 * If the transaction modifies a buffer or inode, do it now. Otherwise,
3448 * EFIs and EFDs get queued up by adding entries into the AIL for them.
3449 */
3450 STATIC int
3451 xlog_recover_commit_trans(
3452 struct xlog *log,
3453 struct xlog_recover *trans,
3454 int pass)
3455 {
3456 int error = 0;
3457 int error2;
3458 int items_queued = 0;
3459 struct xlog_recover_item *item;
3460 struct xlog_recover_item *next;
3461 LIST_HEAD (buffer_list);
3462 LIST_HEAD (ra_list);
3463 LIST_HEAD (done_list);
3464
3465 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
3466
3467 hlist_del(&trans->r_list);
3468
3469 error = xlog_recover_reorder_trans(log, trans, pass);
3470 if (error)
3471 return error;
3472
3473 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
3474 switch (pass) {
3475 case XLOG_RECOVER_PASS1:
3476 error = xlog_recover_commit_pass1(log, trans, item);
3477 break;
3478 case XLOG_RECOVER_PASS2:
3479 xlog_recover_ra_pass2(log, item);
3480 list_move_tail(&item->ri_list, &ra_list);
3481 items_queued++;
3482 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
3483 error = xlog_recover_items_pass2(log, trans,
3484 &buffer_list, &ra_list);
3485 list_splice_tail_init(&ra_list, &done_list);
3486 items_queued = 0;
3487 }
3488
3489 break;
3490 default:
3491 ASSERT(0);
3492 }
3493
3494 if (error)
3495 goto out;
3496 }
3497
3498 out:
3499 if (!list_empty(&ra_list)) {
3500 if (!error)
3501 error = xlog_recover_items_pass2(log, trans,
3502 &buffer_list, &ra_list);
3503 list_splice_tail_init(&ra_list, &done_list);
3504 }
3505
3506 if (!list_empty(&done_list))
3507 list_splice_init(&done_list, &trans->r_itemq);
3508
3509 xlog_recover_free_trans(trans);
3510
3511 error2 = xfs_buf_delwri_submit(&buffer_list);
3512 return error ? error : error2;
3513 }
3514
3515 STATIC int
3516 xlog_recover_unmount_trans(
3517 struct xlog *log,
3518 struct xlog_recover *trans)
3519 {
3520 /* Do nothing now */
3521 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
3522 return 0;
3523 }
3524
3525 /*
3526 * There are two valid states of the r_state field. 0 indicates that the
3527 * transaction structure is in a normal state. We have either seen the
3528 * start of the transaction or the last operation we added was not a partial
3529 * operation. If the last operation we added to the transaction was a
3530 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
3531 *
3532 * NOTE: skip LRs with 0 data length.
3533 */
3534 STATIC int
3535 xlog_recover_process_data(
3536 struct xlog *log,
3537 struct hlist_head rhash[],
3538 struct xlog_rec_header *rhead,
3539 xfs_caddr_t dp,
3540 int pass)
3541 {
3542 xfs_caddr_t lp;
3543 int num_logops;
3544 xlog_op_header_t *ohead;
3545 xlog_recover_t *trans;
3546 xlog_tid_t tid;
3547 int error;
3548 unsigned long hash;
3549 uint flags;
3550
3551 lp = dp + be32_to_cpu(rhead->h_len);
3552 num_logops = be32_to_cpu(rhead->h_num_logops);
3553
3554 /* check the log format matches our own - else we can't recover */
3555 if (xlog_header_check_recover(log->l_mp, rhead))
3556 return (XFS_ERROR(EIO));
3557
3558 while ((dp < lp) && num_logops) {
3559 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
3560 ohead = (xlog_op_header_t *)dp;
3561 dp += sizeof(xlog_op_header_t);
3562 if (ohead->oh_clientid != XFS_TRANSACTION &&
3563 ohead->oh_clientid != XFS_LOG) {
3564 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
3565 __func__, ohead->oh_clientid);
3566 ASSERT(0);
3567 return (XFS_ERROR(EIO));
3568 }
3569 tid = be32_to_cpu(ohead->oh_tid);
3570 hash = XLOG_RHASH(tid);
3571 trans = xlog_recover_find_tid(&rhash[hash], tid);
3572 if (trans == NULL) { /* not found; add new tid */
3573 if (ohead->oh_flags & XLOG_START_TRANS)
3574 xlog_recover_new_tid(&rhash[hash], tid,
3575 be64_to_cpu(rhead->h_lsn));
3576 } else {
3577 if (dp + be32_to_cpu(ohead->oh_len) > lp) {
3578 xfs_warn(log->l_mp, "%s: bad length 0x%x",
3579 __func__, be32_to_cpu(ohead->oh_len));
3580 WARN_ON(1);
3581 return (XFS_ERROR(EIO));
3582 }
3583 flags = ohead->oh_flags & ~XLOG_END_TRANS;
3584 if (flags & XLOG_WAS_CONT_TRANS)
3585 flags &= ~XLOG_CONTINUE_TRANS;
3586 switch (flags) {
3587 case XLOG_COMMIT_TRANS:
3588 error = xlog_recover_commit_trans(log,
