xfs: remove duplicate buffer flags
[deliverable/linux.git] / fs / xfs / xfs_mount.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dir2_sf.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_btree.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_alloc.h"
40 #include "xfs_rtalloc.h"
41 #include "xfs_bmap.h"
42 #include "xfs_error.h"
43 #include "xfs_rw.h"
44 #include "xfs_quota.h"
45 #include "xfs_fsops.h"
46 #include "xfs_utils.h"
47 #include "xfs_trace.h"
48
49
50 STATIC void xfs_unmountfs_wait(xfs_mount_t *);
51
52
53 #ifdef HAVE_PERCPU_SB
54 STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
55 int);
56 STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
57 int);
58 STATIC int xfs_icsb_modify_counters(xfs_mount_t *, xfs_sb_field_t,
59 int64_t, int);
60 STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
61
62 #else
63
64 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0)
65 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0)
66 #define xfs_icsb_modify_counters(mp, a, b, c) do { } while (0)
67
68 #endif
69
70 static const struct {
71 short offset;
72 short type; /* 0 = integer
73 * 1 = binary / string (no translation)
74 */
75 } xfs_sb_info[] = {
76 { offsetof(xfs_sb_t, sb_magicnum), 0 },
77 { offsetof(xfs_sb_t, sb_blocksize), 0 },
78 { offsetof(xfs_sb_t, sb_dblocks), 0 },
79 { offsetof(xfs_sb_t, sb_rblocks), 0 },
80 { offsetof(xfs_sb_t, sb_rextents), 0 },
81 { offsetof(xfs_sb_t, sb_uuid), 1 },
82 { offsetof(xfs_sb_t, sb_logstart), 0 },
83 { offsetof(xfs_sb_t, sb_rootino), 0 },
84 { offsetof(xfs_sb_t, sb_rbmino), 0 },
85 { offsetof(xfs_sb_t, sb_rsumino), 0 },
86 { offsetof(xfs_sb_t, sb_rextsize), 0 },
87 { offsetof(xfs_sb_t, sb_agblocks), 0 },
88 { offsetof(xfs_sb_t, sb_agcount), 0 },
89 { offsetof(xfs_sb_t, sb_rbmblocks), 0 },
90 { offsetof(xfs_sb_t, sb_logblocks), 0 },
91 { offsetof(xfs_sb_t, sb_versionnum), 0 },
92 { offsetof(xfs_sb_t, sb_sectsize), 0 },
93 { offsetof(xfs_sb_t, sb_inodesize), 0 },
94 { offsetof(xfs_sb_t, sb_inopblock), 0 },
95 { offsetof(xfs_sb_t, sb_fname[0]), 1 },
96 { offsetof(xfs_sb_t, sb_blocklog), 0 },
97 { offsetof(xfs_sb_t, sb_sectlog), 0 },
98 { offsetof(xfs_sb_t, sb_inodelog), 0 },
99 { offsetof(xfs_sb_t, sb_inopblog), 0 },
100 { offsetof(xfs_sb_t, sb_agblklog), 0 },
101 { offsetof(xfs_sb_t, sb_rextslog), 0 },
102 { offsetof(xfs_sb_t, sb_inprogress), 0 },
103 { offsetof(xfs_sb_t, sb_imax_pct), 0 },
104 { offsetof(xfs_sb_t, sb_icount), 0 },
105 { offsetof(xfs_sb_t, sb_ifree), 0 },
106 { offsetof(xfs_sb_t, sb_fdblocks), 0 },
107 { offsetof(xfs_sb_t, sb_frextents), 0 },
108 { offsetof(xfs_sb_t, sb_uquotino), 0 },
109 { offsetof(xfs_sb_t, sb_gquotino), 0 },
110 { offsetof(xfs_sb_t, sb_qflags), 0 },
111 { offsetof(xfs_sb_t, sb_flags), 0 },
112 { offsetof(xfs_sb_t, sb_shared_vn), 0 },
113 { offsetof(xfs_sb_t, sb_inoalignmt), 0 },
114 { offsetof(xfs_sb_t, sb_unit), 0 },
115 { offsetof(xfs_sb_t, sb_width), 0 },
116 { offsetof(xfs_sb_t, sb_dirblklog), 0 },
117 { offsetof(xfs_sb_t, sb_logsectlog), 0 },
118 { offsetof(xfs_sb_t, sb_logsectsize),0 },
119 { offsetof(xfs_sb_t, sb_logsunit), 0 },
120 { offsetof(xfs_sb_t, sb_features2), 0 },
121 { offsetof(xfs_sb_t, sb_bad_features2), 0 },
122 { sizeof(xfs_sb_t), 0 }
123 };
124
125 static DEFINE_MUTEX(xfs_uuid_table_mutex);
126 static int xfs_uuid_table_size;
127 static uuid_t *xfs_uuid_table;
128
129 /*
130 * See if the UUID is unique among mounted XFS filesystems.
131 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
132 */
133 STATIC int
134 xfs_uuid_mount(
135 struct xfs_mount *mp)
136 {
137 uuid_t *uuid = &mp->m_sb.sb_uuid;
138 int hole, i;
139
140 if (mp->m_flags & XFS_MOUNT_NOUUID)
141 return 0;
142
143 if (uuid_is_nil(uuid)) {
144 cmn_err(CE_WARN,
145 "XFS: Filesystem %s has nil UUID - can't mount",
146 mp->m_fsname);
147 return XFS_ERROR(EINVAL);
148 }
149
150 mutex_lock(&xfs_uuid_table_mutex);
151 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
152 if (uuid_is_nil(&xfs_uuid_table[i])) {
153 hole = i;
154 continue;
155 }
156 if (uuid_equal(uuid, &xfs_uuid_table[i]))
157 goto out_duplicate;
158 }
159
160 if (hole < 0) {
161 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
162 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
163 xfs_uuid_table_size * sizeof(*xfs_uuid_table),
164 KM_SLEEP);
165 hole = xfs_uuid_table_size++;
166 }
167 xfs_uuid_table[hole] = *uuid;
168 mutex_unlock(&xfs_uuid_table_mutex);
169
170 return 0;
171
172 out_duplicate:
173 mutex_unlock(&xfs_uuid_table_mutex);
174 cmn_err(CE_WARN, "XFS: Filesystem %s has duplicate UUID - can't mount",
175 mp->m_fsname);
176 return XFS_ERROR(EINVAL);
177 }
178
179 STATIC void
180 xfs_uuid_unmount(
181 struct xfs_mount *mp)
182 {
183 uuid_t *uuid = &mp->m_sb.sb_uuid;
184 int i;
185
186 if (mp->m_flags & XFS_MOUNT_NOUUID)
187 return;
188
189 mutex_lock(&xfs_uuid_table_mutex);
190 for (i = 0; i < xfs_uuid_table_size; i++) {
191 if (uuid_is_nil(&xfs_uuid_table[i]))
192 continue;
193 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
194 continue;
195 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
196 break;
197 }
198 ASSERT(i < xfs_uuid_table_size);
199 mutex_unlock(&xfs_uuid_table_mutex);
200 }
201
202
203 /*
204 * Reference counting access wrappers to the perag structures.
205 */
206 struct xfs_perag *
207 xfs_perag_get(struct xfs_mount *mp, xfs_agnumber_t agno)
208 {
209 struct xfs_perag *pag;
210 int ref = 0;
211
212 spin_lock(&mp->m_perag_lock);
213 pag = radix_tree_lookup(&mp->m_perag_tree, agno);
214 if (pag) {
215 ASSERT(atomic_read(&pag->pag_ref) >= 0);
216 /* catch leaks in the positive direction during testing */
217 ASSERT(atomic_read(&pag->pag_ref) < 1000);
218 ref = atomic_inc_return(&pag->pag_ref);
219 }
220 spin_unlock(&mp->m_perag_lock);
221 trace_xfs_perag_get(mp, agno, ref, _RET_IP_);
222 return pag;
223 }
224
225 void
226 xfs_perag_put(struct xfs_perag *pag)
227 {
228 int ref;
229
230 ASSERT(atomic_read(&pag->pag_ref) > 0);
231 ref = atomic_dec_return(&pag->pag_ref);
232 trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_);
233 }
234
235 /*
236 * Free up the resources associated with a mount structure. Assume that
237 * the structure was initially zeroed, so we can tell which fields got
238 * initialized.
239 */
240 STATIC void
241 xfs_free_perag(
242 xfs_mount_t *mp)
243 {
244 xfs_agnumber_t agno;
245 struct xfs_perag *pag;
246
247 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
248 spin_lock(&mp->m_perag_lock);
249 pag = radix_tree_delete(&mp->m_perag_tree, agno);
250 ASSERT(pag);
251 ASSERT(atomic_read(&pag->pag_ref) == 0);
252 spin_unlock(&mp->m_perag_lock);
253 kmem_free(pag);
254 }
255 }
256
257 /*
258 * Check size of device based on the (data/realtime) block count.
259 * Note: this check is used by the growfs code as well as mount.
260 */
261 int
262 xfs_sb_validate_fsb_count(
263 xfs_sb_t *sbp,
264 __uint64_t nblocks)
265 {
266 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
267 ASSERT(sbp->sb_blocklog >= BBSHIFT);
268
269 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */
270 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
271 return E2BIG;
272 #else /* Limited by UINT_MAX of sectors */
273 if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
274 return E2BIG;
275 #endif
276 return 0;
277 }
278
279 /*
280 * Check the validity of the SB found.
281 */
282 STATIC int
283 xfs_mount_validate_sb(
284 xfs_mount_t *mp,
285 xfs_sb_t *sbp,
286 int flags)
287 {
288 /*
289 * If the log device and data device have the
290 * same device number, the log is internal.
291 * Consequently, the sb_logstart should be non-zero. If
292 * we have a zero sb_logstart in this case, we may be trying to mount
293 * a volume filesystem in a non-volume manner.
294 */
295 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
296 xfs_fs_mount_cmn_err(flags, "bad magic number");
297 return XFS_ERROR(EWRONGFS);
298 }
299
300 if (!xfs_sb_good_version(sbp)) {
301 xfs_fs_mount_cmn_err(flags, "bad version");
302 return XFS_ERROR(EWRONGFS);
303 }
304
305 if (unlikely(
306 sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
307 xfs_fs_mount_cmn_err(flags,
308 "filesystem is marked as having an external log; "
309 "specify logdev on the\nmount command line.");
310 return XFS_ERROR(EINVAL);
311 }
312
313 if (unlikely(
314 sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
315 xfs_fs_mount_cmn_err(flags,
316 "filesystem is marked as having an internal log; "
317 "do not specify logdev on\nthe mount command line.");
318 return XFS_ERROR(EINVAL);
319 }
320
321 /*
322 * More sanity checking. These were stolen directly from
323 * xfs_repair.
