Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound-2.6
[deliverable/linux.git] / fs / xfs / xfs_log_recover.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_error.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_alloc.h"
40 #include "xfs_ialloc.h"
41 #include "xfs_log_priv.h"
42 #include "xfs_buf_item.h"
43 #include "xfs_log_recover.h"
44 #include "xfs_extfree_item.h"
45 #include "xfs_trans_priv.h"
46 #include "xfs_quota.h"
47 #include "xfs_rw.h"
48 #include "xfs_utils.h"
49
50 STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
51 STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
52 STATIC void xlog_recover_insert_item_backq(xlog_recover_item_t **q,
53 xlog_recover_item_t *item);
54 #if defined(DEBUG)
55 STATIC void xlog_recover_check_summary(xlog_t *);
56 #else
57 #define xlog_recover_check_summary(log)
58 #endif
59
60
61 /*
62 * Sector aligned buffer routines for buffer create/read/write/access
63 */
64
65 #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs) \
66 ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
67 ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
68 #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno) ((bno) & ~(log)->l_sectbb_mask)
69
70 xfs_buf_t *
71 xlog_get_bp(
72 xlog_t *log,
73 int nbblks)
74 {
75 if (nbblks <= 0 || nbblks > log->l_logBBsize) {
76 xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks);
77 XFS_ERROR_REPORT("xlog_get_bp(1)",
78 XFS_ERRLEVEL_HIGH, log->l_mp);
79 return NULL;
80 }
81
82 if (log->l_sectbb_log) {
83 if (nbblks > 1)
84 nbblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
85 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
86 }
87 return xfs_buf_get_noaddr(BBTOB(nbblks), log->l_mp->m_logdev_targp);
88 }
89
90 void
91 xlog_put_bp(
92 xfs_buf_t *bp)
93 {
94 xfs_buf_free(bp);
95 }
96
97 STATIC xfs_caddr_t
98 xlog_align(
99 xlog_t *log,
100 xfs_daddr_t blk_no,
101 int nbblks,
102 xfs_buf_t *bp)
103 {
104 xfs_caddr_t ptr;
105
106 if (!log->l_sectbb_log)
107 return XFS_BUF_PTR(bp);
108
109 ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask);
110 ASSERT(XFS_BUF_SIZE(bp) >=
111 BBTOB(nbblks + (blk_no & log->l_sectbb_mask)));
112 return ptr;
113 }
114
115
116 /*
117 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
118 */
119 STATIC int
120 xlog_bread_noalign(
121 xlog_t *log,
122 xfs_daddr_t blk_no,
123 int nbblks,
124 xfs_buf_t *bp)
125 {
126 int error;
127
128 if (nbblks <= 0 || nbblks > log->l_logBBsize) {
129 xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks);
130 XFS_ERROR_REPORT("xlog_bread(1)",
131 XFS_ERRLEVEL_HIGH, log->l_mp);
132 return EFSCORRUPTED;
133 }
134
135 if (log->l_sectbb_log) {
136 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
137 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
138 }
139
140 ASSERT(nbblks > 0);
141 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
142 ASSERT(bp);
143
144 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
145 XFS_BUF_READ(bp);
146 XFS_BUF_BUSY(bp);
147 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
148 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
149
150 xfsbdstrat(log->l_mp, bp);
151 error = xfs_iowait(bp);
152 if (error)
153 xfs_ioerror_alert("xlog_bread", log->l_mp,
154 bp, XFS_BUF_ADDR(bp));
155 return error;
156 }
157
158 STATIC int
159 xlog_bread(
160 xlog_t *log,
161 xfs_daddr_t blk_no,
162 int nbblks,
163 xfs_buf_t *bp,
164 xfs_caddr_t *offset)
165 {
166 int error;
167
168 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
169 if (error)
170 return error;
171
172 *offset = xlog_align(log, blk_no, nbblks, bp);
173 return 0;
174 }
175
176 /*
177 * Write out the buffer at the given block for the given number of blocks.
178 * The buffer is kept locked across the write and is returned locked.
179 * This can only be used for synchronous log writes.
180 */
181 STATIC int
182 xlog_bwrite(
183 xlog_t *log,
184 xfs_daddr_t blk_no,
185 int nbblks,
186 xfs_buf_t *bp)
187 {
188 int error;
189
190 if (nbblks <= 0 || nbblks > log->l_logBBsize) {
191 xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks);
192 XFS_ERROR_REPORT("xlog_bwrite(1)",
193 XFS_ERRLEVEL_HIGH, log->l_mp);
194 return EFSCORRUPTED;
195 }
196
197 if (log->l_sectbb_log) {
198 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
199 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
200 }
201
202 ASSERT(nbblks > 0);
203 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
204
205 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
206 XFS_BUF_ZEROFLAGS(bp);
207 XFS_BUF_BUSY(bp);
208 XFS_BUF_HOLD(bp);
209 XFS_BUF_PSEMA(bp, PRIBIO);
210 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
211 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
212
213 if ((error = xfs_bwrite(log->l_mp, bp)))
214 xfs_ioerror_alert("xlog_bwrite", log->l_mp,
215 bp, XFS_BUF_ADDR(bp));
216 return error;
217 }
218
219 #ifdef DEBUG
220 /*
221 * dump debug superblock and log record information
222 */
223 STATIC void
224 xlog_header_check_dump(
225 xfs_mount_t *mp,
226 xlog_rec_header_t *head)
227 {
228 cmn_err(CE_DEBUG, "%s: SB : uuid = %pU, fmt = %d\n",
229 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
230 cmn_err(CE_DEBUG, " log : uuid = %pU, fmt = %d\n",
231 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
232 }
233 #else
234 #define xlog_header_check_dump(mp, head)
235 #endif
236
237 /*
238 * check log record header for recovery
239 */
240 STATIC int
241 xlog_header_check_recover(
242 xfs_mount_t *mp,
243 xlog_rec_header_t *head)
244 {
245 ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
246
247 /*
248 * IRIX doesn't write the h_fmt field and leaves it zeroed
249 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
250 * a dirty log created in IRIX.
251 */
252 if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) {
253 xlog_warn(
254 "XFS: dirty log written in incompatible format - can't recover");
255 xlog_header_check_dump(mp, head);
256 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
257 XFS_ERRLEVEL_HIGH, mp);
258 return XFS_ERROR(EFSCORRUPTED);
259 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
260 xlog_warn(
261 "XFS: dirty log entry has mismatched uuid - can't recover");
262 xlog_header_check_dump(mp, head);
263 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
264 XFS_ERRLEVEL_HIGH, mp);
265 return XFS_ERROR(EFSCORRUPTED);
266 }
267 return 0;
268 }
269
270 /*
271 * read the head block of the log and check the header
272 */
273 STATIC int
274 xlog_header_check_mount(
275 xfs_mount_t *mp,
276 xlog_rec_header_t *head)
277 {
278 ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
279
280 if (uuid_is_nil(&head->h_fs_uuid)) {
281 /*
282 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
283 * h_fs_uuid is nil, we assume this log was last mounted
284 * by IRIX and continue.
285 */
286 xlog_warn("XFS: nil uuid in log - IRIX style log");
287 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
288 xlog_warn("XFS: log has mismatched uuid - can't recover");
289 xlog_header_check_dump(mp, head);
290 XFS_ERROR_REPORT("xlog_header_check_mount",
291 XFS_ERRLEVEL_HIGH, mp);
292 return XFS_ERROR(EFSCORRUPTED);
293 }
294 return 0;
295 }
296
297 STATIC void
298 xlog_recover_iodone(
299 struct xfs_buf *bp)
300 {
301 if (XFS_BUF_GETERROR(bp)) {
302 /*
303 * We're not going to bother about retrying
304 * this during recovery. One strike!
305 */
306 xfs_ioerror_alert("xlog_recover_iodone",
307 bp->b_mount, bp, XFS_BUF_ADDR(bp));
308 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
309 }
310 bp->b_mount = NULL;
311 XFS_BUF_CLR_IODONE_FUNC(bp);
312 xfs_biodone(bp);
313 }
314
315 /*
316 * This routine finds (to an approximation) the first block in the physical
317 * log which contains the given cycle. It uses a binary search algorithm.
318 * Note that the algorithm can not be perfect because the disk will not
319 * necessarily be perfect.
320 */
321 STATIC int
322 xlog_find_cycle_start(
323 xlog_t *log,
324 xfs_buf_t *bp,
325 xfs_daddr_t first_blk,
326 xfs_daddr_t *last_blk,
327 uint cycle)
328 {
329 xfs_caddr_t offset;
330 xfs_daddr_t mid_blk;
331 uint mid_cycle;
332 int error;
333
334 mid_blk = BLK_AVG(first_blk, *last_blk);
335 while (mid_blk != first_blk && mid_blk != *last_blk) {
336 error = xlog_bread(log, mid_blk, 1, bp, &offset);
337 if (error)
338 return error;
339 mid_cycle = xlog_get_cycle(offset);
340 if (mid_cycle == cycle) {
341 *last_blk = mid_blk;
342 /* last_half_cycle == mid_cycle */
343 } else {
344 first_blk = mid_blk;
345 /* first_half_cycle == mid_cycle */
346 }
347 mid_blk = BLK_AVG(first_blk, *last_blk);
348 }
349 ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) ||
350 (mid_blk == *last_blk && mid_blk-1 == first_blk));
351
352 return 0;
353 }
354
355 /*
356 * Check that the range of blocks does not contain the cycle number
357 * given. The scan needs to occur from front to back and the ptr into the
358 * region must be updated since a later routine will need to perform another
359 * test. If the region is completely good, we end up returning the same
360 * last block number.
361 *
362 * Set blkno to -1 if we encounter no errors. This is an invalid block number
363 * since we don't ever expect logs to get this large.
364 */
365 STATIC int
366 xlog_find_verify_cycle(
367 xlog_t *log,
368 xfs_daddr_t start_blk,
369 int nbblks,
370 uint stop_on_cycle_no,
371 xfs_daddr_t *new_blk)
372 {
373 xfs_daddr_t i, j;
374 uint cycle;
375 xfs_buf_t *bp;
376 xfs_daddr_t bufblks;
377 xfs_caddr_t buf = NULL;
378 int error = 0;
379
380 bufblks = 1 << ffs(nbblks);
381
382 while (!(bp = xlog_get_bp(log, bufblks))) {
383 /* can't get enough memory to do everything in one big buffer */
384 bufblks >>= 1;
385 if (bufblks <= log->l_sectbb_log)
386 return ENOMEM;
387 }
388
389 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
390 int bcount;
391
392 bcount = min(bufblks, (start_blk + nbblks - i));
393
394 error = xlog_bread(log, i, bcount, bp, &buf);
395 if (error)
396 goto out;
397
398 for (j = 0; j < bcount; j++) {
399 cycle = xlog_get_cycle(buf);
400 if (cycle == stop_on_cycle_no) {
401 *new_blk = i+j;
402 goto out;
403 }
404
405 buf += BBSIZE;
406 }
407 }
408
409 *new_blk = -1;
410
411 out:
412 xlog_put_bp(bp);
413 return error;
414 }
415
416 /*
417 * Potentially backup over partial log record write.
418 *
419 * In the typical case, last_blk is the number of the block directly after
420 * a good log record. Therefore, we subtract one to get the block number
421 * of the last block in the given buffer. extra_bblks contains the number
422 * of blocks we would have read on a previous read. This happens when the
423 * last log record is split over the end of the physical log.
424 *
425 * extra_bblks is the number of blocks potentially verified on a previous
426 * call to this routine.
427 */
428 STATIC int
429 xlog_find_verify_log_record(
430 xlog_t *log,
431 xfs_daddr_t start_blk,
432 xfs_daddr_t *last_blk,
433 int extra_bblks)
434 {
435 xfs_daddr_t i;
436 xfs_buf_t *bp;
437 xfs_caddr_t offset = NULL;
438 xlog_rec_header_t *head = NULL;
439 int error = 0;
440 int smallmem = 0;
441 int num_blks = *last_blk - start_blk;
442 int xhdrs;
443
444 ASSERT(start_blk != 0 || *last_blk != start_blk);
445
446 if (!(bp = xlog_get_bp(log, num_blks))) {
447 if (!(bp = xlog_get_bp(log, 1)))
448 return ENOMEM;
449 smallmem = 1;
450 } else {
451 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
452 if (error)
453 goto out;
454 offset += ((num_blks - 1) << BBSHIFT);
455 }
456
457 for (i = (*last_blk) - 1; i >= 0; i--) {
458 if (i < start_blk) {
459 /* valid log record not found */
460 xlog_warn(
461 "XFS: Log inconsistent (didn't find previous header)");
462 ASSERT(0);
463 error = XFS_ERROR(EIO);
464 goto out;
465 }
466
467 if (smallmem) {
468 error = xlog_bread(log, i, 1, bp, &offset);
469 if (error)
470 goto out;
471 }
472
473 head = (xlog_rec_header_t *)offset;
474
475 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno))
476 break;
477
478 if (!smallmem)
479 offset -= BBSIZE;
480 }
481
482 /*
483 * We hit the beginning of the physical log & still no header. Return
484 * to caller. If caller can handle a return of -1, then this routine
485 * will be called again for the end of the physical log.
486 */
487 if (i == -1) {
488 error = -1;
489 goto out;
490 }
491
492 /*
493 * We have the final block of the good log (the first block
494 * of the log record _before_ the head. So we check the uuid.
495 */
496 if ((error = xlog_header_check_mount(log->l_mp, head)))
497 goto out;
498
499 /*
500 * We may have found a log record header before we expected one.
501 * last_blk will be the 1st block # with a given cycle #. We may end
502 * up reading an entire log record. In this case, we don't want to
503 * reset last_blk. Only when last_blk points in the middle of a log
504 * record do we update last_blk.
505 */
506 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
507 uint h_size = be32_to_cpu(head->h_size);
508
509 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
510 if (h_size % XLOG_HEADER_CYCLE_SIZE)
511 xhdrs++;
512 } else {
513 xhdrs = 1;
514 }
515
516 if (*last_blk - i + extra_bblks !=
517 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
518 *last_blk = i;
519
520 out:
521 xlog_put_bp(bp);
522 return error;
523 }
524
525 /*
526 * Head is defined to be the point of the log where the next log write
527 * write could go. This means that incomplete LR writes at the end are
528 * eliminated when calculating the head. We aren't guaranteed that previous
529 * LR have complete transactions. We only know that a cycle number of
530 * current cycle number -1 won't be present in the log if we start writing
531 * from our current block number.
532 *
533 * last_blk contains the block number of the first block with a given
534 * cycle number.
535 *
536 * Return: zero if normal, non-zero if error.
537 */
538 STATIC int
539 xlog_find_head(
540 xlog_t *log,
541 xfs_daddr_t *return_head_blk)
542 {
543 xfs_buf_t *bp;
544 xfs_caddr_t offset;
545 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
546 int num_scan_bblks;
547 uint first_half_cycle, last_half_cycle;
548 uint stop_on_cycle;
549 int error, log_bbnum = log->l_logBBsize;
550
551 /* Is the end of the log device zeroed? */
552 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
553 *return_head_blk = first_blk;
554
555 /* Is the whole lot zeroed? */
556 if (!first_blk) {
557 /* Linux XFS shouldn't generate totally zeroed logs -
558 * mkfs etc write a dummy unmount record to a fresh
559 * log so we can store the uuid in there
560 */
561 xlog_warn("XFS: totally zeroed log");
562 }
563
564 return 0;
565 } else if (error) {
566 xlog_warn("XFS: empty log check failed");
567 return error;
568 }
569
570 first_blk = 0; /* get cycle # of 1st block */
571 bp = xlog_get_bp(log, 1);
572 if (!bp)
573 return ENOMEM;
574
575 error = xlog_bread(log, 0, 1, bp, &offset);
576 if (error)
577 goto bp_err;
578
579 first_half_cycle = xlog_get_cycle(offset);
580
581 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
582 error = xlog_bread(log, last_blk, 1, bp, &offset);
583 if (error)
584 goto bp_err;
585
586 last_half_cycle = xlog_get_cycle(offset);
587 ASSERT(last_half_cycle != 0);
588
589 /*
590 * If the 1st half cycle number is equal to the last half cycle number,
591 * then the entire log is stamped with the same cycle number. In this
592 * case, head_blk can't be set to zero (which makes sense). The below
593 * math doesn't work out properly with head_blk equal to zero. Instead,
594 * we set it to log_bbnum which is an invalid block number, but this
595 * value makes the math correct. If head_blk doesn't changed through
596 * all the tests below, *head_blk is set to zero at the very end rather
597 * than log_bbnum. In a sense, log_bbnum and zero are the same block
598 * in a circular file.
