xfs: don't leak EFSBADCRC to userspace
[deliverable/linux.git] / fs / xfs / xfs_mount.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_inum.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_mount.h"
29 #include "xfs_da_format.h"
30 #include "xfs_inode.h"
31 #include "xfs_dir2.h"
32 #include "xfs_ialloc.h"
33 #include "xfs_alloc.h"
34 #include "xfs_rtalloc.h"
35 #include "xfs_bmap.h"
36 #include "xfs_trans.h"
37 #include "xfs_trans_priv.h"
38 #include "xfs_log.h"
39 #include "xfs_error.h"
40 #include "xfs_quota.h"
41 #include "xfs_fsops.h"
42 #include "xfs_trace.h"
43 #include "xfs_icache.h"
44 #include "xfs_dinode.h"
45
46
47 #ifdef HAVE_PERCPU_SB
48 STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
49 int);
50 STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
51 int);
52 STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
53 #else
54
55 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0)
56 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0)
57 #endif
58
59 static DEFINE_MUTEX(xfs_uuid_table_mutex);
60 static int xfs_uuid_table_size;
61 static uuid_t *xfs_uuid_table;
62
63 /*
64 * See if the UUID is unique among mounted XFS filesystems.
65 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
66 */
67 STATIC int
68 xfs_uuid_mount(
69 struct xfs_mount *mp)
70 {
71 uuid_t *uuid = &mp->m_sb.sb_uuid;
72 int hole, i;
73
74 if (mp->m_flags & XFS_MOUNT_NOUUID)
75 return 0;
76
77 if (uuid_is_nil(uuid)) {
78 xfs_warn(mp, "Filesystem has nil UUID - can't mount");
79 return XFS_ERROR(EINVAL);
80 }
81
82 mutex_lock(&xfs_uuid_table_mutex);
83 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
84 if (uuid_is_nil(&xfs_uuid_table[i])) {
85 hole = i;
86 continue;
87 }
88 if (uuid_equal(uuid, &xfs_uuid_table[i]))
89 goto out_duplicate;
90 }
91
92 if (hole < 0) {
93 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
94 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
95 xfs_uuid_table_size * sizeof(*xfs_uuid_table),
96 KM_SLEEP);
97 hole = xfs_uuid_table_size++;
98 }
99 xfs_uuid_table[hole] = *uuid;
100 mutex_unlock(&xfs_uuid_table_mutex);
101
102 return 0;
103
104 out_duplicate:
105 mutex_unlock(&xfs_uuid_table_mutex);
106 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
107 return XFS_ERROR(EINVAL);
108 }
109
110 STATIC void
111 xfs_uuid_unmount(
112 struct xfs_mount *mp)
113 {
114 uuid_t *uuid = &mp->m_sb.sb_uuid;
115 int i;
116
117 if (mp->m_flags & XFS_MOUNT_NOUUID)
118 return;
119
120 mutex_lock(&xfs_uuid_table_mutex);
121 for (i = 0; i < xfs_uuid_table_size; i++) {
122 if (uuid_is_nil(&xfs_uuid_table[i]))
123 continue;
124 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
125 continue;
126 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
127 break;
128 }
129 ASSERT(i < xfs_uuid_table_size);
130 mutex_unlock(&xfs_uuid_table_mutex);
131 }
132
133
134 STATIC void
135 __xfs_free_perag(
136 struct rcu_head *head)
137 {
138 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
139
140 ASSERT(atomic_read(&pag->pag_ref) == 0);
141 kmem_free(pag);
142 }
143
144 /*
145 * Free up the per-ag resources associated with the mount structure.
146 */
147 STATIC void
148 xfs_free_perag(
149 xfs_mount_t *mp)
150 {
151 xfs_agnumber_t agno;
152 struct xfs_perag *pag;
153
154 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
155 spin_lock(&mp->m_perag_lock);
156 pag = radix_tree_delete(&mp->m_perag_tree, agno);
157 spin_unlock(&mp->m_perag_lock);
158 ASSERT(pag);
159 ASSERT(atomic_read(&pag->pag_ref) == 0);
160 call_rcu(&pag->rcu_head, __xfs_free_perag);
161 }
162 }
163
164 /*
165 * Check size of device based on the (data/realtime) block count.
166 * Note: this check is used by the growfs code as well as mount.
167 */
168 int
169 xfs_sb_validate_fsb_count(
170 xfs_sb_t *sbp,
171 __uint64_t nblocks)
172 {
173 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
174 ASSERT(sbp->sb_blocklog >= BBSHIFT);
175
176 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */
177 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
178 return EFBIG;
179 #else /* Limited by UINT_MAX of sectors */
180 if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
181 return EFBIG;
182 #endif
183 return 0;
184 }
185
186 int
187 xfs_initialize_perag(
188 xfs_mount_t *mp,
189 xfs_agnumber_t agcount,
190 xfs_agnumber_t *maxagi)
191 {
192 xfs_agnumber_t index;
193 xfs_agnumber_t first_initialised = 0;
194 xfs_perag_t *pag;
195 xfs_agino_t agino;
196 xfs_ino_t ino;
197 xfs_sb_t *sbp = &mp->m_sb;
198 int error = -ENOMEM;
199
200 /*
201 * Walk the current per-ag tree so we don't try to initialise AGs
202 * that already exist (growfs case). Allocate and insert all the
203 * AGs we don't find ready for initialisation.
204 */
205 for (index = 0; index < agcount; index++) {
206 pag = xfs_perag_get(mp, index);
207 if (pag) {
208 xfs_perag_put(pag);
209 continue;
210 }
211 if (!first_initialised)
212 first_initialised = index;
213
214 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
215 if (!pag)
216 goto out_unwind;
217 pag->pag_agno = index;
218 pag->pag_mount = mp;
219 spin_lock_init(&pag->pag_ici_lock);
220 mutex_init(&pag->pag_ici_reclaim_lock);
221 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
222 spin_lock_init(&pag->pag_buf_lock);
223 pag->pag_buf_tree = RB_ROOT;
224
225 if (radix_tree_preload(GFP_NOFS))
226 goto out_unwind;
227
228 spin_lock(&mp->m_perag_lock);
229 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
230 BUG();
231 spin_unlock(&mp->m_perag_lock);
232 radix_tree_preload_end();
233 error = -EEXIST;
234 goto out_unwind;
235 }
236 spin_unlock(&mp->m_perag_lock);
237 radix_tree_preload_end();
238 }
239
240 /*
241 * If we mount with the inode64 option, or no inode overflows
242 * the legacy 32-bit address space clear the inode32 option.
243 */
244 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
245 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
246
247 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
248 mp->m_flags |= XFS_MOUNT_32BITINODES;
249 else
250 mp->m_flags &= ~XFS_MOUNT_32BITINODES;
251
252 if (mp->m_flags & XFS_MOUNT_32BITINODES)
253 index = xfs_set_inode32(mp);
254 else
255 index = xfs_set_inode64(mp);
256
257 if (maxagi)
258 *maxagi = index;
259 return 0;
260
261 out_unwind:
262 kmem_free(pag);
263 for (; index > first_initialised; index--) {
264 pag = radix_tree_delete(&mp->m_perag_tree, index);
265 kmem_free(pag);
266 }
267 return error;
268 }
269
270 /*
271 * xfs_readsb
272 *
273 * Does the initial read of the superblock.
274 */
275 int
276 xfs_readsb(
277 struct xfs_mount *mp,
278 int flags)
279 {
280 unsigned int sector_size;
281 struct xfs_buf *bp;
282 struct xfs_sb *sbp = &mp->m_sb;
283 int error;
284 int loud = !(flags & XFS_MFSI_QUIET);
285
286 ASSERT(mp->m_sb_bp == NULL);
287 ASSERT(mp->m_ddev_targp != NULL);
288
289 /*
290 * Allocate a (locked) buffer to hold the superblock.
291 * This will be kept around at all times to optimize
292 * access to the superblock.