324 */
325 if (unlikely(
326 sbp->sb_agcount <= 0 ||
327 sbp->sb_sectsize < XFS_MIN_SECTORSIZE ||
328 sbp->sb_sectsize > XFS_MAX_SECTORSIZE ||
329 sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG ||
330 sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG ||
331 sbp->sb_sectsize != (1 << sbp->sb_sectlog) ||
332 sbp->sb_blocksize < XFS_MIN_BLOCKSIZE ||
333 sbp->sb_blocksize > XFS_MAX_BLOCKSIZE ||
334 sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG ||
335 sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG ||
336 sbp->sb_blocksize != (1 << sbp->sb_blocklog) ||
337 sbp->sb_inodesize < XFS_DINODE_MIN_SIZE ||
338 sbp->sb_inodesize > XFS_DINODE_MAX_SIZE ||
339 sbp->sb_inodelog < XFS_DINODE_MIN_LOG ||
340 sbp->sb_inodelog > XFS_DINODE_MAX_LOG ||
341 sbp->sb_inodesize != (1 << sbp->sb_inodelog) ||
342 (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog) ||
343 (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) ||
344 (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) ||
345 (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */))) {
346 xfs_fs_mount_cmn_err(flags, "SB sanity check 1 failed");
347 return XFS_ERROR(EFSCORRUPTED);
348 }
349
350 /*
351 * Sanity check AG count, size fields against data size field
352 */
353 if (unlikely(
354 sbp->sb_dblocks == 0 ||
355 sbp->sb_dblocks >
356 (xfs_drfsbno_t)sbp->sb_agcount * sbp->sb_agblocks ||
357 sbp->sb_dblocks < (xfs_drfsbno_t)(sbp->sb_agcount - 1) *
358 sbp->sb_agblocks + XFS_MIN_AG_BLOCKS)) {
359 xfs_fs_mount_cmn_err(flags, "SB sanity check 2 failed");
360 return XFS_ERROR(EFSCORRUPTED);
361 }
362
363 /*
364 * Until this is fixed only page-sized or smaller data blocks work.
365 */
366 if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
367 xfs_fs_mount_cmn_err(flags,
368 "file system with blocksize %d bytes",
369 sbp->sb_blocksize);
370 xfs_fs_mount_cmn_err(flags,
371 "only pagesize (%ld) or less will currently work.",
372 PAGE_SIZE);
373 return XFS_ERROR(ENOSYS);
374 }
375
376 /*
377 * Currently only very few inode sizes are supported.
378 */
379 switch (sbp->sb_inodesize) {
380 case 256:
381 case 512:
382 case 1024:
383 case 2048:
384 break;
385 default:
386 xfs_fs_mount_cmn_err(flags,
387 "inode size of %d bytes not supported",
388 sbp->sb_inodesize);
389 return XFS_ERROR(ENOSYS);
390 }
391
392 if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
393 xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
394 xfs_fs_mount_cmn_err(flags,
395 "file system too large to be mounted on this system.");
396 return XFS_ERROR(E2BIG);
397 }
398
399 if (unlikely(sbp->sb_inprogress)) {
400 xfs_fs_mount_cmn_err(flags, "file system busy");
401 return XFS_ERROR(EFSCORRUPTED);
402 }
403
404 /*
405 * Version 1 directory format has never worked on Linux.
406 */
407 if (unlikely(!xfs_sb_version_hasdirv2(sbp))) {
408 xfs_fs_mount_cmn_err(flags,
409 "file system using version 1 directory format");
410 return XFS_ERROR(ENOSYS);
411 }
412
413 return 0;
414 }
415
416 STATIC void
417 xfs_initialize_perag_icache(
418 xfs_perag_t *pag)
419 {
420 if (!pag->pag_ici_init) {
421 rwlock_init(&pag->pag_ici_lock);
422 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
423 pag->pag_ici_init = 1;
424 }
425 }
426
427 int
428 xfs_initialize_perag(
429 xfs_mount_t *mp,
430 xfs_agnumber_t agcount,
431 xfs_agnumber_t *maxagi)
432 {
433 xfs_agnumber_t index, max_metadata;
434 xfs_agnumber_t first_initialised = 0;
435 xfs_perag_t *pag;
436 xfs_agino_t agino;
437 xfs_ino_t ino;
438 xfs_sb_t *sbp = &mp->m_sb;
439 xfs_ino_t max_inum = XFS_MAXINUMBER_32;
440 int error = -ENOMEM;
441
442 /* Check to see if the filesystem can overflow 32 bit inodes */
443 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
444 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
445
446 /*
447 * Walk the current per-ag tree so we don't try to initialise AGs
448 * that already exist (growfs case). Allocate and insert all the
449 * AGs we don't find ready for initialisation.
450 */
451 for (index = 0; index < agcount; index++) {
452 pag = xfs_perag_get(mp, index);
453 if (pag) {
454 xfs_perag_put(pag);
455 continue;
456 }
457 if (!first_initialised)
458 first_initialised = index;
459 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
460 if (!pag)
461 goto out_unwind;
462 if (radix_tree_preload(GFP_NOFS))
463 goto out_unwind;
464 spin_lock(&mp->m_perag_lock);
465 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
466 BUG();
467 spin_unlock(&mp->m_perag_lock);
468 radix_tree_preload_end();
469 error = -EEXIST;
470 goto out_unwind;
471 }
472 pag->pag_agno = index;
473 pag->pag_mount = mp;
474 spin_unlock(&mp->m_perag_lock);
475 radix_tree_preload_end();
476 }
477
478 /* Clear the mount flag if no inode can overflow 32 bits
479 * on this filesystem, or if specifically requested..
480 */
481 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > max_inum) {
482 mp->m_flags |= XFS_MOUNT_32BITINODES;
483 } else {
484 mp->m_flags &= ~XFS_MOUNT_32BITINODES;
485 }
486
487 /* If we can overflow then setup the ag headers accordingly */
488 if (mp->m_flags & XFS_MOUNT_32BITINODES) {
489 /* Calculate how much should be reserved for inodes to
490 * meet the max inode percentage.
491 */
492 if (mp->m_maxicount) {
493 __uint64_t icount;
494
495 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
496 do_div(icount, 100);
497 icount += sbp->sb_agblocks - 1;
498 do_div(icount, sbp->sb_agblocks);
499 max_metadata = icount;
500 } else {
501 max_metadata = agcount;
502 }
503 for (index = 0; index < agcount; index++) {
504 ino = XFS_AGINO_TO_INO(mp, index, agino);
505 if (ino > max_inum) {
506 index++;
507 break;
508 }
509
510 /* This ag is preferred for inodes */
511 pag = xfs_perag_get(mp, index);
512 pag->pagi_inodeok = 1;
513 if (index < max_metadata)
514 pag->pagf_metadata = 1;
515 xfs_initialize_perag_icache(pag);
516 xfs_perag_put(pag);
517 }
518 } else {
519 /* Setup default behavior for smaller filesystems */
520 for (index = 0; index < agcount; index++) {
521 pag = xfs_perag_get(mp, index);
522 pag->pagi_inodeok = 1;
523 xfs_initialize_perag_icache(pag);
524 xfs_perag_put(pag);
525 }
526 }
527 if (maxagi)
528 *maxagi = index;
529 return 0;
530
531 out_unwind:
532 kmem_free(pag);
533 for (; index > first_initialised; index--) {
534 pag = radix_tree_delete(&mp->m_perag_tree, index);
535 kmem_free(pag);
536 }
537 return error;
538 }
539
540 void
541 xfs_sb_from_disk(
542 xfs_sb_t *to,
543 xfs_dsb_t *from)
544 {
545 to->sb_magicnum = be32_to_cpu(from->sb_magicnum);
546 to->sb_blocksize = be32_to_cpu(from->sb_blocksize);
547 to->sb_dblocks = be64_to_cpu(from->sb_dblocks);
548 to->sb_rblocks = be64_to_cpu(from->sb_rblocks);
549 to->sb_rextents = be64_to_cpu(from->sb_rextents);
550 memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
551 to->sb_logstart = be64_to_cpu(from->sb_logstart);
552 to->sb_rootino = be64_to_cpu(from->sb_rootino);
553 to->sb_rbmino = be64_to_cpu(from->sb_rbmino);
554 to->sb_rsumino = be64_to_cpu(from->sb_rsumino);
555 to->sb_rextsize = be32_to_cpu(from->sb_rextsize);
556 to->sb_agblocks = be32_to_cpu(from->sb_agblocks);
557 to->sb_agcount = be32_to_cpu(from->sb_agcount);
558 to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks);
559 to->sb_logblocks = be32_to_cpu(from->sb_logblocks);
560 to->sb_versionnum = be16_to_cpu(from->sb_versionnum);
561 to->sb_sectsize = be16_to_cpu(from->sb_sectsize);
562 to->sb_inodesize = be16_to_cpu(from->sb_inodesize);
563 to->sb_inopblock = be16_to_cpu(from->sb_inopblock);
564 memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
565 to->sb_blocklog = from->sb_blocklog;
566 to->sb_sectlog = from->sb_sectlog;
567 to->sb_inodelog = from->sb_inodelog;
568 to->sb_inopblog = from->sb_inopblog;
569 to->sb_agblklog = from->sb_agblklog;
570 to->sb_rextslog = from->sb_rextslog;
571 to->sb_inprogress = from->sb_inprogress;
572 to->sb_imax_pct = from->sb_imax_pct;
573 to->sb_icount = be64_to_cpu(from->sb_icount);
574 to->sb_ifree = be64_to_cpu(from->sb_ifree);
575 to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks);
576 to->sb_frextents = be64_to_cpu(from->sb_frextents);
577 to->sb_uquotino = be64_to_cpu(from->sb_uquotino);
578 to->sb_gquotino = be64_to_cpu(from->sb_gquotino);
579 to->sb_qflags = be16_to_cpu(from->sb_qflags);
580 to->sb_flags = from->sb_flags;
581 to->sb_shared_vn = from->sb_shared_vn;
582 to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt);
583 to->sb_unit = be32_to_cpu(from->sb_unit);
584 to->sb_width = be32_to_cpu(from->sb_width);
585 to->sb_dirblklog = from->sb_dirblklog;
586 to->sb_logsectlog = from->sb_logsectlog;
587 to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize);
588 to->sb_logsunit = be32_to_cpu(from->sb_logsunit);
589 to->sb_features2 = be32_to_cpu(from->sb_features2);
590 to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2);
591 }
592
593 /*
594 * Copy in core superblock to ondisk one.
595 *
596 * The fields argument is mask of superblock fields to copy.