599 */
600 if (first_half_cycle == last_half_cycle) {
601 /*
602 * In this case we believe that the entire log should have
603 * cycle number last_half_cycle. We need to scan backwards
604 * from the end verifying that there are no holes still
605 * containing last_half_cycle - 1. If we find such a hole,
606 * then the start of that hole will be the new head. The
607 * simple case looks like
608 * x | x ... | x - 1 | x
609 * Another case that fits this picture would be
610 * x | x + 1 | x ... | x
611 * In this case the head really is somewhere at the end of the
612 * log, as one of the latest writes at the beginning was
613 * incomplete.
614 * One more case is
615 * x | x + 1 | x ... | x - 1 | x
616 * This is really the combination of the above two cases, and
617 * the head has to end up at the start of the x-1 hole at the
618 * end of the log.
619 *
620 * In the 256k log case, we will read from the beginning to the
621 * end of the log and search for cycle numbers equal to x-1.
622 * We don't worry about the x+1 blocks that we encounter,
623 * because we know that they cannot be the head since the log
624 * started with x.
625 */
626 head_blk = log_bbnum;
627 stop_on_cycle = last_half_cycle - 1;
628 } else {
629 /*
630 * In this case we want to find the first block with cycle
631 * number matching last_half_cycle. We expect the log to be
632 * some variation on
633 * x + 1 ... | x ...
634 * The first block with cycle number x (last_half_cycle) will
635 * be where the new head belongs. First we do a binary search
636 * for the first occurrence of last_half_cycle. The binary
637 * search may not be totally accurate, so then we scan back
638 * from there looking for occurrences of last_half_cycle before
639 * us. If that backwards scan wraps around the beginning of
640 * the log, then we look for occurrences of last_half_cycle - 1
641 * at the end of the log. The cases we're looking for look
642 * like
643 * x + 1 ... | x | x + 1 | x ...
644 * ^ binary search stopped here
645 * or
646 * x + 1 ... | x ... | x - 1 | x
647 * <---------> less than scan distance
648 */
649 stop_on_cycle = last_half_cycle;
650 if ((error = xlog_find_cycle_start(log, bp, first_blk,
651 &head_blk, last_half_cycle)))
652 goto bp_err;
653 }
654
655 /*
656 * Now validate the answer. Scan back some number of maximum possible
657 * blocks and make sure each one has the expected cycle number. The
658 * maximum is determined by the total possible amount of buffering
659 * in the in-core log. The following number can be made tighter if
660 * we actually look at the block size of the filesystem.
661 */
662 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
663 if (head_blk >= num_scan_bblks) {
664 /*
665 * We are guaranteed that the entire check can be performed
666 * in one buffer.
667 */
668 start_blk = head_blk - num_scan_bblks;
669 if ((error = xlog_find_verify_cycle(log,
670 start_blk, num_scan_bblks,
671 stop_on_cycle, &new_blk)))
672 goto bp_err;
673 if (new_blk != -1)
674 head_blk = new_blk;
675 } else { /* need to read 2 parts of log */
676 /*
677 * We are going to scan backwards in the log in two parts.
678 * First we scan the physical end of the log. In this part
679 * of the log, we are looking for blocks with cycle number
680 * last_half_cycle - 1.
681 * If we find one, then we know that the log starts there, as
682 * we've found a hole that didn't get written in going around
683 * the end of the physical log. The simple case for this is
684 * x + 1 ... | x ... | x - 1 | x
685 * <---------> less than scan distance
686 * If all of the blocks at the end of the log have cycle number
687 * last_half_cycle, then we check the blocks at the start of
688 * the log looking for occurrences of last_half_cycle. If we
689 * find one, then our current estimate for the location of the
690 * first occurrence of last_half_cycle is wrong and we move
691 * back to the hole we've found. This case looks like
692 * x + 1 ... | x | x + 1 | x ...
693 * ^ binary search stopped here
694 * Another case we need to handle that only occurs in 256k
695 * logs is
696 * x + 1 ... | x ... | x+1 | x ...
697 * ^ binary search stops here
698 * In a 256k log, the scan at the end of the log will see the
699 * x + 1 blocks. We need to skip past those since that is
700 * certainly not the head of the log. By searching for
701 * last_half_cycle-1 we accomplish that.
702 */
703 start_blk = log_bbnum - num_scan_bblks + head_blk;
704 ASSERT(head_blk <= INT_MAX &&
705 (xfs_daddr_t) num_scan_bblks - head_blk >= 0);
706 if ((error = xlog_find_verify_cycle(log, start_blk,
707 num_scan_bblks - (int)head_blk,
708 (stop_on_cycle - 1), &new_blk)))
709 goto bp_err;
710 if (new_blk != -1) {
711 head_blk = new_blk;
712 goto bad_blk;
713 }
714
715 /*
716 * Scan beginning of log now. The last part of the physical
717 * log is good. This scan needs to verify that it doesn't find
718 * the last_half_cycle.
719 */
720 start_blk = 0;
721 ASSERT(head_blk <= INT_MAX);
722 if ((error = xlog_find_verify_cycle(log,
723 start_blk, (int)head_blk,
724 stop_on_cycle, &new_blk)))
725 goto bp_err;
726 if (new_blk != -1)
727 head_blk = new_blk;
728 }
729
730 bad_blk:
731 /*
732 * Now we need to make sure head_blk is not pointing to a block in
733 * the middle of a log record.
734 */
735 num_scan_bblks = XLOG_REC_SHIFT(log);
736 if (head_blk >= num_scan_bblks) {
737 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
738
739 /* start ptr at last block ptr before head_blk */
740 if ((error = xlog_find_verify_log_record(log, start_blk,
741 &head_blk, 0)) == -1) {
742 error = XFS_ERROR(EIO);
743 goto bp_err;
744 } else if (error)
745 goto bp_err;
746 } else {
747 start_blk = 0;
748 ASSERT(head_blk <= INT_MAX);
749 if ((error = xlog_find_verify_log_record(log, start_blk,
750 &head_blk, 0)) == -1) {
751 /* We hit the beginning of the log during our search */
752 start_blk = log_bbnum - num_scan_bblks + head_blk;
753 new_blk = log_bbnum;
754 ASSERT(start_blk <= INT_MAX &&
755 (xfs_daddr_t) log_bbnum-start_blk >= 0);
756 ASSERT(head_blk <= INT_MAX);
757 if ((error = xlog_find_verify_log_record(log,
758 start_blk, &new_blk,
759 (int)head_blk)) == -1) {
760 error = XFS_ERROR(EIO);
761 goto bp_err;
762 } else if (error)
763 goto bp_err;
764 if (new_blk != log_bbnum)
765 head_blk = new_blk;
766 } else if (error)
767 goto bp_err;
768 }
769
770 xlog_put_bp(bp);
771 if (head_blk == log_bbnum)
772 *return_head_blk = 0;
773 else
774 *return_head_blk = head_blk;
775 /*
776 * When returning here, we have a good block number. Bad block
777 * means that during a previous crash, we didn't have a clean break
778 * from cycle number N to cycle number N-1. In this case, we need
779 * to find the first block with cycle number N-1.
780 */
781 return 0;
782
783 bp_err:
784 xlog_put_bp(bp);
785
786 if (error)
787 xlog_warn("XFS: failed to find log head");
788 return error;
789 }
790
791 /*
792 * Find the sync block number or the tail of the log.
793 *
794 * This will be the block number of the last record to have its
795 * associated buffers synced to disk. Every log record header has
796 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
797 * to get a sync block number. The only concern is to figure out which
798 * log record header to believe.
799 *
800 * The following algorithm uses the log record header with the largest
801 * lsn. The entire log record does not need to be valid. We only care
802 * that the header is valid.
803 *
804 * We could speed up search by using current head_blk buffer, but it is not
805 * available.
806 */
807 int
808 xlog_find_tail(
809 xlog_t *log,
810 xfs_daddr_t *head_blk,
811 xfs_daddr_t *tail_blk)
812 {
813 xlog_rec_header_t *rhead;
814 xlog_op_header_t *op_head;
815 xfs_caddr_t offset = NULL;
816 xfs_buf_t *bp;
817 int error, i, found;
818 xfs_daddr_t umount_data_blk;
819 xfs_daddr_t after_umount_blk;
820 xfs_lsn_t tail_lsn;
821 int hblks;
822
823 found = 0;
824
825 /*
826 * Find previous log record
827 */
828 if ((error = xlog_find_head(log, head_blk)))
829 return error;
830
831 bp = xlog_get_bp(log, 1);
832 if (!bp)
833 return ENOMEM;
834 if (*head_blk == 0) { /* special case */
835 error = xlog_bread(log, 0, 1, bp, &offset);
836 if (error)
837 goto bread_err;
838
839 if (xlog_get_cycle(offset) == 0) {
840 *tail_blk = 0;
841 /* leave all other log inited values alone */
842 goto exit;
843 }
844 }
845
846 /*
847 * Search backwards looking for log record header block
848 */
849 ASSERT(*head_blk < INT_MAX);
850 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
851 error = xlog_bread(log, i, 1, bp, &offset);
852 if (error)
853 goto bread_err;
854
855 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) {
856 found = 1;
857 break;
858 }
859 }
860 /*
861 * If we haven't found the log record header block, start looking
862 * again from the end of the physical log. XXXmiken: There should be
863 * a check here to make sure we didn't search more than N blocks in
864 * the previous code.
865 */
866 if (!found) {
867 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
868 error = xlog_bread(log, i, 1, bp, &offset);
869 if (error)
870 goto bread_err;
871
872 if (XLOG_HEADER_MAGIC_NUM ==
873 be32_to_cpu(*(__be32 *)offset)) {
874 found = 2;
875 break;
876 }
877 }
878 }
879 if (!found) {
880 xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
881 ASSERT(0);
882 return XFS_ERROR(EIO);
883 }
884
885 /* find blk_no of tail of log */
886 rhead = (xlog_rec_header_t *)offset;
887 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
888
889 /*
890 * Reset log values according to the state of the log when we
891 * crashed. In the case where head_blk == 0, we bump curr_cycle
892 * one because the next write starts a new cycle rather than
893 * continuing the cycle of the last good log record. At this
894 * point we have guaranteed that all partial log records have been
895 * accounted for. Therefore, we know that the last good log record
896 * written was complete and ended exactly on the end boundary
897 * of the physical log.
898 */
899 log->l_prev_block = i;
900 log->l_curr_block = (int)*head_blk;
901 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
902 if (found == 2)
903 log->l_curr_cycle++;
904 log->l_tail_lsn = be64_to_cpu(rhead->h_tail_lsn);
905 log->l_last_sync_lsn = be64_to_cpu(rhead->h_lsn);
906 log->l_grant_reserve_cycle = log->l_curr_cycle;
907 log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
908 log->l_grant_write_cycle = log->l_curr_cycle;
909 log->l_grant_write_bytes = BBTOB(log->l_curr_block);
910
911 /*
912 * Look for unmount record. If we find it, then we know there
913 * was a clean unmount. Since 'i' could be the last block in
914 * the physical log, we convert to a log block before comparing
915 * to the head_blk.
916 *
917 * Save the current tail lsn to use to pass to
918 * xlog_clear_stale_blocks() below. We won't want to clear the
919 * unmount record if there is one, so we pass the lsn of the
920 * unmount record rather than the block after it.
921 */
922 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
923 int h_size = be32_to_cpu(rhead->h_size);
924 int h_version = be32_to_cpu(rhead->h_version);
925
926 if ((h_version & XLOG_VERSION_2) &&
927 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
928 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
929 if (h_size % XLOG_HEADER_CYCLE_SIZE)
930 hblks++;
931 } else {
932 hblks = 1;
933 }
934 } else {
935 hblks = 1;
936 }
937 after_umount_blk = (i + hblks + (int)
938 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
939 tail_lsn = log->l_tail_lsn;
940 if (*head_blk == after_umount_blk &&
941 be32_to_cpu(rhead->h_num_logops) == 1) {
942 umount_data_blk = (i + hblks) % log->l_logBBsize;
943 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
944 if (error)
945 goto bread_err;
946
947 op_head = (xlog_op_header_t *)offset;
948 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
949 /*
950 * Set tail and last sync so that newly written
951 * log records will point recovery to after the
952 * current unmount record.
953 */
954 log->l_tail_lsn =
955 xlog_assign_lsn(log->l_curr_cycle,
956 after_umount_blk);
957 log->l_last_sync_lsn =
958 xlog_assign_lsn(log->l_curr_cycle,
959 after_umount_blk);
960 *tail_blk = after_umount_blk;
961
962 /*
963 * Note that the unmount was clean. If the unmount
964 * was not clean, we need to know this to rebuild the
965 * superblock counters from the perag headers if we
966 * have a filesystem using non-persistent counters.
967 */
968 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
969 }
970 }
971
972 /*
973 * Make sure that there are no blocks in front of the head
974 * with the same cycle number as the head. This can happen
975 * because we allow multiple outstanding log writes concurrently,
976 * and the later writes might make it out before earlier ones.
977 *
978 * We use the lsn from before modifying it so that we'll never
979 * overwrite the unmount record after a clean unmount.
980 *
981 * Do this only if we are going to recover the filesystem
982 *
983 * NOTE: This used to say "if (!readonly)"
984 * However on Linux, we can & do recover a read-only filesystem.
985 * We only skip recovery if NORECOVERY is specified on mount,
986 * in which case we would not be here.
987 *
988 * But... if the -device- itself is readonly, just skip this.
989 * We can't recover this device anyway, so it won't matter.
990 */
991 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
992 error = xlog_clear_stale_blocks(log, tail_lsn);
993 }
994
995 bread_err:
996 exit:
997 xlog_put_bp(bp);
998
999 if (error)
1000 xlog_warn("XFS: failed to locate log tail");
1001 return error;
1002 }
1003
1004 /*
1005 * Is the log zeroed at all?
1006 *
1007 * The last binary search should be changed to perform an X block read
1008 * once X becomes small enough. You can then search linearly through
1009 * the X blocks. This will cut down on the number of reads we need to do.
1010 *
1011 * If the log is partially zeroed, this routine will pass back the blkno
1012 * of the first block with cycle number 0. It won't have a complete LR
1013 * preceding it.
1014 *
1015 * Return:
1016 * 0 => the log is completely written to
1017 * -1 => use *blk_no as the first block of the log
1018 * >0 => error has occurred
1019 */
1020 STATIC int
1021 xlog_find_zeroed(
1022 xlog_t *log,
1023 xfs_daddr_t *blk_no)
1024 {
1025 xfs_buf_t *bp;
1026 xfs_caddr_t offset;
1027 uint first_cycle, last_cycle;
1028 xfs_daddr_t new_blk, last_blk, start_blk;
1029 xfs_daddr_t num_scan_bblks;
1030 int error, log_bbnum = log->l_logBBsize;
1031
1032 *blk_no = 0;
1033
1034 /* check totally zeroed log */
1035 bp = xlog_get_bp(log, 1);
1036 if (!bp)
1037 return ENOMEM;
1038 error = xlog_bread(log, 0, 1, bp, &offset);
1039 if (error)
1040 goto bp_err;
1041
1042 first_cycle = xlog_get_cycle(offset);
1043 if (first_cycle == 0) { /* completely zeroed log */
1044 *blk_no = 0;
1045 xlog_put_bp(bp);
1046 return -1;
1047 }
1048
1049 /* check partially zeroed log */
1050 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1051 if (error)
1052 goto bp_err;
1053
1054 last_cycle = xlog_get_cycle(offset);
1055 if (last_cycle != 0) { /* log completely written to */
1056 xlog_put_bp(bp);
1057 return 0;
1058 } else if (first_cycle != 1) {
1059 /*
1060 * If the cycle of the last block is zero, the cycle of
1061 * the first block must be 1. If it's not, maybe we're
1062 * not looking at a log... Bail out.
