ravb: kill useless initializers
[deliverable/linux.git] / fs / xfs / xfs_mount.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_da_format.h"
28 #include "xfs_da_btree.h"
29 #include "xfs_inode.h"
30 #include "xfs_dir2.h"
31 #include "xfs_ialloc.h"
32 #include "xfs_alloc.h"
33 #include "xfs_rtalloc.h"
34 #include "xfs_bmap.h"
35 #include "xfs_trans.h"
36 #include "xfs_trans_priv.h"
37 #include "xfs_log.h"
38 #include "xfs_error.h"
39 #include "xfs_quota.h"
40 #include "xfs_fsops.h"
41 #include "xfs_trace.h"
42 #include "xfs_icache.h"
43 #include "xfs_sysfs.h"
44
45
46 static DEFINE_MUTEX(xfs_uuid_table_mutex);
47 static int xfs_uuid_table_size;
48 static uuid_t *xfs_uuid_table;
49
50 /*
51 * See if the UUID is unique among mounted XFS filesystems.
52 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
53 */
54 STATIC int
55 xfs_uuid_mount(
56 struct xfs_mount *mp)
57 {
58 uuid_t *uuid = &mp->m_sb.sb_uuid;
59 int hole, i;
60
61 if (mp->m_flags & XFS_MOUNT_NOUUID)
62 return 0;
63
64 if (uuid_is_nil(uuid)) {
65 xfs_warn(mp, "Filesystem has nil UUID - can't mount");
66 return -EINVAL;
67 }
68
69 mutex_lock(&xfs_uuid_table_mutex);
70 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
71 if (uuid_is_nil(&xfs_uuid_table[i])) {
72 hole = i;
73 continue;
74 }
75 if (uuid_equal(uuid, &xfs_uuid_table[i]))
76 goto out_duplicate;
77 }
78
79 if (hole < 0) {
80 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
81 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
82 xfs_uuid_table_size * sizeof(*xfs_uuid_table),
83 KM_SLEEP);
84 hole = xfs_uuid_table_size++;
85 }
86 xfs_uuid_table[hole] = *uuid;
87 mutex_unlock(&xfs_uuid_table_mutex);
88
89 return 0;
90
91 out_duplicate:
92 mutex_unlock(&xfs_uuid_table_mutex);
93 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
94 return -EINVAL;
95 }
96
97 STATIC void
98 xfs_uuid_unmount(
99 struct xfs_mount *mp)
100 {
101 uuid_t *uuid = &mp->m_sb.sb_uuid;
102 int i;
103
104 if (mp->m_flags & XFS_MOUNT_NOUUID)
105 return;
106
107 mutex_lock(&xfs_uuid_table_mutex);
108 for (i = 0; i < xfs_uuid_table_size; i++) {
109 if (uuid_is_nil(&xfs_uuid_table[i]))
110 continue;
111 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
112 continue;
113 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
114 break;
115 }
116 ASSERT(i < xfs_uuid_table_size);
117 mutex_unlock(&xfs_uuid_table_mutex);
118 }
119
120
121 STATIC void
122 __xfs_free_perag(
123 struct rcu_head *head)
124 {
125 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
126
127 ASSERT(atomic_read(&pag->pag_ref) == 0);
128 kmem_free(pag);
129 }
130
131 /*
132 * Free up the per-ag resources associated with the mount structure.
133 */
134 STATIC void
135 xfs_free_perag(
136 xfs_mount_t *mp)
137 {
138 xfs_agnumber_t agno;
139 struct xfs_perag *pag;
140
141 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
142 spin_lock(&mp->m_perag_lock);
143 pag = radix_tree_delete(&mp->m_perag_tree, agno);
144 spin_unlock(&mp->m_perag_lock);
145 ASSERT(pag);
146 ASSERT(atomic_read(&pag->pag_ref) == 0);
147 call_rcu(&pag->rcu_head, __xfs_free_perag);
148 }
149 }
150
151 /*
152 * Check size of device based on the (data/realtime) block count.
153 * Note: this check is used by the growfs code as well as mount.
154 */
155 int
156 xfs_sb_validate_fsb_count(
157 xfs_sb_t *sbp,
158 __uint64_t nblocks)
159 {
160 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
161 ASSERT(sbp->sb_blocklog >= BBSHIFT);
162
163 /* Limited by ULONG_MAX of page cache index */
164 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
165 return -EFBIG;
166 return 0;
167 }
168
169 int
170 xfs_initialize_perag(
171 xfs_mount_t *mp,
172 xfs_agnumber_t agcount,
173 xfs_agnumber_t *maxagi)
174 {
175 xfs_agnumber_t index;
176 xfs_agnumber_t first_initialised = 0;
177 xfs_perag_t *pag;
178 xfs_agino_t agino;
179 xfs_ino_t ino;
180 xfs_sb_t *sbp = &mp->m_sb;
181 int error = -ENOMEM;
182
183 /*
184 * Walk the current per-ag tree so we don't try to initialise AGs
185 * that already exist (growfs case). Allocate and insert all the
186 * AGs we don't find ready for initialisation.