597 */
598 void
599 xfs_sb_to_disk(
600 xfs_dsb_t *to,
601 xfs_sb_t *from,
602 __int64_t fields)
603 {
604 xfs_caddr_t to_ptr = (xfs_caddr_t)to;
605 xfs_caddr_t from_ptr = (xfs_caddr_t)from;
606 xfs_sb_field_t f;
607 int first;
608 int size;
609
610 ASSERT(fields);
611 if (!fields)
612 return;
613
614 while (fields) {
615 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
616 first = xfs_sb_info[f].offset;
617 size = xfs_sb_info[f + 1].offset - first;
618
619 ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
620
621 if (size == 1 || xfs_sb_info[f].type == 1) {
622 memcpy(to_ptr + first, from_ptr + first, size);
623 } else {
624 switch (size) {
625 case 2:
626 *(__be16 *)(to_ptr + first) =
627 cpu_to_be16(*(__u16 *)(from_ptr + first));
628 break;
629 case 4:
630 *(__be32 *)(to_ptr + first) =
631 cpu_to_be32(*(__u32 *)(from_ptr + first));
632 break;
633 case 8:
634 *(__be64 *)(to_ptr + first) =
635 cpu_to_be64(*(__u64 *)(from_ptr + first));
636 break;
637 default:
638 ASSERT(0);
639 }
640 }
641
642 fields &= ~(1LL << f);
643 }
644 }
645
646 /*
647 * xfs_readsb
648 *
649 * Does the initial read of the superblock.
650 */
651 int
652 xfs_readsb(xfs_mount_t *mp, int flags)
653 {
654 unsigned int sector_size;
655 unsigned int extra_flags;
656 xfs_buf_t *bp;
657 int error;
658
659 ASSERT(mp->m_sb_bp == NULL);
660 ASSERT(mp->m_ddev_targp != NULL);
661
662 /*
663 * Allocate a (locked) buffer to hold the superblock.
664 * This will be kept around at all times to optimize
665 * access to the superblock.
666 */
667 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
668 extra_flags = XBF_LOCK | XBF_FS_MANAGED | XBF_MAPPED;
669
670 bp = xfs_buf_read(mp->m_ddev_targp, XFS_SB_DADDR, BTOBB(sector_size),
671 extra_flags);
672 if (!bp || XFS_BUF_ISERROR(bp)) {
673 xfs_fs_mount_cmn_err(flags, "SB read failed");
674 error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
675 goto fail;
676 }
677 ASSERT(XFS_BUF_ISBUSY(bp));
678 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
679
680 /*
681 * Initialize the mount structure from the superblock.
682 * But first do some basic consistency checking.
683 */
684 xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
685
686 error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags);
687 if (error) {
688 xfs_fs_mount_cmn_err(flags, "SB validate failed");
689 goto fail;
690 }
691
692 /*
693 * We must be able to do sector-sized and sector-aligned IO.
694 */
695 if (sector_size > mp->m_sb.sb_sectsize) {
696 xfs_fs_mount_cmn_err(flags,
697 "device supports only %u byte sectors (not %u)",
698 sector_size, mp->m_sb.sb_sectsize);
699 error = ENOSYS;
700 goto fail;
701 }
702
703 /*
704 * If device sector size is smaller than the superblock size,
705 * re-read the superblock so the buffer is correctly sized.
706 */
707 if (sector_size < mp->m_sb.sb_sectsize) {
708 XFS_BUF_UNMANAGE(bp);
709 xfs_buf_relse(bp);
710 sector_size = mp->m_sb.sb_sectsize;
711 bp = xfs_buf_read(mp->m_ddev_targp, XFS_SB_DADDR,
712 BTOBB(sector_size), extra_flags);
713 if (!bp || XFS_BUF_ISERROR(bp)) {
714 xfs_fs_mount_cmn_err(flags, "SB re-read failed");
715 error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
716 goto fail;
717 }
718 ASSERT(XFS_BUF_ISBUSY(bp));
719 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
720 }
721
722 /* Initialize per-cpu counters */
723 xfs_icsb_reinit_counters(mp);
724
725 mp->m_sb_bp = bp;
726 xfs_buf_relse(bp);
727 ASSERT(XFS_BUF_VALUSEMA(bp) > 0);
728 return 0;
729
730 fail:
731 if (bp) {
732 XFS_BUF_UNMANAGE(bp);
733 xfs_buf_relse(bp);
734 }
735 return error;
736 }
737
738
739 /*
740 * xfs_mount_common
741 *
742 * Mount initialization code establishing various mount
743 * fields from the superblock associated with the given
744 * mount structure
745 */
746 STATIC void
747 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
748 {
749 mp->m_agfrotor = mp->m_agirotor = 0;
750 spin_lock_init(&mp->m_agirotor_lock);
751 mp->m_maxagi = mp->m_sb.sb_agcount;
752 mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
753 mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
754 mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
755 mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
756 mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
757 mp->m_blockmask = sbp->sb_blocksize - 1;
758 mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
759 mp->m_blockwmask = mp->m_blockwsize - 1;
760
761 mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1);
762 mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0);
763 mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2;
764 mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2;
765
766 mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
767 mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
768 mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2;
769 mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2;
770
771 mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1);
772 mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0);
773 mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2;
774 mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2;
775
776 mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
777 mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
778 sbp->sb_inopblock);
779 mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
780 }
781
782 /*
783 * xfs_initialize_perag_data
784 *
785 * Read in each per-ag structure so we can count up the number of
786 * allocated inodes, free inodes and used filesystem blocks as this
787 * information is no longer persistent in the superblock. Once we have
788 * this information, write it into the in-core superblock structure.
789 */
790 STATIC int
791 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
792 {
793 xfs_agnumber_t index;
794 xfs_perag_t *pag;
795 xfs_sb_t *sbp = &mp->m_sb;
796 uint64_t ifree = 0;
797 uint64_t ialloc = 0;
798 uint64_t bfree = 0;
799 uint64_t bfreelst = 0;
800 uint64_t btree = 0;
801 int error;
802
803 for (index = 0; index < agcount; index++) {
804 /*
805 * read the agf, then the agi. This gets us
806 * all the information we need and populates the
807 * per-ag structures for us.
808 */
809 error = xfs_alloc_pagf_init(mp, NULL, index, 0);
810 if (error)
811 return error;
812
813 error = xfs_ialloc_pagi_init(mp, NULL, index);
814 if (error)
815 return error;
816 pag = xfs_perag_get(mp, index);
817 ifree += pag->pagi_freecount;
818 ialloc += pag->pagi_count;
819 bfree += pag->pagf_freeblks;
820 bfreelst += pag->pagf_flcount;
821 btree += pag->pagf_btreeblks;
822 xfs_perag_put(pag);
823 }
824 /*
825 * Overwrite incore superblock counters with just-read data
826 */
827 spin_lock(&mp->m_sb_lock);
828 sbp->sb_ifree = ifree;
829 sbp->sb_icount = ialloc;
830 sbp->sb_fdblocks = bfree + bfreelst + btree;
831 spin_unlock(&mp->m_sb_lock);
832
833 /* Fixup the per-cpu counters as well. */
834 xfs_icsb_reinit_counters(mp);
835
836 return 0;
837 }
838
839 /*
840 * Update alignment values based on mount options and sb values
841 */
842 STATIC int
843 xfs_update_alignment(xfs_mount_t *mp)
844 {
845 xfs_sb_t *sbp = &(mp->m_sb);
846
847 if (mp->m_dalign) {
848 /*
849 * If stripe unit and stripe width are not multiples
850 * of the fs blocksize turn off alignment.
851 */
852 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
853 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
854 if (mp->m_flags & XFS_MOUNT_RETERR) {
855 cmn_err(CE_WARN,
856 "XFS: alignment check 1 failed");
857 return XFS_ERROR(EINVAL);
858 }
859 mp->m_dalign = mp->m_swidth = 0;
860 } else {
861 /*
862 * Convert the stripe unit and width to FSBs.
863 */
864 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
865 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
866 if (mp->m_flags & XFS_MOUNT_RETERR) {
867 return XFS_ERROR(EINVAL);
868 }
869 xfs_fs_cmn_err(CE_WARN, mp,
870 "stripe alignment turned off: sunit(%d)/swidth(%d) incompatible with agsize(%d)",
871 mp->m_dalign, mp->m_swidth,
872 sbp->sb_agblocks);
873
874 mp->m_dalign = 0;
875 mp->m_swidth = 0;
876 } else if (mp->m_dalign) {
877 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
878 } else {
879 if (mp->m_flags & XFS_MOUNT_RETERR) {
880 xfs_fs_cmn_err(CE_WARN, mp,
881 "stripe alignment turned off: sunit(%d) less than bsize(%d)",
882 mp->m_dalign,
883 mp->m_blockmask +1);
884 return XFS_ERROR(EINVAL);
885 }
886 mp->m_swidth = 0;
887 }
888 }
889
890 /*
891 * Update superblock with new values
892 * and log changes
893 */
894 if (xfs_sb_version_hasdalign(sbp)) {
895 if (sbp->sb_unit != mp->m_dalign) {
896 sbp->sb_unit = mp->m_dalign;
897 mp->m_update_flags |= XFS_SB_UNIT;
898 }
899 if (sbp->sb_width != mp->m_swidth) {
900 sbp->sb_width = mp->m_swidth;
901 mp->m_update_flags |= XFS_SB_WIDTH;
902 }
903 }
904 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
905 xfs_sb_version_hasdalign(&mp->m_sb)) {
906 mp->m_dalign = sbp->sb_unit;
907 mp->m_swidth = sbp->sb_width;
908 }
909
910 return 0;
911 }
912
913 /*
914 * Set the maximum inode count for this filesystem
915 */
916 STATIC void
917 xfs_set_maxicount(xfs_mount_t *mp)
918 {
919 xfs_sb_t *sbp = &(mp->m_sb);
920 __uint64_t icount;
921
922 if (sbp->sb_imax_pct) {
923 /*
924 * Make sure the maximum inode count is a multiple
925 * of the units we allocate inodes in.
926 */
927 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
928 do_div(icount, 100);
929 do_div(icount, mp->m_ialloc_blks);
930 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
931 sbp->sb_inopblog;
932 } else {
933 mp->m_maxicount = 0;
934 }
935 }
936
937 /*
938 * Set the default minimum read and write sizes unless
939 * already specified in a mount option.
940 * We use smaller I/O sizes when the file system
941 * is being used for NFS service (wsync mount option).
942 */
943 STATIC void
944 xfs_set_rw_sizes(xfs_mount_t *mp)
945 {
946 xfs_sb_t *sbp = &(mp->m_sb);
947 int readio_log, writeio_log;
948
949 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
950 if (mp->m_flags & XFS_MOUNT_WSYNC) {
951 readio_log = XFS_WSYNC_READIO_LOG;
952 writeio_log = XFS_WSYNC_WRITEIO_LOG;
953 } else {
954 readio_log = XFS_READIO_LOG_LARGE;
955 writeio_log = XFS_WRITEIO_LOG_LARGE;
956 }
957 } else {
958 readio_log = mp->m_readio_log;
959 writeio_log = mp->m_writeio_log;
960 }
961
962 if (sbp->sb_blocklog > readio_log) {
963 mp->m_readio_log = sbp->sb_blocklog;
964 } else {
965 mp->m_readio_log = readio_log;
966 }
967 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
968 if (sbp->sb_blocklog > writeio_log) {
969 mp->m_writeio_log = sbp->sb_blocklog;
970 } else {
971 mp->m_writeio_log = writeio_log;
972 }
973 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
974 }
975
976 /*
977 * Set whether we're using inode alignment.