293 */
294 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
295
296 reread:
297 bp = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
298 BTOBB(sector_size), 0,
299 loud ? &xfs_sb_buf_ops
300 : &xfs_sb_quiet_buf_ops);
301 if (!bp) {
302 if (loud)
303 xfs_warn(mp, "SB buffer read failed");
304 return EIO;
305 }
306 if (bp->b_error) {
307 error = bp->b_error;
308 if (loud)
309 xfs_warn(mp, "SB validate failed with error %d.", error);
310 /* bad CRC means corrupted metadata */
311 if (error == EFSBADCRC)
312 error = EFSCORRUPTED;
313 goto release_buf;
314 }
315
316 /*
317 * Initialize the mount structure from the superblock.
318 */
319 xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
320 xfs_sb_quota_from_disk(&mp->m_sb);
321
322 /*
323 * We must be able to do sector-sized and sector-aligned IO.
324 */
325 if (sector_size > sbp->sb_sectsize) {
326 if (loud)
327 xfs_warn(mp, "device supports %u byte sectors (not %u)",
328 sector_size, sbp->sb_sectsize);
329 error = ENOSYS;
330 goto release_buf;
331 }
332
333 /*
334 * If device sector size is smaller than the superblock size,
335 * re-read the superblock so the buffer is correctly sized.
336 */
337 if (sector_size < sbp->sb_sectsize) {
338 xfs_buf_relse(bp);
339 sector_size = sbp->sb_sectsize;
340 goto reread;
341 }
342
343 /* Initialize per-cpu counters */
344 xfs_icsb_reinit_counters(mp);
345
346 /* no need to be quiet anymore, so reset the buf ops */
347 bp->b_ops = &xfs_sb_buf_ops;
348
349 mp->m_sb_bp = bp;
350 xfs_buf_unlock(bp);
351 return 0;
352
353 release_buf:
354 xfs_buf_relse(bp);
355 return error;
356 }
357
358 /*
359 * Update alignment values based on mount options and sb values
360 */
361 STATIC int
362 xfs_update_alignment(xfs_mount_t *mp)
363 {
364 xfs_sb_t *sbp = &(mp->m_sb);
365
366 if (mp->m_dalign) {
367 /*
368 * If stripe unit and stripe width are not multiples
369 * of the fs blocksize turn off alignment.
370 */
371 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
372 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
373 xfs_warn(mp,
374 "alignment check failed: sunit/swidth vs. blocksize(%d)",
375 sbp->sb_blocksize);
376 return XFS_ERROR(EINVAL);
377 } else {
378 /*
379 * Convert the stripe unit and width to FSBs.
380 */
381 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
382 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
383 xfs_warn(mp,
384 "alignment check failed: sunit/swidth vs. agsize(%d)",
385 sbp->sb_agblocks);
386 return XFS_ERROR(EINVAL);
387 } else if (mp->m_dalign) {
388 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
389 } else {
390 xfs_warn(mp,
391 "alignment check failed: sunit(%d) less than bsize(%d)",
392 mp->m_dalign, sbp->sb_blocksize);
393 return XFS_ERROR(EINVAL);
394 }
395 }
396
397 /*
398 * Update superblock with new values
399 * and log changes
400 */
401 if (xfs_sb_version_hasdalign(sbp)) {
402 if (sbp->sb_unit != mp->m_dalign) {
403 sbp->sb_unit = mp->m_dalign;
404 mp->m_update_flags |= XFS_SB_UNIT;
405 }
406 if (sbp->sb_width != mp->m_swidth) {
407 sbp->sb_width = mp->m_swidth;
408 mp->m_update_flags |= XFS_SB_WIDTH;
409 }
410 } else {
411 xfs_warn(mp,
412 "cannot change alignment: superblock does not support data alignment");
413 return XFS_ERROR(EINVAL);
414 }
415 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
416 xfs_sb_version_hasdalign(&mp->m_sb)) {
417 mp->m_dalign = sbp->sb_unit;
418 mp->m_swidth = sbp->sb_width;
419 }
420
421 return 0;
422 }
423
424 /*
425 * Set the maximum inode count for this filesystem
426 */
427 STATIC void
428 xfs_set_maxicount(xfs_mount_t *mp)
429 {
430 xfs_sb_t *sbp = &(mp->m_sb);
431 __uint64_t icount;
432
433 if (sbp->sb_imax_pct) {
434 /*
435 * Make sure the maximum inode count is a multiple
436 * of the units we allocate inodes in.
437 */
438 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
439 do_div(icount, 100);
440 do_div(icount, mp->m_ialloc_blks);
441 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
442 sbp->sb_inopblog;
443 } else {
444 mp->m_maxicount = 0;
445 }
446 }
447
448 /*
449 * Set the default minimum read and write sizes unless
450 * already specified in a mount option.
451 * We use smaller I/O sizes when the file system
452 * is being used for NFS service (wsync mount option).
453 */
454 STATIC void
455 xfs_set_rw_sizes(xfs_mount_t *mp)
456 {
457 xfs_sb_t *sbp = &(mp->m_sb);
458 int readio_log, writeio_log;
459
460 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
461 if (mp->m_flags & XFS_MOUNT_WSYNC) {
462 readio_log = XFS_WSYNC_READIO_LOG;
463 writeio_log = XFS_WSYNC_WRITEIO_LOG;
464 } else {
465 readio_log = XFS_READIO_LOG_LARGE;
466 writeio_log = XFS_WRITEIO_LOG_LARGE;
467 }
468 } else {
469 readio_log = mp->m_readio_log;
470 writeio_log = mp->m_writeio_log;
471 }
472
473 if (sbp->sb_blocklog > readio_log) {
474 mp->m_readio_log = sbp->sb_blocklog;
475 } else {
476 mp->m_readio_log = readio_log;
477 }
478 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
479 if (sbp->sb_blocklog > writeio_log) {
480 mp->m_writeio_log = sbp->sb_blocklog;
481 } else {
482 mp->m_writeio_log = writeio_log;
483 }
484 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
485 }
486
487 /*
488 * precalculate the low space thresholds for dynamic speculative preallocation.
489 */
490 void
491 xfs_set_low_space_thresholds(
492 struct xfs_mount *mp)
493 {
494 int i;
495
496 for (i = 0; i < XFS_LOWSP_MAX; i++) {
497 __uint64_t space = mp->m_sb.sb_dblocks;
498
499 do_div(space, 100);
500 mp->m_low_space[i] = space * (i + 1);
501 }
502 }
503
504
505 /*
506 * Set whether we're using inode alignment.
507 */
508 STATIC void
509 xfs_set_inoalignment(xfs_mount_t *mp)
510 {
511 if (xfs_sb_version_hasalign(&mp->m_sb) &&
512 mp->m_sb.sb_inoalignmt >=
513 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
514 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
515 else
516 mp->m_inoalign_mask = 0;
517 /*
518 * If we are using stripe alignment, check whether
519 * the stripe unit is a multiple of the inode alignment
520 */
521 if (mp->m_dalign && mp->m_inoalign_mask &&
522 !(mp->m_dalign & mp->m_inoalign_mask))
523 mp->m_sinoalign = mp->m_dalign;
524 else
525 mp->m_sinoalign = 0;
526 }
527
528 /*
529 * Check that the data (and log if separate) is an ok size.