187 */
188 for (index = 0; index < agcount; index++) {
189 pag = xfs_perag_get(mp, index);
190 if (pag) {
191 xfs_perag_put(pag);
192 continue;
193 }
194 if (!first_initialised)
195 first_initialised = index;
196
197 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
198 if (!pag)
199 goto out_unwind;
200 pag->pag_agno = index;
201 pag->pag_mount = mp;
202 spin_lock_init(&pag->pag_ici_lock);
203 mutex_init(&pag->pag_ici_reclaim_lock);
204 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
205 spin_lock_init(&pag->pag_buf_lock);
206 pag->pag_buf_tree = RB_ROOT;
207
208 if (radix_tree_preload(GFP_NOFS))
209 goto out_unwind;
210
211 spin_lock(&mp->m_perag_lock);
212 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
213 BUG();
214 spin_unlock(&mp->m_perag_lock);
215 radix_tree_preload_end();
216 error = -EEXIST;
217 goto out_unwind;
218 }
219 spin_unlock(&mp->m_perag_lock);
220 radix_tree_preload_end();
221 }
222
223 /*
224 * If we mount with the inode64 option, or no inode overflows
225 * the legacy 32-bit address space clear the inode32 option.
226 */
227 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
228 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
229
230 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
231 mp->m_flags |= XFS_MOUNT_32BITINODES;
232 else
233 mp->m_flags &= ~XFS_MOUNT_32BITINODES;
234
235 if (mp->m_flags & XFS_MOUNT_32BITINODES)
236 index = xfs_set_inode32(mp, agcount);
237 else
238 index = xfs_set_inode64(mp, agcount);
239
240 if (maxagi)
241 *maxagi = index;
242 return 0;
243
244 out_unwind:
245 kmem_free(pag);
246 for (; index > first_initialised; index--) {
247 pag = radix_tree_delete(&mp->m_perag_tree, index);
248 kmem_free(pag);
249 }
250 return error;
251 }
252
253 /*
254 * xfs_readsb
255 *
256 * Does the initial read of the superblock.
257 */
258 int
259 xfs_readsb(
260 struct xfs_mount *mp,
261 int flags)
262 {
263 unsigned int sector_size;
264 struct xfs_buf *bp;
265 struct xfs_sb *sbp = &mp->m_sb;
266 int error;
267 int loud = !(flags & XFS_MFSI_QUIET);
268 const struct xfs_buf_ops *buf_ops;
269
270 ASSERT(mp->m_sb_bp == NULL);
271 ASSERT(mp->m_ddev_targp != NULL);
272
273 /*
274 * For the initial read, we must guess at the sector
275 * size based on the block device. It's enough to
276 * get the sb_sectsize out of the superblock and
277 * then reread with the proper length.
278 * We don't verify it yet, because it may not be complete.
279 */
280 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
281 buf_ops = NULL;
282
283 /*
284 * Allocate a (locked) buffer to hold the superblock.
285 * This will be kept around at all times to optimize
286 * access to the superblock.
287 */
288 reread:
289 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
290 BTOBB(sector_size), 0, &bp, buf_ops);
291 if (error) {
292 if (loud)
293 xfs_warn(mp, "SB validate failed with error %d.", error);
294 /* bad CRC means corrupted metadata */
295 if (error == -EFSBADCRC)
296 error = -EFSCORRUPTED;
297 return error;
298 }
299
300 /*
301 * Initialize the mount structure from the superblock.
302 */
303 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
304
305 /*
306 * If we haven't validated the superblock, do so now before we try
307 * to check the sector size and reread the superblock appropriately.
308 */
309 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
310 if (loud)
311 xfs_warn(mp, "Invalid superblock magic number");
312 error = -EINVAL;
313 goto release_buf;
314 }
315
316 /*
317 * We must be able to do sector-sized and sector-aligned IO.
318 */
319 if (sector_size > sbp->sb_sectsize) {
320 if (loud)
321 xfs_warn(mp, "device supports %u byte sectors (not %u)",
322 sector_size, sbp->sb_sectsize);
323 error = -ENOSYS;
324 goto release_buf;
325 }
326
327 if (buf_ops == NULL) {
328 /*
329 * Re-read the superblock so the buffer is correctly sized,
330 * and properly verified.
331 */
332 xfs_buf_relse(bp);
333 sector_size = sbp->sb_sectsize;
334 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
335 goto reread;
336 }
337
338 xfs_reinit_percpu_counters(mp);
339
340 /* no need to be quiet anymore, so reset the buf ops */
341 bp->b_ops = &xfs_sb_buf_ops;
342
343 mp->m_sb_bp = bp;
344 xfs_buf_unlock(bp);
345 return 0;
346
347 release_buf:
348 xfs_buf_relse(bp);
349 return error;
350 }
351
352 /*
353 * Update alignment values based on mount options and sb values
354 */
355 STATIC int
356 xfs_update_alignment(xfs_mount_t *mp)
357 {
358 xfs_sb_t *sbp = &(mp->m_sb);
359
360 if (mp->m_dalign) {
361 /*
362 * If stripe unit and stripe width are not multiples
363 * of the fs blocksize turn off alignment.