1063 */
1064 xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
1065 return XFS_ERROR(EINVAL);
1066 }
1067
1068 /* we have a partially zeroed log */
1069 last_blk = log_bbnum-1;
1070 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1071 goto bp_err;
1072
1073 /*
1074 * Validate the answer. Because there is no way to guarantee that
1075 * the entire log is made up of log records which are the same size,
1076 * we scan over the defined maximum blocks. At this point, the maximum
1077 * is not chosen to mean anything special. XXXmiken
1078 */
1079 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1080 ASSERT(num_scan_bblks <= INT_MAX);
1081
1082 if (last_blk < num_scan_bblks)
1083 num_scan_bblks = last_blk;
1084 start_blk = last_blk - num_scan_bblks;
1085
1086 /*
1087 * We search for any instances of cycle number 0 that occur before
1088 * our current estimate of the head. What we're trying to detect is
1089 * 1 ... | 0 | 1 | 0...
1090 * ^ binary search ends here
1091 */
1092 if ((error = xlog_find_verify_cycle(log, start_blk,
1093 (int)num_scan_bblks, 0, &new_blk)))
1094 goto bp_err;
1095 if (new_blk != -1)
1096 last_blk = new_blk;
1097
1098 /*
1099 * Potentially backup over partial log record write. We don't need
1100 * to search the end of the log because we know it is zero.
1101 */
1102 if ((error = xlog_find_verify_log_record(log, start_blk,
1103 &last_blk, 0)) == -1) {
1104 error = XFS_ERROR(EIO);
1105 goto bp_err;
1106 } else if (error)
1107 goto bp_err;
1108
1109 *blk_no = last_blk;
1110 bp_err:
1111 xlog_put_bp(bp);
1112 if (error)
1113 return error;
1114 return -1;
1115 }
1116
1117 /*
1118 * These are simple subroutines used by xlog_clear_stale_blocks() below
1119 * to initialize a buffer full of empty log record headers and write
1120 * them into the log.
1121 */
1122 STATIC void
1123 xlog_add_record(
1124 xlog_t *log,
1125 xfs_caddr_t buf,
1126 int cycle,
1127 int block,
1128 int tail_cycle,
1129 int tail_block)
1130 {
1131 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1132
1133 memset(buf, 0, BBSIZE);
1134 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1135 recp->h_cycle = cpu_to_be32(cycle);
1136 recp->h_version = cpu_to_be32(
1137 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1138 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1139 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1140 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1141 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1142 }
1143
1144 STATIC int
1145 xlog_write_log_records(
1146 xlog_t *log,
1147 int cycle,
1148 int start_block,
1149 int blocks,
1150 int tail_cycle,
1151 int tail_block)
1152 {
1153 xfs_caddr_t offset;
1154 xfs_buf_t *bp;
1155 int balign, ealign;
1156 int sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
1157 int end_block = start_block + blocks;
1158 int bufblks;
1159 int error = 0;
1160 int i, j = 0;
1161
1162 bufblks = 1 << ffs(blocks);
1163 while (!(bp = xlog_get_bp(log, bufblks))) {
1164 bufblks >>= 1;
1165 if (bufblks <= log->l_sectbb_log)
1166 return ENOMEM;
1167 }
1168
1169 /* We may need to do a read at the start to fill in part of
1170 * the buffer in the starting sector not covered by the first
1171 * write below.
1172 */
1173 balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block);
1174 if (balign != start_block) {
1175 error = xlog_bread_noalign(log, start_block, 1, bp);
1176 if (error)
1177 goto out_put_bp;
1178
1179 j = start_block - balign;
1180 }
1181
1182 for (i = start_block; i < end_block; i += bufblks) {
1183 int bcount, endcount;
1184
1185 bcount = min(bufblks, end_block - start_block);
1186 endcount = bcount - j;
1187
1188 /* We may need to do a read at the end to fill in part of
1189 * the buffer in the final sector not covered by the write.
1190 * If this is the same sector as the above read, skip it.
1191 */
1192 ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block);
1193 if (j == 0 && (start_block + endcount > ealign)) {
1194 offset = XFS_BUF_PTR(bp);
1195 balign = BBTOB(ealign - start_block);
1196 error = XFS_BUF_SET_PTR(bp, offset + balign,
1197 BBTOB(sectbb));
1198 if (error)
1199 break;
1200
1201 error = xlog_bread_noalign(log, ealign, sectbb, bp);
1202 if (error)
1203 break;
1204
1205 error = XFS_BUF_SET_PTR(bp, offset, bufblks);
1206 if (error)
1207 break;
1208 }
1209
1210 offset = xlog_align(log, start_block, endcount, bp);
1211 for (; j < endcount; j++) {
1212 xlog_add_record(log, offset, cycle, i+j,
1213 tail_cycle, tail_block);
1214 offset += BBSIZE;
1215 }
1216 error = xlog_bwrite(log, start_block, endcount, bp);
1217 if (error)
1218 break;
1219 start_block += endcount;
1220 j = 0;
1221 }
1222
1223 out_put_bp:
1224 xlog_put_bp(bp);
1225 return error;
1226 }
1227
1228 /*
1229 * This routine is called to blow away any incomplete log writes out
1230 * in front of the log head. We do this so that we won't become confused
1231 * if we come up, write only a little bit more, and then crash again.
1232 * If we leave the partial log records out there, this situation could
1233 * cause us to think those partial writes are valid blocks since they
1234 * have the current cycle number. We get rid of them by overwriting them
1235 * with empty log records with the old cycle number rather than the
1236 * current one.
1237 *
1238 * The tail lsn is passed in rather than taken from
1239 * the log so that we will not write over the unmount record after a
1240 * clean unmount in a 512 block log. Doing so would leave the log without
1241 * any valid log records in it until a new one was written. If we crashed
1242 * during that time we would not be able to recover.
1243 */
1244 STATIC int
1245 xlog_clear_stale_blocks(
1246 xlog_t *log,
1247 xfs_lsn_t tail_lsn)
1248 {
1249 int tail_cycle, head_cycle;
1250 int tail_block, head_block;
1251 int tail_distance, max_distance;
1252 int distance;
1253 int error;
1254
1255 tail_cycle = CYCLE_LSN(tail_lsn);
1256 tail_block = BLOCK_LSN(tail_lsn);
1257 head_cycle = log->l_curr_cycle;
1258 head_block = log->l_curr_block;
1259
1260 /*
1261 * Figure out the distance between the new head of the log
1262 * and the tail. We want to write over any blocks beyond the
1263 * head that we may have written just before the crash, but
1264 * we don't want to overwrite the tail of the log.
1265 */
1266 if (head_cycle == tail_cycle) {
1267 /*
1268 * The tail is behind the head in the physical log,
1269 * so the distance from the head to the tail is the
1270 * distance from the head to the end of the log plus
1271 * the distance from the beginning of the log to the
1272 * tail.
1273 */
1274 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1275 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1276 XFS_ERRLEVEL_LOW, log->l_mp);
1277 return XFS_ERROR(EFSCORRUPTED);
1278 }
1279 tail_distance = tail_block + (log->l_logBBsize - head_block);
1280 } else {
1281 /*
1282 * The head is behind the tail in the physical log,
1283 * so the distance from the head to the tail is just
1284 * the tail block minus the head block.
1285 */
1286 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1287 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1288 XFS_ERRLEVEL_LOW, log->l_mp);
1289 return XFS_ERROR(EFSCORRUPTED);
1290 }
1291 tail_distance = tail_block - head_block;
1292 }
1293
1294 /*
1295 * If the head is right up against the tail, we can't clear
1296 * anything.
1297 */
1298 if (tail_distance <= 0) {
1299 ASSERT(tail_distance == 0);
1300 return 0;
1301 }
1302
1303 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1304 /*
1305 * Take the smaller of the maximum amount of outstanding I/O
1306 * we could have and the distance to the tail to clear out.
1307 * We take the smaller so that we don't overwrite the tail and
1308 * we don't waste all day writing from the head to the tail
1309 * for no reason.
1310 */
1311 max_distance = MIN(max_distance, tail_distance);
1312
1313 if ((head_block + max_distance) <= log->l_logBBsize) {
1314 /*
1315 * We can stomp all the blocks we need to without
1316 * wrapping around the end of the log. Just do it
1317 * in a single write. Use the cycle number of the
1318 * current cycle minus one so that the log will look like:
1319 * n ... | n - 1 ...
1320 */
1321 error = xlog_write_log_records(log, (head_cycle - 1),
1322 head_block, max_distance, tail_cycle,
1323 tail_block);
1324 if (error)
1325 return error;
1326 } else {
1327 /*
1328 * We need to wrap around the end of the physical log in
1329 * order to clear all the blocks. Do it in two separate
1330 * I/Os. The first write should be from the head to the
1331 * end of the physical log, and it should use the current
1332 * cycle number minus one just like above.
1333 */
1334 distance = log->l_logBBsize - head_block;
1335 error = xlog_write_log_records(log, (head_cycle - 1),
1336 head_block, distance, tail_cycle,
1337 tail_block);
1338
1339 if (error)
1340 return error;
1341
1342 /*
1343 * Now write the blocks at the start of the physical log.
1344 * This writes the remainder of the blocks we want to clear.
1345 * It uses the current cycle number since we're now on the
1346 * same cycle as the head so that we get:
1347 * n ... n ... | n - 1 ...
1348 * ^^^^^ blocks we're writing
1349 */
1350 distance = max_distance - (log->l_logBBsize - head_block);
1351 error = xlog_write_log_records(log, head_cycle, 0, distance,
1352 tail_cycle, tail_block);
1353 if (error)
1354 return error;
1355 }
1356
1357 return 0;
1358 }
1359
1360 /******************************************************************************
1361 *
1362 * Log recover routines
1363 *
1364 ******************************************************************************
1365 */
1366
1367 STATIC xlog_recover_t *
1368 xlog_recover_find_tid(
1369 xlog_recover_t *q,
1370 xlog_tid_t tid)
1371 {
1372 xlog_recover_t *p = q;
1373
1374 while (p != NULL) {
1375 if (p->r_log_tid == tid)
1376 break;
1377 p = p->r_next;
1378 }
1379 return p;
1380 }
1381
1382 STATIC void
1383 xlog_recover_put_hashq(
1384 xlog_recover_t **q,
1385 xlog_recover_t *trans)
1386 {
1387 trans->r_next = *q;
1388 *q = trans;
1389 }
1390
1391 STATIC void
1392 xlog_recover_add_item(
1393 xlog_recover_item_t **itemq)
1394 {
1395 xlog_recover_item_t *item;
1396
1397 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1398 xlog_recover_insert_item_backq(itemq, item);
1399 }
1400
1401 STATIC int
1402 xlog_recover_add_to_cont_trans(
1403 xlog_recover_t *trans,
1404 xfs_caddr_t dp,
1405 int len)
1406 {
1407 xlog_recover_item_t *item;
1408 xfs_caddr_t ptr, old_ptr;
1409 int old_len;
1410
1411 item = trans->r_itemq;
1412 if (item == NULL) {
1413 /* finish copying rest of trans header */
1414 xlog_recover_add_item(&trans->r_itemq);
1415 ptr = (xfs_caddr_t) &trans->r_theader +
1416 sizeof(xfs_trans_header_t) - len;
1417 memcpy(ptr, dp, len); /* d, s, l */
1418 return 0;
1419 }
1420 item = item->ri_prev;
1421
1422 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1423 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1424
1425 ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
1426 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1427 item->ri_buf[item->ri_cnt-1].i_len += len;
1428 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1429 return 0;
1430 }
1431
1432 /*
1433 * The next region to add is the start of a new region. It could be
1434 * a whole region or it could be the first part of a new region. Because
1435 * of this, the assumption here is that the type and size fields of all
1436 * format structures fit into the first 32 bits of the structure.
1437 *
1438 * This works because all regions must be 32 bit aligned. Therefore, we
1439 * either have both fields or we have neither field. In the case we have
1440 * neither field, the data part of the region is zero length. We only have
1441 * a log_op_header and can throw away the header since a new one will appear
1442 * later. If we have at least 4 bytes, then we can determine how many regions
1443 * will appear in the current log item.
1444 */
1445 STATIC int
1446 xlog_recover_add_to_trans(
1447 xlog_recover_t *trans,
1448 xfs_caddr_t dp,
1449 int len)
1450 {
1451 xfs_inode_log_format_t *in_f; /* any will do */
1452 xlog_recover_item_t *item;
1453 xfs_caddr_t ptr;
1454
1455 if (!len)
1456 return 0;
1457 item = trans->r_itemq;
1458 if (item == NULL) {
1459 /* we need to catch log corruptions here */
1460 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1461 xlog_warn("XFS: xlog_recover_add_to_trans: "
1462 "bad header magic number");
1463 ASSERT(0);
1464 return XFS_ERROR(EIO);
1465 }
1466 if (len == sizeof(xfs_trans_header_t))
1467 xlog_recover_add_item(&trans->r_itemq);
1468 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1469 return 0;
1470 }
1471
1472 ptr = kmem_alloc(len, KM_SLEEP);
1473 memcpy(ptr, dp, len);
1474 in_f = (xfs_inode_log_format_t *)ptr;
1475
1476 if (item->ri_prev->ri_total != 0 &&
1477 item->ri_prev->ri_total == item->ri_prev->ri_cnt) {
1478 xlog_recover_add_item(&trans->r_itemq);
1479 }
1480 item = trans->r_itemq;
1481 item = item->ri_prev;
1482
1483 if (item->ri_total == 0) { /* first region to be added */
1484 if (in_f->ilf_size == 0 ||
1485 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
1486 xlog_warn(
1487 "XFS: bad number of regions (%d) in inode log format",
1488 in_f->ilf_size);
1489 ASSERT(0);
1490 return XFS_ERROR(EIO);
1491 }
1492
1493 item->ri_total = in_f->ilf_size;
1494 item->ri_buf =
1495 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1496 KM_SLEEP);
1497 }
1498 ASSERT(item->ri_total > item->ri_cnt);
1499 /* Description region is ri_buf[0] */
1500 item->ri_buf[item->ri_cnt].i_addr = ptr;
1501 item->ri_buf[item->ri_cnt].i_len = len;
1502 item->ri_cnt++;
1503 return 0;
1504 }
1505
1506 STATIC void
1507 xlog_recover_new_tid(
1508 xlog_recover_t **q,
1509 xlog_tid_t tid,
1510 xfs_lsn_t lsn)
1511 {
1512 xlog_recover_t *trans;
1513
1514 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1515 trans->r_log_tid = tid;
1516 trans->r_lsn = lsn;
1517 xlog_recover_put_hashq(q, trans);
1518 }
1519
1520 STATIC int
1521 xlog_recover_unlink_tid(
1522 xlog_recover_t **q,
1523 xlog_recover_t *trans)
1524 {
1525 xlog_recover_t *tp;
1526 int found = 0;
1527
1528 ASSERT(trans != NULL);
1529 if (trans == *q) {
1530 *q = (*q)->r_next;
1531 } else {
1532 tp = *q;
1533 while (tp) {
1534 if (tp->r_next == trans) {
1535 found = 1;
1536 break;
1537 }
1538 tp = tp->r_next;
1539 }
1540 if (!found) {
1541 xlog_warn(
1542 "XFS: xlog_recover_unlink_tid: trans not found");
1543 ASSERT(0);
1544 return XFS_ERROR(EIO);
1545 }
1546 tp->r_next = tp->r_next->r_next;
1547 }
1548 return 0;
1549 }
1550
1551 STATIC void
1552 xlog_recover_insert_item_backq(
1553 xlog_recover_item_t **q,
1554 xlog_recover_item_t *item)
1555 {
1556 if (*q == NULL) {
1557 item->ri_prev = item->ri_next = item;
1558 *q = item;
1559 } else {
1560 item->ri_next = *q;
1561 item->ri_prev = (*q)->ri_prev;
1562 (*q)->ri_prev = item;
1563 item->ri_prev->ri_next = item;
1564 }
1565 }
1566
1567 STATIC void
1568 xlog_recover_insert_item_frontq(
1569 xlog_recover_item_t **q,
1570 xlog_recover_item_t *item)
1571 {
1572 xlog_recover_insert_item_backq(q, item);
1573 *q = item;
1574 }
1575
1576 STATIC int
1577 xlog_recover_reorder_trans(
1578 xlog_recover_t *trans)
1579 {
1580 xlog_recover_item_t *first_item, *itemq, *itemq_next;
1581 xfs_buf_log_format_t *buf_f;
1582 ushort flags = 0;
1583
1584 first_item = itemq = trans->r_itemq;
1585 trans->r_itemq = NULL;
1586 do {
1587 itemq_next = itemq->ri_next;
1588 buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr;
1589
1590 switch (ITEM_TYPE(itemq)) {
1591 case XFS_LI_BUF:
1592 flags = buf_f->blf_flags;
1593 if (!(flags & XFS_BLI_CANCEL)) {
1594 xlog_recover_insert_item_frontq(&trans->r_itemq,
1595 itemq);
1596 break;
1597 }
1598 case XFS_LI_INODE:
1599 case XFS_LI_DQUOT:
1600 case XFS_LI_QUOTAOFF:
1601 case XFS_LI_EFD:
1602 case XFS_LI_EFI:
1603 xlog_recover_insert_item_backq(&trans->r_itemq, itemq);
1604 break;
1605 default:
1606 xlog_warn(
1607 "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
1608 ASSERT(0);
1609 return XFS_ERROR(EIO);
1610 }
1611 itemq = itemq_next;
1612 } while (first_item != itemq);
1613 return 0;
1614 }
1615
1616 /*
1617 * Build up the table of buf cancel records so that we don't replay
1618 * cancelled data in the second pass. For buffer records that are
1619 * not cancel records, there is nothing to do here so we just return.