978 */
979 STATIC void
980 xfs_set_inoalignment(xfs_mount_t *mp)
981 {
982 if (xfs_sb_version_hasalign(&mp->m_sb) &&
983 mp->m_sb.sb_inoalignmt >=
984 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
985 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
986 else
987 mp->m_inoalign_mask = 0;
988 /*
989 * If we are using stripe alignment, check whether
990 * the stripe unit is a multiple of the inode alignment
991 */
992 if (mp->m_dalign && mp->m_inoalign_mask &&
993 !(mp->m_dalign & mp->m_inoalign_mask))
994 mp->m_sinoalign = mp->m_dalign;
995 else
996 mp->m_sinoalign = 0;
997 }
998
999 /*
1000 * Check that the data (and log if separate) are an ok size.
1001 */
1002 STATIC int
1003 xfs_check_sizes(xfs_mount_t *mp)
1004 {
1005 xfs_buf_t *bp;
1006 xfs_daddr_t d;
1007 int error;
1008
1009 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
1010 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
1011 cmn_err(CE_WARN, "XFS: size check 1 failed");
1012 return XFS_ERROR(E2BIG);
1013 }
1014 error = xfs_read_buf(mp, mp->m_ddev_targp,
1015 d - XFS_FSS_TO_BB(mp, 1),
1016 XFS_FSS_TO_BB(mp, 1), 0, &bp);
1017 if (!error) {
1018 xfs_buf_relse(bp);
1019 } else {
1020 cmn_err(CE_WARN, "XFS: size check 2 failed");
1021 if (error == ENOSPC)
1022 error = XFS_ERROR(E2BIG);
1023 return error;
1024 }
1025
1026 if (mp->m_logdev_targp != mp->m_ddev_targp) {
1027 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
1028 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
1029 cmn_err(CE_WARN, "XFS: size check 3 failed");
1030 return XFS_ERROR(E2BIG);
1031 }
1032 error = xfs_read_buf(mp, mp->m_logdev_targp,
1033 d - XFS_FSB_TO_BB(mp, 1),
1034 XFS_FSB_TO_BB(mp, 1), 0, &bp);
1035 if (!error) {
1036 xfs_buf_relse(bp);
1037 } else {
1038 cmn_err(CE_WARN, "XFS: size check 3 failed");
1039 if (error == ENOSPC)
1040 error = XFS_ERROR(E2BIG);
1041 return error;
1042 }
1043 }
1044 return 0;
1045 }
1046
1047 /*
1048 * Clear the quotaflags in memory and in the superblock.
1049 */
1050 int
1051 xfs_mount_reset_sbqflags(
1052 struct xfs_mount *mp)
1053 {
1054 int error;
1055 struct xfs_trans *tp;
1056
1057 mp->m_qflags = 0;
1058
1059 /*
1060 * It is OK to look at sb_qflags here in mount path,
1061 * without m_sb_lock.
1062 */
1063 if (mp->m_sb.sb_qflags == 0)
1064 return 0;
1065 spin_lock(&mp->m_sb_lock);
1066 mp->m_sb.sb_qflags = 0;
1067 spin_unlock(&mp->m_sb_lock);
1068
1069 /*
1070 * If the fs is readonly, let the incore superblock run
1071 * with quotas off but don't flush the update out to disk
1072 */
1073 if (mp->m_flags & XFS_MOUNT_RDONLY)
1074 return 0;
1075
1076 #ifdef QUOTADEBUG
1077 xfs_fs_cmn_err(CE_NOTE, mp, "Writing superblock quota changes");
1078 #endif
1079
1080 tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
1081 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1082 XFS_DEFAULT_LOG_COUNT);
1083 if (error) {
1084 xfs_trans_cancel(tp, 0);
1085 xfs_fs_cmn_err(CE_ALERT, mp,
1086 "xfs_mount_reset_sbqflags: Superblock update failed!");
1087 return error;
1088 }
1089
1090 xfs_mod_sb(tp, XFS_SB_QFLAGS);
1091 return xfs_trans_commit(tp, 0);
1092 }
1093
1094 /*
1095 * This function does the following on an initial mount of a file system:
1096 * - reads the superblock from disk and init the mount struct
1097 * - if we're a 32-bit kernel, do a size check on the superblock
1098 * so we don't mount terabyte filesystems
1099 * - init mount struct realtime fields
1100 * - allocate inode hash table for fs
1101 * - init directory manager
1102 * - perform recovery and init the log manager
1103 */
1104 int
1105 xfs_mountfs(
1106 xfs_mount_t *mp)
1107 {
1108 xfs_sb_t *sbp = &(mp->m_sb);
1109 xfs_inode_t *rip;
1110 __uint64_t resblks;
1111 uint quotamount = 0;
1112 uint quotaflags = 0;
1113 int error = 0;
1114
1115 xfs_mount_common(mp, sbp);
1116
1117 /*
1118 * Check for a mismatched features2 values. Older kernels
1119 * read & wrote into the wrong sb offset for sb_features2
1120 * on some platforms due to xfs_sb_t not being 64bit size aligned
1121 * when sb_features2 was added, which made older superblock
1122 * reading/writing routines swap it as a 64-bit value.
1123 *
1124 * For backwards compatibility, we make both slots equal.
1125 *
1126 * If we detect a mismatched field, we OR the set bits into the
1127 * existing features2 field in case it has already been modified; we
1128 * don't want to lose any features. We then update the bad location
1129 * with the ORed value so that older kernels will see any features2
1130 * flags, and mark the two fields as needing updates once the
1131 * transaction subsystem is online.
1132 */
1133 if (xfs_sb_has_mismatched_features2(sbp)) {
1134 cmn_err(CE_WARN,
1135 "XFS: correcting sb_features alignment problem");
1136 sbp->sb_features2 |= sbp->sb_bad_features2;
1137 sbp->sb_bad_features2 = sbp->sb_features2;
1138 mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
1139
1140 /*
1141 * Re-check for ATTR2 in case it was found in bad_features2
1142 * slot.
1143 */
1144 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1145 !(mp->m_flags & XFS_MOUNT_NOATTR2))
1146 mp->m_flags |= XFS_MOUNT_ATTR2;
1147 }
1148
1149 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1150 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
1151 xfs_sb_version_removeattr2(&mp->m_sb);
1152 mp->m_update_flags |= XFS_SB_FEATURES2;
1153
1154 /* update sb_versionnum for the clearing of the morebits */
1155 if (!sbp->sb_features2)
1156 mp->m_update_flags |= XFS_SB_VERSIONNUM;
1157 }
1158
1159 /*
1160 * Check if sb_agblocks is aligned at stripe boundary
1161 * If sb_agblocks is NOT aligned turn off m_dalign since
1162 * allocator alignment is within an ag, therefore ag has
1163 * to be aligned at stripe boundary.
1164 */
1165 error = xfs_update_alignment(mp);
1166 if (error)
1167 goto out;
1168
1169 xfs_alloc_compute_maxlevels(mp);
1170 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
1171 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
1172 xfs_ialloc_compute_maxlevels(mp);
1173
1174 xfs_set_maxicount(mp);
1175
1176 mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog);
1177
1178 error = xfs_uuid_mount(mp);
1179 if (error)
1180 goto out;
1181
1182 /*
1183 * Set the minimum read and write sizes
1184 */
1185 xfs_set_rw_sizes(mp);
1186
1187 /*
1188 * Set the inode cluster size.
1189 * This may still be overridden by the file system
1190 * block size if it is larger than the chosen cluster size.
1191 */
1192 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
1193
1194 /*
1195 * Set inode alignment fields
1196 */
1197 xfs_set_inoalignment(mp);
1198
1199 /*
1200 * Check that the data (and log if separate) are an ok size.
1201 */
1202 error = xfs_check_sizes(mp);
1203 if (error)
1204 goto out_remove_uuid;
1205
1206 /*
1207 * Initialize realtime fields in the mount structure
1208 */
1209 error = xfs_rtmount_init(mp);
1210 if (error) {
1211 cmn_err(CE_WARN, "XFS: RT mount failed");
1212 goto out_remove_uuid;
1213 }
1214
1215 /*
1216 * Copies the low order bits of the timestamp and the randomly
1217 * set "sequence" number out of a UUID.
1218 */
1219 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
1220
1221 mp->m_dmevmask = 0; /* not persistent; set after each mount */
1222
1223 xfs_dir_mount(mp);
1224
1225 /*
1226 * Initialize the attribute manager's entries.
1227 */
1228 mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
1229
1230 /*
1231 * Initialize the precomputed transaction reservations values.
1232 */
1233 xfs_trans_init(mp);
1234
1235 /*
1236 * Allocate and initialize the per-ag data.
1237 */
1238 spin_lock_init(&mp->m_perag_lock);
1239 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_NOFS);
1240 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
1241 if (error) {
1242 cmn_err(CE_WARN, "XFS: Failed per-ag init: %d", error);
1243 goto out_remove_uuid;
1244 }
1245
1246 if (!sbp->sb_logblocks) {
1247 cmn_err(CE_WARN, "XFS: no log defined");
1248 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
1249 error = XFS_ERROR(EFSCORRUPTED);
1250 goto out_free_perag;
1251 }
1252
1253 /*
1254 * log's mount-time initialization. Perform 1st part recovery if needed
1255 */
1256 error = xfs_log_mount(mp, mp->m_logdev_targp,
1257 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1258 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1259 if (error) {
1260 cmn_err(CE_WARN, "XFS: log mount failed");
1261 goto out_free_perag;
1262 }
1263
1264 /*
1265 * Now the log is mounted, we know if it was an unclean shutdown or
1266 * not. If it was, with the first phase of recovery has completed, we
1267 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1268 * but they are recovered transactionally in the second recovery phase
1269 * later.
1270 *
1271 * Hence we can safely re-initialise incore superblock counters from
1272 * the per-ag data. These may not be correct if the filesystem was not
1273 * cleanly unmounted, so we need to wait for recovery to finish before
1274 * doing this.
1275 *
1276 * If the filesystem was cleanly unmounted, then we can trust the
1277 * values in the superblock to be correct and we don't need to do
1278 * anything here.
1279 *
1280 * If we are currently making the filesystem, the initialisation will
1281 * fail as the perag data is in an undefined state.
1282 */
1283 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
1284 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
1285 !mp->m_sb.sb_inprogress) {
1286 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
1287 if (error)
1288 goto out_free_perag;
1289 }
1290
1291 /*
1292 * Get and sanity-check the root inode.
