xfs: convert buffer verifiers to an ops structure.
[deliverable/linux.git] / fs / xfs / xfs_log_recover.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_error.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_dinode.h"
33 #include "xfs_inode.h"
34 #include "xfs_inode_item.h"
35 #include "xfs_alloc.h"
36 #include "xfs_ialloc.h"
37 #include "xfs_log_priv.h"
38 #include "xfs_buf_item.h"
39 #include "xfs_log_recover.h"
40 #include "xfs_extfree_item.h"
41 #include "xfs_trans_priv.h"
42 #include "xfs_quota.h"
43 #include "xfs_utils.h"
44 #include "xfs_trace.h"
45 #include "xfs_icache.h"
46
47 STATIC int
48 xlog_find_zeroed(
49 struct xlog *,
50 xfs_daddr_t *);
51 STATIC int
52 xlog_clear_stale_blocks(
53 struct xlog *,
54 xfs_lsn_t);
55 #if defined(DEBUG)
56 STATIC void
57 xlog_recover_check_summary(
58 struct xlog *);
59 #else
60 #define xlog_recover_check_summary(log)
61 #endif
62
63 /*
64 * This structure is used during recovery to record the buf log items which
65 * have been canceled and should not be replayed.
66 */
67 struct xfs_buf_cancel {
68 xfs_daddr_t bc_blkno;
69 uint bc_len;
70 int bc_refcount;
71 struct list_head bc_list;
72 };
73
74 /*
75 * Sector aligned buffer routines for buffer create/read/write/access
76 */
77
78 /*
79 * Verify the given count of basic blocks is valid number of blocks
80 * to specify for an operation involving the given XFS log buffer.
81 * Returns nonzero if the count is valid, 0 otherwise.
82 */
83
84 static inline int
85 xlog_buf_bbcount_valid(
86 struct xlog *log,
87 int bbcount)
88 {
89 return bbcount > 0 && bbcount <= log->l_logBBsize;
90 }
91
92 /*
93 * Allocate a buffer to hold log data. The buffer needs to be able
94 * to map to a range of nbblks basic blocks at any valid (basic
95 * block) offset within the log.
96 */
97 STATIC xfs_buf_t *
98 xlog_get_bp(
99 struct xlog *log,
100 int nbblks)
101 {
102 struct xfs_buf *bp;
103
104 if (!xlog_buf_bbcount_valid(log, nbblks)) {
105 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
106 nbblks);
107 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
108 return NULL;
109 }
110
111 /*
112 * We do log I/O in units of log sectors (a power-of-2
113 * multiple of the basic block size), so we round up the
114 * requested size to accommodate the basic blocks required
115 * for complete log sectors.
116 *
117 * In addition, the buffer may be used for a non-sector-
118 * aligned block offset, in which case an I/O of the
119 * requested size could extend beyond the end of the
120 * buffer. If the requested size is only 1 basic block it
121 * will never straddle a sector boundary, so this won't be
122 * an issue. Nor will this be a problem if the log I/O is
123 * done in basic blocks (sector size 1). But otherwise we
124 * extend the buffer by one extra log sector to ensure
125 * there's space to accommodate this possibility.
126 */
127 if (nbblks > 1 && log->l_sectBBsize > 1)
128 nbblks += log->l_sectBBsize;
129 nbblks = round_up(nbblks, log->l_sectBBsize);
130
131 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
132 if (bp)
133 xfs_buf_unlock(bp);
134 return bp;
135 }
136
137 STATIC void
138 xlog_put_bp(
139 xfs_buf_t *bp)
140 {
141 xfs_buf_free(bp);
142 }
143
144 /*
145 * Return the address of the start of the given block number's data
146 * in a log buffer. The buffer covers a log sector-aligned region.
147 */
148 STATIC xfs_caddr_t
149 xlog_align(
150 struct xlog *log,
151 xfs_daddr_t blk_no,
152 int nbblks,
153 struct xfs_buf *bp)
154 {
155 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
156
157 ASSERT(offset + nbblks <= bp->b_length);
158 return bp->b_addr + BBTOB(offset);
159 }
160
161
162 /*
163 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
164 */
165 STATIC int
166 xlog_bread_noalign(
167 struct xlog *log,
168 xfs_daddr_t blk_no,
169 int nbblks,
170 struct xfs_buf *bp)
171 {
172 int error;
173
174 if (!xlog_buf_bbcount_valid(log, nbblks)) {
175 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
176 nbblks);
177 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
178 return EFSCORRUPTED;
179 }
180
181 blk_no = round_down(blk_no, log->l_sectBBsize);
182 nbblks = round_up(nbblks, log->l_sectBBsize);
183
184 ASSERT(nbblks > 0);
185 ASSERT(nbblks <= bp->b_length);
186
187 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
188 XFS_BUF_READ(bp);
189 bp->b_io_length = nbblks;
190 bp->b_error = 0;
191
192 xfsbdstrat(log->l_mp, bp);
193 error = xfs_buf_iowait(bp);
194 if (error)
195 xfs_buf_ioerror_alert(bp, __func__);
196 return error;
197 }
198
199 STATIC int
200 xlog_bread(
201 struct xlog *log,
202 xfs_daddr_t blk_no,
203 int nbblks,
204 struct xfs_buf *bp,
205 xfs_caddr_t *offset)
206 {
207 int error;
208
209 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
210 if (error)
211 return error;
212
213 *offset = xlog_align(log, blk_no, nbblks, bp);
214 return 0;
215 }
216
217 /*
218 * Read at an offset into the buffer. Returns with the buffer in it's original
219 * state regardless of the result of the read.
220 */
221 STATIC int
222 xlog_bread_offset(
223 struct xlog *log,
224 xfs_daddr_t blk_no, /* block to read from */
225 int nbblks, /* blocks to read */
226 struct xfs_buf *bp,
227 xfs_caddr_t offset)
228 {
229 xfs_caddr_t orig_offset = bp->b_addr;
230 int orig_len = BBTOB(bp->b_length);
231 int error, error2;
232
233 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
234 if (error)
235 return error;
236
237 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
238
239 /* must reset buffer pointer even on error */
240 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
241 if (error)
242 return error;
243 return error2;
244 }
245
246 /*
247 * Write out the buffer at the given block for the given number of blocks.
248 * The buffer is kept locked across the write and is returned locked.
249 * This can only be used for synchronous log writes.
250 */
251 STATIC int
252 xlog_bwrite(
253 struct xlog *log,
254 xfs_daddr_t blk_no,
255 int nbblks,
256 struct xfs_buf *bp)
257 {
258 int error;
259
260 if (!xlog_buf_bbcount_valid(log, nbblks)) {
261 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
262 nbblks);
263 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
264 return EFSCORRUPTED;
265 }
266
267 blk_no = round_down(blk_no, log->l_sectBBsize);
268 nbblks = round_up(nbblks, log->l_sectBBsize);
269
270 ASSERT(nbblks > 0);
271 ASSERT(nbblks <= bp->b_length);
272
273 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
274 XFS_BUF_ZEROFLAGS(bp);
275 xfs_buf_hold(bp);
276 xfs_buf_lock(bp);
277 bp->b_io_length = nbblks;
278 bp->b_error = 0;
279
280 error = xfs_bwrite(bp);
281 if (error)
282 xfs_buf_ioerror_alert(bp, __func__);
283 xfs_buf_relse(bp);
284 return error;
285 }
286
287 #ifdef DEBUG
288 /*
289 * dump debug superblock and log record information
290 */
291 STATIC void
292 xlog_header_check_dump(
293 xfs_mount_t *mp,
294 xlog_rec_header_t *head)
295 {
296 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d\n",
297 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
298 xfs_debug(mp, " log : uuid = %pU, fmt = %d\n",
299 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
300 }
301 #else
302 #define xlog_header_check_dump(mp, head)
303 #endif
304
305 /*
306 * check log record header for recovery
307 */
308 STATIC int
309 xlog_header_check_recover(
310 xfs_mount_t *mp,
311 xlog_rec_header_t *head)
312 {
313 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
314
315 /*
316 * IRIX doesn't write the h_fmt field and leaves it zeroed
317 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
318 * a dirty log created in IRIX.
319 */
320 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
321 xfs_warn(mp,
322 "dirty log written in incompatible format - can't recover");
323 xlog_header_check_dump(mp, head);
324 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
325 XFS_ERRLEVEL_HIGH, mp);
326 return XFS_ERROR(EFSCORRUPTED);
327 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
328 xfs_warn(mp,
329 "dirty log entry has mismatched uuid - can't recover");
330 xlog_header_check_dump(mp, head);
331 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
332 XFS_ERRLEVEL_HIGH, mp);
333 return XFS_ERROR(EFSCORRUPTED);
334 }
335 return 0;
336 }
337
338 /*
339 * read the head block of the log and check the header
340 */
341 STATIC int
342 xlog_header_check_mount(
343 xfs_mount_t *mp,
344 xlog_rec_header_t *head)
345 {
346 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
347
348 if (uuid_is_nil(&head->h_fs_uuid)) {
349 /*
350 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
351 * h_fs_uuid is nil, we assume this log was last mounted
352 * by IRIX and continue.
353 */
354 xfs_warn(mp, "nil uuid in log - IRIX style log");
355 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
356 xfs_warn(mp, "log has mismatched uuid - can't recover");
357 xlog_header_check_dump(mp, head);
358 XFS_ERROR_REPORT("xlog_header_check_mount",
359 XFS_ERRLEVEL_HIGH, mp);
360 return XFS_ERROR(EFSCORRUPTED);
361 }
362 return 0;
363 }
364
365 STATIC void
366 xlog_recover_iodone(
367 struct xfs_buf *bp)
368 {
369 if (bp->b_error) {
370 /*
371 * We're not going to bother about retrying
372 * this during recovery. One strike!
373 */
374 xfs_buf_ioerror_alert(bp, __func__);
375 xfs_force_shutdown(bp->b_target->bt_mount,
376 SHUTDOWN_META_IO_ERROR);
377 }
378 bp->b_iodone = NULL;
379 xfs_buf_ioend(bp, 0);
380 }
381
382 /*
383 * This routine finds (to an approximation) the first block in the physical
384 * log which contains the given cycle. It uses a binary search algorithm.
385 * Note that the algorithm can not be perfect because the disk will not
386 * necessarily be perfect.
387 */
388 STATIC int
389 xlog_find_cycle_start(
390 struct xlog *log,
391 struct xfs_buf *bp,
392 xfs_daddr_t first_blk,
393 xfs_daddr_t *last_blk,
394 uint cycle)
395 {
396 xfs_caddr_t offset;
397 xfs_daddr_t mid_blk;
398 xfs_daddr_t end_blk;
399 uint mid_cycle;
400 int error;
401
402 end_blk = *last_blk;
403 mid_blk = BLK_AVG(first_blk, end_blk);
404 while (mid_blk != first_blk && mid_blk != end_blk) {
405 error = xlog_bread(log, mid_blk, 1, bp, &offset);
406 if (error)
407 return error;
408 mid_cycle = xlog_get_cycle(offset);
409 if (mid_cycle == cycle)
410 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
411 else
412 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
413 mid_blk = BLK_AVG(first_blk, end_blk);
414 }
415 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
416 (mid_blk == end_blk && mid_blk-1 == first_blk));
417
418 *last_blk = end_blk;
419
420 return 0;
421 }
422
423 /*
424 * Check that a range of blocks does not contain stop_on_cycle_no.
425 * Fill in *new_blk with the block offset where such a block is
426 * found, or with -1 (an invalid block number) if there is no such
427 * block in the range. The scan needs to occur from front to back
428 * and the pointer into the region must be updated since a later
429 * routine will need to perform another test.
430 */
431 STATIC int
432 xlog_find_verify_cycle(
433 struct xlog *log,
434 xfs_daddr_t start_blk,
435 int nbblks,
436 uint stop_on_cycle_no,
437 xfs_daddr_t *new_blk)
438 {
439 xfs_daddr_t i, j;
440 uint cycle;
441 xfs_buf_t *bp;
442 xfs_daddr_t bufblks;
443 xfs_caddr_t buf = NULL;
444 int error = 0;
445
446 /*
447 * Greedily allocate a buffer big enough to handle the full
448 * range of basic blocks we'll be examining. If that fails,
449 * try a smaller size. We need to be able to read at least
450 * a log sector, or we're out of luck.
451 */
452 bufblks = 1 << ffs(nbblks);
453 while (bufblks > log->l_logBBsize)
454 bufblks >>= 1;
455 while (!(bp = xlog_get_bp(log, bufblks))) {
456 bufblks >>= 1;
457 if (bufblks < log->l_sectBBsize)
458 return ENOMEM;
459 }
460
461 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
462 int bcount;
463
464 bcount = min(bufblks, (start_blk + nbblks - i));
465
466 error = xlog_bread(log, i, bcount, bp, &buf);
467 if (error)
468 goto out;
469
470 for (j = 0; j < bcount; j++) {
471 cycle = xlog_get_cycle(buf);
472 if (cycle == stop_on_cycle_no) {
473 *new_blk = i+j;
474 goto out;
475 }
476
477 buf += BBSIZE;
478 }
479 }
480
481 *new_blk = -1;
482
483 out:
484 xlog_put_bp(bp);
485 return error;
486 }
487
488 /*
489 * Potentially backup over partial log record write.
490 *
491 * In the typical case, last_blk is the number of the block directly after
492 * a good log record. Therefore, we subtract one to get the block number
493 * of the last block in the given buffer. extra_bblks contains the number
494 * of blocks we would have read on a previous read. This happens when the
495 * last log record is split over the end of the physical log.
496 *
497 * extra_bblks is the number of blocks potentially verified on a previous
498 * call to this routine.
499 */
500 STATIC int
501 xlog_find_verify_log_record(
502 struct xlog *log,
503 xfs_daddr_t start_blk,
504 xfs_daddr_t *last_blk,
505 int extra_bblks)
506 {
507 xfs_daddr_t i;
508 xfs_buf_t *bp;
509 xfs_caddr_t offset = NULL;
510 xlog_rec_header_t *head = NULL;
511 int error = 0;
512 int smallmem = 0;
513 int num_blks = *last_blk - start_blk;
514 int xhdrs;
515
516 ASSERT(start_blk != 0 || *last_blk != start_blk);
517
518 if (!(bp = xlog_get_bp(log, num_blks))) {
519 if (!(bp = xlog_get_bp(log, 1)))
520 return ENOMEM;
521 smallmem = 1;
522 } else {
523 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
524 if (error)
525 goto out;
526 offset += ((num_blks - 1) << BBSHIFT);
527 }
528
529 for (i = (*last_blk) - 1; i >= 0; i--) {
530 if (i < start_blk) {
531 /* valid log record not found */
532 xfs_warn(log->l_mp,
533 "Log inconsistent (didn't find previous header)");
534 ASSERT(0);
535 error = XFS_ERROR(EIO);
536 goto out;
537 }
538
539 if (smallmem) {
540 error = xlog_bread(log, i, 1, bp, &offset);
541 if (error)
542 goto out;
543 }
544
545 head = (xlog_rec_header_t *)offset;
546
547 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
548 break;
549
550 if (!smallmem)
551 offset -= BBSIZE;
552 }
553
554 /*
555 * We hit the beginning of the physical log & still no header. Return
556 * to caller. If caller can handle a return of -1, then this routine
557 * will be called again for the end of the physical log.