1620 *
1621 * If we get a cancel record which is already in the table, this indicates
1622 * that the buffer was cancelled multiple times. In order to ensure
1623 * that during pass 2 we keep the record in the table until we reach its
1624 * last occurrence in the log, we keep a reference count in the cancel
1625 * record in the table to tell us how many times we expect to see this
1626 * record during the second pass.
1627 */
1628 STATIC void
1629 xlog_recover_do_buffer_pass1(
1630 xlog_t *log,
1631 xfs_buf_log_format_t *buf_f)
1632 {
1633 xfs_buf_cancel_t *bcp;
1634 xfs_buf_cancel_t *nextp;
1635 xfs_buf_cancel_t *prevp;
1636 xfs_buf_cancel_t **bucket;
1637 xfs_daddr_t blkno = 0;
1638 uint len = 0;
1639 ushort flags = 0;
1640
1641 switch (buf_f->blf_type) {
1642 case XFS_LI_BUF:
1643 blkno = buf_f->blf_blkno;
1644 len = buf_f->blf_len;
1645 flags = buf_f->blf_flags;
1646 break;
1647 }
1648
1649 /*
1650 * If this isn't a cancel buffer item, then just return.
1651 */
1652 if (!(flags & XFS_BLI_CANCEL))
1653 return;
1654
1655 /*
1656 * Insert an xfs_buf_cancel record into the hash table of
1657 * them. If there is already an identical record, bump
1658 * its reference count.
1659 */
1660 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1661 XLOG_BC_TABLE_SIZE];
1662 /*
1663 * If the hash bucket is empty then just insert a new record into
1664 * the bucket.
1665 */
1666 if (*bucket == NULL) {
1667 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1668 KM_SLEEP);
1669 bcp->bc_blkno = blkno;
1670 bcp->bc_len = len;
1671 bcp->bc_refcount = 1;
1672 bcp->bc_next = NULL;
1673 *bucket = bcp;
1674 return;
1675 }
1676
1677 /*
1678 * The hash bucket is not empty, so search for duplicates of our
1679 * record. If we find one them just bump its refcount. If not
1680 * then add us at the end of the list.
1681 */
1682 prevp = NULL;
1683 nextp = *bucket;
1684 while (nextp != NULL) {
1685 if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
1686 nextp->bc_refcount++;
1687 return;
1688 }
1689 prevp = nextp;
1690 nextp = nextp->bc_next;
1691 }
1692 ASSERT(prevp != NULL);
1693 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1694 KM_SLEEP);
1695 bcp->bc_blkno = blkno;
1696 bcp->bc_len = len;
1697 bcp->bc_refcount = 1;
1698 bcp->bc_next = NULL;
1699 prevp->bc_next = bcp;
1700 }
1701
1702 /*
1703 * Check to see whether the buffer being recovered has a corresponding
1704 * entry in the buffer cancel record table. If it does then return 1
1705 * so that it will be cancelled, otherwise return 0. If the buffer is
1706 * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
1707 * the refcount on the entry in the table and remove it from the table
1708 * if this is the last reference.
1709 *
1710 * We remove the cancel record from the table when we encounter its
1711 * last occurrence in the log so that if the same buffer is re-used
1712 * again after its last cancellation we actually replay the changes
1713 * made at that point.
1714 */
1715 STATIC int
1716 xlog_check_buffer_cancelled(
1717 xlog_t *log,
1718 xfs_daddr_t blkno,
1719 uint len,
1720 ushort flags)
1721 {
1722 xfs_buf_cancel_t *bcp;
1723 xfs_buf_cancel_t *prevp;
1724 xfs_buf_cancel_t **bucket;
1725
1726 if (log->l_buf_cancel_table == NULL) {
1727 /*
1728 * There is nothing in the table built in pass one,
1729 * so this buffer must not be cancelled.
1730 */
1731 ASSERT(!(flags & XFS_BLI_CANCEL));
1732 return 0;
1733 }
1734
1735 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1736 XLOG_BC_TABLE_SIZE];
1737 bcp = *bucket;
1738 if (bcp == NULL) {
1739 /*
1740 * There is no corresponding entry in the table built
1741 * in pass one, so this buffer has not been cancelled.
1742 */
1743 ASSERT(!(flags & XFS_BLI_CANCEL));
1744 return 0;
1745 }
1746
1747 /*
1748 * Search for an entry in the buffer cancel table that
1749 * matches our buffer.
1750 */
1751 prevp = NULL;
1752 while (bcp != NULL) {
1753 if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
1754 /*
1755 * We've go a match, so return 1 so that the
1756 * recovery of this buffer is cancelled.
1757 * If this buffer is actually a buffer cancel
1758 * log item, then decrement the refcount on the
1759 * one in the table and remove it if this is the
1760 * last reference.
1761 */
1762 if (flags & XFS_BLI_CANCEL) {
1763 bcp->bc_refcount--;
1764 if (bcp->bc_refcount == 0) {
1765 if (prevp == NULL) {
1766 *bucket = bcp->bc_next;
1767 } else {
1768 prevp->bc_next = bcp->bc_next;
1769 }
1770 kmem_free(bcp);
1771 }
1772 }
1773 return 1;
1774 }
1775 prevp = bcp;
1776 bcp = bcp->bc_next;
1777 }
1778 /*
1779 * We didn't find a corresponding entry in the table, so
1780 * return 0 so that the buffer is NOT cancelled.
1781 */
1782 ASSERT(!(flags & XFS_BLI_CANCEL));
1783 return 0;
1784 }
1785
1786 STATIC int
1787 xlog_recover_do_buffer_pass2(
1788 xlog_t *log,
1789 xfs_buf_log_format_t *buf_f)
1790 {
1791 xfs_daddr_t blkno = 0;
1792 ushort flags = 0;
1793 uint len = 0;
1794
1795 switch (buf_f->blf_type) {
1796 case XFS_LI_BUF:
1797 blkno = buf_f->blf_blkno;
1798 flags = buf_f->blf_flags;
1799 len = buf_f->blf_len;
1800 break;
1801 }
1802
1803 return xlog_check_buffer_cancelled(log, blkno, len, flags);
1804 }
1805
1806 /*
1807 * Perform recovery for a buffer full of inodes. In these buffers,
1808 * the only data which should be recovered is that which corresponds
1809 * to the di_next_unlinked pointers in the on disk inode structures.
1810 * The rest of the data for the inodes is always logged through the
1811 * inodes themselves rather than the inode buffer and is recovered
1812 * in xlog_recover_do_inode_trans().
1813 *
1814 * The only time when buffers full of inodes are fully recovered is
1815 * when the buffer is full of newly allocated inodes. In this case
1816 * the buffer will not be marked as an inode buffer and so will be
1817 * sent to xlog_recover_do_reg_buffer() below during recovery.
1818 */
1819 STATIC int
1820 xlog_recover_do_inode_buffer(
1821 xfs_mount_t *mp,
1822 xlog_recover_item_t *item,
1823 xfs_buf_t *bp,
1824 xfs_buf_log_format_t *buf_f)
1825 {
1826 int i;
1827 int item_index;
1828 int bit;
1829 int nbits;
1830 int reg_buf_offset;
1831 int reg_buf_bytes;
1832 int next_unlinked_offset;
1833 int inodes_per_buf;
1834 xfs_agino_t *logged_nextp;
1835 xfs_agino_t *buffer_nextp;
1836 unsigned int *data_map = NULL;
1837 unsigned int map_size = 0;
1838
1839 switch (buf_f->blf_type) {
1840 case XFS_LI_BUF:
1841 data_map = buf_f->blf_data_map;
1842 map_size = buf_f->blf_map_size;
1843 break;
1844 }
1845 /*
1846 * Set the variables corresponding to the current region to
1847 * 0 so that we'll initialize them on the first pass through
1848 * the loop.
1849 */
1850 reg_buf_offset = 0;
1851 reg_buf_bytes = 0;
1852 bit = 0;
1853 nbits = 0;
1854 item_index = 0;
1855 inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1856 for (i = 0; i < inodes_per_buf; i++) {
1857 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1858 offsetof(xfs_dinode_t, di_next_unlinked);
1859
1860 while (next_unlinked_offset >=
1861 (reg_buf_offset + reg_buf_bytes)) {
1862 /*
1863 * The next di_next_unlinked field is beyond
1864 * the current logged region. Find the next
1865 * logged region that contains or is beyond
1866 * the current di_next_unlinked field.
1867 */
1868 bit += nbits;
1869 bit = xfs_next_bit(data_map, map_size, bit);
1870
1871 /*
1872 * If there are no more logged regions in the
1873 * buffer, then we're done.
1874 */
1875 if (bit == -1) {
1876 return 0;
1877 }
1878
1879 nbits = xfs_contig_bits(data_map, map_size,
1880 bit);
1881 ASSERT(nbits > 0);
1882 reg_buf_offset = bit << XFS_BLI_SHIFT;
1883 reg_buf_bytes = nbits << XFS_BLI_SHIFT;
1884 item_index++;
1885 }
1886
1887 /*
1888 * If the current logged region starts after the current
1889 * di_next_unlinked field, then move on to the next
1890 * di_next_unlinked field.
1891 */
1892 if (next_unlinked_offset < reg_buf_offset) {
1893 continue;
1894 }
1895
1896 ASSERT(item->ri_buf[item_index].i_addr != NULL);
1897 ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
1898 ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1899
1900 /*
1901 * The current logged region contains a copy of the
1902 * current di_next_unlinked field. Extract its value
1903 * and copy it to the buffer copy.
1904 */
1905 logged_nextp = (xfs_agino_t *)
1906 ((char *)(item->ri_buf[item_index].i_addr) +
1907 (next_unlinked_offset - reg_buf_offset));
1908 if (unlikely(*logged_nextp == 0)) {
1909 xfs_fs_cmn_err(CE_ALERT, mp,
1910 "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field",
1911 item, bp);
1912 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1913 XFS_ERRLEVEL_LOW, mp);
1914 return XFS_ERROR(EFSCORRUPTED);
1915 }
1916
1917 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1918 next_unlinked_offset);
1919 *buffer_nextp = *logged_nextp;
1920 }
1921
1922 return 0;
1923 }
1924
1925 /*
1926 * Perform a 'normal' buffer recovery. Each logged region of the
1927 * buffer should be copied over the corresponding region in the
1928 * given buffer. The bitmap in the buf log format structure indicates
1929 * where to place the logged data.
1930 */
1931 /*ARGSUSED*/
1932 STATIC void
1933 xlog_recover_do_reg_buffer(
1934 xlog_recover_item_t *item,
1935 xfs_buf_t *bp,
1936 xfs_buf_log_format_t *buf_f)
1937 {
1938 int i;
1939 int bit;
1940 int nbits;
1941 unsigned int *data_map = NULL;
1942 unsigned int map_size = 0;
1943 int error;
1944
1945 switch (buf_f->blf_type) {
1946 case XFS_LI_BUF:
1947 data_map = buf_f->blf_data_map;
1948 map_size = buf_f->blf_map_size;
1949 break;
1950 }
1951 bit = 0;
1952 i = 1; /* 0 is the buf format structure */
1953 while (1) {
1954 bit = xfs_next_bit(data_map, map_size, bit);
1955 if (bit == -1)
1956 break;
1957 nbits = xfs_contig_bits(data_map, map_size, bit);
1958 ASSERT(nbits > 0);
1959 ASSERT(item->ri_buf[i].i_addr != NULL);
1960 ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
1961 ASSERT(XFS_BUF_COUNT(bp) >=
1962 ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));
1963
1964 /*
1965 * Do a sanity check if this is a dquot buffer. Just checking
1966 * the first dquot in the buffer should do. XXXThis is
1967 * probably a good thing to do for other buf types also.
1968 */
1969 error = 0;
1970 if (buf_f->blf_flags &
1971 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
1972 if (item->ri_buf[i].i_addr == NULL) {
1973 cmn_err(CE_ALERT,
1974 "XFS: NULL dquot in %s.", __func__);
1975 goto next;
1976 }
1977 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
1978 cmn_err(CE_ALERT,
1979 "XFS: dquot too small (%d) in %s.",
1980 item->ri_buf[i].i_len, __func__);
1981 goto next;
1982 }
1983 error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
1984 item->ri_buf[i].i_addr,
1985 -1, 0, XFS_QMOPT_DOWARN,
1986 "dquot_buf_recover");
1987 if (error)
1988 goto next;
1989 }
1990
1991 memcpy(xfs_buf_offset(bp,
1992 (uint)bit << XFS_BLI_SHIFT), /* dest */
1993 item->ri_buf[i].i_addr, /* source */
1994 nbits<<XFS_BLI_SHIFT); /* length */
1995 next:
1996 i++;
1997 bit += nbits;
1998 }
1999
2000 /* Shouldn't be any more regions */
2001 ASSERT(i == item->ri_total);
2002 }
2003
2004 /*
2005 * Do some primitive error checking on ondisk dquot data structures.
2006 */
2007 int
2008 xfs_qm_dqcheck(
2009 xfs_disk_dquot_t *ddq,
2010 xfs_dqid_t id,
2011 uint type, /* used only when IO_dorepair is true */
2012 uint flags,
2013 char *str)
2014 {
2015 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
2016 int errs = 0;
2017
2018 /*
2019 * We can encounter an uninitialized dquot buffer for 2 reasons:
2020 * 1. If we crash while deleting the quotainode(s), and those blks got
2021 * used for user data. This is because we take the path of regular
2022 * file deletion; however, the size field of quotainodes is never
2023 * updated, so all the tricks that we play in itruncate_finish
2024 * don't quite matter.
2025 *
2026 * 2. We don't play the quota buffers when there's a quotaoff logitem.
2027 * But the allocation will be replayed so we'll end up with an
2028 * uninitialized quota block.
2029 *
2030 * This is all fine; things are still consistent, and we haven't lost
2031 * any quota information. Just don't complain about bad dquot blks.