1293 * Save the pointer to it in the mount structure.
1294 */
1295 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip, 0);
1296 if (error) {
1297 cmn_err(CE_WARN, "XFS: failed to read root inode");
1298 goto out_log_dealloc;
1299 }
1300
1301 ASSERT(rip != NULL);
1302
1303 if (unlikely((rip->i_d.di_mode & S_IFMT) != S_IFDIR)) {
1304 cmn_err(CE_WARN, "XFS: corrupted root inode");
1305 cmn_err(CE_WARN, "Device %s - root %llu is not a directory",
1306 XFS_BUFTARG_NAME(mp->m_ddev_targp),
1307 (unsigned long long)rip->i_ino);
1308 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1309 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
1310 mp);
1311 error = XFS_ERROR(EFSCORRUPTED);
1312 goto out_rele_rip;
1313 }
1314 mp->m_rootip = rip; /* save it */
1315
1316 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1317
1318 /*
1319 * Initialize realtime inode pointers in the mount structure
1320 */
1321 error = xfs_rtmount_inodes(mp);
1322 if (error) {
1323 /*
1324 * Free up the root inode.
1325 */
1326 cmn_err(CE_WARN, "XFS: failed to read RT inodes");
1327 goto out_rele_rip;
1328 }
1329
1330 /*
1331 * If this is a read-only mount defer the superblock updates until
1332 * the next remount into writeable mode. Otherwise we would never
1333 * perform the update e.g. for the root filesystem.
1334 */
1335 if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
1336 error = xfs_mount_log_sb(mp, mp->m_update_flags);
1337 if (error) {
1338 cmn_err(CE_WARN, "XFS: failed to write sb changes");
1339 goto out_rtunmount;
1340 }
1341 }
1342
1343 /*
1344 * Initialise the XFS quota management subsystem for this mount
1345 */
1346 if (XFS_IS_QUOTA_RUNNING(mp)) {
1347 error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
1348 if (error)
1349 goto out_rtunmount;
1350 } else {
1351 ASSERT(!XFS_IS_QUOTA_ON(mp));
1352
1353 /*
1354 * If a file system had quotas running earlier, but decided to
1355 * mount without -o uquota/pquota/gquota options, revoke the
1356 * quotachecked license.
1357 */
1358 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
1359 cmn_err(CE_NOTE,
1360 "XFS: resetting qflags for filesystem %s",
1361 mp->m_fsname);
1362
1363 error = xfs_mount_reset_sbqflags(mp);
1364 if (error)
1365 return error;
1366 }
1367 }
1368
1369 /*
1370 * Finish recovering the file system. This part needed to be
1371 * delayed until after the root and real-time bitmap inodes
1372 * were consistently read in.
1373 */
1374 error = xfs_log_mount_finish(mp);
1375 if (error) {
1376 cmn_err(CE_WARN, "XFS: log mount finish failed");
1377 goto out_rtunmount;
1378 }
1379
1380 /*
1381 * Complete the quota initialisation, post-log-replay component.
1382 */
1383 if (quotamount) {
1384 ASSERT(mp->m_qflags == 0);
1385 mp->m_qflags = quotaflags;
1386
1387 xfs_qm_mount_quotas(mp);
1388 }
1389
1390 #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
1391 if (XFS_IS_QUOTA_ON(mp))
1392 xfs_fs_cmn_err(CE_NOTE, mp, "Disk quotas turned on");
1393 else
1394 xfs_fs_cmn_err(CE_NOTE, mp, "Disk quotas not turned on");
1395 #endif
1396
1397 /*
1398 * Now we are mounted, reserve a small amount of unused space for
1399 * privileged transactions. This is needed so that transaction
1400 * space required for critical operations can dip into this pool
1401 * when at ENOSPC. This is needed for operations like create with
1402 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1403 * are not allowed to use this reserved space.
1404 *
1405 * We default to 5% or 1024 fsbs of space reserved, whichever is smaller.
1406 * This may drive us straight to ENOSPC on mount, but that implies
1407 * we were already there on the last unmount. Warn if this occurs.
1408 */
1409 resblks = mp->m_sb.sb_dblocks;
1410 do_div(resblks, 20);
1411 resblks = min_t(__uint64_t, resblks, 1024);
1412 error = xfs_reserve_blocks(mp, &resblks, NULL);
1413 if (error)
1414 cmn_err(CE_WARN, "XFS: Unable to allocate reserve blocks. "
1415 "Continuing without a reserve pool.");
1416
1417 return 0;
1418
1419 out_rtunmount:
1420 xfs_rtunmount_inodes(mp);
1421 out_rele_rip:
1422 IRELE(rip);
1423 out_log_dealloc:
1424 xfs_log_unmount(mp);
1425 out_free_perag:
1426 xfs_free_perag(mp);
1427 out_remove_uuid:
1428 xfs_uuid_unmount(mp);
1429 out:
1430 return error;
1431 }
1432
1433 /*
1434 * This flushes out the inodes,dquots and the superblock, unmounts the
1435 * log and makes sure that incore structures are freed.
1436 */
1437 void
1438 xfs_unmountfs(
1439 struct xfs_mount *mp)
1440 {
1441 __uint64_t resblks;
1442 int error;
1443
1444 xfs_qm_unmount_quotas(mp);
1445 xfs_rtunmount_inodes(mp);
1446 IRELE(mp->m_rootip);
1447
1448 /*
1449 * We can potentially deadlock here if we have an inode cluster
1450 * that has been freed has its buffer still pinned in memory because
1451 * the transaction is still sitting in a iclog. The stale inodes
1452 * on that buffer will have their flush locks held until the
1453 * transaction hits the disk and the callbacks run. the inode
1454 * flush takes the flush lock unconditionally and with nothing to
1455 * push out the iclog we will never get that unlocked. hence we
1456 * need to force the log first.
1457 */
1458 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC);
1459 xfs_reclaim_inodes(mp, XFS_IFLUSH_ASYNC);
1460
1461 xfs_qm_unmount(mp);
1462
1463 /*
1464 * Flush out the log synchronously so that we know for sure
1465 * that nothing is pinned. This is important because bflush()
1466 * will skip pinned buffers.
1467 */
1468 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC);
1469
1470 xfs_binval(mp->m_ddev_targp);
1471 if (mp->m_rtdev_targp) {
1472 xfs_binval(mp->m_rtdev_targp);
1473 }
1474
1475 /*
1476 * Unreserve any blocks we have so that when we unmount we don't account
1477 * the reserved free space as used. This is really only necessary for
1478 * lazy superblock counting because it trusts the incore superblock
1479 * counters to be absolutely correct on clean unmount.
1480 *
1481 * We don't bother correcting this elsewhere for lazy superblock
1482 * counting because on mount of an unclean filesystem we reconstruct the
1483 * correct counter value and this is irrelevant.
1484 *
1485 * For non-lazy counter filesystems, this doesn't matter at all because
1486 * we only every apply deltas to the superblock and hence the incore
1487 * value does not matter....
1488 */
1489 resblks = 0;
1490 error = xfs_reserve_blocks(mp, &resblks, NULL);
1491 if (error)
1492 cmn_err(CE_WARN, "XFS: Unable to free reserved block pool. "
1493 "Freespace may not be correct on next mount.");
1494
1495 error = xfs_log_sbcount(mp, 1);
1496 if (error)
1497 cmn_err(CE_WARN, "XFS: Unable to update superblock counters. "
1498 "Freespace may not be correct on next mount.");
1499 xfs_unmountfs_writesb(mp);
1500 xfs_unmountfs_wait(mp); /* wait for async bufs */
1501 xfs_log_unmount_write(mp);
1502 xfs_log_unmount(mp);
1503 xfs_uuid_unmount(mp);
1504
1505 #if defined(DEBUG)
1506 xfs_errortag_clearall(mp, 0);
1507 #endif
1508 xfs_free_perag(mp);
1509 }
1510
1511 STATIC void
1512 xfs_unmountfs_wait(xfs_mount_t *mp)
1513 {
1514 if (mp->m_logdev_targp != mp->m_ddev_targp)
1515 xfs_wait_buftarg(mp->m_logdev_targp);
1516 if (mp->m_rtdev_targp)
1517 xfs_wait_buftarg(mp->m_rtdev_targp);
1518 xfs_wait_buftarg(mp->m_ddev_targp);
1519 }
1520
1521 int
1522 xfs_fs_writable(xfs_mount_t *mp)
1523 {
1524 return !(xfs_test_for_freeze(mp) || XFS_FORCED_SHUTDOWN(mp) ||
1525 (mp->m_flags & XFS_MOUNT_RDONLY));
1526 }
1527
1528 /*
1529 * xfs_log_sbcount
1530 *
1531 * Called either periodically to keep the on disk superblock values
1532 * roughly up to date or from unmount to make sure the values are
1533 * correct on a clean unmount.
1534 *
1535 * Note this code can be called during the process of freezing, so
1536 * we may need to use the transaction allocator which does not not
1537 * block when the transaction subsystem is in its frozen state.
1538 */
1539 int
1540 xfs_log_sbcount(
1541 xfs_mount_t *mp,
1542 uint sync)
1543 {
1544 xfs_trans_t *tp;
1545 int error;
1546
1547 if (!xfs_fs_writable(mp))
1548 return 0;
1549
1550 xfs_icsb_sync_counters(mp, 0);
1551
1552 /*
1553 * we don't need to do this if we are updating the superblock
1554 * counters on every modification.
1555 */
1556 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1557 return 0;
1558
1559 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
1560 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1561 XFS_DEFAULT_LOG_COUNT);
1562 if (error) {
1563 xfs_trans_cancel(tp, 0);
1564 return error;
1565 }
1566
1567 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1568 if (sync)
1569 xfs_trans_set_sync(tp);
1570 error = xfs_trans_commit(tp, 0);
1571 return error;
1572 }
1573
1574 int
1575 xfs_unmountfs_writesb(xfs_mount_t *mp)
1576 {
1577 xfs_buf_t *sbp;
1578 int error = 0;
1579
1580 /*
1581 * skip superblock write if fs is read-only, or
1582 * if we are doing a forced umount.
1583 */
1584 if (!((mp->m_flags & XFS_MOUNT_RDONLY) ||
1585 XFS_FORCED_SHUTDOWN(mp))) {
1586
1587 sbp = xfs_getsb(mp, 0);
1588
1589 XFS_BUF_UNDONE(sbp);
1590 XFS_BUF_UNREAD(sbp);
1591 XFS_BUF_UNDELAYWRITE(sbp);
1592 XFS_BUF_WRITE(sbp);
1593 XFS_BUF_UNASYNC(sbp);
1594 ASSERT(XFS_BUF_TARGET(sbp) == mp->m_ddev_targp);
1595 xfsbdstrat(mp, sbp);
1596 error = xfs_iowait(sbp);
1597 if (error)
1598 xfs_ioerror_alert("xfs_unmountfs_writesb",
1599 mp, sbp, XFS_BUF_ADDR(sbp));
1600 xfs_buf_relse(sbp);
1601 }
1602 return error;
1603 }
1604
1605 /*
1606 * xfs_mod_sb() can be used to copy arbitrary changes to the
1607 * in-core superblock into the superblock buffer to be logged.
