ASoC: omap-abe-twl6040: Add device tree support
[deliverable/linux.git] / fs / xfs / xfs_mount.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_trans_priv.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_dir2.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dinode.h"
34 #include "xfs_inode.h"
35 #include "xfs_btree.h"
36 #include "xfs_ialloc.h"
37 #include "xfs_alloc.h"
38 #include "xfs_rtalloc.h"
39 #include "xfs_bmap.h"
40 #include "xfs_error.h"
41 #include "xfs_quota.h"
42 #include "xfs_fsops.h"
43 #include "xfs_utils.h"
44 #include "xfs_trace.h"
45
46
47 #ifdef HAVE_PERCPU_SB
48 STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
49 int);
50 STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
51 int);
52 STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
53 #else
54
55 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0)
56 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0)
57 #endif
58
59 static const struct {
60 short offset;
61 short type; /* 0 = integer
62 * 1 = binary / string (no translation)
63 */
64 } xfs_sb_info[] = {
65 { offsetof(xfs_sb_t, sb_magicnum), 0 },
66 { offsetof(xfs_sb_t, sb_blocksize), 0 },
67 { offsetof(xfs_sb_t, sb_dblocks), 0 },
68 { offsetof(xfs_sb_t, sb_rblocks), 0 },
69 { offsetof(xfs_sb_t, sb_rextents), 0 },
70 { offsetof(xfs_sb_t, sb_uuid), 1 },
71 { offsetof(xfs_sb_t, sb_logstart), 0 },
72 { offsetof(xfs_sb_t, sb_rootino), 0 },
73 { offsetof(xfs_sb_t, sb_rbmino), 0 },
74 { offsetof(xfs_sb_t, sb_rsumino), 0 },
75 { offsetof(xfs_sb_t, sb_rextsize), 0 },
76 { offsetof(xfs_sb_t, sb_agblocks), 0 },
77 { offsetof(xfs_sb_t, sb_agcount), 0 },
78 { offsetof(xfs_sb_t, sb_rbmblocks), 0 },
79 { offsetof(xfs_sb_t, sb_logblocks), 0 },
80 { offsetof(xfs_sb_t, sb_versionnum), 0 },
81 { offsetof(xfs_sb_t, sb_sectsize), 0 },
82 { offsetof(xfs_sb_t, sb_inodesize), 0 },
83 { offsetof(xfs_sb_t, sb_inopblock), 0 },
84 { offsetof(xfs_sb_t, sb_fname[0]), 1 },
85 { offsetof(xfs_sb_t, sb_blocklog), 0 },
86 { offsetof(xfs_sb_t, sb_sectlog), 0 },
87 { offsetof(xfs_sb_t, sb_inodelog), 0 },
88 { offsetof(xfs_sb_t, sb_inopblog), 0 },
89 { offsetof(xfs_sb_t, sb_agblklog), 0 },
90 { offsetof(xfs_sb_t, sb_rextslog), 0 },
91 { offsetof(xfs_sb_t, sb_inprogress), 0 },
92 { offsetof(xfs_sb_t, sb_imax_pct), 0 },
93 { offsetof(xfs_sb_t, sb_icount), 0 },
94 { offsetof(xfs_sb_t, sb_ifree), 0 },
95 { offsetof(xfs_sb_t, sb_fdblocks), 0 },
96 { offsetof(xfs_sb_t, sb_frextents), 0 },
97 { offsetof(xfs_sb_t, sb_uquotino), 0 },
98 { offsetof(xfs_sb_t, sb_gquotino), 0 },
99 { offsetof(xfs_sb_t, sb_qflags), 0 },
100 { offsetof(xfs_sb_t, sb_flags), 0 },
101 { offsetof(xfs_sb_t, sb_shared_vn), 0 },
102 { offsetof(xfs_sb_t, sb_inoalignmt), 0 },
103 { offsetof(xfs_sb_t, sb_unit), 0 },
104 { offsetof(xfs_sb_t, sb_width), 0 },
105 { offsetof(xfs_sb_t, sb_dirblklog), 0 },
106 { offsetof(xfs_sb_t, sb_logsectlog), 0 },
107 { offsetof(xfs_sb_t, sb_logsectsize),0 },
108 { offsetof(xfs_sb_t, sb_logsunit), 0 },
109 { offsetof(xfs_sb_t, sb_features2), 0 },
110 { offsetof(xfs_sb_t, sb_bad_features2), 0 },
111 { sizeof(xfs_sb_t), 0 }
112 };
113
114 static DEFINE_MUTEX(xfs_uuid_table_mutex);
115 static int xfs_uuid_table_size;
116 static uuid_t *xfs_uuid_table;
117
118 /*
119 * See if the UUID is unique among mounted XFS filesystems.
120 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
121 */
122 STATIC int
123 xfs_uuid_mount(
124 struct xfs_mount *mp)
125 {
126 uuid_t *uuid = &mp->m_sb.sb_uuid;
127 int hole, i;
128
129 if (mp->m_flags & XFS_MOUNT_NOUUID)
130 return 0;
131
132 if (uuid_is_nil(uuid)) {
133 xfs_warn(mp, "Filesystem has nil UUID - can't mount");
134 return XFS_ERROR(EINVAL);
135 }
136
137 mutex_lock(&xfs_uuid_table_mutex);
138 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
139 if (uuid_is_nil(&xfs_uuid_table[i])) {
140 hole = i;
141 continue;
142 }
143 if (uuid_equal(uuid, &xfs_uuid_table[i]))
144 goto out_duplicate;
145 }
146
147 if (hole < 0) {
148 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
149 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
150 xfs_uuid_table_size * sizeof(*xfs_uuid_table),
151 KM_SLEEP);
152 hole = xfs_uuid_table_size++;
153 }
154 xfs_uuid_table[hole] = *uuid;
155 mutex_unlock(&xfs_uuid_table_mutex);
156
157 return 0;
158
159 out_duplicate:
160 mutex_unlock(&xfs_uuid_table_mutex);
161 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
162 return XFS_ERROR(EINVAL);
163 }
164
165 STATIC void
166 xfs_uuid_unmount(
167 struct xfs_mount *mp)
168 {
169 uuid_t *uuid = &mp->m_sb.sb_uuid;
170 int i;
171
172 if (mp->m_flags & XFS_MOUNT_NOUUID)
173 return;
174
175 mutex_lock(&xfs_uuid_table_mutex);
176 for (i = 0; i < xfs_uuid_table_size; i++) {
177 if (uuid_is_nil(&xfs_uuid_table[i]))
178 continue;
179 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
180 continue;
181 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
182 break;
183 }
184 ASSERT(i < xfs_uuid_table_size);
185 mutex_unlock(&xfs_uuid_table_mutex);
186 }
187
188
189 /*
190 * Reference counting access wrappers to the perag structures.
191 * Because we never free per-ag structures, the only thing we
192 * have to protect against changes is the tree structure itself.
193 */
194 struct xfs_perag *
195 xfs_perag_get(struct xfs_mount *mp, xfs_agnumber_t agno)
196 {
197 struct xfs_perag *pag;
198 int ref = 0;
199
200 rcu_read_lock();
201 pag = radix_tree_lookup(&mp->m_perag_tree, agno);
202 if (pag) {
203 ASSERT(atomic_read(&pag->pag_ref) >= 0);
204 ref = atomic_inc_return(&pag->pag_ref);
205 }
206 rcu_read_unlock();
207 trace_xfs_perag_get(mp, agno, ref, _RET_IP_);
208 return pag;
209 }
210
211 /*
212 * search from @first to find the next perag with the given tag set.
213 */
214 struct xfs_perag *
215 xfs_perag_get_tag(
216 struct xfs_mount *mp,
217 xfs_agnumber_t first,
218 int tag)
219 {
220 struct xfs_perag *pag;
221 int found;
222 int ref;
223
224 rcu_read_lock();
225 found = radix_tree_gang_lookup_tag(&mp->m_perag_tree,
226 (void **)&pag, first, 1, tag);
227 if (found <= 0) {
228 rcu_read_unlock();
229 return NULL;
230 }
231 ref = atomic_inc_return(&pag->pag_ref);
232 rcu_read_unlock();
233 trace_xfs_perag_get_tag(mp, pag->pag_agno, ref, _RET_IP_);
234 return pag;
235 }
236
237 void
238 xfs_perag_put(struct xfs_perag *pag)
239 {
240 int ref;
241
242 ASSERT(atomic_read(&pag->pag_ref) > 0);
243 ref = atomic_dec_return(&pag->pag_ref);
244 trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_);
245 }
246
247 STATIC void
248 __xfs_free_perag(
249 struct rcu_head *head)
250 {
251 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
252
253 ASSERT(atomic_read(&pag->pag_ref) == 0);
254 kmem_free(pag);
255 }
256
257 /*
258 * Free up the per-ag resources associated with the mount structure.
259 */
260 STATIC void
261 xfs_free_perag(
262 xfs_mount_t *mp)
263 {
264 xfs_agnumber_t agno;
265 struct xfs_perag *pag;
266
267 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
268 spin_lock(&mp->m_perag_lock);
269 pag = radix_tree_delete(&mp->m_perag_tree, agno);
270 spin_unlock(&mp->m_perag_lock);
271 ASSERT(pag);
272 ASSERT(atomic_read(&pag->pag_ref) == 0);
273 call_rcu(&pag->rcu_head, __xfs_free_perag);
274 }
275 }
276
277 /*
278 * Check size of device based on the (data/realtime) block count.
279 * Note: this check is used by the growfs code as well as mount.
280 */
281 int
282 xfs_sb_validate_fsb_count(
283 xfs_sb_t *sbp,
284 __uint64_t nblocks)
285 {
286 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
287 ASSERT(sbp->sb_blocklog >= BBSHIFT);
288
289 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */
290 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
291 return EFBIG;
292 #else /* Limited by UINT_MAX of sectors */
293 if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
294 return EFBIG;
295 #endif
296 return 0;
297 }
298
299 /*
300 * Check the validity of the SB found.
301 */
302 STATIC int
303 xfs_mount_validate_sb(
304 xfs_mount_t *mp,
305 xfs_sb_t *sbp,
306 int flags)
307 {
308 int loud = !(flags & XFS_MFSI_QUIET);
309
310 /*
311 * If the log device and data device have the
312 * same device number, the log is internal.
313 * Consequently, the sb_logstart should be non-zero. If
314 * we have a zero sb_logstart in this case, we may be trying to mount
315 * a volume filesystem in a non-volume manner.