558 */
559 if (i == -1) {
560 error = -1;
561 goto out;
562 }
563
564 /*
565 * We have the final block of the good log (the first block
566 * of the log record _before_ the head. So we check the uuid.
567 */
568 if ((error = xlog_header_check_mount(log->l_mp, head)))
569 goto out;
570
571 /*
572 * We may have found a log record header before we expected one.
573 * last_blk will be the 1st block # with a given cycle #. We may end
574 * up reading an entire log record. In this case, we don't want to
575 * reset last_blk. Only when last_blk points in the middle of a log
576 * record do we update last_blk.
577 */
578 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
579 uint h_size = be32_to_cpu(head->h_size);
580
581 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
582 if (h_size % XLOG_HEADER_CYCLE_SIZE)
583 xhdrs++;
584 } else {
585 xhdrs = 1;
586 }
587
588 if (*last_blk - i + extra_bblks !=
589 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
590 *last_blk = i;
591
592 out:
593 xlog_put_bp(bp);
594 return error;
595 }
596
597 /*
598 * Head is defined to be the point of the log where the next log write
599 * write could go. This means that incomplete LR writes at the end are
600 * eliminated when calculating the head. We aren't guaranteed that previous
601 * LR have complete transactions. We only know that a cycle number of
602 * current cycle number -1 won't be present in the log if we start writing
603 * from our current block number.
604 *
605 * last_blk contains the block number of the first block with a given
606 * cycle number.
607 *
608 * Return: zero if normal, non-zero if error.
609 */
610 STATIC int
611 xlog_find_head(
612 struct xlog *log,
613 xfs_daddr_t *return_head_blk)
614 {
615 xfs_buf_t *bp;
616 xfs_caddr_t offset;
617 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
618 int num_scan_bblks;
619 uint first_half_cycle, last_half_cycle;
620 uint stop_on_cycle;
621 int error, log_bbnum = log->l_logBBsize;
622
623 /* Is the end of the log device zeroed? */
624 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
625 *return_head_blk = first_blk;
626
627 /* Is the whole lot zeroed? */
628 if (!first_blk) {
629 /* Linux XFS shouldn't generate totally zeroed logs -
630 * mkfs etc write a dummy unmount record to a fresh
631 * log so we can store the uuid in there
632 */
633 xfs_warn(log->l_mp, "totally zeroed log");
634 }
635
636 return 0;
637 } else if (error) {
638 xfs_warn(log->l_mp, "empty log check failed");
639 return error;
640 }
641
642 first_blk = 0; /* get cycle # of 1st block */
643 bp = xlog_get_bp(log, 1);
644 if (!bp)
645 return ENOMEM;
646
647 error = xlog_bread(log, 0, 1, bp, &offset);
648 if (error)
649 goto bp_err;
650
651 first_half_cycle = xlog_get_cycle(offset);
652
653 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
654 error = xlog_bread(log, last_blk, 1, bp, &offset);
655 if (error)
656 goto bp_err;
657
658 last_half_cycle = xlog_get_cycle(offset);
659 ASSERT(last_half_cycle != 0);
660
661 /*
662 * If the 1st half cycle number is equal to the last half cycle number,
663 * then the entire log is stamped with the same cycle number. In this
664 * case, head_blk can't be set to zero (which makes sense). The below
665 * math doesn't work out properly with head_blk equal to zero. Instead,
666 * we set it to log_bbnum which is an invalid block number, but this
667 * value makes the math correct. If head_blk doesn't changed through
668 * all the tests below, *head_blk is set to zero at the very end rather
669 * than log_bbnum. In a sense, log_bbnum and zero are the same block
670 * in a circular file.
671 */
672 if (first_half_cycle == last_half_cycle) {
673 /*
674 * In this case we believe that the entire log should have
675 * cycle number last_half_cycle. We need to scan backwards
676 * from the end verifying that there are no holes still
677 * containing last_half_cycle - 1. If we find such a hole,
678 * then the start of that hole will be the new head. The
679 * simple case looks like
680 * x | x ... | x - 1 | x
681 * Another case that fits this picture would be
682 * x | x + 1 | x ... | x
683 * In this case the head really is somewhere at the end of the
684 * log, as one of the latest writes at the beginning was
685 * incomplete.
686 * One more case is
687 * x | x + 1 | x ... | x - 1 | x
688 * This is really the combination of the above two cases, and
689 * the head has to end up at the start of the x-1 hole at the
690 * end of the log.
691 *
692 * In the 256k log case, we will read from the beginning to the
693 * end of the log and search for cycle numbers equal to x-1.
694 * We don't worry about the x+1 blocks that we encounter,
695 * because we know that they cannot be the head since the log
696 * started with x.
697 */
698 head_blk = log_bbnum;
699 stop_on_cycle = last_half_cycle - 1;
700 } else {
701 /*
702 * In this case we want to find the first block with cycle
703 * number matching last_half_cycle. We expect the log to be
704 * some variation on
705 * x + 1 ... | x ... | x
706 * The first block with cycle number x (last_half_cycle) will
707 * be where the new head belongs. First we do a binary search
708 * for the first occurrence of last_half_cycle. The binary
709 * search may not be totally accurate, so then we scan back
710 * from there looking for occurrences of last_half_cycle before
711 * us. If that backwards scan wraps around the beginning of
712 * the log, then we look for occurrences of last_half_cycle - 1
713 * at the end of the log. The cases we're looking for look
714 * like
715 * v binary search stopped here
716 * x + 1 ... | x | x + 1 | x ... | x
717 * ^ but we want to locate this spot
718 * or
719 * <---------> less than scan distance
720 * x + 1 ... | x ... | x - 1 | x
721 * ^ we want to locate this spot
722 */
723 stop_on_cycle = last_half_cycle;
724 if ((error = xlog_find_cycle_start(log, bp, first_blk,
725 &head_blk, last_half_cycle)))
726 goto bp_err;
727 }
728
729 /*
730 * Now validate the answer. Scan back some number of maximum possible
731 * blocks and make sure each one has the expected cycle number. The
732 * maximum is determined by the total possible amount of buffering
733 * in the in-core log. The following number can be made tighter if
734 * we actually look at the block size of the filesystem.
735 */
736 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
737 if (head_blk >= num_scan_bblks) {
738 /*
739 * We are guaranteed that the entire check can be performed
740 * in one buffer.
741 */
742 start_blk = head_blk - num_scan_bblks;
743 if ((error = xlog_find_verify_cycle(log,
744 start_blk, num_scan_bblks,
745 stop_on_cycle, &new_blk)))
746 goto bp_err;
747 if (new_blk != -1)
748 head_blk = new_blk;
749 } else { /* need to read 2 parts of log */
750 /*
751 * We are going to scan backwards in the log in two parts.
752 * First we scan the physical end of the log. In this part
753 * of the log, we are looking for blocks with cycle number
754 * last_half_cycle - 1.
755 * If we find one, then we know that the log starts there, as
756 * we've found a hole that didn't get written in going around
757 * the end of the physical log. The simple case for this is
758 * x + 1 ... | x ... | x - 1 | x
759 * <---------> less than scan distance
760 * If all of the blocks at the end of the log have cycle number
761 * last_half_cycle, then we check the blocks at the start of
762 * the log looking for occurrences of last_half_cycle. If we
763 * find one, then our current estimate for the location of the
764 * first occurrence of last_half_cycle is wrong and we move
765 * back to the hole we've found. This case looks like
766 * x + 1 ... | x | x + 1 | x ...
767 * ^ binary search stopped here
768 * Another case we need to handle that only occurs in 256k
769 * logs is
770 * x + 1 ... | x ... | x+1 | x ...
771 * ^ binary search stops here
772 * In a 256k log, the scan at the end of the log will see the
773 * x + 1 blocks. We need to skip past those since that is
774 * certainly not the head of the log. By searching for
775 * last_half_cycle-1 we accomplish that.
776 */
777 ASSERT(head_blk <= INT_MAX &&
778 (xfs_daddr_t) num_scan_bblks >= head_blk);
779 start_blk = log_bbnum - (num_scan_bblks - head_blk);
780 if ((error = xlog_find_verify_cycle(log, start_blk,
781 num_scan_bblks - (int)head_blk,
782 (stop_on_cycle - 1), &new_blk)))
783 goto bp_err;
784 if (new_blk != -1) {
785 head_blk = new_blk;
786 goto validate_head;
787 }
788
789 /*
790 * Scan beginning of log now. The last part of the physical
791 * log is good. This scan needs to verify that it doesn't find
792 * the last_half_cycle.
793 */
794 start_blk = 0;
795 ASSERT(head_blk <= INT_MAX);
796 if ((error = xlog_find_verify_cycle(log,
797 start_blk, (int)head_blk,
798 stop_on_cycle, &new_blk)))
799 goto bp_err;
800 if (new_blk != -1)
801 head_blk = new_blk;
802 }
803
804 validate_head:
805 /*
806 * Now we need to make sure head_blk is not pointing to a block in
807 * the middle of a log record.
808 */
809 num_scan_bblks = XLOG_REC_SHIFT(log);
810 if (head_blk >= num_scan_bblks) {
811 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
812
813 /* start ptr at last block ptr before head_blk */
814 if ((error = xlog_find_verify_log_record(log, start_blk,
815 &head_blk, 0)) == -1) {
816 error = XFS_ERROR(EIO);
817 goto bp_err;
818 } else if (error)
819 goto bp_err;
820 } else {
821 start_blk = 0;
822 ASSERT(head_blk <= INT_MAX);
823 if ((error = xlog_find_verify_log_record(log, start_blk,
824 &head_blk, 0)) == -1) {
825 /* We hit the beginning of the log during our search */
826 start_blk = log_bbnum - (num_scan_bblks - head_blk);
827 new_blk = log_bbnum;
828 ASSERT(start_blk <= INT_MAX &&
829 (xfs_daddr_t) log_bbnum-start_blk >= 0);
830 ASSERT(head_blk <= INT_MAX);
831 if ((error = xlog_find_verify_log_record(log,
832 start_blk, &new_blk,
833 (int)head_blk)) == -1) {
834 error = XFS_ERROR(EIO);
835 goto bp_err;
836 } else if (error)
837 goto bp_err;
838 if (new_blk != log_bbnum)
839 head_blk = new_blk;
840 } else if (error)
841 goto bp_err;
842 }
843
844 xlog_put_bp(bp);
845 if (head_blk == log_bbnum)
846 *return_head_blk = 0;
847 else
848 *return_head_blk = head_blk;
849 /*
850 * When returning here, we have a good block number. Bad block
851 * means that during a previous crash, we didn't have a clean break
852 * from cycle number N to cycle number N-1. In this case, we need
853 * to find the first block with cycle number N-1.
854 */
855 return 0;
856
857 bp_err:
858 xlog_put_bp(bp);
859
860 if (error)
861 xfs_warn(log->l_mp, "failed to find log head");
862 return error;
863 }
864
865 /*
866 * Find the sync block number or the tail of the log.
867 *
868 * This will be the block number of the last record to have its
869 * associated buffers synced to disk. Every log record header has
870 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
871 * to get a sync block number. The only concern is to figure out which
872 * log record header to believe.
873 *
874 * The following algorithm uses the log record header with the largest
875 * lsn. The entire log record does not need to be valid. We only care
876 * that the header is valid.
877 *
878 * We could speed up search by using current head_blk buffer, but it is not
879 * available.
880 */
881 STATIC int
882 xlog_find_tail(
883 struct xlog *log,
884 xfs_daddr_t *head_blk,
885 xfs_daddr_t *tail_blk)
886 {
887 xlog_rec_header_t *rhead;
888 xlog_op_header_t *op_head;
889 xfs_caddr_t offset = NULL;
890 xfs_buf_t *bp;
891 int error, i, found;
892 xfs_daddr_t umount_data_blk;
893 xfs_daddr_t after_umount_blk;
894 xfs_lsn_t tail_lsn;
895 int hblks;
896
897 found = 0;
898
899 /*
900 * Find previous log record
901 */
902 if ((error = xlog_find_head(log, head_blk)))
903 return error;
904
905 bp = xlog_get_bp(log, 1);
906 if (!bp)
907 return ENOMEM;
908 if (*head_blk == 0) { /* special case */
909 error = xlog_bread(log, 0, 1, bp, &offset);
910 if (error)
911 goto done;
912
913 if (xlog_get_cycle(offset) == 0) {
914 *tail_blk = 0;
915 /* leave all other log inited values alone */
916 goto done;
917 }
918 }
919
920 /*
921 * Search backwards looking for log record header block
922 */
923 ASSERT(*head_blk < INT_MAX);
924 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
925 error = xlog_bread(log, i, 1, bp, &offset);
926 if (error)
927 goto done;
928
929 if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
930 found = 1;
931 break;
932 }
933 }
934 /*
935 * If we haven't found the log record header block, start looking
936 * again from the end of the physical log. XXXmiken: There should be
937 * a check here to make sure we didn't search more than N blocks in
938 * the previous code.
939 */
940 if (!found) {
941 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
942 error = xlog_bread(log, i, 1, bp, &offset);
943 if (error)
944 goto done;
945
946 if (*(__be32 *)offset ==
947 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
948 found = 2;
949 break;
950 }
951 }
952 }
953 if (!found) {
954 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
955 ASSERT(0);
956 return XFS_ERROR(EIO);
957 }
958
959 /* find blk_no of tail of log */
960 rhead = (xlog_rec_header_t *)offset;
961 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
962
963 /*
964 * Reset log values according to the state of the log when we
965 * crashed. In the case where head_blk == 0, we bump curr_cycle
966 * one because the next write starts a new cycle rather than
967 * continuing the cycle of the last good log record. At this
968 * point we have guaranteed that all partial log records have been
969 * accounted for. Therefore, we know that the last good log record
970 * written was complete and ended exactly on the end boundary
971 * of the physical log.
972 */
973 log->l_prev_block = i;
974 log->l_curr_block = (int)*head_blk;
975 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
976 if (found == 2)
977 log->l_curr_cycle++;
978 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
979 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
980 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
981 BBTOB(log->l_curr_block));
982 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
983 BBTOB(log->l_curr_block));
984
985 /*
986 * Look for unmount record. If we find it, then we know there
987 * was a clean unmount. Since 'i' could be the last block in
988 * the physical log, we convert to a log block before comparing
989 * to the head_blk.
990 *
991 * Save the current tail lsn to use to pass to
992 * xlog_clear_stale_blocks() below. We won't want to clear the
993 * unmount record if there is one, so we pass the lsn of the
994 * unmount record rather than the block after it.
995 */
996 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
997 int h_size = be32_to_cpu(rhead->h_size);
998 int h_version = be32_to_cpu(rhead->h_version);
999
1000 if ((h_version & XLOG_VERSION_2) &&
1001 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1002 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1003 if (h_size % XLOG_HEADER_CYCLE_SIZE)
1004 hblks++;
1005 } else {
1006 hblks = 1;
1007 }
1008 } else {
1009 hblks = 1;
1010 }
1011 after_umount_blk = (i + hblks + (int)
1012 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1013 tail_lsn = atomic64_read(&log->l_tail_lsn);
1014 if (*head_blk == after_umount_blk &&
1015 be32_to_cpu(rhead->h_num_logops) == 1) {
1016 umount_data_blk = (i + hblks) % log->l_logBBsize;
1017 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1018 if (error)
1019 goto done;
1020
1021 op_head = (xlog_op_header_t *)offset;
1022 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1023 /*
1024 * Set tail and last sync so that newly written
1025 * log records will point recovery to after the
1026 * current unmount record.