3589 trans, pass);
3590 break;
3591 case XLOG_UNMOUNT_TRANS:
3592 error = xlog_recover_unmount_trans(log, trans);
3593 break;
3594 case XLOG_WAS_CONT_TRANS:
3595 error = xlog_recover_add_to_cont_trans(log,
3596 trans, dp,
3597 be32_to_cpu(ohead->oh_len));
3598 break;
3599 case XLOG_START_TRANS:
3600 xfs_warn(log->l_mp, "%s: bad transaction",
3601 __func__);
3602 ASSERT(0);
3603 error = XFS_ERROR(EIO);
3604 break;
3605 case 0:
3606 case XLOG_CONTINUE_TRANS:
3607 error = xlog_recover_add_to_trans(log, trans,
3608 dp, be32_to_cpu(ohead->oh_len));
3609 break;
3610 default:
3611 xfs_warn(log->l_mp, "%s: bad flag 0x%x",
3612 __func__, flags);
3613 ASSERT(0);
3614 error = XFS_ERROR(EIO);
3615 break;
3616 }
3617 if (error)
3618 return error;
3619 }
3620 dp += be32_to_cpu(ohead->oh_len);
3621 num_logops--;
3622 }
3623 return 0;
3624 }
3625
3626 /*
3627 * Process an extent free intent item that was recovered from
3628 * the log. We need to free the extents that it describes.
3629 */
3630 STATIC int
3631 xlog_recover_process_efi(
3632 xfs_mount_t *mp,
3633 xfs_efi_log_item_t *efip)
3634 {
3635 xfs_efd_log_item_t *efdp;
3636 xfs_trans_t *tp;
3637 int i;
3638 int error = 0;
3639 xfs_extent_t *extp;
3640 xfs_fsblock_t startblock_fsb;
3641
3642 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
3643
3644 /*
3645 * First check the validity of the extents described by the
3646 * EFI. If any are bad, then assume that all are bad and
3647 * just toss the EFI.
3648 */
3649 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3650 extp = &(efip->efi_format.efi_extents[i]);
3651 startblock_fsb = XFS_BB_TO_FSB(mp,
3652 XFS_FSB_TO_DADDR(mp, extp->ext_start));
3653 if ((startblock_fsb == 0) ||
3654 (extp->ext_len == 0) ||
3655 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3656 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3657 /*
3658 * This will pull the EFI from the AIL and
3659 * free the memory associated with it.
3660 */
3661 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
3662 xfs_efi_release(efip, efip->efi_format.efi_nextents);
3663 return XFS_ERROR(EIO);
3664 }
3665 }
3666
3667 tp = xfs_trans_alloc(mp, 0);
3668 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
3669 if (error)
3670 goto abort_error;
3671 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3672
3673 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3674 extp = &(efip->efi_format.efi_extents[i]);
3675 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3676 if (error)
3677 goto abort_error;
3678 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3679 extp->ext_len);
3680 }
3681
3682 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
3683 error = xfs_trans_commit(tp, 0);
3684 return error;
3685
3686 abort_error:
3687 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3688 return error;
3689 }
3690
3691 /*
3692 * When this is called, all of the EFIs which did not have
3693 * corresponding EFDs should be in the AIL. What we do now
3694 * is free the extents associated with each one.
3695 *
3696 * Since we process the EFIs in normal transactions, they
3697 * will be removed at some point after the commit. This prevents
3698 * us from just walking down the list processing each one.
3699 * We'll use a flag in the EFI to skip those that we've already
3700 * processed and use the AIL iteration mechanism's generation
3701 * count to try to speed this up at least a bit.
3702 *
3703 * When we start, we know that the EFIs are the only things in
3704 * the AIL. As we process them, however, other items are added
3705 * to the AIL. Since everything added to the AIL must come after
3706 * everything already in the AIL, we stop processing as soon as
3707 * we see something other than an EFI in the AIL.
3708 */
3709 STATIC int
3710 xlog_recover_process_efis(
3711 struct xlog *log)
3712 {
3713 xfs_log_item_t *lip;
3714 xfs_efi_log_item_t *efip;
3715 int error = 0;
3716 struct xfs_ail_cursor cur;
3717 struct xfs_ail *ailp;
3718
3719 ailp = log->l_ailp;
3720 spin_lock(&ailp->xa_lock);
3721 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3722 while (lip != NULL) {
3723 /*
3724 * We're done when we see something other than an EFI.