316 */
317 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
318 if (loud)
319 xfs_warn(mp, "bad magic number");
320 return XFS_ERROR(EWRONGFS);
321 }
322
323 if (!xfs_sb_good_version(sbp)) {
324 if (loud)
325 xfs_warn(mp, "bad version");
326 return XFS_ERROR(EWRONGFS);
327 }
328
329 if (unlikely(
330 sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
331 if (loud)
332 xfs_warn(mp,
333 "filesystem is marked as having an external log; "
334 "specify logdev on the mount command line.");
335 return XFS_ERROR(EINVAL);
336 }
337
338 if (unlikely(
339 sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
340 if (loud)
341 xfs_warn(mp,
342 "filesystem is marked as having an internal log; "
343 "do not specify logdev on the mount command line.");
344 return XFS_ERROR(EINVAL);
345 }
346
347 /*
348 * More sanity checking. Most of these were stolen directly from
349 * xfs_repair.
350 */
351 if (unlikely(
352 sbp->sb_agcount <= 0 ||
353 sbp->sb_sectsize < XFS_MIN_SECTORSIZE ||
354 sbp->sb_sectsize > XFS_MAX_SECTORSIZE ||
355 sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG ||
356 sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG ||
357 sbp->sb_sectsize != (1 << sbp->sb_sectlog) ||
358 sbp->sb_blocksize < XFS_MIN_BLOCKSIZE ||
359 sbp->sb_blocksize > XFS_MAX_BLOCKSIZE ||
360 sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG ||
361 sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG ||
362 sbp->sb_blocksize != (1 << sbp->sb_blocklog) ||
363 sbp->sb_inodesize < XFS_DINODE_MIN_SIZE ||
364 sbp->sb_inodesize > XFS_DINODE_MAX_SIZE ||
365 sbp->sb_inodelog < XFS_DINODE_MIN_LOG ||
366 sbp->sb_inodelog > XFS_DINODE_MAX_LOG ||
367 sbp->sb_inodesize != (1 << sbp->sb_inodelog) ||
368 (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog) ||
369 (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) ||
370 (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) ||
371 (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */) ||
372 sbp->sb_dblocks == 0 ||
373 sbp->sb_dblocks > XFS_MAX_DBLOCKS(sbp) ||
374 sbp->sb_dblocks < XFS_MIN_DBLOCKS(sbp))) {
375 if (loud)
376 XFS_CORRUPTION_ERROR("SB sanity check failed",
377 XFS_ERRLEVEL_LOW, mp, sbp);
378 return XFS_ERROR(EFSCORRUPTED);
379 }
380
381 /*
382 * Until this is fixed only page-sized or smaller data blocks work.
383 */
384 if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
385 if (loud) {
386 xfs_warn(mp,
387 "File system with blocksize %d bytes. "
388 "Only pagesize (%ld) or less will currently work.",
389 sbp->sb_blocksize, PAGE_SIZE);
390 }
391 return XFS_ERROR(ENOSYS);
392 }
393
394 /*
395 * Currently only very few inode sizes are supported.
396 */
397 switch (sbp->sb_inodesize) {
398 case 256:
399 case 512:
400 case 1024:
401 case 2048:
402 break;
403 default:
404 if (loud)
405 xfs_warn(mp, "inode size of %d bytes not supported",
406 sbp->sb_inodesize);
407 return XFS_ERROR(ENOSYS);
408 }
409
410 if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
411 xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
412 if (loud)
413 xfs_warn(mp,
414 "file system too large to be mounted on this system.");
415 return XFS_ERROR(EFBIG);
416 }
417
418 if (unlikely(sbp->sb_inprogress)) {
419 if (loud)
420 xfs_warn(mp, "file system busy");
421 return XFS_ERROR(EFSCORRUPTED);
422 }
423
424 /*
425 * Version 1 directory format has never worked on Linux.
426 */
427 if (unlikely(!xfs_sb_version_hasdirv2(sbp))) {
428 if (loud)
429 xfs_warn(mp,
430 "file system using version 1 directory format");
431 return XFS_ERROR(ENOSYS);
432 }
433
434 return 0;
435 }
436
437 int
438 xfs_initialize_perag(
439 xfs_mount_t *mp,
440 xfs_agnumber_t agcount,
441 xfs_agnumber_t *maxagi)
442 {
443 xfs_agnumber_t index, max_metadata;
444 xfs_agnumber_t first_initialised = 0;
445 xfs_perag_t *pag;
446 xfs_agino_t agino;
447 xfs_ino_t ino;
448 xfs_sb_t *sbp = &mp->m_sb;
449 int error = -ENOMEM;
450
451 /*
452 * Walk the current per-ag tree so we don't try to initialise AGs
453 * that already exist (growfs case). Allocate and insert all the
454 * AGs we don't find ready for initialisation.
455 */
456 for (index = 0; index < agcount; index++) {
457 pag = xfs_perag_get(mp, index);
458 if (pag) {
459 xfs_perag_put(pag);
460 continue;
461 }
462 if (!first_initialised)
463 first_initialised = index;
464
465 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
466 if (!pag)
467 goto out_unwind;
468 pag->pag_agno = index;
469 pag->pag_mount = mp;
470 spin_lock_init(&pag->pag_ici_lock);
471 mutex_init(&pag->pag_ici_reclaim_lock);
472 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
473 spin_lock_init(&pag->pag_buf_lock);
474 pag->pag_buf_tree = RB_ROOT;
475
476 if (radix_tree_preload(GFP_NOFS))
477 goto out_unwind;
478
479 spin_lock(&mp->m_perag_lock);
480 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
481 BUG();
482 spin_unlock(&mp->m_perag_lock);
483 radix_tree_preload_end();
484 error = -EEXIST;
485 goto out_unwind;
486 }
487 spin_unlock(&mp->m_perag_lock);
488 radix_tree_preload_end();
489 }
490
491 /*
492 * If we mount with the inode64 option, or no inode overflows
493 * the legacy 32-bit address space clear the inode32 option.
494 */
495 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
496 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
497
498 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
499 mp->m_flags |= XFS_MOUNT_32BITINODES;
500 else
501 mp->m_flags &= ~XFS_MOUNT_32BITINODES;
502
503 if (mp->m_flags & XFS_MOUNT_32BITINODES) {
504 /*
505 * Calculate how much should be reserved for inodes to meet
506 * the max inode percentage.
507 */
508 if (mp->m_maxicount) {
509 __uint64_t icount;
510
511 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
512 do_div(icount, 100);
513 icount += sbp->sb_agblocks - 1;
514 do_div(icount, sbp->sb_agblocks);
515 max_metadata = icount;
516 } else {
517 max_metadata = agcount;
518 }
519
520 for (index = 0; index < agcount; index++) {
521 ino = XFS_AGINO_TO_INO(mp, index, agino);
522 if (ino > XFS_MAXINUMBER_32) {
523 index++;
524 break;
525 }
526
527 pag = xfs_perag_get(mp, index);
528 pag->pagi_inodeok = 1;
529 if (index < max_metadata)
530 pag->pagf_metadata = 1;
531 xfs_perag_put(pag);
532 }
533 } else {
534 for (index = 0; index < agcount; index++) {
535 pag = xfs_perag_get(mp, index);
536 pag->pagi_inodeok = 1;
537 xfs_perag_put(pag);
538 }
539 }
540
541 if (maxagi)
542 *maxagi = index;
543 return 0;
544
545 out_unwind:
546 kmem_free(pag);
547 for (; index > first_initialised; index--) {
548 pag = radix_tree_delete(&mp->m_perag_tree, index);
549 kmem_free(pag);
550 }
551 return error;
552 }
553
554 void
555 xfs_sb_from_disk(
556 struct xfs_mount *mp,
557 xfs_dsb_t *from)
558 {
559 struct xfs_sb *to = &mp->m_sb;
560
561 to->sb_magicnum = be32_to_cpu(from->sb_magicnum);
562 to->sb_blocksize = be32_to_cpu(from->sb_blocksize);
563 to->sb_dblocks = be64_to_cpu(from->sb_dblocks);
564 to->sb_rblocks = be64_to_cpu(from->sb_rblocks);
565 to->sb_rextents = be64_to_cpu(from->sb_rextents);
566 memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
567 to->sb_logstart = be64_to_cpu(from->sb_logstart);
568 to->sb_rootino = be64_to_cpu(from->sb_rootino);
569 to->sb_rbmino = be64_to_cpu(from->sb_rbmino);
570 to->sb_rsumino = be64_to_cpu(from->sb_rsumino);
571 to->sb_rextsize = be32_to_cpu(from->sb_rextsize);
572 to->sb_agblocks = be32_to_cpu(from->sb_agblocks);
573 to->sb_agcount = be32_to_cpu(from->sb_agcount);
574 to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks);
575 to->sb_logblocks = be32_to_cpu(from->sb_logblocks);
576 to->sb_versionnum = be16_to_cpu(from->sb_versionnum);
577 to->sb_sectsize = be16_to_cpu(from->sb_sectsize);
578 to->sb_inodesize = be16_to_cpu(from->sb_inodesize);
579 to->sb_inopblock = be16_to_cpu(from->sb_inopblock);
580 memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
581 to->sb_blocklog = from->sb_blocklog;
582 to->sb_sectlog = from->sb_sectlog;
583 to->sb_inodelog = from->sb_inodelog;
584 to->sb_inopblog = from->sb_inopblog;
585 to->sb_agblklog = from->sb_agblklog;
586 to->sb_rextslog = from->sb_rextslog;
587 to->sb_inprogress = from->sb_inprogress;
588 to->sb_imax_pct = from->sb_imax_pct;
589 to->sb_icount = be64_to_cpu(from->sb_icount);
590 to->sb_ifree = be64_to_cpu(from->sb_ifree);
591 to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks);
592 to->sb_frextents = be64_to_cpu(from->sb_frextents);
593 to->sb_uquotino = be64_to_cpu(from->sb_uquotino);
594 to->sb_gquotino = be64_to_cpu(from->sb_gquotino);
595 to->sb_qflags = be16_to_cpu(from->sb_qflags);
596 to->sb_flags = from->sb_flags;
597 to->sb_shared_vn = from->sb_shared_vn;
598 to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt);
599 to->sb_unit = be32_to_cpu(from->sb_unit);
600 to->sb_width = be32_to_cpu(from->sb_width);
601 to->sb_dirblklog = from->sb_dirblklog;
602 to->sb_logsectlog = from->sb_logsectlog;
603 to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize);
604 to->sb_logsunit = be32_to_cpu(from->sb_logsunit);
605 to->sb_features2 = be32_to_cpu(from->sb_features2);
606 to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2);
607 }
608
609 /*
610 * Copy in core superblock to ondisk one.