1608 * It does not provide the higher level of locking that is
1609 * needed to protect the in-core superblock from concurrent
1610 * access.
1611 */
1612 void
1613 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
1614 {
1615 xfs_buf_t *bp;
1616 int first;
1617 int last;
1618 xfs_mount_t *mp;
1619 xfs_sb_field_t f;
1620
1621 ASSERT(fields);
1622 if (!fields)
1623 return;
1624 mp = tp->t_mountp;
1625 bp = xfs_trans_getsb(tp, mp, 0);
1626 first = sizeof(xfs_sb_t);
1627 last = 0;
1628
1629 /* translate/copy */
1630
1631 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields);
1632
1633 /* find modified range */
1634 f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
1635 ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1636 last = xfs_sb_info[f + 1].offset - 1;
1637
1638 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
1639 ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1640 first = xfs_sb_info[f].offset;
1641
1642 xfs_trans_log_buf(tp, bp, first, last);
1643 }
1644
1645
1646 /*
1647 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1648 * a delta to a specified field in the in-core superblock. Simply
1649 * switch on the field indicated and apply the delta to that field.
1650 * Fields are not allowed to dip below zero, so if the delta would
1651 * do this do not apply it and return EINVAL.
1652 *
1653 * The m_sb_lock must be held when this routine is called.
1654 */
1655 STATIC int
1656 xfs_mod_incore_sb_unlocked(
1657 xfs_mount_t *mp,
1658 xfs_sb_field_t field,
1659 int64_t delta,
1660 int rsvd)
1661 {
1662 int scounter; /* short counter for 32 bit fields */
1663 long long lcounter; /* long counter for 64 bit fields */
1664 long long res_used, rem;
1665
1666 /*
1667 * With the in-core superblock spin lock held, switch
1668 * on the indicated field. Apply the delta to the
1669 * proper field. If the fields value would dip below
1670 * 0, then do not apply the delta and return EINVAL.
1671 */
1672 switch (field) {
1673 case XFS_SBS_ICOUNT:
1674 lcounter = (long long)mp->m_sb.sb_icount;
1675 lcounter += delta;
1676 if (lcounter < 0) {
1677 ASSERT(0);
1678 return XFS_ERROR(EINVAL);
1679 }
1680 mp->m_sb.sb_icount = lcounter;
1681 return 0;
1682 case XFS_SBS_IFREE:
1683 lcounter = (long long)mp->m_sb.sb_ifree;
1684 lcounter += delta;
1685 if (lcounter < 0) {
1686 ASSERT(0);
1687 return XFS_ERROR(EINVAL);
1688 }
1689 mp->m_sb.sb_ifree = lcounter;
1690 return 0;
1691 case XFS_SBS_FDBLOCKS:
1692 lcounter = (long long)
1693 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1694 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1695
1696 if (delta > 0) { /* Putting blocks back */
1697 if (res_used > delta) {
1698 mp->m_resblks_avail += delta;
1699 } else {
1700 rem = delta - res_used;
1701 mp->m_resblks_avail = mp->m_resblks;
1702 lcounter += rem;
1703 }
1704 } else { /* Taking blocks away */
1705
1706 lcounter += delta;
1707
1708 /*
1709 * If were out of blocks, use any available reserved blocks if
1710 * were allowed to.
1711 */
1712
1713 if (lcounter < 0) {
1714 if (rsvd) {
1715 lcounter = (long long)mp->m_resblks_avail + delta;
1716 if (lcounter < 0) {
1717 return XFS_ERROR(ENOSPC);
1718 }
1719 mp->m_resblks_avail = lcounter;
1720 return 0;
1721 } else { /* not reserved */
1722 return XFS_ERROR(ENOSPC);
1723 }
1724 }
1725 }
1726
1727 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1728 return 0;
1729 case XFS_SBS_FREXTENTS:
1730 lcounter = (long long)mp->m_sb.sb_frextents;
1731 lcounter += delta;
1732 if (lcounter < 0) {
1733 return XFS_ERROR(ENOSPC);
1734 }
1735 mp->m_sb.sb_frextents = lcounter;
1736 return 0;
1737 case XFS_SBS_DBLOCKS:
1738 lcounter = (long long)mp->m_sb.sb_dblocks;
1739 lcounter += delta;
1740 if (lcounter < 0) {
1741 ASSERT(0);
1742 return XFS_ERROR(EINVAL);
1743 }
1744 mp->m_sb.sb_dblocks = lcounter;
1745 return 0;
1746 case XFS_SBS_AGCOUNT:
1747 scounter = mp->m_sb.sb_agcount;
1748 scounter += delta;
1749 if (scounter < 0) {
1750 ASSERT(0);
1751 return XFS_ERROR(EINVAL);
1752 }
1753 mp->m_sb.sb_agcount = scounter;
1754 return 0;
1755 case XFS_SBS_IMAX_PCT:
1756 scounter = mp->m_sb.sb_imax_pct;
1757 scounter += delta;
1758 if (scounter < 0) {
1759 ASSERT(0);
1760 return XFS_ERROR(EINVAL);
1761 }
1762 mp->m_sb.sb_imax_pct = scounter;
1763 return 0;
1764 case XFS_SBS_REXTSIZE:
1765 scounter = mp->m_sb.sb_rextsize;
1766 scounter += delta;
1767 if (scounter < 0) {
1768 ASSERT(0);
1769 return XFS_ERROR(EINVAL);
1770 }
1771 mp->m_sb.sb_rextsize = scounter;
1772 return 0;
1773 case XFS_SBS_RBMBLOCKS:
1774 scounter = mp->m_sb.sb_rbmblocks;
1775 scounter += delta;
1776 if (scounter < 0) {
1777 ASSERT(0);
1778 return XFS_ERROR(EINVAL);
1779 }
1780 mp->m_sb.sb_rbmblocks = scounter;
1781 return 0;
1782 case XFS_SBS_RBLOCKS:
1783 lcounter = (long long)mp->m_sb.sb_rblocks;
1784 lcounter += delta;
1785 if (lcounter < 0) {
1786 ASSERT(0);
1787 return XFS_ERROR(EINVAL);
1788 }
1789 mp->m_sb.sb_rblocks = lcounter;
1790 return 0;
1791 case XFS_SBS_REXTENTS:
1792 lcounter = (long long)mp->m_sb.sb_rextents;
1793 lcounter += delta;
1794 if (lcounter < 0) {
1795 ASSERT(0);
1796 return XFS_ERROR(EINVAL);
1797 }
1798 mp->m_sb.sb_rextents = lcounter;
1799 return 0;
1800 case XFS_SBS_REXTSLOG:
1801 scounter = mp->m_sb.sb_rextslog;
1802 scounter += delta;
1803 if (scounter < 0) {
1804 ASSERT(0);
1805 return XFS_ERROR(EINVAL);
1806 }
1807 mp->m_sb.sb_rextslog = scounter;
1808 return 0;
1809 default:
1810 ASSERT(0);
1811 return XFS_ERROR(EINVAL);
1812 }
1813 }
1814
1815 /*
1816 * xfs_mod_incore_sb() is used to change a field in the in-core
1817 * superblock structure by the specified delta. This modification
1818 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked()
1819 * routine to do the work.
1820 */
1821 int
1822 xfs_mod_incore_sb(
1823 xfs_mount_t *mp,
1824 xfs_sb_field_t field,
1825 int64_t delta,
1826 int rsvd)
1827 {
1828 int status;
1829
1830 /* check for per-cpu counters */
1831 switch (field) {
1832 #ifdef HAVE_PERCPU_SB
1833 case XFS_SBS_ICOUNT:
1834 case XFS_SBS_IFREE:
1835 case XFS_SBS_FDBLOCKS:
1836 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1837 status = xfs_icsb_modify_counters(mp, field,
1838 delta, rsvd);
1839 break;
1840 }
1841 /* FALLTHROUGH */
1842 #endif
1843 default:
1844 spin_lock(&mp->m_sb_lock);
1845 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1846 spin_unlock(&mp->m_sb_lock);
1847 break;
1848 }
1849
1850 return status;
1851 }
1852
1853 /*
1854 * xfs_mod_incore_sb_batch() is used to change more than one field
1855 * in the in-core superblock structure at a time. This modification
1856 * is protected by a lock internal to this module. The fields and
1857 * changes to those fields are specified in the array of xfs_mod_sb
1858 * structures passed in.
1859 *
1860 * Either all of the specified deltas will be applied or none of
1861 * them will. If any modified field dips below 0, then all modifications
1862 * will be backed out and EINVAL will be returned.
1863 */
1864 int
1865 xfs_mod_incore_sb_batch(xfs_mount_t *mp, xfs_mod_sb_t *msb, uint nmsb, int rsvd)
1866 {
1867 int status=0;
1868 xfs_mod_sb_t *msbp;
1869
1870 /*
1871 * Loop through the array of mod structures and apply each
1872 * individually. If any fail, then back out all those
1873 * which have already been applied. Do all of this within
1874 * the scope of the m_sb_lock so that all of the changes will
1875 * be atomic.
1876 */
1877 spin_lock(&mp->m_sb_lock);
1878 msbp = &msb[0];
1879 for (msbp = &msbp[0]; msbp < (msb + nmsb); msbp++) {
1880 /*
1881 * Apply the delta at index n. If it fails, break
1882 * from the loop so we'll fall into the undo loop
1883 * below.
1884 */
1885 switch (msbp->msb_field) {
1886 #ifdef HAVE_PERCPU_SB
1887 case XFS_SBS_ICOUNT:
1888 case XFS_SBS_IFREE:
1889 case XFS_SBS_FDBLOCKS:
1890 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1891 spin_unlock(&mp->m_sb_lock);
1892 status = xfs_icsb_modify_counters(mp,
1893 msbp->msb_field,
1894 msbp->msb_delta, rsvd);
1895 spin_lock(&mp->m_sb_lock);
1896 break;
1897 }
1898 /* FALLTHROUGH */
1899 #endif
1900 default:
1901 status = xfs_mod_incore_sb_unlocked(mp,
1902 msbp->msb_field,
1903 msbp->msb_delta, rsvd);
1904 break;
1905 }
1906
1907 if (status != 0) {
1908 break;
1909 }
1910 }
1911
1912 /*
1913 * If we didn't complete the loop above, then back out
1914 * any changes made to the superblock. If you add code
1915 * between the loop above and here, make sure that you
1916 * preserve the value of status. Loop back until
1917 * we step below the beginning of the array. Make sure
1918 * we don't touch anything back there.