3725 * There should be no EFIs left in the AIL now.
3726 */
3727 if (lip->li_type != XFS_LI_EFI) {
3728 #ifdef DEBUG
3729 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
3730 ASSERT(lip->li_type != XFS_LI_EFI);
3731 #endif
3732 break;
3733 }
3734
3735 /*
3736 * Skip EFIs that we've already processed.
3737 */
3738 efip = (xfs_efi_log_item_t *)lip;
3739 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
3740 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3741 continue;
3742 }
3743
3744 spin_unlock(&ailp->xa_lock);
3745 error = xlog_recover_process_efi(log->l_mp, efip);
3746 spin_lock(&ailp->xa_lock);
3747 if (error)
3748 goto out;
3749 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3750 }
3751 out:
3752 xfs_trans_ail_cursor_done(ailp, &cur);
3753 spin_unlock(&ailp->xa_lock);
3754 return error;
3755 }
3756
3757 /*
3758 * This routine performs a transaction to null out a bad inode pointer
3759 * in an agi unlinked inode hash bucket.
3760 */
3761 STATIC void
3762 xlog_recover_clear_agi_bucket(
3763 xfs_mount_t *mp,
3764 xfs_agnumber_t agno,
3765 int bucket)
3766 {
3767 xfs_trans_t *tp;
3768 xfs_agi_t *agi;
3769 xfs_buf_t *agibp;
3770 int offset;
3771 int error;
3772
3773 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3774 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_clearagi, 0, 0);
3775 if (error)
3776 goto out_abort;
3777
3778 error = xfs_read_agi(mp, tp, agno, &agibp);
3779 if (error)
3780 goto out_abort;
3781
3782 agi = XFS_BUF_TO_AGI(agibp);
3783 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3784 offset = offsetof(xfs_agi_t, agi_unlinked) +
3785 (sizeof(xfs_agino_t) * bucket);
3786 xfs_trans_log_buf(tp, agibp, offset,
3787 (offset + sizeof(xfs_agino_t) - 1));
3788
3789 error = xfs_trans_commit(tp, 0);
3790 if (error)
3791 goto out_error;
3792 return;
3793
3794 out_abort:
3795 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3796 out_error:
3797 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
3798 return;
3799 }
3800
3801 STATIC xfs_agino_t
3802 xlog_recover_process_one_iunlink(
3803 struct xfs_mount *mp,
3804 xfs_agnumber_t agno,
3805 xfs_agino_t agino,
3806 int bucket)
3807 {
3808 struct xfs_buf *ibp;
3809 struct xfs_dinode *dip;
3810 struct xfs_inode *ip;
3811 xfs_ino_t ino;
3812 int error;
3813
3814 ino = XFS_AGINO_TO_INO(mp, agno, agino);
3815 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
3816 if (error)
3817 goto fail;
3818
3819 /*
3820 * Get the on disk inode to find the next inode in the bucket.
3821 */
3822 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
3823 if (error)
3824 goto fail_iput;
3825
3826 ASSERT(ip->i_d.di_nlink == 0);
3827 ASSERT(ip->i_d.di_mode != 0);
3828
3829 /* setup for the next pass */
3830 agino = be32_to_cpu(dip->di_next_unlinked);
3831 xfs_buf_relse(ibp);
3832
3833 /*
3834 * Prevent any DMAPI event from being sent when the reference on
3835 * the inode is dropped.
3836 */
3837 ip->i_d.di_dmevmask = 0;
3838
3839 IRELE(ip);
3840 return agino;
3841
3842 fail_iput:
3843 IRELE(ip);
3844 fail:
3845 /*
3846 * We can't read in the inode this bucket points to, or this inode
3847 * is messed up. Just ditch this bucket of inodes. We will lose
3848 * some inodes and space, but at least we won't hang.
3849 *
3850 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3851 * clear the inode pointer in the bucket.
3852 */
3853 xlog_recover_clear_agi_bucket(mp, agno, bucket);
3854 return NULLAGINO;
3855 }
3856
3857 /*
3858 * xlog_iunlink_recover
3859 *
3860 * This is called during recovery to process any inodes which
3861 * we unlinked but not freed when the system crashed. These
3862 * inodes will be on the lists in the AGI blocks. What we do
3863 * here is scan all the AGIs and fully truncate and free any
3864 * inodes found on the lists. Each inode is removed from the
3865 * lists when it has been fully truncated and is freed. The
3866 * freeing of the inode and its removal from the list must be
3867 * atomic.