611 *
612 * The fields argument is mask of superblock fields to copy.
613 */
614 void
615 xfs_sb_to_disk(
616 xfs_dsb_t *to,
617 xfs_sb_t *from,
618 __int64_t fields)
619 {
620 xfs_caddr_t to_ptr = (xfs_caddr_t)to;
621 xfs_caddr_t from_ptr = (xfs_caddr_t)from;
622 xfs_sb_field_t f;
623 int first;
624 int size;
625
626 ASSERT(fields);
627 if (!fields)
628 return;
629
630 while (fields) {
631 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
632 first = xfs_sb_info[f].offset;
633 size = xfs_sb_info[f + 1].offset - first;
634
635 ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
636
637 if (size == 1 || xfs_sb_info[f].type == 1) {
638 memcpy(to_ptr + first, from_ptr + first, size);
639 } else {
640 switch (size) {
641 case 2:
642 *(__be16 *)(to_ptr + first) =
643 cpu_to_be16(*(__u16 *)(from_ptr + first));
644 break;
645 case 4:
646 *(__be32 *)(to_ptr + first) =
647 cpu_to_be32(*(__u32 *)(from_ptr + first));
648 break;
649 case 8:
650 *(__be64 *)(to_ptr + first) =
651 cpu_to_be64(*(__u64 *)(from_ptr + first));
652 break;
653 default:
654 ASSERT(0);
655 }
656 }
657
658 fields &= ~(1LL << f);
659 }
660 }
661
662 /*
663 * xfs_readsb
664 *
665 * Does the initial read of the superblock.
666 */
667 int
668 xfs_readsb(xfs_mount_t *mp, int flags)
669 {
670 unsigned int sector_size;
671 xfs_buf_t *bp;
672 int error;
673 int loud = !(flags & XFS_MFSI_QUIET);
674
675 ASSERT(mp->m_sb_bp == NULL);
676 ASSERT(mp->m_ddev_targp != NULL);
677
678 /*
679 * Allocate a (locked) buffer to hold the superblock.
680 * This will be kept around at all times to optimize
681 * access to the superblock.
682 */
683 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
684
685 reread:
686 bp = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
687 BTOBB(sector_size), 0);
688 if (!bp) {
689 if (loud)
690 xfs_warn(mp, "SB buffer read failed");
691 return EIO;
692 }
693
694 /*
695 * Initialize the mount structure from the superblock.
696 * But first do some basic consistency checking.
697 */
698 xfs_sb_from_disk(mp, XFS_BUF_TO_SBP(bp));
699 error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags);
700 if (error) {
701 if (loud)
702 xfs_warn(mp, "SB validate failed");
703 goto release_buf;
704 }
705
706 /*
707 * We must be able to do sector-sized and sector-aligned IO.
708 */
709 if (sector_size > mp->m_sb.sb_sectsize) {
710 if (loud)
711 xfs_warn(mp, "device supports %u byte sectors (not %u)",
712 sector_size, mp->m_sb.sb_sectsize);
713 error = ENOSYS;
714 goto release_buf;
715 }
716
717 /*
718 * If device sector size is smaller than the superblock size,
719 * re-read the superblock so the buffer is correctly sized.
720 */
721 if (sector_size < mp->m_sb.sb_sectsize) {
722 xfs_buf_relse(bp);
723 sector_size = mp->m_sb.sb_sectsize;
724 goto reread;
725 }
726
727 /* Initialize per-cpu counters */
728 xfs_icsb_reinit_counters(mp);
729
730 mp->m_sb_bp = bp;
731 xfs_buf_unlock(bp);
732 return 0;
733
734 release_buf:
735 xfs_buf_relse(bp);
736 return error;
737 }
738
739
740 /*
741 * xfs_mount_common
742 *
743 * Mount initialization code establishing various mount
744 * fields from the superblock associated with the given
745 * mount structure
746 */
747 STATIC void
748 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
749 {
750 mp->m_agfrotor = mp->m_agirotor = 0;
751 spin_lock_init(&mp->m_agirotor_lock);
752 mp->m_maxagi = mp->m_sb.sb_agcount;
753 mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
754 mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
755 mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
756 mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
757 mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
758 mp->m_blockmask = sbp->sb_blocksize - 1;
759 mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
760 mp->m_blockwmask = mp->m_blockwsize - 1;
761
762 mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1);
763 mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0);
764 mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2;
765 mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2;
766
767 mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
768 mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
769 mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2;
770 mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2;
771
772 mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1);
773 mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0);
774 mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2;
775 mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2;
776
777 mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
778 mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
779 sbp->sb_inopblock);
780 mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
781 }
782
783 /*
784 * xfs_initialize_perag_data
785 *
786 * Read in each per-ag structure so we can count up the number of
787 * allocated inodes, free inodes and used filesystem blocks as this
788 * information is no longer persistent in the superblock. Once we have
789 * this information, write it into the in-core superblock structure.
790 */
791 STATIC int
792 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
793 {
794 xfs_agnumber_t index;
795 xfs_perag_t *pag;
796 xfs_sb_t *sbp = &mp->m_sb;
797 uint64_t ifree = 0;
798 uint64_t ialloc = 0;
799 uint64_t bfree = 0;
800 uint64_t bfreelst = 0;
801 uint64_t btree = 0;
802 int error;
803
804 for (index = 0; index < agcount; index++) {
805 /*
806 * read the agf, then the agi. This gets us
807 * all the information we need and populates the
808 * per-ag structures for us.
809 */
810 error = xfs_alloc_pagf_init(mp, NULL, index, 0);
811 if (error)
812 return error;
813
814 error = xfs_ialloc_pagi_init(mp, NULL, index);
815 if (error)
816 return error;
817 pag = xfs_perag_get(mp, index);
818 ifree += pag->pagi_freecount;
819 ialloc += pag->pagi_count;
820 bfree += pag->pagf_freeblks;
821 bfreelst += pag->pagf_flcount;
822 btree += pag->pagf_btreeblks;
823 xfs_perag_put(pag);
824 }
825 /*
826 * Overwrite incore superblock counters with just-read data
827 */
828 spin_lock(&mp->m_sb_lock);
829 sbp->sb_ifree = ifree;
830 sbp->sb_icount = ialloc;
831 sbp->sb_fdblocks = bfree + bfreelst + btree;
832 spin_unlock(&mp->m_sb_lock);
833
834 /* Fixup the per-cpu counters as well. */
835 xfs_icsb_reinit_counters(mp);
836
837 return 0;
838 }
839
840 /*
841 * Update alignment values based on mount options and sb values
842 */
843 STATIC int
844 xfs_update_alignment(xfs_mount_t *mp)
845 {
846 xfs_sb_t *sbp = &(mp->m_sb);
847
848 if (mp->m_dalign) {
849 /*
850 * If stripe unit and stripe width are not multiples
851 * of the fs blocksize turn off alignment.
852 */
853 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
854 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
855 if (mp->m_flags & XFS_MOUNT_RETERR) {
856 xfs_warn(mp, "alignment check failed: "
857 "(sunit/swidth vs. blocksize)");
858 return XFS_ERROR(EINVAL);
859 }
860 mp->m_dalign = mp->m_swidth = 0;
861 } else {
862 /*
863 * Convert the stripe unit and width to FSBs.
864 */
865 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
866 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
867 if (mp->m_flags & XFS_MOUNT_RETERR) {
868 xfs_warn(mp, "alignment check failed: "
869 "(sunit/swidth vs. ag size)");
870 return XFS_ERROR(EINVAL);
871 }
872 xfs_warn(mp,
873 "stripe alignment turned off: sunit(%d)/swidth(%d) "
874 "incompatible with agsize(%d)",
875 mp->m_dalign, mp->m_swidth,
876 sbp->sb_agblocks);
877
878 mp->m_dalign = 0;
879 mp->m_swidth = 0;
880 } else if (mp->m_dalign) {
881 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
882 } else {
883 if (mp->m_flags & XFS_MOUNT_RETERR) {
884 xfs_warn(mp, "alignment check failed: "
885 "sunit(%d) less than bsize(%d)",
886 mp->m_dalign,
887 mp->m_blockmask +1);
888 return XFS_ERROR(EINVAL);
889 }
890 mp->m_swidth = 0;
891 }
892 }
893
894 /*
895 * Update superblock with new values
896 * and log changes
897 */
898 if (xfs_sb_version_hasdalign(sbp)) {
899 if (sbp->sb_unit != mp->m_dalign) {
900 sbp->sb_unit = mp->m_dalign;
901 mp->m_update_flags |= XFS_SB_UNIT;
902 }
903 if (sbp->sb_width != mp->m_swidth) {
904 sbp->sb_width = mp->m_swidth;
905 mp->m_update_flags |= XFS_SB_WIDTH;
906 }
907 }
908 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
909 xfs_sb_version_hasdalign(&mp->m_sb)) {
910 mp->m_dalign = sbp->sb_unit;
911 mp->m_swidth = sbp->sb_width;
912 }
913
914 return 0;
915 }
916
917 /*
918 * Set the maximum inode count for this filesystem
919 */
920 STATIC void
921 xfs_set_maxicount(xfs_mount_t *mp)
922 {
923 xfs_sb_t *sbp = &(mp->m_sb);
924 __uint64_t icount;
925
926 if (sbp->sb_imax_pct) {
927 /*
928 * Make sure the maximum inode count is a multiple
929 * of the units we allocate inodes in.
930 */
931 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
932 do_div(icount, 100);
933 do_div(icount, mp->m_ialloc_blks);
934 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
935 sbp->sb_inopblog;
936 } else {
937 mp->m_maxicount = 0;
938 }
939 }
940
941 /*
942 * Set the default minimum read and write sizes unless
943 * already specified in a mount option.
944 * We use smaller I/O sizes when the file system
945 * is being used for NFS service (wsync mount option).