1027 */
1028 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1029 log->l_curr_cycle, after_umount_blk);
1030 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1031 log->l_curr_cycle, after_umount_blk);
1032 *tail_blk = after_umount_blk;
1033
1034 /*
1035 * Note that the unmount was clean. If the unmount
1036 * was not clean, we need to know this to rebuild the
1037 * superblock counters from the perag headers if we
1038 * have a filesystem using non-persistent counters.
1039 */
1040 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1041 }
1042 }
1043
1044 /*
1045 * Make sure that there are no blocks in front of the head
1046 * with the same cycle number as the head. This can happen
1047 * because we allow multiple outstanding log writes concurrently,
1048 * and the later writes might make it out before earlier ones.
1049 *
1050 * We use the lsn from before modifying it so that we'll never
1051 * overwrite the unmount record after a clean unmount.
1052 *
1053 * Do this only if we are going to recover the filesystem
1054 *
1055 * NOTE: This used to say "if (!readonly)"
1056 * However on Linux, we can & do recover a read-only filesystem.
1057 * We only skip recovery if NORECOVERY is specified on mount,
1058 * in which case we would not be here.
1059 *
1060 * But... if the -device- itself is readonly, just skip this.
1061 * We can't recover this device anyway, so it won't matter.
1062 */
1063 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1064 error = xlog_clear_stale_blocks(log, tail_lsn);
1065
1066 done:
1067 xlog_put_bp(bp);
1068
1069 if (error)
1070 xfs_warn(log->l_mp, "failed to locate log tail");
1071 return error;
1072 }
1073
1074 /*
1075 * Is the log zeroed at all?
1076 *
1077 * The last binary search should be changed to perform an X block read
1078 * once X becomes small enough. You can then search linearly through
1079 * the X blocks. This will cut down on the number of reads we need to do.
1080 *
1081 * If the log is partially zeroed, this routine will pass back the blkno
1082 * of the first block with cycle number 0. It won't have a complete LR
1083 * preceding it.
1084 *
1085 * Return:
1086 * 0 => the log is completely written to
1087 * -1 => use *blk_no as the first block of the log
1088 * >0 => error has occurred
1089 */
1090 STATIC int
1091 xlog_find_zeroed(
1092 struct xlog *log,
1093 xfs_daddr_t *blk_no)
1094 {
1095 xfs_buf_t *bp;
1096 xfs_caddr_t offset;
1097 uint first_cycle, last_cycle;
1098 xfs_daddr_t new_blk, last_blk, start_blk;
1099 xfs_daddr_t num_scan_bblks;
1100 int error, log_bbnum = log->l_logBBsize;
1101
1102 *blk_no = 0;
1103
1104 /* check totally zeroed log */
1105 bp = xlog_get_bp(log, 1);
1106 if (!bp)
1107 return ENOMEM;
1108 error = xlog_bread(log, 0, 1, bp, &offset);
1109 if (error)
1110 goto bp_err;
1111
1112 first_cycle = xlog_get_cycle(offset);
1113 if (first_cycle == 0) { /* completely zeroed log */
1114 *blk_no = 0;
1115 xlog_put_bp(bp);
1116 return -1;
1117 }
1118
1119 /* check partially zeroed log */
1120 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1121 if (error)
1122 goto bp_err;
1123
1124 last_cycle = xlog_get_cycle(offset);
1125 if (last_cycle != 0) { /* log completely written to */
1126 xlog_put_bp(bp);
1127 return 0;
1128 } else if (first_cycle != 1) {
1129 /*
1130 * If the cycle of the last block is zero, the cycle of
1131 * the first block must be 1. If it's not, maybe we're
1132 * not looking at a log... Bail out.
1133 */
1134 xfs_warn(log->l_mp,
1135 "Log inconsistent or not a log (last==0, first!=1)");
1136 return XFS_ERROR(EINVAL);
1137 }
1138
1139 /* we have a partially zeroed log */
1140 last_blk = log_bbnum-1;
1141 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1142 goto bp_err;
1143
1144 /*
1145 * Validate the answer. Because there is no way to guarantee that
1146 * the entire log is made up of log records which are the same size,
1147 * we scan over the defined maximum blocks. At this point, the maximum
1148 * is not chosen to mean anything special. XXXmiken
1149 */
1150 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1151 ASSERT(num_scan_bblks <= INT_MAX);
1152
1153 if (last_blk < num_scan_bblks)
1154 num_scan_bblks = last_blk;
1155 start_blk = last_blk - num_scan_bblks;
1156
1157 /*
1158 * We search for any instances of cycle number 0 that occur before
1159 * our current estimate of the head. What we're trying to detect is
1160 * 1 ... | 0 | 1 | 0...
1161 * ^ binary search ends here
1162 */
1163 if ((error = xlog_find_verify_cycle(log, start_blk,
1164 (int)num_scan_bblks, 0, &new_blk)))
1165 goto bp_err;
1166 if (new_blk != -1)
1167 last_blk = new_blk;
1168
1169 /*
1170 * Potentially backup over partial log record write. We don't need
1171 * to search the end of the log because we know it is zero.
1172 */
1173 if ((error = xlog_find_verify_log_record(log, start_blk,
1174 &last_blk, 0)) == -1) {
1175 error = XFS_ERROR(EIO);
1176 goto bp_err;
1177 } else if (error)
1178 goto bp_err;
1179
1180 *blk_no = last_blk;
1181 bp_err:
1182 xlog_put_bp(bp);
1183 if (error)
1184 return error;
1185 return -1;
1186 }
1187
1188 /*
1189 * These are simple subroutines used by xlog_clear_stale_blocks() below
1190 * to initialize a buffer full of empty log record headers and write
1191 * them into the log.
1192 */
1193 STATIC void
1194 xlog_add_record(
1195 struct xlog *log,
1196 xfs_caddr_t buf,
1197 int cycle,
1198 int block,
1199 int tail_cycle,
1200 int tail_block)
1201 {
1202 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1203
1204 memset(buf, 0, BBSIZE);
1205 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1206 recp->h_cycle = cpu_to_be32(cycle);
1207 recp->h_version = cpu_to_be32(
1208 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1209 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1210 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1211 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1212 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1213 }
1214
1215 STATIC int
1216 xlog_write_log_records(
1217 struct xlog *log,
1218 int cycle,
1219 int start_block,
1220 int blocks,
1221 int tail_cycle,
1222 int tail_block)
1223 {
1224 xfs_caddr_t offset;
1225 xfs_buf_t *bp;
1226 int balign, ealign;
1227 int sectbb = log->l_sectBBsize;
1228 int end_block = start_block + blocks;
1229 int bufblks;
1230 int error = 0;
1231 int i, j = 0;
1232
1233 /*
1234 * Greedily allocate a buffer big enough to handle the full
1235 * range of basic blocks to be written. If that fails, try
1236 * a smaller size. We need to be able to write at least a
1237 * log sector, or we're out of luck.
1238 */
1239 bufblks = 1 << ffs(blocks);
1240 while (bufblks > log->l_logBBsize)
1241 bufblks >>= 1;
1242 while (!(bp = xlog_get_bp(log, bufblks))) {
1243 bufblks >>= 1;
1244 if (bufblks < sectbb)
1245 return ENOMEM;
1246 }
1247
1248 /* We may need to do a read at the start to fill in part of
1249 * the buffer in the starting sector not covered by the first
1250 * write below.
1251 */
1252 balign = round_down(start_block, sectbb);
1253 if (balign != start_block) {
1254 error = xlog_bread_noalign(log, start_block, 1, bp);
1255 if (error)
1256 goto out_put_bp;
1257
1258 j = start_block - balign;
1259 }
1260
1261 for (i = start_block; i < end_block; i += bufblks) {
1262 int bcount, endcount;
1263
1264 bcount = min(bufblks, end_block - start_block);
1265 endcount = bcount - j;
1266
1267 /* We may need to do a read at the end to fill in part of
1268 * the buffer in the final sector not covered by the write.
1269 * If this is the same sector as the above read, skip it.
1270 */
1271 ealign = round_down(end_block, sectbb);
1272 if (j == 0 && (start_block + endcount > ealign)) {
1273 offset = bp->b_addr + BBTOB(ealign - start_block);
1274 error = xlog_bread_offset(log, ealign, sectbb,
1275 bp, offset);
1276 if (error)
1277 break;
1278
1279 }
1280
1281 offset = xlog_align(log, start_block, endcount, bp);
1282 for (; j < endcount; j++) {
1283 xlog_add_record(log, offset, cycle, i+j,
1284 tail_cycle, tail_block);
1285 offset += BBSIZE;
1286 }
1287 error = xlog_bwrite(log, start_block, endcount, bp);
1288 if (error)
1289 break;
1290 start_block += endcount;
1291 j = 0;
1292 }
1293
1294 out_put_bp:
1295 xlog_put_bp(bp);
1296 return error;
1297 }
1298
1299 /*
1300 * This routine is called to blow away any incomplete log writes out
1301 * in front of the log head. We do this so that we won't become confused
1302 * if we come up, write only a little bit more, and then crash again.
1303 * If we leave the partial log records out there, this situation could
1304 * cause us to think those partial writes are valid blocks since they
1305 * have the current cycle number. We get rid of them by overwriting them
1306 * with empty log records with the old cycle number rather than the
1307 * current one.
1308 *
1309 * The tail lsn is passed in rather than taken from
1310 * the log so that we will not write over the unmount record after a
1311 * clean unmount in a 512 block log. Doing so would leave the log without
1312 * any valid log records in it until a new one was written. If we crashed
1313 * during that time we would not be able to recover.
1314 */
1315 STATIC int
1316 xlog_clear_stale_blocks(
1317 struct xlog *log,
1318 xfs_lsn_t tail_lsn)
1319 {
1320 int tail_cycle, head_cycle;
1321 int tail_block, head_block;
1322 int tail_distance, max_distance;
1323 int distance;
1324 int error;
1325
1326 tail_cycle = CYCLE_LSN(tail_lsn);
1327 tail_block = BLOCK_LSN(tail_lsn);
1328 head_cycle = log->l_curr_cycle;
1329 head_block = log->l_curr_block;
1330
1331 /*
1332 * Figure out the distance between the new head of the log
1333 * and the tail. We want to write over any blocks beyond the
1334 * head that we may have written just before the crash, but
1335 * we don't want to overwrite the tail of the log.
1336 */
1337 if (head_cycle == tail_cycle) {
1338 /*
1339 * The tail is behind the head in the physical log,
1340 * so the distance from the head to the tail is the
1341 * distance from the head to the end of the log plus
1342 * the distance from the beginning of the log to the
1343 * tail.
1344 */
1345 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1346 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1347 XFS_ERRLEVEL_LOW, log->l_mp);
1348 return XFS_ERROR(EFSCORRUPTED);
1349 }
1350 tail_distance = tail_block + (log->l_logBBsize - head_block);
1351 } else {
1352 /*
1353 * The head is behind the tail in the physical log,
1354 * so the distance from the head to the tail is just
1355 * the tail block minus the head block.
1356 */
1357 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1358 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1359 XFS_ERRLEVEL_LOW, log->l_mp);
1360 return XFS_ERROR(EFSCORRUPTED);
1361 }
1362 tail_distance = tail_block - head_block;
1363 }
1364
1365 /*
1366 * If the head is right up against the tail, we can't clear
1367 * anything.
1368 */
1369 if (tail_distance <= 0) {
1370 ASSERT(tail_distance == 0);
1371 return 0;
1372 }
1373
1374 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1375 /*
1376 * Take the smaller of the maximum amount of outstanding I/O
1377 * we could have and the distance to the tail to clear out.
1378 * We take the smaller so that we don't overwrite the tail and
1379 * we don't waste all day writing from the head to the tail
1380 * for no reason.
1381 */
1382 max_distance = MIN(max_distance, tail_distance);
1383
1384 if ((head_block + max_distance) <= log->l_logBBsize) {
1385 /*
1386 * We can stomp all the blocks we need to without
1387 * wrapping around the end of the log. Just do it
1388 * in a single write. Use the cycle number of the
1389 * current cycle minus one so that the log will look like:
1390 * n ... | n - 1 ...
1391 */
1392 error = xlog_write_log_records(log, (head_cycle - 1),
1393 head_block, max_distance, tail_cycle,
1394 tail_block);
1395 if (error)
1396 return error;
1397 } else {
1398 /*
1399 * We need to wrap around the end of the physical log in
1400 * order to clear all the blocks. Do it in two separate
1401 * I/Os. The first write should be from the head to the
1402 * end of the physical log, and it should use the current
1403 * cycle number minus one just like above.
1404 */
1405 distance = log->l_logBBsize - head_block;
1406 error = xlog_write_log_records(log, (head_cycle - 1),
1407 head_block, distance, tail_cycle,
1408 tail_block);
1409
1410 if (error)
1411 return error;
1412
1413 /*
1414 * Now write the blocks at the start of the physical log.
1415 * This writes the remainder of the blocks we want to clear.
1416 * It uses the current cycle number since we're now on the
1417 * same cycle as the head so that we get:
1418 * n ... n ... | n - 1 ...
1419 * ^^^^^ blocks we're writing
1420 */
1421 distance = max_distance - (log->l_logBBsize - head_block);
1422 error = xlog_write_log_records(log, head_cycle, 0, distance,
1423 tail_cycle, tail_block);
1424 if (error)
1425 return error;
1426 }
1427
1428 return 0;
1429 }
1430
1431 /******************************************************************************
1432 *
1433 * Log recover routines
1434 *
1435 ******************************************************************************
1436 */
1437
1438 STATIC xlog_recover_t *
1439 xlog_recover_find_tid(
1440 struct hlist_head *head,
1441 xlog_tid_t tid)
1442 {
1443 xlog_recover_t *trans;
1444 struct hlist_node *n;
1445
1446 hlist_for_each_entry(trans, n, head, r_list) {
1447 if (trans->r_log_tid == tid)
1448 return trans;
1449 }
1450 return NULL;
1451 }
1452
1453 STATIC void
1454 xlog_recover_new_tid(
1455 struct hlist_head *head,
1456 xlog_tid_t tid,
1457 xfs_lsn_t lsn)
1458 {
1459 xlog_recover_t *trans;
1460
1461 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1462 trans->r_log_tid = tid;
1463 trans->r_lsn = lsn;
1464 INIT_LIST_HEAD(&trans->r_itemq);
1465
1466 INIT_HLIST_NODE(&trans->r_list);
1467 hlist_add_head(&trans->r_list, head);
1468 }
1469
1470 STATIC void
1471 xlog_recover_add_item(
1472 struct list_head *head)
1473 {
1474 xlog_recover_item_t *item;
1475
1476 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1477 INIT_LIST_HEAD(&item->ri_list);
1478 list_add_tail(&item->ri_list, head);
1479 }
1480
1481 STATIC int
1482 xlog_recover_add_to_cont_trans(
1483 struct xlog *log,
1484 struct xlog_recover *trans,
1485 xfs_caddr_t dp,
1486 int len)
1487 {
1488 xlog_recover_item_t *item;
1489 xfs_caddr_t ptr, old_ptr;
1490 int old_len;
1491
1492 if (list_empty(&trans->r_itemq)) {
1493 /* finish copying rest of trans header */
1494 xlog_recover_add_item(&trans->r_itemq);
1495 ptr = (xfs_caddr_t) &trans->r_theader +
1496 sizeof(xfs_trans_header_t) - len;
1497 memcpy(ptr, dp, len); /* d, s, l */
1498 return 0;
1499 }
1500 /* take the tail entry */
1501 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1502
1503 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1504 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1505
1506 ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
1507 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1508 item->ri_buf[item->ri_cnt-1].i_len += len;
1509 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1510 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1511 return 0;
1512 }
1513
1514 /*
1515 * The next region to add is the start of a new region. It could be
1516 * a whole region or it could be the first part of a new region. Because
1517 * of this, the assumption here is that the type and size fields of all
1518 * format structures fit into the first 32 bits of the structure.