364 */
365 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
366 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
367 xfs_warn(mp,
368 "alignment check failed: sunit/swidth vs. blocksize(%d)",
369 sbp->sb_blocksize);
370 return -EINVAL;
371 } else {
372 /*
373 * Convert the stripe unit and width to FSBs.
374 */
375 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
376 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
377 xfs_warn(mp,
378 "alignment check failed: sunit/swidth vs. agsize(%d)",
379 sbp->sb_agblocks);
380 return -EINVAL;
381 } else if (mp->m_dalign) {
382 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
383 } else {
384 xfs_warn(mp,
385 "alignment check failed: sunit(%d) less than bsize(%d)",
386 mp->m_dalign, sbp->sb_blocksize);
387 return -EINVAL;
388 }
389 }
390
391 /*
392 * Update superblock with new values
393 * and log changes
394 */
395 if (xfs_sb_version_hasdalign(sbp)) {
396 if (sbp->sb_unit != mp->m_dalign) {
397 sbp->sb_unit = mp->m_dalign;
398 mp->m_update_sb = true;
399 }
400 if (sbp->sb_width != mp->m_swidth) {
401 sbp->sb_width = mp->m_swidth;
402 mp->m_update_sb = true;
403 }
404 } else {
405 xfs_warn(mp,
406 "cannot change alignment: superblock does not support data alignment");
407 return -EINVAL;
408 }
409 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
410 xfs_sb_version_hasdalign(&mp->m_sb)) {
411 mp->m_dalign = sbp->sb_unit;
412 mp->m_swidth = sbp->sb_width;
413 }
414
415 return 0;
416 }
417
418 /*
419 * Set the maximum inode count for this filesystem
420 */
421 STATIC void
422 xfs_set_maxicount(xfs_mount_t *mp)
423 {
424 xfs_sb_t *sbp = &(mp->m_sb);
425 __uint64_t icount;
426
427 if (sbp->sb_imax_pct) {
428 /*
429 * Make sure the maximum inode count is a multiple
430 * of the units we allocate inodes in.
431 */
432 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
433 do_div(icount, 100);
434 do_div(icount, mp->m_ialloc_blks);
435 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
436 sbp->sb_inopblog;
437 } else {
438 mp->m_maxicount = 0;
439 }
440 }
441
442 /*
443 * Set the default minimum read and write sizes unless
444 * already specified in a mount option.
445 * We use smaller I/O sizes when the file system
446 * is being used for NFS service (wsync mount option).
447 */
448 STATIC void
449 xfs_set_rw_sizes(xfs_mount_t *mp)
450 {
451 xfs_sb_t *sbp = &(mp->m_sb);
452 int readio_log, writeio_log;
453
454 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
455 if (mp->m_flags & XFS_MOUNT_WSYNC) {
456 readio_log = XFS_WSYNC_READIO_LOG;
457 writeio_log = XFS_WSYNC_WRITEIO_LOG;
458 } else {
459 readio_log = XFS_READIO_LOG_LARGE;
460 writeio_log = XFS_WRITEIO_LOG_LARGE;
461 }
462 } else {
463 readio_log = mp->m_readio_log;
464 writeio_log = mp->m_writeio_log;
465 }
466
467 if (sbp->sb_blocklog > readio_log) {
468 mp->m_readio_log = sbp->sb_blocklog;
469 } else {
470 mp->m_readio_log = readio_log;
471 }
472 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
473 if (sbp->sb_blocklog > writeio_log) {
474 mp->m_writeio_log = sbp->sb_blocklog;
475 } else {
476 mp->m_writeio_log = writeio_log;
477 }
478 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
479 }
480
481 /*
482 * precalculate the low space thresholds for dynamic speculative preallocation.
483 */
484 void
485 xfs_set_low_space_thresholds(
486 struct xfs_mount *mp)
487 {
488 int i;
489
490 for (i = 0; i < XFS_LOWSP_MAX; i++) {
491 __uint64_t space = mp->m_sb.sb_dblocks;
492
493 do_div(space, 100);
494 mp->m_low_space[i] = space * (i + 1);
495 }
496 }
497
498
499 /*
500 * Set whether we're using inode alignment.
501 */
502 STATIC void
503 xfs_set_inoalignment(xfs_mount_t *mp)
504 {
505 if (xfs_sb_version_hasalign(&mp->m_sb) &&
506 mp->m_sb.sb_inoalignmt >=
507 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
508 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
509 else
510 mp->m_inoalign_mask = 0;
511 /*
512 * If we are using stripe alignment, check whether
513 * the stripe unit is a multiple of the inode alignment
514 */
515 if (mp->m_dalign && mp->m_inoalign_mask &&
516 !(mp->m_dalign & mp->m_inoalign_mask))
517 mp->m_sinoalign = mp->m_dalign;
518 else
519 mp->m_sinoalign = 0;
520 }
521
522 /*
523 * Check that the data (and log if separate) is an ok size.
