Merge tag 'v3.19-rockchip-dtsfixes1' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / fs / xfs / xfs_mount.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_da_format.h"
28 #include "xfs_da_btree.h"
29 #include "xfs_inode.h"
30 #include "xfs_dir2.h"
31 #include "xfs_ialloc.h"
32 #include "xfs_alloc.h"
33 #include "xfs_rtalloc.h"
34 #include "xfs_bmap.h"
35 #include "xfs_trans.h"
36 #include "xfs_trans_priv.h"
37 #include "xfs_log.h"
38 #include "xfs_error.h"
39 #include "xfs_quota.h"
40 #include "xfs_fsops.h"
41 #include "xfs_trace.h"
42 #include "xfs_icache.h"
43 #include "xfs_sysfs.h"
44
45
46 #ifdef HAVE_PERCPU_SB
47 STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
48 int);
49 STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
50 int);
51 STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
52 #else
53
54 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0)
55 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0)
56 #endif
57
58 static DEFINE_MUTEX(xfs_uuid_table_mutex);
59 static int xfs_uuid_table_size;
60 static uuid_t *xfs_uuid_table;
61
62 /*
63 * See if the UUID is unique among mounted XFS filesystems.
64 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
65 */
66 STATIC int
67 xfs_uuid_mount(
68 struct xfs_mount *mp)
69 {
70 uuid_t *uuid = &mp->m_sb.sb_uuid;
71 int hole, i;
72
73 if (mp->m_flags & XFS_MOUNT_NOUUID)
74 return 0;
75
76 if (uuid_is_nil(uuid)) {
77 xfs_warn(mp, "Filesystem has nil UUID - can't mount");
78 return -EINVAL;
79 }
80
81 mutex_lock(&xfs_uuid_table_mutex);
82 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
83 if (uuid_is_nil(&xfs_uuid_table[i])) {
84 hole = i;
85 continue;
86 }
87 if (uuid_equal(uuid, &xfs_uuid_table[i]))
88 goto out_duplicate;
89 }
90
91 if (hole < 0) {
92 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
93 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
94 xfs_uuid_table_size * sizeof(*xfs_uuid_table),
95 KM_SLEEP);
96 hole = xfs_uuid_table_size++;
97 }
98 xfs_uuid_table[hole] = *uuid;
99 mutex_unlock(&xfs_uuid_table_mutex);
100
101 return 0;
102
103 out_duplicate:
104 mutex_unlock(&xfs_uuid_table_mutex);
105 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
106 return -EINVAL;
107 }
108
109 STATIC void
110 xfs_uuid_unmount(
111 struct xfs_mount *mp)
112 {
113 uuid_t *uuid = &mp->m_sb.sb_uuid;
114 int i;
115
116 if (mp->m_flags & XFS_MOUNT_NOUUID)
117 return;
118
119 mutex_lock(&xfs_uuid_table_mutex);
120 for (i = 0; i < xfs_uuid_table_size; i++) {
121 if (uuid_is_nil(&xfs_uuid_table[i]))
122 continue;
123 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
124 continue;
125 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
126 break;
127 }
128 ASSERT(i < xfs_uuid_table_size);
129 mutex_unlock(&xfs_uuid_table_mutex);
130 }
131
132
133 STATIC void
134 __xfs_free_perag(
135 struct rcu_head *head)
136 {
137 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
138
139 ASSERT(atomic_read(&pag->pag_ref) == 0);
140 kmem_free(pag);
141 }
142
143 /*
144 * Free up the per-ag resources associated with the mount structure.
145 */
146 STATIC void
147 xfs_free_perag(
148 xfs_mount_t *mp)
149 {
150 xfs_agnumber_t agno;
151 struct xfs_perag *pag;
152
153 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
154 spin_lock(&mp->m_perag_lock);
155 pag = radix_tree_delete(&mp->m_perag_tree, agno);
156 spin_unlock(&mp->m_perag_lock);
157 ASSERT(pag);
158 ASSERT(atomic_read(&pag->pag_ref) == 0);
159 call_rcu(&pag->rcu_head, __xfs_free_perag);
160 }
161 }
162
163 /*
164 * Check size of device based on the (data/realtime) block count.
165 * Note: this check is used by the growfs code as well as mount.