946 */
947 STATIC void
948 xfs_set_rw_sizes(xfs_mount_t *mp)
949 {
950 xfs_sb_t *sbp = &(mp->m_sb);
951 int readio_log, writeio_log;
952
953 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
954 if (mp->m_flags & XFS_MOUNT_WSYNC) {
955 readio_log = XFS_WSYNC_READIO_LOG;
956 writeio_log = XFS_WSYNC_WRITEIO_LOG;
957 } else {
958 readio_log = XFS_READIO_LOG_LARGE;
959 writeio_log = XFS_WRITEIO_LOG_LARGE;
960 }
961 } else {
962 readio_log = mp->m_readio_log;
963 writeio_log = mp->m_writeio_log;
964 }
965
966 if (sbp->sb_blocklog > readio_log) {
967 mp->m_readio_log = sbp->sb_blocklog;
968 } else {
969 mp->m_readio_log = readio_log;
970 }
971 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
972 if (sbp->sb_blocklog > writeio_log) {
973 mp->m_writeio_log = sbp->sb_blocklog;
974 } else {
975 mp->m_writeio_log = writeio_log;
976 }
977 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
978 }
979
980 /*
981 * precalculate the low space thresholds for dynamic speculative preallocation.
982 */
983 void
984 xfs_set_low_space_thresholds(
985 struct xfs_mount *mp)
986 {
987 int i;
988
989 for (i = 0; i < XFS_LOWSP_MAX; i++) {
990 __uint64_t space = mp->m_sb.sb_dblocks;
991
992 do_div(space, 100);
993 mp->m_low_space[i] = space * (i + 1);
994 }
995 }
996
997
998 /*
999 * Set whether we're using inode alignment.
1000 */
1001 STATIC void
1002 xfs_set_inoalignment(xfs_mount_t *mp)
1003 {
1004 if (xfs_sb_version_hasalign(&mp->m_sb) &&
1005 mp->m_sb.sb_inoalignmt >=
1006 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
1007 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
1008 else
1009 mp->m_inoalign_mask = 0;
1010 /*
1011 * If we are using stripe alignment, check whether
1012 * the stripe unit is a multiple of the inode alignment
1013 */
1014 if (mp->m_dalign && mp->m_inoalign_mask &&
1015 !(mp->m_dalign & mp->m_inoalign_mask))
1016 mp->m_sinoalign = mp->m_dalign;
1017 else
1018 mp->m_sinoalign = 0;
1019 }
1020
1021 /*
1022 * Check that the data (and log if separate) are an ok size.
1023 */
1024 STATIC int
1025 xfs_check_sizes(xfs_mount_t *mp)
1026 {
1027 xfs_buf_t *bp;
1028 xfs_daddr_t d;
1029
1030 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
1031 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
1032 xfs_warn(mp, "filesystem size mismatch detected");
1033 return XFS_ERROR(EFBIG);
1034 }
1035 bp = xfs_buf_read_uncached(mp->m_ddev_targp,
1036 d - XFS_FSS_TO_BB(mp, 1),
1037 XFS_FSS_TO_BB(mp, 1), 0);
1038 if (!bp) {
1039 xfs_warn(mp, "last sector read failed");
1040 return EIO;
1041 }
1042 xfs_buf_relse(bp);
1043
1044 if (mp->m_logdev_targp != mp->m_ddev_targp) {
1045 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
1046 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
1047 xfs_warn(mp, "log size mismatch detected");
1048 return XFS_ERROR(EFBIG);
1049 }
1050 bp = xfs_buf_read_uncached(mp->m_logdev_targp,
1051 d - XFS_FSB_TO_BB(mp, 1),
1052 XFS_FSB_TO_BB(mp, 1), 0);
1053 if (!bp) {
1054 xfs_warn(mp, "log device read failed");
1055 return EIO;
1056 }
1057 xfs_buf_relse(bp);
1058 }
1059 return 0;
1060 }
1061
1062 /*
1063 * Clear the quotaflags in memory and in the superblock.
1064 */
1065 int
1066 xfs_mount_reset_sbqflags(
1067 struct xfs_mount *mp)
1068 {
1069 int error;
1070 struct xfs_trans *tp;
1071
1072 mp->m_qflags = 0;
1073
1074 /*
1075 * It is OK to look at sb_qflags here in mount path,
1076 * without m_sb_lock.
1077 */
1078 if (mp->m_sb.sb_qflags == 0)
1079 return 0;
1080 spin_lock(&mp->m_sb_lock);
1081 mp->m_sb.sb_qflags = 0;
1082 spin_unlock(&mp->m_sb_lock);
1083
1084 /*
1085 * If the fs is readonly, let the incore superblock run
1086 * with quotas off but don't flush the update out to disk
1087 */
1088 if (mp->m_flags & XFS_MOUNT_RDONLY)
1089 return 0;
1090
1091 tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
1092 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1093 XFS_DEFAULT_LOG_COUNT);
1094 if (error) {
1095 xfs_trans_cancel(tp, 0);
1096 xfs_alert(mp, "%s: Superblock update failed!", __func__);
1097 return error;
1098 }
1099
1100 xfs_mod_sb(tp, XFS_SB_QFLAGS);
1101 return xfs_trans_commit(tp, 0);
1102 }
1103
1104 __uint64_t
1105 xfs_default_resblks(xfs_mount_t *mp)
1106 {
1107 __uint64_t resblks;
1108
1109 /*
1110 * We default to 5% or 8192 fsbs of space reserved, whichever is
1111 * smaller. This is intended to cover concurrent allocation
1112 * transactions when we initially hit enospc. These each require a 4
1113 * block reservation. Hence by default we cover roughly 2000 concurrent
1114 * allocation reservations.
1115 */
1116 resblks = mp->m_sb.sb_dblocks;
1117 do_div(resblks, 20);
1118 resblks = min_t(__uint64_t, resblks, 8192);
1119 return resblks;
1120 }
1121
1122 /*
1123 * This function does the following on an initial mount of a file system:
1124 * - reads the superblock from disk and init the mount struct
1125 * - if we're a 32-bit kernel, do a size check on the superblock
1126 * so we don't mount terabyte filesystems
1127 * - init mount struct realtime fields
1128 * - allocate inode hash table for fs
1129 * - init directory manager
1130 * - perform recovery and init the log manager
1131 */
1132 int
1133 xfs_mountfs(
1134 xfs_mount_t *mp)
1135 {
1136 xfs_sb_t *sbp = &(mp->m_sb);
1137 xfs_inode_t *rip;
1138 __uint64_t resblks;
1139 uint quotamount = 0;
1140 uint quotaflags = 0;
1141 int error = 0;
1142
1143 xfs_mount_common(mp, sbp);
1144
1145 /*
1146 * Check for a mismatched features2 values. Older kernels
1147 * read & wrote into the wrong sb offset for sb_features2
1148 * on some platforms due to xfs_sb_t not being 64bit size aligned
1149 * when sb_features2 was added, which made older superblock
1150 * reading/writing routines swap it as a 64-bit value.
1151 *
1152 * For backwards compatibility, we make both slots equal.
1153 *
1154 * If we detect a mismatched field, we OR the set bits into the
1155 * existing features2 field in case it has already been modified; we
1156 * don't want to lose any features. We then update the bad location
1157 * with the ORed value so that older kernels will see any features2
1158 * flags, and mark the two fields as needing updates once the
1159 * transaction subsystem is online.
1160 */
1161 if (xfs_sb_has_mismatched_features2(sbp)) {
1162 xfs_warn(mp, "correcting sb_features alignment problem");
1163 sbp->sb_features2 |= sbp->sb_bad_features2;
1164 sbp->sb_bad_features2 = sbp->sb_features2;
1165 mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
1166
1167 /*
1168 * Re-check for ATTR2 in case it was found in bad_features2
1169 * slot.
1170 */
1171 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1172 !(mp->m_flags & XFS_MOUNT_NOATTR2))
1173 mp->m_flags |= XFS_MOUNT_ATTR2;
1174 }
1175
1176 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1177 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
1178 xfs_sb_version_removeattr2(&mp->m_sb);
1179 mp->m_update_flags |= XFS_SB_FEATURES2;
1180
1181 /* update sb_versionnum for the clearing of the morebits */
1182 if (!sbp->sb_features2)
1183 mp->m_update_flags |= XFS_SB_VERSIONNUM;
1184 }
1185
1186 /*
1187 * Check if sb_agblocks is aligned at stripe boundary
1188 * If sb_agblocks is NOT aligned turn off m_dalign since
1189 * allocator alignment is within an ag, therefore ag has
1190 * to be aligned at stripe boundary.
1191 */
1192 error = xfs_update_alignment(mp);
1193 if (error)
1194 goto out;
1195
1196 xfs_alloc_compute_maxlevels(mp);
1197 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
1198 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
1199 xfs_ialloc_compute_maxlevels(mp);
1200
1201 xfs_set_maxicount(mp);
1202
1203 error = xfs_uuid_mount(mp);
1204 if (error)
1205 goto out;
1206
1207 /*
1208 * Set the minimum read and write sizes
1209 */
1210 xfs_set_rw_sizes(mp);
1211
1212 /* set the low space thresholds for dynamic preallocation */
1213 xfs_set_low_space_thresholds(mp);
1214
1215 /*
1216 * Set the inode cluster size.
1217 * This may still be overridden by the file system
1218 * block size if it is larger than the chosen cluster size.
1219 */
1220 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
1221
1222 /*
1223 * Set inode alignment fields
1224 */
1225 xfs_set_inoalignment(mp);
1226
1227 /*
1228 * Check that the data (and log if separate) are an ok size.
1229 */
1230 error = xfs_check_sizes(mp);
1231 if (error)
1232 goto out_remove_uuid;
1233
1234 /*
1235 * Initialize realtime fields in the mount structure
1236 */
1237 error = xfs_rtmount_init(mp);
1238 if (error) {
1239 xfs_warn(mp, "RT mount failed");
1240 goto out_remove_uuid;
1241 }
1242
1243 /*
1244 * Copies the low order bits of the timestamp and the randomly
1245 * set "sequence" number out of a UUID.
1246 */
1247 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
1248
1249 mp->m_dmevmask = 0; /* not persistent; set after each mount */
1250
1251 xfs_dir_mount(mp);
1252
1253 /*
1254 * Initialize the attribute manager's entries.
1255 */
1256 mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
1257
1258 /*
1259 * Initialize the precomputed transaction reservations values.
1260 */
1261 xfs_trans_init(mp);
1262
1263 /*
1264 * Allocate and initialize the per-ag data.
