xfs: add CRC checks to the superblock
[deliverable/linux.git] / fs / xfs / xfs_mount.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_trans_priv.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_dir2.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dinode.h"
34 #include "xfs_inode.h"
35 #include "xfs_btree.h"
36 #include "xfs_ialloc.h"
37 #include "xfs_alloc.h"
38 #include "xfs_rtalloc.h"
39 #include "xfs_bmap.h"
40 #include "xfs_error.h"
41 #include "xfs_quota.h"
42 #include "xfs_fsops.h"
43 #include "xfs_utils.h"
44 #include "xfs_trace.h"
45 #include "xfs_icache.h"
46 #include "xfs_cksum.h"
47 #include "xfs_buf_item.h"
48
49
50 #ifdef HAVE_PERCPU_SB
51 STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
52 int);
53 STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
54 int);
55 STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
56 #else
57
58 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0)
59 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0)
60 #endif
61
62 static const struct {
63 short offset;
64 short type; /* 0 = integer
65 * 1 = binary / string (no translation)
66 */
67 } xfs_sb_info[] = {
68 { offsetof(xfs_sb_t, sb_magicnum), 0 },
69 { offsetof(xfs_sb_t, sb_blocksize), 0 },
70 { offsetof(xfs_sb_t, sb_dblocks), 0 },
71 { offsetof(xfs_sb_t, sb_rblocks), 0 },
72 { offsetof(xfs_sb_t, sb_rextents), 0 },
73 { offsetof(xfs_sb_t, sb_uuid), 1 },
74 { offsetof(xfs_sb_t, sb_logstart), 0 },
75 { offsetof(xfs_sb_t, sb_rootino), 0 },
76 { offsetof(xfs_sb_t, sb_rbmino), 0 },
77 { offsetof(xfs_sb_t, sb_rsumino), 0 },
78 { offsetof(xfs_sb_t, sb_rextsize), 0 },
79 { offsetof(xfs_sb_t, sb_agblocks), 0 },
80 { offsetof(xfs_sb_t, sb_agcount), 0 },
81 { offsetof(xfs_sb_t, sb_rbmblocks), 0 },
82 { offsetof(xfs_sb_t, sb_logblocks), 0 },
83 { offsetof(xfs_sb_t, sb_versionnum), 0 },
84 { offsetof(xfs_sb_t, sb_sectsize), 0 },
85 { offsetof(xfs_sb_t, sb_inodesize), 0 },
86 { offsetof(xfs_sb_t, sb_inopblock), 0 },
87 { offsetof(xfs_sb_t, sb_fname[0]), 1 },
88 { offsetof(xfs_sb_t, sb_blocklog), 0 },
89 { offsetof(xfs_sb_t, sb_sectlog), 0 },
90 { offsetof(xfs_sb_t, sb_inodelog), 0 },
91 { offsetof(xfs_sb_t, sb_inopblog), 0 },
92 { offsetof(xfs_sb_t, sb_agblklog), 0 },
93 { offsetof(xfs_sb_t, sb_rextslog), 0 },
94 { offsetof(xfs_sb_t, sb_inprogress), 0 },
95 { offsetof(xfs_sb_t, sb_imax_pct), 0 },
96 { offsetof(xfs_sb_t, sb_icount), 0 },
97 { offsetof(xfs_sb_t, sb_ifree), 0 },
98 { offsetof(xfs_sb_t, sb_fdblocks), 0 },
99 { offsetof(xfs_sb_t, sb_frextents), 0 },
100 { offsetof(xfs_sb_t, sb_uquotino), 0 },
101 { offsetof(xfs_sb_t, sb_gquotino), 0 },
102 { offsetof(xfs_sb_t, sb_qflags), 0 },
103 { offsetof(xfs_sb_t, sb_flags), 0 },
104 { offsetof(xfs_sb_t, sb_shared_vn), 0 },
105 { offsetof(xfs_sb_t, sb_inoalignmt), 0 },
106 { offsetof(xfs_sb_t, sb_unit), 0 },
107 { offsetof(xfs_sb_t, sb_width), 0 },
108 { offsetof(xfs_sb_t, sb_dirblklog), 0 },
109 { offsetof(xfs_sb_t, sb_logsectlog), 0 },
110 { offsetof(xfs_sb_t, sb_logsectsize),0 },
111 { offsetof(xfs_sb_t, sb_logsunit), 0 },
112 { offsetof(xfs_sb_t, sb_features2), 0 },
113 { offsetof(xfs_sb_t, sb_bad_features2), 0 },
114 { offsetof(xfs_sb_t, sb_features_compat), 0 },
115 { offsetof(xfs_sb_t, sb_features_ro_compat), 0 },
116 { offsetof(xfs_sb_t, sb_features_incompat), 0 },
117 { offsetof(xfs_sb_t, sb_crc), 0 },
118 { offsetof(xfs_sb_t, sb_pquotino), 0 },
119 { offsetof(xfs_sb_t, sb_lsn), 0 },
120 { sizeof(xfs_sb_t), 0 }
121 };
122
123 static DEFINE_MUTEX(xfs_uuid_table_mutex);
124 static int xfs_uuid_table_size;
125 static uuid_t *xfs_uuid_table;
126
127 /*
128 * See if the UUID is unique among mounted XFS filesystems.
129 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
130 */
131 STATIC int
132 xfs_uuid_mount(
133 struct xfs_mount *mp)
134 {
135 uuid_t *uuid = &mp->m_sb.sb_uuid;
136 int hole, i;
137
138 if (mp->m_flags & XFS_MOUNT_NOUUID)
139 return 0;
140
141 if (uuid_is_nil(uuid)) {
142 xfs_warn(mp, "Filesystem has nil UUID - can't mount");
143 return XFS_ERROR(EINVAL);
144 }
145
146 mutex_lock(&xfs_uuid_table_mutex);
147 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
148 if (uuid_is_nil(&xfs_uuid_table[i])) {
149 hole = i;
150 continue;
151 }
152 if (uuid_equal(uuid, &xfs_uuid_table[i]))
153 goto out_duplicate;
154 }
155
156 if (hole < 0) {
157 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
158 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
159 xfs_uuid_table_size * sizeof(*xfs_uuid_table),
160 KM_SLEEP);
161 hole = xfs_uuid_table_size++;
162 }
163 xfs_uuid_table[hole] = *uuid;
164 mutex_unlock(&xfs_uuid_table_mutex);
165
166 return 0;
167
168 out_duplicate:
169 mutex_unlock(&xfs_uuid_table_mutex);
170 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
171 return XFS_ERROR(EINVAL);
172 }
173
174 STATIC void
175 xfs_uuid_unmount(
176 struct xfs_mount *mp)
177 {
178 uuid_t *uuid = &mp->m_sb.sb_uuid;
179 int i;
180
181 if (mp->m_flags & XFS_MOUNT_NOUUID)
182 return;
183
184 mutex_lock(&xfs_uuid_table_mutex);
185 for (i = 0; i < xfs_uuid_table_size; i++) {
186 if (uuid_is_nil(&xfs_uuid_table[i]))
187 continue;
188 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
189 continue;
190 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
191 break;
192 }
193 ASSERT(i < xfs_uuid_table_size);
194 mutex_unlock(&xfs_uuid_table_mutex);
195 }
196
197
198 /*
199 * Reference counting access wrappers to the perag structures.
200 * Because we never free per-ag structures, the only thing we
201 * have to protect against changes is the tree structure itself.
202 */
203 struct xfs_perag *
204 xfs_perag_get(struct xfs_mount *mp, xfs_agnumber_t agno)
205 {
206 struct xfs_perag *pag;
207 int ref = 0;
208
209 rcu_read_lock();
210 pag = radix_tree_lookup(&mp->m_perag_tree, agno);
211 if (pag) {
212 ASSERT(atomic_read(&pag->pag_ref) >= 0);
213 ref = atomic_inc_return(&pag->pag_ref);
214 }
215 rcu_read_unlock();
216 trace_xfs_perag_get(mp, agno, ref, _RET_IP_);
217 return pag;
218 }
219
220 /*
221 * search from @first to find the next perag with the given tag set.
222 */
223 struct xfs_perag *
224 xfs_perag_get_tag(
225 struct xfs_mount *mp,
226 xfs_agnumber_t first,
227 int tag)
228 {
229 struct xfs_perag *pag;
230 int found;
231 int ref;
232
233 rcu_read_lock();
234 found = radix_tree_gang_lookup_tag(&mp->m_perag_tree,
235 (void **)&pag, first, 1, tag);
236 if (found <= 0) {
237 rcu_read_unlock();
238 return NULL;
239 }
240 ref = atomic_inc_return(&pag->pag_ref);
241 rcu_read_unlock();
242 trace_xfs_perag_get_tag(mp, pag->pag_agno, ref, _RET_IP_);
243 return pag;
244 }
245
246 void
247 xfs_perag_put(struct xfs_perag *pag)
248 {
249 int ref;
250
251 ASSERT(atomic_read(&pag->pag_ref) > 0);
252 ref = atomic_dec_return(&pag->pag_ref);
253 trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_);
254 }
255
256 STATIC void
257 __xfs_free_perag(
258 struct rcu_head *head)
259 {
260 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
261
262 ASSERT(atomic_read(&pag->pag_ref) == 0);
263 kmem_free(pag);
264 }
265
266 /*
267 * Free up the per-ag resources associated with the mount structure.
268 */
269 STATIC void
270 xfs_free_perag(
271 xfs_mount_t *mp)
272 {
273 xfs_agnumber_t agno;
274 struct xfs_perag *pag;
275
276 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
277 spin_lock(&mp->m_perag_lock);
278 pag = radix_tree_delete(&mp->m_perag_tree, agno);
279 spin_unlock(&mp->m_perag_lock);
280 ASSERT(pag);
281 ASSERT(atomic_read(&pag->pag_ref) == 0);
282 call_rcu(&pag->rcu_head, __xfs_free_perag);
283 }
284 }
285
286 /*
287 * Check size of device based on the (data/realtime) block count.
288 * Note: this check is used by the growfs code as well as mount.
289 */
290 int
291 xfs_sb_validate_fsb_count(
292 xfs_sb_t *sbp,
293 __uint64_t nblocks)
294 {
295 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
296 ASSERT(sbp->sb_blocklog >= BBSHIFT);
297
298 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */
299 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
300 return EFBIG;
301 #else /* Limited by UINT_MAX of sectors */
302 if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
303 return EFBIG;
304 #endif
305 return 0;
306 }
307
308 /*
309 * Check the validity of the SB found.
310 */
311 STATIC int
312 xfs_mount_validate_sb(
313 xfs_mount_t *mp,
314 xfs_sb_t *sbp,
315 bool check_inprogress)
316 {
317
318 /*
319 * If the log device and data device have the
320 * same device number, the log is internal.
321 * Consequently, the sb_logstart should be non-zero. If
322 * we have a zero sb_logstart in this case, we may be trying to mount
323 * a volume filesystem in a non-volume manner.