3868 */
3869 STATIC void
3870 xlog_recover_process_iunlinks(
3871 struct xlog *log)
3872 {
3873 xfs_mount_t *mp;
3874 xfs_agnumber_t agno;
3875 xfs_agi_t *agi;
3876 xfs_buf_t *agibp;
3877 xfs_agino_t agino;
3878 int bucket;
3879 int error;
3880 uint mp_dmevmask;
3881
3882 mp = log->l_mp;
3883
3884 /*
3885 * Prevent any DMAPI event from being sent while in this function.
3886 */
3887 mp_dmevmask = mp->m_dmevmask;
3888 mp->m_dmevmask = 0;
3889
3890 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3891 /*
3892 * Find the agi for this ag.
3893 */
3894 error = xfs_read_agi(mp, NULL, agno, &agibp);
3895 if (error) {
3896 /*
3897 * AGI is b0rked. Don't process it.
3898 *
3899 * We should probably mark the filesystem as corrupt
3900 * after we've recovered all the ag's we can....
3901 */
3902 continue;
3903 }
3904 /*
3905 * Unlock the buffer so that it can be acquired in the normal
3906 * course of the transaction to truncate and free each inode.
3907 * Because we are not racing with anyone else here for the AGI
3908 * buffer, we don't even need to hold it locked to read the
3909 * initial unlinked bucket entries out of the buffer. We keep
3910 * buffer reference though, so that it stays pinned in memory
3911 * while we need the buffer.
3912 */
3913 agi = XFS_BUF_TO_AGI(agibp);
3914 xfs_buf_unlock(agibp);
3915
3916 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3917 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3918 while (agino != NULLAGINO) {
3919 agino = xlog_recover_process_one_iunlink(mp,
3920 agno, agino, bucket);
3921 }
3922 }
3923 xfs_buf_rele(agibp);
3924 }
3925
3926 mp->m_dmevmask = mp_dmevmask;
3927 }
3928
3929 /*
3930 * Upack the log buffer data and crc check it. If the check fails, issue a
3931 * warning if and only if the CRC in the header is non-zero. This makes the
3932 * check an advisory warning, and the zero CRC check will prevent failure
3933 * warnings from being emitted when upgrading the kernel from one that does not
3934 * add CRCs by default.
3935 *
3936 * When filesystems are CRC enabled, this CRC mismatch becomes a fatal log
3937 * corruption failure
3938 */
3939 STATIC int
3940 xlog_unpack_data_crc(
3941 struct xlog_rec_header *rhead,
3942 xfs_caddr_t dp,
3943 struct xlog *log)
3944 {
3945 __le32 crc;
3946
3947 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
3948 if (crc != rhead->h_crc) {
3949 if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
3950 xfs_alert(log->l_mp,
3951 "log record CRC mismatch: found 0x%x, expected 0x%x.",
3952 le32_to_cpu(rhead->h_crc),
3953 le32_to_cpu(crc));
3954 xfs_hex_dump(dp, 32);
3955 }
3956
3957 /*
3958 * If we've detected a log record corruption, then we can't
3959 * recover past this point. Abort recovery if we are enforcing
3960 * CRC protection by punting an error back up the stack.
3961 */
3962 if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
3963 return EFSCORRUPTED;
3964 }
3965
3966 return 0;
3967 }
3968
3969 STATIC int
3970 xlog_unpack_data(
3971 struct xlog_rec_header *rhead,
3972 xfs_caddr_t dp,
3973 struct xlog *log)
3974 {
3975 int i, j, k;
3976 int error;
3977
3978 error = xlog_unpack_data_crc(rhead, dp, log);
3979 if (error)
3980 return error;
3981
3982 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
3983 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3984 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
3985 dp += BBSIZE;
3986 }
3987
3988 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3989 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
3990 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
3991 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3992 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3993 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3994 dp += BBSIZE;
3995 }
3996 }
3997
3998 return 0;
3999 }
4000
4001 STATIC int
4002 xlog_valid_rec_header(
4003 struct xlog *log,
4004 struct xlog_rec_header *rhead,
4005 xfs_daddr_t blkno)
4006 {
4007 int hlen;
4008
4009 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
4010 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
4011 XFS_ERRLEVEL_LOW, log->l_mp);
4012 return XFS_ERROR(EFSCORRUPTED);
4013 }
4014 if (unlikely(
4015 (!rhead->h_version ||
4016 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
4017 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
4018 __func__, be32_to_cpu(rhead->h_version));
4019 return XFS_ERROR(EIO);
4020 }
4021
4022 /* LR body must have data or it wouldn't have been written */
4023 hlen = be32_to_cpu(rhead->h_len);
4024 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
4025 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
4026 XFS_ERRLEVEL_LOW, log->l_mp);
4027 return XFS_ERROR(EFSCORRUPTED);
4028 }
4029 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
4030 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
4031 XFS_ERRLEVEL_LOW, log->l_mp);
4032 return XFS_ERROR(EFSCORRUPTED);
4033 }
4034 return 0;
4035 }
4036
4037 /*
4038 * Read the log from tail to head and process the log records found.