1519 *
1520 * This works because all regions must be 32 bit aligned. Therefore, we
1521 * either have both fields or we have neither field. In the case we have
1522 * neither field, the data part of the region is zero length. We only have
1523 * a log_op_header and can throw away the header since a new one will appear
1524 * later. If we have at least 4 bytes, then we can determine how many regions
1525 * will appear in the current log item.
1526 */
1527 STATIC int
1528 xlog_recover_add_to_trans(
1529 struct xlog *log,
1530 struct xlog_recover *trans,
1531 xfs_caddr_t dp,
1532 int len)
1533 {
1534 xfs_inode_log_format_t *in_f; /* any will do */
1535 xlog_recover_item_t *item;
1536 xfs_caddr_t ptr;
1537
1538 if (!len)
1539 return 0;
1540 if (list_empty(&trans->r_itemq)) {
1541 /* we need to catch log corruptions here */
1542 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1543 xfs_warn(log->l_mp, "%s: bad header magic number",
1544 __func__);
1545 ASSERT(0);
1546 return XFS_ERROR(EIO);
1547 }
1548 if (len == sizeof(xfs_trans_header_t))
1549 xlog_recover_add_item(&trans->r_itemq);
1550 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1551 return 0;
1552 }
1553
1554 ptr = kmem_alloc(len, KM_SLEEP);
1555 memcpy(ptr, dp, len);
1556 in_f = (xfs_inode_log_format_t *)ptr;
1557
1558 /* take the tail entry */
1559 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1560 if (item->ri_total != 0 &&
1561 item->ri_total == item->ri_cnt) {
1562 /* tail item is in use, get a new one */
1563 xlog_recover_add_item(&trans->r_itemq);
1564 item = list_entry(trans->r_itemq.prev,
1565 xlog_recover_item_t, ri_list);
1566 }
1567
1568 if (item->ri_total == 0) { /* first region to be added */
1569 if (in_f->ilf_size == 0 ||
1570 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
1571 xfs_warn(log->l_mp,
1572 "bad number of regions (%d) in inode log format",
1573 in_f->ilf_size);
1574 ASSERT(0);
1575 return XFS_ERROR(EIO);
1576 }
1577
1578 item->ri_total = in_f->ilf_size;
1579 item->ri_buf =
1580 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1581 KM_SLEEP);
1582 }
1583 ASSERT(item->ri_total > item->ri_cnt);
1584 /* Description region is ri_buf[0] */
1585 item->ri_buf[item->ri_cnt].i_addr = ptr;
1586 item->ri_buf[item->ri_cnt].i_len = len;
1587 item->ri_cnt++;
1588 trace_xfs_log_recover_item_add(log, trans, item, 0);
1589 return 0;
1590 }
1591
1592 /*
1593 * Sort the log items in the transaction. Cancelled buffers need
1594 * to be put first so they are processed before any items that might
1595 * modify the buffers. If they are cancelled, then the modifications
1596 * don't need to be replayed.
1597 */
1598 STATIC int
1599 xlog_recover_reorder_trans(
1600 struct xlog *log,
1601 struct xlog_recover *trans,
1602 int pass)
1603 {
1604 xlog_recover_item_t *item, *n;
1605 LIST_HEAD(sort_list);
1606
1607 list_splice_init(&trans->r_itemq, &sort_list);
1608 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1609 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1610
1611 switch (ITEM_TYPE(item)) {
1612 case XFS_LI_BUF:
1613 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1614 trace_xfs_log_recover_item_reorder_head(log,
1615 trans, item, pass);
1616 list_move(&item->ri_list, &trans->r_itemq);
1617 break;
1618 }
1619 case XFS_LI_INODE:
1620 case XFS_LI_DQUOT:
1621 case XFS_LI_QUOTAOFF:
1622 case XFS_LI_EFD:
1623 case XFS_LI_EFI:
1624 trace_xfs_log_recover_item_reorder_tail(log,
1625 trans, item, pass);
1626 list_move_tail(&item->ri_list, &trans->r_itemq);
1627 break;
1628 default:
1629 xfs_warn(log->l_mp,
1630 "%s: unrecognized type of log operation",
1631 __func__);
1632 ASSERT(0);
1633 return XFS_ERROR(EIO);
1634 }
1635 }
1636 ASSERT(list_empty(&sort_list));
1637 return 0;
1638 }
1639
1640 /*
1641 * Build up the table of buf cancel records so that we don't replay
1642 * cancelled data in the second pass. For buffer records that are
1643 * not cancel records, there is nothing to do here so we just return.
1644 *
1645 * If we get a cancel record which is already in the table, this indicates
1646 * that the buffer was cancelled multiple times. In order to ensure
1647 * that during pass 2 we keep the record in the table until we reach its
1648 * last occurrence in the log, we keep a reference count in the cancel
1649 * record in the table to tell us how many times we expect to see this
1650 * record during the second pass.
1651 */
1652 STATIC int
1653 xlog_recover_buffer_pass1(
1654 struct xlog *log,
1655 struct xlog_recover_item *item)
1656 {
1657 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1658 struct list_head *bucket;
1659 struct xfs_buf_cancel *bcp;
1660
1661 /*
1662 * If this isn't a cancel buffer item, then just return.
1663 */
1664 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1665 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1666 return 0;
1667 }
1668
1669 /*
1670 * Insert an xfs_buf_cancel record into the hash table of them.
1671 * If there is already an identical record, bump its reference count.
1672 */
1673 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1674 list_for_each_entry(bcp, bucket, bc_list) {
1675 if (bcp->bc_blkno == buf_f->blf_blkno &&
1676 bcp->bc_len == buf_f->blf_len) {
1677 bcp->bc_refcount++;
1678 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1679 return 0;
1680 }
1681 }
1682
1683 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1684 bcp->bc_blkno = buf_f->blf_blkno;
1685 bcp->bc_len = buf_f->blf_len;
1686 bcp->bc_refcount = 1;
1687 list_add_tail(&bcp->bc_list, bucket);
1688
1689 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1690 return 0;
1691 }
1692
1693 /*
1694 * Check to see whether the buffer being recovered has a corresponding
1695 * entry in the buffer cancel record table. If it does then return 1
1696 * so that it will be cancelled, otherwise return 0. If the buffer is
1697 * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
1698 * the refcount on the entry in the table and remove it from the table
1699 * if this is the last reference.
1700 *
1701 * We remove the cancel record from the table when we encounter its
1702 * last occurrence in the log so that if the same buffer is re-used
1703 * again after its last cancellation we actually replay the changes
1704 * made at that point.
1705 */
1706 STATIC int
1707 xlog_check_buffer_cancelled(
1708 struct xlog *log,
1709 xfs_daddr_t blkno,
1710 uint len,
1711 ushort flags)
1712 {
1713 struct list_head *bucket;
1714 struct xfs_buf_cancel *bcp;
1715
1716 if (log->l_buf_cancel_table == NULL) {
1717 /*
1718 * There is nothing in the table built in pass one,
1719 * so this buffer must not be cancelled.
1720 */
1721 ASSERT(!(flags & XFS_BLF_CANCEL));
1722 return 0;
1723 }
1724
1725 /*
1726 * Search for an entry in the cancel table that matches our buffer.
1727 */
1728 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1729 list_for_each_entry(bcp, bucket, bc_list) {
1730 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
1731 goto found;
1732 }
1733
1734 /*
1735 * We didn't find a corresponding entry in the table, so return 0 so
1736 * that the buffer is NOT cancelled.
1737 */
1738 ASSERT(!(flags & XFS_BLF_CANCEL));
1739 return 0;
1740
1741 found:
1742 /*
1743 * We've go a match, so return 1 so that the recovery of this buffer
1744 * is cancelled. If this buffer is actually a buffer cancel log
1745 * item, then decrement the refcount on the one in the table and
1746 * remove it if this is the last reference.
1747 */
1748 if (flags & XFS_BLF_CANCEL) {
1749 if (--bcp->bc_refcount == 0) {
1750 list_del(&bcp->bc_list);
1751 kmem_free(bcp);
1752 }
1753 }
1754 return 1;
1755 }
1756
1757 /*
1758 * Perform recovery for a buffer full of inodes. In these buffers, the only
1759 * data which should be recovered is that which corresponds to the
1760 * di_next_unlinked pointers in the on disk inode structures. The rest of the
1761 * data for the inodes is always logged through the inodes themselves rather
1762 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1763 *
1764 * The only time when buffers full of inodes are fully recovered is when the
1765 * buffer is full of newly allocated inodes. In this case the buffer will
1766 * not be marked as an inode buffer and so will be sent to
1767 * xlog_recover_do_reg_buffer() below during recovery.
1768 */
1769 STATIC int
1770 xlog_recover_do_inode_buffer(
1771 struct xfs_mount *mp,
1772 xlog_recover_item_t *item,
1773 struct xfs_buf *bp,
1774 xfs_buf_log_format_t *buf_f)
1775 {
1776 int i;
1777 int item_index = 0;
1778 int bit = 0;
1779 int nbits = 0;
1780 int reg_buf_offset = 0;
1781 int reg_buf_bytes = 0;
1782 int next_unlinked_offset;
1783 int inodes_per_buf;
1784 xfs_agino_t *logged_nextp;
1785 xfs_agino_t *buffer_nextp;
1786
1787 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
1788
1789 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
1790 for (i = 0; i < inodes_per_buf; i++) {
1791 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1792 offsetof(xfs_dinode_t, di_next_unlinked);
1793
1794 while (next_unlinked_offset >=
1795 (reg_buf_offset + reg_buf_bytes)) {
1796 /*
1797 * The next di_next_unlinked field is beyond
1798 * the current logged region. Find the next
1799 * logged region that contains or is beyond
1800 * the current di_next_unlinked field.
1801 */
1802 bit += nbits;
1803 bit = xfs_next_bit(buf_f->blf_data_map,
1804 buf_f->blf_map_size, bit);
1805
1806 /*
1807 * If there are no more logged regions in the
1808 * buffer, then we're done.
1809 */
1810 if (bit == -1)
1811 return 0;
1812
1813 nbits = xfs_contig_bits(buf_f->blf_data_map,
1814 buf_f->blf_map_size, bit);
1815 ASSERT(nbits > 0);
1816 reg_buf_offset = bit << XFS_BLF_SHIFT;
1817 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1818 item_index++;
1819 }
1820
1821 /*
1822 * If the current logged region starts after the current
1823 * di_next_unlinked field, then move on to the next
1824 * di_next_unlinked field.
1825 */
1826 if (next_unlinked_offset < reg_buf_offset)
1827 continue;
1828
1829 ASSERT(item->ri_buf[item_index].i_addr != NULL);
1830 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
1831 ASSERT((reg_buf_offset + reg_buf_bytes) <=
1832 BBTOB(bp->b_io_length));
1833
1834 /*
1835 * The current logged region contains a copy of the
1836 * current di_next_unlinked field. Extract its value
1837 * and copy it to the buffer copy.
1838 */
1839 logged_nextp = item->ri_buf[item_index].i_addr +
1840 next_unlinked_offset - reg_buf_offset;
1841 if (unlikely(*logged_nextp == 0)) {
1842 xfs_alert(mp,
1843 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1844 "Trying to replay bad (0) inode di_next_unlinked field.",
1845 item, bp);
1846 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1847 XFS_ERRLEVEL_LOW, mp);
1848 return XFS_ERROR(EFSCORRUPTED);
1849 }
1850
1851 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1852 next_unlinked_offset);
1853 *buffer_nextp = *logged_nextp;
1854 }
1855
1856 return 0;
1857 }
1858
1859 /*
1860 * Perform a 'normal' buffer recovery. Each logged region of the
1861 * buffer should be copied over the corresponding region in the
1862 * given buffer. The bitmap in the buf log format structure indicates
1863 * where to place the logged data.
1864 */
1865 STATIC void
1866 xlog_recover_do_reg_buffer(
1867 struct xfs_mount *mp,
1868 xlog_recover_item_t *item,
1869 struct xfs_buf *bp,
1870 xfs_buf_log_format_t *buf_f)
1871 {
1872 int i;
1873 int bit;
1874 int nbits;
1875 int error;
1876
1877 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
1878
1879 bit = 0;
1880 i = 1; /* 0 is the buf format structure */
1881 while (1) {
1882 bit = xfs_next_bit(buf_f->blf_data_map,
1883 buf_f->blf_map_size, bit);
1884 if (bit == -1)
1885 break;
1886 nbits = xfs_contig_bits(buf_f->blf_data_map,
1887 buf_f->blf_map_size, bit);
1888 ASSERT(nbits > 0);
1889 ASSERT(item->ri_buf[i].i_addr != NULL);
1890 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
1891 ASSERT(BBTOB(bp->b_io_length) >=
1892 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
1893
1894 /*
1895 * Do a sanity check if this is a dquot buffer. Just checking
1896 * the first dquot in the buffer should do. XXXThis is
1897 * probably a good thing to do for other buf types also.
1898 */
1899 error = 0;
1900 if (buf_f->blf_flags &
1901 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
1902 if (item->ri_buf[i].i_addr == NULL) {
1903 xfs_alert(mp,
1904 "XFS: NULL dquot in %s.", __func__);
1905 goto next;
1906 }
1907 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
1908 xfs_alert(mp,
1909 "XFS: dquot too small (%d) in %s.",
1910 item->ri_buf[i].i_len, __func__);
1911 goto next;
1912 }
1913 error = xfs_qm_dqcheck(mp, item->ri_buf[i].i_addr,
1914 -1, 0, XFS_QMOPT_DOWARN,
1915 "dquot_buf_recover");
1916 if (error)
1917 goto next;
1918 }
1919
1920 memcpy(xfs_buf_offset(bp,
1921 (uint)bit << XFS_BLF_SHIFT), /* dest */
1922 item->ri_buf[i].i_addr, /* source */
1923 nbits<<XFS_BLF_SHIFT); /* length */
1924 next:
1925 i++;
1926 bit += nbits;
1927 }
1928
1929 /* Shouldn't be any more regions */
1930 ASSERT(i == item->ri_total);
1931 }
1932
1933 /*
1934 * Do some primitive error checking on ondisk dquot data structures.