2032 */
2033 if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
2034 if (flags & XFS_QMOPT_DOWARN)
2035 cmn_err(CE_ALERT,
2036 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
2037 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
2038 errs++;
2039 }
2040 if (ddq->d_version != XFS_DQUOT_VERSION) {
2041 if (flags & XFS_QMOPT_DOWARN)
2042 cmn_err(CE_ALERT,
2043 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
2044 str, id, ddq->d_version, XFS_DQUOT_VERSION);
2045 errs++;
2046 }
2047
2048 if (ddq->d_flags != XFS_DQ_USER &&
2049 ddq->d_flags != XFS_DQ_PROJ &&
2050 ddq->d_flags != XFS_DQ_GROUP) {
2051 if (flags & XFS_QMOPT_DOWARN)
2052 cmn_err(CE_ALERT,
2053 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
2054 str, id, ddq->d_flags);
2055 errs++;
2056 }
2057
2058 if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
2059 if (flags & XFS_QMOPT_DOWARN)
2060 cmn_err(CE_ALERT,
2061 "%s : ondisk-dquot 0x%p, ID mismatch: "
2062 "0x%x expected, found id 0x%x",
2063 str, ddq, id, be32_to_cpu(ddq->d_id));
2064 errs++;
2065 }
2066
2067 if (!errs && ddq->d_id) {
2068 if (ddq->d_blk_softlimit &&
2069 be64_to_cpu(ddq->d_bcount) >=
2070 be64_to_cpu(ddq->d_blk_softlimit)) {
2071 if (!ddq->d_btimer) {
2072 if (flags & XFS_QMOPT_DOWARN)
2073 cmn_err(CE_ALERT,
2074 "%s : Dquot ID 0x%x (0x%p) "
2075 "BLK TIMER NOT STARTED",
2076 str, (int)be32_to_cpu(ddq->d_id), ddq);
2077 errs++;
2078 }
2079 }
2080 if (ddq->d_ino_softlimit &&
2081 be64_to_cpu(ddq->d_icount) >=
2082 be64_to_cpu(ddq->d_ino_softlimit)) {
2083 if (!ddq->d_itimer) {
2084 if (flags & XFS_QMOPT_DOWARN)
2085 cmn_err(CE_ALERT,
2086 "%s : Dquot ID 0x%x (0x%p) "
2087 "INODE TIMER NOT STARTED",
2088 str, (int)be32_to_cpu(ddq->d_id), ddq);
2089 errs++;
2090 }
2091 }
2092 if (ddq->d_rtb_softlimit &&
2093 be64_to_cpu(ddq->d_rtbcount) >=
2094 be64_to_cpu(ddq->d_rtb_softlimit)) {
2095 if (!ddq->d_rtbtimer) {
2096 if (flags & XFS_QMOPT_DOWARN)
2097 cmn_err(CE_ALERT,
2098 "%s : Dquot ID 0x%x (0x%p) "
2099 "RTBLK TIMER NOT STARTED",
2100 str, (int)be32_to_cpu(ddq->d_id), ddq);
2101 errs++;
2102 }
2103 }
2104 }
2105
2106 if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2107 return errs;
2108
2109 if (flags & XFS_QMOPT_DOWARN)
2110 cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
2111
2112 /*
2113 * Typically, a repair is only requested by quotacheck.
2114 */
2115 ASSERT(id != -1);
2116 ASSERT(flags & XFS_QMOPT_DQREPAIR);
2117 memset(d, 0, sizeof(xfs_dqblk_t));
2118
2119 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2120 d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2121 d->dd_diskdq.d_flags = type;
2122 d->dd_diskdq.d_id = cpu_to_be32(id);
2123
2124 return errs;
2125 }
2126
2127 /*
2128 * Perform a dquot buffer recovery.
2129 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2130 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2131 * Else, treat it as a regular buffer and do recovery.
2132 */
2133 STATIC void
2134 xlog_recover_do_dquot_buffer(
2135 xfs_mount_t *mp,
2136 xlog_t *log,
2137 xlog_recover_item_t *item,
2138 xfs_buf_t *bp,
2139 xfs_buf_log_format_t *buf_f)
2140 {
2141 uint type;
2142
2143 /*
2144 * Filesystems are required to send in quota flags at mount time.
2145 */
2146 if (mp->m_qflags == 0) {
2147 return;
2148 }
2149
2150 type = 0;
2151 if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
2152 type |= XFS_DQ_USER;
2153 if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF)
2154 type |= XFS_DQ_PROJ;
2155 if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF)
2156 type |= XFS_DQ_GROUP;
2157 /*
2158 * This type of quotas was turned off, so ignore this buffer
2159 */
2160 if (log->l_quotaoffs_flag & type)
2161 return;
2162
2163 xlog_recover_do_reg_buffer(item, bp, buf_f);
2164 }
2165
2166 /*
2167 * This routine replays a modification made to a buffer at runtime.
2168 * There are actually two types of buffer, regular and inode, which
2169 * are handled differently. Inode buffers are handled differently
2170 * in that we only recover a specific set of data from them, namely
2171 * the inode di_next_unlinked fields. This is because all other inode
2172 * data is actually logged via inode records and any data we replay
2173 * here which overlaps that may be stale.
2174 *
2175 * When meta-data buffers are freed at run time we log a buffer item
2176 * with the XFS_BLI_CANCEL bit set to indicate that previous copies
2177 * of the buffer in the log should not be replayed at recovery time.
2178 * This is so that if the blocks covered by the buffer are reused for
2179 * file data before we crash we don't end up replaying old, freed
2180 * meta-data into a user's file.
2181 *
2182 * To handle the cancellation of buffer log items, we make two passes
2183 * over the log during recovery. During the first we build a table of
2184 * those buffers which have been cancelled, and during the second we
2185 * only replay those buffers which do not have corresponding cancel
2186 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2187 * for more details on the implementation of the table of cancel records.
2188 */
2189 STATIC int
2190 xlog_recover_do_buffer_trans(
2191 xlog_t *log,
2192 xlog_recover_item_t *item,
2193 int pass)
2194 {
2195 xfs_buf_log_format_t *buf_f;
2196 xfs_mount_t *mp;
2197 xfs_buf_t *bp;
2198 int error;
2199 int cancel;
2200 xfs_daddr_t blkno;
2201 int len;
2202 ushort flags;
2203 uint buf_flags;
2204
2205 buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
2206
2207 if (pass == XLOG_RECOVER_PASS1) {
2208 /*
2209 * In this pass we're only looking for buf items
2210 * with the XFS_BLI_CANCEL bit set.
2211 */
2212 xlog_recover_do_buffer_pass1(log, buf_f);
2213 return 0;
2214 } else {
2215 /*
2216 * In this pass we want to recover all the buffers
2217 * which have not been cancelled and are not
2218 * cancellation buffers themselves. The routine
2219 * we call here will tell us whether or not to
2220 * continue with the replay of this buffer.
2221 */
2222 cancel = xlog_recover_do_buffer_pass2(log, buf_f);
2223 if (cancel) {
2224 return 0;
2225 }
2226 }
2227 switch (buf_f->blf_type) {
2228 case XFS_LI_BUF:
2229 blkno = buf_f->blf_blkno;
2230 len = buf_f->blf_len;
2231 flags = buf_f->blf_flags;
2232 break;
2233 default:
2234 xfs_fs_cmn_err(CE_ALERT, log->l_mp,
2235 "xfs_log_recover: unknown buffer type 0x%x, logdev %s",
2236 buf_f->blf_type, log->l_mp->m_logname ?
2237 log->l_mp->m_logname : "internal");
2238 XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
2239 XFS_ERRLEVEL_LOW, log->l_mp);
2240 return XFS_ERROR(EFSCORRUPTED);
2241 }
2242
2243 mp = log->l_mp;
2244 buf_flags = XFS_BUF_LOCK;
2245 if (!(flags & XFS_BLI_INODE_BUF))
2246 buf_flags |= XFS_BUF_MAPPED;
2247
2248 bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, buf_flags);
2249 if (XFS_BUF_ISERROR(bp)) {
2250 xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
2251 bp, blkno);
2252 error = XFS_BUF_GETERROR(bp);
2253 xfs_buf_relse(bp);
2254 return error;
2255 }
2256
2257 error = 0;
2258 if (flags & XFS_BLI_INODE_BUF) {
2259 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2260 } else if (flags &
2261 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
2262 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2263 } else {
2264 xlog_recover_do_reg_buffer(item, bp, buf_f);
2265 }
2266 if (error)
2267 return XFS_ERROR(error);
2268
2269 /*
2270 * Perform delayed write on the buffer. Asynchronous writes will be
2271 * slower when taking into account all the buffers to be flushed.
2272 *
2273 * Also make sure that only inode buffers with good sizes stay in
2274 * the buffer cache. The kernel moves inodes in buffers of 1 block
2275 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2276 * buffers in the log can be a different size if the log was generated
2277 * by an older kernel using unclustered inode buffers or a newer kernel
2278 * running with a different inode cluster size. Regardless, if the
2279 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2280 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2281 * the buffer out of the buffer cache so that the buffer won't
2282 * overlap with future reads of those inodes.
2283 */
2284 if (XFS_DINODE_MAGIC ==
2285 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2286 (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2287 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2288 XFS_BUF_STALE(bp);
2289 error = xfs_bwrite(mp, bp);
2290 } else {
2291 ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2292 bp->b_mount = mp;
2293 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2294 xfs_bdwrite(mp, bp);
2295 }
2296
2297 return (error);
2298 }
2299
2300 STATIC int
2301 xlog_recover_do_inode_trans(
2302 xlog_t *log,
2303 xlog_recover_item_t *item,
2304 int pass)
2305 {
2306 xfs_inode_log_format_t *in_f;
2307 xfs_mount_t *mp;
2308 xfs_buf_t *bp;
2309 xfs_dinode_t *dip;
2310 xfs_ino_t ino;
2311 int len;
2312 xfs_caddr_t src;
2313 xfs_caddr_t dest;
2314 int error;
2315 int attr_index;
2316 uint fields;
2317 xfs_icdinode_t *dicp;
2318 int need_free = 0;
2319
2320 if (pass == XLOG_RECOVER_PASS1) {
2321 return 0;
2322 }
2323
2324 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2325 in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
2326 } else {
2327 in_f = (xfs_inode_log_format_t *)kmem_alloc(
2328 sizeof(xfs_inode_log_format_t), KM_SLEEP);
2329 need_free = 1;
2330 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2331 if (error)
2332 goto error;
2333 }
2334 ino = in_f->ilf_ino;
2335 mp = log->l_mp;
2336
2337 /*
2338 * Inode buffers can be freed, look out for it,
2339 * and do not replay the inode.
2340 */
2341 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2342 in_f->ilf_len, 0)) {
2343 error = 0;
2344 goto error;
2345 }
2346
2347 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len,
2348 XFS_BUF_LOCK);
2349 if (XFS_BUF_ISERROR(bp)) {
2350 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
2351 bp, in_f->ilf_blkno);
2352 error = XFS_BUF_GETERROR(bp);
2353 xfs_buf_relse(bp);
2354 goto error;
2355 }
2356 error = 0;
2357 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2358 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
2359
2360 /*
2361 * Make sure the place we're flushing out to really looks
2362 * like an inode!
2363 */
2364 if (unlikely(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC)) {
2365 xfs_buf_relse(bp);
2366 xfs_fs_cmn_err(CE_ALERT, mp,
2367 "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
2368 dip, bp, ino);
2369 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
2370 XFS_ERRLEVEL_LOW, mp);
2371 error = EFSCORRUPTED;
2372 goto error;
2373 }
2374 dicp = (xfs_icdinode_t *)(item->ri_buf[1].i_addr);
2375 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2376 xfs_buf_relse(bp);
2377 xfs_fs_cmn_err(CE_ALERT, mp,
2378 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
2379 item, ino);
2380 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
2381 XFS_ERRLEVEL_LOW, mp);
2382 error = EFSCORRUPTED;
2383 goto error;
2384 }
2385
2386 /* Skip replay when the on disk inode is newer than the log one */
2387 if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2388 /*
2389 * Deal with the wrap case, DI_MAX_FLUSH is less
2390 * than smaller numbers
2391 */
2392 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2393 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2394 /* do nothing */
2395 } else {
2396 xfs_buf_relse(bp);
2397 error = 0;
2398 goto error;
2399 }
2400 }
2401 /* Take the opportunity to reset the flush iteration count */
2402 dicp->di_flushiter = 0;
2403
2404 if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
2405 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2406 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2407 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
2408 XFS_ERRLEVEL_LOW, mp, dicp);
2409 xfs_buf_relse(bp);
2410 xfs_fs_cmn_err(CE_ALERT, mp,
2411 "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2412 item, dip, bp, ino);
2413 error = EFSCORRUPTED;
2414 goto error;
2415 }
2416 } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
2417 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2418 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2419 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2420 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
2421 XFS_ERRLEVEL_LOW, mp, dicp);
2422 xfs_buf_relse(bp);
2423 xfs_fs_cmn_err(CE_ALERT, mp,
2424 "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2425 item, dip, bp, ino);
2426 error = EFSCORRUPTED;
2427 goto error;
2428 }
2429 }
2430 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2431 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
2432 XFS_ERRLEVEL_LOW, mp, dicp);
2433 xfs_buf_relse(bp);
2434 xfs_fs_cmn_err(CE_ALERT, mp,
2435 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2436 item, dip, bp, ino,
2437 dicp->di_nextents + dicp->di_anextents,
2438 dicp->di_nblocks);
2439 error = EFSCORRUPTED;
2440 goto error;
2441 }
2442 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2443 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
2444 XFS_ERRLEVEL_LOW, mp, dicp);
2445 xfs_buf_relse(bp);
2446 xfs_fs_cmn_err(CE_ALERT, mp,
2447 "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
2448 item, dip, bp, ino, dicp->di_forkoff);
2449 error = EFSCORRUPTED;
2450 goto error;
2451 }
2452 if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
2453 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
2454 XFS_ERRLEVEL_LOW, mp, dicp);
2455 xfs_buf_relse(bp);
2456 xfs_fs_cmn_err(CE_ALERT, mp,
2457 "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
2458 item->ri_buf[1].i_len, item);
2459 error = EFSCORRUPTED;
2460 goto error;
2461 }
2462
2463 /* The core is in in-core format */
2464 xfs_dinode_to_disk(dip, (xfs_icdinode_t *)item->ri_buf[1].i_addr);
2465
2466 /* the rest is in on-disk format */
2467 if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
2468 memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
2469 item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
2470 item->ri_buf[1].i_len - sizeof(struct xfs_icdinode));
2471 }
2472
2473 fields = in_f->ilf_fields;
2474 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2475 case XFS_ILOG_DEV:
2476 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
2477 break;
2478 case XFS_ILOG_UUID:
2479 memcpy(XFS_DFORK_DPTR(dip),
2480 &in_f->ilf_u.ilfu_uuid,
2481 sizeof(uuid_t));
2482 break;
2483 }
2484
2485 if (in_f->ilf_size == 2)
2486 goto write_inode_buffer;
2487 len = item->ri_buf[2].i_len;
2488 src = item->ri_buf[2].i_addr;
2489 ASSERT(in_f->ilf_size <= 4);
2490 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2491 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2492 (len == in_f->ilf_dsize));
2493
2494 switch (fields & XFS_ILOG_DFORK) {
2495 case XFS_ILOG_DDATA:
2496 case XFS_ILOG_DEXT:
2497 memcpy(XFS_DFORK_DPTR(dip), src, len);
2498 break;
2499
2500 case XFS_ILOG_DBROOT:
2501 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2502 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
2503 XFS_DFORK_DSIZE(dip, mp));
2504 break;
2505
2506 default:
2507 /*
2508 * There are no data fork flags set.
2509 */
2510 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2511 break;
2512 }
2513
2514 /*
2515 * If we logged any attribute data, recover it. There may or
2516 * may not have been any other non-core data logged in this
2517 * transaction.
2518 */
2519 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2520 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2521 attr_index = 3;
2522 } else {
2523 attr_index = 2;
2524 }
2525 len = item->ri_buf[attr_index].i_len;
2526 src = item->ri_buf[attr_index].i_addr;
2527 ASSERT(len == in_f->ilf_asize);
2528
2529 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2530 case XFS_ILOG_ADATA:
2531 case XFS_ILOG_AEXT:
2532 dest = XFS_DFORK_APTR(dip);
2533 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2534 memcpy(dest, src, len);
2535 break;
2536
2537 case XFS_ILOG_ABROOT:
2538 dest = XFS_DFORK_APTR(dip);
2539 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2540 len, (xfs_bmdr_block_t*)dest,
2541 XFS_DFORK_ASIZE(dip, mp));
2542 break;
2543
2544 default:
2545 xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
2546 ASSERT(0);
2547 xfs_buf_relse(bp);
2548 error = EIO;
2549 goto error;
2550 }
2551 }
2552
2553 write_inode_buffer:
2554 ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2555 bp->b_mount = mp;
2556 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2557 xfs_bdwrite(mp, bp);
2558 error:
2559 if (need_free)
2560 kmem_free(in_f);
2561 return XFS_ERROR(error);
2562 }
2563
2564 /*
2565 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2566 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2567 * of that type.