4039 * Handle the two cases where the tail and head are in the same cycle
4040 * and where the active portion of the log wraps around the end of
4041 * the physical log separately. The pass parameter is passed through
4042 * to the routines called to process the data and is not looked at
4043 * here.
4044 */
4045 STATIC int
4046 xlog_do_recovery_pass(
4047 struct xlog *log,
4048 xfs_daddr_t head_blk,
4049 xfs_daddr_t tail_blk,
4050 int pass)
4051 {
4052 xlog_rec_header_t *rhead;
4053 xfs_daddr_t blk_no;
4054 xfs_caddr_t offset;
4055 xfs_buf_t *hbp, *dbp;
4056 int error = 0, h_size;
4057 int bblks, split_bblks;
4058 int hblks, split_hblks, wrapped_hblks;
4059 struct hlist_head rhash[XLOG_RHASH_SIZE];
4060
4061 ASSERT(head_blk != tail_blk);
4062
4063 /*
4064 * Read the header of the tail block and get the iclog buffer size from
4065 * h_size. Use this to tell how many sectors make up the log header.
4066 */
4067 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
4068 /*
4069 * When using variable length iclogs, read first sector of
4070 * iclog header and extract the header size from it. Get a
4071 * new hbp that is the correct size.
4072 */
4073 hbp = xlog_get_bp(log, 1);
4074 if (!hbp)
4075 return ENOMEM;
4076
4077 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
4078 if (error)
4079 goto bread_err1;
4080
4081 rhead = (xlog_rec_header_t *)offset;
4082 error = xlog_valid_rec_header(log, rhead, tail_blk);
4083 if (error)
4084 goto bread_err1;
4085 h_size = be32_to_cpu(rhead->h_size);
4086 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
4087 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
4088 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
4089 if (h_size % XLOG_HEADER_CYCLE_SIZE)
4090 hblks++;
4091 xlog_put_bp(hbp);
4092 hbp = xlog_get_bp(log, hblks);
4093 } else {
4094 hblks = 1;
4095 }
4096 } else {
4097 ASSERT(log->l_sectBBsize == 1);
4098 hblks = 1;
4099 hbp = xlog_get_bp(log, 1);
4100 h_size = XLOG_BIG_RECORD_BSIZE;
4101 }
4102
4103 if (!hbp)
4104 return ENOMEM;
4105 dbp = xlog_get_bp(log, BTOBB(h_size));
4106 if (!dbp) {
4107 xlog_put_bp(hbp);
4108 return ENOMEM;
4109 }
4110
4111 memset(rhash, 0, sizeof(rhash));
4112 if (tail_blk <= head_blk) {
4113 for (blk_no = tail_blk; blk_no < head_blk; ) {
4114 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
4115 if (error)
4116 goto bread_err2;
4117
4118 rhead = (xlog_rec_header_t *)offset;
4119 error = xlog_valid_rec_header(log, rhead, blk_no);
4120 if (error)
4121 goto bread_err2;
4122
4123 /* blocks in data section */
4124 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
4125 error = xlog_bread(log, blk_no + hblks, bblks, dbp,
4126 &offset);
4127 if (error)
4128 goto bread_err2;
4129
4130 error = xlog_unpack_data(rhead, offset, log);
4131 if (error)
4132 goto bread_err2;
4133
4134 error = xlog_recover_process_data(log,
4135 rhash, rhead, offset, pass);
4136 if (error)
4137 goto bread_err2;
4138 blk_no += bblks + hblks;
4139 }
4140 } else {
4141 /*
4142 * Perform recovery around the end of the physical log.
4143 * When the head is not on the same cycle number as the tail,
4144 * we can't do a sequential recovery as above.