324 */
325 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
326 xfs_warn(mp, "bad magic number");
327 return XFS_ERROR(EWRONGFS);
328 }
329
330
331 if (!xfs_sb_good_version(sbp)) {
332 xfs_warn(mp, "bad version");
333 return XFS_ERROR(EWRONGFS);
334 }
335
336 /*
337 * Do not allow Version 5 superblocks to mount right now, even though
338 * support is in place. We need to implement the proper feature masks
339 * first.
340 */
341 if (XFS_SB_VERSION_NUM(sbp) == XFS_SB_VERSION_5) {
342 xfs_alert(mp,
343 "Version 5 superblock detected. Experimental support not yet enabled!");
344 return XFS_ERROR(EINVAL);
345 }
346
347 if (unlikely(
348 sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
349 xfs_warn(mp,
350 "filesystem is marked as having an external log; "
351 "specify logdev on the mount command line.");
352 return XFS_ERROR(EINVAL);
353 }
354
355 if (unlikely(
356 sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
357 xfs_warn(mp,
358 "filesystem is marked as having an internal log; "
359 "do not specify logdev on the mount command line.");
360 return XFS_ERROR(EINVAL);
361 }
362
363 /*
364 * More sanity checking. Most of these were stolen directly from
365 * xfs_repair.
366 */
367 if (unlikely(
368 sbp->sb_agcount <= 0 ||
369 sbp->sb_sectsize < XFS_MIN_SECTORSIZE ||
370 sbp->sb_sectsize > XFS_MAX_SECTORSIZE ||
371 sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG ||
372 sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG ||
373 sbp->sb_sectsize != (1 << sbp->sb_sectlog) ||
374 sbp->sb_blocksize < XFS_MIN_BLOCKSIZE ||
375 sbp->sb_blocksize > XFS_MAX_BLOCKSIZE ||
376 sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG ||
377 sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG ||
378 sbp->sb_blocksize != (1 << sbp->sb_blocklog) ||
379 sbp->sb_inodesize < XFS_DINODE_MIN_SIZE ||
380 sbp->sb_inodesize > XFS_DINODE_MAX_SIZE ||
381 sbp->sb_inodelog < XFS_DINODE_MIN_LOG ||
382 sbp->sb_inodelog > XFS_DINODE_MAX_LOG ||
383 sbp->sb_inodesize != (1 << sbp->sb_inodelog) ||
384 (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog) ||
385 (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) ||
386 (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) ||
387 (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */) ||
388 sbp->sb_dblocks == 0 ||
389 sbp->sb_dblocks > XFS_MAX_DBLOCKS(sbp) ||
390 sbp->sb_dblocks < XFS_MIN_DBLOCKS(sbp))) {
391 XFS_CORRUPTION_ERROR("SB sanity check failed",
392 XFS_ERRLEVEL_LOW, mp, sbp);
393 return XFS_ERROR(EFSCORRUPTED);
394 }
395
396 /*
397 * Until this is fixed only page-sized or smaller data blocks work.
398 */
399 if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
400 xfs_warn(mp,
401 "File system with blocksize %d bytes. "
402 "Only pagesize (%ld) or less will currently work.",
403 sbp->sb_blocksize, PAGE_SIZE);
404 return XFS_ERROR(ENOSYS);
405 }
406
407 /*
408 * Currently only very few inode sizes are supported.
409 */
410 switch (sbp->sb_inodesize) {
411 case 256:
412 case 512:
413 case 1024:
414 case 2048:
415 break;
416 default:
417 xfs_warn(mp, "inode size of %d bytes not supported",
418 sbp->sb_inodesize);
419 return XFS_ERROR(ENOSYS);
420 }
421
422 if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
423 xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
424 xfs_warn(mp,
425 "file system too large to be mounted on this system.");
426 return XFS_ERROR(EFBIG);
427 }
428
429 if (check_inprogress && sbp->sb_inprogress) {
430 xfs_warn(mp, "Offline file system operation in progress!");
431 return XFS_ERROR(EFSCORRUPTED);
432 }
433
434 /*
435 * Version 1 directory format has never worked on Linux.
436 */
437 if (unlikely(!xfs_sb_version_hasdirv2(sbp))) {
438 xfs_warn(mp, "file system using version 1 directory format");
439 return XFS_ERROR(ENOSYS);
440 }
441
442 return 0;
443 }
444
445 int
446 xfs_initialize_perag(
447 xfs_mount_t *mp,
448 xfs_agnumber_t agcount,
449 xfs_agnumber_t *maxagi)
450 {
451 xfs_agnumber_t index;
452 xfs_agnumber_t first_initialised = 0;
453 xfs_perag_t *pag;
454 xfs_agino_t agino;
455 xfs_ino_t ino;
456 xfs_sb_t *sbp = &mp->m_sb;
457 int error = -ENOMEM;
458
459 /*
460 * Walk the current per-ag tree so we don't try to initialise AGs
461 * that already exist (growfs case). Allocate and insert all the
462 * AGs we don't find ready for initialisation.
463 */
464 for (index = 0; index < agcount; index++) {
465 pag = xfs_perag_get(mp, index);
466 if (pag) {
467 xfs_perag_put(pag);
468 continue;
469 }
470 if (!first_initialised)
471 first_initialised = index;
472
473 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
474 if (!pag)
475 goto out_unwind;
476 pag->pag_agno = index;
477 pag->pag_mount = mp;
478 spin_lock_init(&pag->pag_ici_lock);
479 mutex_init(&pag->pag_ici_reclaim_lock);
480 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
481 spin_lock_init(&pag->pag_buf_lock);
482 pag->pag_buf_tree = RB_ROOT;
483
484 if (radix_tree_preload(GFP_NOFS))
485 goto out_unwind;
486
487 spin_lock(&mp->m_perag_lock);
488 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
489 BUG();
490 spin_unlock(&mp->m_perag_lock);
491 radix_tree_preload_end();
492 error = -EEXIST;
493 goto out_unwind;
494 }
495 spin_unlock(&mp->m_perag_lock);
496 radix_tree_preload_end();
497 }
498
499 /*
500 * If we mount with the inode64 option, or no inode overflows
501 * the legacy 32-bit address space clear the inode32 option.
502 */
503 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
504 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
505
506 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
507 mp->m_flags |= XFS_MOUNT_32BITINODES;
508 else
509 mp->m_flags &= ~XFS_MOUNT_32BITINODES;
510
511 if (mp->m_flags & XFS_MOUNT_32BITINODES)
512 index = xfs_set_inode32(mp);
513 else
514 index = xfs_set_inode64(mp);
515
516 if (maxagi)
517 *maxagi = index;
518 return 0;
519
520 out_unwind:
521 kmem_free(pag);
522 for (; index > first_initialised; index--) {
523 pag = radix_tree_delete(&mp->m_perag_tree, index);
524 kmem_free(pag);
525 }
526 return error;
527 }
528
529 void
530 xfs_sb_from_disk(
531 struct xfs_sb *to,
532 xfs_dsb_t *from)
533 {
534 to->sb_magicnum = be32_to_cpu(from->sb_magicnum);
535 to->sb_blocksize = be32_to_cpu(from->sb_blocksize);
536 to->sb_dblocks = be64_to_cpu(from->sb_dblocks);
537 to->sb_rblocks = be64_to_cpu(from->sb_rblocks);
538 to->sb_rextents = be64_to_cpu(from->sb_rextents);
539 memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
540 to->sb_logstart = be64_to_cpu(from->sb_logstart);
541 to->sb_rootino = be64_to_cpu(from->sb_rootino);
542 to->sb_rbmino = be64_to_cpu(from->sb_rbmino);
543 to->sb_rsumino = be64_to_cpu(from->sb_rsumino);
544 to->sb_rextsize = be32_to_cpu(from->sb_rextsize);
545 to->sb_agblocks = be32_to_cpu(from->sb_agblocks);
546 to->sb_agcount = be32_to_cpu(from->sb_agcount);
547 to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks);
548 to->sb_logblocks = be32_to_cpu(from->sb_logblocks);
549 to->sb_versionnum = be16_to_cpu(from->sb_versionnum);
550 to->sb_sectsize = be16_to_cpu(from->sb_sectsize);
551 to->sb_inodesize = be16_to_cpu(from->sb_inodesize);
552 to->sb_inopblock = be16_to_cpu(from->sb_inopblock);
553 memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
554 to->sb_blocklog = from->sb_blocklog;
555 to->sb_sectlog = from->sb_sectlog;
556 to->sb_inodelog = from->sb_inodelog;
557 to->sb_inopblog = from->sb_inopblog;
558 to->sb_agblklog = from->sb_agblklog;
559 to->sb_rextslog = from->sb_rextslog;
560 to->sb_inprogress = from->sb_inprogress;
561 to->sb_imax_pct = from->sb_imax_pct;
562 to->sb_icount = be64_to_cpu(from->sb_icount);
563 to->sb_ifree = be64_to_cpu(from->sb_ifree);
564 to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks);
565 to->sb_frextents = be64_to_cpu(from->sb_frextents);
566 to->sb_uquotino = be64_to_cpu(from->sb_uquotino);
567 to->sb_gquotino = be64_to_cpu(from->sb_gquotino);
568 to->sb_qflags = be16_to_cpu(from->sb_qflags);
569 to->sb_flags = from->sb_flags;
570 to->sb_shared_vn = from->sb_shared_vn;
571 to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt);
572 to->sb_unit = be32_to_cpu(from->sb_unit);
573 to->sb_width = be32_to_cpu(from->sb_width);
574 to->sb_dirblklog = from->sb_dirblklog;
575 to->sb_logsectlog = from->sb_logsectlog;
576 to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize);
577 to->sb_logsunit = be32_to_cpu(from->sb_logsunit);
578 to->sb_features2 = be32_to_cpu(from->sb_features2);
579 to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2);
580 to->sb_features_compat = be32_to_cpu(from->sb_features_compat);
581 to->sb_features_ro_compat = be32_to_cpu(from->sb_features_ro_compat);
582 to->sb_features_incompat = be32_to_cpu(from->sb_features_incompat);
583 to->sb_pquotino = be64_to_cpu(from->sb_pquotino);
584 to->sb_lsn = be64_to_cpu(from->sb_lsn);
585 }
586
587 /*
588 * Copy in core superblock to ondisk one.
589 *
590 * The fields argument is mask of superblock fields to copy.