524 */
525 STATIC int
526 xfs_check_sizes(
527 struct xfs_mount *mp)
528 {
529 struct xfs_buf *bp;
530 xfs_daddr_t d;
531 int error;
532
533 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
534 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
535 xfs_warn(mp, "filesystem size mismatch detected");
536 return -EFBIG;
537 }
538 error = xfs_buf_read_uncached(mp->m_ddev_targp,
539 d - XFS_FSS_TO_BB(mp, 1),
540 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
541 if (error) {
542 xfs_warn(mp, "last sector read failed");
543 return error;
544 }
545 xfs_buf_relse(bp);
546
547 if (mp->m_logdev_targp == mp->m_ddev_targp)
548 return 0;
549
550 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
551 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
552 xfs_warn(mp, "log size mismatch detected");
553 return -EFBIG;
554 }
555 error = xfs_buf_read_uncached(mp->m_logdev_targp,
556 d - XFS_FSB_TO_BB(mp, 1),
557 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
558 if (error) {
559 xfs_warn(mp, "log device read failed");
560 return error;
561 }
562 xfs_buf_relse(bp);
563 return 0;
564 }
565
566 /*
567 * Clear the quotaflags in memory and in the superblock.
568 */
569 int
570 xfs_mount_reset_sbqflags(
571 struct xfs_mount *mp)
572 {
573 mp->m_qflags = 0;
574
575 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
576 if (mp->m_sb.sb_qflags == 0)
577 return 0;
578 spin_lock(&mp->m_sb_lock);
579 mp->m_sb.sb_qflags = 0;
580 spin_unlock(&mp->m_sb_lock);
581
582 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
583 return 0;
584
585 return xfs_sync_sb(mp, false);
586 }
587
588 __uint64_t
589 xfs_default_resblks(xfs_mount_t *mp)
590 {
591 __uint64_t resblks;
592
593 /*
594 * We default to 5% or 8192 fsbs of space reserved, whichever is
595 * smaller. This is intended to cover concurrent allocation
596 * transactions when we initially hit enospc. These each require a 4
597 * block reservation. Hence by default we cover roughly 2000 concurrent
598 * allocation reservations.
599 */
600 resblks = mp->m_sb.sb_dblocks;
601 do_div(resblks, 20);
602 resblks = min_t(__uint64_t, resblks, 8192);
603 return resblks;
604 }
605
606 /*
607 * This function does the following on an initial mount of a file system:
608 * - reads the superblock from disk and init the mount struct
609 * - if we're a 32-bit kernel, do a size check on the superblock
610 * so we don't mount terabyte filesystems
611 * - init mount struct realtime fields
612 * - allocate inode hash table for fs
613 * - init directory manager
614 * - perform recovery and init the log manager
615 */
616 int
617 xfs_mountfs(
618 xfs_mount_t *mp)
619 {
620 xfs_sb_t *sbp = &(mp->m_sb);
621 xfs_inode_t *rip;
622 __uint64_t resblks;
623 uint quotamount = 0;
624 uint quotaflags = 0;
625 int error = 0;
626
627 xfs_sb_mount_common(mp, sbp);
628
629 /*
630 * Check for a mismatched features2 values. Older kernels read & wrote
631 * into the wrong sb offset for sb_features2 on some platforms due to
632 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
633 * which made older superblock reading/writing routines swap it as a
634 * 64-bit value.
635 *
636 * For backwards compatibility, we make both slots equal.
637 *
638 * If we detect a mismatched field, we OR the set bits into the existing
639 * features2 field in case it has already been modified; we don't want
640 * to lose any features. We then update the bad location with the ORed
641 * value so that older kernels will see any features2 flags. The
642 * superblock writeback code ensures the new sb_features2 is copied to
643 * sb_bad_features2 before it is logged or written to disk.
644 */
645 if (xfs_sb_has_mismatched_features2(sbp)) {
646 xfs_warn(mp, "correcting sb_features alignment problem");
647 sbp->sb_features2 |= sbp->sb_bad_features2;
648 mp->m_update_sb = true;
649
650 /*
651 * Re-check for ATTR2 in case it was found in bad_features2
652 * slot.
653 */
654 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
655 !(mp->m_flags & XFS_MOUNT_NOATTR2))
656 mp->m_flags |= XFS_MOUNT_ATTR2;
657 }
658
659 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
660 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
661 xfs_sb_version_removeattr2(&mp->m_sb);
662 mp->m_update_sb = true;
663
664 /* update sb_versionnum for the clearing of the morebits */
665 if (!sbp->sb_features2)
666 mp->m_update_sb = true;
667 }
668
669 /* always use v2 inodes by default now */
670 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
671 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
672 mp->m_update_sb = true;
673 }
674
675 /*
676 * Check if sb_agblocks is aligned at stripe boundary
677 * If sb_agblocks is NOT aligned turn off m_dalign since
678 * allocator alignment is within an ag, therefore ag has
679 * to be aligned at stripe boundary.