530 */
531 STATIC int
532 xfs_check_sizes(xfs_mount_t *mp)
533 {
534 xfs_buf_t *bp;
535 xfs_daddr_t d;
536
537 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
538 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
539 xfs_warn(mp, "filesystem size mismatch detected");
540 return XFS_ERROR(EFBIG);
541 }
542 bp = xfs_buf_read_uncached(mp->m_ddev_targp,
543 d - XFS_FSS_TO_BB(mp, 1),
544 XFS_FSS_TO_BB(mp, 1), 0, NULL);
545 if (!bp) {
546 xfs_warn(mp, "last sector read failed");
547 return EIO;
548 }
549 xfs_buf_relse(bp);
550
551 if (mp->m_logdev_targp != mp->m_ddev_targp) {
552 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
553 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
554 xfs_warn(mp, "log size mismatch detected");
555 return XFS_ERROR(EFBIG);
556 }
557 bp = xfs_buf_read_uncached(mp->m_logdev_targp,
558 d - XFS_FSB_TO_BB(mp, 1),
559 XFS_FSB_TO_BB(mp, 1), 0, NULL);
560 if (!bp) {
561 xfs_warn(mp, "log device read failed");
562 return EIO;
563 }
564 xfs_buf_relse(bp);
565 }
566 return 0;
567 }
568
569 /*
570 * Clear the quotaflags in memory and in the superblock.
571 */
572 int
573 xfs_mount_reset_sbqflags(
574 struct xfs_mount *mp)
575 {
576 int error;
577 struct xfs_trans *tp;
578
579 mp->m_qflags = 0;
580
581 /*
582 * It is OK to look at sb_qflags here in mount path,
583 * without m_sb_lock.
584 */
585 if (mp->m_sb.sb_qflags == 0)
586 return 0;
587 spin_lock(&mp->m_sb_lock);
588 mp->m_sb.sb_qflags = 0;
589 spin_unlock(&mp->m_sb_lock);
590
591 /*
592 * If the fs is readonly, let the incore superblock run
593 * with quotas off but don't flush the update out to disk
594 */
595 if (mp->m_flags & XFS_MOUNT_RDONLY)
596 return 0;
597
598 tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
599 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_qm_sbchange, 0, 0);
600 if (error) {
601 xfs_trans_cancel(tp, 0);
602 xfs_alert(mp, "%s: Superblock update failed!", __func__);
603 return error;
604 }
605
606 xfs_mod_sb(tp, XFS_SB_QFLAGS);
607 return xfs_trans_commit(tp, 0);
608 }
609
610 __uint64_t
611 xfs_default_resblks(xfs_mount_t *mp)
612 {
613 __uint64_t resblks;
614
615 /*
616 * We default to 5% or 8192 fsbs of space reserved, whichever is
617 * smaller. This is intended to cover concurrent allocation
618 * transactions when we initially hit enospc. These each require a 4
619 * block reservation. Hence by default we cover roughly 2000 concurrent
620 * allocation reservations.
621 */
622 resblks = mp->m_sb.sb_dblocks;
623 do_div(resblks, 20);
624 resblks = min_t(__uint64_t, resblks, 8192);
625 return resblks;
626 }
627
628 /*
629 * This function does the following on an initial mount of a file system:
630 * - reads the superblock from disk and init the mount struct
631 * - if we're a 32-bit kernel, do a size check on the superblock
632 * so we don't mount terabyte filesystems
633 * - init mount struct realtime fields
634 * - allocate inode hash table for fs
635 * - init directory manager
636 * - perform recovery and init the log manager
637 */
638 int
639 xfs_mountfs(
640 xfs_mount_t *mp)
641 {
642 xfs_sb_t *sbp = &(mp->m_sb);
643 xfs_inode_t *rip;
644 __uint64_t resblks;
645 uint quotamount = 0;
646 uint quotaflags = 0;
647 int error = 0;
648
649 xfs_sb_mount_common(mp, sbp);
650
651 /*
652 * Check for a mismatched features2 values. Older kernels
653 * read & wrote into the wrong sb offset for sb_features2
654 * on some platforms due to xfs_sb_t not being 64bit size aligned
655 * when sb_features2 was added, which made older superblock
656 * reading/writing routines swap it as a 64-bit value.
657 *
658 * For backwards compatibility, we make both slots equal.
659 *
660 * If we detect a mismatched field, we OR the set bits into the
661 * existing features2 field in case it has already been modified; we
662 * don't want to lose any features. We then update the bad location
663 * with the ORed value so that older kernels will see any features2
664 * flags, and mark the two fields as needing updates once the
665 * transaction subsystem is online.
666 */
667 if (xfs_sb_has_mismatched_features2(sbp)) {
668 xfs_warn(mp, "correcting sb_features alignment problem");
669 sbp->sb_features2 |= sbp->sb_bad_features2;
670 sbp->sb_bad_features2 = sbp->sb_features2;
671 mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
672
673 /*
674 * Re-check for ATTR2 in case it was found in bad_features2
675 * slot.
676 */
677 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
678 !(mp->m_flags & XFS_MOUNT_NOATTR2))
679 mp->m_flags |= XFS_MOUNT_ATTR2;
680 }
681
682 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
683 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
684 xfs_sb_version_removeattr2(&mp->m_sb);
685 mp->m_update_flags |= XFS_SB_FEATURES2;
686
687 /* update sb_versionnum for the clearing of the morebits */
688 if (!sbp->sb_features2)
689 mp->m_update_flags |= XFS_SB_VERSIONNUM;
690 }
691
692 /*
693 * Check if sb_agblocks is aligned at stripe boundary
694 * If sb_agblocks is NOT aligned turn off m_dalign since
695 * allocator alignment is within an ag, therefore ag has
696 * to be aligned at stripe boundary.
697 */
698 error = xfs_update_alignment(mp);
699 if (error)
700 goto out;
701
702 xfs_alloc_compute_maxlevels(mp);
703 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
704 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
705 xfs_ialloc_compute_maxlevels(mp);
706
707 xfs_set_maxicount(mp);
708
709 error = xfs_uuid_mount(mp);
710 if (error)
711 goto out;
712
713 /*
714 * Set the minimum read and write sizes
715 */
716 xfs_set_rw_sizes(mp);
717
718 /* set the low space thresholds for dynamic preallocation */
719 xfs_set_low_space_thresholds(mp);
720
721 /*
722 * Set the inode cluster size.
723 * This may still be overridden by the file system
724 * block size if it is larger than the chosen cluster size.
725 *
726 * For v5 filesystems, scale the cluster size with the inode size to
727 * keep a constant ratio of inode per cluster buffer, but only if mkfs
728 * has set the inode alignment value appropriately for larger cluster
729 * sizes.
730 */
731 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
732 if (xfs_sb_version_hascrc(&mp->m_sb)) {
733 int new_size = mp->m_inode_cluster_size;
734
735 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
736 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
737 mp->m_inode_cluster_size = new_size;
738 xfs_info(mp, "Using inode cluster size of %d bytes",
739 mp->m_inode_cluster_size);
740 }
741
742 /*
743 * Set inode alignment fields
744 */
745 xfs_set_inoalignment(mp);
746
747 /*
748 * Check that the data (and log if separate) is an ok size.
749 */
750 error = xfs_check_sizes(mp);
751 if (error)
752 goto out_remove_uuid;
753
754 /*
755 * Initialize realtime fields in the mount structure
756 */
757 error = xfs_rtmount_init(mp);
758 if (error) {
759 xfs_warn(mp, "RT mount failed");
760 goto out_remove_uuid;
761 }
762
763 /*
764 * Copies the low order bits of the timestamp and the randomly
765 * set "sequence" number out of a UUID.
766 */
767 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
768
769 mp->m_dmevmask = 0; /* not persistent; set after each mount */
770
771 xfs_dir_mount(mp);
772
773 /*
774 * Initialize the attribute manager's entries.
775 */
776 mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
777
778 /*
779 * Initialize the precomputed transaction reservations values.
780 */
781 xfs_trans_init(mp);
782
783 /*
784 * Allocate and initialize the per-ag data.