591 */
592 void
593 xfs_sb_to_disk(
594 xfs_dsb_t *to,
595 xfs_sb_t *from,
596 __int64_t fields)
597 {
598 xfs_caddr_t to_ptr = (xfs_caddr_t)to;
599 xfs_caddr_t from_ptr = (xfs_caddr_t)from;
600 xfs_sb_field_t f;
601 int first;
602 int size;
603
604 ASSERT(fields);
605 if (!fields)
606 return;
607
608 while (fields) {
609 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
610 first = xfs_sb_info[f].offset;
611 size = xfs_sb_info[f + 1].offset - first;
612
613 ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
614
615 if (size == 1 || xfs_sb_info[f].type == 1) {
616 memcpy(to_ptr + first, from_ptr + first, size);
617 } else {
618 switch (size) {
619 case 2:
620 *(__be16 *)(to_ptr + first) =
621 cpu_to_be16(*(__u16 *)(from_ptr + first));
622 break;
623 case 4:
624 *(__be32 *)(to_ptr + first) =
625 cpu_to_be32(*(__u32 *)(from_ptr + first));
626 break;
627 case 8:
628 *(__be64 *)(to_ptr + first) =
629 cpu_to_be64(*(__u64 *)(from_ptr + first));
630 break;
631 default:
632 ASSERT(0);
633 }
634 }
635
636 fields &= ~(1LL << f);
637 }
638 }
639
640 static int
641 xfs_sb_verify(
642 struct xfs_buf *bp)
643 {
644 struct xfs_mount *mp = bp->b_target->bt_mount;
645 struct xfs_sb sb;
646
647 xfs_sb_from_disk(&sb, XFS_BUF_TO_SBP(bp));
648
649 /*
650 * Only check the in progress field for the primary superblock as
651 * mkfs.xfs doesn't clear it from secondary superblocks.
652 */
653 return xfs_mount_validate_sb(mp, &sb, bp->b_bn == XFS_SB_DADDR);
654 }
655
656 /*
657 * If the superblock has the CRC feature bit set or the CRC field is non-null,
658 * check that the CRC is valid. We check the CRC field is non-null because a
659 * single bit error could clear the feature bit and unused parts of the
660 * superblock are supposed to be zero. Hence a non-null crc field indicates that
661 * we've potentially lost a feature bit and we should check it anyway.
662 */
663 static void
664 xfs_sb_read_verify(
665 struct xfs_buf *bp)
666 {
667 struct xfs_mount *mp = bp->b_target->bt_mount;
668 struct xfs_dsb *dsb = XFS_BUF_TO_SBP(bp);
669 int error;
670
671 /*
672 * open code the version check to avoid needing to convert the entire
673 * superblock from disk order just to check the version number
674 */
675 if (dsb->sb_magicnum == cpu_to_be32(XFS_SB_MAGIC) &&
676 (((be16_to_cpu(dsb->sb_versionnum) & XFS_SB_VERSION_NUMBITS) ==
677 XFS_SB_VERSION_5) ||
678 dsb->sb_crc != 0)) {
679
680 if (!xfs_verify_cksum(bp->b_addr, be16_to_cpu(dsb->sb_sectsize),
681 offsetof(struct xfs_sb, sb_crc))) {
682 error = EFSCORRUPTED;
683 goto out_error;
684 }
685 }
686 error = xfs_sb_verify(bp);
687
688 out_error:
689 if (error) {
690 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, bp->b_addr);
691 xfs_buf_ioerror(bp, error);
692 }
693 }
694
695 /*
696 * We may be probed for a filesystem match, so we may not want to emit
697 * messages when the superblock buffer is not actually an XFS superblock.
698 * If we find an XFS superblock, the run a normal, noisy mount because we are
699 * really going to mount it and want to know about errors.
700 */
701 static void
702 xfs_sb_quiet_read_verify(
703 struct xfs_buf *bp)
704 {
705 struct xfs_dsb *dsb = XFS_BUF_TO_SBP(bp);
706
707
708 if (dsb->sb_magicnum == cpu_to_be32(XFS_SB_MAGIC)) {
709 /* XFS filesystem, verify noisily! */
710 xfs_sb_read_verify(bp);
711 return;
712 }
713 /* quietly fail */
714 xfs_buf_ioerror(bp, EWRONGFS);
715 }
716
717 static void
718 xfs_sb_write_verify(
719 struct xfs_buf *bp)
720 {
721 struct xfs_mount *mp = bp->b_target->bt_mount;
722 struct xfs_buf_log_item *bip = bp->b_fspriv;
723 int error;
724
725 error = xfs_sb_verify(bp);
726 if (error) {
727 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, bp->b_addr);
728 xfs_buf_ioerror(bp, error);
729 return;
730 }
731
732 if (!xfs_sb_version_hascrc(&mp->m_sb))
733 return;
734
735 if (bip)
736 XFS_BUF_TO_SBP(bp)->sb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
737
738 xfs_update_cksum(bp->b_addr, BBTOB(bp->b_length),
739 offsetof(struct xfs_sb, sb_crc));
740 }
741
742 const struct xfs_buf_ops xfs_sb_buf_ops = {
743 .verify_read = xfs_sb_read_verify,
744 .verify_write = xfs_sb_write_verify,
745 };
746
747 static const struct xfs_buf_ops xfs_sb_quiet_buf_ops = {
748 .verify_read = xfs_sb_quiet_read_verify,
749 .verify_write = xfs_sb_write_verify,
750 };
751
752 /*
753 * xfs_readsb
754 *
755 * Does the initial read of the superblock.
756 */
757 int
758 xfs_readsb(xfs_mount_t *mp, int flags)
759 {
760 unsigned int sector_size;
761 struct xfs_buf *bp;
762 struct xfs_sb *sbp = &mp->m_sb;
763 int error;
764 int loud = !(flags & XFS_MFSI_QUIET);
765
766 ASSERT(mp->m_sb_bp == NULL);
767 ASSERT(mp->m_ddev_targp != NULL);
768
769 /*
770 * Allocate a (locked) buffer to hold the superblock.
771 * This will be kept around at all times to optimize
772 * access to the superblock.
773 */
774 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
775
776 reread:
777 bp = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
778 BTOBB(sector_size), 0,
779 loud ? &xfs_sb_buf_ops
780 : &xfs_sb_quiet_buf_ops);
781 if (!bp) {
782 if (loud)
783 xfs_warn(mp, "SB buffer read failed");
784 return EIO;
785 }
786 if (bp->b_error) {
787 error = bp->b_error;
788 if (loud)
789 xfs_warn(mp, "SB validate failed");
790 goto release_buf;
791 }
792
793 /*
794 * Initialize the mount structure from the superblock.
795 */
796 xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
797
798 /*
799 * We must be able to do sector-sized and sector-aligned IO.
800 */
801 if (sector_size > sbp->sb_sectsize) {
802 if (loud)
803 xfs_warn(mp, "device supports %u byte sectors (not %u)",
804 sector_size, sbp->sb_sectsize);
805 error = ENOSYS;
806 goto release_buf;
807 }
808
809 /*
810 * If device sector size is smaller than the superblock size,
811 * re-read the superblock so the buffer is correctly sized.
812 */
813 if (sector_size < sbp->sb_sectsize) {
814 xfs_buf_relse(bp);
815 sector_size = sbp->sb_sectsize;
816 goto reread;
817 }
818
819 /* Initialize per-cpu counters */
820 xfs_icsb_reinit_counters(mp);
821
822 /* no need to be quiet anymore, so reset the buf ops */
823 bp->b_ops = &xfs_sb_buf_ops;
824
825 mp->m_sb_bp = bp;
826 xfs_buf_unlock(bp);
827 return 0;
828
829 release_buf:
830 xfs_buf_relse(bp);
831 return error;
832 }
833
834
835 /*
836 * xfs_mount_common
837 *
838 * Mount initialization code establishing various mount
839 * fields from the superblock associated with the given
840 * mount structure
841 */
842 STATIC void
843 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
844 {
845 mp->m_agfrotor = mp->m_agirotor = 0;
846 spin_lock_init(&mp->m_agirotor_lock);
847 mp->m_maxagi = mp->m_sb.sb_agcount;
848 mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
849 mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
850 mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
851 mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
852 mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
853 mp->m_blockmask = sbp->sb_blocksize - 1;
854 mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
855 mp->m_blockwmask = mp->m_blockwsize - 1;
856
857 mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1);
858 mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0);
859 mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2;
860 mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2;
861
862 mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
863 mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
864 mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2;
865 mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2;
866
867 mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1);
868 mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0);
869 mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2;
870 mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2;
871
872 mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
873 mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
874 sbp->sb_inopblock);
875 mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
876 }
877
878 /*
879 * xfs_initialize_perag_data
880 *
881 * Read in each per-ag structure so we can count up the number of
882 * allocated inodes, free inodes and used filesystem blocks as this
883 * information is no longer persistent in the superblock. Once we have
884 * this information, write it into the in-core superblock structure.
885 */
886 STATIC int
887 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
888 {
889 xfs_agnumber_t index;
890 xfs_perag_t *pag;
891 xfs_sb_t *sbp = &mp->m_sb;
892 uint64_t ifree = 0;
893 uint64_t ialloc = 0;
894 uint64_t bfree = 0;
895 uint64_t bfreelst = 0;
896 uint64_t btree = 0;
897 int error;
898
899 for (index = 0; index < agcount; index++) {
900 /*
901 * read the agf, then the agi. This gets us
902 * all the information we need and populates the
903 * per-ag structures for us.
904 */
905 error = xfs_alloc_pagf_init(mp, NULL, index, 0);
906 if (error)
907 return error;
908
909 error = xfs_ialloc_pagi_init(mp, NULL, index);
910 if (error)
911 return error;
912 pag = xfs_perag_get(mp, index);
913 ifree += pag->pagi_freecount;
914 ialloc += pag->pagi_count;
915 bfree += pag->pagf_freeblks;
916 bfreelst += pag->pagf_flcount;
917 btree += pag->pagf_btreeblks;
918 xfs_perag_put(pag);
919 }
920 /*
921 * Overwrite incore superblock counters with just-read data
922 */
923 spin_lock(&mp->m_sb_lock);
924 sbp->sb_ifree = ifree;
925 sbp->sb_icount = ialloc;
926 sbp->sb_fdblocks = bfree + bfreelst + btree;
927 spin_unlock(&mp->m_sb_lock);
928
929 /* Fixup the per-cpu counters as well. */
930 xfs_icsb_reinit_counters(mp);
931
932 return 0;
933 }
934
935 /*
936 * Update alignment values based on mount options and sb values
937 */
938 STATIC int
939 xfs_update_alignment(xfs_mount_t *mp)
940 {
941 xfs_sb_t *sbp = &(mp->m_sb);
942
943 if (mp->m_dalign) {
944 /*
945 * If stripe unit and stripe width are not multiples
946 * of the fs blocksize turn off alignment.
947 */
948 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
949 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
950 if (mp->m_flags & XFS_MOUNT_RETERR) {
951 xfs_warn(mp, "alignment check failed: "
952 "(sunit/swidth vs. blocksize)");
953 return XFS_ERROR(EINVAL);
954 }
955 mp->m_dalign = mp->m_swidth = 0;
956 } else {
957 /*
958 * Convert the stripe unit and width to FSBs.