680 */
681 error = xfs_update_alignment(mp);
682 if (error)
683 goto out;
684
685 xfs_alloc_compute_maxlevels(mp);
686 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
687 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
688 xfs_ialloc_compute_maxlevels(mp);
689
690 xfs_set_maxicount(mp);
691
692 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
693 if (error)
694 goto out;
695
696 error = xfs_uuid_mount(mp);
697 if (error)
698 goto out_remove_sysfs;
699
700 /*
701 * Set the minimum read and write sizes
702 */
703 xfs_set_rw_sizes(mp);
704
705 /* set the low space thresholds for dynamic preallocation */
706 xfs_set_low_space_thresholds(mp);
707
708 /*
709 * Set the inode cluster size.
710 * This may still be overridden by the file system
711 * block size if it is larger than the chosen cluster size.
712 *
713 * For v5 filesystems, scale the cluster size with the inode size to
714 * keep a constant ratio of inode per cluster buffer, but only if mkfs
715 * has set the inode alignment value appropriately for larger cluster
716 * sizes.
717 */
718 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
719 if (xfs_sb_version_hascrc(&mp->m_sb)) {
720 int new_size = mp->m_inode_cluster_size;
721
722 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
723 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
724 mp->m_inode_cluster_size = new_size;
725 }
726
727 /*
728 * If enabled, sparse inode chunk alignment is expected to match the
729 * cluster size. Full inode chunk alignment must match the chunk size,
730 * but that is checked on sb read verification...
731 */
732 if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
733 mp->m_sb.sb_spino_align !=
734 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) {
735 xfs_warn(mp,
736 "Sparse inode block alignment (%u) must match cluster size (%llu).",
737 mp->m_sb.sb_spino_align,
738 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size));
739 error = -EINVAL;
740 goto out_remove_uuid;
741 }
742
743 /*
744 * Set inode alignment fields
745 */
746 xfs_set_inoalignment(mp);
747
748 /*
749 * Check that the data (and log if separate) is an ok size.
750 */
751 error = xfs_check_sizes(mp);
752 if (error)
753 goto out_remove_uuid;
754
755 /*
756 * Initialize realtime fields in the mount structure
757 */
758 error = xfs_rtmount_init(mp);
759 if (error) {
760 xfs_warn(mp, "RT mount failed");
761 goto out_remove_uuid;
762 }
763
764 /*
765 * Copies the low order bits of the timestamp and the randomly
766 * set "sequence" number out of a UUID.
767 */
768 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
769
770 mp->m_dmevmask = 0; /* not persistent; set after each mount */
771
772 error = xfs_da_mount(mp);
773 if (error) {
774 xfs_warn(mp, "Failed dir/attr init: %d", error);
775 goto out_remove_uuid;
776 }
777
778 /*
779 * Initialize the precomputed transaction reservations values.
780 */
781 xfs_trans_init(mp);
782
783 /*
784 * Allocate and initialize the per-ag data.
785 */
786 spin_lock_init(&mp->m_perag_lock);
787 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
788 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
789 if (error) {
790 xfs_warn(mp, "Failed per-ag init: %d", error);
791 goto out_free_dir;
792 }
793
794 if (!sbp->sb_logblocks) {
795 xfs_warn(mp, "no log defined");
796 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
797 error = -EFSCORRUPTED;
798 goto out_free_perag;
799 }
800
801 /*
802 * log's mount-time initialization. Perform 1st part recovery if needed
803 */
804 error = xfs_log_mount(mp, mp->m_logdev_targp,
805 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
806 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
807 if (error) {
808 xfs_warn(mp, "log mount failed");
809 goto out_fail_wait;
810 }
811
812 /*
813 * Now the log is mounted, we know if it was an unclean shutdown or
814 * not. If it was, with the first phase of recovery has completed, we
815 * have consistent AG blocks on disk. We have not recovered EFIs yet,
816 * but they are recovered transactionally in the second recovery phase
817 * later.
818 *
819 * Hence we can safely re-initialise incore superblock counters from
820 * the per-ag data. These may not be correct if the filesystem was not
821 * cleanly unmounted, so we need to wait for recovery to finish before
822 * doing this.
823 *
824 * If the filesystem was cleanly unmounted, then we can trust the
825 * values in the superblock to be correct and we don't need to do
826 * anything here.
827 *
828 * If we are currently making the filesystem, the initialisation will
829 * fail as the perag data is in an undefined state.
830 */
831 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
832 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
833 !mp->m_sb.sb_inprogress) {
834 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
835 if (error)
836 goto out_log_dealloc;
837 }
838
839 /*
840 * Get and sanity-check the root inode.
841 * Save the pointer to it in the mount structure.