1265 */
1266 spin_lock_init(&mp->m_perag_lock);
1267 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
1268 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
1269 if (error) {
1270 xfs_warn(mp, "Failed per-ag init: %d", error);
1271 goto out_remove_uuid;
1272 }
1273
1274 if (!sbp->sb_logblocks) {
1275 xfs_warn(mp, "no log defined");
1276 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
1277 error = XFS_ERROR(EFSCORRUPTED);
1278 goto out_free_perag;
1279 }
1280
1281 /*
1282 * log's mount-time initialization. Perform 1st part recovery if needed
1283 */
1284 error = xfs_log_mount(mp, mp->m_logdev_targp,
1285 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1286 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1287 if (error) {
1288 xfs_warn(mp, "log mount failed");
1289 goto out_fail_wait;
1290 }
1291
1292 /*
1293 * Now the log is mounted, we know if it was an unclean shutdown or
1294 * not. If it was, with the first phase of recovery has completed, we
1295 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1296 * but they are recovered transactionally in the second recovery phase
1297 * later.
1298 *
1299 * Hence we can safely re-initialise incore superblock counters from
1300 * the per-ag data. These may not be correct if the filesystem was not
1301 * cleanly unmounted, so we need to wait for recovery to finish before
1302 * doing this.
1303 *
1304 * If the filesystem was cleanly unmounted, then we can trust the
1305 * values in the superblock to be correct and we don't need to do
1306 * anything here.
1307 *
1308 * If we are currently making the filesystem, the initialisation will
1309 * fail as the perag data is in an undefined state.
1310 */
1311 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
1312 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
1313 !mp->m_sb.sb_inprogress) {
1314 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
1315 if (error)
1316 goto out_fail_wait;
1317 }
1318
1319 /*
1320 * Get and sanity-check the root inode.
1321 * Save the pointer to it in the mount structure.
1322 */
1323 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
1324 if (error) {
1325 xfs_warn(mp, "failed to read root inode");
1326 goto out_log_dealloc;
1327 }
1328
1329 ASSERT(rip != NULL);
1330
1331 if (unlikely(!S_ISDIR(rip->i_d.di_mode))) {
1332 xfs_warn(mp, "corrupted root inode %llu: not a directory",
1333 (unsigned long long)rip->i_ino);
1334 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1335 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
1336 mp);
1337 error = XFS_ERROR(EFSCORRUPTED);
1338 goto out_rele_rip;
1339 }
1340 mp->m_rootip = rip; /* save it */
1341
1342 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1343
1344 /*
1345 * Initialize realtime inode pointers in the mount structure
1346 */
1347 error = xfs_rtmount_inodes(mp);
1348 if (error) {
1349 /*
1350 * Free up the root inode.
1351 */
1352 xfs_warn(mp, "failed to read RT inodes");
1353 goto out_rele_rip;
1354 }
1355
1356 /*
1357 * If this is a read-only mount defer the superblock updates until
1358 * the next remount into writeable mode. Otherwise we would never
1359 * perform the update e.g. for the root filesystem.
1360 */
1361 if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
1362 error = xfs_mount_log_sb(mp, mp->m_update_flags);
1363 if (error) {
1364 xfs_warn(mp, "failed to write sb changes");
1365 goto out_rtunmount;
1366 }
1367 }
1368
1369 /*
1370 * Initialise the XFS quota management subsystem for this mount
1371 */
1372 if (XFS_IS_QUOTA_RUNNING(mp)) {
1373 error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
1374 if (error)
1375 goto out_rtunmount;
1376 } else {
1377 ASSERT(!XFS_IS_QUOTA_ON(mp));
1378
1379 /*
1380 * If a file system had quotas running earlier, but decided to
1381 * mount without -o uquota/pquota/gquota options, revoke the
1382 * quotachecked license.
1383 */
1384 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
1385 xfs_notice(mp, "resetting quota flags");
1386 error = xfs_mount_reset_sbqflags(mp);
1387 if (error)
1388 return error;
1389 }
1390 }
1391
1392 /*
1393 * Finish recovering the file system. This part needed to be
1394 * delayed until after the root and real-time bitmap inodes
1395 * were consistently read in.
1396 */
1397 error = xfs_log_mount_finish(mp);
1398 if (error) {
1399 xfs_warn(mp, "log mount finish failed");
1400 goto out_rtunmount;
1401 }
1402
1403 /*
1404 * Complete the quota initialisation, post-log-replay component.
1405 */
1406 if (quotamount) {
1407 ASSERT(mp->m_qflags == 0);
1408 mp->m_qflags = quotaflags;
1409
1410 xfs_qm_mount_quotas(mp);
1411 }
1412
1413 /*
1414 * Now we are mounted, reserve a small amount of unused space for
1415 * privileged transactions. This is needed so that transaction
1416 * space required for critical operations can dip into this pool
1417 * when at ENOSPC. This is needed for operations like create with
1418 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1419 * are not allowed to use this reserved space.
1420 *
1421 * This may drive us straight to ENOSPC on mount, but that implies
1422 * we were already there on the last unmount. Warn if this occurs.
1423 */
1424 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
1425 resblks = xfs_default_resblks(mp);
1426 error = xfs_reserve_blocks(mp, &resblks, NULL);
1427 if (error)
1428 xfs_warn(mp,
1429 "Unable to allocate reserve blocks. Continuing without reserve pool.");
1430 }
1431
1432 return 0;
1433
1434 out_rtunmount:
1435 xfs_rtunmount_inodes(mp);
1436 out_rele_rip:
1437 IRELE(rip);
1438 out_log_dealloc:
1439 xfs_log_unmount(mp);
1440 out_fail_wait:
1441 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1442 xfs_wait_buftarg(mp->m_logdev_targp);
1443 xfs_wait_buftarg(mp->m_ddev_targp);
1444 out_free_perag:
1445 xfs_free_perag(mp);
1446 out_remove_uuid:
1447 xfs_uuid_unmount(mp);
1448 out:
1449 return error;
1450 }
1451
1452 /*
1453 * This flushes out the inodes,dquots and the superblock, unmounts the
1454 * log and makes sure that incore structures are freed.
1455 */
1456 void
1457 xfs_unmountfs(
1458 struct xfs_mount *mp)
1459 {
1460 __uint64_t resblks;
1461 int error;
1462
1463 xfs_qm_unmount_quotas(mp);
1464 xfs_rtunmount_inodes(mp);
1465 IRELE(mp->m_rootip);
1466
1467 /*
1468 * We can potentially deadlock here if we have an inode cluster
1469 * that has been freed has its buffer still pinned in memory because
1470 * the transaction is still sitting in a iclog. The stale inodes
1471 * on that buffer will have their flush locks held until the
1472 * transaction hits the disk and the callbacks run. the inode
1473 * flush takes the flush lock unconditionally and with nothing to
1474 * push out the iclog we will never get that unlocked. hence we
1475 * need to force the log first.
1476 */
1477 xfs_log_force(mp, XFS_LOG_SYNC);
1478
1479 /*
1480 * Flush all pending changes from the AIL.
1481 */
1482 xfs_ail_push_all_sync(mp->m_ail);
1483
1484 /*
1485 * And reclaim all inodes. At this point there should be no dirty
1486 * inode, and none should be pinned or locked, but use synchronous
1487 * reclaim just to be sure.
1488 */
1489 xfs_reclaim_inodes(mp, SYNC_WAIT);
1490
1491 xfs_qm_unmount(mp);
1492
1493 /*
1494 * Flush out the log synchronously so that we know for sure
1495 * that nothing is pinned. This is important because bflush()
1496 * will skip pinned buffers.
1497 */
1498 xfs_log_force(mp, XFS_LOG_SYNC);
1499
1500 /*
1501 * Unreserve any blocks we have so that when we unmount we don't account
1502 * the reserved free space as used. This is really only necessary for
1503 * lazy superblock counting because it trusts the incore superblock
1504 * counters to be absolutely correct on clean unmount.
1505 *
1506 * We don't bother correcting this elsewhere for lazy superblock
1507 * counting because on mount of an unclean filesystem we reconstruct the
1508 * correct counter value and this is irrelevant.
1509 *
1510 * For non-lazy counter filesystems, this doesn't matter at all because
1511 * we only every apply deltas to the superblock and hence the incore
1512 * value does not matter....
1513 */
1514 resblks = 0;
1515 error = xfs_reserve_blocks(mp, &resblks, NULL);
1516 if (error)
1517 xfs_warn(mp, "Unable to free reserved block pool. "
1518 "Freespace may not be correct on next mount.");
1519
1520 error = xfs_log_sbcount(mp);
1521 if (error)
1522 xfs_warn(mp, "Unable to update superblock counters. "
1523 "Freespace may not be correct on next mount.");
1524
1525 /*
1526 * At this point we might have modified the superblock again and thus
1527 * added an item to the AIL, thus flush it again.
1528 */
1529 xfs_ail_push_all_sync(mp->m_ail);
1530 xfs_wait_buftarg(mp->m_ddev_targp);
1531
1532 /*
1533 * The superblock buffer is uncached and xfsaild_push() will lock and
1534 * set the XBF_ASYNC flag on the buffer. We cannot do xfs_buf_iowait()
1535 * here but a lock on the superblock buffer will block until iodone()
1536 * has completed.
1537 */
1538 xfs_buf_lock(mp->m_sb_bp);
1539 xfs_buf_unlock(mp->m_sb_bp);
1540
1541 xfs_log_unmount_write(mp);
1542 xfs_log_unmount(mp);
1543 xfs_uuid_unmount(mp);
1544
1545 #if defined(DEBUG)
1546 xfs_errortag_clearall(mp, 0);
1547 #endif
1548 xfs_free_perag(mp);
1549 }
1550
1551 int
1552 xfs_fs_writable(xfs_mount_t *mp)
1553 {
1554 return !(mp->m_super->s_writers.frozen || XFS_FORCED_SHUTDOWN(mp) ||
1555 (mp->m_flags & XFS_MOUNT_RDONLY));
1556 }
1557
1558 /*
1559 * xfs_log_sbcount
1560 *
1561 * Sync the superblock counters to disk.
1562 *
1563 * Note this code can be called during the process of freezing, so
1564 * we may need to use the transaction allocator which does not
1565 * block when the transaction subsystem is in its frozen state.
1566 */
1567 int
1568 xfs_log_sbcount(xfs_mount_t *mp)
1569 {
1570 xfs_trans_t *tp;
1571 int error;
1572
1573 if (!xfs_fs_writable(mp))
1574 return 0;
1575
1576 xfs_icsb_sync_counters(mp, 0);
1577
1578 /*
1579 * we don't need to do this if we are updating the superblock
1580 * counters on every modification.