959 */
960 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
961 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
962 if (mp->m_flags & XFS_MOUNT_RETERR) {
963 xfs_warn(mp, "alignment check failed: "
964 "(sunit/swidth vs. ag size)");
965 return XFS_ERROR(EINVAL);
966 }
967 xfs_warn(mp,
968 "stripe alignment turned off: sunit(%d)/swidth(%d) "
969 "incompatible with agsize(%d)",
970 mp->m_dalign, mp->m_swidth,
971 sbp->sb_agblocks);
972
973 mp->m_dalign = 0;
974 mp->m_swidth = 0;
975 } else if (mp->m_dalign) {
976 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
977 } else {
978 if (mp->m_flags & XFS_MOUNT_RETERR) {
979 xfs_warn(mp, "alignment check failed: "
980 "sunit(%d) less than bsize(%d)",
981 mp->m_dalign,
982 mp->m_blockmask +1);
983 return XFS_ERROR(EINVAL);
984 }
985 mp->m_swidth = 0;
986 }
987 }
988
989 /*
990 * Update superblock with new values
991 * and log changes
992 */
993 if (xfs_sb_version_hasdalign(sbp)) {
994 if (sbp->sb_unit != mp->m_dalign) {
995 sbp->sb_unit = mp->m_dalign;
996 mp->m_update_flags |= XFS_SB_UNIT;
997 }
998 if (sbp->sb_width != mp->m_swidth) {
999 sbp->sb_width = mp->m_swidth;
1000 mp->m_update_flags |= XFS_SB_WIDTH;
1001 }
1002 }
1003 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
1004 xfs_sb_version_hasdalign(&mp->m_sb)) {
1005 mp->m_dalign = sbp->sb_unit;
1006 mp->m_swidth = sbp->sb_width;
1007 }
1008
1009 return 0;
1010 }
1011
1012 /*
1013 * Set the maximum inode count for this filesystem
1014 */
1015 STATIC void
1016 xfs_set_maxicount(xfs_mount_t *mp)
1017 {
1018 xfs_sb_t *sbp = &(mp->m_sb);
1019 __uint64_t icount;
1020
1021 if (sbp->sb_imax_pct) {
1022 /*
1023 * Make sure the maximum inode count is a multiple
1024 * of the units we allocate inodes in.
1025 */
1026 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
1027 do_div(icount, 100);
1028 do_div(icount, mp->m_ialloc_blks);
1029 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
1030 sbp->sb_inopblog;
1031 } else {
1032 mp->m_maxicount = 0;
1033 }
1034 }
1035
1036 /*
1037 * Set the default minimum read and write sizes unless
1038 * already specified in a mount option.
1039 * We use smaller I/O sizes when the file system
1040 * is being used for NFS service (wsync mount option).
1041 */
1042 STATIC void
1043 xfs_set_rw_sizes(xfs_mount_t *mp)
1044 {
1045 xfs_sb_t *sbp = &(mp->m_sb);
1046 int readio_log, writeio_log;
1047
1048 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
1049 if (mp->m_flags & XFS_MOUNT_WSYNC) {
1050 readio_log = XFS_WSYNC_READIO_LOG;
1051 writeio_log = XFS_WSYNC_WRITEIO_LOG;
1052 } else {
1053 readio_log = XFS_READIO_LOG_LARGE;
1054 writeio_log = XFS_WRITEIO_LOG_LARGE;
1055 }
1056 } else {
1057 readio_log = mp->m_readio_log;
1058 writeio_log = mp->m_writeio_log;
1059 }
1060
1061 if (sbp->sb_blocklog > readio_log) {
1062 mp->m_readio_log = sbp->sb_blocklog;
1063 } else {
1064 mp->m_readio_log = readio_log;
1065 }
1066 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
1067 if (sbp->sb_blocklog > writeio_log) {
1068 mp->m_writeio_log = sbp->sb_blocklog;
1069 } else {
1070 mp->m_writeio_log = writeio_log;
1071 }
1072 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
1073 }
1074
1075 /*
1076 * precalculate the low space thresholds for dynamic speculative preallocation.
1077 */
1078 void
1079 xfs_set_low_space_thresholds(
1080 struct xfs_mount *mp)
1081 {
1082 int i;
1083
1084 for (i = 0; i < XFS_LOWSP_MAX; i++) {
1085 __uint64_t space = mp->m_sb.sb_dblocks;
1086
1087 do_div(space, 100);
1088 mp->m_low_space[i] = space * (i + 1);
1089 }
1090 }
1091
1092
1093 /*
1094 * Set whether we're using inode alignment.
1095 */
1096 STATIC void
1097 xfs_set_inoalignment(xfs_mount_t *mp)
1098 {
1099 if (xfs_sb_version_hasalign(&mp->m_sb) &&
1100 mp->m_sb.sb_inoalignmt >=
1101 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
1102 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
1103 else
1104 mp->m_inoalign_mask = 0;
1105 /*
1106 * If we are using stripe alignment, check whether
1107 * the stripe unit is a multiple of the inode alignment
1108 */
1109 if (mp->m_dalign && mp->m_inoalign_mask &&
1110 !(mp->m_dalign & mp->m_inoalign_mask))
1111 mp->m_sinoalign = mp->m_dalign;
1112 else
1113 mp->m_sinoalign = 0;
1114 }
1115
1116 /*
1117 * Check that the data (and log if separate) are an ok size.
1118 */
1119 STATIC int
1120 xfs_check_sizes(xfs_mount_t *mp)
1121 {
1122 xfs_buf_t *bp;
1123 xfs_daddr_t d;
1124
1125 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
1126 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
1127 xfs_warn(mp, "filesystem size mismatch detected");
1128 return XFS_ERROR(EFBIG);
1129 }
1130 bp = xfs_buf_read_uncached(mp->m_ddev_targp,
1131 d - XFS_FSS_TO_BB(mp, 1),
1132 XFS_FSS_TO_BB(mp, 1), 0, NULL);
1133 if (!bp) {
1134 xfs_warn(mp, "last sector read failed");
1135 return EIO;
1136 }
1137 xfs_buf_relse(bp);
1138
1139 if (mp->m_logdev_targp != mp->m_ddev_targp) {
1140 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
1141 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
1142 xfs_warn(mp, "log size mismatch detected");
1143 return XFS_ERROR(EFBIG);
1144 }
1145 bp = xfs_buf_read_uncached(mp->m_logdev_targp,
1146 d - XFS_FSB_TO_BB(mp, 1),
1147 XFS_FSB_TO_BB(mp, 1), 0, NULL);
1148 if (!bp) {
1149 xfs_warn(mp, "log device read failed");
1150 return EIO;
1151 }
1152 xfs_buf_relse(bp);
1153 }
1154 return 0;
1155 }
1156
1157 /*
1158 * Clear the quotaflags in memory and in the superblock.
1159 */
1160 int
1161 xfs_mount_reset_sbqflags(
1162 struct xfs_mount *mp)
1163 {
1164 int error;
1165 struct xfs_trans *tp;
1166
1167 mp->m_qflags = 0;
1168
1169 /*
1170 * It is OK to look at sb_qflags here in mount path,
1171 * without m_sb_lock.
1172 */
1173 if (mp->m_sb.sb_qflags == 0)
1174 return 0;
1175 spin_lock(&mp->m_sb_lock);
1176 mp->m_sb.sb_qflags = 0;
1177 spin_unlock(&mp->m_sb_lock);
1178
1179 /*
1180 * If the fs is readonly, let the incore superblock run
1181 * with quotas off but don't flush the update out to disk
1182 */
1183 if (mp->m_flags & XFS_MOUNT_RDONLY)
1184 return 0;
1185
1186 tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
1187 error = xfs_trans_reserve(tp, 0, XFS_QM_SBCHANGE_LOG_RES(mp),
1188 0, 0, XFS_DEFAULT_LOG_COUNT);
1189 if (error) {
1190 xfs_trans_cancel(tp, 0);
1191 xfs_alert(mp, "%s: Superblock update failed!", __func__);
1192 return error;
1193 }
1194
1195 xfs_mod_sb(tp, XFS_SB_QFLAGS);
1196 return xfs_trans_commit(tp, 0);
1197 }
1198
1199 __uint64_t
1200 xfs_default_resblks(xfs_mount_t *mp)
1201 {
1202 __uint64_t resblks;
1203
1204 /*
1205 * We default to 5% or 8192 fsbs of space reserved, whichever is
1206 * smaller. This is intended to cover concurrent allocation
1207 * transactions when we initially hit enospc. These each require a 4
1208 * block reservation. Hence by default we cover roughly 2000 concurrent
1209 * allocation reservations.
1210 */
1211 resblks = mp->m_sb.sb_dblocks;
1212 do_div(resblks, 20);
1213 resblks = min_t(__uint64_t, resblks, 8192);
1214 return resblks;
1215 }
1216
1217 /*
1218 * This function does the following on an initial mount of a file system:
1219 * - reads the superblock from disk and init the mount struct
1220 * - if we're a 32-bit kernel, do a size check on the superblock
1221 * so we don't mount terabyte filesystems
1222 * - init mount struct realtime fields
1223 * - allocate inode hash table for fs
1224 * - init directory manager
1225 * - perform recovery and init the log manager
1226 */
1227 int
1228 xfs_mountfs(
1229 xfs_mount_t *mp)
1230 {
1231 xfs_sb_t *sbp = &(mp->m_sb);
1232 xfs_inode_t *rip;
1233 __uint64_t resblks;
1234 uint quotamount = 0;
1235 uint quotaflags = 0;
1236 int error = 0;
1237
1238 xfs_mount_common(mp, sbp);
1239
1240 /*
1241 * Check for a mismatched features2 values. Older kernels
1242 * read & wrote into the wrong sb offset for sb_features2
1243 * on some platforms due to xfs_sb_t not being 64bit size aligned
1244 * when sb_features2 was added, which made older superblock
1245 * reading/writing routines swap it as a 64-bit value.
1246 *
1247 * For backwards compatibility, we make both slots equal.
1248 *
1249 * If we detect a mismatched field, we OR the set bits into the
1250 * existing features2 field in case it has already been modified; we
1251 * don't want to lose any features. We then update the bad location
1252 * with the ORed value so that older kernels will see any features2
1253 * flags, and mark the two fields as needing updates once the
1254 * transaction subsystem is online.
1255 */
1256 if (xfs_sb_has_mismatched_features2(sbp)) {
1257 xfs_warn(mp, "correcting sb_features alignment problem");
1258 sbp->sb_features2 |= sbp->sb_bad_features2;
1259 sbp->sb_bad_features2 = sbp->sb_features2;
1260 mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
1261
1262 /*
1263 * Re-check for ATTR2 in case it was found in bad_features2
1264 * slot.