842 */
843 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
844 if (error) {
845 xfs_warn(mp, "failed to read root inode");
846 goto out_log_dealloc;
847 }
848
849 ASSERT(rip != NULL);
850
851 if (unlikely(!S_ISDIR(rip->i_d.di_mode))) {
852 xfs_warn(mp, "corrupted root inode %llu: not a directory",
853 (unsigned long long)rip->i_ino);
854 xfs_iunlock(rip, XFS_ILOCK_EXCL);
855 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
856 mp);
857 error = -EFSCORRUPTED;
858 goto out_rele_rip;
859 }
860 mp->m_rootip = rip; /* save it */
861
862 xfs_iunlock(rip, XFS_ILOCK_EXCL);
863
864 /*
865 * Initialize realtime inode pointers in the mount structure
866 */
867 error = xfs_rtmount_inodes(mp);
868 if (error) {
869 /*
870 * Free up the root inode.
871 */
872 xfs_warn(mp, "failed to read RT inodes");
873 goto out_rele_rip;
874 }
875
876 /*
877 * If this is a read-only mount defer the superblock updates until
878 * the next remount into writeable mode. Otherwise we would never
879 * perform the update e.g. for the root filesystem.
880 */
881 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
882 error = xfs_sync_sb(mp, false);
883 if (error) {
884 xfs_warn(mp, "failed to write sb changes");
885 goto out_rtunmount;
886 }
887 }
888
889 /*
890 * Initialise the XFS quota management subsystem for this mount
891 */
892 if (XFS_IS_QUOTA_RUNNING(mp)) {
893 error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
894 if (error)
895 goto out_rtunmount;
896 } else {
897 ASSERT(!XFS_IS_QUOTA_ON(mp));
898
899 /*
900 * If a file system had quotas running earlier, but decided to
901 * mount without -o uquota/pquota/gquota options, revoke the
902 * quotachecked license.
903 */
904 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
905 xfs_notice(mp, "resetting quota flags");
906 error = xfs_mount_reset_sbqflags(mp);
907 if (error)
908 goto out_rtunmount;
909 }
910 }
911
912 /*
913 * Finish recovering the file system. This part needed to be
914 * delayed until after the root and real-time bitmap inodes
915 * were consistently read in.
916 */
917 error = xfs_log_mount_finish(mp);
918 if (error) {
919 xfs_warn(mp, "log mount finish failed");
920 goto out_rtunmount;
921 }
922
923 /*
924 * Complete the quota initialisation, post-log-replay component.
925 */
926 if (quotamount) {
927 ASSERT(mp->m_qflags == 0);
928 mp->m_qflags = quotaflags;
929
930 xfs_qm_mount_quotas(mp);
931 }
932
933 /*
934 * Now we are mounted, reserve a small amount of unused space for
935 * privileged transactions. This is needed so that transaction
936 * space required for critical operations can dip into this pool
937 * when at ENOSPC. This is needed for operations like create with
938 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
939 * are not allowed to use this reserved space.
940 *
941 * This may drive us straight to ENOSPC on mount, but that implies
942 * we were already there on the last unmount. Warn if this occurs.
943 */
944 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
945 resblks = xfs_default_resblks(mp);
946 error = xfs_reserve_blocks(mp, &resblks, NULL);
947 if (error)
948 xfs_warn(mp,
949 "Unable to allocate reserve blocks. Continuing without reserve pool.");
950 }
951
952 return 0;
953
954 out_rtunmount:
955 xfs_rtunmount_inodes(mp);
956 out_rele_rip:
957 IRELE(rip);
958 out_log_dealloc:
959 xfs_log_unmount(mp);
960 out_fail_wait:
961 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
962 xfs_wait_buftarg(mp->m_logdev_targp);
963 xfs_wait_buftarg(mp->m_ddev_targp);
964 out_free_perag:
965 xfs_free_perag(mp);
966 out_free_dir:
967 xfs_da_unmount(mp);
968 out_remove_uuid:
969 xfs_uuid_unmount(mp);
970 out_remove_sysfs:
971 xfs_sysfs_del(&mp->m_kobj);
972 out:
973 return error;
974 }
975
976 /*
977 * This flushes out the inodes,dquots and the superblock, unmounts the
978 * log and makes sure that incore structures are freed.
979 */
980 void
981 xfs_unmountfs(
982 struct xfs_mount *mp)
983 {
984 __uint64_t resblks;
985 int error;
986
987 cancel_delayed_work_sync(&mp->m_eofblocks_work);
988
989 xfs_qm_unmount_quotas(mp);
990 xfs_rtunmount_inodes(mp);
991 IRELE(mp->m_rootip);
992
993 /*
994 * We can potentially deadlock here if we have an inode cluster
995 * that has been freed has its buffer still pinned in memory because
996 * the transaction is still sitting in a iclog. The stale inodes
997 * on that buffer will have their flush locks held until the
998 * transaction hits the disk and the callbacks run. the inode
999 * flush takes the flush lock unconditionally and with nothing to
1000 * push out the iclog we will never get that unlocked. hence we
1001 * need to force the log first.