4145 */
4146 blk_no = tail_blk;
4147 while (blk_no < log->l_logBBsize) {
4148 /*
4149 * Check for header wrapping around physical end-of-log
4150 */
4151 offset = hbp->b_addr;
4152 split_hblks = 0;
4153 wrapped_hblks = 0;
4154 if (blk_no + hblks <= log->l_logBBsize) {
4155 /* Read header in one read */
4156 error = xlog_bread(log, blk_no, hblks, hbp,
4157 &offset);
4158 if (error)
4159 goto bread_err2;
4160 } else {
4161 /* This LR is split across physical log end */
4162 if (blk_no != log->l_logBBsize) {
4163 /* some data before physical log end */
4164 ASSERT(blk_no <= INT_MAX);
4165 split_hblks = log->l_logBBsize - (int)blk_no;
4166 ASSERT(split_hblks > 0);
4167 error = xlog_bread(log, blk_no,
4168 split_hblks, hbp,
4169 &offset);
4170 if (error)
4171 goto bread_err2;
4172 }
4173
4174 /*
4175 * Note: this black magic still works with
4176 * large sector sizes (non-512) only because:
4177 * - we increased the buffer size originally
4178 * by 1 sector giving us enough extra space
4179 * for the second read;
4180 * - the log start is guaranteed to be sector
4181 * aligned;
4182 * - we read the log end (LR header start)
4183 * _first_, then the log start (LR header end)
4184 * - order is important.
4185 */
4186 wrapped_hblks = hblks - split_hblks;
4187 error = xlog_bread_offset(log, 0,
4188 wrapped_hblks, hbp,
4189 offset + BBTOB(split_hblks));
4190 if (error)
4191 goto bread_err2;
4192 }
4193 rhead = (xlog_rec_header_t *)offset;
4194 error = xlog_valid_rec_header(log, rhead,
4195 split_hblks ? blk_no : 0);
4196 if (error)
4197 goto bread_err2;
4198
4199 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
4200 blk_no += hblks;
4201
4202 /* Read in data for log record */
4203 if (blk_no + bblks <= log->l_logBBsize) {
4204 error = xlog_bread(log, blk_no, bblks, dbp,
4205 &offset);
4206 if (error)
4207 goto bread_err2;
4208 } else {
4209 /* This log record is split across the
4210 * physical end of log */
4211 offset = dbp->b_addr;
4212 split_bblks = 0;
4213 if (blk_no != log->l_logBBsize) {
4214 /* some data is before the physical
4215 * end of log */
4216 ASSERT(!wrapped_hblks);
4217 ASSERT(blk_no <= INT_MAX);
4218 split_bblks =
4219 log->l_logBBsize - (int)blk_no;
4220 ASSERT(split_bblks > 0);
4221 error = xlog_bread(log, blk_no,
4222 split_bblks, dbp,
4223 &offset);
4224 if (error)
4225 goto bread_err2;
4226 }
4227
4228 /*
4229 * Note: this black magic still works with
4230 * large sector sizes (non-512) only because:
4231 * - we increased the buffer size originally
4232 * by 1 sector giving us enough extra space
4233 * for the second read;
4234 * - the log start is guaranteed to be sector
4235 * aligned;
4236 * - we read the log end (LR header start)
4237 * _first_, then the log start (LR header end)
4238 * - order is important.
4239 */
4240 error = xlog_bread_offset(log, 0,
4241 bblks - split_bblks, dbp,
4242 offset + BBTOB(split_bblks));
4243 if (error)
4244 goto bread_err2;
4245 }
4246
4247 error = xlog_unpack_data(rhead, offset, log);
4248 if (error)
4249 goto bread_err2;
4250
4251 error = xlog_recover_process_data(log, rhash,
4252 rhead, offset, pass);
4253 if (error)
4254 goto bread_err2;
4255 blk_no += bblks;
4256 }
4257
4258 ASSERT(blk_no >= log->l_logBBsize);
4259 blk_no -= log->l_logBBsize;
4260
4261 /* read first part of physical log */
4262 while (blk_no < head_blk) {
4263 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
4264 if (error)
4265 goto bread_err2;
4266
4267 rhead = (xlog_rec_header_t *)offset;
4268 error = xlog_valid_rec_header(log, rhead, blk_no);
4269 if (error)
4270 goto bread_err2;
4271
4272 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
4273 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
4274 &offset);
4275 if (error)
4276 goto bread_err2;
4277
4278 error = xlog_unpack_data(rhead, offset, log);
4279 if (error)
4280 goto bread_err2;
4281
4282 error = xlog_recover_process_data(log, rhash,
4283 rhead, offset, pass);
4284 if (error)
4285 goto bread_err2;
4286 blk_no += bblks + hblks;
4287 }
4288 }
4289
4290 bread_err2:
4291 xlog_put_bp(dbp);
4292 bread_err1:
4293 xlog_put_bp(hbp);
4294 return error;
4295 }
4296
4297 /*
4298 * Do the recovery of the log. We actually do this in two phases.
4299 * The two passes are necessary in order to implement the function
4300 * of cancelling a record written into the log. The first pass
4301 * determines those things which have been cancelled, and the
4302 * second pass replays log items normally except for those which
4303 * have been cancelled. The handling of the replay and cancellations
4304 * takes place in the log item type specific routines.