1265 */
1266 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1267 !(mp->m_flags & XFS_MOUNT_NOATTR2))
1268 mp->m_flags |= XFS_MOUNT_ATTR2;
1269 }
1270
1271 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1272 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
1273 xfs_sb_version_removeattr2(&mp->m_sb);
1274 mp->m_update_flags |= XFS_SB_FEATURES2;
1275
1276 /* update sb_versionnum for the clearing of the morebits */
1277 if (!sbp->sb_features2)
1278 mp->m_update_flags |= XFS_SB_VERSIONNUM;
1279 }
1280
1281 /*
1282 * Check if sb_agblocks is aligned at stripe boundary
1283 * If sb_agblocks is NOT aligned turn off m_dalign since
1284 * allocator alignment is within an ag, therefore ag has
1285 * to be aligned at stripe boundary.
1286 */
1287 error = xfs_update_alignment(mp);
1288 if (error)
1289 goto out;
1290
1291 xfs_alloc_compute_maxlevels(mp);
1292 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
1293 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
1294 xfs_ialloc_compute_maxlevels(mp);
1295
1296 xfs_set_maxicount(mp);
1297
1298 error = xfs_uuid_mount(mp);
1299 if (error)
1300 goto out;
1301
1302 /*
1303 * Set the minimum read and write sizes
1304 */
1305 xfs_set_rw_sizes(mp);
1306
1307 /* set the low space thresholds for dynamic preallocation */
1308 xfs_set_low_space_thresholds(mp);
1309
1310 /*
1311 * Set the inode cluster size.
1312 * This may still be overridden by the file system
1313 * block size if it is larger than the chosen cluster size.
1314 */
1315 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
1316
1317 /*
1318 * Set inode alignment fields
1319 */
1320 xfs_set_inoalignment(mp);
1321
1322 /*
1323 * Check that the data (and log if separate) are an ok size.
1324 */
1325 error = xfs_check_sizes(mp);
1326 if (error)
1327 goto out_remove_uuid;
1328
1329 /*
1330 * Initialize realtime fields in the mount structure
1331 */
1332 error = xfs_rtmount_init(mp);
1333 if (error) {
1334 xfs_warn(mp, "RT mount failed");
1335 goto out_remove_uuid;
1336 }
1337
1338 /*
1339 * Copies the low order bits of the timestamp and the randomly
1340 * set "sequence" number out of a UUID.
1341 */
1342 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
1343
1344 mp->m_dmevmask = 0; /* not persistent; set after each mount */
1345
1346 xfs_dir_mount(mp);
1347
1348 /*
1349 * Initialize the attribute manager's entries.
1350 */
1351 mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
1352
1353 /*
1354 * Initialize the precomputed transaction reservations values.
1355 */
1356 xfs_trans_init(mp);
1357
1358 /*
1359 * Allocate and initialize the per-ag data.
1360 */
1361 spin_lock_init(&mp->m_perag_lock);
1362 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
1363 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
1364 if (error) {
1365 xfs_warn(mp, "Failed per-ag init: %d", error);
1366 goto out_remove_uuid;
1367 }
1368
1369 if (!sbp->sb_logblocks) {
1370 xfs_warn(mp, "no log defined");
1371 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
1372 error = XFS_ERROR(EFSCORRUPTED);
1373 goto out_free_perag;
1374 }
1375
1376 /*
1377 * log's mount-time initialization. Perform 1st part recovery if needed
1378 */
1379 error = xfs_log_mount(mp, mp->m_logdev_targp,
1380 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1381 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1382 if (error) {
1383 xfs_warn(mp, "log mount failed");
1384 goto out_fail_wait;
1385 }
1386
1387 /*
1388 * Now the log is mounted, we know if it was an unclean shutdown or
1389 * not. If it was, with the first phase of recovery has completed, we
1390 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1391 * but they are recovered transactionally in the second recovery phase
1392 * later.
1393 *
1394 * Hence we can safely re-initialise incore superblock counters from
1395 * the per-ag data. These may not be correct if the filesystem was not
1396 * cleanly unmounted, so we need to wait for recovery to finish before
1397 * doing this.
1398 *
1399 * If the filesystem was cleanly unmounted, then we can trust the
1400 * values in the superblock to be correct and we don't need to do
1401 * anything here.
1402 *
1403 * If we are currently making the filesystem, the initialisation will
1404 * fail as the perag data is in an undefined state.
1405 */
1406 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
1407 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
1408 !mp->m_sb.sb_inprogress) {
1409 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
1410 if (error)
1411 goto out_fail_wait;
1412 }
1413
1414 /*
1415 * Get and sanity-check the root inode.
1416 * Save the pointer to it in the mount structure.
1417 */
1418 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
1419 if (error) {
1420 xfs_warn(mp, "failed to read root inode");
1421 goto out_log_dealloc;
1422 }
1423
1424 ASSERT(rip != NULL);
1425
1426 if (unlikely(!S_ISDIR(rip->i_d.di_mode))) {
1427 xfs_warn(mp, "corrupted root inode %llu: not a directory",
1428 (unsigned long long)rip->i_ino);
1429 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1430 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
1431 mp);
1432 error = XFS_ERROR(EFSCORRUPTED);
1433 goto out_rele_rip;
1434 }
1435 mp->m_rootip = rip; /* save it */
1436
1437 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1438
1439 /*
1440 * Initialize realtime inode pointers in the mount structure
1441 */
1442 error = xfs_rtmount_inodes(mp);
1443 if (error) {
1444 /*
1445 * Free up the root inode.
1446 */
1447 xfs_warn(mp, "failed to read RT inodes");
1448 goto out_rele_rip;
1449 }
1450
1451 /*
1452 * If this is a read-only mount defer the superblock updates until
1453 * the next remount into writeable mode. Otherwise we would never
1454 * perform the update e.g. for the root filesystem.
1455 */
1456 if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
1457 error = xfs_mount_log_sb(mp, mp->m_update_flags);
1458 if (error) {
1459 xfs_warn(mp, "failed to write sb changes");
1460 goto out_rtunmount;
1461 }
1462 }
1463
1464 /*
1465 * Initialise the XFS quota management subsystem for this mount
1466 */
1467 if (XFS_IS_QUOTA_RUNNING(mp)) {
1468 error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
1469 if (error)
1470 goto out_rtunmount;
1471 } else {
1472 ASSERT(!XFS_IS_QUOTA_ON(mp));
1473
1474 /*
1475 * If a file system had quotas running earlier, but decided to
1476 * mount without -o uquota/pquota/gquota options, revoke the
1477 * quotachecked license.
1478 */
1479 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
1480 xfs_notice(mp, "resetting quota flags");
1481 error = xfs_mount_reset_sbqflags(mp);
1482 if (error)
1483 return error;
1484 }
1485 }
1486
1487 /*
1488 * Finish recovering the file system. This part needed to be
1489 * delayed until after the root and real-time bitmap inodes
1490 * were consistently read in.
1491 */
1492 error = xfs_log_mount_finish(mp);
1493 if (error) {
1494 xfs_warn(mp, "log mount finish failed");
1495 goto out_rtunmount;
1496 }
1497
1498 /*
1499 * Complete the quota initialisation, post-log-replay component.
1500 */
1501 if (quotamount) {
1502 ASSERT(mp->m_qflags == 0);
1503 mp->m_qflags = quotaflags;
1504
1505 xfs_qm_mount_quotas(mp);
1506 }
1507
1508 /*
1509 * Now we are mounted, reserve a small amount of unused space for
1510 * privileged transactions. This is needed so that transaction
1511 * space required for critical operations can dip into this pool
1512 * when at ENOSPC. This is needed for operations like create with
1513 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1514 * are not allowed to use this reserved space.
1515 *
1516 * This may drive us straight to ENOSPC on mount, but that implies
1517 * we were already there on the last unmount. Warn if this occurs.
1518 */
1519 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
1520 resblks = xfs_default_resblks(mp);
1521 error = xfs_reserve_blocks(mp, &resblks, NULL);
1522 if (error)
1523 xfs_warn(mp,
1524 "Unable to allocate reserve blocks. Continuing without reserve pool.");
1525 }
1526
1527 return 0;
1528
1529 out_rtunmount:
1530 xfs_rtunmount_inodes(mp);
1531 out_rele_rip:
1532 IRELE(rip);
1533 out_log_dealloc:
1534 xfs_log_unmount(mp);
1535 out_fail_wait:
1536 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1537 xfs_wait_buftarg(mp->m_logdev_targp);
1538 xfs_wait_buftarg(mp->m_ddev_targp);
1539 out_free_perag:
1540 xfs_free_perag(mp);
1541 out_remove_uuid:
1542 xfs_uuid_unmount(mp);
1543 out:
1544 return error;
1545 }
1546
1547 /*
1548 * This flushes out the inodes,dquots and the superblock, unmounts the
1549 * log and makes sure that incore structures are freed.
1550 */
1551 void
1552 xfs_unmountfs(
1553 struct xfs_mount *mp)
1554 {
1555 __uint64_t resblks;
1556 int error;
1557
1558 cancel_delayed_work_sync(&mp->m_eofblocks_work);
1559
1560 xfs_qm_unmount_quotas(mp);
1561 xfs_rtunmount_inodes(mp);
1562 IRELE(mp->m_rootip);
1563
1564 /*
1565 * We can potentially deadlock here if we have an inode cluster
1566 * that has been freed has its buffer still pinned in memory because
1567 * the transaction is still sitting in a iclog. The stale inodes
1568 * on that buffer will have their flush locks held until the
1569 * transaction hits the disk and the callbacks run. the inode
1570 * flush takes the flush lock unconditionally and with nothing to
1571 * push out the iclog we will never get that unlocked. hence we
1572 * need to force the log first.
1573 */
1574 xfs_log_force(mp, XFS_LOG_SYNC);
1575
1576 /*
1577 * Flush all pending changes from the AIL.
1578 */
1579 xfs_ail_push_all_sync(mp->m_ail);
1580
1581 /*
1582 * And reclaim all inodes. At this point there should be no dirty
1583 * inodes and none should be pinned or locked, but use synchronous
1584 * reclaim just to be sure. We can stop background inode reclaim
1585 * here as well if it is still running.
1586 */
1587 cancel_delayed_work_sync(&mp->m_reclaim_work);
1588 xfs_reclaim_inodes(mp, SYNC_WAIT);
1589
1590 xfs_qm_unmount(mp);
1591
1592 /*
1593 * Unreserve any blocks we have so that when we unmount we don't account
1594 * the reserved free space as used. This is really only necessary for
1595 * lazy superblock counting because it trusts the incore superblock
1596 * counters to be absolutely correct on clean unmount.
1597 *
1598 * We don't bother correcting this elsewhere for lazy superblock
1599 * counting because on mount of an unclean filesystem we reconstruct the
1600 * correct counter value and this is irrelevant.
1601 *
1602 * For non-lazy counter filesystems, this doesn't matter at all because
1603 * we only every apply deltas to the superblock and hence the incore
1604 * value does not matter....