785 */
786 spin_lock_init(&mp->m_perag_lock);
787 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
788 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
789 if (error) {
790 xfs_warn(mp, "Failed per-ag init: %d", error);
791 goto out_remove_uuid;
792 }
793
794 if (!sbp->sb_logblocks) {
795 xfs_warn(mp, "no log defined");
796 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
797 error = XFS_ERROR(EFSCORRUPTED);
798 goto out_free_perag;
799 }
800
801 /*
802 * log's mount-time initialization. Perform 1st part recovery if needed
803 */
804 error = xfs_log_mount(mp, mp->m_logdev_targp,
805 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
806 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
807 if (error) {
808 xfs_warn(mp, "log mount failed");
809 goto out_fail_wait;
810 }
811
812 /*
813 * Now the log is mounted, we know if it was an unclean shutdown or
814 * not. If it was, with the first phase of recovery has completed, we
815 * have consistent AG blocks on disk. We have not recovered EFIs yet,
816 * but they are recovered transactionally in the second recovery phase
817 * later.
818 *
819 * Hence we can safely re-initialise incore superblock counters from
820 * the per-ag data. These may not be correct if the filesystem was not
821 * cleanly unmounted, so we need to wait for recovery to finish before
822 * doing this.
823 *
824 * If the filesystem was cleanly unmounted, then we can trust the
825 * values in the superblock to be correct and we don't need to do
826 * anything here.
827 *
828 * If we are currently making the filesystem, the initialisation will
829 * fail as the perag data is in an undefined state.
830 */
831 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
832 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
833 !mp->m_sb.sb_inprogress) {
834 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
835 if (error)
836 goto out_fail_wait;
837 }
838
839 /*
840 * Get and sanity-check the root inode.
841 * Save the pointer to it in the mount structure.
842 */
843 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
844 if (error) {
845 xfs_warn(mp, "failed to read root inode");
846 goto out_log_dealloc;
847 }
848
849 ASSERT(rip != NULL);
850
851 if (unlikely(!S_ISDIR(rip->i_d.di_mode))) {
852 xfs_warn(mp, "corrupted root inode %llu: not a directory",
853 (unsigned long long)rip->i_ino);
854 xfs_iunlock(rip, XFS_ILOCK_EXCL);
855 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
856 mp);
857 error = XFS_ERROR(EFSCORRUPTED);
858 goto out_rele_rip;
859 }
860 mp->m_rootip = rip; /* save it */
861
862 xfs_iunlock(rip, XFS_ILOCK_EXCL);
863
864 /*
865 * Initialize realtime inode pointers in the mount structure
866 */
867 error = xfs_rtmount_inodes(mp);
868 if (error) {
869 /*
870 * Free up the root inode.
871 */
872 xfs_warn(mp, "failed to read RT inodes");
873 goto out_rele_rip;
874 }
875
876 /*
877 * If this is a read-only mount defer the superblock updates until
878 * the next remount into writeable mode. Otherwise we would never
879 * perform the update e.g. for the root filesystem.
880 */
881 if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
882 error = xfs_mount_log_sb(mp, mp->m_update_flags);
883 if (error) {
884 xfs_warn(mp, "failed to write sb changes");
885 goto out_rtunmount;
886 }
887 }
888
889 /*
890 * Initialise the XFS quota management subsystem for this mount
891 */
892 if (XFS_IS_QUOTA_RUNNING(mp)) {
893 error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
894 if (error)
895 goto out_rtunmount;
896 } else {
897 ASSERT(!XFS_IS_QUOTA_ON(mp));
898
899 /*
900 * If a file system had quotas running earlier, but decided to
901 * mount without -o uquota/pquota/gquota options, revoke the
902 * quotachecked license.
903 */
904 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
905 xfs_notice(mp, "resetting quota flags");
906 error = xfs_mount_reset_sbqflags(mp);
907 if (error)
908 return error;
909 }
910 }
911
912 /*
913 * Finish recovering the file system. This part needed to be
914 * delayed until after the root and real-time bitmap inodes
915 * were consistently read in.
916 */
917 error = xfs_log_mount_finish(mp);
918 if (error) {
919 xfs_warn(mp, "log mount finish failed");
920 goto out_rtunmount;
921 }
922
923 /*
924 * Complete the quota initialisation, post-log-replay component.
925 */
926 if (quotamount) {
927 ASSERT(mp->m_qflags == 0);
928 mp->m_qflags = quotaflags;
929
930 xfs_qm_mount_quotas(mp);
931 }
932
933 /*
934 * Now we are mounted, reserve a small amount of unused space for
935 * privileged transactions. This is needed so that transaction
936 * space required for critical operations can dip into this pool
937 * when at ENOSPC. This is needed for operations like create with
938 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
939 * are not allowed to use this reserved space.
940 *
941 * This may drive us straight to ENOSPC on mount, but that implies
942 * we were already there on the last unmount. Warn if this occurs.
943 */
944 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
945 resblks = xfs_default_resblks(mp);
946 error = xfs_reserve_blocks(mp, &resblks, NULL);
947 if (error)
948 xfs_warn(mp,
949 "Unable to allocate reserve blocks. Continuing without reserve pool.");
950 }
951
952 return 0;
953
954 out_rtunmount:
955 xfs_rtunmount_inodes(mp);
956 out_rele_rip:
957 IRELE(rip);
958 out_log_dealloc:
959 xfs_log_unmount(mp);
960 out_fail_wait:
961 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
962 xfs_wait_buftarg(mp->m_logdev_targp);
963 xfs_wait_buftarg(mp->m_ddev_targp);
964 out_free_perag:
965 xfs_free_perag(mp);
966 out_remove_uuid:
967 xfs_uuid_unmount(mp);
968 out:
969 return error;
970 }
971
972 /*
973 * This flushes out the inodes,dquots and the superblock, unmounts the
974 * log and makes sure that incore structures are freed.
975 */
976 void
977 xfs_unmountfs(
978 struct xfs_mount *mp)
979 {
980 __uint64_t resblks;
981 int error;
982
983 cancel_delayed_work_sync(&mp->m_eofblocks_work);
984
985 xfs_qm_unmount_quotas(mp);
986 xfs_rtunmount_inodes(mp);
987 IRELE(mp->m_rootip);
988
989 /*
990 * We can potentially deadlock here if we have an inode cluster
991 * that has been freed has its buffer still pinned in memory because
992 * the transaction is still sitting in a iclog. The stale inodes
993 * on that buffer will have their flush locks held until the
994 * transaction hits the disk and the callbacks run. the inode
995 * flush takes the flush lock unconditionally and with nothing to
996 * push out the iclog we will never get that unlocked. hence we
997 * need to force the log first.
998 */
999 xfs_log_force(mp, XFS_LOG_SYNC);
1000
1001 /*
1002 * Flush all pending changes from the AIL.
1003 */
1004 xfs_ail_push_all_sync(mp->m_ail);
1005
1006 /*
1007 * And reclaim all inodes. At this point there should be no dirty
1008 * inodes and none should be pinned or locked, but use synchronous
1009 * reclaim just to be sure. We can stop background inode reclaim
1010 * here as well if it is still running.
1011 */
1012 cancel_delayed_work_sync(&mp->m_reclaim_work);
1013 xfs_reclaim_inodes(mp, SYNC_WAIT);
1014
1015 xfs_qm_unmount(mp);
1016
1017 /*
1018 * Unreserve any blocks we have so that when we unmount we don't account
1019 * the reserved free space as used. This is really only necessary for
1020 * lazy superblock counting because it trusts the incore superblock
1021 * counters to be absolutely correct on clean unmount.
1022 *
1023 * We don't bother correcting this elsewhere for lazy superblock
1024 * counting because on mount of an unclean filesystem we reconstruct the
1025 * correct counter value and this is irrelevant.
1026 *
1027 * For non-lazy counter filesystems, this doesn't matter at all because
1028 * we only every apply deltas to the superblock and hence the incore
1029 * value does not matter....