4305 *
4306 * The table of items which have cancel records in the log is allocated
4307 * and freed at this level, since only here do we know when all of
4308 * the log recovery has been completed.
4309 */
4310 STATIC int
4311 xlog_do_log_recovery(
4312 struct xlog *log,
4313 xfs_daddr_t head_blk,
4314 xfs_daddr_t tail_blk)
4315 {
4316 int error, i;
4317
4318 ASSERT(head_blk != tail_blk);
4319
4320 /*
4321 * First do a pass to find all of the cancelled buf log items.
4322 * Store them in the buf_cancel_table for use in the second pass.
4323 */
4324 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
4325 sizeof(struct list_head),
4326 KM_SLEEP);
4327 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
4328 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
4329
4330 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
4331 XLOG_RECOVER_PASS1);
4332 if (error != 0) {
4333 kmem_free(log->l_buf_cancel_table);
4334 log->l_buf_cancel_table = NULL;
4335 return error;
4336 }
4337 /*
4338 * Then do a second pass to actually recover the items in the log.
4339 * When it is complete free the table of buf cancel items.
4340 */
4341 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
4342 XLOG_RECOVER_PASS2);
4343 #ifdef DEBUG
4344 if (!error) {
4345 int i;
4346
4347 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
4348 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
4349 }
4350 #endif /* DEBUG */
4351
4352 kmem_free(log->l_buf_cancel_table);
4353 log->l_buf_cancel_table = NULL;
4354
4355 return error;
4356 }
4357
4358 /*
4359 * Do the actual recovery
4360 */
4361 STATIC int
4362 xlog_do_recover(
4363 struct xlog *log,
4364 xfs_daddr_t head_blk,
4365 xfs_daddr_t tail_blk)
4366 {
4367 int error;
4368 xfs_buf_t *bp;
4369 xfs_sb_t *sbp;
4370
4371 /*
4372 * First replay the images in the log.
4373 */
4374 error = xlog_do_log_recovery(log, head_blk, tail_blk);
4375 if (error)
4376 return error;
4377
4378 /*
4379 * If IO errors happened during recovery, bail out.
4380 */
4381 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
4382 return (EIO);
4383 }
4384
4385 /*
4386 * We now update the tail_lsn since much of the recovery has completed
4387 * and there may be space available to use. If there were no extent
4388 * or iunlinks, we can free up the entire log and set the tail_lsn to
4389 * be the last_sync_lsn. This was set in xlog_find_tail to be the
4390 * lsn of the last known good LR on disk. If there are extent frees
4391 * or iunlinks they will have some entries in the AIL; so we look at
4392 * the AIL to determine how to set the tail_lsn.
4393 */
4394 xlog_assign_tail_lsn(log->l_mp);
4395
4396 /*
4397 * Now that we've finished replaying all buffer and inode
4398 * updates, re-read in the superblock and reverify it.
4399 */
4400 bp = xfs_getsb(log->l_mp, 0);
4401 XFS_BUF_UNDONE(bp);
4402 ASSERT(!(XFS_BUF_ISWRITE(bp)));
4403 XFS_BUF_READ(bp);
4404 XFS_BUF_UNASYNC(bp);
4405 bp->b_ops = &xfs_sb_buf_ops;
4406 xfsbdstrat(log->l_mp, bp);
4407 error = xfs_buf_iowait(bp);
4408 if (error) {
4409 xfs_buf_ioerror_alert(bp, __func__);
4410 ASSERT(0);
4411 xfs_buf_relse(bp);
4412 return error;
4413 }
4414
4415 /* Convert superblock from on-disk format */
4416 sbp = &log->l_mp->m_sb;
4417 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
4418 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
4419 ASSERT(xfs_sb_good_version(sbp));
4420 xfs_buf_relse(bp);
4421
4422 /* We've re-read the superblock so re-initialize per-cpu counters */
4423 xfs_icsb_reinit_counters(log->l_mp);
4424
4425 xlog_recover_check_summary(log);
4426
4427 /* Normal transactions can now occur */
4428 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
4429 return 0;
4430 }
4431
4432 /*
4433 * Perform recovery and re-initialize some log variables in xlog_find_tail.
4434 *
4435 * Return error or zero.
4436 */
4437 int
4438 xlog_recover(
4439 struct xlog *log)
4440 {
4441 xfs_daddr_t head_blk, tail_blk;
4442 int error;
4443
4444 /* find the tail of the log */
4445 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
4446 return error;
4447
4448 if (tail_blk != head_blk) {
4449 /* There used to be a comment here:
4450 *
4451 * disallow recovery on read-only mounts. note -- mount
4452 * checks for ENOSPC and turns it into an intelligent
4453 * error message.