1605 */
1606 resblks = 0;
1607 error = xfs_reserve_blocks(mp, &resblks, NULL);
1608 if (error)
1609 xfs_warn(mp, "Unable to free reserved block pool. "
1610 "Freespace may not be correct on next mount.");
1611
1612 error = xfs_log_sbcount(mp);
1613 if (error)
1614 xfs_warn(mp, "Unable to update superblock counters. "
1615 "Freespace may not be correct on next mount.");
1616
1617 xfs_log_unmount(mp);
1618 xfs_uuid_unmount(mp);
1619
1620 #if defined(DEBUG)
1621 xfs_errortag_clearall(mp, 0);
1622 #endif
1623 xfs_free_perag(mp);
1624 }
1625
1626 int
1627 xfs_fs_writable(xfs_mount_t *mp)
1628 {
1629 return !(mp->m_super->s_writers.frozen || XFS_FORCED_SHUTDOWN(mp) ||
1630 (mp->m_flags & XFS_MOUNT_RDONLY));
1631 }
1632
1633 /*
1634 * xfs_log_sbcount
1635 *
1636 * Sync the superblock counters to disk.
1637 *
1638 * Note this code can be called during the process of freezing, so
1639 * we may need to use the transaction allocator which does not
1640 * block when the transaction subsystem is in its frozen state.
1641 */
1642 int
1643 xfs_log_sbcount(xfs_mount_t *mp)
1644 {
1645 xfs_trans_t *tp;
1646 int error;
1647
1648 if (!xfs_fs_writable(mp))
1649 return 0;
1650
1651 xfs_icsb_sync_counters(mp, 0);
1652
1653 /*
1654 * we don't need to do this if we are updating the superblock
1655 * counters on every modification.
1656 */
1657 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1658 return 0;
1659
1660 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
1661 error = xfs_trans_reserve(tp, 0, XFS_SB_LOG_RES(mp), 0, 0,
1662 XFS_DEFAULT_LOG_COUNT);
1663 if (error) {
1664 xfs_trans_cancel(tp, 0);
1665 return error;
1666 }
1667
1668 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1669 xfs_trans_set_sync(tp);
1670 error = xfs_trans_commit(tp, 0);
1671 return error;
1672 }
1673
1674 /*
1675 * xfs_mod_sb() can be used to copy arbitrary changes to the
1676 * in-core superblock into the superblock buffer to be logged.
1677 * It does not provide the higher level of locking that is
1678 * needed to protect the in-core superblock from concurrent
1679 * access.
1680 */
1681 void
1682 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
1683 {
1684 xfs_buf_t *bp;
1685 int first;
1686 int last;
1687 xfs_mount_t *mp;
1688 xfs_sb_field_t f;
1689
1690 ASSERT(fields);
1691 if (!fields)
1692 return;
1693 mp = tp->t_mountp;
1694 bp = xfs_trans_getsb(tp, mp, 0);
1695 first = sizeof(xfs_sb_t);
1696 last = 0;
1697
1698 /* translate/copy */
1699
1700 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields);
1701
1702 /* find modified range */
1703 f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
1704 ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1705 last = xfs_sb_info[f + 1].offset - 1;
1706
1707 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
1708 ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1709 first = xfs_sb_info[f].offset;
1710
1711 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_SB_BUF);
1712 xfs_trans_log_buf(tp, bp, first, last);
1713 }
1714
1715
1716 /*
1717 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1718 * a delta to a specified field in the in-core superblock. Simply
1719 * switch on the field indicated and apply the delta to that field.
1720 * Fields are not allowed to dip below zero, so if the delta would
1721 * do this do not apply it and return EINVAL.
1722 *
1723 * The m_sb_lock must be held when this routine is called.
1724 */
1725 STATIC int
1726 xfs_mod_incore_sb_unlocked(
1727 xfs_mount_t *mp,
1728 xfs_sb_field_t field,
1729 int64_t delta,
1730 int rsvd)
1731 {
1732 int scounter; /* short counter for 32 bit fields */
1733 long long lcounter; /* long counter for 64 bit fields */
1734 long long res_used, rem;
1735
1736 /*
1737 * With the in-core superblock spin lock held, switch
1738 * on the indicated field. Apply the delta to the
1739 * proper field. If the fields value would dip below
1740 * 0, then do not apply the delta and return EINVAL.
1741 */
1742 switch (field) {
1743 case XFS_SBS_ICOUNT:
1744 lcounter = (long long)mp->m_sb.sb_icount;
1745 lcounter += delta;
1746 if (lcounter < 0) {
1747 ASSERT(0);
1748 return XFS_ERROR(EINVAL);
1749 }
1750 mp->m_sb.sb_icount = lcounter;
1751 return 0;
1752 case XFS_SBS_IFREE:
1753 lcounter = (long long)mp->m_sb.sb_ifree;
1754 lcounter += delta;
1755 if (lcounter < 0) {
1756 ASSERT(0);
1757 return XFS_ERROR(EINVAL);
1758 }
1759 mp->m_sb.sb_ifree = lcounter;
1760 return 0;
1761 case XFS_SBS_FDBLOCKS:
1762 lcounter = (long long)
1763 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1764 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1765
1766 if (delta > 0) { /* Putting blocks back */
1767 if (res_used > delta) {
1768 mp->m_resblks_avail += delta;
1769 } else {
1770 rem = delta - res_used;
1771 mp->m_resblks_avail = mp->m_resblks;
1772 lcounter += rem;
1773 }
1774 } else { /* Taking blocks away */
1775 lcounter += delta;
1776 if (lcounter >= 0) {
1777 mp->m_sb.sb_fdblocks = lcounter +
1778 XFS_ALLOC_SET_ASIDE(mp);
1779 return 0;
1780 }
1781
1782 /*
1783 * We are out of blocks, use any available reserved
1784 * blocks if were allowed to.
1785 */
1786 if (!rsvd)
1787 return XFS_ERROR(ENOSPC);
1788
1789 lcounter = (long long)mp->m_resblks_avail + delta;
1790 if (lcounter >= 0) {
1791 mp->m_resblks_avail = lcounter;
1792 return 0;
1793 }
1794 printk_once(KERN_WARNING
1795 "Filesystem \"%s\": reserve blocks depleted! "
1796 "Consider increasing reserve pool size.",
1797 mp->m_fsname);
1798 return XFS_ERROR(ENOSPC);
1799 }
1800
1801 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1802 return 0;
1803 case XFS_SBS_FREXTENTS:
1804 lcounter = (long long)mp->m_sb.sb_frextents;
1805 lcounter += delta;
1806 if (lcounter < 0) {
1807 return XFS_ERROR(ENOSPC);
1808 }
1809 mp->m_sb.sb_frextents = lcounter;
1810 return 0;
1811 case XFS_SBS_DBLOCKS:
1812 lcounter = (long long)mp->m_sb.sb_dblocks;
1813 lcounter += delta;
1814 if (lcounter < 0) {
1815 ASSERT(0);
1816 return XFS_ERROR(EINVAL);
1817 }
1818 mp->m_sb.sb_dblocks = lcounter;
1819 return 0;
1820 case XFS_SBS_AGCOUNT:
1821 scounter = mp->m_sb.sb_agcount;
1822 scounter += delta;
1823 if (scounter < 0) {
1824 ASSERT(0);
1825 return XFS_ERROR(EINVAL);
1826 }
1827 mp->m_sb.sb_agcount = scounter;
1828 return 0;
1829 case XFS_SBS_IMAX_PCT:
1830 scounter = mp->m_sb.sb_imax_pct;
1831 scounter += delta;
1832 if (scounter < 0) {
1833 ASSERT(0);
1834 return XFS_ERROR(EINVAL);
1835 }
1836 mp->m_sb.sb_imax_pct = scounter;
1837 return 0;
1838 case XFS_SBS_REXTSIZE:
1839 scounter = mp->m_sb.sb_rextsize;
1840 scounter += delta;
1841 if (scounter < 0) {
1842 ASSERT(0);
1843 return XFS_ERROR(EINVAL);
1844 }
1845 mp->m_sb.sb_rextsize = scounter;
1846 return 0;
1847 case XFS_SBS_RBMBLOCKS:
1848 scounter = mp->m_sb.sb_rbmblocks;
1849 scounter += delta;
1850 if (scounter < 0) {
1851 ASSERT(0);
1852 return XFS_ERROR(EINVAL);
1853 }
1854 mp->m_sb.sb_rbmblocks = scounter;
1855 return 0;
1856 case XFS_SBS_RBLOCKS:
1857 lcounter = (long long)mp->m_sb.sb_rblocks;
1858 lcounter += delta;
1859 if (lcounter < 0) {
1860 ASSERT(0);
1861 return XFS_ERROR(EINVAL);
1862 }
1863 mp->m_sb.sb_rblocks = lcounter;
1864 return 0;
1865 case XFS_SBS_REXTENTS:
1866 lcounter = (long long)mp->m_sb.sb_rextents;
1867 lcounter += delta;
1868 if (lcounter < 0) {
1869 ASSERT(0);
1870 return XFS_ERROR(EINVAL);
1871 }
1872 mp->m_sb.sb_rextents = lcounter;
1873 return 0;
1874 case XFS_SBS_REXTSLOG:
1875 scounter = mp->m_sb.sb_rextslog;
1876 scounter += delta;
1877 if (scounter < 0) {
1878 ASSERT(0);
1879 return XFS_ERROR(EINVAL);
1880 }
1881 mp->m_sb.sb_rextslog = scounter;
1882 return 0;
1883 default:
1884 ASSERT(0);
1885 return XFS_ERROR(EINVAL);
1886 }
1887 }
1888
1889 /*
1890 * xfs_mod_incore_sb() is used to change a field in the in-core
1891 * superblock structure by the specified delta. This modification
1892 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked()
1893 * routine to do the work.
1894 */
1895 int
1896 xfs_mod_incore_sb(
1897 struct xfs_mount *mp,
1898 xfs_sb_field_t field,
1899 int64_t delta,
1900 int rsvd)
1901 {
1902 int status;
1903
1904 #ifdef HAVE_PERCPU_SB
1905 ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS);
1906 #endif
1907 spin_lock(&mp->m_sb_lock);
1908 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1909 spin_unlock(&mp->m_sb_lock);
1910
1911 return status;
1912 }
1913
1914 /*
1915 * Change more than one field in the in-core superblock structure at a time.
1916 *
1917 * The fields and changes to those fields are specified in the array of
1918 * xfs_mod_sb structures passed in. Either all of the specified deltas
1919 * will be applied or none of them will. If any modified field dips below 0,
1920 * then all modifications will be backed out and EINVAL will be returned.
1921 *
1922 * Note that this function may not be used for the superblock values that
1923 * are tracked with the in-memory per-cpu counters - a direct call to
1924 * xfs_icsb_modify_counters is required for these.
1925 */
1926 int
1927 xfs_mod_incore_sb_batch(
1928 struct xfs_mount *mp,
1929 xfs_mod_sb_t *msb,
1930 uint nmsb,
1931 int rsvd)
1932 {
1933 xfs_mod_sb_t *msbp;
1934 int error = 0;
1935
1936 /*
1937 * Loop through the array of mod structures and apply each individually.
1938 * If any fail, then back out all those which have already been applied.