166 */
167 int
168 xfs_sb_validate_fsb_count(
169 xfs_sb_t *sbp,
170 __uint64_t nblocks)
171 {
172 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
173 ASSERT(sbp->sb_blocklog >= BBSHIFT);
174
175 /* Limited by ULONG_MAX of page cache index */
176 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
177 return -EFBIG;
178 return 0;
179 }
180
181 int
182 xfs_initialize_perag(
183 xfs_mount_t *mp,
184 xfs_agnumber_t agcount,
185 xfs_agnumber_t *maxagi)
186 {
187 xfs_agnumber_t index;
188 xfs_agnumber_t first_initialised = 0;
189 xfs_perag_t *pag;
190 xfs_agino_t agino;
191 xfs_ino_t ino;
192 xfs_sb_t *sbp = &mp->m_sb;
193 int error = -ENOMEM;
194
195 /*
196 * Walk the current per-ag tree so we don't try to initialise AGs
197 * that already exist (growfs case). Allocate and insert all the
198 * AGs we don't find ready for initialisation.
199 */
200 for (index = 0; index < agcount; index++) {
201 pag = xfs_perag_get(mp, index);
202 if (pag) {
203 xfs_perag_put(pag);
204 continue;
205 }
206 if (!first_initialised)
207 first_initialised = index;
208
209 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
210 if (!pag)
211 goto out_unwind;
212 pag->pag_agno = index;
213 pag->pag_mount = mp;
214 spin_lock_init(&pag->pag_ici_lock);
215 mutex_init(&pag->pag_ici_reclaim_lock);
216 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
217 spin_lock_init(&pag->pag_buf_lock);
218 pag->pag_buf_tree = RB_ROOT;
219
220 if (radix_tree_preload(GFP_NOFS))
221 goto out_unwind;
222
223 spin_lock(&mp->m_perag_lock);
224 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
225 BUG();
226 spin_unlock(&mp->m_perag_lock);
227 radix_tree_preload_end();
228 error = -EEXIST;
229 goto out_unwind;
230 }
231 spin_unlock(&mp->m_perag_lock);
232 radix_tree_preload_end();
233 }
234
235 /*
236 * If we mount with the inode64 option, or no inode overflows
237 * the legacy 32-bit address space clear the inode32 option.
238 */
239 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
240 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
241
242 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
243 mp->m_flags |= XFS_MOUNT_32BITINODES;
244 else
245 mp->m_flags &= ~XFS_MOUNT_32BITINODES;
246
247 if (mp->m_flags & XFS_MOUNT_32BITINODES)
248 index = xfs_set_inode32(mp, agcount);
249 else
250 index = xfs_set_inode64(mp, agcount);
251
252 if (maxagi)
253 *maxagi = index;
254 return 0;
255
256 out_unwind:
257 kmem_free(pag);
258 for (; index > first_initialised; index--) {
259 pag = radix_tree_delete(&mp->m_perag_tree, index);
260 kmem_free(pag);
261 }
262 return error;
263 }
264
265 /*
266 * xfs_readsb
267 *
268 * Does the initial read of the superblock.
269 */
270 int
271 xfs_readsb(
272 struct xfs_mount *mp,
273 int flags)
274 {
275 unsigned int sector_size;
276 struct xfs_buf *bp;
277 struct xfs_sb *sbp = &mp->m_sb;
278 int error;
279 int loud = !(flags & XFS_MFSI_QUIET);
280 const struct xfs_buf_ops *buf_ops;
281
282 ASSERT(mp->m_sb_bp == NULL);
283 ASSERT(mp->m_ddev_targp != NULL);
284
285 /*
286 * For the initial read, we must guess at the sector
287 * size based on the block device. It's enough to
288 * get the sb_sectsize out of the superblock and
289 * then reread with the proper length.
290 * We don't verify it yet, because it may not be complete.
291 */
292 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
293 buf_ops = NULL;
294
295 /*
296 * Allocate a (locked) buffer to hold the superblock.
297 * This will be kept around at all times to optimize
298 * access to the superblock.
299 */
300 reread:
301 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
302 BTOBB(sector_size), 0, &bp, buf_ops);
303 if (error) {
304 if (loud)
305 xfs_warn(mp, "SB validate failed with error %d.", error);
306 /* bad CRC means corrupted metadata */
307 if (error == -EFSBADCRC)
308 error = -EFSCORRUPTED;
309 return error;
310 }
311
312 /*
313 * Initialize the mount structure from the superblock.
314 */
315 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
316
317 /*
318 * If we haven't validated the superblock, do so now before we try
319 * to check the sector size and reread the superblock appropriately.