1935 */
1936 int
1937 xfs_qm_dqcheck(
1938 struct xfs_mount *mp,
1939 xfs_disk_dquot_t *ddq,
1940 xfs_dqid_t id,
1941 uint type, /* used only when IO_dorepair is true */
1942 uint flags,
1943 char *str)
1944 {
1945 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
1946 int errs = 0;
1947
1948 /*
1949 * We can encounter an uninitialized dquot buffer for 2 reasons:
1950 * 1. If we crash while deleting the quotainode(s), and those blks got
1951 * used for user data. This is because we take the path of regular
1952 * file deletion; however, the size field of quotainodes is never
1953 * updated, so all the tricks that we play in itruncate_finish
1954 * don't quite matter.
1955 *
1956 * 2. We don't play the quota buffers when there's a quotaoff logitem.
1957 * But the allocation will be replayed so we'll end up with an
1958 * uninitialized quota block.
1959 *
1960 * This is all fine; things are still consistent, and we haven't lost
1961 * any quota information. Just don't complain about bad dquot blks.
1962 */
1963 if (ddq->d_magic != cpu_to_be16(XFS_DQUOT_MAGIC)) {
1964 if (flags & XFS_QMOPT_DOWARN)
1965 xfs_alert(mp,
1966 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1967 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
1968 errs++;
1969 }
1970 if (ddq->d_version != XFS_DQUOT_VERSION) {
1971 if (flags & XFS_QMOPT_DOWARN)
1972 xfs_alert(mp,
1973 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1974 str, id, ddq->d_version, XFS_DQUOT_VERSION);
1975 errs++;
1976 }
1977
1978 if (ddq->d_flags != XFS_DQ_USER &&
1979 ddq->d_flags != XFS_DQ_PROJ &&
1980 ddq->d_flags != XFS_DQ_GROUP) {
1981 if (flags & XFS_QMOPT_DOWARN)
1982 xfs_alert(mp,
1983 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
1984 str, id, ddq->d_flags);
1985 errs++;
1986 }
1987
1988 if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
1989 if (flags & XFS_QMOPT_DOWARN)
1990 xfs_alert(mp,
1991 "%s : ondisk-dquot 0x%p, ID mismatch: "
1992 "0x%x expected, found id 0x%x",
1993 str, ddq, id, be32_to_cpu(ddq->d_id));
1994 errs++;
1995 }
1996
1997 if (!errs && ddq->d_id) {
1998 if (ddq->d_blk_softlimit &&
1999 be64_to_cpu(ddq->d_bcount) >
2000 be64_to_cpu(ddq->d_blk_softlimit)) {
2001 if (!ddq->d_btimer) {
2002 if (flags & XFS_QMOPT_DOWARN)
2003 xfs_alert(mp,
2004 "%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED",
2005 str, (int)be32_to_cpu(ddq->d_id), ddq);
2006 errs++;
2007 }
2008 }
2009 if (ddq->d_ino_softlimit &&
2010 be64_to_cpu(ddq->d_icount) >
2011 be64_to_cpu(ddq->d_ino_softlimit)) {
2012 if (!ddq->d_itimer) {
2013 if (flags & XFS_QMOPT_DOWARN)
2014 xfs_alert(mp,
2015 "%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED",
2016 str, (int)be32_to_cpu(ddq->d_id), ddq);
2017 errs++;
2018 }
2019 }
2020 if (ddq->d_rtb_softlimit &&
2021 be64_to_cpu(ddq->d_rtbcount) >
2022 be64_to_cpu(ddq->d_rtb_softlimit)) {
2023 if (!ddq->d_rtbtimer) {
2024 if (flags & XFS_QMOPT_DOWARN)
2025 xfs_alert(mp,
2026 "%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED",
2027 str, (int)be32_to_cpu(ddq->d_id), ddq);
2028 errs++;
2029 }
2030 }
2031 }
2032
2033 if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2034 return errs;
2035
2036 if (flags & XFS_QMOPT_DOWARN)
2037 xfs_notice(mp, "Re-initializing dquot ID 0x%x", id);
2038
2039 /*
2040 * Typically, a repair is only requested by quotacheck.
2041 */
2042 ASSERT(id != -1);
2043 ASSERT(flags & XFS_QMOPT_DQREPAIR);
2044 memset(d, 0, sizeof(xfs_dqblk_t));
2045
2046 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2047 d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2048 d->dd_diskdq.d_flags = type;
2049 d->dd_diskdq.d_id = cpu_to_be32(id);
2050
2051 return errs;
2052 }
2053
2054 /*
2055 * Perform a dquot buffer recovery.
2056 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2057 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2058 * Else, treat it as a regular buffer and do recovery.
2059 */
2060 STATIC void
2061 xlog_recover_do_dquot_buffer(
2062 struct xfs_mount *mp,
2063 struct xlog *log,
2064 struct xlog_recover_item *item,
2065 struct xfs_buf *bp,
2066 struct xfs_buf_log_format *buf_f)
2067 {
2068 uint type;
2069
2070 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2071
2072 /*
2073 * Filesystems are required to send in quota flags at mount time.
2074 */
2075 if (mp->m_qflags == 0) {
2076 return;
2077 }
2078
2079 type = 0;
2080 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2081 type |= XFS_DQ_USER;
2082 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2083 type |= XFS_DQ_PROJ;
2084 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2085 type |= XFS_DQ_GROUP;
2086 /*
2087 * This type of quotas was turned off, so ignore this buffer
2088 */
2089 if (log->l_quotaoffs_flag & type)
2090 return;
2091
2092 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2093 }
2094
2095 /*
2096 * This routine replays a modification made to a buffer at runtime.
2097 * There are actually two types of buffer, regular and inode, which
2098 * are handled differently. Inode buffers are handled differently
2099 * in that we only recover a specific set of data from them, namely
2100 * the inode di_next_unlinked fields. This is because all other inode
2101 * data is actually logged via inode records and any data we replay
2102 * here which overlaps that may be stale.
2103 *
2104 * When meta-data buffers are freed at run time we log a buffer item
2105 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2106 * of the buffer in the log should not be replayed at recovery time.
2107 * This is so that if the blocks covered by the buffer are reused for
2108 * file data before we crash we don't end up replaying old, freed
2109 * meta-data into a user's file.
2110 *
2111 * To handle the cancellation of buffer log items, we make two passes
2112 * over the log during recovery. During the first we build a table of
2113 * those buffers which have been cancelled, and during the second we
2114 * only replay those buffers which do not have corresponding cancel
2115 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2116 * for more details on the implementation of the table of cancel records.
2117 */
2118 STATIC int
2119 xlog_recover_buffer_pass2(
2120 struct xlog *log,
2121 struct list_head *buffer_list,
2122 struct xlog_recover_item *item)
2123 {
2124 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
2125 xfs_mount_t *mp = log->l_mp;
2126 xfs_buf_t *bp;
2127 int error;
2128 uint buf_flags;
2129
2130 /*
2131 * In this pass we only want to recover all the buffers which have
2132 * not been cancelled and are not cancellation buffers themselves.
2133 */
2134 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2135 buf_f->blf_len, buf_f->blf_flags)) {
2136 trace_xfs_log_recover_buf_cancel(log, buf_f);
2137 return 0;
2138 }
2139
2140 trace_xfs_log_recover_buf_recover(log, buf_f);
2141
2142 buf_flags = 0;
2143 if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2144 buf_flags |= XBF_UNMAPPED;
2145
2146 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2147 buf_flags, NULL);
2148 if (!bp)
2149 return XFS_ERROR(ENOMEM);
2150 error = bp->b_error;
2151 if (error) {
2152 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
2153 xfs_buf_relse(bp);
2154 return error;
2155 }
2156
2157 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2158 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2159 } else if (buf_f->blf_flags &
2160 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2161 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2162 } else {
2163 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2164 }
2165 if (error)
2166 return XFS_ERROR(error);
2167
2168 /*
2169 * Perform delayed write on the buffer. Asynchronous writes will be
2170 * slower when taking into account all the buffers to be flushed.
2171 *
2172 * Also make sure that only inode buffers with good sizes stay in
2173 * the buffer cache. The kernel moves inodes in buffers of 1 block
2174 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2175 * buffers in the log can be a different size if the log was generated
2176 * by an older kernel using unclustered inode buffers or a newer kernel
2177 * running with a different inode cluster size. Regardless, if the
2178 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2179 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2180 * the buffer out of the buffer cache so that the buffer won't
2181 * overlap with future reads of those inodes.
2182 */
2183 if (XFS_DINODE_MAGIC ==
2184 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2185 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
2186 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2187 xfs_buf_stale(bp);
2188 error = xfs_bwrite(bp);
2189 } else {
2190 ASSERT(bp->b_target->bt_mount == mp);
2191 bp->b_iodone = xlog_recover_iodone;
2192 xfs_buf_delwri_queue(bp, buffer_list);
2193 }
2194
2195 xfs_buf_relse(bp);
2196 return error;
2197 }
2198
2199 STATIC int
2200 xlog_recover_inode_pass2(
2201 struct xlog *log,
2202 struct list_head *buffer_list,
2203 struct xlog_recover_item *item)
2204 {
2205 xfs_inode_log_format_t *in_f;
2206 xfs_mount_t *mp = log->l_mp;
2207 xfs_buf_t *bp;
2208 xfs_dinode_t *dip;
2209 int len;
2210 xfs_caddr_t src;
2211 xfs_caddr_t dest;
2212 int error;
2213 int attr_index;
2214 uint fields;
2215 xfs_icdinode_t *dicp;
2216 int need_free = 0;
2217
2218 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2219 in_f = item->ri_buf[0].i_addr;
2220 } else {
2221 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2222 need_free = 1;
2223 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2224 if (error)
2225 goto error;
2226 }
2227
2228 /*
2229 * Inode buffers can be freed, look out for it,
2230 * and do not replay the inode.
2231 */
2232 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2233 in_f->ilf_len, 0)) {
2234 error = 0;
2235 trace_xfs_log_recover_inode_cancel(log, in_f);
2236 goto error;
2237 }
2238 trace_xfs_log_recover_inode_recover(log, in_f);
2239
2240 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
2241 NULL);
2242 if (!bp) {
2243 error = ENOMEM;
2244 goto error;
2245 }
2246 error = bp->b_error;
2247 if (error) {
2248 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
2249 xfs_buf_relse(bp);
2250 goto error;
2251 }
2252 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2253 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
2254
2255 /*
2256 * Make sure the place we're flushing out to really looks
2257 * like an inode!
2258 */
2259 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
2260 xfs_buf_relse(bp);
2261 xfs_alert(mp,
2262 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2263 __func__, dip, bp, in_f->ilf_ino);
2264 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2265 XFS_ERRLEVEL_LOW, mp);
2266 error = EFSCORRUPTED;
2267 goto error;
2268 }
2269 dicp = item->ri_buf[1].i_addr;
2270 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2271 xfs_buf_relse(bp);
2272 xfs_alert(mp,
2273 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2274 __func__, item, in_f->ilf_ino);
2275 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2276 XFS_ERRLEVEL_LOW, mp);
2277 error = EFSCORRUPTED;
2278 goto error;
2279 }
2280
2281 /* Skip replay when the on disk inode is newer than the log one */
2282 if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2283 /*
2284 * Deal with the wrap case, DI_MAX_FLUSH is less
2285 * than smaller numbers
2286 */
2287 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2288 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2289 /* do nothing */
2290 } else {
2291 xfs_buf_relse(bp);
2292 trace_xfs_log_recover_inode_skip(log, in_f);
2293 error = 0;
2294 goto error;
2295 }
2296 }
2297 /* Take the opportunity to reset the flush iteration count */
2298 dicp->di_flushiter = 0;
2299
2300 if (unlikely(S_ISREG(dicp->di_mode))) {
2301 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2302 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2303 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
2304 XFS_ERRLEVEL_LOW, mp, dicp);
2305 xfs_buf_relse(bp);
2306 xfs_alert(mp,
2307 "%s: Bad regular inode log record, rec ptr 0x%p, "
2308 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2309 __func__, item, dip, bp, in_f->ilf_ino);
2310 error = EFSCORRUPTED;
2311 goto error;
2312 }
2313 } else if (unlikely(S_ISDIR(dicp->di_mode))) {
2314 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2315 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2316 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2317 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
2318 XFS_ERRLEVEL_LOW, mp, dicp);
2319 xfs_buf_relse(bp);
2320 xfs_alert(mp,
2321 "%s: Bad dir inode log record, rec ptr 0x%p, "
2322 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2323 __func__, item, dip, bp, in_f->ilf_ino);
2324 error = EFSCORRUPTED;
2325 goto error;
2326 }
2327 }
2328 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2329 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
2330 XFS_ERRLEVEL_LOW, mp, dicp);
2331 xfs_buf_relse(bp);
2332 xfs_alert(mp,
2333 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2334 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2335 __func__, item, dip, bp, in_f->ilf_ino,
2336 dicp->di_nextents + dicp->di_anextents,
2337 dicp->di_nblocks);
2338 error = EFSCORRUPTED;
2339 goto error;
2340 }
2341 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2342 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
2343 XFS_ERRLEVEL_LOW, mp, dicp);
2344 xfs_buf_relse(bp);
2345 xfs_alert(mp,
2346 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2347 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
2348 item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
2349 error = EFSCORRUPTED;
2350 goto error;
2351 }
2352 if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
2353 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
2354 XFS_ERRLEVEL_LOW, mp, dicp);
2355 xfs_buf_relse(bp);
2356 xfs_alert(mp,
2357 "%s: Bad inode log record length %d, rec ptr 0x%p",
2358 __func__, item->ri_buf[1].i_len, item);
2359 error = EFSCORRUPTED;
2360 goto error;
2361 }
2362
2363 /* The core is in in-core format */
2364 xfs_dinode_to_disk(dip, item->ri_buf[1].i_addr);
2365
2366 /* the rest is in on-disk format */
2367 if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
2368 memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
2369 item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
2370 item->ri_buf[1].i_len - sizeof(struct xfs_icdinode));
2371 }
2372
2373 fields = in_f->ilf_fields;
2374 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2375 case XFS_ILOG_DEV:
2376 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
2377 break;
2378 case XFS_ILOG_UUID:
2379 memcpy(XFS_DFORK_DPTR(dip),
2380 &in_f->ilf_u.ilfu_uuid,
2381 sizeof(uuid_t));
2382 break;
2383 }
2384
2385 if (in_f->ilf_size == 2)
2386 goto write_inode_buffer;
2387 len = item->ri_buf[2].i_len;
2388 src = item->ri_buf[2].i_addr;
2389 ASSERT(in_f->ilf_size <= 4);
2390 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2391 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2392 (len == in_f->ilf_dsize));
2393
2394 switch (fields & XFS_ILOG_DFORK) {
2395 case XFS_ILOG_DDATA:
2396 case XFS_ILOG_DEXT:
2397 memcpy(XFS_DFORK_DPTR(dip), src, len);
2398 break;
2399
2400 case XFS_ILOG_DBROOT:
2401 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2402 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
2403 XFS_DFORK_DSIZE(dip, mp));
2404 break;
2405
2406 default:
2407 /*
2408 * There are no data fork flags set.
2409 */
2410 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2411 break;
2412 }
2413
2414 /*
2415 * If we logged any attribute data, recover it. There may or
2416 * may not have been any other non-core data logged in this
2417 * transaction.