1939 * Do all of this within the scope of the m_sb_lock so that all of the
1940 * changes will be atomic.
1941 */
1942 spin_lock(&mp->m_sb_lock);
1943 for (msbp = msb; msbp < (msb + nmsb); msbp++) {
1944 ASSERT(msbp->msb_field < XFS_SBS_ICOUNT ||
1945 msbp->msb_field > XFS_SBS_FDBLOCKS);
1946
1947 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1948 msbp->msb_delta, rsvd);
1949 if (error)
1950 goto unwind;
1951 }
1952 spin_unlock(&mp->m_sb_lock);
1953 return 0;
1954
1955 unwind:
1956 while (--msbp >= msb) {
1957 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1958 -msbp->msb_delta, rsvd);
1959 ASSERT(error == 0);
1960 }
1961 spin_unlock(&mp->m_sb_lock);
1962 return error;
1963 }
1964
1965 /*
1966 * xfs_getsb() is called to obtain the buffer for the superblock.
1967 * The buffer is returned locked and read in from disk.
1968 * The buffer should be released with a call to xfs_brelse().
1969 *
1970 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1971 * the superblock buffer if it can be locked without sleeping.
1972 * If it can't then we'll return NULL.
1973 */
1974 struct xfs_buf *
1975 xfs_getsb(
1976 struct xfs_mount *mp,
1977 int flags)
1978 {
1979 struct xfs_buf *bp = mp->m_sb_bp;
1980
1981 if (!xfs_buf_trylock(bp)) {
1982 if (flags & XBF_TRYLOCK)
1983 return NULL;
1984 xfs_buf_lock(bp);
1985 }
1986
1987 xfs_buf_hold(bp);
1988 ASSERT(XFS_BUF_ISDONE(bp));
1989 return bp;
1990 }
1991
1992 /*
1993 * Used to free the superblock along various error paths.
1994 */
1995 void
1996 xfs_freesb(
1997 struct xfs_mount *mp)
1998 {
1999 struct xfs_buf *bp = mp->m_sb_bp;
2000
2001 xfs_buf_lock(bp);
2002 mp->m_sb_bp = NULL;
2003 xfs_buf_relse(bp);
2004 }
2005
2006 /*
2007 * Used to log changes to the superblock unit and width fields which could
2008 * be altered by the mount options, as well as any potential sb_features2
2009 * fixup. Only the first superblock is updated.
2010 */
2011 int
2012 xfs_mount_log_sb(
2013 xfs_mount_t *mp,
2014 __int64_t fields)
2015 {
2016 xfs_trans_t *tp;
2017 int error;
2018
2019 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
2020 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
2021 XFS_SB_VERSIONNUM));
2022
2023 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
2024 error = xfs_trans_reserve(tp, 0, XFS_SB_LOG_RES(mp), 0, 0,
2025 XFS_DEFAULT_LOG_COUNT);
2026 if (error) {
2027 xfs_trans_cancel(tp, 0);
2028 return error;
2029 }
2030 xfs_mod_sb(tp, fields);
2031 error = xfs_trans_commit(tp, 0);
2032 return error;
2033 }
2034
2035 /*
2036 * If the underlying (data/log/rt) device is readonly, there are some
2037 * operations that cannot proceed.
2038 */
2039 int
2040 xfs_dev_is_read_only(
2041 struct xfs_mount *mp,
2042 char *message)
2043 {
2044 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
2045 xfs_readonly_buftarg(mp->m_logdev_targp) ||
2046 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
2047 xfs_notice(mp, "%s required on read-only device.", message);
2048 xfs_notice(mp, "write access unavailable, cannot proceed.");
2049 return EROFS;
2050 }
2051 return 0;
2052 }
2053
2054 #ifdef HAVE_PERCPU_SB
2055 /*
2056 * Per-cpu incore superblock counters
2057 *
2058 * Simple concept, difficult implementation
2059 *
2060 * Basically, replace the incore superblock counters with a distributed per cpu
2061 * counter for contended fields (e.g. free block count).
2062 *
2063 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
2064 * hence needs to be accurately read when we are running low on space. Hence
2065 * there is a method to enable and disable the per-cpu counters based on how
2066 * much "stuff" is available in them.
2067 *
2068 * Basically, a counter is enabled if there is enough free resource to justify
2069 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
2070 * ENOSPC), then we disable the counters to synchronise all callers and
2071 * re-distribute the available resources.
2072 *
2073 * If, once we redistributed the available resources, we still get a failure,
2074 * we disable the per-cpu counter and go through the slow path.
2075 *
2076 * The slow path is the current xfs_mod_incore_sb() function. This means that
2077 * when we disable a per-cpu counter, we need to drain its resources back to
2078 * the global superblock. We do this after disabling the counter to prevent
2079 * more threads from queueing up on the counter.
2080 *
2081 * Essentially, this means that we still need a lock in the fast path to enable
2082 * synchronisation between the global counters and the per-cpu counters. This
2083 * is not a problem because the lock will be local to a CPU almost all the time
2084 * and have little contention except when we get to ENOSPC conditions.
2085 *
2086 * Basically, this lock becomes a barrier that enables us to lock out the fast
2087 * path while we do things like enabling and disabling counters and
2088 * synchronising the counters.
2089 *
2090 * Locking rules:
2091 *
2092 * 1. m_sb_lock before picking up per-cpu locks
2093 * 2. per-cpu locks always picked up via for_each_online_cpu() order
2094 * 3. accurate counter sync requires m_sb_lock + per cpu locks
2095 * 4. modifying per-cpu counters requires holding per-cpu lock
2096 * 5. modifying global counters requires holding m_sb_lock
2097 * 6. enabling or disabling a counter requires holding the m_sb_lock
2098 * and _none_ of the per-cpu locks.
2099 *
2100 * Disabled counters are only ever re-enabled by a balance operation
2101 * that results in more free resources per CPU than a given threshold.
2102 * To ensure counters don't remain disabled, they are rebalanced when
2103 * the global resource goes above a higher threshold (i.e. some hysteresis
2104 * is present to prevent thrashing).
2105 */
2106
2107 #ifdef CONFIG_HOTPLUG_CPU
2108 /*
2109 * hot-plug CPU notifier support.
2110 *
2111 * We need a notifier per filesystem as we need to be able to identify
2112 * the filesystem to balance the counters out. This is achieved by
2113 * having a notifier block embedded in the xfs_mount_t and doing pointer
2114 * magic to get the mount pointer from the notifier block address.
2115 */
2116 STATIC int
2117 xfs_icsb_cpu_notify(
2118 struct notifier_block *nfb,
2119 unsigned long action,
2120 void *hcpu)
2121 {
2122 xfs_icsb_cnts_t *cntp;
2123 xfs_mount_t *mp;
2124
2125 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
2126 cntp = (xfs_icsb_cnts_t *)
2127 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
2128 switch (action) {
2129 case CPU_UP_PREPARE:
2130 case CPU_UP_PREPARE_FROZEN:
2131 /* Easy Case - initialize the area and locks, and
2132 * then rebalance when online does everything else for us. */
2133 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2134 break;
2135 case CPU_ONLINE:
2136 case CPU_ONLINE_FROZEN:
2137 xfs_icsb_lock(mp);
2138 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2139 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2140 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2141 xfs_icsb_unlock(mp);
2142 break;
2143 case CPU_DEAD:
2144 case CPU_DEAD_FROZEN:
2145 /* Disable all the counters, then fold the dead cpu's
2146 * count into the total on the global superblock and
2147 * re-enable the counters. */
2148 xfs_icsb_lock(mp);
2149 spin_lock(&mp->m_sb_lock);
2150 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
2151 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
2152 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
2153
2154 mp->m_sb.sb_icount += cntp->icsb_icount;
2155 mp->m_sb.sb_ifree += cntp->icsb_ifree;
2156 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
2157
2158 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2159
2160 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
2161 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
2162 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
2163 spin_unlock(&mp->m_sb_lock);
2164 xfs_icsb_unlock(mp);
2165 break;
2166 }
2167
2168 return NOTIFY_OK;
2169 }
2170 #endif /* CONFIG_HOTPLUG_CPU */
2171
2172 int
2173 xfs_icsb_init_counters(
2174 xfs_mount_t *mp)
2175 {
2176 xfs_icsb_cnts_t *cntp;
2177 int i;
2178
2179 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
2180 if (mp->m_sb_cnts == NULL)
2181 return -ENOMEM;
2182
2183 #ifdef CONFIG_HOTPLUG_CPU
2184 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
2185 mp->m_icsb_notifier.priority = 0;
2186 register_hotcpu_notifier(&mp->m_icsb_notifier);
2187 #endif /* CONFIG_HOTPLUG_CPU */
2188
2189 for_each_online_cpu(i) {
2190 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2191 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2192 }
2193
2194 mutex_init(&mp->m_icsb_mutex);
2195
2196 /*
2197 * start with all counters disabled so that the
2198 * initial balance kicks us off correctly
2199 */
2200 mp->m_icsb_counters = -1;
2201 return 0;
2202 }
2203
2204 void
2205 xfs_icsb_reinit_counters(
2206 xfs_mount_t *mp)
2207 {
2208 xfs_icsb_lock(mp);
2209 /*
2210 * start with all counters disabled so that the
2211 * initial balance kicks us off correctly
2212 */
2213 mp->m_icsb_counters = -1;
2214 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2215 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2216 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2217 xfs_icsb_unlock(mp);
2218 }
2219
2220 void
2221 xfs_icsb_destroy_counters(
2222 xfs_mount_t *mp)
2223 {
2224 if (mp->m_sb_cnts) {
2225 unregister_hotcpu_notifier(&mp->m_icsb_notifier);
2226 free_percpu(mp->m_sb_cnts);
2227 }
2228 mutex_destroy(&mp->m_icsb_mutex);
2229 }
2230
2231 STATIC void
2232 xfs_icsb_lock_cntr(
2233 xfs_icsb_cnts_t *icsbp)
2234 {
2235 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
2236 ndelay(1000);
2237 }
2238 }
2239
2240 STATIC void
2241 xfs_icsb_unlock_cntr(
2242 xfs_icsb_cnts_t *icsbp)
2243 {
2244 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
2245 }
2246
2247
2248 STATIC void
2249 xfs_icsb_lock_all_counters(
2250 xfs_mount_t *mp)
2251 {
2252 xfs_icsb_cnts_t *cntp;
2253 int i;
2254
2255 for_each_online_cpu(i) {
2256 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2257 xfs_icsb_lock_cntr(cntp);
2258 }
2259 }
2260
2261 STATIC void
2262 xfs_icsb_unlock_all_counters(
2263 xfs_mount_t *mp)
2264 {
2265 xfs_icsb_cnts_t *cntp;
2266 int i;
2267
2268 for_each_online_cpu(i) {
2269 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2270 xfs_icsb_unlock_cntr(cntp);
2271 }
2272 }
2273
2274 STATIC void
2275 xfs_icsb_count(
2276 xfs_mount_t *mp,
2277 xfs_icsb_cnts_t *cnt,
2278 int flags)
2279 {
2280 xfs_icsb_cnts_t *cntp;
2281 int i;
2282
2283 memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
2284
2285 if (!(flags & XFS_ICSB_LAZY_COUNT))
2286 xfs_icsb_lock_all_counters(mp);
2287
2288 for_each_online_cpu(i) {
2289 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2290 cnt->icsb_icount += cntp->icsb_icount;
2291 cnt->icsb_ifree += cntp->icsb_ifree;
2292 cnt->icsb_fdblocks += cntp->icsb_fdblocks;
2293 }
2294
2295 if (!(flags & XFS_ICSB_LAZY_COUNT))
2296 xfs_icsb_unlock_all_counters(mp);
2297 }
2298
2299 STATIC int
2300 xfs_icsb_counter_disabled(
2301 xfs_mount_t *mp,
2302 xfs_sb_field_t field)
2303 {
2304 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2305 return test_bit(field, &mp->m_icsb_counters);
2306 }
2307
2308 STATIC void
2309 xfs_icsb_disable_counter(
2310 xfs_mount_t *mp,
2311 xfs_sb_field_t field)
2312 {
2313 xfs_icsb_cnts_t cnt;
2314
2315 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2316
2317 /*
2318 * If we are already disabled, then there is nothing to do
2319 * here. We check before locking all the counters to avoid
2320 * the expensive lock operation when being called in the
2321 * slow path and the counter is already disabled. This is
2322 * safe because the only time we set or clear this state is under
2323 * the m_icsb_mutex.