320 */
321 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
322 if (loud)
323 xfs_warn(mp, "Invalid superblock magic number");
324 error = -EINVAL;
325 goto release_buf;
326 }
327
328 /*
329 * We must be able to do sector-sized and sector-aligned IO.
330 */
331 if (sector_size > sbp->sb_sectsize) {
332 if (loud)
333 xfs_warn(mp, "device supports %u byte sectors (not %u)",
334 sector_size, sbp->sb_sectsize);
335 error = -ENOSYS;
336 goto release_buf;
337 }
338
339 if (buf_ops == NULL) {
340 /*
341 * Re-read the superblock so the buffer is correctly sized,
342 * and properly verified.
343 */
344 xfs_buf_relse(bp);
345 sector_size = sbp->sb_sectsize;
346 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
347 goto reread;
348 }
349
350 /* Initialize per-cpu counters */
351 xfs_icsb_reinit_counters(mp);
352
353 /* no need to be quiet anymore, so reset the buf ops */
354 bp->b_ops = &xfs_sb_buf_ops;
355
356 mp->m_sb_bp = bp;
357 xfs_buf_unlock(bp);
358 return 0;
359
360 release_buf:
361 xfs_buf_relse(bp);
362 return error;
363 }
364
365 /*
366 * Update alignment values based on mount options and sb values
367 */
368 STATIC int
369 xfs_update_alignment(xfs_mount_t *mp)
370 {
371 xfs_sb_t *sbp = &(mp->m_sb);
372
373 if (mp->m_dalign) {
374 /*
375 * If stripe unit and stripe width are not multiples
376 * of the fs blocksize turn off alignment.
377 */
378 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
379 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
380 xfs_warn(mp,
381 "alignment check failed: sunit/swidth vs. blocksize(%d)",
382 sbp->sb_blocksize);
383 return -EINVAL;
384 } else {
385 /*
386 * Convert the stripe unit and width to FSBs.
387 */
388 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
389 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
390 xfs_warn(mp,
391 "alignment check failed: sunit/swidth vs. agsize(%d)",
392 sbp->sb_agblocks);
393 return -EINVAL;
394 } else if (mp->m_dalign) {
395 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
396 } else {
397 xfs_warn(mp,
398 "alignment check failed: sunit(%d) less than bsize(%d)",
399 mp->m_dalign, sbp->sb_blocksize);
400 return -EINVAL;
401 }
402 }
403
404 /*
405 * Update superblock with new values
406 * and log changes
407 */
408 if (xfs_sb_version_hasdalign(sbp)) {
409 if (sbp->sb_unit != mp->m_dalign) {
410 sbp->sb_unit = mp->m_dalign;
411 mp->m_update_flags |= XFS_SB_UNIT;
412 }
413 if (sbp->sb_width != mp->m_swidth) {
414 sbp->sb_width = mp->m_swidth;
415 mp->m_update_flags |= XFS_SB_WIDTH;
416 }
417 } else {
418 xfs_warn(mp,
419 "cannot change alignment: superblock does not support data alignment");
420 return -EINVAL;
421 }
422 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
423 xfs_sb_version_hasdalign(&mp->m_sb)) {
424 mp->m_dalign = sbp->sb_unit;
425 mp->m_swidth = sbp->sb_width;
426 }
427
428 return 0;
429 }
430
431 /*
432 * Set the maximum inode count for this filesystem
433 */
434 STATIC void
435 xfs_set_maxicount(xfs_mount_t *mp)
436 {
437 xfs_sb_t *sbp = &(mp->m_sb);
438 __uint64_t icount;
439
440 if (sbp->sb_imax_pct) {
441 /*
442 * Make sure the maximum inode count is a multiple
443 * of the units we allocate inodes in.
444 */
445 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
446 do_div(icount, 100);
447 do_div(icount, mp->m_ialloc_blks);
448 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
449 sbp->sb_inopblog;
450 } else {
451 mp->m_maxicount = 0;
452 }
453 }
454
455 /*
456 * Set the default minimum read and write sizes unless
457 * already specified in a mount option.
458 * We use smaller I/O sizes when the file system
459 * is being used for NFS service (wsync mount option).