2418 */
2419 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2420 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2421 attr_index = 3;
2422 } else {
2423 attr_index = 2;
2424 }
2425 len = item->ri_buf[attr_index].i_len;
2426 src = item->ri_buf[attr_index].i_addr;
2427 ASSERT(len == in_f->ilf_asize);
2428
2429 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2430 case XFS_ILOG_ADATA:
2431 case XFS_ILOG_AEXT:
2432 dest = XFS_DFORK_APTR(dip);
2433 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2434 memcpy(dest, src, len);
2435 break;
2436
2437 case XFS_ILOG_ABROOT:
2438 dest = XFS_DFORK_APTR(dip);
2439 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2440 len, (xfs_bmdr_block_t*)dest,
2441 XFS_DFORK_ASIZE(dip, mp));
2442 break;
2443
2444 default:
2445 xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
2446 ASSERT(0);
2447 xfs_buf_relse(bp);
2448 error = EIO;
2449 goto error;
2450 }
2451 }
2452
2453 write_inode_buffer:
2454 ASSERT(bp->b_target->bt_mount == mp);
2455 bp->b_iodone = xlog_recover_iodone;
2456 xfs_buf_delwri_queue(bp, buffer_list);
2457 xfs_buf_relse(bp);
2458 error:
2459 if (need_free)
2460 kmem_free(in_f);
2461 return XFS_ERROR(error);
2462 }
2463
2464 /*
2465 * Recover QUOTAOFF records. We simply make a note of it in the xlog
2466 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2467 * of that type.
2468 */
2469 STATIC int
2470 xlog_recover_quotaoff_pass1(
2471 struct xlog *log,
2472 struct xlog_recover_item *item)
2473 {
2474 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
2475 ASSERT(qoff_f);
2476
2477 /*
2478 * The logitem format's flag tells us if this was user quotaoff,
2479 * group/project quotaoff or both.
2480 */
2481 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2482 log->l_quotaoffs_flag |= XFS_DQ_USER;
2483 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2484 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2485 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2486 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2487
2488 return (0);
2489 }
2490
2491 /*
2492 * Recover a dquot record
2493 */
2494 STATIC int
2495 xlog_recover_dquot_pass2(
2496 struct xlog *log,
2497 struct list_head *buffer_list,
2498 struct xlog_recover_item *item)
2499 {
2500 xfs_mount_t *mp = log->l_mp;
2501 xfs_buf_t *bp;
2502 struct xfs_disk_dquot *ddq, *recddq;
2503 int error;
2504 xfs_dq_logformat_t *dq_f;
2505 uint type;
2506
2507
2508 /*
2509 * Filesystems are required to send in quota flags at mount time.
2510 */
2511 if (mp->m_qflags == 0)
2512 return (0);
2513
2514 recddq = item->ri_buf[1].i_addr;
2515 if (recddq == NULL) {
2516 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
2517 return XFS_ERROR(EIO);
2518 }
2519 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
2520 xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
2521 item->ri_buf[1].i_len, __func__);
2522 return XFS_ERROR(EIO);
2523 }
2524
2525 /*
2526 * This type of quotas was turned off, so ignore this record.
2527 */
2528 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2529 ASSERT(type);
2530 if (log->l_quotaoffs_flag & type)
2531 return (0);
2532
2533 /*
2534 * At this point we know that quota was _not_ turned off.
2535 * Since the mount flags are not indicating to us otherwise, this
2536 * must mean that quota is on, and the dquot needs to be replayed.
2537 * Remember that we may not have fully recovered the superblock yet,
2538 * so we can't do the usual trick of looking at the SB quota bits.
2539 *
2540 * The other possibility, of course, is that the quota subsystem was
2541 * removed since the last mount - ENOSYS.
2542 */
2543 dq_f = item->ri_buf[0].i_addr;
2544 ASSERT(dq_f);
2545 error = xfs_qm_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2546 "xlog_recover_dquot_pass2 (log copy)");
2547 if (error)
2548 return XFS_ERROR(EIO);
2549 ASSERT(dq_f->qlf_len == 1);
2550
2551 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
2552 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
2553 NULL);
2554 if (error)
2555 return error;
2556
2557 ASSERT(bp);
2558 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2559
2560 /*
2561 * At least the magic num portion should be on disk because this
2562 * was among a chunk of dquots created earlier, and we did some
2563 * minimal initialization then.
2564 */
2565 error = xfs_qm_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2566 "xlog_recover_dquot_pass2");
2567 if (error) {
2568 xfs_buf_relse(bp);
2569 return XFS_ERROR(EIO);
2570 }
2571
2572 memcpy(ddq, recddq, item->ri_buf[1].i_len);
2573
2574 ASSERT(dq_f->qlf_size == 2);
2575 ASSERT(bp->b_target->bt_mount == mp);
2576 bp->b_iodone = xlog_recover_iodone;
2577 xfs_buf_delwri_queue(bp, buffer_list);
2578 xfs_buf_relse(bp);
2579
2580 return (0);
2581 }
2582
2583 /*
2584 * This routine is called to create an in-core extent free intent
2585 * item from the efi format structure which was logged on disk.
2586 * It allocates an in-core efi, copies the extents from the format
2587 * structure into it, and adds the efi to the AIL with the given
2588 * LSN.
2589 */
2590 STATIC int
2591 xlog_recover_efi_pass2(
2592 struct xlog *log,
2593 struct xlog_recover_item *item,
2594 xfs_lsn_t lsn)
2595 {
2596 int error;
2597 xfs_mount_t *mp = log->l_mp;
2598 xfs_efi_log_item_t *efip;
2599 xfs_efi_log_format_t *efi_formatp;
2600
2601 efi_formatp = item->ri_buf[0].i_addr;
2602
2603 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2604 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2605 &(efip->efi_format)))) {
2606 xfs_efi_item_free(efip);
2607 return error;
2608 }
2609 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
2610
2611 spin_lock(&log->l_ailp->xa_lock);
2612 /*
2613 * xfs_trans_ail_update() drops the AIL lock.
2614 */
2615 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
2616 return 0;
2617 }
2618
2619
2620 /*
2621 * This routine is called when an efd format structure is found in
2622 * a committed transaction in the log. It's purpose is to cancel
2623 * the corresponding efi if it was still in the log. To do this
2624 * it searches the AIL for the efi with an id equal to that in the
2625 * efd format structure. If we find it, we remove the efi from the
2626 * AIL and free it.
2627 */
2628 STATIC int
2629 xlog_recover_efd_pass2(
2630 struct xlog *log,
2631 struct xlog_recover_item *item)
2632 {
2633 xfs_efd_log_format_t *efd_formatp;
2634 xfs_efi_log_item_t *efip = NULL;
2635 xfs_log_item_t *lip;
2636 __uint64_t efi_id;
2637 struct xfs_ail_cursor cur;
2638 struct xfs_ail *ailp = log->l_ailp;
2639
2640 efd_formatp = item->ri_buf[0].i_addr;
2641 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2642 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2643 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2644 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2645 efi_id = efd_formatp->efd_efi_id;
2646
2647 /*
2648 * Search for the efi with the id in the efd format structure
2649 * in the AIL.
2650 */
2651 spin_lock(&ailp->xa_lock);
2652 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2653 while (lip != NULL) {
2654 if (lip->li_type == XFS_LI_EFI) {
2655 efip = (xfs_efi_log_item_t *)lip;
2656 if (efip->efi_format.efi_id == efi_id) {
2657 /*
2658 * xfs_trans_ail_delete() drops the
2659 * AIL lock.
2660 */
2661 xfs_trans_ail_delete(ailp, lip,
2662 SHUTDOWN_CORRUPT_INCORE);
2663 xfs_efi_item_free(efip);
2664 spin_lock(&ailp->xa_lock);
2665 break;
2666 }
2667 }
2668 lip = xfs_trans_ail_cursor_next(ailp, &cur);
2669 }
2670 xfs_trans_ail_cursor_done(ailp, &cur);
2671 spin_unlock(&ailp->xa_lock);
2672
2673 return 0;
2674 }
2675
2676 /*
2677 * Free up any resources allocated by the transaction
2678 *
2679 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2680 */
2681 STATIC void
2682 xlog_recover_free_trans(
2683 struct xlog_recover *trans)
2684 {
2685 xlog_recover_item_t *item, *n;
2686 int i;
2687
2688 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2689 /* Free the regions in the item. */
2690 list_del(&item->ri_list);
2691 for (i = 0; i < item->ri_cnt; i++)
2692 kmem_free(item->ri_buf[i].i_addr);
2693 /* Free the item itself */
2694 kmem_free(item->ri_buf);
2695 kmem_free(item);
2696 }
2697 /* Free the transaction recover structure */
2698 kmem_free(trans);
2699 }
2700
2701 STATIC int
2702 xlog_recover_commit_pass1(
2703 struct xlog *log,
2704 struct xlog_recover *trans,
2705 struct xlog_recover_item *item)
2706 {
2707 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
2708
2709 switch (ITEM_TYPE(item)) {
2710 case XFS_LI_BUF:
2711 return xlog_recover_buffer_pass1(log, item);
2712 case XFS_LI_QUOTAOFF:
2713 return xlog_recover_quotaoff_pass1(log, item);
2714 case XFS_LI_INODE:
2715 case XFS_LI_EFI:
2716 case XFS_LI_EFD:
2717 case XFS_LI_DQUOT:
2718 /* nothing to do in pass 1 */
2719 return 0;
2720 default:
2721 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
2722 __func__, ITEM_TYPE(item));
2723 ASSERT(0);
2724 return XFS_ERROR(EIO);
2725 }
2726 }
2727
2728 STATIC int
2729 xlog_recover_commit_pass2(
2730 struct xlog *log,
2731 struct xlog_recover *trans,
2732 struct list_head *buffer_list,
2733 struct xlog_recover_item *item)
2734 {
2735 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
2736
2737 switch (ITEM_TYPE(item)) {
2738 case XFS_LI_BUF:
2739 return xlog_recover_buffer_pass2(log, buffer_list, item);
2740 case XFS_LI_INODE:
2741 return xlog_recover_inode_pass2(log, buffer_list, item);
2742 case XFS_LI_EFI:
2743 return xlog_recover_efi_pass2(log, item, trans->r_lsn);
2744 case XFS_LI_EFD:
2745 return xlog_recover_efd_pass2(log, item);
2746 case XFS_LI_DQUOT:
2747 return xlog_recover_dquot_pass2(log, buffer_list, item);
2748 case XFS_LI_QUOTAOFF:
2749 /* nothing to do in pass2 */
2750 return 0;
2751 default:
2752 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
2753 __func__, ITEM_TYPE(item));
2754 ASSERT(0);
2755 return XFS_ERROR(EIO);
2756 }
2757 }
2758
2759 /*
2760 * Perform the transaction.
2761 *
2762 * If the transaction modifies a buffer or inode, do it now. Otherwise,
2763 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2764 */
2765 STATIC int
2766 xlog_recover_commit_trans(
2767 struct xlog *log,
2768 struct xlog_recover *trans,
2769 int pass)
2770 {
2771 int error = 0, error2;
2772 xlog_recover_item_t *item;
2773 LIST_HEAD (buffer_list);
2774
2775 hlist_del(&trans->r_list);
2776
2777 error = xlog_recover_reorder_trans(log, trans, pass);
2778 if (error)
2779 return error;
2780
2781 list_for_each_entry(item, &trans->r_itemq, ri_list) {
2782 switch (pass) {
2783 case XLOG_RECOVER_PASS1:
2784 error = xlog_recover_commit_pass1(log, trans, item);
2785 break;
2786 case XLOG_RECOVER_PASS2:
2787 error = xlog_recover_commit_pass2(log, trans,
2788 &buffer_list, item);
2789 break;
2790 default:
2791 ASSERT(0);
2792 }
2793
2794 if (error)
2795 goto out;
2796 }
2797
2798 xlog_recover_free_trans(trans);
2799
2800 out:
2801 error2 = xfs_buf_delwri_submit(&buffer_list);
2802 return error ? error : error2;
2803 }
2804
2805 STATIC int
2806 xlog_recover_unmount_trans(
2807 struct xlog *log,
2808 struct xlog_recover *trans)
2809 {
2810 /* Do nothing now */
2811 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
2812 return 0;
2813 }
2814
2815 /*
2816 * There are two valid states of the r_state field. 0 indicates that the
2817 * transaction structure is in a normal state. We have either seen the
2818 * start of the transaction or the last operation we added was not a partial
2819 * operation. If the last operation we added to the transaction was a
2820 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2821 *
2822 * NOTE: skip LRs with 0 data length.
2823 */
2824 STATIC int
2825 xlog_recover_process_data(
2826 struct xlog *log,
2827 struct hlist_head rhash[],
2828 struct xlog_rec_header *rhead,
2829 xfs_caddr_t dp,
2830 int pass)
2831 {
2832 xfs_caddr_t lp;
2833 int num_logops;
2834 xlog_op_header_t *ohead;
2835 xlog_recover_t *trans;
2836 xlog_tid_t tid;
2837 int error;
2838 unsigned long hash;
2839 uint flags;
2840
2841 lp = dp + be32_to_cpu(rhead->h_len);
2842 num_logops = be32_to_cpu(rhead->h_num_logops);
2843
2844 /* check the log format matches our own - else we can't recover */
2845 if (xlog_header_check_recover(log->l_mp, rhead))
2846 return (XFS_ERROR(EIO));
2847
2848 while ((dp < lp) && num_logops) {
2849 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2850 ohead = (xlog_op_header_t *)dp;
2851 dp += sizeof(xlog_op_header_t);
2852 if (ohead->oh_clientid != XFS_TRANSACTION &&
2853 ohead->oh_clientid != XFS_LOG) {
2854 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
2855 __func__, ohead->oh_clientid);
2856 ASSERT(0);
2857 return (XFS_ERROR(EIO));
2858 }
2859 tid = be32_to_cpu(ohead->oh_tid);
2860 hash = XLOG_RHASH(tid);
2861 trans = xlog_recover_find_tid(&rhash[hash], tid);
2862 if (trans == NULL) { /* not found; add new tid */
2863 if (ohead->oh_flags & XLOG_START_TRANS)
2864 xlog_recover_new_tid(&rhash[hash], tid,
2865 be64_to_cpu(rhead->h_lsn));
2866 } else {
2867 if (dp + be32_to_cpu(ohead->oh_len) > lp) {
2868 xfs_warn(log->l_mp, "%s: bad length 0x%x",
2869 __func__, be32_to_cpu(ohead->oh_len));
2870 WARN_ON(1);
2871 return (XFS_ERROR(EIO));
2872 }
2873 flags = ohead->oh_flags & ~XLOG_END_TRANS;
2874 if (flags & XLOG_WAS_CONT_TRANS)
2875 flags &= ~XLOG_CONTINUE_TRANS;
2876 switch (flags) {
2877 case XLOG_COMMIT_TRANS:
2878 error = xlog_recover_commit_trans(log,
2879 trans, pass);
2880 break;
2881 case XLOG_UNMOUNT_TRANS:
2882 error = xlog_recover_unmount_trans(log, trans);
2883 break;
2884 case XLOG_WAS_CONT_TRANS:
2885 error = xlog_recover_add_to_cont_trans(log,
2886 trans, dp,
2887 be32_to_cpu(ohead->oh_len));
2888 break;
2889 case XLOG_START_TRANS:
2890 xfs_warn(log->l_mp, "%s: bad transaction",
2891 __func__);
2892 ASSERT(0);
2893 error = XFS_ERROR(EIO);
2894 break;
2895 case 0:
2896 case XLOG_CONTINUE_TRANS:
2897 error = xlog_recover_add_to_trans(log, trans,
2898 dp, be32_to_cpu(ohead->oh_len));
2899 break;
2900 default:
2901 xfs_warn(log->l_mp, "%s: bad flag 0x%x",
2902 __func__, flags);
2903 ASSERT(0);
2904 error = XFS_ERROR(EIO);
2905 break;
2906 }
2907 if (error)
2908 return error;
2909 }
2910 dp += be32_to_cpu(ohead->oh_len);
2911 num_logops--;
2912 }
2913 return 0;
2914 }
2915
2916 /*
2917 * Process an extent free intent item that was recovered from
2918 * the log. We need to free the extents that it describes.