2568 */
2569 STATIC int
2570 xlog_recover_do_quotaoff_trans(
2571 xlog_t *log,
2572 xlog_recover_item_t *item,
2573 int pass)
2574 {
2575 xfs_qoff_logformat_t *qoff_f;
2576
2577 if (pass == XLOG_RECOVER_PASS2) {
2578 return (0);
2579 }
2580
2581 qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
2582 ASSERT(qoff_f);
2583
2584 /*
2585 * The logitem format's flag tells us if this was user quotaoff,
2586 * group/project quotaoff or both.
2587 */
2588 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2589 log->l_quotaoffs_flag |= XFS_DQ_USER;
2590 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2591 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2592 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2593 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2594
2595 return (0);
2596 }
2597
2598 /*
2599 * Recover a dquot record
2600 */
2601 STATIC int
2602 xlog_recover_do_dquot_trans(
2603 xlog_t *log,
2604 xlog_recover_item_t *item,
2605 int pass)
2606 {
2607 xfs_mount_t *mp;
2608 xfs_buf_t *bp;
2609 struct xfs_disk_dquot *ddq, *recddq;
2610 int error;
2611 xfs_dq_logformat_t *dq_f;
2612 uint type;
2613
2614 if (pass == XLOG_RECOVER_PASS1) {
2615 return 0;
2616 }
2617 mp = log->l_mp;
2618
2619 /*
2620 * Filesystems are required to send in quota flags at mount time.
2621 */
2622 if (mp->m_qflags == 0)
2623 return (0);
2624
2625 recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
2626
2627 if (item->ri_buf[1].i_addr == NULL) {
2628 cmn_err(CE_ALERT,
2629 "XFS: NULL dquot in %s.", __func__);
2630 return XFS_ERROR(EIO);
2631 }
2632 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
2633 cmn_err(CE_ALERT,
2634 "XFS: dquot too small (%d) in %s.",
2635 item->ri_buf[1].i_len, __func__);
2636 return XFS_ERROR(EIO);
2637 }
2638
2639 /*
2640 * This type of quotas was turned off, so ignore this record.
2641 */
2642 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2643 ASSERT(type);
2644 if (log->l_quotaoffs_flag & type)
2645 return (0);
2646
2647 /*
2648 * At this point we know that quota was _not_ turned off.
2649 * Since the mount flags are not indicating to us otherwise, this
2650 * must mean that quota is on, and the dquot needs to be replayed.
2651 * Remember that we may not have fully recovered the superblock yet,
2652 * so we can't do the usual trick of looking at the SB quota bits.
2653 *
2654 * The other possibility, of course, is that the quota subsystem was
2655 * removed since the last mount - ENOSYS.
2656 */
2657 dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
2658 ASSERT(dq_f);
2659 if ((error = xfs_qm_dqcheck(recddq,
2660 dq_f->qlf_id,
2661 0, XFS_QMOPT_DOWARN,
2662 "xlog_recover_do_dquot_trans (log copy)"))) {
2663 return XFS_ERROR(EIO);
2664 }
2665 ASSERT(dq_f->qlf_len == 1);
2666
2667 error = xfs_read_buf(mp, mp->m_ddev_targp,
2668 dq_f->qlf_blkno,
2669 XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2670 0, &bp);
2671 if (error) {
2672 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2673 bp, dq_f->qlf_blkno);
2674 return error;
2675 }
2676 ASSERT(bp);
2677 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2678
2679 /*
2680 * At least the magic num portion should be on disk because this
2681 * was among a chunk of dquots created earlier, and we did some
2682 * minimal initialization then.
2683 */
2684 if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2685 "xlog_recover_do_dquot_trans")) {
2686 xfs_buf_relse(bp);
2687 return XFS_ERROR(EIO);
2688 }
2689
2690 memcpy(ddq, recddq, item->ri_buf[1].i_len);
2691
2692 ASSERT(dq_f->qlf_size == 2);
2693 ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2694 bp->b_mount = mp;
2695 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2696 xfs_bdwrite(mp, bp);
2697
2698 return (0);
2699 }
2700
2701 /*
2702 * This routine is called to create an in-core extent free intent
2703 * item from the efi format structure which was logged on disk.
2704 * It allocates an in-core efi, copies the extents from the format
2705 * structure into it, and adds the efi to the AIL with the given
2706 * LSN.
2707 */
2708 STATIC int
2709 xlog_recover_do_efi_trans(
2710 xlog_t *log,
2711 xlog_recover_item_t *item,
2712 xfs_lsn_t lsn,
2713 int pass)
2714 {
2715 int error;
2716 xfs_mount_t *mp;
2717 xfs_efi_log_item_t *efip;
2718 xfs_efi_log_format_t *efi_formatp;
2719
2720 if (pass == XLOG_RECOVER_PASS1) {
2721 return 0;
2722 }
2723
2724 efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
2725
2726 mp = log->l_mp;
2727 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2728 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2729 &(efip->efi_format)))) {
2730 xfs_efi_item_free(efip);
2731 return error;
2732 }
2733 efip->efi_next_extent = efi_formatp->efi_nextents;
2734 efip->efi_flags |= XFS_EFI_COMMITTED;
2735
2736 spin_lock(&log->l_ailp->xa_lock);
2737 /*
2738 * xfs_trans_ail_update() drops the AIL lock.
2739 */
2740 xfs_trans_ail_update(log->l_ailp, (xfs_log_item_t *)efip, lsn);
2741 return 0;
2742 }
2743
2744
2745 /*
2746 * This routine is called when an efd format structure is found in
2747 * a committed transaction in the log. It's purpose is to cancel
2748 * the corresponding efi if it was still in the log. To do this
2749 * it searches the AIL for the efi with an id equal to that in the
2750 * efd format structure. If we find it, we remove the efi from the
2751 * AIL and free it.
2752 */
2753 STATIC void
2754 xlog_recover_do_efd_trans(
2755 xlog_t *log,
2756 xlog_recover_item_t *item,
2757 int pass)
2758 {
2759 xfs_efd_log_format_t *efd_formatp;
2760 xfs_efi_log_item_t *efip = NULL;
2761 xfs_log_item_t *lip;
2762 __uint64_t efi_id;
2763 struct xfs_ail_cursor cur;
2764 struct xfs_ail *ailp = log->l_ailp;
2765
2766 if (pass == XLOG_RECOVER_PASS1) {
2767 return;
2768 }
2769
2770 efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
2771 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2772 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2773 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2774 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2775 efi_id = efd_formatp->efd_efi_id;
2776
2777 /*
2778 * Search for the efi with the id in the efd format structure
2779 * in the AIL.
2780 */
2781 spin_lock(&ailp->xa_lock);
2782 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2783 while (lip != NULL) {
2784 if (lip->li_type == XFS_LI_EFI) {
2785 efip = (xfs_efi_log_item_t *)lip;
2786 if (efip->efi_format.efi_id == efi_id) {
2787 /*
2788 * xfs_trans_ail_delete() drops the
2789 * AIL lock.
2790 */
2791 xfs_trans_ail_delete(ailp, lip);
2792 xfs_efi_item_free(efip);
2793 spin_lock(&ailp->xa_lock);
2794 break;
2795 }
2796 }
2797 lip = xfs_trans_ail_cursor_next(ailp, &cur);
2798 }
2799 xfs_trans_ail_cursor_done(ailp, &cur);
2800 spin_unlock(&ailp->xa_lock);
2801 }
2802
2803 /*
2804 * Perform the transaction
2805 *
2806 * If the transaction modifies a buffer or inode, do it now. Otherwise,
2807 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2808 */
2809 STATIC int
2810 xlog_recover_do_trans(
2811 xlog_t *log,
2812 xlog_recover_t *trans,
2813 int pass)
2814 {
2815 int error = 0;
2816 xlog_recover_item_t *item, *first_item;
2817
2818 error = xlog_recover_reorder_trans(trans);
2819 if (error)
2820 return error;
2821
2822 first_item = item = trans->r_itemq;
2823 do {
2824 switch (ITEM_TYPE(item)) {
2825 case XFS_LI_BUF:
2826 error = xlog_recover_do_buffer_trans(log, item, pass);
2827 break;
2828 case XFS_LI_INODE:
2829 error = xlog_recover_do_inode_trans(log, item, pass);
2830 break;
2831 case XFS_LI_EFI:
2832 error = xlog_recover_do_efi_trans(log, item,
2833 trans->r_lsn, pass);
2834 break;
2835 case XFS_LI_EFD:
2836 xlog_recover_do_efd_trans(log, item, pass);
2837 error = 0;
2838 break;
2839 case XFS_LI_DQUOT:
2840 error = xlog_recover_do_dquot_trans(log, item, pass);
2841 break;
2842 case XFS_LI_QUOTAOFF:
2843 error = xlog_recover_do_quotaoff_trans(log, item,
2844 pass);
2845 break;
2846 default:
2847 xlog_warn(
2848 "XFS: invalid item type (%d) xlog_recover_do_trans", ITEM_TYPE(item));
2849 ASSERT(0);
2850 error = XFS_ERROR(EIO);
2851 break;
2852 }
2853
2854 if (error)
2855 return error;
2856 item = item->ri_next;
2857 } while (first_item != item);
2858
2859 return 0;
2860 }
2861
2862 /*
2863 * Free up any resources allocated by the transaction
2864 *
2865 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2866 */
2867 STATIC void
2868 xlog_recover_free_trans(
2869 xlog_recover_t *trans)
2870 {
2871 xlog_recover_item_t *first_item, *item, *free_item;
2872 int i;
2873
2874 item = first_item = trans->r_itemq;
2875 do {
2876 free_item = item;
2877 item = item->ri_next;
2878 /* Free the regions in the item. */
2879 for (i = 0; i < free_item->ri_cnt; i++) {
2880 kmem_free(free_item->ri_buf[i].i_addr);
2881 }
2882 /* Free the item itself */
2883 kmem_free(free_item->ri_buf);
2884 kmem_free(free_item);
2885 } while (first_item != item);
2886 /* Free the transaction recover structure */
2887 kmem_free(trans);
2888 }
2889
2890 STATIC int
2891 xlog_recover_commit_trans(
2892 xlog_t *log,
2893 xlog_recover_t **q,
2894 xlog_recover_t *trans,
2895 int pass)
2896 {
2897 int error;
2898
2899 if ((error = xlog_recover_unlink_tid(q, trans)))
2900 return error;
2901 if ((error = xlog_recover_do_trans(log, trans, pass)))
2902 return error;
2903 xlog_recover_free_trans(trans); /* no error */
2904 return 0;
2905 }
2906
2907 STATIC int
2908 xlog_recover_unmount_trans(
2909 xlog_recover_t *trans)
2910 {
2911 /* Do nothing now */
2912 xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
2913 return 0;
2914 }
2915
2916 /*
2917 * There are two valid states of the r_state field. 0 indicates that the
2918 * transaction structure is in a normal state. We have either seen the
2919 * start of the transaction or the last operation we added was not a partial
2920 * operation. If the last operation we added to the transaction was a
2921 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2922 *
2923 * NOTE: skip LRs with 0 data length.
2924 */
2925 STATIC int
2926 xlog_recover_process_data(
2927 xlog_t *log,
2928 xlog_recover_t *rhash[],
2929 xlog_rec_header_t *rhead,
2930 xfs_caddr_t dp,
2931 int pass)
2932 {
2933 xfs_caddr_t lp;
2934 int num_logops;
2935 xlog_op_header_t *ohead;
2936 xlog_recover_t *trans;
2937 xlog_tid_t tid;
2938 int error;
2939 unsigned long hash;
2940 uint flags;
2941
2942 lp = dp + be32_to_cpu(rhead->h_len);
2943 num_logops = be32_to_cpu(rhead->h_num_logops);
2944
2945 /* check the log format matches our own - else we can't recover */
2946 if (xlog_header_check_recover(log->l_mp, rhead))
2947 return (XFS_ERROR(EIO));
2948
2949 while ((dp < lp) && num_logops) {
2950 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2951 ohead = (xlog_op_header_t *)dp;
2952 dp += sizeof(xlog_op_header_t);
2953 if (ohead->oh_clientid != XFS_TRANSACTION &&
2954 ohead->oh_clientid != XFS_LOG) {
2955 xlog_warn(
2956 "XFS: xlog_recover_process_data: bad clientid");
2957 ASSERT(0);
2958 return (XFS_ERROR(EIO));
2959 }
2960 tid = be32_to_cpu(ohead->oh_tid);
2961 hash = XLOG_RHASH(tid);
2962 trans = xlog_recover_find_tid(rhash[hash], tid);
2963 if (trans == NULL) { /* not found; add new tid */
2964 if (ohead->oh_flags & XLOG_START_TRANS)
2965 xlog_recover_new_tid(&rhash[hash], tid,
2966 be64_to_cpu(rhead->h_lsn));
2967 } else {
2968 if (dp + be32_to_cpu(ohead->oh_len) > lp) {
2969 xlog_warn(
2970 "XFS: xlog_recover_process_data: bad length");
2971 WARN_ON(1);
2972 return (XFS_ERROR(EIO));
2973 }
2974 flags = ohead->oh_flags & ~XLOG_END_TRANS;
2975 if (flags & XLOG_WAS_CONT_TRANS)
2976 flags &= ~XLOG_CONTINUE_TRANS;
2977 switch (flags) {
2978 case XLOG_COMMIT_TRANS:
2979 error = xlog_recover_commit_trans(log,
2980 &rhash[hash], trans, pass);
2981 break;
2982 case XLOG_UNMOUNT_TRANS:
2983 error = xlog_recover_unmount_trans(trans);
2984 break;
2985 case XLOG_WAS_CONT_TRANS:
2986 error = xlog_recover_add_to_cont_trans(trans,
2987 dp, be32_to_cpu(ohead->oh_len));
2988 break;
2989 case XLOG_START_TRANS:
2990 xlog_warn(
2991 "XFS: xlog_recover_process_data: bad transaction");
2992 ASSERT(0);
2993 error = XFS_ERROR(EIO);
2994 break;
2995 case 0:
2996 case XLOG_CONTINUE_TRANS:
2997 error = xlog_recover_add_to_trans(trans,
2998 dp, be32_to_cpu(ohead->oh_len));
2999 break;
3000 default:
3001 xlog_warn(
3002 "XFS: xlog_recover_process_data: bad flag");
3003 ASSERT(0);
3004 error = XFS_ERROR(EIO);
3005 break;
3006 }
3007 if (error)
3008 return error;
3009 }
3010 dp += be32_to_cpu(ohead->oh_len);
3011 num_logops--;
3012 }
3013 return 0;
3014 }
3015
3016 /*
3017 * Process an extent free intent item that was recovered from
3018 * the log. We need to free the extents that it describes.
3019 */
3020 STATIC int
3021 xlog_recover_process_efi(
3022 xfs_mount_t *mp,
3023 xfs_efi_log_item_t *efip)
3024 {
3025 xfs_efd_log_item_t *efdp;
3026 xfs_trans_t *tp;
3027 int i;
3028 int error = 0;
3029 xfs_extent_t *extp;
3030 xfs_fsblock_t startblock_fsb;
3031
3032 ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
3033
3034 /*
3035 * First check the validity of the extents described by the
3036 * EFI. If any are bad, then assume that all are bad and
3037 * just toss the EFI.
3038 */
3039 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3040 extp = &(efip->efi_format.efi_extents[i]);
3041 startblock_fsb = XFS_BB_TO_FSB(mp,
3042 XFS_FSB_TO_DADDR(mp, extp->ext_start));
3043 if ((startblock_fsb == 0) ||
3044 (extp->ext_len == 0) ||
3045 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3046 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3047 /*
3048 * This will pull the EFI from the AIL and
3049 * free the memory associated with it.