460 */
461 STATIC void
462 xfs_set_rw_sizes(xfs_mount_t *mp)
463 {
464 xfs_sb_t *sbp = &(mp->m_sb);
465 int readio_log, writeio_log;
466
467 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
468 if (mp->m_flags & XFS_MOUNT_WSYNC) {
469 readio_log = XFS_WSYNC_READIO_LOG;
470 writeio_log = XFS_WSYNC_WRITEIO_LOG;
471 } else {
472 readio_log = XFS_READIO_LOG_LARGE;
473 writeio_log = XFS_WRITEIO_LOG_LARGE;
474 }
475 } else {
476 readio_log = mp->m_readio_log;
477 writeio_log = mp->m_writeio_log;
478 }
479
480 if (sbp->sb_blocklog > readio_log) {
481 mp->m_readio_log = sbp->sb_blocklog;
482 } else {
483 mp->m_readio_log = readio_log;
484 }
485 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
486 if (sbp->sb_blocklog > writeio_log) {
487 mp->m_writeio_log = sbp->sb_blocklog;
488 } else {
489 mp->m_writeio_log = writeio_log;
490 }
491 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
492 }
493
494 /*
495 * precalculate the low space thresholds for dynamic speculative preallocation.
496 */
497 void
498 xfs_set_low_space_thresholds(
499 struct xfs_mount *mp)
500 {
501 int i;
502
503 for (i = 0; i < XFS_LOWSP_MAX; i++) {
504 __uint64_t space = mp->m_sb.sb_dblocks;
505
506 do_div(space, 100);
507 mp->m_low_space[i] = space * (i + 1);
508 }
509 }
510
511
512 /*
513 * Set whether we're using inode alignment.
514 */
515 STATIC void
516 xfs_set_inoalignment(xfs_mount_t *mp)
517 {
518 if (xfs_sb_version_hasalign(&mp->m_sb) &&
519 mp->m_sb.sb_inoalignmt >=
520 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
521 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
522 else
523 mp->m_inoalign_mask = 0;
524 /*
525 * If we are using stripe alignment, check whether
526 * the stripe unit is a multiple of the inode alignment
527 */
528 if (mp->m_dalign && mp->m_inoalign_mask &&
529 !(mp->m_dalign & mp->m_inoalign_mask))
530 mp->m_sinoalign = mp->m_dalign;
531 else
532 mp->m_sinoalign = 0;
533 }
534
535 /*
536 * Check that the data (and log if separate) is an ok size.
537 */
538 STATIC int
539 xfs_check_sizes(
540 struct xfs_mount *mp)
541 {
542 struct xfs_buf *bp;
543 xfs_daddr_t d;
544 int error;
545
546 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
547 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
548 xfs_warn(mp, "filesystem size mismatch detected");
549 return -EFBIG;
550 }
551 error = xfs_buf_read_uncached(mp->m_ddev_targp,
552 d - XFS_FSS_TO_BB(mp, 1),
553 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
554 if (error) {
555 xfs_warn(mp, "last sector read failed");
556 return error;
557 }
558 xfs_buf_relse(bp);
559
560 if (mp->m_logdev_targp == mp->m_ddev_targp)
561 return 0;
562
563 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
564 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
565 xfs_warn(mp, "log size mismatch detected");
566 return -EFBIG;
567 }
568 error = xfs_buf_read_uncached(mp->m_logdev_targp,
569 d - XFS_FSB_TO_BB(mp, 1),
570 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
571 if (error) {
572 xfs_warn(mp, "log device read failed");
573 return error;
574 }
575 xfs_buf_relse(bp);
576 return 0;
577 }
578
579 /*
580 * Clear the quotaflags in memory and in the superblock.
581 */
582 int
583 xfs_mount_reset_sbqflags(
584 struct xfs_mount *mp)
585 {
586 int error;
587 struct xfs_trans *tp;
588
589 mp->m_qflags = 0;
590
591 /*
592 * It is OK to look at sb_qflags here in mount path,
593 * without m_sb_lock.
594 */
595 if (mp->m_sb.sb_qflags == 0)
596 return 0;
597 spin_lock(&mp->m_sb_lock);
598 mp->m_sb.sb_qflags = 0;
599 spin_unlock(&mp->m_sb_lock);
600
601 /*
602 * If the fs is readonly, let the incore superblock run
603 * with quotas off but don't flush the update out to disk
604 */
605 if (mp->m_flags & XFS_MOUNT_RDONLY)
606 return 0;
607
608 tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
609 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_qm_sbchange, 0, 0);
610 if (error) {
611 xfs_trans_cancel(tp, 0);
612 xfs_alert(mp, "%s: Superblock update failed!", __func__);
613 return error;
614 }
615
616 xfs_mod_sb(tp, XFS_SB_QFLAGS);
617 return xfs_trans_commit(tp, 0);
618 }
619
620 __uint64_t
621 xfs_default_resblks(xfs_mount_t *mp)
622 {
623 __uint64_t resblks;
624
625 /*
626 * We default to 5% or 8192 fsbs of space reserved, whichever is
627 * smaller. This is intended to cover concurrent allocation
628 * transactions when we initially hit enospc. These each require a 4
629 * block reservation. Hence by default we cover roughly 2000 concurrent
630 * allocation reservations.