1581 */
1582 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1583 return 0;
1584
1585 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
1586 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1587 XFS_DEFAULT_LOG_COUNT);
1588 if (error) {
1589 xfs_trans_cancel(tp, 0);
1590 return error;
1591 }
1592
1593 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1594 xfs_trans_set_sync(tp);
1595 error = xfs_trans_commit(tp, 0);
1596 return error;
1597 }
1598
1599 /*
1600 * xfs_mod_sb() can be used to copy arbitrary changes to the
1601 * in-core superblock into the superblock buffer to be logged.
1602 * It does not provide the higher level of locking that is
1603 * needed to protect the in-core superblock from concurrent
1604 * access.
1605 */
1606 void
1607 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
1608 {
1609 xfs_buf_t *bp;
1610 int first;
1611 int last;
1612 xfs_mount_t *mp;
1613 xfs_sb_field_t f;
1614
1615 ASSERT(fields);
1616 if (!fields)
1617 return;
1618 mp = tp->t_mountp;
1619 bp = xfs_trans_getsb(tp, mp, 0);
1620 first = sizeof(xfs_sb_t);
1621 last = 0;
1622
1623 /* translate/copy */
1624
1625 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields);
1626
1627 /* find modified range */
1628 f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
1629 ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1630 last = xfs_sb_info[f + 1].offset - 1;
1631
1632 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
1633 ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1634 first = xfs_sb_info[f].offset;
1635
1636 xfs_trans_log_buf(tp, bp, first, last);
1637 }
1638
1639
1640 /*
1641 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1642 * a delta to a specified field in the in-core superblock. Simply
1643 * switch on the field indicated and apply the delta to that field.
1644 * Fields are not allowed to dip below zero, so if the delta would
1645 * do this do not apply it and return EINVAL.
1646 *
1647 * The m_sb_lock must be held when this routine is called.
1648 */
1649 STATIC int
1650 xfs_mod_incore_sb_unlocked(
1651 xfs_mount_t *mp,
1652 xfs_sb_field_t field,
1653 int64_t delta,
1654 int rsvd)
1655 {
1656 int scounter; /* short counter for 32 bit fields */
1657 long long lcounter; /* long counter for 64 bit fields */
1658 long long res_used, rem;
1659
1660 /*
1661 * With the in-core superblock spin lock held, switch
1662 * on the indicated field. Apply the delta to the
1663 * proper field. If the fields value would dip below
1664 * 0, then do not apply the delta and return EINVAL.
1665 */
1666 switch (field) {
1667 case XFS_SBS_ICOUNT:
1668 lcounter = (long long)mp->m_sb.sb_icount;
1669 lcounter += delta;
1670 if (lcounter < 0) {
1671 ASSERT(0);
1672 return XFS_ERROR(EINVAL);
1673 }
1674 mp->m_sb.sb_icount = lcounter;
1675 return 0;
1676 case XFS_SBS_IFREE:
1677 lcounter = (long long)mp->m_sb.sb_ifree;
1678 lcounter += delta;
1679 if (lcounter < 0) {
1680 ASSERT(0);
1681 return XFS_ERROR(EINVAL);
1682 }
1683 mp->m_sb.sb_ifree = lcounter;
1684 return 0;
1685 case XFS_SBS_FDBLOCKS:
1686 lcounter = (long long)
1687 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1688 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1689
1690 if (delta > 0) { /* Putting blocks back */
1691 if (res_used > delta) {
1692 mp->m_resblks_avail += delta;
1693 } else {
1694 rem = delta - res_used;
1695 mp->m_resblks_avail = mp->m_resblks;
1696 lcounter += rem;
1697 }
1698 } else { /* Taking blocks away */
1699 lcounter += delta;
1700 if (lcounter >= 0) {
1701 mp->m_sb.sb_fdblocks = lcounter +
1702 XFS_ALLOC_SET_ASIDE(mp);
1703 return 0;
1704 }
1705
1706 /*
1707 * We are out of blocks, use any available reserved
1708 * blocks if were allowed to.
1709 */
1710 if (!rsvd)
1711 return XFS_ERROR(ENOSPC);
1712
1713 lcounter = (long long)mp->m_resblks_avail + delta;
1714 if (lcounter >= 0) {
1715 mp->m_resblks_avail = lcounter;
1716 return 0;
1717 }
1718 printk_once(KERN_WARNING
1719 "Filesystem \"%s\": reserve blocks depleted! "
1720 "Consider increasing reserve pool size.",
1721 mp->m_fsname);
1722 return XFS_ERROR(ENOSPC);
1723 }
1724
1725 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1726 return 0;
1727 case XFS_SBS_FREXTENTS:
1728 lcounter = (long long)mp->m_sb.sb_frextents;
1729 lcounter += delta;
1730 if (lcounter < 0) {
1731 return XFS_ERROR(ENOSPC);
1732 }
1733 mp->m_sb.sb_frextents = lcounter;
1734 return 0;
1735 case XFS_SBS_DBLOCKS:
1736 lcounter = (long long)mp->m_sb.sb_dblocks;
1737 lcounter += delta;
1738 if (lcounter < 0) {
1739 ASSERT(0);
1740 return XFS_ERROR(EINVAL);
1741 }
1742 mp->m_sb.sb_dblocks = lcounter;
1743 return 0;
1744 case XFS_SBS_AGCOUNT:
1745 scounter = mp->m_sb.sb_agcount;
1746 scounter += delta;
1747 if (scounter < 0) {
1748 ASSERT(0);
1749 return XFS_ERROR(EINVAL);
1750 }
1751 mp->m_sb.sb_agcount = scounter;
1752 return 0;
1753 case XFS_SBS_IMAX_PCT:
1754 scounter = mp->m_sb.sb_imax_pct;
1755 scounter += delta;
1756 if (scounter < 0) {
1757 ASSERT(0);
1758 return XFS_ERROR(EINVAL);
1759 }
1760 mp->m_sb.sb_imax_pct = scounter;
1761 return 0;
1762 case XFS_SBS_REXTSIZE:
1763 scounter = mp->m_sb.sb_rextsize;
1764 scounter += delta;
1765 if (scounter < 0) {
1766 ASSERT(0);
1767 return XFS_ERROR(EINVAL);
1768 }
1769 mp->m_sb.sb_rextsize = scounter;
1770 return 0;
1771 case XFS_SBS_RBMBLOCKS:
1772 scounter = mp->m_sb.sb_rbmblocks;
1773 scounter += delta;
1774 if (scounter < 0) {
1775 ASSERT(0);
1776 return XFS_ERROR(EINVAL);
1777 }
1778 mp->m_sb.sb_rbmblocks = scounter;
1779 return 0;
1780 case XFS_SBS_RBLOCKS:
1781 lcounter = (long long)mp->m_sb.sb_rblocks;
1782 lcounter += delta;
1783 if (lcounter < 0) {
1784 ASSERT(0);
1785 return XFS_ERROR(EINVAL);
1786 }
1787 mp->m_sb.sb_rblocks = lcounter;
1788 return 0;
1789 case XFS_SBS_REXTENTS:
1790 lcounter = (long long)mp->m_sb.sb_rextents;
1791 lcounter += delta;
1792 if (lcounter < 0) {
1793 ASSERT(0);
1794 return XFS_ERROR(EINVAL);
1795 }
1796 mp->m_sb.sb_rextents = lcounter;
1797 return 0;
1798 case XFS_SBS_REXTSLOG:
1799 scounter = mp->m_sb.sb_rextslog;
1800 scounter += delta;
1801 if (scounter < 0) {
1802 ASSERT(0);
1803 return XFS_ERROR(EINVAL);
1804 }
1805 mp->m_sb.sb_rextslog = scounter;
1806 return 0;
1807 default:
1808 ASSERT(0);
1809 return XFS_ERROR(EINVAL);
1810 }
1811 }
1812
1813 /*
1814 * xfs_mod_incore_sb() is used to change a field in the in-core
1815 * superblock structure by the specified delta. This modification
1816 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked()
1817 * routine to do the work.
1818 */
1819 int
1820 xfs_mod_incore_sb(
1821 struct xfs_mount *mp,
1822 xfs_sb_field_t field,
1823 int64_t delta,
1824 int rsvd)
1825 {
1826 int status;
1827
1828 #ifdef HAVE_PERCPU_SB
1829 ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS);
1830 #endif
1831 spin_lock(&mp->m_sb_lock);
1832 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1833 spin_unlock(&mp->m_sb_lock);
1834
1835 return status;
1836 }
1837
1838 /*
1839 * Change more than one field in the in-core superblock structure at a time.
1840 *
1841 * The fields and changes to those fields are specified in the array of
1842 * xfs_mod_sb structures passed in. Either all of the specified deltas
1843 * will be applied or none of them will. If any modified field dips below 0,
1844 * then all modifications will be backed out and EINVAL will be returned.
1845 *
1846 * Note that this function may not be used for the superblock values that
1847 * are tracked with the in-memory per-cpu counters - a direct call to
1848 * xfs_icsb_modify_counters is required for these.
1849 */
1850 int
1851 xfs_mod_incore_sb_batch(
1852 struct xfs_mount *mp,
1853 xfs_mod_sb_t *msb,
1854 uint nmsb,
1855 int rsvd)
1856 {
1857 xfs_mod_sb_t *msbp;
1858 int error = 0;
1859
1860 /*
1861 * Loop through the array of mod structures and apply each individually.
1862 * If any fail, then back out all those which have already been applied.
1863 * Do all of this within the scope of the m_sb_lock so that all of the
1864 * changes will be atomic.
1865 */
1866 spin_lock(&mp->m_sb_lock);
1867 for (msbp = msb; msbp < (msb + nmsb); msbp++) {
1868 ASSERT(msbp->msb_field < XFS_SBS_ICOUNT ||
1869 msbp->msb_field > XFS_SBS_FDBLOCKS);
1870
1871 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1872 msbp->msb_delta, rsvd);
1873 if (error)
1874 goto unwind;
1875 }
1876 spin_unlock(&mp->m_sb_lock);
1877 return 0;
1878
1879 unwind:
1880 while (--msbp >= msb) {
1881 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1882 -msbp->msb_delta, rsvd);
1883 ASSERT(error == 0);
1884 }
1885 spin_unlock(&mp->m_sb_lock);
1886 return error;
1887 }
1888
1889 /*
1890 * xfs_getsb() is called to obtain the buffer for the superblock.