1002 */
1003 xfs_log_force(mp, XFS_LOG_SYNC);
1004
1005 /*
1006 * Flush all pending changes from the AIL.
1007 */
1008 xfs_ail_push_all_sync(mp->m_ail);
1009
1010 /*
1011 * And reclaim all inodes. At this point there should be no dirty
1012 * inodes and none should be pinned or locked, but use synchronous
1013 * reclaim just to be sure. We can stop background inode reclaim
1014 * here as well if it is still running.
1015 */
1016 cancel_delayed_work_sync(&mp->m_reclaim_work);
1017 xfs_reclaim_inodes(mp, SYNC_WAIT);
1018
1019 xfs_qm_unmount(mp);
1020
1021 /*
1022 * Unreserve any blocks we have so that when we unmount we don't account
1023 * the reserved free space as used. This is really only necessary for
1024 * lazy superblock counting because it trusts the incore superblock
1025 * counters to be absolutely correct on clean unmount.
1026 *
1027 * We don't bother correcting this elsewhere for lazy superblock
1028 * counting because on mount of an unclean filesystem we reconstruct the
1029 * correct counter value and this is irrelevant.
1030 *
1031 * For non-lazy counter filesystems, this doesn't matter at all because
1032 * we only every apply deltas to the superblock and hence the incore
1033 * value does not matter....
1034 */
1035 resblks = 0;
1036 error = xfs_reserve_blocks(mp, &resblks, NULL);
1037 if (error)
1038 xfs_warn(mp, "Unable to free reserved block pool. "
1039 "Freespace may not be correct on next mount.");
1040
1041 error = xfs_log_sbcount(mp);
1042 if (error)
1043 xfs_warn(mp, "Unable to update superblock counters. "
1044 "Freespace may not be correct on next mount.");
1045
1046 xfs_log_unmount(mp);
1047 xfs_da_unmount(mp);
1048 xfs_uuid_unmount(mp);
1049
1050 #if defined(DEBUG)
1051 xfs_errortag_clearall(mp, 0);
1052 #endif
1053 xfs_free_perag(mp);
1054
1055 xfs_sysfs_del(&mp->m_kobj);
1056 }
1057
1058 /*
1059 * Determine whether modifications can proceed. The caller specifies the minimum
1060 * freeze level for which modifications should not be allowed. This allows
1061 * certain operations to proceed while the freeze sequence is in progress, if
1062 * necessary.
1063 */
1064 bool
1065 xfs_fs_writable(
1066 struct xfs_mount *mp,
1067 int level)
1068 {
1069 ASSERT(level > SB_UNFROZEN);
1070 if ((mp->m_super->s_writers.frozen >= level) ||
1071 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1072 return false;
1073
1074 return true;
1075 }
1076
1077 /*
1078 * xfs_log_sbcount
1079 *
1080 * Sync the superblock counters to disk.
1081 *
1082 * Note this code can be called during the process of freezing, so we use the
1083 * transaction allocator that does not block when the transaction subsystem is
1084 * in its frozen state.
1085 */
1086 int
1087 xfs_log_sbcount(xfs_mount_t *mp)
1088 {
1089 /* allow this to proceed during the freeze sequence... */
1090 if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
1091 return 0;
1092
1093 /*
1094 * we don't need to do this if we are updating the superblock
1095 * counters on every modification.
1096 */
1097 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1098 return 0;
1099
1100 return xfs_sync_sb(mp, true);
1101 }
1102
1103 /*
1104 * Deltas for the inode count are +/-64, hence we use a large batch size
1105 * of 128 so we don't need to take the counter lock on every update.
1106 */
1107 #define XFS_ICOUNT_BATCH 128
1108 int
1109 xfs_mod_icount(
1110 struct xfs_mount *mp,
1111 int64_t delta)
1112 {
1113 __percpu_counter_add(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
1114 if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
1115 ASSERT(0);
1116 percpu_counter_add(&mp->m_icount, -delta);
1117 return -EINVAL;
1118 }
1119 return 0;
1120 }
1121
1122 int
1123 xfs_mod_ifree(
1124 struct xfs_mount *mp,
1125 int64_t delta)
1126 {
1127 percpu_counter_add(&mp->m_ifree, delta);
1128 if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
1129 ASSERT(0);
1130 percpu_counter_add(&mp->m_ifree, -delta);
1131 return -EINVAL;
1132 }
1133 return 0;
1134 }
1135
1136 /*
1137 * Deltas for the block count can vary from 1 to very large, but lock contention
1138 * only occurs on frequent small block count updates such as in the delayed
1139 * allocation path for buffered writes (page a time updates). Hence we set
1140 * a large batch count (1024) to minimise global counter updates except when
1141 * we get near to ENOSPC and we have to be very accurate with our updates.