631 */
632 resblks = mp->m_sb.sb_dblocks;
633 do_div(resblks, 20);
634 resblks = min_t(__uint64_t, resblks, 8192);
635 return resblks;
636 }
637
638 /*
639 * This function does the following on an initial mount of a file system:
640 * - reads the superblock from disk and init the mount struct
641 * - if we're a 32-bit kernel, do a size check on the superblock
642 * so we don't mount terabyte filesystems
643 * - init mount struct realtime fields
644 * - allocate inode hash table for fs
645 * - init directory manager
646 * - perform recovery and init the log manager
647 */
648 int
649 xfs_mountfs(
650 xfs_mount_t *mp)
651 {
652 xfs_sb_t *sbp = &(mp->m_sb);
653 xfs_inode_t *rip;
654 __uint64_t resblks;
655 uint quotamount = 0;
656 uint quotaflags = 0;
657 int error = 0;
658
659 xfs_sb_mount_common(mp, sbp);
660
661 /*
662 * Check for a mismatched features2 values. Older kernels
663 * read & wrote into the wrong sb offset for sb_features2
664 * on some platforms due to xfs_sb_t not being 64bit size aligned
665 * when sb_features2 was added, which made older superblock
666 * reading/writing routines swap it as a 64-bit value.
667 *
668 * For backwards compatibility, we make both slots equal.
669 *
670 * If we detect a mismatched field, we OR the set bits into the
671 * existing features2 field in case it has already been modified; we
672 * don't want to lose any features. We then update the bad location
673 * with the ORed value so that older kernels will see any features2
674 * flags, and mark the two fields as needing updates once the
675 * transaction subsystem is online.
676 */
677 if (xfs_sb_has_mismatched_features2(sbp)) {
678 xfs_warn(mp, "correcting sb_features alignment problem");
679 sbp->sb_features2 |= sbp->sb_bad_features2;
680 sbp->sb_bad_features2 = sbp->sb_features2;
681 mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
682
683 /*
684 * Re-check for ATTR2 in case it was found in bad_features2
685 * slot.
686 */
687 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
688 !(mp->m_flags & XFS_MOUNT_NOATTR2))
689 mp->m_flags |= XFS_MOUNT_ATTR2;
690 }
691
692 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
693 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
694 xfs_sb_version_removeattr2(&mp->m_sb);
695 mp->m_update_flags |= XFS_SB_FEATURES2;
696
697 /* update sb_versionnum for the clearing of the morebits */
698 if (!sbp->sb_features2)
699 mp->m_update_flags |= XFS_SB_VERSIONNUM;
700 }
701
702 /* always use v2 inodes by default now */
703 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
704 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
705 mp->m_update_flags |= XFS_SB_VERSIONNUM;
706 }
707
708 /*
709 * Check if sb_agblocks is aligned at stripe boundary
710 * If sb_agblocks is NOT aligned turn off m_dalign since
711 * allocator alignment is within an ag, therefore ag has
712 * to be aligned at stripe boundary.
713 */
714 error = xfs_update_alignment(mp);
715 if (error)
716 goto out;
717
718 xfs_alloc_compute_maxlevels(mp);
719 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
720 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
721 xfs_ialloc_compute_maxlevels(mp);
722
723 xfs_set_maxicount(mp);
724
725 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
726 if (error)
727 goto out;
728
729 error = xfs_uuid_mount(mp);
730 if (error)
731 goto out_remove_sysfs;
732
733 /*
734 * Set the minimum read and write sizes
735 */
736 xfs_set_rw_sizes(mp);
737
738 /* set the low space thresholds for dynamic preallocation */
739 xfs_set_low_space_thresholds(mp);
740
741 /*
742 * Set the inode cluster size.
743 * This may still be overridden by the file system
744 * block size if it is larger than the chosen cluster size.
745 *
746 * For v5 filesystems, scale the cluster size with the inode size to
747 * keep a constant ratio of inode per cluster buffer, but only if mkfs
748 * has set the inode alignment value appropriately for larger cluster
749 * sizes.