1891 * The buffer is returned locked and read in from disk.
1892 * The buffer should be released with a call to xfs_brelse().
1893 *
1894 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1895 * the superblock buffer if it can be locked without sleeping.
1896 * If it can't then we'll return NULL.
1897 */
1898 struct xfs_buf *
1899 xfs_getsb(
1900 struct xfs_mount *mp,
1901 int flags)
1902 {
1903 struct xfs_buf *bp = mp->m_sb_bp;
1904
1905 if (!xfs_buf_trylock(bp)) {
1906 if (flags & XBF_TRYLOCK)
1907 return NULL;
1908 xfs_buf_lock(bp);
1909 }
1910
1911 xfs_buf_hold(bp);
1912 ASSERT(XFS_BUF_ISDONE(bp));
1913 return bp;
1914 }
1915
1916 /*
1917 * Used to free the superblock along various error paths.
1918 */
1919 void
1920 xfs_freesb(
1921 struct xfs_mount *mp)
1922 {
1923 struct xfs_buf *bp = mp->m_sb_bp;
1924
1925 xfs_buf_lock(bp);
1926 mp->m_sb_bp = NULL;
1927 xfs_buf_relse(bp);
1928 }
1929
1930 /*
1931 * Used to log changes to the superblock unit and width fields which could
1932 * be altered by the mount options, as well as any potential sb_features2
1933 * fixup. Only the first superblock is updated.
1934 */
1935 int
1936 xfs_mount_log_sb(
1937 xfs_mount_t *mp,
1938 __int64_t fields)
1939 {
1940 xfs_trans_t *tp;
1941 int error;
1942
1943 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
1944 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
1945 XFS_SB_VERSIONNUM));
1946
1947 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
1948 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1949 XFS_DEFAULT_LOG_COUNT);
1950 if (error) {
1951 xfs_trans_cancel(tp, 0);
1952 return error;
1953 }
1954 xfs_mod_sb(tp, fields);
1955 error = xfs_trans_commit(tp, 0);
1956 return error;
1957 }
1958
1959 /*
1960 * If the underlying (data/log/rt) device is readonly, there are some
1961 * operations that cannot proceed.
1962 */
1963 int
1964 xfs_dev_is_read_only(
1965 struct xfs_mount *mp,
1966 char *message)
1967 {
1968 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1969 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1970 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1971 xfs_notice(mp, "%s required on read-only device.", message);
1972 xfs_notice(mp, "write access unavailable, cannot proceed.");
1973 return EROFS;
1974 }
1975 return 0;
1976 }
1977
1978 #ifdef HAVE_PERCPU_SB
1979 /*
1980 * Per-cpu incore superblock counters
1981 *
1982 * Simple concept, difficult implementation
1983 *
1984 * Basically, replace the incore superblock counters with a distributed per cpu
1985 * counter for contended fields (e.g. free block count).
1986 *
1987 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1988 * hence needs to be accurately read when we are running low on space. Hence
1989 * there is a method to enable and disable the per-cpu counters based on how
1990 * much "stuff" is available in them.
1991 *
1992 * Basically, a counter is enabled if there is enough free resource to justify
1993 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1994 * ENOSPC), then we disable the counters to synchronise all callers and
1995 * re-distribute the available resources.
1996 *
1997 * If, once we redistributed the available resources, we still get a failure,
1998 * we disable the per-cpu counter and go through the slow path.
1999 *
2000 * The slow path is the current xfs_mod_incore_sb() function. This means that
2001 * when we disable a per-cpu counter, we need to drain its resources back to
2002 * the global superblock. We do this after disabling the counter to prevent
2003 * more threads from queueing up on the counter.
2004 *
2005 * Essentially, this means that we still need a lock in the fast path to enable
2006 * synchronisation between the global counters and the per-cpu counters. This
2007 * is not a problem because the lock will be local to a CPU almost all the time
2008 * and have little contention except when we get to ENOSPC conditions.
2009 *
2010 * Basically, this lock becomes a barrier that enables us to lock out the fast
2011 * path while we do things like enabling and disabling counters and
2012 * synchronising the counters.
2013 *
2014 * Locking rules:
2015 *
2016 * 1. m_sb_lock before picking up per-cpu locks
2017 * 2. per-cpu locks always picked up via for_each_online_cpu() order
2018 * 3. accurate counter sync requires m_sb_lock + per cpu locks
2019 * 4. modifying per-cpu counters requires holding per-cpu lock
2020 * 5. modifying global counters requires holding m_sb_lock
2021 * 6. enabling or disabling a counter requires holding the m_sb_lock
2022 * and _none_ of the per-cpu locks.
2023 *
2024 * Disabled counters are only ever re-enabled by a balance operation
2025 * that results in more free resources per CPU than a given threshold.
2026 * To ensure counters don't remain disabled, they are rebalanced when
2027 * the global resource goes above a higher threshold (i.e. some hysteresis
2028 * is present to prevent thrashing).
2029 */
2030
2031 #ifdef CONFIG_HOTPLUG_CPU
2032 /*
2033 * hot-plug CPU notifier support.
2034 *
2035 * We need a notifier per filesystem as we need to be able to identify
2036 * the filesystem to balance the counters out. This is achieved by
2037 * having a notifier block embedded in the xfs_mount_t and doing pointer
2038 * magic to get the mount pointer from the notifier block address.
2039 */
2040 STATIC int
2041 xfs_icsb_cpu_notify(
2042 struct notifier_block *nfb,
2043 unsigned long action,
2044 void *hcpu)
2045 {
2046 xfs_icsb_cnts_t *cntp;
2047 xfs_mount_t *mp;
2048
2049 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
2050 cntp = (xfs_icsb_cnts_t *)
2051 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
2052 switch (action) {
2053 case CPU_UP_PREPARE:
2054 case CPU_UP_PREPARE_FROZEN:
2055 /* Easy Case - initialize the area and locks, and
2056 * then rebalance when online does everything else for us. */
2057 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2058 break;
2059 case CPU_ONLINE:
2060 case CPU_ONLINE_FROZEN:
2061 xfs_icsb_lock(mp);
2062 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2063 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2064 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2065 xfs_icsb_unlock(mp);
2066 break;
2067 case CPU_DEAD:
2068 case CPU_DEAD_FROZEN:
2069 /* Disable all the counters, then fold the dead cpu's
2070 * count into the total on the global superblock and
2071 * re-enable the counters. */
2072 xfs_icsb_lock(mp);
2073 spin_lock(&mp->m_sb_lock);
2074 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
2075 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
2076 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
2077
2078 mp->m_sb.sb_icount += cntp->icsb_icount;
2079 mp->m_sb.sb_ifree += cntp->icsb_ifree;
2080 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
2081
2082 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2083
2084 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
2085 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
2086 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
2087 spin_unlock(&mp->m_sb_lock);
2088 xfs_icsb_unlock(mp);
2089 break;
2090 }
2091
2092 return NOTIFY_OK;
2093 }
2094 #endif /* CONFIG_HOTPLUG_CPU */
2095
2096 int
2097 xfs_icsb_init_counters(
2098 xfs_mount_t *mp)
2099 {
2100 xfs_icsb_cnts_t *cntp;
2101 int i;
2102
2103 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
2104 if (mp->m_sb_cnts == NULL)
2105 return -ENOMEM;
2106
2107 #ifdef CONFIG_HOTPLUG_CPU
2108 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
2109 mp->m_icsb_notifier.priority = 0;
2110 register_hotcpu_notifier(&mp->m_icsb_notifier);
2111 #endif /* CONFIG_HOTPLUG_CPU */
2112
2113 for_each_online_cpu(i) {
2114 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2115 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2116 }
2117
2118 mutex_init(&mp->m_icsb_mutex);
2119
2120 /*
2121 * start with all counters disabled so that the
2122 * initial balance kicks us off correctly
2123 */
2124 mp->m_icsb_counters = -1;
2125 return 0;
2126 }
2127
2128 void
2129 xfs_icsb_reinit_counters(
2130 xfs_mount_t *mp)
2131 {
2132 xfs_icsb_lock(mp);
2133 /*
2134 * start with all counters disabled so that the
2135 * initial balance kicks us off correctly
2136 */
2137 mp->m_icsb_counters = -1;
2138 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2139 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2140 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2141 xfs_icsb_unlock(mp);
2142 }
2143
2144 void
2145 xfs_icsb_destroy_counters(
2146 xfs_mount_t *mp)
2147 {
2148 if (mp->m_sb_cnts) {
2149 unregister_hotcpu_notifier(&mp->m_icsb_notifier);
2150 free_percpu(mp->m_sb_cnts);
2151 }
2152 mutex_destroy(&mp->m_icsb_mutex);
2153 }
2154
2155 STATIC void
2156 xfs_icsb_lock_cntr(
2157 xfs_icsb_cnts_t *icsbp)
2158 {
2159 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
2160 ndelay(1000);
2161 }
2162 }
2163
2164 STATIC void
2165 xfs_icsb_unlock_cntr(
2166 xfs_icsb_cnts_t *icsbp)
2167 {
2168 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
2169 }
2170
2171
2172 STATIC void
2173 xfs_icsb_lock_all_counters(
2174 xfs_mount_t *mp)
2175 {
2176 xfs_icsb_cnts_t *cntp;
2177 int i;
2178
2179 for_each_online_cpu(i) {
2180 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2181 xfs_icsb_lock_cntr(cntp);
2182 }
2183 }
2184
2185 STATIC void
2186 xfs_icsb_unlock_all_counters(
2187 xfs_mount_t *mp)
2188 {
2189 xfs_icsb_cnts_t *cntp;
2190 int i;
2191
2192 for_each_online_cpu(i) {
2193 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2194 xfs_icsb_unlock_cntr(cntp);
2195 }
2196 }
2197
2198 STATIC void
2199 xfs_icsb_count(
2200 xfs_mount_t *mp,
2201 xfs_icsb_cnts_t *cnt,
2202 int flags)
2203 {
2204 xfs_icsb_cnts_t *cntp;
2205 int i;
2206
2207 memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
2208
2209 if (!(flags & XFS_ICSB_LAZY_COUNT))
2210 xfs_icsb_lock_all_counters(mp);
2211
2212 for_each_online_cpu(i) {
2213 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2214 cnt->icsb_icount += cntp->icsb_icount;
2215 cnt->icsb_ifree += cntp->icsb_ifree;
2216 cnt->icsb_fdblocks += cntp->icsb_fdblocks;
2217 }
2218
2219 if (!(flags & XFS_ICSB_LAZY_COUNT))
2220 xfs_icsb_unlock_all_counters(mp);
2221 }
2222
2223 STATIC int
2224 xfs_icsb_counter_disabled(
2225 xfs_mount_t *mp,
2226 xfs_sb_field_t field)
2227 {
2228 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2229 return test_bit(field, &mp->m_icsb_counters);
2230 }
2231
2232 STATIC void
2233 xfs_icsb_disable_counter(
2234 xfs_mount_t *mp,
2235 xfs_sb_field_t field)
2236 {
2237 xfs_icsb_cnts_t cnt;
2238
2239 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2240
2241 /*
2242 * If we are already disabled, then there is nothing to do
2243 * here. We check before locking all the counters to avoid
2244 * the expensive lock operation when being called in the
2245 * slow path and the counter is already disabled. This is
2246 * safe because the only time we set or clear this state is under
2247 * the m_icsb_mutex.