1030 */
1031 resblks = 0;
1032 error = xfs_reserve_blocks(mp, &resblks, NULL);
1033 if (error)
1034 xfs_warn(mp, "Unable to free reserved block pool. "
1035 "Freespace may not be correct on next mount.");
1036
1037 error = xfs_log_sbcount(mp);
1038 if (error)
1039 xfs_warn(mp, "Unable to update superblock counters. "
1040 "Freespace may not be correct on next mount.");
1041
1042 xfs_log_unmount(mp);
1043 xfs_uuid_unmount(mp);
1044
1045 #if defined(DEBUG)
1046 xfs_errortag_clearall(mp, 0);
1047 #endif
1048 xfs_free_perag(mp);
1049 }
1050
1051 int
1052 xfs_fs_writable(xfs_mount_t *mp)
1053 {
1054 return !(mp->m_super->s_writers.frozen || XFS_FORCED_SHUTDOWN(mp) ||
1055 (mp->m_flags & XFS_MOUNT_RDONLY));
1056 }
1057
1058 /*
1059 * xfs_log_sbcount
1060 *
1061 * Sync the superblock counters to disk.
1062 *
1063 * Note this code can be called during the process of freezing, so
1064 * we may need to use the transaction allocator which does not
1065 * block when the transaction subsystem is in its frozen state.
1066 */
1067 int
1068 xfs_log_sbcount(xfs_mount_t *mp)
1069 {
1070 xfs_trans_t *tp;
1071 int error;
1072
1073 if (!xfs_fs_writable(mp))
1074 return 0;
1075
1076 xfs_icsb_sync_counters(mp, 0);
1077
1078 /*
1079 * we don't need to do this if we are updating the superblock
1080 * counters on every modification.
1081 */
1082 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1083 return 0;
1084
1085 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
1086 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0);
1087 if (error) {
1088 xfs_trans_cancel(tp, 0);
1089 return error;
1090 }
1091
1092 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1093 xfs_trans_set_sync(tp);
1094 error = xfs_trans_commit(tp, 0);
1095 return error;
1096 }
1097
1098 /*
1099 * xfs_mod_incore_sb_unlocked() is a utility routine commonly used to apply
1100 * a delta to a specified field in the in-core superblock. Simply
1101 * switch on the field indicated and apply the delta to that field.
1102 * Fields are not allowed to dip below zero, so if the delta would
1103 * do this do not apply it and return EINVAL.
1104 *
1105 * The m_sb_lock must be held when this routine is called.
1106 */
1107 STATIC int
1108 xfs_mod_incore_sb_unlocked(
1109 xfs_mount_t *mp,
1110 xfs_sb_field_t field,
1111 int64_t delta,
1112 int rsvd)
1113 {
1114 int scounter; /* short counter for 32 bit fields */
1115 long long lcounter; /* long counter for 64 bit fields */
1116 long long res_used, rem;
1117
1118 /*
1119 * With the in-core superblock spin lock held, switch
1120 * on the indicated field. Apply the delta to the
1121 * proper field. If the fields value would dip below
1122 * 0, then do not apply the delta and return EINVAL.
1123 */
1124 switch (field) {
1125 case XFS_SBS_ICOUNT:
1126 lcounter = (long long)mp->m_sb.sb_icount;
1127 lcounter += delta;
1128 if (lcounter < 0) {
1129 ASSERT(0);
1130 return XFS_ERROR(EINVAL);
1131 }
1132 mp->m_sb.sb_icount = lcounter;
1133 return 0;
1134 case XFS_SBS_IFREE:
1135 lcounter = (long long)mp->m_sb.sb_ifree;
1136 lcounter += delta;
1137 if (lcounter < 0) {
1138 ASSERT(0);
1139 return XFS_ERROR(EINVAL);
1140 }
1141 mp->m_sb.sb_ifree = lcounter;
1142 return 0;
1143 case XFS_SBS_FDBLOCKS:
1144 lcounter = (long long)
1145 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1146 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1147
1148 if (delta > 0) { /* Putting blocks back */
1149 if (res_used > delta) {
1150 mp->m_resblks_avail += delta;
1151 } else {
1152 rem = delta - res_used;
1153 mp->m_resblks_avail = mp->m_resblks;
1154 lcounter += rem;
1155 }
1156 } else { /* Taking blocks away */
1157 lcounter += delta;
1158 if (lcounter >= 0) {
1159 mp->m_sb.sb_fdblocks = lcounter +
1160 XFS_ALLOC_SET_ASIDE(mp);
1161 return 0;
1162 }
1163
1164 /*
1165 * We are out of blocks, use any available reserved
1166 * blocks if were allowed to.
1167 */
1168 if (!rsvd)
1169 return XFS_ERROR(ENOSPC);
1170
1171 lcounter = (long long)mp->m_resblks_avail + delta;
1172 if (lcounter >= 0) {
1173 mp->m_resblks_avail = lcounter;
1174 return 0;
1175 }
1176 printk_once(KERN_WARNING
1177 "Filesystem \"%s\": reserve blocks depleted! "
1178 "Consider increasing reserve pool size.",
1179 mp->m_fsname);
1180 return XFS_ERROR(ENOSPC);
1181 }
1182
1183 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1184 return 0;
1185 case XFS_SBS_FREXTENTS:
1186 lcounter = (long long)mp->m_sb.sb_frextents;
1187 lcounter += delta;
1188 if (lcounter < 0) {
1189 return XFS_ERROR(ENOSPC);
1190 }
1191 mp->m_sb.sb_frextents = lcounter;
1192 return 0;
1193 case XFS_SBS_DBLOCKS:
1194 lcounter = (long long)mp->m_sb.sb_dblocks;
1195 lcounter += delta;
1196 if (lcounter < 0) {
1197 ASSERT(0);
1198 return XFS_ERROR(EINVAL);
1199 }
1200 mp->m_sb.sb_dblocks = lcounter;
1201 return 0;
1202 case XFS_SBS_AGCOUNT:
1203 scounter = mp->m_sb.sb_agcount;
1204 scounter += delta;
1205 if (scounter < 0) {
1206 ASSERT(0);
1207 return XFS_ERROR(EINVAL);
1208 }
1209 mp->m_sb.sb_agcount = scounter;
1210 return 0;
1211 case XFS_SBS_IMAX_PCT:
1212 scounter = mp->m_sb.sb_imax_pct;
1213 scounter += delta;
1214 if (scounter < 0) {
1215 ASSERT(0);
1216 return XFS_ERROR(EINVAL);
1217 }
1218 mp->m_sb.sb_imax_pct = scounter;
1219 return 0;
1220 case XFS_SBS_REXTSIZE:
1221 scounter = mp->m_sb.sb_rextsize;
1222 scounter += delta;
1223 if (scounter < 0) {
1224 ASSERT(0);
1225 return XFS_ERROR(EINVAL);
1226 }
1227 mp->m_sb.sb_rextsize = scounter;
1228 return 0;
1229 case XFS_SBS_RBMBLOCKS:
1230 scounter = mp->m_sb.sb_rbmblocks;
1231 scounter += delta;
1232 if (scounter < 0) {
1233 ASSERT(0);
1234 return XFS_ERROR(EINVAL);
1235 }
1236 mp->m_sb.sb_rbmblocks = scounter;
1237 return 0;
1238 case XFS_SBS_RBLOCKS:
1239 lcounter = (long long)mp->m_sb.sb_rblocks;
1240 lcounter += delta;
1241 if (lcounter < 0) {
1242 ASSERT(0);
1243 return XFS_ERROR(EINVAL);
1244 }
1245 mp->m_sb.sb_rblocks = lcounter;
1246 return 0;
1247 case XFS_SBS_REXTENTS:
1248 lcounter = (long long)mp->m_sb.sb_rextents;
1249 lcounter += delta;
1250 if (lcounter < 0) {
1251 ASSERT(0);
1252 return XFS_ERROR(EINVAL);
1253 }
1254 mp->m_sb.sb_rextents = lcounter;
1255 return 0;
1256 case XFS_SBS_REXTSLOG:
1257 scounter = mp->m_sb.sb_rextslog;
1258 scounter += delta;
1259 if (scounter < 0) {
1260 ASSERT(0);
1261 return XFS_ERROR(EINVAL);
1262 }
1263 mp->m_sb.sb_rextslog = scounter;
1264 return 0;
1265 default:
1266 ASSERT(0);
1267 return XFS_ERROR(EINVAL);
1268 }
1269 }
1270
1271 /*
1272 * xfs_mod_incore_sb() is used to change a field in the in-core
1273 * superblock structure by the specified delta. This modification
1274 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked()
1275 * routine to do the work.