1919 */
1920 if (status != 0) {
1921 msbp--;
1922 while (msbp >= msb) {
1923 switch (msbp->msb_field) {
1924 #ifdef HAVE_PERCPU_SB
1925 case XFS_SBS_ICOUNT:
1926 case XFS_SBS_IFREE:
1927 case XFS_SBS_FDBLOCKS:
1928 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1929 spin_unlock(&mp->m_sb_lock);
1930 status = xfs_icsb_modify_counters(mp,
1931 msbp->msb_field,
1932 -(msbp->msb_delta),
1933 rsvd);
1934 spin_lock(&mp->m_sb_lock);
1935 break;
1936 }
1937 /* FALLTHROUGH */
1938 #endif
1939 default:
1940 status = xfs_mod_incore_sb_unlocked(mp,
1941 msbp->msb_field,
1942 -(msbp->msb_delta),
1943 rsvd);
1944 break;
1945 }
1946 ASSERT(status == 0);
1947 msbp--;
1948 }
1949 }
1950 spin_unlock(&mp->m_sb_lock);
1951 return status;
1952 }
1953
1954 /*
1955 * xfs_getsb() is called to obtain the buffer for the superblock.
1956 * The buffer is returned locked and read in from disk.
1957 * The buffer should be released with a call to xfs_brelse().
1958 *
1959 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1960 * the superblock buffer if it can be locked without sleeping.
1961 * If it can't then we'll return NULL.
1962 */
1963 xfs_buf_t *
1964 xfs_getsb(
1965 xfs_mount_t *mp,
1966 int flags)
1967 {
1968 xfs_buf_t *bp;
1969
1970 ASSERT(mp->m_sb_bp != NULL);
1971 bp = mp->m_sb_bp;
1972 if (flags & XBF_TRYLOCK) {
1973 if (!XFS_BUF_CPSEMA(bp)) {
1974 return NULL;
1975 }
1976 } else {
1977 XFS_BUF_PSEMA(bp, PRIBIO);
1978 }
1979 XFS_BUF_HOLD(bp);
1980 ASSERT(XFS_BUF_ISDONE(bp));
1981 return bp;
1982 }
1983
1984 /*
1985 * Used to free the superblock along various error paths.
1986 */
1987 void
1988 xfs_freesb(
1989 xfs_mount_t *mp)
1990 {
1991 xfs_buf_t *bp;
1992
1993 /*
1994 * Use xfs_getsb() so that the buffer will be locked
1995 * when we call xfs_buf_relse().
1996 */
1997 bp = xfs_getsb(mp, 0);
1998 XFS_BUF_UNMANAGE(bp);
1999 xfs_buf_relse(bp);
2000 mp->m_sb_bp = NULL;
2001 }
2002
2003 /*
2004 * Used to log changes to the superblock unit and width fields which could
2005 * be altered by the mount options, as well as any potential sb_features2
2006 * fixup. Only the first superblock is updated.
2007 */
2008 int
2009 xfs_mount_log_sb(
2010 xfs_mount_t *mp,
2011 __int64_t fields)
2012 {
2013 xfs_trans_t *tp;
2014 int error;
2015
2016 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
2017 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
2018 XFS_SB_VERSIONNUM));
2019
2020 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
2021 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
2022 XFS_DEFAULT_LOG_COUNT);
2023 if (error) {
2024 xfs_trans_cancel(tp, 0);
2025 return error;
2026 }
2027 xfs_mod_sb(tp, fields);
2028 error = xfs_trans_commit(tp, 0);
2029 return error;
2030 }
2031
2032
2033 #ifdef HAVE_PERCPU_SB
2034 /*
2035 * Per-cpu incore superblock counters
2036 *
2037 * Simple concept, difficult implementation
2038 *
2039 * Basically, replace the incore superblock counters with a distributed per cpu
2040 * counter for contended fields (e.g. free block count).
2041 *
2042 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
2043 * hence needs to be accurately read when we are running low on space. Hence
2044 * there is a method to enable and disable the per-cpu counters based on how
2045 * much "stuff" is available in them.
2046 *
2047 * Basically, a counter is enabled if there is enough free resource to justify
2048 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
2049 * ENOSPC), then we disable the counters to synchronise all callers and
2050 * re-distribute the available resources.
2051 *
2052 * If, once we redistributed the available resources, we still get a failure,
2053 * we disable the per-cpu counter and go through the slow path.
2054 *
2055 * The slow path is the current xfs_mod_incore_sb() function. This means that
2056 * when we disable a per-cpu counter, we need to drain its resources back to
2057 * the global superblock. We do this after disabling the counter to prevent
2058 * more threads from queueing up on the counter.
2059 *
2060 * Essentially, this means that we still need a lock in the fast path to enable
2061 * synchronisation between the global counters and the per-cpu counters. This
2062 * is not a problem because the lock will be local to a CPU almost all the time
2063 * and have little contention except when we get to ENOSPC conditions.
2064 *
2065 * Basically, this lock becomes a barrier that enables us to lock out the fast
2066 * path while we do things like enabling and disabling counters and
2067 * synchronising the counters.
2068 *
2069 * Locking rules:
2070 *
2071 * 1. m_sb_lock before picking up per-cpu locks
2072 * 2. per-cpu locks always picked up via for_each_online_cpu() order
2073 * 3. accurate counter sync requires m_sb_lock + per cpu locks
2074 * 4. modifying per-cpu counters requires holding per-cpu lock
2075 * 5. modifying global counters requires holding m_sb_lock
2076 * 6. enabling or disabling a counter requires holding the m_sb_lock
2077 * and _none_ of the per-cpu locks.
2078 *
2079 * Disabled counters are only ever re-enabled by a balance operation
2080 * that results in more free resources per CPU than a given threshold.
2081 * To ensure counters don't remain disabled, they are rebalanced when
2082 * the global resource goes above a higher threshold (i.e. some hysteresis
2083 * is present to prevent thrashing).
2084 */
2085
2086 #ifdef CONFIG_HOTPLUG_CPU
2087 /*
2088 * hot-plug CPU notifier support.
2089 *
2090 * We need a notifier per filesystem as we need to be able to identify
2091 * the filesystem to balance the counters out. This is achieved by
2092 * having a notifier block embedded in the xfs_mount_t and doing pointer
2093 * magic to get the mount pointer from the notifier block address.
2094 */
2095 STATIC int
2096 xfs_icsb_cpu_notify(
2097 struct notifier_block *nfb,
2098 unsigned long action,
2099 void *hcpu)
2100 {
2101 xfs_icsb_cnts_t *cntp;
2102 xfs_mount_t *mp;
2103
2104 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
2105 cntp = (xfs_icsb_cnts_t *)
2106 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
2107 switch (action) {
2108 case CPU_UP_PREPARE:
2109 case CPU_UP_PREPARE_FROZEN:
2110 /* Easy Case - initialize the area and locks, and
2111 * then rebalance when online does everything else for us. */
2112 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2113 break;
2114 case CPU_ONLINE:
2115 case CPU_ONLINE_FROZEN:
2116 xfs_icsb_lock(mp);
2117 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2118 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2119 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2120 xfs_icsb_unlock(mp);
2121 break;
2122 case CPU_DEAD:
2123 case CPU_DEAD_FROZEN:
2124 /* Disable all the counters, then fold the dead cpu's
2125 * count into the total on the global superblock and
2126 * re-enable the counters. */
2127 xfs_icsb_lock(mp);
2128 spin_lock(&mp->m_sb_lock);
2129 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
2130 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
2131 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
2132
2133 mp->m_sb.sb_icount += cntp->icsb_icount;
2134 mp->m_sb.sb_ifree += cntp->icsb_ifree;
2135 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
2136
2137 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2138
2139 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
2140 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
2141 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
2142 spin_unlock(&mp->m_sb_lock);
2143 xfs_icsb_unlock(mp);
2144 break;
2145 }
2146
2147 return NOTIFY_OK;
2148 }
2149 #endif /* CONFIG_HOTPLUG_CPU */
2150
2151 int
2152 xfs_icsb_init_counters(
2153 xfs_mount_t *mp)
2154 {
2155 xfs_icsb_cnts_t *cntp;
2156 int i;
2157
2158 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
2159 if (mp->m_sb_cnts == NULL)
2160 return -ENOMEM;
2161
2162 #ifdef CONFIG_HOTPLUG_CPU
2163 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
2164 mp->m_icsb_notifier.priority = 0;
2165 register_hotcpu_notifier(&mp->m_icsb_notifier);
2166 #endif /* CONFIG_HOTPLUG_CPU */
2167
2168 for_each_online_cpu(i) {
2169 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2170 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2171 }
2172
2173 mutex_init(&mp->m_icsb_mutex);
2174
2175 /*
2176 * start with all counters disabled so that the
2177 * initial balance kicks us off correctly
2178 */
2179 mp->m_icsb_counters = -1;
2180 return 0;
2181 }
2182
2183 void
2184 xfs_icsb_reinit_counters(
2185 xfs_mount_t *mp)
2186 {
2187 xfs_icsb_lock(mp);
2188 /*
2189 * start with all counters disabled so that the
2190 * initial balance kicks us off correctly
2191 */
2192 mp->m_icsb_counters = -1;
2193 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2194 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2195 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2196 xfs_icsb_unlock(mp);
2197 }
2198
2199 void
2200 xfs_icsb_destroy_counters(
2201 xfs_mount_t *mp)
2202 {
2203 if (mp->m_sb_cnts) {
2204 unregister_hotcpu_notifier(&mp->m_icsb_notifier);
2205 free_percpu(mp->m_sb_cnts);
2206 }
2207 mutex_destroy(&mp->m_icsb_mutex);
2208 }
2209
2210 STATIC void
2211 xfs_icsb_lock_cntr(
2212 xfs_icsb_cnts_t *icsbp)
2213 {
2214 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
2215 ndelay(1000);
2216 }
2217 }
2218
2219 STATIC void
2220 xfs_icsb_unlock_cntr(
2221 xfs_icsb_cnts_t *icsbp)
2222 {
2223 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
2224 }
2225
2226
2227 STATIC void
2228 xfs_icsb_lock_all_counters(
2229 xfs_mount_t *mp)
2230 {
2231 xfs_icsb_cnts_t *cntp;
2232 int i;
2233
2234 for_each_online_cpu(i) {
2235 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2236 xfs_icsb_lock_cntr(cntp);
2237 }
2238 }
2239
2240 STATIC void
2241 xfs_icsb_unlock_all_counters(
2242 xfs_mount_t *mp)
2243 {
2244 xfs_icsb_cnts_t *cntp;
2245 int i;
2246
2247 for_each_online_cpu(i) {
2248 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2249 xfs_icsb_unlock_cntr(cntp);
2250 }
2251 }
2252
2253 STATIC void
2254 xfs_icsb_count(
2255 xfs_mount_t *mp,
2256 xfs_icsb_cnts_t *cnt,
2257 int flags)
2258 {
2259 xfs_icsb_cnts_t *cntp;
2260 int i;
2261
2262 memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
2263
2264 if (!(flags & XFS_ICSB_LAZY_COUNT))
2265 xfs_icsb_lock_all_counters(mp);
2266
2267 for_each_online_cpu(i) {
2268 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2269 cnt->icsb_icount += cntp->icsb_icount;
2270 cnt->icsb_ifree += cntp->icsb_ifree;
2271 cnt->icsb_fdblocks += cntp->icsb_fdblocks;
2272 }
2273
2274 if (!(flags & XFS_ICSB_LAZY_COUNT))
2275 xfs_icsb_unlock_all_counters(mp);
2276 }
2277
2278 STATIC int
2279 xfs_icsb_counter_disabled(
2280 xfs_mount_t *mp,
2281 xfs_sb_field_t field)
2282 {
2283 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2284 return test_bit(field, &mp->m_icsb_counters);
2285 }
2286
2287 STATIC void
2288 xfs_icsb_disable_counter(
2289 xfs_mount_t *mp,
2290 xfs_sb_field_t field)
2291 {
2292 xfs_icsb_cnts_t cnt;
2293
2294 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2295
2296 /*
2297 * If we are already disabled, then there is nothing to do
2298 * here. We check before locking all the counters to avoid
2299 * the expensive lock operation when being called in the
2300 * slow path and the counter is already disabled. This is
2301 * safe because the only time we set or clear this state is under
2302 * the m_icsb_mutex.