2248 */
2249 if (xfs_icsb_counter_disabled(mp, field))
2250 return;
2251
2252 xfs_icsb_lock_all_counters(mp);
2253 if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
2254 /* drain back to superblock */
2255
2256 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
2257 switch(field) {
2258 case XFS_SBS_ICOUNT:
2259 mp->m_sb.sb_icount = cnt.icsb_icount;
2260 break;
2261 case XFS_SBS_IFREE:
2262 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2263 break;
2264 case XFS_SBS_FDBLOCKS:
2265 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2266 break;
2267 default:
2268 BUG();
2269 }
2270 }
2271
2272 xfs_icsb_unlock_all_counters(mp);
2273 }
2274
2275 STATIC void
2276 xfs_icsb_enable_counter(
2277 xfs_mount_t *mp,
2278 xfs_sb_field_t field,
2279 uint64_t count,
2280 uint64_t resid)
2281 {
2282 xfs_icsb_cnts_t *cntp;
2283 int i;
2284
2285 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2286
2287 xfs_icsb_lock_all_counters(mp);
2288 for_each_online_cpu(i) {
2289 cntp = per_cpu_ptr(mp->m_sb_cnts, i);
2290 switch (field) {
2291 case XFS_SBS_ICOUNT:
2292 cntp->icsb_icount = count + resid;
2293 break;
2294 case XFS_SBS_IFREE:
2295 cntp->icsb_ifree = count + resid;
2296 break;
2297 case XFS_SBS_FDBLOCKS:
2298 cntp->icsb_fdblocks = count + resid;
2299 break;
2300 default:
2301 BUG();
2302 break;
2303 }
2304 resid = 0;
2305 }
2306 clear_bit(field, &mp->m_icsb_counters);
2307 xfs_icsb_unlock_all_counters(mp);
2308 }
2309
2310 void
2311 xfs_icsb_sync_counters_locked(
2312 xfs_mount_t *mp,
2313 int flags)
2314 {
2315 xfs_icsb_cnts_t cnt;
2316
2317 xfs_icsb_count(mp, &cnt, flags);
2318
2319 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
2320 mp->m_sb.sb_icount = cnt.icsb_icount;
2321 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
2322 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2323 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
2324 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2325 }
2326
2327 /*
2328 * Accurate update of per-cpu counters to incore superblock
2329 */
2330 void
2331 xfs_icsb_sync_counters(
2332 xfs_mount_t *mp,
2333 int flags)
2334 {
2335 spin_lock(&mp->m_sb_lock);
2336 xfs_icsb_sync_counters_locked(mp, flags);
2337 spin_unlock(&mp->m_sb_lock);
2338 }
2339
2340 /*
2341 * Balance and enable/disable counters as necessary.
2342 *
2343 * Thresholds for re-enabling counters are somewhat magic. inode counts are
2344 * chosen to be the same number as single on disk allocation chunk per CPU, and
2345 * free blocks is something far enough zero that we aren't going thrash when we
2346 * get near ENOSPC. We also need to supply a minimum we require per cpu to
2347 * prevent looping endlessly when xfs_alloc_space asks for more than will
2348 * be distributed to a single CPU but each CPU has enough blocks to be
2349 * reenabled.
2350 *
2351 * Note that we can be called when counters are already disabled.
2352 * xfs_icsb_disable_counter() optimises the counter locking in this case to
2353 * prevent locking every per-cpu counter needlessly.
2354 */
2355
2356 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64
2357 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2358 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2359 STATIC void
2360 xfs_icsb_balance_counter_locked(
2361 xfs_mount_t *mp,
2362 xfs_sb_field_t field,
2363 int min_per_cpu)
2364 {
2365 uint64_t count, resid;
2366 int weight = num_online_cpus();
2367 uint64_t min = (uint64_t)min_per_cpu;
2368
2369 /* disable counter and sync counter */
2370 xfs_icsb_disable_counter(mp, field);
2371
2372 /* update counters - first CPU gets residual*/
2373 switch (field) {
2374 case XFS_SBS_ICOUNT:
2375 count = mp->m_sb.sb_icount;
2376 resid = do_div(count, weight);
2377 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2378 return;
2379 break;
2380 case XFS_SBS_IFREE:
2381 count = mp->m_sb.sb_ifree;
2382 resid = do_div(count, weight);
2383 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2384 return;
2385 break;
2386 case XFS_SBS_FDBLOCKS:
2387 count = mp->m_sb.sb_fdblocks;
2388 resid = do_div(count, weight);
2389 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
2390 return;
2391 break;
2392 default:
2393 BUG();
2394 count = resid = 0; /* quiet, gcc */
2395 break;
2396 }
2397
2398 xfs_icsb_enable_counter(mp, field, count, resid);
2399 }
2400
2401 STATIC void
2402 xfs_icsb_balance_counter(
2403 xfs_mount_t *mp,
2404 xfs_sb_field_t fields,
2405 int min_per_cpu)
2406 {
2407 spin_lock(&mp->m_sb_lock);
2408 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
2409 spin_unlock(&mp->m_sb_lock);
2410 }
2411
2412 int
2413 xfs_icsb_modify_counters(
2414 xfs_mount_t *mp,
2415 xfs_sb_field_t field,
2416 int64_t delta,
2417 int rsvd)
2418 {
2419 xfs_icsb_cnts_t *icsbp;
2420 long long lcounter; /* long counter for 64 bit fields */
2421 int ret = 0;
2422
2423 might_sleep();
2424 again:
2425 preempt_disable();
2426 icsbp = this_cpu_ptr(mp->m_sb_cnts);
2427
2428 /*
2429 * if the counter is disabled, go to slow path
2430 */
2431 if (unlikely(xfs_icsb_counter_disabled(mp, field)))
2432 goto slow_path;
2433 xfs_icsb_lock_cntr(icsbp);
2434 if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
2435 xfs_icsb_unlock_cntr(icsbp);
2436 goto slow_path;
2437 }
2438
2439 switch (field) {
2440 case XFS_SBS_ICOUNT:
2441 lcounter = icsbp->icsb_icount;
2442 lcounter += delta;
2443 if (unlikely(lcounter < 0))
2444 goto balance_counter;
2445 icsbp->icsb_icount = lcounter;
2446 break;
2447
2448 case XFS_SBS_IFREE:
2449 lcounter = icsbp->icsb_ifree;
2450 lcounter += delta;
2451 if (unlikely(lcounter < 0))
2452 goto balance_counter;
2453 icsbp->icsb_ifree = lcounter;
2454 break;
2455
2456 case XFS_SBS_FDBLOCKS:
2457 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
2458
2459 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
2460 lcounter += delta;
2461 if (unlikely(lcounter < 0))
2462 goto balance_counter;
2463 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
2464 break;
2465 default:
2466 BUG();
2467 break;
2468 }
2469 xfs_icsb_unlock_cntr(icsbp);
2470 preempt_enable();
2471 return 0;
2472
2473 slow_path:
2474 preempt_enable();
2475
2476 /*
2477 * serialise with a mutex so we don't burn lots of cpu on
2478 * the superblock lock. We still need to hold the superblock
2479 * lock, however, when we modify the global structures.
2480 */
2481 xfs_icsb_lock(mp);
2482
2483 /*
2484 * Now running atomically.
2485 *
2486 * If the counter is enabled, someone has beaten us to rebalancing.
2487 * Drop the lock and try again in the fast path....
2488 */
2489 if (!(xfs_icsb_counter_disabled(mp, field))) {
2490 xfs_icsb_unlock(mp);
2491 goto again;
2492 }
2493
2494 /*
2495 * The counter is currently disabled. Because we are
2496 * running atomically here, we know a rebalance cannot
2497 * be in progress. Hence we can go straight to operating
2498 * on the global superblock. We do not call xfs_mod_incore_sb()
2499 * here even though we need to get the m_sb_lock. Doing so
2500 * will cause us to re-enter this function and deadlock.
2501 * Hence we get the m_sb_lock ourselves and then call
2502 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2503 * directly on the global counters.
2504 */
2505 spin_lock(&mp->m_sb_lock);
2506 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
2507 spin_unlock(&mp->m_sb_lock);
2508
2509 /*
2510 * Now that we've modified the global superblock, we
2511 * may be able to re-enable the distributed counters
2512 * (e.g. lots of space just got freed). After that
2513 * we are done.
2514 */
2515 if (ret != ENOSPC)
2516 xfs_icsb_balance_counter(mp, field, 0);
2517 xfs_icsb_unlock(mp);
2518 return ret;
2519
2520 balance_counter:
2521 xfs_icsb_unlock_cntr(icsbp);
2522 preempt_enable();
2523
2524 /*
2525 * We may have multiple threads here if multiple per-cpu
2526 * counters run dry at the same time. This will mean we can
2527 * do more balances than strictly necessary but it is not
2528 * the common slowpath case.
2529 */
2530 xfs_icsb_lock(mp);
2531
2532 /*
2533 * running atomically.
2534 *
2535 * This will leave the counter in the correct state for future
2536 * accesses. After the rebalance, we simply try again and our retry
2537 * will either succeed through the fast path or slow path without
2538 * another balance operation being required.
2539 */
2540 xfs_icsb_balance_counter(mp, field, delta);
2541 xfs_icsb_unlock(mp);
2542 goto again;
2543 }
2544
2545 #endif
This page took 0.082854 seconds and 5 git commands to generate.