1276 */
1277 int
1278 xfs_mod_incore_sb(
1279 struct xfs_mount *mp,
1280 xfs_sb_field_t field,
1281 int64_t delta,
1282 int rsvd)
1283 {
1284 int status;
1285
1286 #ifdef HAVE_PERCPU_SB
1287 ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS);
1288 #endif
1289 spin_lock(&mp->m_sb_lock);
1290 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1291 spin_unlock(&mp->m_sb_lock);
1292
1293 return status;
1294 }
1295
1296 /*
1297 * Change more than one field in the in-core superblock structure at a time.
1298 *
1299 * The fields and changes to those fields are specified in the array of
1300 * xfs_mod_sb structures passed in. Either all of the specified deltas
1301 * will be applied or none of them will. If any modified field dips below 0,
1302 * then all modifications will be backed out and EINVAL will be returned.
1303 *
1304 * Note that this function may not be used for the superblock values that
1305 * are tracked with the in-memory per-cpu counters - a direct call to
1306 * xfs_icsb_modify_counters is required for these.
1307 */
1308 int
1309 xfs_mod_incore_sb_batch(
1310 struct xfs_mount *mp,
1311 xfs_mod_sb_t *msb,
1312 uint nmsb,
1313 int rsvd)
1314 {
1315 xfs_mod_sb_t *msbp;
1316 int error = 0;
1317
1318 /*
1319 * Loop through the array of mod structures and apply each individually.
1320 * If any fail, then back out all those which have already been applied.
1321 * Do all of this within the scope of the m_sb_lock so that all of the
1322 * changes will be atomic.
1323 */
1324 spin_lock(&mp->m_sb_lock);
1325 for (msbp = msb; msbp < (msb + nmsb); msbp++) {
1326 ASSERT(msbp->msb_field < XFS_SBS_ICOUNT ||
1327 msbp->msb_field > XFS_SBS_FDBLOCKS);
1328
1329 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1330 msbp->msb_delta, rsvd);
1331 if (error)
1332 goto unwind;
1333 }
1334 spin_unlock(&mp->m_sb_lock);
1335 return 0;
1336
1337 unwind:
1338 while (--msbp >= msb) {
1339 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1340 -msbp->msb_delta, rsvd);
1341 ASSERT(error == 0);
1342 }
1343 spin_unlock(&mp->m_sb_lock);
1344 return error;
1345 }
1346
1347 /*
1348 * xfs_getsb() is called to obtain the buffer for the superblock.
1349 * The buffer is returned locked and read in from disk.
1350 * The buffer should be released with a call to xfs_brelse().
1351 *
1352 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1353 * the superblock buffer if it can be locked without sleeping.
1354 * If it can't then we'll return NULL.
1355 */
1356 struct xfs_buf *
1357 xfs_getsb(
1358 struct xfs_mount *mp,
1359 int flags)
1360 {
1361 struct xfs_buf *bp = mp->m_sb_bp;
1362
1363 if (!xfs_buf_trylock(bp)) {
1364 if (flags & XBF_TRYLOCK)
1365 return NULL;
1366 xfs_buf_lock(bp);
1367 }
1368
1369 xfs_buf_hold(bp);
1370 ASSERT(XFS_BUF_ISDONE(bp));
1371 return bp;
1372 }
1373
1374 /*
1375 * Used to free the superblock along various error paths.
1376 */
1377 void
1378 xfs_freesb(
1379 struct xfs_mount *mp)
1380 {
1381 struct xfs_buf *bp = mp->m_sb_bp;
1382
1383 xfs_buf_lock(bp);
1384 mp->m_sb_bp = NULL;
1385 xfs_buf_relse(bp);
1386 }
1387
1388 /*
1389 * Used to log changes to the superblock unit and width fields which could
1390 * be altered by the mount options, as well as any potential sb_features2
1391 * fixup. Only the first superblock is updated.
1392 */
1393 int
1394 xfs_mount_log_sb(
1395 xfs_mount_t *mp,
1396 __int64_t fields)
1397 {
1398 xfs_trans_t *tp;
1399 int error;
1400
1401 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
1402 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
1403 XFS_SB_VERSIONNUM));
1404
1405 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
1406 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0);
1407 if (error) {
1408 xfs_trans_cancel(tp, 0);
1409 return error;
1410 }
1411 xfs_mod_sb(tp, fields);
1412 error = xfs_trans_commit(tp, 0);
1413 return error;
1414 }
1415
1416 /*
1417 * If the underlying (data/log/rt) device is readonly, there are some
1418 * operations that cannot proceed.
1419 */
1420 int
1421 xfs_dev_is_read_only(
1422 struct xfs_mount *mp,
1423 char *message)
1424 {
1425 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1426 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1427 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1428 xfs_notice(mp, "%s required on read-only device.", message);
1429 xfs_notice(mp, "write access unavailable, cannot proceed.");
1430 return EROFS;
1431 }
1432 return 0;
1433 }
1434
1435 #ifdef HAVE_PERCPU_SB
1436 /*
1437 * Per-cpu incore superblock counters
1438 *
1439 * Simple concept, difficult implementation
1440 *
1441 * Basically, replace the incore superblock counters with a distributed per cpu
1442 * counter for contended fields (e.g. free block count).
1443 *
1444 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1445 * hence needs to be accurately read when we are running low on space. Hence
1446 * there is a method to enable and disable the per-cpu counters based on how
1447 * much "stuff" is available in them.
1448 *
1449 * Basically, a counter is enabled if there is enough free resource to justify
1450 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1451 * ENOSPC), then we disable the counters to synchronise all callers and
1452 * re-distribute the available resources.
1453 *
1454 * If, once we redistributed the available resources, we still get a failure,
1455 * we disable the per-cpu counter and go through the slow path.
1456 *
1457 * The slow path is the current xfs_mod_incore_sb() function. This means that
1458 * when we disable a per-cpu counter, we need to drain its resources back to
1459 * the global superblock. We do this after disabling the counter to prevent
1460 * more threads from queueing up on the counter.
1461 *
1462 * Essentially, this means that we still need a lock in the fast path to enable
1463 * synchronisation between the global counters and the per-cpu counters. This
1464 * is not a problem because the lock will be local to a CPU almost all the time
1465 * and have little contention except when we get to ENOSPC conditions.
1466 *
1467 * Basically, this lock becomes a barrier that enables us to lock out the fast
1468 * path while we do things like enabling and disabling counters and
1469 * synchronising the counters.
1470 *
1471 * Locking rules:
1472 *
1473 * 1. m_sb_lock before picking up per-cpu locks
1474 * 2. per-cpu locks always picked up via for_each_online_cpu() order
1475 * 3. accurate counter sync requires m_sb_lock + per cpu locks
1476 * 4. modifying per-cpu counters requires holding per-cpu lock
1477 * 5. modifying global counters requires holding m_sb_lock
1478 * 6. enabling or disabling a counter requires holding the m_sb_lock
1479 * and _none_ of the per-cpu locks.
1480 *
1481 * Disabled counters are only ever re-enabled by a balance operation
1482 * that results in more free resources per CPU than a given threshold.
1483 * To ensure counters don't remain disabled, they are rebalanced when
1484 * the global resource goes above a higher threshold (i.e. some hysteresis
1485 * is present to prevent thrashing).
1486 */
1487
1488 #ifdef CONFIG_HOTPLUG_CPU
1489 /*
1490 * hot-plug CPU notifier support.
1491 *
1492 * We need a notifier per filesystem as we need to be able to identify
1493 * the filesystem to balance the counters out. This is achieved by
1494 * having a notifier block embedded in the xfs_mount_t and doing pointer
1495 * magic to get the mount pointer from the notifier block address.
1496 */
1497 STATIC int
1498 xfs_icsb_cpu_notify(
1499 struct notifier_block *nfb,
1500 unsigned long action,
1501 void *hcpu)
1502 {
1503 xfs_icsb_cnts_t *cntp;
1504 xfs_mount_t *mp;
1505
1506 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
1507 cntp = (xfs_icsb_cnts_t *)
1508 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
1509 switch (action) {
1510 case CPU_UP_PREPARE:
1511 case CPU_UP_PREPARE_FROZEN:
1512 /* Easy Case - initialize the area and locks, and
1513 * then rebalance when online does everything else for us. */
1514 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1515 break;
1516 case CPU_ONLINE:
1517 case CPU_ONLINE_FROZEN:
1518 xfs_icsb_lock(mp);
1519 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1520 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1521 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
1522 xfs_icsb_unlock(mp);
1523 break;
1524 case CPU_DEAD:
1525 case CPU_DEAD_FROZEN:
1526 /* Disable all the counters, then fold the dead cpu's
1527 * count into the total on the global superblock and
1528 * re-enable the counters. */
1529 xfs_icsb_lock(mp);
1530 spin_lock(&mp->m_sb_lock);
1531 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
1532 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
1533 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
1534
1535 mp->m_sb.sb_icount += cntp->icsb_icount;
1536 mp->m_sb.sb_ifree += cntp->icsb_ifree;
1537 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
1538
1539 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1540
1541 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
1542 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
1543 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
1544 spin_unlock(&mp->m_sb_lock);
1545 xfs_icsb_unlock(mp);
1546 break;
1547 }
1548
1549 return NOTIFY_OK;
1550 }
1551 #endif /* CONFIG_HOTPLUG_CPU */
1552
1553 int
1554 xfs_icsb_init_counters(
1555 xfs_mount_t *mp)
1556 {
1557 xfs_icsb_cnts_t *cntp;
1558 int i;
1559
1560 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
1561 if (mp->m_sb_cnts == NULL)
1562 return -ENOMEM;
1563
1564 for_each_online_cpu(i) {
1565 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1566 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1567 }
1568
1569 mutex_init(&mp->m_icsb_mutex);
1570
1571 /*
1572 * start with all counters disabled so that the
1573 * initial balance kicks us off correctly
1574 */
1575 mp->m_icsb_counters = -1;
1576
1577 #ifdef CONFIG_HOTPLUG_CPU
1578 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
1579 mp->m_icsb_notifier.priority = 0;
1580 register_hotcpu_notifier(&mp->m_icsb_notifier);
1581 #endif /* CONFIG_HOTPLUG_CPU */
1582
1583 return 0;
1584 }
1585
1586 void
1587 xfs_icsb_reinit_counters(
1588 xfs_mount_t *mp)
1589 {
1590 xfs_icsb_lock(mp);
1591 /*
1592 * start with all counters disabled so that the
1593 * initial balance kicks us off correctly
1594 */
1595 mp->m_icsb_counters = -1;
1596 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1597 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1598 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
1599 xfs_icsb_unlock(mp);
1600 }
1601
1602 void
1603 xfs_icsb_destroy_counters(
1604 xfs_mount_t *mp)
1605 {
1606 if (mp->m_sb_cnts) {
1607 unregister_hotcpu_notifier(&mp->m_icsb_notifier);
1608 free_percpu(mp->m_sb_cnts);
1609 }
1610 mutex_destroy(&mp->m_icsb_mutex);
1611 }
1612
1613 STATIC void
1614 xfs_icsb_lock_cntr(
1615 xfs_icsb_cnts_t *icsbp)
1616 {
1617 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
1618 ndelay(1000);
1619 }
1620 }
1621
1622 STATIC void
1623 xfs_icsb_unlock_cntr(
1624 xfs_icsb_cnts_t *icsbp)
1625 {
1626 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
1627 }
1628
1629
1630 STATIC void
1631 xfs_icsb_lock_all_counters(
1632 xfs_mount_t *mp)
1633 {
1634 xfs_icsb_cnts_t *cntp;
1635 int i;
1636
1637 for_each_online_cpu(i) {
1638 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1639 xfs_icsb_lock_cntr(cntp);
1640 }
1641 }
1642
1643 STATIC void
1644 xfs_icsb_unlock_all_counters(
1645 xfs_mount_t *mp)
1646 {
1647 xfs_icsb_cnts_t *cntp;
1648 int i;
1649
1650 for_each_online_cpu(i) {
1651 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1652 xfs_icsb_unlock_cntr(cntp);
1653 }
1654 }
1655
1656 STATIC void
1657 xfs_icsb_count(
1658 xfs_mount_t *mp,
1659 xfs_icsb_cnts_t *cnt,
1660 int flags)
1661 {
1662 xfs_icsb_cnts_t *cntp;
1663 int i;
1664
1665 memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
1666
1667 if (!(flags & XFS_ICSB_LAZY_COUNT))
1668 xfs_icsb_lock_all_counters(mp);
1669
1670 for_each_online_cpu(i) {
1671 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1672 cnt->icsb_icount += cntp->icsb_icount;
1673 cnt->icsb_ifree += cntp->icsb_ifree;
1674 cnt->icsb_fdblocks += cntp->icsb_fdblocks;
1675 }
1676
1677 if (!(flags & XFS_ICSB_LAZY_COUNT))
1678 xfs_icsb_unlock_all_counters(mp);
1679 }
1680
1681 STATIC int
1682 xfs_icsb_counter_disabled(
1683 xfs_mount_t *mp,
1684 xfs_sb_field_t field)
1685 {
1686 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1687 return test_bit(field, &mp->m_icsb_counters);
1688 }
1689
1690 STATIC void
1691 xfs_icsb_disable_counter(
1692 xfs_mount_t *mp,
1693 xfs_sb_field_t field)
1694 {
1695 xfs_icsb_cnts_t cnt;
1696
1697 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1698
1699 /*
1700 * If we are already disabled, then there is nothing to do
1701 * here. We check before locking all the counters to avoid
1702 * the expensive lock operation when being called in the
1703 * slow path and the counter is already disabled. This is
1704 * safe because the only time we set or clear this state is under
1705 * the m_icsb_mutex.
1706 */
1707 if (xfs_icsb_counter_disabled(mp, field))
1708 return;
1709
1710 xfs_icsb_lock_all_counters(mp);
1711 if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
1712 /* drain back to superblock */
1713
1714 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
1715 switch(field) {
1716 case XFS_SBS_ICOUNT:
1717 mp->m_sb.sb_icount = cnt.icsb_icount;
1718 break;
1719 case XFS_SBS_IFREE:
1720 mp->m_sb.sb_ifree = cnt.icsb_ifree;
1721 break;
1722 case XFS_SBS_FDBLOCKS:
1723 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
1724 break;
1725 default:
1726 BUG();
1727 }
1728 }
1729
1730 xfs_icsb_unlock_all_counters(mp);
1731 }
1732
1733 STATIC void
1734 xfs_icsb_enable_counter(
1735 xfs_mount_t *mp,
1736 xfs_sb_field_t field,
1737 uint64_t count,
1738 uint64_t resid)
1739 {
1740 xfs_icsb_cnts_t *cntp;
1741 int i;
1742
1743 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1744
1745 xfs_icsb_lock_all_counters(mp);
1746 for_each_online_cpu(i) {
1747 cntp = per_cpu_ptr(mp->m_sb_cnts, i);
1748 switch (field) {
1749 case XFS_SBS_ICOUNT:
1750 cntp->icsb_icount = count + resid;
1751 break;
1752 case XFS_SBS_IFREE:
1753 cntp->icsb_ifree = count + resid;
1754 break;
1755 case XFS_SBS_FDBLOCKS:
1756 cntp->icsb_fdblocks = count + resid;
1757 break;
1758 default:
1759 BUG();
1760 break;
1761 }
1762 resid = 0;
1763 }
1764 clear_bit(field, &mp->m_icsb_counters);
1765 xfs_icsb_unlock_all_counters(mp);
1766 }
1767
1768 void
1769 xfs_icsb_sync_counters_locked(
1770 xfs_mount_t *mp,
1771 int flags)
1772 {
1773 xfs_icsb_cnts_t cnt;
1774
1775 xfs_icsb_count(mp, &cnt, flags);
1776
1777 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
1778 mp->m_sb.sb_icount = cnt.icsb_icount;
1779 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
1780 mp->m_sb.sb_ifree = cnt.icsb_ifree;
1781 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
1782 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
1783 }
1784
1785 /*
1786 * Accurate update of per-cpu counters to incore superblock
1787 */
1788 void
1789 xfs_icsb_sync_counters(
1790 xfs_mount_t *mp,
1791 int flags)
1792 {
1793 spin_lock(&mp->m_sb_lock);
1794 xfs_icsb_sync_counters_locked(mp, flags);
1795 spin_unlock(&mp->m_sb_lock);
1796 }
1797
1798 /*
1799 * Balance and enable/disable counters as necessary.