2919 */
2920 STATIC int
2921 xlog_recover_process_efi(
2922 xfs_mount_t *mp,
2923 xfs_efi_log_item_t *efip)
2924 {
2925 xfs_efd_log_item_t *efdp;
2926 xfs_trans_t *tp;
2927 int i;
2928 int error = 0;
2929 xfs_extent_t *extp;
2930 xfs_fsblock_t startblock_fsb;
2931
2932 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
2933
2934 /*
2935 * First check the validity of the extents described by the
2936 * EFI. If any are bad, then assume that all are bad and
2937 * just toss the EFI.
2938 */
2939 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2940 extp = &(efip->efi_format.efi_extents[i]);
2941 startblock_fsb = XFS_BB_TO_FSB(mp,
2942 XFS_FSB_TO_DADDR(mp, extp->ext_start));
2943 if ((startblock_fsb == 0) ||
2944 (extp->ext_len == 0) ||
2945 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
2946 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
2947 /*
2948 * This will pull the EFI from the AIL and
2949 * free the memory associated with it.
2950 */
2951 xfs_efi_release(efip, efip->efi_format.efi_nextents);
2952 return XFS_ERROR(EIO);
2953 }
2954 }
2955
2956 tp = xfs_trans_alloc(mp, 0);
2957 error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
2958 if (error)
2959 goto abort_error;
2960 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
2961
2962 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2963 extp = &(efip->efi_format.efi_extents[i]);
2964 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
2965 if (error)
2966 goto abort_error;
2967 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
2968 extp->ext_len);
2969 }
2970
2971 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
2972 error = xfs_trans_commit(tp, 0);
2973 return error;
2974
2975 abort_error:
2976 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
2977 return error;
2978 }
2979
2980 /*
2981 * When this is called, all of the EFIs which did not have
2982 * corresponding EFDs should be in the AIL. What we do now
2983 * is free the extents associated with each one.
2984 *
2985 * Since we process the EFIs in normal transactions, they
2986 * will be removed at some point after the commit. This prevents
2987 * us from just walking down the list processing each one.
2988 * We'll use a flag in the EFI to skip those that we've already
2989 * processed and use the AIL iteration mechanism's generation
2990 * count to try to speed this up at least a bit.
2991 *
2992 * When we start, we know that the EFIs are the only things in
2993 * the AIL. As we process them, however, other items are added
2994 * to the AIL. Since everything added to the AIL must come after
2995 * everything already in the AIL, we stop processing as soon as
2996 * we see something other than an EFI in the AIL.
2997 */
2998 STATIC int
2999 xlog_recover_process_efis(
3000 struct xlog *log)
3001 {
3002 xfs_log_item_t *lip;
3003 xfs_efi_log_item_t *efip;
3004 int error = 0;
3005 struct xfs_ail_cursor cur;
3006 struct xfs_ail *ailp;
3007
3008 ailp = log->l_ailp;
3009 spin_lock(&ailp->xa_lock);
3010 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3011 while (lip != NULL) {
3012 /*
3013 * We're done when we see something other than an EFI.
3014 * There should be no EFIs left in the AIL now.
3015 */
3016 if (lip->li_type != XFS_LI_EFI) {
3017 #ifdef DEBUG
3018 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
3019 ASSERT(lip->li_type != XFS_LI_EFI);
3020 #endif
3021 break;
3022 }
3023
3024 /*
3025 * Skip EFIs that we've already processed.
3026 */
3027 efip = (xfs_efi_log_item_t *)lip;
3028 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
3029 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3030 continue;
3031 }
3032
3033 spin_unlock(&ailp->xa_lock);
3034 error = xlog_recover_process_efi(log->l_mp, efip);
3035 spin_lock(&ailp->xa_lock);
3036 if (error)
3037 goto out;
3038 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3039 }
3040 out:
3041 xfs_trans_ail_cursor_done(ailp, &cur);
3042 spin_unlock(&ailp->xa_lock);
3043 return error;
3044 }
3045
3046 /*
3047 * This routine performs a transaction to null out a bad inode pointer
3048 * in an agi unlinked inode hash bucket.
3049 */
3050 STATIC void
3051 xlog_recover_clear_agi_bucket(
3052 xfs_mount_t *mp,
3053 xfs_agnumber_t agno,
3054 int bucket)
3055 {
3056 xfs_trans_t *tp;
3057 xfs_agi_t *agi;
3058 xfs_buf_t *agibp;
3059 int offset;
3060 int error;
3061
3062 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3063 error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
3064 0, 0, 0);
3065 if (error)
3066 goto out_abort;
3067
3068 error = xfs_read_agi(mp, tp, agno, &agibp);
3069 if (error)
3070 goto out_abort;
3071
3072 agi = XFS_BUF_TO_AGI(agibp);
3073 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3074 offset = offsetof(xfs_agi_t, agi_unlinked) +
3075 (sizeof(xfs_agino_t) * bucket);
3076 xfs_trans_log_buf(tp, agibp, offset,
3077 (offset + sizeof(xfs_agino_t) - 1));
3078
3079 error = xfs_trans_commit(tp, 0);
3080 if (error)
3081 goto out_error;
3082 return;
3083
3084 out_abort:
3085 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3086 out_error:
3087 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
3088 return;
3089 }
3090
3091 STATIC xfs_agino_t
3092 xlog_recover_process_one_iunlink(
3093 struct xfs_mount *mp,
3094 xfs_agnumber_t agno,
3095 xfs_agino_t agino,
3096 int bucket)
3097 {
3098 struct xfs_buf *ibp;
3099 struct xfs_dinode *dip;
3100 struct xfs_inode *ip;
3101 xfs_ino_t ino;
3102 int error;
3103
3104 ino = XFS_AGINO_TO_INO(mp, agno, agino);
3105 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
3106 if (error)
3107 goto fail;
3108
3109 /*
3110 * Get the on disk inode to find the next inode in the bucket.
3111 */
3112 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
3113 if (error)
3114 goto fail_iput;
3115
3116 ASSERT(ip->i_d.di_nlink == 0);
3117 ASSERT(ip->i_d.di_mode != 0);
3118
3119 /* setup for the next pass */
3120 agino = be32_to_cpu(dip->di_next_unlinked);
3121 xfs_buf_relse(ibp);
3122
3123 /*
3124 * Prevent any DMAPI event from being sent when the reference on
3125 * the inode is dropped.
3126 */
3127 ip->i_d.di_dmevmask = 0;
3128
3129 IRELE(ip);
3130 return agino;
3131
3132 fail_iput:
3133 IRELE(ip);
3134 fail:
3135 /*
3136 * We can't read in the inode this bucket points to, or this inode
3137 * is messed up. Just ditch this bucket of inodes. We will lose
3138 * some inodes and space, but at least we won't hang.
3139 *
3140 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3141 * clear the inode pointer in the bucket.
3142 */
3143 xlog_recover_clear_agi_bucket(mp, agno, bucket);
3144 return NULLAGINO;
3145 }
3146
3147 /*
3148 * xlog_iunlink_recover
3149 *
3150 * This is called during recovery to process any inodes which
3151 * we unlinked but not freed when the system crashed. These
3152 * inodes will be on the lists in the AGI blocks. What we do
3153 * here is scan all the AGIs and fully truncate and free any
3154 * inodes found on the lists. Each inode is removed from the
3155 * lists when it has been fully truncated and is freed. The
3156 * freeing of the inode and its removal from the list must be
3157 * atomic.
3158 */
3159 STATIC void
3160 xlog_recover_process_iunlinks(
3161 struct xlog *log)
3162 {
3163 xfs_mount_t *mp;
3164 xfs_agnumber_t agno;
3165 xfs_agi_t *agi;
3166 xfs_buf_t *agibp;
3167 xfs_agino_t agino;
3168 int bucket;
3169 int error;
3170 uint mp_dmevmask;
3171
3172 mp = log->l_mp;
3173
3174 /*
3175 * Prevent any DMAPI event from being sent while in this function.
3176 */
3177 mp_dmevmask = mp->m_dmevmask;
3178 mp->m_dmevmask = 0;
3179
3180 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3181 /*
3182 * Find the agi for this ag.
3183 */
3184 error = xfs_read_agi(mp, NULL, agno, &agibp);
3185 if (error) {
3186 /*
3187 * AGI is b0rked. Don't process it.
3188 *
3189 * We should probably mark the filesystem as corrupt
3190 * after we've recovered all the ag's we can....
3191 */
3192 continue;
3193 }
3194 /*
3195 * Unlock the buffer so that it can be acquired in the normal
3196 * course of the transaction to truncate and free each inode.
3197 * Because we are not racing with anyone else here for the AGI
3198 * buffer, we don't even need to hold it locked to read the
3199 * initial unlinked bucket entries out of the buffer. We keep
3200 * buffer reference though, so that it stays pinned in memory
3201 * while we need the buffer.
3202 */
3203 agi = XFS_BUF_TO_AGI(agibp);
3204 xfs_buf_unlock(agibp);
3205
3206 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3207 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3208 while (agino != NULLAGINO) {
3209 agino = xlog_recover_process_one_iunlink(mp,
3210 agno, agino, bucket);
3211 }
3212 }
3213 xfs_buf_rele(agibp);
3214 }
3215
3216 mp->m_dmevmask = mp_dmevmask;
3217 }
3218
3219
3220 #ifdef DEBUG
3221 STATIC void
3222 xlog_pack_data_checksum(
3223 struct xlog *log,
3224 struct xlog_in_core *iclog,
3225 int size)
3226 {
3227 int i;
3228 __be32 *up;
3229 uint chksum = 0;
3230
3231 up = (__be32 *)iclog->ic_datap;
3232 /* divide length by 4 to get # words */
3233 for (i = 0; i < (size >> 2); i++) {
3234 chksum ^= be32_to_cpu(*up);
3235 up++;
3236 }
3237 iclog->ic_header.h_chksum = cpu_to_be32(chksum);
3238 }
3239 #else
3240 #define xlog_pack_data_checksum(log, iclog, size)
3241 #endif
3242
3243 /*
3244 * Stamp cycle number in every block
3245 */
3246 void
3247 xlog_pack_data(
3248 struct xlog *log,
3249 struct xlog_in_core *iclog,
3250 int roundoff)
3251 {
3252 int i, j, k;
3253 int size = iclog->ic_offset + roundoff;
3254 __be32 cycle_lsn;
3255 xfs_caddr_t dp;
3256
3257 xlog_pack_data_checksum(log, iclog, size);
3258
3259 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3260
3261 dp = iclog->ic_datap;
3262 for (i = 0; i < BTOBB(size) &&
3263 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3264 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
3265 *(__be32 *)dp = cycle_lsn;
3266 dp += BBSIZE;
3267 }
3268
3269 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3270 xlog_in_core_2_t *xhdr = iclog->ic_data;
3271
3272 for ( ; i < BTOBB(size); i++) {
3273 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3274 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3275 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
3276 *(__be32 *)dp = cycle_lsn;
3277 dp += BBSIZE;
3278 }
3279
3280 for (i = 1; i < log->l_iclog_heads; i++) {
3281 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3282 }
3283 }
3284 }
3285
3286 STATIC void
3287 xlog_unpack_data(
3288 struct xlog_rec_header *rhead,
3289 xfs_caddr_t dp,
3290 struct xlog *log)
3291 {
3292 int i, j, k;
3293
3294 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
3295 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3296 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
3297 dp += BBSIZE;
3298 }
3299
3300 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3301 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
3302 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
3303 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3304 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3305 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3306 dp += BBSIZE;
3307 }
3308 }
3309 }
3310
3311 STATIC int
3312 xlog_valid_rec_header(
3313 struct xlog *log,
3314 struct xlog_rec_header *rhead,
3315 xfs_daddr_t blkno)
3316 {
3317 int hlen;
3318
3319 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
3320 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3321 XFS_ERRLEVEL_LOW, log->l_mp);
3322 return XFS_ERROR(EFSCORRUPTED);
3323 }
3324 if (unlikely(
3325 (!rhead->h_version ||
3326 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
3327 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
3328 __func__, be32_to_cpu(rhead->h_version));
3329 return XFS_ERROR(EIO);
3330 }
3331
3332 /* LR body must have data or it wouldn't have been written */
3333 hlen = be32_to_cpu(rhead->h_len);
3334 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3335 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3336 XFS_ERRLEVEL_LOW, log->l_mp);
3337 return XFS_ERROR(EFSCORRUPTED);
3338 }
3339 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3340 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3341 XFS_ERRLEVEL_LOW, log->l_mp);
3342 return XFS_ERROR(EFSCORRUPTED);
3343 }
3344 return 0;
3345 }
3346
3347 /*
3348 * Read the log from tail to head and process the log records found.
3349 * Handle the two cases where the tail and head are in the same cycle
3350 * and where the active portion of the log wraps around the end of
3351 * the physical log separately. The pass parameter is passed through
3352 * to the routines called to process the data and is not looked at
3353 * here.
3354 */
3355 STATIC int
3356 xlog_do_recovery_pass(
3357 struct xlog *log,
3358 xfs_daddr_t head_blk,
3359 xfs_daddr_t tail_blk,
3360 int pass)
3361 {
3362 xlog_rec_header_t *rhead;
3363 xfs_daddr_t blk_no;
3364 xfs_caddr_t offset;
3365 xfs_buf_t *hbp, *dbp;
3366 int error = 0, h_size;
3367 int bblks, split_bblks;
3368 int hblks, split_hblks, wrapped_hblks;
3369 struct hlist_head rhash[XLOG_RHASH_SIZE];
3370
3371 ASSERT(head_blk != tail_blk);
3372
3373 /*
3374 * Read the header of the tail block and get the iclog buffer size from
3375 * h_size. Use this to tell how many sectors make up the log header.
3376 */
3377 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3378 /*
3379 * When using variable length iclogs, read first sector of
3380 * iclog header and extract the header size from it. Get a
3381 * new hbp that is the correct size.