1142 */
1143 #define XFS_FDBLOCKS_BATCH 1024
1144 int
1145 xfs_mod_fdblocks(
1146 struct xfs_mount *mp,
1147 int64_t delta,
1148 bool rsvd)
1149 {
1150 int64_t lcounter;
1151 long long res_used;
1152 s32 batch;
1153
1154 if (delta > 0) {
1155 /*
1156 * If the reserve pool is depleted, put blocks back into it
1157 * first. Most of the time the pool is full.
1158 */
1159 if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1160 percpu_counter_add(&mp->m_fdblocks, delta);
1161 return 0;
1162 }
1163
1164 spin_lock(&mp->m_sb_lock);
1165 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1166
1167 if (res_used > delta) {
1168 mp->m_resblks_avail += delta;
1169 } else {
1170 delta -= res_used;
1171 mp->m_resblks_avail = mp->m_resblks;
1172 percpu_counter_add(&mp->m_fdblocks, delta);
1173 }
1174 spin_unlock(&mp->m_sb_lock);
1175 return 0;
1176 }
1177
1178 /*
1179 * Taking blocks away, need to be more accurate the closer we
1180 * are to zero.
1181 *
1182 * If the counter has a value of less than 2 * max batch size,
1183 * then make everything serialise as we are real close to
1184 * ENOSPC.
1185 */
1186 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1187 XFS_FDBLOCKS_BATCH) < 0)
1188 batch = 1;
1189 else
1190 batch = XFS_FDBLOCKS_BATCH;
1191
1192 __percpu_counter_add(&mp->m_fdblocks, delta, batch);
1193 if (__percpu_counter_compare(&mp->m_fdblocks, XFS_ALLOC_SET_ASIDE(mp),
1194 XFS_FDBLOCKS_BATCH) >= 0) {
1195 /* we had space! */
1196 return 0;
1197 }
1198
1199 /*
1200 * lock up the sb for dipping into reserves before releasing the space
1201 * that took us to ENOSPC.
1202 */
1203 spin_lock(&mp->m_sb_lock);
1204 percpu_counter_add(&mp->m_fdblocks, -delta);
1205 if (!rsvd)
1206 goto fdblocks_enospc;
1207
1208 lcounter = (long long)mp->m_resblks_avail + delta;
1209 if (lcounter >= 0) {
1210 mp->m_resblks_avail = lcounter;
1211 spin_unlock(&mp->m_sb_lock);
1212 return 0;
1213 }
1214 printk_once(KERN_WARNING
1215 "Filesystem \"%s\": reserve blocks depleted! "
1216 "Consider increasing reserve pool size.",
1217 mp->m_fsname);
1218 fdblocks_enospc:
1219 spin_unlock(&mp->m_sb_lock);
1220 return -ENOSPC;
1221 }
1222
1223 int
1224 xfs_mod_frextents(
1225 struct xfs_mount *mp,
1226 int64_t delta)
1227 {
1228 int64_t lcounter;
1229 int ret = 0;
1230
1231 spin_lock(&mp->m_sb_lock);
1232 lcounter = mp->m_sb.sb_frextents + delta;
1233 if (lcounter < 0)
1234 ret = -ENOSPC;
1235 else
1236 mp->m_sb.sb_frextents = lcounter;
1237 spin_unlock(&mp->m_sb_lock);
1238 return ret;
1239 }
1240
1241 /*
1242 * xfs_getsb() is called to obtain the buffer for the superblock.
1243 * The buffer is returned locked and read in from disk.
1244 * The buffer should be released with a call to xfs_brelse().
1245 *
1246 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1247 * the superblock buffer if it can be locked without sleeping.
1248 * If it can't then we'll return NULL.
1249 */
1250 struct xfs_buf *
1251 xfs_getsb(
1252 struct xfs_mount *mp,
1253 int flags)
1254 {
1255 struct xfs_buf *bp = mp->m_sb_bp;
1256
1257 if (!xfs_buf_trylock(bp)) {
1258 if (flags & XBF_TRYLOCK)
1259 return NULL;
1260 xfs_buf_lock(bp);
1261 }
1262
1263 xfs_buf_hold(bp);
1264 ASSERT(XFS_BUF_ISDONE(bp));
1265 return bp;
1266 }
1267
1268 /*
1269 * Used to free the superblock along various error paths.
1270 */
1271 void
1272 xfs_freesb(
1273 struct xfs_mount *mp)
1274 {
1275 struct xfs_buf *bp = mp->m_sb_bp;
1276
1277 xfs_buf_lock(bp);
1278 mp->m_sb_bp = NULL;
1279 xfs_buf_relse(bp);
1280 }
1281
1282 /*
1283 * If the underlying (data/log/rt) device is readonly, there are some
1284 * operations that cannot proceed.
1285 */
1286 int
1287 xfs_dev_is_read_only(
1288 struct xfs_mount *mp,
1289 char *message)
1290 {
1291 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1292 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1293 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1294 xfs_notice(mp, "%s required on read-only device.", message);
1295 xfs_notice(mp, "write access unavailable, cannot proceed.");
1296 return -EROFS;
1297 }
1298 return 0;
1299 }
This page took 0.05657 seconds and 5 git commands to generate.