3050 */
3051 xfs_efi_release(efip, efip->efi_format.efi_nextents);
3052 return XFS_ERROR(EIO);
3053 }
3054 }
3055
3056 tp = xfs_trans_alloc(mp, 0);
3057 error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
3058 if (error)
3059 goto abort_error;
3060 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3061
3062 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3063 extp = &(efip->efi_format.efi_extents[i]);
3064 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3065 if (error)
3066 goto abort_error;
3067 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3068 extp->ext_len);
3069 }
3070
3071 efip->efi_flags |= XFS_EFI_RECOVERED;
3072 error = xfs_trans_commit(tp, 0);
3073 return error;
3074
3075 abort_error:
3076 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3077 return error;
3078 }
3079
3080 /*
3081 * When this is called, all of the EFIs which did not have
3082 * corresponding EFDs should be in the AIL. What we do now
3083 * is free the extents associated with each one.
3084 *
3085 * Since we process the EFIs in normal transactions, they
3086 * will be removed at some point after the commit. This prevents
3087 * us from just walking down the list processing each one.
3088 * We'll use a flag in the EFI to skip those that we've already
3089 * processed and use the AIL iteration mechanism's generation
3090 * count to try to speed this up at least a bit.
3091 *
3092 * When we start, we know that the EFIs are the only things in
3093 * the AIL. As we process them, however, other items are added
3094 * to the AIL. Since everything added to the AIL must come after
3095 * everything already in the AIL, we stop processing as soon as
3096 * we see something other than an EFI in the AIL.
3097 */
3098 STATIC int
3099 xlog_recover_process_efis(
3100 xlog_t *log)
3101 {
3102 xfs_log_item_t *lip;
3103 xfs_efi_log_item_t *efip;
3104 int error = 0;
3105 struct xfs_ail_cursor cur;
3106 struct xfs_ail *ailp;
3107
3108 ailp = log->l_ailp;
3109 spin_lock(&ailp->xa_lock);
3110 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3111 while (lip != NULL) {
3112 /*
3113 * We're done when we see something other than an EFI.
3114 * There should be no EFIs left in the AIL now.
3115 */
3116 if (lip->li_type != XFS_LI_EFI) {
3117 #ifdef DEBUG
3118 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
3119 ASSERT(lip->li_type != XFS_LI_EFI);
3120 #endif
3121 break;
3122 }
3123
3124 /*
3125 * Skip EFIs that we've already processed.
3126 */
3127 efip = (xfs_efi_log_item_t *)lip;
3128 if (efip->efi_flags & XFS_EFI_RECOVERED) {
3129 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3130 continue;
3131 }
3132
3133 spin_unlock(&ailp->xa_lock);
3134 error = xlog_recover_process_efi(log->l_mp, efip);
3135 spin_lock(&ailp->xa_lock);
3136 if (error)
3137 goto out;
3138 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3139 }
3140 out:
3141 xfs_trans_ail_cursor_done(ailp, &cur);
3142 spin_unlock(&ailp->xa_lock);
3143 return error;
3144 }
3145
3146 /*
3147 * This routine performs a transaction to null out a bad inode pointer
3148 * in an agi unlinked inode hash bucket.
3149 */
3150 STATIC void
3151 xlog_recover_clear_agi_bucket(
3152 xfs_mount_t *mp,
3153 xfs_agnumber_t agno,
3154 int bucket)
3155 {
3156 xfs_trans_t *tp;
3157 xfs_agi_t *agi;
3158 xfs_buf_t *agibp;
3159 int offset;
3160 int error;
3161
3162 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3163 error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
3164 0, 0, 0);
3165 if (error)
3166 goto out_abort;
3167
3168 error = xfs_read_agi(mp, tp, agno, &agibp);
3169 if (error)
3170 goto out_abort;
3171
3172 agi = XFS_BUF_TO_AGI(agibp);
3173 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3174 offset = offsetof(xfs_agi_t, agi_unlinked) +
3175 (sizeof(xfs_agino_t) * bucket);
3176 xfs_trans_log_buf(tp, agibp, offset,
3177 (offset + sizeof(xfs_agino_t) - 1));
3178
3179 error = xfs_trans_commit(tp, 0);
3180 if (error)
3181 goto out_error;
3182 return;
3183
3184 out_abort:
3185 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3186 out_error:
3187 xfs_fs_cmn_err(CE_WARN, mp, "xlog_recover_clear_agi_bucket: "
3188 "failed to clear agi %d. Continuing.", agno);
3189 return;
3190 }
3191
3192 STATIC xfs_agino_t
3193 xlog_recover_process_one_iunlink(
3194 struct xfs_mount *mp,
3195 xfs_agnumber_t agno,
3196 xfs_agino_t agino,
3197 int bucket)
3198 {
3199 struct xfs_buf *ibp;
3200 struct xfs_dinode *dip;
3201 struct xfs_inode *ip;
3202 xfs_ino_t ino;
3203 int error;
3204
3205 ino = XFS_AGINO_TO_INO(mp, agno, agino);
3206 error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0);
3207 if (error)
3208 goto fail;
3209
3210 /*
3211 * Get the on disk inode to find the next inode in the bucket.
3212 */
3213 error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XFS_BUF_LOCK);
3214 if (error)
3215 goto fail_iput;
3216
3217 ASSERT(ip->i_d.di_nlink == 0);
3218 ASSERT(ip->i_d.di_mode != 0);
3219
3220 /* setup for the next pass */
3221 agino = be32_to_cpu(dip->di_next_unlinked);
3222 xfs_buf_relse(ibp);
3223
3224 /*
3225 * Prevent any DMAPI event from being sent when the reference on
3226 * the inode is dropped.
3227 */
3228 ip->i_d.di_dmevmask = 0;
3229
3230 IRELE(ip);
3231 return agino;
3232
3233 fail_iput:
3234 IRELE(ip);
3235 fail:
3236 /*
3237 * We can't read in the inode this bucket points to, or this inode
3238 * is messed up. Just ditch this bucket of inodes. We will lose
3239 * some inodes and space, but at least we won't hang.
3240 *
3241 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3242 * clear the inode pointer in the bucket.
3243 */
3244 xlog_recover_clear_agi_bucket(mp, agno, bucket);
3245 return NULLAGINO;
3246 }
3247
3248 /*
3249 * xlog_iunlink_recover
3250 *
3251 * This is called during recovery to process any inodes which
3252 * we unlinked but not freed when the system crashed. These
3253 * inodes will be on the lists in the AGI blocks. What we do
3254 * here is scan all the AGIs and fully truncate and free any
3255 * inodes found on the lists. Each inode is removed from the
3256 * lists when it has been fully truncated and is freed. The
3257 * freeing of the inode and its removal from the list must be
3258 * atomic.
3259 */
3260 STATIC void
3261 xlog_recover_process_iunlinks(
3262 xlog_t *log)
3263 {
3264 xfs_mount_t *mp;
3265 xfs_agnumber_t agno;
3266 xfs_agi_t *agi;
3267 xfs_buf_t *agibp;
3268 xfs_agino_t agino;
3269 int bucket;
3270 int error;
3271 uint mp_dmevmask;
3272
3273 mp = log->l_mp;
3274
3275 /*
3276 * Prevent any DMAPI event from being sent while in this function.
3277 */
3278 mp_dmevmask = mp->m_dmevmask;
3279 mp->m_dmevmask = 0;
3280
3281 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3282 /*
3283 * Find the agi for this ag.
3284 */
3285 error = xfs_read_agi(mp, NULL, agno, &agibp);
3286 if (error) {
3287 /*
3288 * AGI is b0rked. Don't process it.
3289 *
3290 * We should probably mark the filesystem as corrupt
3291 * after we've recovered all the ag's we can....
3292 */
3293 continue;
3294 }
3295 agi = XFS_BUF_TO_AGI(agibp);
3296
3297 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3298 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3299 while (agino != NULLAGINO) {
3300 /*
3301 * Release the agi buffer so that it can
3302 * be acquired in the normal course of the
3303 * transaction to truncate and free the inode.
3304 */
3305 xfs_buf_relse(agibp);
3306
3307 agino = xlog_recover_process_one_iunlink(mp,
3308 agno, agino, bucket);
3309
3310 /*
3311 * Reacquire the agibuffer and continue around
3312 * the loop. This should never fail as we know
3313 * the buffer was good earlier on.
3314 */
3315 error = xfs_read_agi(mp, NULL, agno, &agibp);
3316 ASSERT(error == 0);
3317 agi = XFS_BUF_TO_AGI(agibp);
3318 }
3319 }
3320
3321 /*
3322 * Release the buffer for the current agi so we can
3323 * go on to the next one.
3324 */
3325 xfs_buf_relse(agibp);
3326 }
3327
3328 mp->m_dmevmask = mp_dmevmask;
3329 }
3330
3331
3332 #ifdef DEBUG
3333 STATIC void
3334 xlog_pack_data_checksum(
3335 xlog_t *log,
3336 xlog_in_core_t *iclog,
3337 int size)
3338 {
3339 int i;
3340 __be32 *up;
3341 uint chksum = 0;
3342
3343 up = (__be32 *)iclog->ic_datap;
3344 /* divide length by 4 to get # words */
3345 for (i = 0; i < (size >> 2); i++) {
3346 chksum ^= be32_to_cpu(*up);
3347 up++;
3348 }
3349 iclog->ic_header.h_chksum = cpu_to_be32(chksum);
3350 }
3351 #else
3352 #define xlog_pack_data_checksum(log, iclog, size)
3353 #endif
3354
3355 /*
3356 * Stamp cycle number in every block
3357 */
3358 void
3359 xlog_pack_data(
3360 xlog_t *log,
3361 xlog_in_core_t *iclog,
3362 int roundoff)
3363 {
3364 int i, j, k;
3365 int size = iclog->ic_offset + roundoff;
3366 __be32 cycle_lsn;
3367 xfs_caddr_t dp;
3368
3369 xlog_pack_data_checksum(log, iclog, size);
3370
3371 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3372
3373 dp = iclog->ic_datap;
3374 for (i = 0; i < BTOBB(size) &&
3375 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3376 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
3377 *(__be32 *)dp = cycle_lsn;
3378 dp += BBSIZE;
3379 }
3380
3381 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3382 xlog_in_core_2_t *xhdr = iclog->ic_data;
3383
3384 for ( ; i < BTOBB(size); i++) {
3385 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3386 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3387 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
3388 *(__be32 *)dp = cycle_lsn;
3389 dp += BBSIZE;
3390 }
3391
3392 for (i = 1; i < log->l_iclog_heads; i++) {
3393 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3394 }
3395 }
3396 }
3397
3398 #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
3399 STATIC void
3400 xlog_unpack_data_checksum(
3401 xlog_rec_header_t *rhead,
3402 xfs_caddr_t dp,
3403 xlog_t *log)
3404 {
3405 __be32 *up = (__be32 *)dp;
3406 uint chksum = 0;
3407 int i;
3408
3409 /* divide length by 4 to get # words */
3410 for (i=0; i < be32_to_cpu(rhead->h_len) >> 2; i++) {
3411 chksum ^= be32_to_cpu(*up);
3412 up++;
3413 }
3414 if (chksum != be32_to_cpu(rhead->h_chksum)) {
3415 if (rhead->h_chksum ||
3416 ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) {
3417 cmn_err(CE_DEBUG,
3418 "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n",
3419 be32_to_cpu(rhead->h_chksum), chksum);
3420 cmn_err(CE_DEBUG,
3421 "XFS: Disregard message if filesystem was created with non-DEBUG kernel");
3422 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3423 cmn_err(CE_DEBUG,
3424 "XFS: LogR this is a LogV2 filesystem\n");
3425 }
3426 log->l_flags |= XLOG_CHKSUM_MISMATCH;
3427 }
3428 }
3429 }
3430 #else
3431 #define xlog_unpack_data_checksum(rhead, dp, log)
3432 #endif
3433
3434 STATIC void
3435 xlog_unpack_data(
3436 xlog_rec_header_t *rhead,
3437 xfs_caddr_t dp,
3438 xlog_t *log)
3439 {
3440 int i, j, k;
3441
3442 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
3443 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3444 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
3445 dp += BBSIZE;
3446 }
3447
3448 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3449 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
3450 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
3451 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3452 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3453 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3454 dp += BBSIZE;
3455 }
3456 }
3457
3458 xlog_unpack_data_checksum(rhead, dp, log);
3459 }
3460
3461 STATIC int
3462 xlog_valid_rec_header(
3463 xlog_t *log,
3464 xlog_rec_header_t *rhead,
3465 xfs_daddr_t blkno)
3466 {
3467 int hlen;
3468
3469 if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) {
3470 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3471 XFS_ERRLEVEL_LOW, log->l_mp);
3472 return XFS_ERROR(EFSCORRUPTED);
3473 }
3474 if (unlikely(
3475 (!rhead->h_version ||
3476 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
3477 xlog_warn("XFS: %s: unrecognised log version (%d).",
3478 __func__, be32_to_cpu(rhead->h_version));
3479 return XFS_ERROR(EIO);
3480 }
3481
3482 /* LR body must have data or it wouldn't have been written */
3483 hlen = be32_to_cpu(rhead->h_len);
3484 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3485 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3486 XFS_ERRLEVEL_LOW, log->l_mp);
3487 return XFS_ERROR(EFSCORRUPTED);
3488 }
3489 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3490 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3491 XFS_ERRLEVEL_LOW, log->l_mp);
3492 return XFS_ERROR(EFSCORRUPTED);
3493 }
3494 return 0;
3495 }
3496
3497 /*
3498 * Read the log from tail to head and process the log records found.
3499 * Handle the two cases where the tail and head are in the same cycle
3500 * and where the active portion of the log wraps around the end of
3501 * the physical log separately. The pass parameter is passed through
3502 * to the routines called to process the data and is not looked at
3503 * here.
3504 */
3505 STATIC int
3506 xlog_do_recovery_pass(
3507 xlog_t *log,
3508 xfs_daddr_t head_blk,
3509 xfs_daddr_t tail_blk,
3510 int pass)
3511 {
3512 xlog_rec_header_t *rhead;
3513 xfs_daddr_t blk_no;
3514 xfs_caddr_t offset;
3515 xfs_buf_t *hbp, *dbp;
3516 int error = 0, h_size;
3517 int bblks, split_bblks;
3518 int hblks, split_hblks, wrapped_hblks;
3519 xlog_recover_t *rhash[XLOG_RHASH_SIZE];
3520
3521 ASSERT(head_blk != tail_blk);
3522
3523 /*
3524 * Read the header of the tail block and get the iclog buffer size from
3525 * h_size. Use this to tell how many sectors make up the log header.
3526 */
3527 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3528 /*
3529 * When using variable length iclogs, read first sector of
3530 * iclog header and extract the header size from it. Get a
3531 * new hbp that is the correct size.
3532 */
3533 hbp = xlog_get_bp(log, 1);
3534 if (!hbp)
3535 return ENOMEM;
3536
3537 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
3538 if (error)
3539 goto bread_err1;
3540
3541 rhead = (xlog_rec_header_t *)offset;
3542 error = xlog_valid_rec_header(log, rhead, tail_blk);
3543 if (error)
3544 goto bread_err1;
3545 h_size = be32_to_cpu(rhead->h_size);
3546 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
3547 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3548 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3549 if (h_size % XLOG_HEADER_CYCLE_SIZE)
3550 hblks++;
3551 xlog_put_bp(hbp);
3552 hbp = xlog_get_bp(log, hblks);
3553 } else {
3554 hblks = 1;
3555 }
3556 } else {
3557 ASSERT(log->l_sectbb_log == 0);
3558 hblks = 1;
3559 hbp = xlog_get_bp(log, 1);
3560 h_size = XLOG_BIG_RECORD_BSIZE;
3561 }
3562
3563 if (!hbp)
3564 return ENOMEM;
3565 dbp = xlog_get_bp(log, BTOBB(h_size));
3566 if (!dbp) {
3567 xlog_put_bp(hbp);
3568 return ENOMEM;
3569 }
3570
3571 memset(rhash, 0, sizeof(rhash));
3572 if (tail_blk <= head_blk) {
3573 for (blk_no = tail_blk; blk_no < head_blk; ) {
3574 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3575 if (error)
3576 goto bread_err2;
3577
3578 rhead = (xlog_rec_header_t *)offset;
3579 error = xlog_valid_rec_header(log, rhead, blk_no);
3580 if (error)
3581 goto bread_err2;
3582
3583 /* blocks in data section */
3584 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3585 error = xlog_bread(log, blk_no + hblks, bblks, dbp,
3586 &offset);
3587 if (error)
3588 goto bread_err2;
3589
3590 xlog_unpack_data(rhead, offset, log);
3591 if ((error = xlog_recover_process_data(log,
3592 rhash, rhead, offset, pass)))
3593 goto bread_err2;
3594 blk_no += bblks + hblks;
3595 }
3596 } else {
3597 /*
3598 * Perform recovery around the end of the physical log.