4454 * ...but this is no longer true. Now, unless you specify
4455 * NORECOVERY (in which case this function would never be
4456 * called), we just go ahead and recover. We do this all
4457 * under the vfs layer, so we can get away with it unless
4458 * the device itself is read-only, in which case we fail.
4459 */
4460 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
4461 return error;
4462 }
4463
4464 /*
4465 * Version 5 superblock log feature mask validation. We know the
4466 * log is dirty so check if there are any unknown log features
4467 * in what we need to recover. If there are unknown features
4468 * (e.g. unsupported transactions, then simply reject the
4469 * attempt at recovery before touching anything.
4470 */
4471 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
4472 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
4473 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
4474 xfs_warn(log->l_mp,
4475 "Superblock has unknown incompatible log features (0x%x) enabled.\n"
4476 "The log can not be fully and/or safely recovered by this kernel.\n"
4477 "Please recover the log on a kernel that supports the unknown features.",
4478 (log->l_mp->m_sb.sb_features_log_incompat &
4479 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
4480 return EINVAL;
4481 }
4482
4483 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
4484 log->l_mp->m_logname ? log->l_mp->m_logname
4485 : "internal");
4486
4487 error = xlog_do_recover(log, head_blk, tail_blk);
4488 log->l_flags |= XLOG_RECOVERY_NEEDED;
4489 }
4490 return error;
4491 }
4492
4493 /*
4494 * In the first part of recovery we replay inodes and buffers and build
4495 * up the list of extent free items which need to be processed. Here
4496 * we process the extent free items and clean up the on disk unlinked
4497 * inode lists. This is separated from the first part of recovery so
4498 * that the root and real-time bitmap inodes can be read in from disk in
4499 * between the two stages. This is necessary so that we can free space
4500 * in the real-time portion of the file system.
4501 */
4502 int
4503 xlog_recover_finish(
4504 struct xlog *log)
4505 {
4506 /*
4507 * Now we're ready to do the transactions needed for the
4508 * rest of recovery. Start with completing all the extent
4509 * free intent records and then process the unlinked inode
4510 * lists. At this point, we essentially run in normal mode
4511 * except that we're still performing recovery actions
4512 * rather than accepting new requests.
4513 */
4514 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
4515 int error;
4516 error = xlog_recover_process_efis(log);
4517 if (error) {
4518 xfs_alert(log->l_mp, "Failed to recover EFIs");
4519 return error;
4520 }
4521 /*
4522 * Sync the log to get all the EFIs out of the AIL.
4523 * This isn't absolutely necessary, but it helps in
4524 * case the unlink transactions would have problems
4525 * pushing the EFIs out of the way.
4526 */
4527 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
4528
4529 xlog_recover_process_iunlinks(log);
4530
4531 xlog_recover_check_summary(log);
4532
4533 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
4534 log->l_mp->m_logname ? log->l_mp->m_logname
4535 : "internal");
4536 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
4537 } else {
4538 xfs_info(log->l_mp, "Ending clean mount");
4539 }
4540 return 0;
4541 }
4542
4543
4544 #if defined(DEBUG)
4545 /*
4546 * Read all of the agf and agi counters and check that they
4547 * are consistent with the superblock counters.
4548 */
4549 void
4550 xlog_recover_check_summary(
4551 struct xlog *log)
4552 {
4553 xfs_mount_t *mp;
4554 xfs_agf_t *agfp;
4555 xfs_buf_t *agfbp;
4556 xfs_buf_t *agibp;
4557 xfs_agnumber_t agno;
4558 __uint64_t freeblks;
4559 __uint64_t itotal;
4560 __uint64_t ifree;
4561 int error;
4562
4563 mp = log->l_mp;
4564
4565 freeblks = 0LL;
4566 itotal = 0LL;
4567 ifree = 0LL;
4568 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4569 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
4570 if (error) {
4571 xfs_alert(mp, "%s agf read failed agno %d error %d",
4572 __func__, agno, error);
4573 } else {
4574 agfp = XFS_BUF_TO_AGF(agfbp);
4575 freeblks += be32_to_cpu(agfp->agf_freeblks) +
4576 be32_to_cpu(agfp->agf_flcount);
4577 xfs_buf_relse(agfbp);
4578 }
4579
4580 error = xfs_read_agi(mp, NULL, agno, &agibp);
4581 if (error) {
4582 xfs_alert(mp, "%s agi read failed agno %d error %d",
4583 __func__, agno, error);
4584 } else {
4585 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
4586
4587 itotal += be32_to_cpu(agi->agi_count);
4588 ifree += be32_to_cpu(agi->agi_freecount);
4589 xfs_buf_relse(agibp);
4590 }
4591 }
4592 }
4593 #endif /* DEBUG */
This page took 0.142932 seconds and 5 git commands to generate.