2324 */
2325 if (xfs_icsb_counter_disabled(mp, field))
2326 return;
2327
2328 xfs_icsb_lock_all_counters(mp);
2329 if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
2330 /* drain back to superblock */
2331
2332 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
2333 switch(field) {
2334 case XFS_SBS_ICOUNT:
2335 mp->m_sb.sb_icount = cnt.icsb_icount;
2336 break;
2337 case XFS_SBS_IFREE:
2338 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2339 break;
2340 case XFS_SBS_FDBLOCKS:
2341 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2342 break;
2343 default:
2344 BUG();
2345 }
2346 }
2347
2348 xfs_icsb_unlock_all_counters(mp);
2349 }
2350
2351 STATIC void
2352 xfs_icsb_enable_counter(
2353 xfs_mount_t *mp,
2354 xfs_sb_field_t field,
2355 uint64_t count,
2356 uint64_t resid)
2357 {
2358 xfs_icsb_cnts_t *cntp;
2359 int i;
2360
2361 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2362
2363 xfs_icsb_lock_all_counters(mp);
2364 for_each_online_cpu(i) {
2365 cntp = per_cpu_ptr(mp->m_sb_cnts, i);
2366 switch (field) {
2367 case XFS_SBS_ICOUNT:
2368 cntp->icsb_icount = count + resid;
2369 break;
2370 case XFS_SBS_IFREE:
2371 cntp->icsb_ifree = count + resid;
2372 break;
2373 case XFS_SBS_FDBLOCKS:
2374 cntp->icsb_fdblocks = count + resid;
2375 break;
2376 default:
2377 BUG();
2378 break;
2379 }
2380 resid = 0;
2381 }
2382 clear_bit(field, &mp->m_icsb_counters);
2383 xfs_icsb_unlock_all_counters(mp);
2384 }
2385
2386 void
2387 xfs_icsb_sync_counters_locked(
2388 xfs_mount_t *mp,
2389 int flags)
2390 {
2391 xfs_icsb_cnts_t cnt;
2392
2393 xfs_icsb_count(mp, &cnt, flags);
2394
2395 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
2396 mp->m_sb.sb_icount = cnt.icsb_icount;
2397 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
2398 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2399 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
2400 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2401 }
2402
2403 /*
2404 * Accurate update of per-cpu counters to incore superblock
2405 */
2406 void
2407 xfs_icsb_sync_counters(
2408 xfs_mount_t *mp,
2409 int flags)
2410 {
2411 spin_lock(&mp->m_sb_lock);
2412 xfs_icsb_sync_counters_locked(mp, flags);
2413 spin_unlock(&mp->m_sb_lock);
2414 }
2415
2416 /*
2417 * Balance and enable/disable counters as necessary.
2418 *
2419 * Thresholds for re-enabling counters are somewhat magic. inode counts are
2420 * chosen to be the same number as single on disk allocation chunk per CPU, and
2421 * free blocks is something far enough zero that we aren't going thrash when we
2422 * get near ENOSPC. We also need to supply a minimum we require per cpu to
2423 * prevent looping endlessly when xfs_alloc_space asks for more than will
2424 * be distributed to a single CPU but each CPU has enough blocks to be
2425 * reenabled.
2426 *
2427 * Note that we can be called when counters are already disabled.
2428 * xfs_icsb_disable_counter() optimises the counter locking in this case to
2429 * prevent locking every per-cpu counter needlessly.
2430 */
2431
2432 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64
2433 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2434 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2435 STATIC void
2436 xfs_icsb_balance_counter_locked(
2437 xfs_mount_t *mp,
2438 xfs_sb_field_t field,
2439 int min_per_cpu)
2440 {
2441 uint64_t count, resid;
2442 int weight = num_online_cpus();
2443 uint64_t min = (uint64_t)min_per_cpu;
2444
2445 /* disable counter and sync counter */
2446 xfs_icsb_disable_counter(mp, field);
2447
2448 /* update counters - first CPU gets residual*/
2449 switch (field) {
2450 case XFS_SBS_ICOUNT:
2451 count = mp->m_sb.sb_icount;
2452 resid = do_div(count, weight);
2453 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2454 return;
2455 break;
2456 case XFS_SBS_IFREE:
2457 count = mp->m_sb.sb_ifree;
2458 resid = do_div(count, weight);
2459 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2460 return;
2461 break;
2462 case XFS_SBS_FDBLOCKS:
2463 count = mp->m_sb.sb_fdblocks;
2464 resid = do_div(count, weight);
2465 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
2466 return;
2467 break;
2468 default:
2469 BUG();
2470 count = resid = 0; /* quiet, gcc */
2471 break;
2472 }
2473
2474 xfs_icsb_enable_counter(mp, field, count, resid);
2475 }
2476
2477 STATIC void
2478 xfs_icsb_balance_counter(
2479 xfs_mount_t *mp,
2480 xfs_sb_field_t fields,
2481 int min_per_cpu)
2482 {
2483 spin_lock(&mp->m_sb_lock);
2484 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
2485 spin_unlock(&mp->m_sb_lock);
2486 }
2487
2488 int
2489 xfs_icsb_modify_counters(
2490 xfs_mount_t *mp,
2491 xfs_sb_field_t field,
2492 int64_t delta,
2493 int rsvd)
2494 {
2495 xfs_icsb_cnts_t *icsbp;
2496 long long lcounter; /* long counter for 64 bit fields */
2497 int ret = 0;
2498
2499 might_sleep();
2500 again:
2501 preempt_disable();
2502 icsbp = this_cpu_ptr(mp->m_sb_cnts);
2503
2504 /*
2505 * if the counter is disabled, go to slow path
2506 */
2507 if (unlikely(xfs_icsb_counter_disabled(mp, field)))
2508 goto slow_path;
2509 xfs_icsb_lock_cntr(icsbp);
2510 if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
2511 xfs_icsb_unlock_cntr(icsbp);
2512 goto slow_path;
2513 }
2514
2515 switch (field) {
2516 case XFS_SBS_ICOUNT:
2517 lcounter = icsbp->icsb_icount;
2518 lcounter += delta;
2519 if (unlikely(lcounter < 0))
2520 goto balance_counter;
2521 icsbp->icsb_icount = lcounter;
2522 break;
2523
2524 case XFS_SBS_IFREE:
2525 lcounter = icsbp->icsb_ifree;
2526 lcounter += delta;
2527 if (unlikely(lcounter < 0))
2528 goto balance_counter;
2529 icsbp->icsb_ifree = lcounter;
2530 break;
2531
2532 case XFS_SBS_FDBLOCKS:
2533 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
2534
2535 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
2536 lcounter += delta;
2537 if (unlikely(lcounter < 0))
2538 goto balance_counter;
2539 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
2540 break;
2541 default:
2542 BUG();
2543 break;
2544 }
2545 xfs_icsb_unlock_cntr(icsbp);
2546 preempt_enable();
2547 return 0;
2548
2549 slow_path:
2550 preempt_enable();
2551
2552 /*
2553 * serialise with a mutex so we don't burn lots of cpu on
2554 * the superblock lock. We still need to hold the superblock
2555 * lock, however, when we modify the global structures.
2556 */
2557 xfs_icsb_lock(mp);
2558
2559 /*
2560 * Now running atomically.
2561 *
2562 * If the counter is enabled, someone has beaten us to rebalancing.
2563 * Drop the lock and try again in the fast path....
2564 */
2565 if (!(xfs_icsb_counter_disabled(mp, field))) {
2566 xfs_icsb_unlock(mp);
2567 goto again;
2568 }
2569
2570 /*
2571 * The counter is currently disabled. Because we are
2572 * running atomically here, we know a rebalance cannot
2573 * be in progress. Hence we can go straight to operating
2574 * on the global superblock. We do not call xfs_mod_incore_sb()
2575 * here even though we need to get the m_sb_lock. Doing so
2576 * will cause us to re-enter this function and deadlock.
2577 * Hence we get the m_sb_lock ourselves and then call
2578 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2579 * directly on the global counters.
2580 */
2581 spin_lock(&mp->m_sb_lock);
2582 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
2583 spin_unlock(&mp->m_sb_lock);
2584
2585 /*
2586 * Now that we've modified the global superblock, we
2587 * may be able to re-enable the distributed counters
2588 * (e.g. lots of space just got freed). After that
2589 * we are done.
2590 */
2591 if (ret != ENOSPC)
2592 xfs_icsb_balance_counter(mp, field, 0);
2593 xfs_icsb_unlock(mp);
2594 return ret;
2595
2596 balance_counter:
2597 xfs_icsb_unlock_cntr(icsbp);
2598 preempt_enable();
2599
2600 /*
2601 * We may have multiple threads here if multiple per-cpu
2602 * counters run dry at the same time. This will mean we can
2603 * do more balances than strictly necessary but it is not
2604 * the common slowpath case.
2605 */
2606 xfs_icsb_lock(mp);
2607
2608 /*
2609 * running atomically.
2610 *
2611 * This will leave the counter in the correct state for future
2612 * accesses. After the rebalance, we simply try again and our retry
2613 * will either succeed through the fast path or slow path without
2614 * another balance operation being required.
2615 */
2616 xfs_icsb_balance_counter(mp, field, delta);
2617 xfs_icsb_unlock(mp);
2618 goto again;
2619 }
2620
2621 #endif
This page took 0.083688 seconds and 5 git commands to generate.