3382 */
3383 hbp = xlog_get_bp(log, 1);
3384 if (!hbp)
3385 return ENOMEM;
3386
3387 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
3388 if (error)
3389 goto bread_err1;
3390
3391 rhead = (xlog_rec_header_t *)offset;
3392 error = xlog_valid_rec_header(log, rhead, tail_blk);
3393 if (error)
3394 goto bread_err1;
3395 h_size = be32_to_cpu(rhead->h_size);
3396 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
3397 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3398 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3399 if (h_size % XLOG_HEADER_CYCLE_SIZE)
3400 hblks++;
3401 xlog_put_bp(hbp);
3402 hbp = xlog_get_bp(log, hblks);
3403 } else {
3404 hblks = 1;
3405 }
3406 } else {
3407 ASSERT(log->l_sectBBsize == 1);
3408 hblks = 1;
3409 hbp = xlog_get_bp(log, 1);
3410 h_size = XLOG_BIG_RECORD_BSIZE;
3411 }
3412
3413 if (!hbp)
3414 return ENOMEM;
3415 dbp = xlog_get_bp(log, BTOBB(h_size));
3416 if (!dbp) {
3417 xlog_put_bp(hbp);
3418 return ENOMEM;
3419 }
3420
3421 memset(rhash, 0, sizeof(rhash));
3422 if (tail_blk <= head_blk) {
3423 for (blk_no = tail_blk; blk_no < head_blk; ) {
3424 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3425 if (error)
3426 goto bread_err2;
3427
3428 rhead = (xlog_rec_header_t *)offset;
3429 error = xlog_valid_rec_header(log, rhead, blk_no);
3430 if (error)
3431 goto bread_err2;
3432
3433 /* blocks in data section */
3434 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3435 error = xlog_bread(log, blk_no + hblks, bblks, dbp,
3436 &offset);
3437 if (error)
3438 goto bread_err2;
3439
3440 xlog_unpack_data(rhead, offset, log);
3441 if ((error = xlog_recover_process_data(log,
3442 rhash, rhead, offset, pass)))
3443 goto bread_err2;
3444 blk_no += bblks + hblks;
3445 }
3446 } else {
3447 /*
3448 * Perform recovery around the end of the physical log.
3449 * When the head is not on the same cycle number as the tail,
3450 * we can't do a sequential recovery as above.
3451 */
3452 blk_no = tail_blk;
3453 while (blk_no < log->l_logBBsize) {
3454 /*
3455 * Check for header wrapping around physical end-of-log
3456 */
3457 offset = hbp->b_addr;
3458 split_hblks = 0;
3459 wrapped_hblks = 0;
3460 if (blk_no + hblks <= log->l_logBBsize) {
3461 /* Read header in one read */
3462 error = xlog_bread(log, blk_no, hblks, hbp,
3463 &offset);
3464 if (error)
3465 goto bread_err2;
3466 } else {
3467 /* This LR is split across physical log end */
3468 if (blk_no != log->l_logBBsize) {
3469 /* some data before physical log end */
3470 ASSERT(blk_no <= INT_MAX);
3471 split_hblks = log->l_logBBsize - (int)blk_no;
3472 ASSERT(split_hblks > 0);
3473 error = xlog_bread(log, blk_no,
3474 split_hblks, hbp,
3475 &offset);
3476 if (error)
3477 goto bread_err2;
3478 }
3479
3480 /*
3481 * Note: this black magic still works with
3482 * large sector sizes (non-512) only because:
3483 * - we increased the buffer size originally
3484 * by 1 sector giving us enough extra space
3485 * for the second read;
3486 * - the log start is guaranteed to be sector
3487 * aligned;
3488 * - we read the log end (LR header start)
3489 * _first_, then the log start (LR header end)
3490 * - order is important.
3491 */
3492 wrapped_hblks = hblks - split_hblks;
3493 error = xlog_bread_offset(log, 0,
3494 wrapped_hblks, hbp,
3495 offset + BBTOB(split_hblks));
3496 if (error)
3497 goto bread_err2;
3498 }
3499 rhead = (xlog_rec_header_t *)offset;
3500 error = xlog_valid_rec_header(log, rhead,
3501 split_hblks ? blk_no : 0);
3502 if (error)
3503 goto bread_err2;
3504
3505 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3506 blk_no += hblks;
3507
3508 /* Read in data for log record */
3509 if (blk_no + bblks <= log->l_logBBsize) {
3510 error = xlog_bread(log, blk_no, bblks, dbp,
3511 &offset);
3512 if (error)
3513 goto bread_err2;
3514 } else {
3515 /* This log record is split across the
3516 * physical end of log */
3517 offset = dbp->b_addr;
3518 split_bblks = 0;
3519 if (blk_no != log->l_logBBsize) {
3520 /* some data is before the physical
3521 * end of log */
3522 ASSERT(!wrapped_hblks);
3523 ASSERT(blk_no <= INT_MAX);
3524 split_bblks =
3525 log->l_logBBsize - (int)blk_no;
3526 ASSERT(split_bblks > 0);
3527 error = xlog_bread(log, blk_no,
3528 split_bblks, dbp,
3529 &offset);
3530 if (error)
3531 goto bread_err2;
3532 }
3533
3534 /*
3535 * Note: this black magic still works with
3536 * large sector sizes (non-512) only because:
3537 * - we increased the buffer size originally
3538 * by 1 sector giving us enough extra space
3539 * for the second read;
3540 * - the log start is guaranteed to be sector
3541 * aligned;
3542 * - we read the log end (LR header start)
3543 * _first_, then the log start (LR header end)
3544 * - order is important.
3545 */
3546 error = xlog_bread_offset(log, 0,
3547 bblks - split_bblks, dbp,
3548 offset + BBTOB(split_bblks));
3549 if (error)
3550 goto bread_err2;
3551 }
3552 xlog_unpack_data(rhead, offset, log);
3553 if ((error = xlog_recover_process_data(log, rhash,
3554 rhead, offset, pass)))
3555 goto bread_err2;
3556 blk_no += bblks;
3557 }
3558
3559 ASSERT(blk_no >= log->l_logBBsize);
3560 blk_no -= log->l_logBBsize;
3561
3562 /* read first part of physical log */
3563 while (blk_no < head_blk) {
3564 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3565 if (error)
3566 goto bread_err2;
3567
3568 rhead = (xlog_rec_header_t *)offset;
3569 error = xlog_valid_rec_header(log, rhead, blk_no);
3570 if (error)
3571 goto bread_err2;
3572
3573 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3574 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3575 &offset);
3576 if (error)
3577 goto bread_err2;
3578
3579 xlog_unpack_data(rhead, offset, log);
3580 if ((error = xlog_recover_process_data(log, rhash,
3581 rhead, offset, pass)))
3582 goto bread_err2;
3583 blk_no += bblks + hblks;
3584 }
3585 }
3586
3587 bread_err2:
3588 xlog_put_bp(dbp);
3589 bread_err1:
3590 xlog_put_bp(hbp);
3591 return error;
3592 }
3593
3594 /*
3595 * Do the recovery of the log. We actually do this in two phases.
3596 * The two passes are necessary in order to implement the function
3597 * of cancelling a record written into the log. The first pass
3598 * determines those things which have been cancelled, and the
3599 * second pass replays log items normally except for those which
3600 * have been cancelled. The handling of the replay and cancellations
3601 * takes place in the log item type specific routines.
3602 *
3603 * The table of items which have cancel records in the log is allocated
3604 * and freed at this level, since only here do we know when all of
3605 * the log recovery has been completed.
3606 */
3607 STATIC int
3608 xlog_do_log_recovery(
3609 struct xlog *log,
3610 xfs_daddr_t head_blk,
3611 xfs_daddr_t tail_blk)
3612 {
3613 int error, i;
3614
3615 ASSERT(head_blk != tail_blk);
3616
3617 /*
3618 * First do a pass to find all of the cancelled buf log items.
3619 * Store them in the buf_cancel_table for use in the second pass.
3620 */
3621 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
3622 sizeof(struct list_head),
3623 KM_SLEEP);
3624 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3625 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
3626
3627 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3628 XLOG_RECOVER_PASS1);
3629 if (error != 0) {
3630 kmem_free(log->l_buf_cancel_table);
3631 log->l_buf_cancel_table = NULL;
3632 return error;
3633 }
3634 /*
3635 * Then do a second pass to actually recover the items in the log.
3636 * When it is complete free the table of buf cancel items.
3637 */
3638 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3639 XLOG_RECOVER_PASS2);
3640 #ifdef DEBUG
3641 if (!error) {
3642 int i;
3643
3644 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3645 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
3646 }
3647 #endif /* DEBUG */
3648
3649 kmem_free(log->l_buf_cancel_table);
3650 log->l_buf_cancel_table = NULL;
3651
3652 return error;
3653 }
3654
3655 /*
3656 * Do the actual recovery
3657 */
3658 STATIC int
3659 xlog_do_recover(
3660 struct xlog *log,
3661 xfs_daddr_t head_blk,
3662 xfs_daddr_t tail_blk)
3663 {
3664 int error;
3665 xfs_buf_t *bp;
3666 xfs_sb_t *sbp;
3667
3668 /*
3669 * First replay the images in the log.
3670 */
3671 error = xlog_do_log_recovery(log, head_blk, tail_blk);
3672 if (error)
3673 return error;
3674
3675 /*
3676 * If IO errors happened during recovery, bail out.
3677 */
3678 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3679 return (EIO);
3680 }
3681
3682 /*
3683 * We now update the tail_lsn since much of the recovery has completed
3684 * and there may be space available to use. If there were no extent
3685 * or iunlinks, we can free up the entire log and set the tail_lsn to
3686 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3687 * lsn of the last known good LR on disk. If there are extent frees
3688 * or iunlinks they will have some entries in the AIL; so we look at
3689 * the AIL to determine how to set the tail_lsn.
3690 */
3691 xlog_assign_tail_lsn(log->l_mp);
3692
3693 /*
3694 * Now that we've finished replaying all buffer and inode
3695 * updates, re-read in the superblock and reverify it.
3696 */
3697 bp = xfs_getsb(log->l_mp, 0);
3698 XFS_BUF_UNDONE(bp);
3699 ASSERT(!(XFS_BUF_ISWRITE(bp)));
3700 XFS_BUF_READ(bp);
3701 XFS_BUF_UNASYNC(bp);
3702 bp->b_ops = &xfs_sb_buf_ops;
3703 xfsbdstrat(log->l_mp, bp);
3704 error = xfs_buf_iowait(bp);
3705 if (error) {
3706 xfs_buf_ioerror_alert(bp, __func__);
3707 ASSERT(0);
3708 xfs_buf_relse(bp);
3709 return error;
3710 }
3711
3712 /* Convert superblock from on-disk format */
3713 sbp = &log->l_mp->m_sb;
3714 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
3715 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3716 ASSERT(xfs_sb_good_version(sbp));
3717 xfs_buf_relse(bp);
3718
3719 /* We've re-read the superblock so re-initialize per-cpu counters */
3720 xfs_icsb_reinit_counters(log->l_mp);
3721
3722 xlog_recover_check_summary(log);
3723
3724 /* Normal transactions can now occur */
3725 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3726 return 0;
3727 }
3728
3729 /*
3730 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3731 *
3732 * Return error or zero.
3733 */
3734 int
3735 xlog_recover(
3736 struct xlog *log)
3737 {
3738 xfs_daddr_t head_blk, tail_blk;
3739 int error;
3740
3741 /* find the tail of the log */
3742 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
3743 return error;
3744
3745 if (tail_blk != head_blk) {
3746 /* There used to be a comment here:
3747 *
3748 * disallow recovery on read-only mounts. note -- mount
3749 * checks for ENOSPC and turns it into an intelligent
3750 * error message.
3751 * ...but this is no longer true. Now, unless you specify
3752 * NORECOVERY (in which case this function would never be
3753 * called), we just go ahead and recover. We do this all
3754 * under the vfs layer, so we can get away with it unless
3755 * the device itself is read-only, in which case we fail.
3756 */
3757 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3758 return error;
3759 }
3760
3761 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
3762 log->l_mp->m_logname ? log->l_mp->m_logname
3763 : "internal");
3764
3765 error = xlog_do_recover(log, head_blk, tail_blk);
3766 log->l_flags |= XLOG_RECOVERY_NEEDED;
3767 }
3768 return error;
3769 }
3770
3771 /*
3772 * In the first part of recovery we replay inodes and buffers and build
3773 * up the list of extent free items which need to be processed. Here
3774 * we process the extent free items and clean up the on disk unlinked
3775 * inode lists. This is separated from the first part of recovery so
3776 * that the root and real-time bitmap inodes can be read in from disk in
3777 * between the two stages. This is necessary so that we can free space
3778 * in the real-time portion of the file system.
3779 */
3780 int
3781 xlog_recover_finish(
3782 struct xlog *log)
3783 {
3784 /*
3785 * Now we're ready to do the transactions needed for the
3786 * rest of recovery. Start with completing all the extent
3787 * free intent records and then process the unlinked inode
3788 * lists. At this point, we essentially run in normal mode
3789 * except that we're still performing recovery actions
3790 * rather than accepting new requests.
3791 */
3792 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3793 int error;
3794 error = xlog_recover_process_efis(log);
3795 if (error) {
3796 xfs_alert(log->l_mp, "Failed to recover EFIs");
3797 return error;
3798 }
3799 /*
3800 * Sync the log to get all the EFIs out of the AIL.
3801 * This isn't absolutely necessary, but it helps in
3802 * case the unlink transactions would have problems
3803 * pushing the EFIs out of the way.
3804 */
3805 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3806
3807 xlog_recover_process_iunlinks(log);
3808
3809 xlog_recover_check_summary(log);
3810
3811 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
3812 log->l_mp->m_logname ? log->l_mp->m_logname
3813 : "internal");
3814 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3815 } else {
3816 xfs_info(log->l_mp, "Ending clean mount");
3817 }
3818 return 0;
3819 }
3820
3821
3822 #if defined(DEBUG)
3823 /*
3824 * Read all of the agf and agi counters and check that they
3825 * are consistent with the superblock counters.
3826 */
3827 void
3828 xlog_recover_check_summary(
3829 struct xlog *log)
3830 {
3831 xfs_mount_t *mp;
3832 xfs_agf_t *agfp;
3833 xfs_buf_t *agfbp;
3834 xfs_buf_t *agibp;
3835 xfs_agnumber_t agno;
3836 __uint64_t freeblks;
3837 __uint64_t itotal;
3838 __uint64_t ifree;
3839 int error;
3840
3841 mp = log->l_mp;
3842
3843 freeblks = 0LL;
3844 itotal = 0LL;
3845 ifree = 0LL;
3846 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3847 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
3848 if (error) {
3849 xfs_alert(mp, "%s agf read failed agno %d error %d",
3850 __func__, agno, error);
3851 } else {
3852 agfp = XFS_BUF_TO_AGF(agfbp);
3853 freeblks += be32_to_cpu(agfp->agf_freeblks) +
3854 be32_to_cpu(agfp->agf_flcount);
3855 xfs_buf_relse(agfbp);
3856 }
3857
3858 error = xfs_read_agi(mp, NULL, agno, &agibp);
3859 if (error) {
3860 xfs_alert(mp, "%s agi read failed agno %d error %d",
3861 __func__, agno, error);
3862 } else {
3863 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
3864
3865 itotal += be32_to_cpu(agi->agi_count);
3866 ifree += be32_to_cpu(agi->agi_freecount);
3867 xfs_buf_relse(agibp);
3868 }
3869 }
3870 }
3871 #endif /* DEBUG */
This page took 0.253936 seconds and 5 git commands to generate.