750 */
751 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
752 if (xfs_sb_version_hascrc(&mp->m_sb)) {
753 int new_size = mp->m_inode_cluster_size;
754
755 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
756 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
757 mp->m_inode_cluster_size = new_size;
758 }
759
760 /*
761 * Set inode alignment fields
762 */
763 xfs_set_inoalignment(mp);
764
765 /*
766 * Check that the data (and log if separate) is an ok size.
767 */
768 error = xfs_check_sizes(mp);
769 if (error)
770 goto out_remove_uuid;
771
772 /*
773 * Initialize realtime fields in the mount structure
774 */
775 error = xfs_rtmount_init(mp);
776 if (error) {
777 xfs_warn(mp, "RT mount failed");
778 goto out_remove_uuid;
779 }
780
781 /*
782 * Copies the low order bits of the timestamp and the randomly
783 * set "sequence" number out of a UUID.
784 */
785 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
786
787 mp->m_dmevmask = 0; /* not persistent; set after each mount */
788
789 error = xfs_da_mount(mp);
790 if (error) {
791 xfs_warn(mp, "Failed dir/attr init: %d", error);
792 goto out_remove_uuid;
793 }
794
795 /*
796 * Initialize the precomputed transaction reservations values.
797 */
798 xfs_trans_init(mp);
799
800 /*
801 * Allocate and initialize the per-ag data.
802 */
803 spin_lock_init(&mp->m_perag_lock);
804 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
805 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
806 if (error) {
807 xfs_warn(mp, "Failed per-ag init: %d", error);
808 goto out_free_dir;
809 }
810
811 if (!sbp->sb_logblocks) {
812 xfs_warn(mp, "no log defined");
813 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
814 error = -EFSCORRUPTED;
815 goto out_free_perag;
816 }
817
818 /*
819 * log's mount-time initialization. Perform 1st part recovery if needed
820 */
821 error = xfs_log_mount(mp, mp->m_logdev_targp,
822 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
823 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
824 if (error) {
825 xfs_warn(mp, "log mount failed");
826 goto out_fail_wait;
827 }
828
829 /*
830 * Now the log is mounted, we know if it was an unclean shutdown or
831 * not. If it was, with the first phase of recovery has completed, we
832 * have consistent AG blocks on disk. We have not recovered EFIs yet,
833 * but they are recovered transactionally in the second recovery phase
834 * later.
835 *
836 * Hence we can safely re-initialise incore superblock counters from
837 * the per-ag data. These may not be correct if the filesystem was not
838 * cleanly unmounted, so we need to wait for recovery to finish before
839 * doing this.
840 *
841 * If the filesystem was cleanly unmounted, then we can trust the
842 * values in the superblock to be correct and we don't need to do
843 * anything here.
844 *
845 * If we are currently making the filesystem, the initialisation will
846 * fail as the perag data is in an undefined state.
847 */
848 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
849 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
850 !mp->m_sb.sb_inprogress) {
851 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
852 if (error)
853 goto out_log_dealloc;
854 }
855
856 /*
857 * Get and sanity-check the root inode.
858 * Save the pointer to it in the mount structure.
859 */
860 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
861 if (error) {
862 xfs_warn(mp, "failed to read root inode");
863 goto out_log_dealloc;
864 }
865
866 ASSERT(rip != NULL);
867
868 if (unlikely(!S_ISDIR(rip->i_d.di_mode))) {
869 xfs_warn(mp, "corrupted root inode %llu: not a directory",
870 (unsigned long long)rip->i_ino);
871 xfs_iunlock(rip, XFS_ILOCK_EXCL);
872 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
873 mp);
874 error = -EFSCORRUPTED;
875 goto out_rele_rip;
876 }
877 mp->m_rootip = rip; /* save it */
878
879 xfs_iunlock(rip, XFS_ILOCK_EXCL);
880
881 /*
882 * Initialize realtime inode pointers in the mount structure
883 */
884 error = xfs_rtmount_inodes(mp);
885 if (error) {
886 /*
887 * Free up the root inode.
888 */
889 xfs_warn(mp, "failed to read RT inodes");
890 goto out_rele_rip;
891 }
892
893 /*
894 * If this is a read-only mount defer the superblock updates until
895 * the next remount into writeable mode. Otherwise we would never
896 * perform the update e.g. for the root filesystem.
897 */
898 if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
899 error = xfs_mount_log_sb(mp, mp->m_update_flags);
900 if (error) {
901 xfs_warn(mp, "failed to write sb changes");
902 goto out_rtunmount;
903 }
904 }
905
906 /*
907 * