2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_format.h"
24 #include "xfs_trans.h"
25 #include "xfs_trans_priv.h"
28 #include "xfs_mount.h"
29 #include "xfs_da_btree.h"
30 #include "xfs_dir2_format.h"
32 #include "xfs_bmap_btree.h"
33 #include "xfs_alloc_btree.h"
34 #include "xfs_ialloc_btree.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_btree.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_alloc.h"
40 #include "xfs_rtalloc.h"
42 #include "xfs_error.h"
43 #include "xfs_quota.h"
44 #include "xfs_fsops.h"
45 #include "xfs_trace.h"
46 #include "xfs_icache.h"
47 #include "xfs_cksum.h"
48 #include "xfs_buf_item.h"
52 STATIC
void xfs_icsb_balance_counter(xfs_mount_t
*, xfs_sb_field_t
,
54 STATIC
void xfs_icsb_balance_counter_locked(xfs_mount_t
*, xfs_sb_field_t
,
56 STATIC
void xfs_icsb_disable_counter(xfs_mount_t
*, xfs_sb_field_t
);
59 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0)
60 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0)
63 static DEFINE_MUTEX(xfs_uuid_table_mutex
);
64 static int xfs_uuid_table_size
;
65 static uuid_t
*xfs_uuid_table
;
68 * See if the UUID is unique among mounted XFS filesystems.
69 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
75 uuid_t
*uuid
= &mp
->m_sb
.sb_uuid
;
78 if (mp
->m_flags
& XFS_MOUNT_NOUUID
)
81 if (uuid_is_nil(uuid
)) {
82 xfs_warn(mp
, "Filesystem has nil UUID - can't mount");
83 return XFS_ERROR(EINVAL
);
86 mutex_lock(&xfs_uuid_table_mutex
);
87 for (i
= 0, hole
= -1; i
< xfs_uuid_table_size
; i
++) {
88 if (uuid_is_nil(&xfs_uuid_table
[i
])) {
92 if (uuid_equal(uuid
, &xfs_uuid_table
[i
]))
97 xfs_uuid_table
= kmem_realloc(xfs_uuid_table
,
98 (xfs_uuid_table_size
+ 1) * sizeof(*xfs_uuid_table
),
99 xfs_uuid_table_size
* sizeof(*xfs_uuid_table
),
101 hole
= xfs_uuid_table_size
++;
103 xfs_uuid_table
[hole
] = *uuid
;
104 mutex_unlock(&xfs_uuid_table_mutex
);
109 mutex_unlock(&xfs_uuid_table_mutex
);
110 xfs_warn(mp
, "Filesystem has duplicate UUID %pU - can't mount", uuid
);
111 return XFS_ERROR(EINVAL
);
116 struct xfs_mount
*mp
)
118 uuid_t
*uuid
= &mp
->m_sb
.sb_uuid
;
121 if (mp
->m_flags
& XFS_MOUNT_NOUUID
)
124 mutex_lock(&xfs_uuid_table_mutex
);
125 for (i
= 0; i
< xfs_uuid_table_size
; i
++) {
126 if (uuid_is_nil(&xfs_uuid_table
[i
]))
128 if (!uuid_equal(uuid
, &xfs_uuid_table
[i
]))
130 memset(&xfs_uuid_table
[i
], 0, sizeof(uuid_t
));
133 ASSERT(i
< xfs_uuid_table_size
);
134 mutex_unlock(&xfs_uuid_table_mutex
);
140 struct rcu_head
*head
)
142 struct xfs_perag
*pag
= container_of(head
, struct xfs_perag
, rcu_head
);
144 ASSERT(atomic_read(&pag
->pag_ref
) == 0);
149 * Free up the per-ag resources associated with the mount structure.
156 struct xfs_perag
*pag
;
158 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
159 spin_lock(&mp
->m_perag_lock
);
160 pag
= radix_tree_delete(&mp
->m_perag_tree
, agno
);
161 spin_unlock(&mp
->m_perag_lock
);
163 ASSERT(atomic_read(&pag
->pag_ref
) == 0);
164 call_rcu(&pag
->rcu_head
, __xfs_free_perag
);
169 * Check size of device based on the (data/realtime) block count.
170 * Note: this check is used by the growfs code as well as mount.
173 xfs_sb_validate_fsb_count(
177 ASSERT(PAGE_SHIFT
>= sbp
->sb_blocklog
);
178 ASSERT(sbp
->sb_blocklog
>= BBSHIFT
);
180 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */
181 if (nblocks
>> (PAGE_CACHE_SHIFT
- sbp
->sb_blocklog
) > ULONG_MAX
)
183 #else /* Limited by UINT_MAX of sectors */
184 if (nblocks
<< (sbp
->sb_blocklog
- BBSHIFT
) > UINT_MAX
)
191 xfs_initialize_perag(
193 xfs_agnumber_t agcount
,
194 xfs_agnumber_t
*maxagi
)
196 xfs_agnumber_t index
;
197 xfs_agnumber_t first_initialised
= 0;
201 xfs_sb_t
*sbp
= &mp
->m_sb
;
205 * Walk the current per-ag tree so we don't try to initialise AGs
206 * that already exist (growfs case). Allocate and insert all the
207 * AGs we don't find ready for initialisation.
209 for (index
= 0; index
< agcount
; index
++) {
210 pag
= xfs_perag_get(mp
, index
);
215 if (!first_initialised
)
216 first_initialised
= index
;
218 pag
= kmem_zalloc(sizeof(*pag
), KM_MAYFAIL
);
221 pag
->pag_agno
= index
;
223 spin_lock_init(&pag
->pag_ici_lock
);
224 mutex_init(&pag
->pag_ici_reclaim_lock
);
225 INIT_RADIX_TREE(&pag
->pag_ici_root
, GFP_ATOMIC
);
226 spin_lock_init(&pag
->pag_buf_lock
);
227 pag
->pag_buf_tree
= RB_ROOT
;
229 if (radix_tree_preload(GFP_NOFS
))
232 spin_lock(&mp
->m_perag_lock
);
233 if (radix_tree_insert(&mp
->m_perag_tree
, index
, pag
)) {
235 spin_unlock(&mp
->m_perag_lock
);
236 radix_tree_preload_end();
240 spin_unlock(&mp
->m_perag_lock
);
241 radix_tree_preload_end();
245 * If we mount with the inode64 option, or no inode overflows
246 * the legacy 32-bit address space clear the inode32 option.
248 agino
= XFS_OFFBNO_TO_AGINO(mp
, sbp
->sb_agblocks
- 1, 0);
249 ino
= XFS_AGINO_TO_INO(mp
, agcount
- 1, agino
);
251 if ((mp
->m_flags
& XFS_MOUNT_SMALL_INUMS
) && ino
> XFS_MAXINUMBER_32
)
252 mp
->m_flags
|= XFS_MOUNT_32BITINODES
;
254 mp
->m_flags
&= ~XFS_MOUNT_32BITINODES
;
256 if (mp
->m_flags
& XFS_MOUNT_32BITINODES
)
257 index
= xfs_set_inode32(mp
);
259 index
= xfs_set_inode64(mp
);
267 for (; index
> first_initialised
; index
--) {
268 pag
= radix_tree_delete(&mp
->m_perag_tree
, index
);
277 * Does the initial read of the superblock.
281 struct xfs_mount
*mp
,
284 unsigned int sector_size
;
286 struct xfs_sb
*sbp
= &mp
->m_sb
;
288 int loud
= !(flags
& XFS_MFSI_QUIET
);
290 ASSERT(mp
->m_sb_bp
== NULL
);
291 ASSERT(mp
->m_ddev_targp
!= NULL
);
294 * Allocate a (locked) buffer to hold the superblock.
295 * This will be kept around at all times to optimize
296 * access to the superblock.
298 sector_size
= xfs_getsize_buftarg(mp
->m_ddev_targp
);
301 bp
= xfs_buf_read_uncached(mp
->m_ddev_targp
, XFS_SB_DADDR
,
302 BTOBB(sector_size
), 0,
303 loud
? &xfs_sb_buf_ops
304 : &xfs_sb_quiet_buf_ops
);
307 xfs_warn(mp
, "SB buffer read failed");
313 xfs_warn(mp
, "SB validate failed with error %d.", error
);
318 * Initialize the mount structure from the superblock.
320 xfs_sb_from_disk(&mp
->m_sb
, XFS_BUF_TO_SBP(bp
));
321 xfs_sb_quota_from_disk(&mp
->m_sb
);
324 * We must be able to do sector-sized and sector-aligned IO.
326 if (sector_size
> sbp
->sb_sectsize
) {
328 xfs_warn(mp
, "device supports %u byte sectors (not %u)",
329 sector_size
, sbp
->sb_sectsize
);
335 * If device sector size is smaller than the superblock size,
336 * re-read the superblock so the buffer is correctly sized.
338 if (sector_size
< sbp
->sb_sectsize
) {
340 sector_size
= sbp
->sb_sectsize
;
344 /* Initialize per-cpu counters */
345 xfs_icsb_reinit_counters(mp
);
347 /* no need to be quiet anymore, so reset the buf ops */
348 bp
->b_ops
= &xfs_sb_buf_ops
;
360 * Update alignment values based on mount options and sb values
363 xfs_update_alignment(xfs_mount_t
*mp
)
365 xfs_sb_t
*sbp
= &(mp
->m_sb
);
369 * If stripe unit and stripe width are not multiples
370 * of the fs blocksize turn off alignment.
372 if ((BBTOB(mp
->m_dalign
) & mp
->m_blockmask
) ||
373 (BBTOB(mp
->m_swidth
) & mp
->m_blockmask
)) {
375 "alignment check failed: sunit/swidth vs. blocksize(%d)",
377 return XFS_ERROR(EINVAL
);
380 * Convert the stripe unit and width to FSBs.
382 mp
->m_dalign
= XFS_BB_TO_FSBT(mp
, mp
->m_dalign
);
383 if (mp
->m_dalign
&& (sbp
->sb_agblocks
% mp
->m_dalign
)) {
385 "alignment check failed: sunit/swidth vs. agsize(%d)",
387 return XFS_ERROR(EINVAL
);
388 } else if (mp
->m_dalign
) {
389 mp
->m_swidth
= XFS_BB_TO_FSBT(mp
, mp
->m_swidth
);
392 "alignment check failed: sunit(%d) less than bsize(%d)",
393 mp
->m_dalign
, sbp
->sb_blocksize
);
394 return XFS_ERROR(EINVAL
);
399 * Update superblock with new values
402 if (xfs_sb_version_hasdalign(sbp
)) {
403 if (sbp
->sb_unit
!= mp
->m_dalign
) {
404 sbp
->sb_unit
= mp
->m_dalign
;
405 mp
->m_update_flags
|= XFS_SB_UNIT
;
407 if (sbp
->sb_width
!= mp
->m_swidth
) {
408 sbp
->sb_width
= mp
->m_swidth
;
409 mp
->m_update_flags
|= XFS_SB_WIDTH
;
413 "cannot change alignment: superblock does not support data alignment");
414 return XFS_ERROR(EINVAL
);
416 } else if ((mp
->m_flags
& XFS_MOUNT_NOALIGN
) != XFS_MOUNT_NOALIGN
&&
417 xfs_sb_version_hasdalign(&mp
->m_sb
)) {
418 mp
->m_dalign
= sbp
->sb_unit
;
419 mp
->m_swidth
= sbp
->sb_width
;
426 * Set the maximum inode count for this filesystem
429 xfs_set_maxicount(xfs_mount_t
*mp
)
431 xfs_sb_t
*sbp
= &(mp
->m_sb
);
434 if (sbp
->sb_imax_pct
) {
436 * Make sure the maximum inode count is a multiple
437 * of the units we allocate inodes in.
439 icount
= sbp
->sb_dblocks
* sbp
->sb_imax_pct
;
441 do_div(icount
, mp
->m_ialloc_blks
);
442 mp
->m_maxicount
= (icount
* mp
->m_ialloc_blks
) <<
450 * Set the default minimum read and write sizes unless
451 * already specified in a mount option.
452 * We use smaller I/O sizes when the file system
453 * is being used for NFS service (wsync mount option).
456 xfs_set_rw_sizes(xfs_mount_t
*mp
)
458 xfs_sb_t
*sbp
= &(mp
->m_sb
);
459 int readio_log
, writeio_log
;
461 if (!(mp
->m_flags
& XFS_MOUNT_DFLT_IOSIZE
)) {
462 if (mp
->m_flags
& XFS_MOUNT_WSYNC
) {
463 readio_log
= XFS_WSYNC_READIO_LOG
;
464 writeio_log
= XFS_WSYNC_WRITEIO_LOG
;
466 readio_log
= XFS_READIO_LOG_LARGE
;
467 writeio_log
= XFS_WRITEIO_LOG_LARGE
;
470 readio_log
= mp
->m_readio_log
;
471 writeio_log
= mp
->m_writeio_log
;
474 if (sbp
->sb_blocklog
> readio_log
) {
475 mp
->m_readio_log
= sbp
->sb_blocklog
;
477 mp
->m_readio_log
= readio_log
;
479 mp
->m_readio_blocks
= 1 << (mp
->m_readio_log
- sbp
->sb_blocklog
);
480 if (sbp
->sb_blocklog
> writeio_log
) {
481 mp
->m_writeio_log
= sbp
->sb_blocklog
;
483 mp
->m_writeio_log
= writeio_log
;
485 mp
->m_writeio_blocks
= 1 << (mp
->m_writeio_log
- sbp
->sb_blocklog
);
489 * precalculate the low space thresholds for dynamic speculative preallocation.
492 xfs_set_low_space_thresholds(
493 struct xfs_mount
*mp
)
497 for (i
= 0; i
< XFS_LOWSP_MAX
; i
++) {
498 __uint64_t space
= mp
->m_sb
.sb_dblocks
;
501 mp
->m_low_space
[i
] = space
* (i
+ 1);
507 * Set whether we're using inode alignment.
510 xfs_set_inoalignment(xfs_mount_t
*mp
)
512 if (xfs_sb_version_hasalign(&mp
->m_sb
) &&
513 mp
->m_sb
.sb_inoalignmt
>=
514 XFS_B_TO_FSBT(mp
, mp
->m_inode_cluster_size
))
515 mp
->m_inoalign_mask
= mp
->m_sb
.sb_inoalignmt
- 1;
517 mp
->m_inoalign_mask
= 0;
519 * If we are using stripe alignment, check whether
520 * the stripe unit is a multiple of the inode alignment
522 if (mp
->m_dalign
&& mp
->m_inoalign_mask
&&
523 !(mp
->m_dalign
& mp
->m_inoalign_mask
))
524 mp
->m_sinoalign
= mp
->m_dalign
;
530 * Check that the data (and log if separate) is an ok size.
533 xfs_check_sizes(xfs_mount_t
*mp
)
538 d
= (xfs_daddr_t
)XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
);
539 if (XFS_BB_TO_FSB(mp
, d
) != mp
->m_sb
.sb_dblocks
) {
540 xfs_warn(mp
, "filesystem size mismatch detected");
541 return XFS_ERROR(EFBIG
);
543 bp
= xfs_buf_read_uncached(mp
->m_ddev_targp
,
544 d
- XFS_FSS_TO_BB(mp
, 1),
545 XFS_FSS_TO_BB(mp
, 1), 0, NULL
);
547 xfs_warn(mp
, "last sector read failed");
552 if (mp
->m_logdev_targp
!= mp
->m_ddev_targp
) {
553 d
= (xfs_daddr_t
)XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_logblocks
);
554 if (XFS_BB_TO_FSB(mp
, d
) != mp
->m_sb
.sb_logblocks
) {
555 xfs_warn(mp
, "log size mismatch detected");
556 return XFS_ERROR(EFBIG
);
558 bp
= xfs_buf_read_uncached(mp
->m_logdev_targp
,
559 d
- XFS_FSB_TO_BB(mp
, 1),
560 XFS_FSB_TO_BB(mp
, 1), 0, NULL
);
562 xfs_warn(mp
, "log device read failed");
571 * Clear the quotaflags in memory and in the superblock.
574 xfs_mount_reset_sbqflags(
575 struct xfs_mount
*mp
)
578 struct xfs_trans
*tp
;
583 * It is OK to look at sb_qflags here in mount path,
586 if (mp
->m_sb
.sb_qflags
== 0)
588 spin_lock(&mp
->m_sb_lock
);
589 mp
->m_sb
.sb_qflags
= 0;
590 spin_unlock(&mp
->m_sb_lock
);
593 * If the fs is readonly, let the incore superblock run
594 * with quotas off but don't flush the update out to disk
596 if (mp
->m_flags
& XFS_MOUNT_RDONLY
)
599 tp
= xfs_trans_alloc(mp
, XFS_TRANS_QM_SBCHANGE
);
600 error
= xfs_trans_reserve(tp
, &M_RES(mp
)->tr_qm_sbchange
, 0, 0);
602 xfs_trans_cancel(tp
, 0);
603 xfs_alert(mp
, "%s: Superblock update failed!", __func__
);
607 xfs_mod_sb(tp
, XFS_SB_QFLAGS
);
608 return xfs_trans_commit(tp
, 0);
612 xfs_default_resblks(xfs_mount_t
*mp
)
617 * We default to 5% or 8192 fsbs of space reserved, whichever is
618 * smaller. This is intended to cover concurrent allocation
619 * transactions when we initially hit enospc. These each require a 4
620 * block reservation. Hence by default we cover roughly 2000 concurrent
621 * allocation reservations.
623 resblks
= mp
->m_sb
.sb_dblocks
;
625 resblks
= min_t(__uint64_t
, resblks
, 8192);
630 * This function does the following on an initial mount of a file system:
631 * - reads the superblock from disk and init the mount struct
632 * - if we're a 32-bit kernel, do a size check on the superblock
633 * so we don't mount terabyte filesystems
634 * - init mount struct realtime fields
635 * - allocate inode hash table for fs
636 * - init directory manager
637 * - perform recovery and init the log manager
643 xfs_sb_t
*sbp
= &(mp
->m_sb
);
650 xfs_sb_mount_common(mp
, sbp
);
653 * Check for a mismatched features2 values. Older kernels
654 * read & wrote into the wrong sb offset for sb_features2
655 * on some platforms due to xfs_sb_t not being 64bit size aligned
656 * when sb_features2 was added, which made older superblock
657 * reading/writing routines swap it as a 64-bit value.
659 * For backwards compatibility, we make both slots equal.
661 * If we detect a mismatched field, we OR the set bits into the
662 * existing features2 field in case it has already been modified; we
663 * don't want to lose any features. We then update the bad location
664 * with the ORed value so that older kernels will see any features2
665 * flags, and mark the two fields as needing updates once the
666 * transaction subsystem is online.
668 if (xfs_sb_has_mismatched_features2(sbp
)) {
669 xfs_warn(mp
, "correcting sb_features alignment problem");
670 sbp
->sb_features2
|= sbp
->sb_bad_features2
;
671 sbp
->sb_bad_features2
= sbp
->sb_features2
;
672 mp
->m_update_flags
|= XFS_SB_FEATURES2
| XFS_SB_BAD_FEATURES2
;
675 * Re-check for ATTR2 in case it was found in bad_features2
678 if (xfs_sb_version_hasattr2(&mp
->m_sb
) &&
679 !(mp
->m_flags
& XFS_MOUNT_NOATTR2
))
680 mp
->m_flags
|= XFS_MOUNT_ATTR2
;
683 if (xfs_sb_version_hasattr2(&mp
->m_sb
) &&
684 (mp
->m_flags
& XFS_MOUNT_NOATTR2
)) {
685 xfs_sb_version_removeattr2(&mp
->m_sb
);
686 mp
->m_update_flags
|= XFS_SB_FEATURES2
;
688 /* update sb_versionnum for the clearing of the morebits */
689 if (!sbp
->sb_features2
)
690 mp
->m_update_flags
|= XFS_SB_VERSIONNUM
;
694 * Check if sb_agblocks is aligned at stripe boundary
695 * If sb_agblocks is NOT aligned turn off m_dalign since
696 * allocator alignment is within an ag, therefore ag has
697 * to be aligned at stripe boundary.
699 error
= xfs_update_alignment(mp
);
703 xfs_alloc_compute_maxlevels(mp
);
704 xfs_bmap_compute_maxlevels(mp
, XFS_DATA_FORK
);
705 xfs_bmap_compute_maxlevels(mp
, XFS_ATTR_FORK
);
706 xfs_ialloc_compute_maxlevels(mp
);
708 xfs_set_maxicount(mp
);
710 error
= xfs_uuid_mount(mp
);
715 * Set the minimum read and write sizes
717 xfs_set_rw_sizes(mp
);
719 /* set the low space thresholds for dynamic preallocation */
720 xfs_set_low_space_thresholds(mp
);
723 * Set the inode cluster size.
724 * This may still be overridden by the file system
725 * block size if it is larger than the chosen cluster size.
727 mp
->m_inode_cluster_size
= XFS_INODE_BIG_CLUSTER_SIZE
;
730 * Set inode alignment fields
732 xfs_set_inoalignment(mp
);
735 * Check that the data (and log if separate) is an ok size.
737 error
= xfs_check_sizes(mp
);
739 goto out_remove_uuid
;
742 * Initialize realtime fields in the mount structure
744 error
= xfs_rtmount_init(mp
);
746 xfs_warn(mp
, "RT mount failed");
747 goto out_remove_uuid
;
751 * Copies the low order bits of the timestamp and the randomly
752 * set "sequence" number out of a UUID.
754 uuid_getnodeuniq(&sbp
->sb_uuid
, mp
->m_fixedfsid
);
756 mp
->m_dmevmask
= 0; /* not persistent; set after each mount */
761 * Initialize the attribute manager's entries.
763 mp
->m_attr_magicpct
= (mp
->m_sb
.sb_blocksize
* 37) / 100;
766 * Initialize the precomputed transaction reservations values.
771 * Allocate and initialize the per-ag data.
773 spin_lock_init(&mp
->m_perag_lock
);
774 INIT_RADIX_TREE(&mp
->m_perag_tree
, GFP_ATOMIC
);
775 error
= xfs_initialize_perag(mp
, sbp
->sb_agcount
, &mp
->m_maxagi
);
777 xfs_warn(mp
, "Failed per-ag init: %d", error
);
778 goto out_remove_uuid
;
781 if (!sbp
->sb_logblocks
) {
782 xfs_warn(mp
, "no log defined");
783 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW
, mp
);
784 error
= XFS_ERROR(EFSCORRUPTED
);
789 * log's mount-time initialization. Perform 1st part recovery if needed
791 error
= xfs_log_mount(mp
, mp
->m_logdev_targp
,
792 XFS_FSB_TO_DADDR(mp
, sbp
->sb_logstart
),
793 XFS_FSB_TO_BB(mp
, sbp
->sb_logblocks
));
795 xfs_warn(mp
, "log mount failed");
800 * Now the log is mounted, we know if it was an unclean shutdown or
801 * not. If it was, with the first phase of recovery has completed, we
802 * have consistent AG blocks on disk. We have not recovered EFIs yet,
803 * but they are recovered transactionally in the second recovery phase
806 * Hence we can safely re-initialise incore superblock counters from
807 * the per-ag data. These may not be correct if the filesystem was not
808 * cleanly unmounted, so we need to wait for recovery to finish before
811 * If the filesystem was cleanly unmounted, then we can trust the
812 * values in the superblock to be correct and we don't need to do
815 * If we are currently making the filesystem, the initialisation will
816 * fail as the perag data is in an undefined state.
818 if (xfs_sb_version_haslazysbcount(&mp
->m_sb
) &&
819 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp
) &&
820 !mp
->m_sb
.sb_inprogress
) {
821 error
= xfs_initialize_perag_data(mp
, sbp
->sb_agcount
);
827 * Get and sanity-check the root inode.
828 * Save the pointer to it in the mount structure.
830 error
= xfs_iget(mp
, NULL
, sbp
->sb_rootino
, 0, XFS_ILOCK_EXCL
, &rip
);
832 xfs_warn(mp
, "failed to read root inode");
833 goto out_log_dealloc
;
838 if (unlikely(!S_ISDIR(rip
->i_d
.di_mode
))) {
839 xfs_warn(mp
, "corrupted root inode %llu: not a directory",
840 (unsigned long long)rip
->i_ino
);
841 xfs_iunlock(rip
, XFS_ILOCK_EXCL
);
842 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW
,
844 error
= XFS_ERROR(EFSCORRUPTED
);
847 mp
->m_rootip
= rip
; /* save it */
849 xfs_iunlock(rip
, XFS_ILOCK_EXCL
);
852 * Initialize realtime inode pointers in the mount structure
854 error
= xfs_rtmount_inodes(mp
);
857 * Free up the root inode.
859 xfs_warn(mp
, "failed to read RT inodes");
864 * If this is a read-only mount defer the superblock updates until
865 * the next remount into writeable mode. Otherwise we would never
866 * perform the update e.g. for the root filesystem.
868 if (mp
->m_update_flags
&& !(mp
->m_flags
& XFS_MOUNT_RDONLY
)) {
869 error
= xfs_mount_log_sb(mp
, mp
->m_update_flags
);
871 xfs_warn(mp
, "failed to write sb changes");
877 * Initialise the XFS quota management subsystem for this mount
879 if (XFS_IS_QUOTA_RUNNING(mp
)) {
880 error
= xfs_qm_newmount(mp
, "amount
, "aflags
);
884 ASSERT(!XFS_IS_QUOTA_ON(mp
));
887 * If a file system had quotas running earlier, but decided to
888 * mount without -o uquota/pquota/gquota options, revoke the
889 * quotachecked license.
891 if (mp
->m_sb
.sb_qflags
& XFS_ALL_QUOTA_ACCT
) {
892 xfs_notice(mp
, "resetting quota flags");
893 error
= xfs_mount_reset_sbqflags(mp
);
900 * Finish recovering the file system. This part needed to be
901 * delayed until after the root and real-time bitmap inodes
902 * were consistently read in.
904 error
= xfs_log_mount_finish(mp
);
906 xfs_warn(mp
, "log mount finish failed");
911 * Complete the quota initialisation, post-log-replay component.
914 ASSERT(mp
->m_qflags
== 0);
915 mp
->m_qflags
= quotaflags
;
917 xfs_qm_mount_quotas(mp
);
921 * Now we are mounted, reserve a small amount of unused space for
922 * privileged transactions. This is needed so that transaction
923 * space required for critical operations can dip into this pool
924 * when at ENOSPC. This is needed for operations like create with
925 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
926 * are not allowed to use this reserved space.
928 * This may drive us straight to ENOSPC on mount, but that implies
929 * we were already there on the last unmount. Warn if this occurs.
931 if (!(mp
->m_flags
& XFS_MOUNT_RDONLY
)) {
932 resblks
= xfs_default_resblks(mp
);
933 error
= xfs_reserve_blocks(mp
, &resblks
, NULL
);
936 "Unable to allocate reserve blocks. Continuing without reserve pool.");
942 xfs_rtunmount_inodes(mp
);
948 if (mp
->m_logdev_targp
&& mp
->m_logdev_targp
!= mp
->m_ddev_targp
)
949 xfs_wait_buftarg(mp
->m_logdev_targp
);
950 xfs_wait_buftarg(mp
->m_ddev_targp
);
954 xfs_uuid_unmount(mp
);
960 * This flushes out the inodes,dquots and the superblock, unmounts the
961 * log and makes sure that incore structures are freed.
965 struct xfs_mount
*mp
)
970 cancel_delayed_work_sync(&mp
->m_eofblocks_work
);
972 xfs_qm_unmount_quotas(mp
);
973 xfs_rtunmount_inodes(mp
);
977 * We can potentially deadlock here if we have an inode cluster
978 * that has been freed has its buffer still pinned in memory because
979 * the transaction is still sitting in a iclog. The stale inodes
980 * on that buffer will have their flush locks held until the
981 * transaction hits the disk and the callbacks run. the inode
982 * flush takes the flush lock unconditionally and with nothing to
983 * push out the iclog we will never get that unlocked. hence we
984 * need to force the log first.
986 xfs_log_force(mp
, XFS_LOG_SYNC
);
989 * Flush all pending changes from the AIL.
991 xfs_ail_push_all_sync(mp
->m_ail
);
994 * And reclaim all inodes. At this point there should be no dirty
995 * inodes and none should be pinned or locked, but use synchronous
996 * reclaim just to be sure. We can stop background inode reclaim
997 * here as well if it is still running.
999 cancel_delayed_work_sync(&mp
->m_reclaim_work
);
1000 xfs_reclaim_inodes(mp
, SYNC_WAIT
);
1005 * Unreserve any blocks we have so that when we unmount we don't account
1006 * the reserved free space as used. This is really only necessary for
1007 * lazy superblock counting because it trusts the incore superblock
1008 * counters to be absolutely correct on clean unmount.
1010 * We don't bother correcting this elsewhere for lazy superblock
1011 * counting because on mount of an unclean filesystem we reconstruct the
1012 * correct counter value and this is irrelevant.
1014 * For non-lazy counter filesystems, this doesn't matter at all because
1015 * we only every apply deltas to the superblock and hence the incore
1016 * value does not matter....
1019 error
= xfs_reserve_blocks(mp
, &resblks
, NULL
);
1021 xfs_warn(mp
, "Unable to free reserved block pool. "
1022 "Freespace may not be correct on next mount.");
1024 error
= xfs_log_sbcount(mp
);
1026 xfs_warn(mp
, "Unable to update superblock counters. "
1027 "Freespace may not be correct on next mount.");
1029 xfs_log_unmount(mp
);
1030 xfs_uuid_unmount(mp
);
1033 xfs_errortag_clearall(mp
, 0);
1039 xfs_fs_writable(xfs_mount_t
*mp
)
1041 return !(mp
->m_super
->s_writers
.frozen
|| XFS_FORCED_SHUTDOWN(mp
) ||
1042 (mp
->m_flags
& XFS_MOUNT_RDONLY
));
1048 * Sync the superblock counters to disk.
1050 * Note this code can be called during the process of freezing, so
1051 * we may need to use the transaction allocator which does not
1052 * block when the transaction subsystem is in its frozen state.
1055 xfs_log_sbcount(xfs_mount_t
*mp
)
1060 if (!xfs_fs_writable(mp
))
1063 xfs_icsb_sync_counters(mp
, 0);
1066 * we don't need to do this if we are updating the superblock
1067 * counters on every modification.
1069 if (!xfs_sb_version_haslazysbcount(&mp
->m_sb
))
1072 tp
= _xfs_trans_alloc(mp
, XFS_TRANS_SB_COUNT
, KM_SLEEP
);
1073 error
= xfs_trans_reserve(tp
, &M_RES(mp
)->tr_sb
, 0, 0);
1075 xfs_trans_cancel(tp
, 0);
1079 xfs_mod_sb(tp
, XFS_SB_IFREE
| XFS_SB_ICOUNT
| XFS_SB_FDBLOCKS
);
1080 xfs_trans_set_sync(tp
);
1081 error
= xfs_trans_commit(tp
, 0);
1086 * xfs_mod_incore_sb_unlocked() is a utility routine commonly used to apply
1087 * a delta to a specified field in the in-core superblock. Simply
1088 * switch on the field indicated and apply the delta to that field.
1089 * Fields are not allowed to dip below zero, so if the delta would
1090 * do this do not apply it and return EINVAL.
1092 * The m_sb_lock must be held when this routine is called.
1095 xfs_mod_incore_sb_unlocked(
1097 xfs_sb_field_t field
,
1101 int scounter
; /* short counter for 32 bit fields */
1102 long long lcounter
; /* long counter for 64 bit fields */
1103 long long res_used
, rem
;
1106 * With the in-core superblock spin lock held, switch
1107 * on the indicated field. Apply the delta to the
1108 * proper field. If the fields value would dip below
1109 * 0, then do not apply the delta and return EINVAL.
1112 case XFS_SBS_ICOUNT
:
1113 lcounter
= (long long)mp
->m_sb
.sb_icount
;
1117 return XFS_ERROR(EINVAL
);
1119 mp
->m_sb
.sb_icount
= lcounter
;
1122 lcounter
= (long long)mp
->m_sb
.sb_ifree
;
1126 return XFS_ERROR(EINVAL
);
1128 mp
->m_sb
.sb_ifree
= lcounter
;
1130 case XFS_SBS_FDBLOCKS
:
1131 lcounter
= (long long)
1132 mp
->m_sb
.sb_fdblocks
- XFS_ALLOC_SET_ASIDE(mp
);
1133 res_used
= (long long)(mp
->m_resblks
- mp
->m_resblks_avail
);
1135 if (delta
> 0) { /* Putting blocks back */
1136 if (res_used
> delta
) {
1137 mp
->m_resblks_avail
+= delta
;
1139 rem
= delta
- res_used
;
1140 mp
->m_resblks_avail
= mp
->m_resblks
;
1143 } else { /* Taking blocks away */
1145 if (lcounter
>= 0) {
1146 mp
->m_sb
.sb_fdblocks
= lcounter
+
1147 XFS_ALLOC_SET_ASIDE(mp
);
1152 * We are out of blocks, use any available reserved
1153 * blocks if were allowed to.
1156 return XFS_ERROR(ENOSPC
);
1158 lcounter
= (long long)mp
->m_resblks_avail
+ delta
;
1159 if (lcounter
>= 0) {
1160 mp
->m_resblks_avail
= lcounter
;
1163 printk_once(KERN_WARNING
1164 "Filesystem \"%s\": reserve blocks depleted! "
1165 "Consider increasing reserve pool size.",
1167 return XFS_ERROR(ENOSPC
);
1170 mp
->m_sb
.sb_fdblocks
= lcounter
+ XFS_ALLOC_SET_ASIDE(mp
);
1172 case XFS_SBS_FREXTENTS
:
1173 lcounter
= (long long)mp
->m_sb
.sb_frextents
;
1176 return XFS_ERROR(ENOSPC
);
1178 mp
->m_sb
.sb_frextents
= lcounter
;
1180 case XFS_SBS_DBLOCKS
:
1181 lcounter
= (long long)mp
->m_sb
.sb_dblocks
;
1185 return XFS_ERROR(EINVAL
);
1187 mp
->m_sb
.sb_dblocks
= lcounter
;
1189 case XFS_SBS_AGCOUNT
:
1190 scounter
= mp
->m_sb
.sb_agcount
;
1194 return XFS_ERROR(EINVAL
);
1196 mp
->m_sb
.sb_agcount
= scounter
;
1198 case XFS_SBS_IMAX_PCT
:
1199 scounter
= mp
->m_sb
.sb_imax_pct
;
1203 return XFS_ERROR(EINVAL
);
1205 mp
->m_sb
.sb_imax_pct
= scounter
;
1207 case XFS_SBS_REXTSIZE
:
1208 scounter
= mp
->m_sb
.sb_rextsize
;
1212 return XFS_ERROR(EINVAL
);
1214 mp
->m_sb
.sb_rextsize
= scounter
;
1216 case XFS_SBS_RBMBLOCKS
:
1217 scounter
= mp
->m_sb
.sb_rbmblocks
;
1221 return XFS_ERROR(EINVAL
);
1223 mp
->m_sb
.sb_rbmblocks
= scounter
;
1225 case XFS_SBS_RBLOCKS
:
1226 lcounter
= (long long)mp
->m_sb
.sb_rblocks
;
1230 return XFS_ERROR(EINVAL
);
1232 mp
->m_sb
.sb_rblocks
= lcounter
;
1234 case XFS_SBS_REXTENTS
:
1235 lcounter
= (long long)mp
->m_sb
.sb_rextents
;
1239 return XFS_ERROR(EINVAL
);
1241 mp
->m_sb
.sb_rextents
= lcounter
;
1243 case XFS_SBS_REXTSLOG
:
1244 scounter
= mp
->m_sb
.sb_rextslog
;
1248 return XFS_ERROR(EINVAL
);
1250 mp
->m_sb
.sb_rextslog
= scounter
;
1254 return XFS_ERROR(EINVAL
);
1259 * xfs_mod_incore_sb() is used to change a field in the in-core
1260 * superblock structure by the specified delta. This modification
1261 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked()
1262 * routine to do the work.
1266 struct xfs_mount
*mp
,
1267 xfs_sb_field_t field
,
1273 #ifdef HAVE_PERCPU_SB
1274 ASSERT(field
< XFS_SBS_ICOUNT
|| field
> XFS_SBS_FDBLOCKS
);
1276 spin_lock(&mp
->m_sb_lock
);
1277 status
= xfs_mod_incore_sb_unlocked(mp
, field
, delta
, rsvd
);
1278 spin_unlock(&mp
->m_sb_lock
);
1284 * Change more than one field in the in-core superblock structure at a time.
1286 * The fields and changes to those fields are specified in the array of
1287 * xfs_mod_sb structures passed in. Either all of the specified deltas
1288 * will be applied or none of them will. If any modified field dips below 0,
1289 * then all modifications will be backed out and EINVAL will be returned.
1291 * Note that this function may not be used for the superblock values that
1292 * are tracked with the in-memory per-cpu counters - a direct call to
1293 * xfs_icsb_modify_counters is required for these.
1296 xfs_mod_incore_sb_batch(
1297 struct xfs_mount
*mp
,
1306 * Loop through the array of mod structures and apply each individually.
1307 * If any fail, then back out all those which have already been applied.
1308 * Do all of this within the scope of the m_sb_lock so that all of the
1309 * changes will be atomic.
1311 spin_lock(&mp
->m_sb_lock
);
1312 for (msbp
= msb
; msbp
< (msb
+ nmsb
); msbp
++) {
1313 ASSERT(msbp
->msb_field
< XFS_SBS_ICOUNT
||
1314 msbp
->msb_field
> XFS_SBS_FDBLOCKS
);
1316 error
= xfs_mod_incore_sb_unlocked(mp
, msbp
->msb_field
,
1317 msbp
->msb_delta
, rsvd
);
1321 spin_unlock(&mp
->m_sb_lock
);
1325 while (--msbp
>= msb
) {
1326 error
= xfs_mod_incore_sb_unlocked(mp
, msbp
->msb_field
,
1327 -msbp
->msb_delta
, rsvd
);
1330 spin_unlock(&mp
->m_sb_lock
);
1335 * xfs_getsb() is called to obtain the buffer for the superblock.
1336 * The buffer is returned locked and read in from disk.
1337 * The buffer should be released with a call to xfs_brelse().
1339 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1340 * the superblock buffer if it can be locked without sleeping.
1341 * If it can't then we'll return NULL.
1345 struct xfs_mount
*mp
,
1348 struct xfs_buf
*bp
= mp
->m_sb_bp
;
1350 if (!xfs_buf_trylock(bp
)) {
1351 if (flags
& XBF_TRYLOCK
)
1357 ASSERT(XFS_BUF_ISDONE(bp
));
1362 * Used to free the superblock along various error paths.
1366 struct xfs_mount
*mp
)
1368 struct xfs_buf
*bp
= mp
->m_sb_bp
;
1376 * Used to log changes to the superblock unit and width fields which could
1377 * be altered by the mount options, as well as any potential sb_features2
1378 * fixup. Only the first superblock is updated.
1388 ASSERT(fields
& (XFS_SB_UNIT
| XFS_SB_WIDTH
| XFS_SB_UUID
|
1389 XFS_SB_FEATURES2
| XFS_SB_BAD_FEATURES2
|
1390 XFS_SB_VERSIONNUM
));
1392 tp
= xfs_trans_alloc(mp
, XFS_TRANS_SB_UNIT
);
1393 error
= xfs_trans_reserve(tp
, &M_RES(mp
)->tr_sb
, 0, 0);
1395 xfs_trans_cancel(tp
, 0);
1398 xfs_mod_sb(tp
, fields
);
1399 error
= xfs_trans_commit(tp
, 0);
1404 * If the underlying (data/log/rt) device is readonly, there are some
1405 * operations that cannot proceed.
1408 xfs_dev_is_read_only(
1409 struct xfs_mount
*mp
,
1412 if (xfs_readonly_buftarg(mp
->m_ddev_targp
) ||
1413 xfs_readonly_buftarg(mp
->m_logdev_targp
) ||
1414 (mp
->m_rtdev_targp
&& xfs_readonly_buftarg(mp
->m_rtdev_targp
))) {
1415 xfs_notice(mp
, "%s required on read-only device.", message
);
1416 xfs_notice(mp
, "write access unavailable, cannot proceed.");
1422 #ifdef HAVE_PERCPU_SB
1424 * Per-cpu incore superblock counters
1426 * Simple concept, difficult implementation
1428 * Basically, replace the incore superblock counters with a distributed per cpu
1429 * counter for contended fields (e.g. free block count).
1431 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1432 * hence needs to be accurately read when we are running low on space. Hence
1433 * there is a method to enable and disable the per-cpu counters based on how
1434 * much "stuff" is available in them.
1436 * Basically, a counter is enabled if there is enough free resource to justify
1437 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1438 * ENOSPC), then we disable the counters to synchronise all callers and
1439 * re-distribute the available resources.
1441 * If, once we redistributed the available resources, we still get a failure,
1442 * we disable the per-cpu counter and go through the slow path.
1444 * The slow path is the current xfs_mod_incore_sb() function. This means that
1445 * when we disable a per-cpu counter, we need to drain its resources back to
1446 * the global superblock. We do this after disabling the counter to prevent
1447 * more threads from queueing up on the counter.
1449 * Essentially, this means that we still need a lock in the fast path to enable
1450 * synchronisation between the global counters and the per-cpu counters. This
1451 * is not a problem because the lock will be local to a CPU almost all the time
1452 * and have little contention except when we get to ENOSPC conditions.
1454 * Basically, this lock becomes a barrier that enables us to lock out the fast
1455 * path while we do things like enabling and disabling counters and
1456 * synchronising the counters.
1460 * 1. m_sb_lock before picking up per-cpu locks
1461 * 2. per-cpu locks always picked up via for_each_online_cpu() order
1462 * 3. accurate counter sync requires m_sb_lock + per cpu locks
1463 * 4. modifying per-cpu counters requires holding per-cpu lock
1464 * 5. modifying global counters requires holding m_sb_lock
1465 * 6. enabling or disabling a counter requires holding the m_sb_lock
1466 * and _none_ of the per-cpu locks.
1468 * Disabled counters are only ever re-enabled by a balance operation
1469 * that results in more free resources per CPU than a given threshold.
1470 * To ensure counters don't remain disabled, they are rebalanced when
1471 * the global resource goes above a higher threshold (i.e. some hysteresis
1472 * is present to prevent thrashing).
1475 #ifdef CONFIG_HOTPLUG_CPU
1477 * hot-plug CPU notifier support.
1479 * We need a notifier per filesystem as we need to be able to identify
1480 * the filesystem to balance the counters out. This is achieved by
1481 * having a notifier block embedded in the xfs_mount_t and doing pointer
1482 * magic to get the mount pointer from the notifier block address.
1485 xfs_icsb_cpu_notify(
1486 struct notifier_block
*nfb
,
1487 unsigned long action
,
1490 xfs_icsb_cnts_t
*cntp
;
1493 mp
= (xfs_mount_t
*)container_of(nfb
, xfs_mount_t
, m_icsb_notifier
);
1494 cntp
= (xfs_icsb_cnts_t
*)
1495 per_cpu_ptr(mp
->m_sb_cnts
, (unsigned long)hcpu
);
1497 case CPU_UP_PREPARE
:
1498 case CPU_UP_PREPARE_FROZEN
:
1499 /* Easy Case - initialize the area and locks, and
1500 * then rebalance when online does everything else for us. */
1501 memset(cntp
, 0, sizeof(xfs_icsb_cnts_t
));
1504 case CPU_ONLINE_FROZEN
:
1506 xfs_icsb_balance_counter(mp
, XFS_SBS_ICOUNT
, 0);
1507 xfs_icsb_balance_counter(mp
, XFS_SBS_IFREE
, 0);
1508 xfs_icsb_balance_counter(mp
, XFS_SBS_FDBLOCKS
, 0);
1509 xfs_icsb_unlock(mp
);
1512 case CPU_DEAD_FROZEN
:
1513 /* Disable all the counters, then fold the dead cpu's
1514 * count into the total on the global superblock and
1515 * re-enable the counters. */
1517 spin_lock(&mp
->m_sb_lock
);
1518 xfs_icsb_disable_counter(mp
, XFS_SBS_ICOUNT
);
1519 xfs_icsb_disable_counter(mp
, XFS_SBS_IFREE
);
1520 xfs_icsb_disable_counter(mp
, XFS_SBS_FDBLOCKS
);
1522 mp
->m_sb
.sb_icount
+= cntp
->icsb_icount
;
1523 mp
->m_sb
.sb_ifree
+= cntp
->icsb_ifree
;
1524 mp
->m_sb
.sb_fdblocks
+= cntp
->icsb_fdblocks
;
1526 memset(cntp
, 0, sizeof(xfs_icsb_cnts_t
));
1528 xfs_icsb_balance_counter_locked(mp
, XFS_SBS_ICOUNT
, 0);
1529 xfs_icsb_balance_counter_locked(mp
, XFS_SBS_IFREE
, 0);
1530 xfs_icsb_balance_counter_locked(mp
, XFS_SBS_FDBLOCKS
, 0);
1531 spin_unlock(&mp
->m_sb_lock
);
1532 xfs_icsb_unlock(mp
);
1538 #endif /* CONFIG_HOTPLUG_CPU */
1541 xfs_icsb_init_counters(
1544 xfs_icsb_cnts_t
*cntp
;
1547 mp
->m_sb_cnts
= alloc_percpu(xfs_icsb_cnts_t
);
1548 if (mp
->m_sb_cnts
== NULL
)
1551 for_each_online_cpu(i
) {
1552 cntp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, i
);
1553 memset(cntp
, 0, sizeof(xfs_icsb_cnts_t
));
1556 mutex_init(&mp
->m_icsb_mutex
);
1559 * start with all counters disabled so that the
1560 * initial balance kicks us off correctly
1562 mp
->m_icsb_counters
= -1;
1564 #ifdef CONFIG_HOTPLUG_CPU
1565 mp
->m_icsb_notifier
.notifier_call
= xfs_icsb_cpu_notify
;
1566 mp
->m_icsb_notifier
.priority
= 0;
1567 register_hotcpu_notifier(&mp
->m_icsb_notifier
);
1568 #endif /* CONFIG_HOTPLUG_CPU */
1574 xfs_icsb_reinit_counters(
1579 * start with all counters disabled so that the
1580 * initial balance kicks us off correctly
1582 mp
->m_icsb_counters
= -1;
1583 xfs_icsb_balance_counter(mp
, XFS_SBS_ICOUNT
, 0);
1584 xfs_icsb_balance_counter(mp
, XFS_SBS_IFREE
, 0);
1585 xfs_icsb_balance_counter(mp
, XFS_SBS_FDBLOCKS
, 0);
1586 xfs_icsb_unlock(mp
);
1590 xfs_icsb_destroy_counters(
1593 if (mp
->m_sb_cnts
) {
1594 unregister_hotcpu_notifier(&mp
->m_icsb_notifier
);
1595 free_percpu(mp
->m_sb_cnts
);
1597 mutex_destroy(&mp
->m_icsb_mutex
);
1602 xfs_icsb_cnts_t
*icsbp
)
1604 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK
, &icsbp
->icsb_flags
)) {
1610 xfs_icsb_unlock_cntr(
1611 xfs_icsb_cnts_t
*icsbp
)
1613 clear_bit(XFS_ICSB_FLAG_LOCK
, &icsbp
->icsb_flags
);
1618 xfs_icsb_lock_all_counters(
1621 xfs_icsb_cnts_t
*cntp
;
1624 for_each_online_cpu(i
) {
1625 cntp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, i
);
1626 xfs_icsb_lock_cntr(cntp
);
1631 xfs_icsb_unlock_all_counters(
1634 xfs_icsb_cnts_t
*cntp
;
1637 for_each_online_cpu(i
) {
1638 cntp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, i
);
1639 xfs_icsb_unlock_cntr(cntp
);
1646 xfs_icsb_cnts_t
*cnt
,
1649 xfs_icsb_cnts_t
*cntp
;
1652 memset(cnt
, 0, sizeof(xfs_icsb_cnts_t
));
1654 if (!(flags
& XFS_ICSB_LAZY_COUNT
))
1655 xfs_icsb_lock_all_counters(mp
);
1657 for_each_online_cpu(i
) {
1658 cntp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, i
);
1659 cnt
->icsb_icount
+= cntp
->icsb_icount
;
1660 cnt
->icsb_ifree
+= cntp
->icsb_ifree
;
1661 cnt
->icsb_fdblocks
+= cntp
->icsb_fdblocks
;
1664 if (!(flags
& XFS_ICSB_LAZY_COUNT
))
1665 xfs_icsb_unlock_all_counters(mp
);
1669 xfs_icsb_counter_disabled(
1671 xfs_sb_field_t field
)
1673 ASSERT((field
>= XFS_SBS_ICOUNT
) && (field
<= XFS_SBS_FDBLOCKS
));
1674 return test_bit(field
, &mp
->m_icsb_counters
);
1678 xfs_icsb_disable_counter(
1680 xfs_sb_field_t field
)
1682 xfs_icsb_cnts_t cnt
;
1684 ASSERT((field
>= XFS_SBS_ICOUNT
) && (field
<= XFS_SBS_FDBLOCKS
));
1687 * If we are already disabled, then there is nothing to do
1688 * here. We check before locking all the counters to avoid
1689 * the expensive lock operation when being called in the
1690 * slow path and the counter is already disabled. This is
1691 * safe because the only time we set or clear this state is under
1694 if (xfs_icsb_counter_disabled(mp
, field
))
1697 xfs_icsb_lock_all_counters(mp
);
1698 if (!test_and_set_bit(field
, &mp
->m_icsb_counters
)) {
1699 /* drain back to superblock */
1701 xfs_icsb_count(mp
, &cnt
, XFS_ICSB_LAZY_COUNT
);
1703 case XFS_SBS_ICOUNT
:
1704 mp
->m_sb
.sb_icount
= cnt
.icsb_icount
;
1707 mp
->m_sb
.sb_ifree
= cnt
.icsb_ifree
;
1709 case XFS_SBS_FDBLOCKS
:
1710 mp
->m_sb
.sb_fdblocks
= cnt
.icsb_fdblocks
;
1717 xfs_icsb_unlock_all_counters(mp
);
1721 xfs_icsb_enable_counter(
1723 xfs_sb_field_t field
,
1727 xfs_icsb_cnts_t
*cntp
;
1730 ASSERT((field
>= XFS_SBS_ICOUNT
) && (field
<= XFS_SBS_FDBLOCKS
));
1732 xfs_icsb_lock_all_counters(mp
);
1733 for_each_online_cpu(i
) {
1734 cntp
= per_cpu_ptr(mp
->m_sb_cnts
, i
);
1736 case XFS_SBS_ICOUNT
:
1737 cntp
->icsb_icount
= count
+ resid
;
1740 cntp
->icsb_ifree
= count
+ resid
;
1742 case XFS_SBS_FDBLOCKS
:
1743 cntp
->icsb_fdblocks
= count
+ resid
;
1751 clear_bit(field
, &mp
->m_icsb_counters
);
1752 xfs_icsb_unlock_all_counters(mp
);
1756 xfs_icsb_sync_counters_locked(
1760 xfs_icsb_cnts_t cnt
;
1762 xfs_icsb_count(mp
, &cnt
, flags
);
1764 if (!xfs_icsb_counter_disabled(mp
, XFS_SBS_ICOUNT
))
1765 mp
->m_sb
.sb_icount
= cnt
.icsb_icount
;
1766 if (!xfs_icsb_counter_disabled(mp
, XFS_SBS_IFREE
))
1767 mp
->m_sb
.sb_ifree
= cnt
.icsb_ifree
;
1768 if (!xfs_icsb_counter_disabled(mp
, XFS_SBS_FDBLOCKS
))
1769 mp
->m_sb
.sb_fdblocks
= cnt
.icsb_fdblocks
;
1773 * Accurate update of per-cpu counters to incore superblock
1776 xfs_icsb_sync_counters(
1780 spin_lock(&mp
->m_sb_lock
);
1781 xfs_icsb_sync_counters_locked(mp
, flags
);
1782 spin_unlock(&mp
->m_sb_lock
);
1786 * Balance and enable/disable counters as necessary.
1788 * Thresholds for re-enabling counters are somewhat magic. inode counts are
1789 * chosen to be the same number as single on disk allocation chunk per CPU, and
1790 * free blocks is something far enough zero that we aren't going thrash when we
1791 * get near ENOSPC. We also need to supply a minimum we require per cpu to
1792 * prevent looping endlessly when xfs_alloc_space asks for more than will
1793 * be distributed to a single CPU but each CPU has enough blocks to be
1796 * Note that we can be called when counters are already disabled.
1797 * xfs_icsb_disable_counter() optimises the counter locking in this case to
1798 * prevent locking every per-cpu counter needlessly.
1801 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64
1802 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
1803 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
1805 xfs_icsb_balance_counter_locked(
1807 xfs_sb_field_t field
,
1810 uint64_t count
, resid
;
1811 int weight
= num_online_cpus();
1812 uint64_t min
= (uint64_t)min_per_cpu
;
1814 /* disable counter and sync counter */
1815 xfs_icsb_disable_counter(mp
, field
);
1817 /* update counters - first CPU gets residual*/
1819 case XFS_SBS_ICOUNT
:
1820 count
= mp
->m_sb
.sb_icount
;
1821 resid
= do_div(count
, weight
);
1822 if (count
< max(min
, XFS_ICSB_INO_CNTR_REENABLE
))
1826 count
= mp
->m_sb
.sb_ifree
;
1827 resid
= do_div(count
, weight
);
1828 if (count
< max(min
, XFS_ICSB_INO_CNTR_REENABLE
))
1831 case XFS_SBS_FDBLOCKS
:
1832 count
= mp
->m_sb
.sb_fdblocks
;
1833 resid
= do_div(count
, weight
);
1834 if (count
< max(min
, XFS_ICSB_FDBLK_CNTR_REENABLE(mp
)))
1839 count
= resid
= 0; /* quiet, gcc */
1843 xfs_icsb_enable_counter(mp
, field
, count
, resid
);
1847 xfs_icsb_balance_counter(
1849 xfs_sb_field_t fields
,
1852 spin_lock(&mp
->m_sb_lock
);
1853 xfs_icsb_balance_counter_locked(mp
, fields
, min_per_cpu
);
1854 spin_unlock(&mp
->m_sb_lock
);
1858 xfs_icsb_modify_counters(
1860 xfs_sb_field_t field
,
1864 xfs_icsb_cnts_t
*icsbp
;
1865 long long lcounter
; /* long counter for 64 bit fields */
1871 icsbp
= this_cpu_ptr(mp
->m_sb_cnts
);
1874 * if the counter is disabled, go to slow path
1876 if (unlikely(xfs_icsb_counter_disabled(mp
, field
)))
1878 xfs_icsb_lock_cntr(icsbp
);
1879 if (unlikely(xfs_icsb_counter_disabled(mp
, field
))) {
1880 xfs_icsb_unlock_cntr(icsbp
);
1885 case XFS_SBS_ICOUNT
:
1886 lcounter
= icsbp
->icsb_icount
;
1888 if (unlikely(lcounter
< 0))
1889 goto balance_counter
;
1890 icsbp
->icsb_icount
= lcounter
;
1894 lcounter
= icsbp
->icsb_ifree
;
1896 if (unlikely(lcounter
< 0))
1897 goto balance_counter
;
1898 icsbp
->icsb_ifree
= lcounter
;
1901 case XFS_SBS_FDBLOCKS
:
1902 BUG_ON((mp
->m_resblks
- mp
->m_resblks_avail
) != 0);
1904 lcounter
= icsbp
->icsb_fdblocks
- XFS_ALLOC_SET_ASIDE(mp
);
1906 if (unlikely(lcounter
< 0))
1907 goto balance_counter
;
1908 icsbp
->icsb_fdblocks
= lcounter
+ XFS_ALLOC_SET_ASIDE(mp
);
1914 xfs_icsb_unlock_cntr(icsbp
);
1922 * serialise with a mutex so we don't burn lots of cpu on
1923 * the superblock lock. We still need to hold the superblock
1924 * lock, however, when we modify the global structures.
1929 * Now running atomically.
1931 * If the counter is enabled, someone has beaten us to rebalancing.
1932 * Drop the lock and try again in the fast path....
1934 if (!(xfs_icsb_counter_disabled(mp
, field
))) {
1935 xfs_icsb_unlock(mp
);
1940 * The counter is currently disabled. Because we are
1941 * running atomically here, we know a rebalance cannot
1942 * be in progress. Hence we can go straight to operating
1943 * on the global superblock. We do not call xfs_mod_incore_sb()
1944 * here even though we need to get the m_sb_lock. Doing so
1945 * will cause us to re-enter this function and deadlock.
1946 * Hence we get the m_sb_lock ourselves and then call
1947 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
1948 * directly on the global counters.
1950 spin_lock(&mp
->m_sb_lock
);
1951 ret
= xfs_mod_incore_sb_unlocked(mp
, field
, delta
, rsvd
);
1952 spin_unlock(&mp
->m_sb_lock
);
1955 * Now that we've modified the global superblock, we
1956 * may be able to re-enable the distributed counters
1957 * (e.g. lots of space just got freed). After that
1961 xfs_icsb_balance_counter(mp
, field
, 0);
1962 xfs_icsb_unlock(mp
);
1966 xfs_icsb_unlock_cntr(icsbp
);
1970 * We may have multiple threads here if multiple per-cpu
1971 * counters run dry at the same time. This will mean we can
1972 * do more balances than strictly necessary but it is not
1973 * the common slowpath case.
1978 * running atomically.
1980 * This will leave the counter in the correct state for future
1981 * accesses. After the rebalance, we simply try again and our retry
1982 * will either succeed through the fast path or slow path without
1983 * another balance operation being required.
1985 xfs_icsb_balance_counter(mp
, field
, delta
);
1986 xfs_icsb_unlock(mp
);