3599 * When the head is not on the same cycle number as the tail,
3600 * we can't do a sequential recovery as above.
3601 */
3602 blk_no = tail_blk;
3603 while (blk_no < log->l_logBBsize) {
3604 /*
3605 * Check for header wrapping around physical end-of-log
3606 */
3607 offset = XFS_BUF_PTR(hbp);
3608 split_hblks = 0;
3609 wrapped_hblks = 0;
3610 if (blk_no + hblks <= log->l_logBBsize) {
3611 /* Read header in one read */
3612 error = xlog_bread(log, blk_no, hblks, hbp,
3613 &offset);
3614 if (error)
3615 goto bread_err2;
3616 } else {
3617 /* This LR is split across physical log end */
3618 if (blk_no != log->l_logBBsize) {
3619 /* some data before physical log end */
3620 ASSERT(blk_no <= INT_MAX);
3621 split_hblks = log->l_logBBsize - (int)blk_no;
3622 ASSERT(split_hblks > 0);
3623 error = xlog_bread(log, blk_no,
3624 split_hblks, hbp,
3625 &offset);
3626 if (error)
3627 goto bread_err2;
3628 }
3629
3630 /*
3631 * Note: this black magic still works with
3632 * large sector sizes (non-512) only because:
3633 * - we increased the buffer size originally
3634 * by 1 sector giving us enough extra space
3635 * for the second read;
3636 * - the log start is guaranteed to be sector
3637 * aligned;
3638 * - we read the log end (LR header start)
3639 * _first_, then the log start (LR header end)
3640 * - order is important.
3641 */
3642 wrapped_hblks = hblks - split_hblks;
3643 error = XFS_BUF_SET_PTR(hbp,
3644 offset + BBTOB(split_hblks),
3645 BBTOB(hblks - split_hblks));
3646 if (error)
3647 goto bread_err2;
3648
3649 error = xlog_bread_noalign(log, 0,
3650 wrapped_hblks, hbp);
3651 if (error)
3652 goto bread_err2;
3653
3654 error = XFS_BUF_SET_PTR(hbp, offset,
3655 BBTOB(hblks));
3656 if (error)
3657 goto bread_err2;
3658 }
3659 rhead = (xlog_rec_header_t *)offset;
3660 error = xlog_valid_rec_header(log, rhead,
3661 split_hblks ? blk_no : 0);
3662 if (error)
3663 goto bread_err2;
3664
3665 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3666 blk_no += hblks;
3667
3668 /* Read in data for log record */
3669 if (blk_no + bblks <= log->l_logBBsize) {
3670 error = xlog_bread(log, blk_no, bblks, dbp,
3671 &offset);
3672 if (error)
3673 goto bread_err2;
3674 } else {
3675 /* This log record is split across the
3676 * physical end of log */
3677 offset = XFS_BUF_PTR(dbp);
3678 split_bblks = 0;
3679 if (blk_no != log->l_logBBsize) {
3680 /* some data is before the physical
3681 * end of log */
3682 ASSERT(!wrapped_hblks);
3683 ASSERT(blk_no <= INT_MAX);
3684 split_bblks =
3685 log->l_logBBsize - (int)blk_no;
3686 ASSERT(split_bblks > 0);
3687 error = xlog_bread(log, blk_no,
3688 split_bblks, dbp,
3689 &offset);
3690 if (error)
3691 goto bread_err2;
3692 }
3693
3694 /*
3695 * Note: this black magic still works with
3696 * large sector sizes (non-512) only because:
3697 * - we increased the buffer size originally
3698 * by 1 sector giving us enough extra space
3699 * for the second read;
3700 * - the log start is guaranteed to be sector
3701 * aligned;
3702 * - we read the log end (LR header start)
3703 * _first_, then the log start (LR header end)
3704 * - order is important.
3705 */
3706 error = XFS_BUF_SET_PTR(dbp,
3707 offset + BBTOB(split_bblks),
3708 BBTOB(bblks - split_bblks));
3709 if (error)
3710 goto bread_err2;
3711
3712 error = xlog_bread_noalign(log, wrapped_hblks,
3713 bblks - split_bblks,
3714 dbp);
3715 if (error)
3716 goto bread_err2;
3717
3718 error = XFS_BUF_SET_PTR(dbp, offset, h_size);
3719 if (error)
3720 goto bread_err2;
3721 }
3722 xlog_unpack_data(rhead, offset, log);
3723 if ((error = xlog_recover_process_data(log, rhash,
3724 rhead, offset, pass)))
3725 goto bread_err2;
3726 blk_no += bblks;
3727 }
3728
3729 ASSERT(blk_no >= log->l_logBBsize);
3730 blk_no -= log->l_logBBsize;
3731
3732 /* read first part of physical log */
3733 while (blk_no < head_blk) {
3734 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3735 if (error)
3736 goto bread_err2;
3737
3738 rhead = (xlog_rec_header_t *)offset;
3739 error = xlog_valid_rec_header(log, rhead, blk_no);
3740 if (error)
3741 goto bread_err2;
3742
3743 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3744 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3745 &offset);
3746 if (error)
3747 goto bread_err2;
3748
3749 xlog_unpack_data(rhead, offset, log);
3750 if ((error = xlog_recover_process_data(log, rhash,
3751 rhead, offset, pass)))
3752 goto bread_err2;
3753 blk_no += bblks + hblks;
3754 }
3755 }
3756
3757 bread_err2:
3758 xlog_put_bp(dbp);
3759 bread_err1:
3760 xlog_put_bp(hbp);
3761 return error;
3762 }
3763
3764 /*
3765 * Do the recovery of the log. We actually do this in two phases.
3766 * The two passes are necessary in order to implement the function
3767 * of cancelling a record written into the log. The first pass
3768 * determines those things which have been cancelled, and the
3769 * second pass replays log items normally except for those which
3770 * have been cancelled. The handling of the replay and cancellations
3771 * takes place in the log item type specific routines.
3772 *
3773 * The table of items which have cancel records in the log is allocated
3774 * and freed at this level, since only here do we know when all of
3775 * the log recovery has been completed.
3776 */
3777 STATIC int
3778 xlog_do_log_recovery(
3779 xlog_t *log,
3780 xfs_daddr_t head_blk,
3781 xfs_daddr_t tail_blk)
3782 {
3783 int error;
3784
3785 ASSERT(head_blk != tail_blk);
3786
3787 /*
3788 * First do a pass to find all of the cancelled buf log items.
3789 * Store them in the buf_cancel_table for use in the second pass.
3790 */
3791 log->l_buf_cancel_table =
3792 (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
3793 sizeof(xfs_buf_cancel_t*),
3794 KM_SLEEP);
3795 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3796 XLOG_RECOVER_PASS1);
3797 if (error != 0) {
3798 kmem_free(log->l_buf_cancel_table);
3799 log->l_buf_cancel_table = NULL;
3800 return error;
3801 }
3802 /*
3803 * Then do a second pass to actually recover the items in the log.
3804 * When it is complete free the table of buf cancel items.
3805 */
3806 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3807 XLOG_RECOVER_PASS2);
3808 #ifdef DEBUG
3809 if (!error) {
3810 int i;
3811
3812 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3813 ASSERT(log->l_buf_cancel_table[i] == NULL);
3814 }
3815 #endif /* DEBUG */
3816
3817 kmem_free(log->l_buf_cancel_table);
3818 log->l_buf_cancel_table = NULL;
3819
3820 return error;
3821 }
3822
3823 /*
3824 * Do the actual recovery
3825 */
3826 STATIC int
3827 xlog_do_recover(
3828 xlog_t *log,
3829 xfs_daddr_t head_blk,
3830 xfs_daddr_t tail_blk)
3831 {
3832 int error;
3833 xfs_buf_t *bp;
3834 xfs_sb_t *sbp;
3835
3836 /*
3837 * First replay the images in the log.
3838 */
3839 error = xlog_do_log_recovery(log, head_blk, tail_blk);
3840 if (error) {
3841 return error;
3842 }
3843
3844 XFS_bflush(log->l_mp->m_ddev_targp);
3845
3846 /*
3847 * If IO errors happened during recovery, bail out.
3848 */
3849 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3850 return (EIO);
3851 }
3852
3853 /*
3854 * We now update the tail_lsn since much of the recovery has completed
3855 * and there may be space available to use. If there were no extent
3856 * or iunlinks, we can free up the entire log and set the tail_lsn to
3857 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3858 * lsn of the last known good LR on disk. If there are extent frees
3859 * or iunlinks they will have some entries in the AIL; so we look at
3860 * the AIL to determine how to set the tail_lsn.
3861 */
3862 xlog_assign_tail_lsn(log->l_mp);
3863
3864 /*
3865 * Now that we've finished replaying all buffer and inode
3866 * updates, re-read in the superblock.
3867 */
3868 bp = xfs_getsb(log->l_mp, 0);
3869 XFS_BUF_UNDONE(bp);
3870 ASSERT(!(XFS_BUF_ISWRITE(bp)));
3871 ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
3872 XFS_BUF_READ(bp);
3873 XFS_BUF_UNASYNC(bp);
3874 xfsbdstrat(log->l_mp, bp);
3875 error = xfs_iowait(bp);
3876 if (error) {
3877 xfs_ioerror_alert("xlog_do_recover",
3878 log->l_mp, bp, XFS_BUF_ADDR(bp));
3879 ASSERT(0);
3880 xfs_buf_relse(bp);
3881 return error;
3882 }
3883
3884 /* Convert superblock from on-disk format */
3885 sbp = &log->l_mp->m_sb;
3886 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
3887 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3888 ASSERT(xfs_sb_good_version(sbp));
3889 xfs_buf_relse(bp);
3890
3891 /* We've re-read the superblock so re-initialize per-cpu counters */
3892 xfs_icsb_reinit_counters(log->l_mp);
3893
3894 xlog_recover_check_summary(log);
3895
3896 /* Normal transactions can now occur */
3897 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3898 return 0;
3899 }
3900
3901 /*
3902 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3903 *
3904 * Return error or zero.
3905 */
3906 int
3907 xlog_recover(
3908 xlog_t *log)
3909 {
3910 xfs_daddr_t head_blk, tail_blk;
3911 int error;
3912
3913 /* find the tail of the log */
3914 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
3915 return error;
3916
3917 if (tail_blk != head_blk) {
3918 /* There used to be a comment here:
3919 *
3920 * disallow recovery on read-only mounts. note -- mount
3921 * checks for ENOSPC and turns it into an intelligent
3922 * error message.
3923 * ...but this is no longer true. Now, unless you specify
3924 * NORECOVERY (in which case this function would never be
3925 * called), we just go ahead and recover. We do this all
3926 * under the vfs layer, so we can get away with it unless
3927 * the device itself is read-only, in which case we fail.
3928 */
3929 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3930 return error;
3931 }
3932
3933 cmn_err(CE_NOTE,
3934 "Starting XFS recovery on filesystem: %s (logdev: %s)",
3935 log->l_mp->m_fsname, log->l_mp->m_logname ?
3936 log->l_mp->m_logname : "internal");
3937
3938 error = xlog_do_recover(log, head_blk, tail_blk);
3939 log->l_flags |= XLOG_RECOVERY_NEEDED;
3940 }
3941 return error;
3942 }
3943
3944 /*
3945 * In the first part of recovery we replay inodes and buffers and build
3946 * up the list of extent free items which need to be processed. Here
3947 * we process the extent free items and clean up the on disk unlinked
3948 * inode lists. This is separated from the first part of recovery so
3949 * that the root and real-time bitmap inodes can be read in from disk in
3950 * between the two stages. This is necessary so that we can free space
3951 * in the real-time portion of the file system.
3952 */
3953 int
3954 xlog_recover_finish(
3955 xlog_t *log)
3956 {
3957 /*
3958 * Now we're ready to do the transactions needed for the
3959 * rest of recovery. Start with completing all the extent
3960 * free intent records and then process the unlinked inode
3961 * lists. At this point, we essentially run in normal mode
3962 * except that we're still performing recovery actions
3963 * rather than accepting new requests.
3964 */
3965 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3966 int error;
3967 error = xlog_recover_process_efis(log);
3968 if (error) {
3969 cmn_err(CE_ALERT,
3970 "Failed to recover EFIs on filesystem: %s",
3971 log->l_mp->m_fsname);
3972 return error;
3973 }
3974 /*
3975 * Sync the log to get all the EFIs out of the AIL.
3976 * This isn't absolutely necessary, but it helps in
3977 * case the unlink transactions would have problems
3978 * pushing the EFIs out of the way.
3979 */
3980 xfs_log_force(log->l_mp, (xfs_lsn_t)0,
3981 (XFS_LOG_FORCE | XFS_LOG_SYNC));
3982
3983 xlog_recover_process_iunlinks(log);
3984
3985 xlog_recover_check_summary(log);
3986
3987 cmn_err(CE_NOTE,
3988 "Ending XFS recovery on filesystem: %s (logdev: %s)",
3989 log->l_mp->m_fsname, log->l_mp->m_logname ?
3990 log->l_mp->m_logname : "internal");
3991 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3992 } else {
3993 cmn_err(CE_DEBUG,
3994 "!Ending clean XFS mount for filesystem: %s\n",
3995 log->l_mp->m_fsname);
3996 }
3997 return 0;
3998 }
3999
4000
4001 #if defined(DEBUG)
4002 /*
4003 * Read all of the agf and agi counters and check that they
4004 * are consistent with the superblock counters.
4005 */
4006 void
4007 xlog_recover_check_summary(
4008 xlog_t *log)
4009 {
4010 xfs_mount_t *mp;
4011 xfs_agf_t *agfp;
4012 xfs_buf_t *agfbp;
4013 xfs_buf_t *agibp;
4014 xfs_buf_t *sbbp;
4015 #ifdef XFS_LOUD_RECOVERY
4016 xfs_sb_t *sbp;
4017 #endif
4018 xfs_agnumber_t agno;
4019 __uint64_t freeblks;
4020 __uint64_t itotal;
4021 __uint64_t ifree;
4022 int error;
4023
4024 mp = log->l_mp;
4025
4026 freeblks = 0LL;
4027 itotal = 0LL;
4028 ifree = 0LL;
4029 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4030 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
4031 if (error) {
4032 xfs_fs_cmn_err(CE_ALERT, mp,
4033 "xlog_recover_check_summary(agf)"
4034 "agf read failed agno %d error %d",
4035 agno, error);
4036 } else {
4037 agfp = XFS_BUF_TO_AGF(agfbp);
4038 freeblks += be32_to_cpu(agfp->agf_freeblks) +
4039 be32_to_cpu(agfp->agf_flcount);
4040 xfs_buf_relse(agfbp);
4041 }
4042
4043 error = xfs_read_agi(mp, NULL, agno, &agibp);
4044 if (!error) {
4045 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
4046
4047 itotal += be32_to_cpu(agi->agi_count);
4048 ifree += be32_to_cpu(agi->agi_freecount);
4049 xfs_buf_relse(agibp);
4050 }
4051 }
4052
4053 sbbp = xfs_getsb(mp, 0);
4054 #ifdef XFS_LOUD_RECOVERY
4055 sbp = &mp->m_sb;
4056 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(sbbp));
4057 cmn_err(CE_NOTE,
4058 "xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
4059 sbp->sb_icount, itotal);
4060 cmn_err(CE_NOTE,
4061 "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
4062 sbp->sb_ifree, ifree);
4063 cmn_err(CE_NOTE,
4064 "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
4065 sbp->sb_fdblocks, freeblks);
4066 #if 0
4067 /*
4068 * This is turned off until I account for the allocation
4069 * btree blocks which live in free space.
4070 */
4071 ASSERT(sbp->sb_icount == itotal);
4072 ASSERT(sbp->sb_ifree == ifree);
4073 ASSERT(sbp->sb_fdblocks == freeblks);
4074 #endif
4075 #endif
4076 xfs_buf_relse(sbbp);
4077 }
4078 #endif /* DEBUG */
This page took 0.115829 seconds and 6 git commands to generate.