2303 */
2304 if (xfs_icsb_counter_disabled(mp, field))
2305 return;
2306
2307 xfs_icsb_lock_all_counters(mp);
2308 if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
2309 /* drain back to superblock */
2310
2311 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
2312 switch(field) {
2313 case XFS_SBS_ICOUNT:
2314 mp->m_sb.sb_icount = cnt.icsb_icount;
2315 break;
2316 case XFS_SBS_IFREE:
2317 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2318 break;
2319 case XFS_SBS_FDBLOCKS:
2320 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2321 break;
2322 default:
2323 BUG();
2324 }
2325 }
2326
2327 xfs_icsb_unlock_all_counters(mp);
2328 }
2329
2330 STATIC void
2331 xfs_icsb_enable_counter(
2332 xfs_mount_t *mp,
2333 xfs_sb_field_t field,
2334 uint64_t count,
2335 uint64_t resid)
2336 {
2337 xfs_icsb_cnts_t *cntp;
2338 int i;
2339
2340 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2341
2342 xfs_icsb_lock_all_counters(mp);
2343 for_each_online_cpu(i) {
2344 cntp = per_cpu_ptr(mp->m_sb_cnts, i);
2345 switch (field) {
2346 case XFS_SBS_ICOUNT:
2347 cntp->icsb_icount = count + resid;
2348 break;
2349 case XFS_SBS_IFREE:
2350 cntp->icsb_ifree = count + resid;
2351 break;
2352 case XFS_SBS_FDBLOCKS:
2353 cntp->icsb_fdblocks = count + resid;
2354 break;
2355 default:
2356 BUG();
2357 break;
2358 }
2359 resid = 0;
2360 }
2361 clear_bit(field, &mp->m_icsb_counters);
2362 xfs_icsb_unlock_all_counters(mp);
2363 }
2364
2365 void
2366 xfs_icsb_sync_counters_locked(
2367 xfs_mount_t *mp,
2368 int flags)
2369 {
2370 xfs_icsb_cnts_t cnt;
2371
2372 xfs_icsb_count(mp, &cnt, flags);
2373
2374 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
2375 mp->m_sb.sb_icount = cnt.icsb_icount;
2376 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
2377 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2378 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
2379 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2380 }
2381
2382 /*
2383 * Accurate update of per-cpu counters to incore superblock
2384 */
2385 void
2386 xfs_icsb_sync_counters(
2387 xfs_mount_t *mp,
2388 int flags)
2389 {
2390 spin_lock(&mp->m_sb_lock);
2391 xfs_icsb_sync_counters_locked(mp, flags);
2392 spin_unlock(&mp->m_sb_lock);
2393 }
2394
2395 /*
2396 * Balance and enable/disable counters as necessary.
2397 *
2398 * Thresholds for re-enabling counters are somewhat magic. inode counts are
2399 * chosen to be the same number as single on disk allocation chunk per CPU, and
2400 * free blocks is something far enough zero that we aren't going thrash when we
2401 * get near ENOSPC. We also need to supply a minimum we require per cpu to
2402 * prevent looping endlessly when xfs_alloc_space asks for more than will
2403 * be distributed to a single CPU but each CPU has enough blocks to be
2404 * reenabled.
2405 *
2406 * Note that we can be called when counters are already disabled.
2407 * xfs_icsb_disable_counter() optimises the counter locking in this case to
2408 * prevent locking every per-cpu counter needlessly.
2409 */
2410
2411 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64
2412 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2413 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2414 STATIC void
2415 xfs_icsb_balance_counter_locked(
2416 xfs_mount_t *mp,
2417 xfs_sb_field_t field,
2418 int min_per_cpu)
2419 {
2420 uint64_t count, resid;
2421 int weight = num_online_cpus();
2422 uint64_t min = (uint64_t)min_per_cpu;
2423
2424 /* disable counter and sync counter */
2425 xfs_icsb_disable_counter(mp, field);
2426
2427 /* update counters - first CPU gets residual*/
2428 switch (field) {
2429 case XFS_SBS_ICOUNT:
2430 count = mp->m_sb.sb_icount;
2431 resid = do_div(count, weight);
2432 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2433 return;
2434 break;
2435 case XFS_SBS_IFREE:
2436 count = mp->m_sb.sb_ifree;
2437 resid = do_div(count, weight);
2438 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2439 return;
2440 break;
2441 case XFS_SBS_FDBLOCKS:
2442 count = mp->m_sb.sb_fdblocks;
2443 resid = do_div(count, weight);
2444 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
2445 return;
2446 break;
2447 default:
2448 BUG();
2449 count = resid = 0; /* quiet, gcc */
2450 break;
2451 }
2452
2453 xfs_icsb_enable_counter(mp, field, count, resid);
2454 }
2455
2456 STATIC void
2457 xfs_icsb_balance_counter(
2458 xfs_mount_t *mp,
2459 xfs_sb_field_t fields,
2460 int min_per_cpu)
2461 {
2462 spin_lock(&mp->m_sb_lock);
2463 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
2464 spin_unlock(&mp->m_sb_lock);
2465 }
2466
2467 STATIC int
2468 xfs_icsb_modify_counters(
2469 xfs_mount_t *mp,
2470 xfs_sb_field_t field,
2471 int64_t delta,
2472 int rsvd)
2473 {
2474 xfs_icsb_cnts_t *icsbp;
2475 long long lcounter; /* long counter for 64 bit fields */
2476 int ret = 0;
2477
2478 might_sleep();
2479 again:
2480 preempt_disable();
2481 icsbp = this_cpu_ptr(mp->m_sb_cnts);
2482
2483 /*
2484 * if the counter is disabled, go to slow path
2485 */
2486 if (unlikely(xfs_icsb_counter_disabled(mp, field)))
2487 goto slow_path;
2488 xfs_icsb_lock_cntr(icsbp);
2489 if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
2490 xfs_icsb_unlock_cntr(icsbp);
2491 goto slow_path;
2492 }
2493
2494 switch (field) {
2495 case XFS_SBS_ICOUNT:
2496 lcounter = icsbp->icsb_icount;
2497 lcounter += delta;
2498 if (unlikely(lcounter < 0))
2499 goto balance_counter;
2500 icsbp->icsb_icount = lcounter;
2501 break;
2502
2503 case XFS_SBS_IFREE:
2504 lcounter = icsbp->icsb_ifree;
2505 lcounter += delta;
2506 if (unlikely(lcounter < 0))
2507 goto balance_counter;
2508 icsbp->icsb_ifree = lcounter;
2509 break;
2510
2511 case XFS_SBS_FDBLOCKS:
2512 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
2513
2514 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
2515 lcounter += delta;
2516 if (unlikely(lcounter < 0))
2517 goto balance_counter;
2518 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
2519 break;
2520 default:
2521 BUG();
2522 break;
2523 }
2524 xfs_icsb_unlock_cntr(icsbp);
2525 preempt_enable();
2526 return 0;
2527
2528 slow_path:
2529 preempt_enable();
2530
2531 /*
2532 * serialise with a mutex so we don't burn lots of cpu on
2533 * the superblock lock. We still need to hold the superblock
2534 * lock, however, when we modify the global structures.
2535 */
2536 xfs_icsb_lock(mp);
2537
2538 /*
2539 * Now running atomically.
2540 *
2541 * If the counter is enabled, someone has beaten us to rebalancing.
2542 * Drop the lock and try again in the fast path....
2543 */
2544 if (!(xfs_icsb_counter_disabled(mp, field))) {
2545 xfs_icsb_unlock(mp);
2546 goto again;
2547 }
2548
2549 /*
2550 * The counter is currently disabled. Because we are
2551 * running atomically here, we know a rebalance cannot
2552 * be in progress. Hence we can go straight to operating
2553 * on the global superblock. We do not call xfs_mod_incore_sb()
2554 * here even though we need to get the m_sb_lock. Doing so
2555 * will cause us to re-enter this function and deadlock.
2556 * Hence we get the m_sb_lock ourselves and then call
2557 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2558 * directly on the global counters.
2559 */
2560 spin_lock(&mp->m_sb_lock);
2561 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
2562 spin_unlock(&mp->m_sb_lock);
2563
2564 /*
2565 * Now that we've modified the global superblock, we
2566 * may be able to re-enable the distributed counters
2567 * (e.g. lots of space just got freed). After that
2568 * we are done.
2569 */
2570 if (ret != ENOSPC)
2571 xfs_icsb_balance_counter(mp, field, 0);
2572 xfs_icsb_unlock(mp);
2573 return ret;
2574
2575 balance_counter:
2576 xfs_icsb_unlock_cntr(icsbp);
2577 preempt_enable();
2578
2579 /*
2580 * We may have multiple threads here if multiple per-cpu
2581 * counters run dry at the same time. This will mean we can
2582 * do more balances than strictly necessary but it is not
2583 * the common slowpath case.
2584 */
2585 xfs_icsb_lock(mp);
2586
2587 /*
2588 * running atomically.
2589 *
2590 * This will leave the counter in the correct state for future
2591 * accesses. After the rebalance, we simply try again and our retry
2592 * will either succeed through the fast path or slow path without
2593 * another balance operation being required.
2594 */
2595 xfs_icsb_balance_counter(mp, field, delta);
2596 xfs_icsb_unlock(mp);
2597 goto again;
2598 }
2599
2600 #endif
This page took 0.083651 seconds and 5 git commands to generate.