1800 *
1801 * Thresholds for re-enabling counters are somewhat magic. inode counts are
1802 * chosen to be the same number as single on disk allocation chunk per CPU, and
1803 * free blocks is something far enough zero that we aren't going thrash when we
1804 * get near ENOSPC. We also need to supply a minimum we require per cpu to
1805 * prevent looping endlessly when xfs_alloc_space asks for more than will
1806 * be distributed to a single CPU but each CPU has enough blocks to be
1807 * reenabled.
1808 *
1809 * Note that we can be called when counters are already disabled.
1810 * xfs_icsb_disable_counter() optimises the counter locking in this case to
1811 * prevent locking every per-cpu counter needlessly.
1812 */
1813
1814 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64
1815 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
1816 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
1817 STATIC void
1818 xfs_icsb_balance_counter_locked(
1819 xfs_mount_t *mp,
1820 xfs_sb_field_t field,
1821 int min_per_cpu)
1822 {
1823 uint64_t count, resid;
1824 int weight = num_online_cpus();
1825 uint64_t min = (uint64_t)min_per_cpu;
1826
1827 /* disable counter and sync counter */
1828 xfs_icsb_disable_counter(mp, field);
1829
1830 /* update counters - first CPU gets residual*/
1831 switch (field) {
1832 case XFS_SBS_ICOUNT:
1833 count = mp->m_sb.sb_icount;
1834 resid = do_div(count, weight);
1835 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
1836 return;
1837 break;
1838 case XFS_SBS_IFREE:
1839 count = mp->m_sb.sb_ifree;
1840 resid = do_div(count, weight);
1841 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
1842 return;
1843 break;
1844 case XFS_SBS_FDBLOCKS:
1845 count = mp->m_sb.sb_fdblocks;
1846 resid = do_div(count, weight);
1847 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
1848 return;
1849 break;
1850 default:
1851 BUG();
1852 count = resid = 0; /* quiet, gcc */
1853 break;
1854 }
1855
1856 xfs_icsb_enable_counter(mp, field, count, resid);
1857 }
1858
1859 STATIC void
1860 xfs_icsb_balance_counter(
1861 xfs_mount_t *mp,
1862 xfs_sb_field_t fields,
1863 int min_per_cpu)
1864 {
1865 spin_lock(&mp->m_sb_lock);
1866 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
1867 spin_unlock(&mp->m_sb_lock);
1868 }
1869
1870 int
1871 xfs_icsb_modify_counters(
1872 xfs_mount_t *mp,
1873 xfs_sb_field_t field,
1874 int64_t delta,
1875 int rsvd)
1876 {
1877 xfs_icsb_cnts_t *icsbp;
1878 long long lcounter; /* long counter for 64 bit fields */
1879 int ret = 0;
1880
1881 might_sleep();
1882 again:
1883 preempt_disable();
1884 icsbp = this_cpu_ptr(mp->m_sb_cnts);
1885
1886 /*
1887 * if the counter is disabled, go to slow path
1888 */
1889 if (unlikely(xfs_icsb_counter_disabled(mp, field)))
1890 goto slow_path;
1891 xfs_icsb_lock_cntr(icsbp);
1892 if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
1893 xfs_icsb_unlock_cntr(icsbp);
1894 goto slow_path;
1895 }
1896
1897 switch (field) {
1898 case XFS_SBS_ICOUNT:
1899 lcounter = icsbp->icsb_icount;
1900 lcounter += delta;
1901 if (unlikely(lcounter < 0))
1902 goto balance_counter;
1903 icsbp->icsb_icount = lcounter;
1904 break;
1905
1906 case XFS_SBS_IFREE:
1907 lcounter = icsbp->icsb_ifree;
1908 lcounter += delta;
1909 if (unlikely(lcounter < 0))
1910 goto balance_counter;
1911 icsbp->icsb_ifree = lcounter;
1912 break;
1913
1914 case XFS_SBS_FDBLOCKS:
1915 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
1916
1917 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1918 lcounter += delta;
1919 if (unlikely(lcounter < 0))
1920 goto balance_counter;
1921 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1922 break;
1923 default:
1924 BUG();
1925 break;
1926 }
1927 xfs_icsb_unlock_cntr(icsbp);
1928 preempt_enable();
1929 return 0;
1930
1931 slow_path:
1932 preempt_enable();
1933
1934 /*
1935 * serialise with a mutex so we don't burn lots of cpu on
1936 * the superblock lock. We still need to hold the superblock
1937 * lock, however, when we modify the global structures.
1938 */
1939 xfs_icsb_lock(mp);
1940
1941 /*
1942 * Now running atomically.
1943 *
1944 * If the counter is enabled, someone has beaten us to rebalancing.
1945 * Drop the lock and try again in the fast path....
1946 */
1947 if (!(xfs_icsb_counter_disabled(mp, field))) {
1948 xfs_icsb_unlock(mp);
1949 goto again;
1950 }
1951
1952 /*
1953 * The counter is currently disabled. Because we are
1954 * running atomically here, we know a rebalance cannot
1955 * be in progress. Hence we can go straight to operating
1956 * on the global superblock. We do not call xfs_mod_incore_sb()
1957 * here even though we need to get the m_sb_lock. Doing so
1958 * will cause us to re-enter this function and deadlock.
1959 * Hence we get the m_sb_lock ourselves and then call
1960 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
1961 * directly on the global counters.
1962 */
1963 spin_lock(&mp->m_sb_lock);
1964 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1965 spin_unlock(&mp->m_sb_lock);
1966
1967 /*
1968 * Now that we've modified the global superblock, we
1969 * may be able to re-enable the distributed counters
1970 * (e.g. lots of space just got freed). After that
1971 * we are done.
1972 */
1973 if (ret != ENOSPC)
1974 xfs_icsb_balance_counter(mp, field, 0);
1975 xfs_icsb_unlock(mp);
1976 return ret;
1977
1978 balance_counter:
1979 xfs_icsb_unlock_cntr(icsbp);
1980 preempt_enable();
1981
1982 /*
1983 * We may have multiple threads here if multiple per-cpu
1984 * counters run dry at the same time. This will mean we can
1985 * do more balances than strictly necessary but it is not
1986 * the common slowpath case.
1987 */
1988 xfs_icsb_lock(mp);
1989
1990 /*
1991 * running atomically.
1992 *
1993 * This will leave the counter in the correct state for future
1994 * accesses. After the rebalance, we simply try again and our retry
1995 * will either succeed through the fast path or slow path without
1996 * another balance operation being required.
1997 */
1998 xfs_icsb_balance_counter(mp, field, delta);
1999 xfs_icsb_unlock(mp);
2000 goto again;
2001 }
2002
2003 #endif
This page took 0.10275 seconds and 5 git commands to generate.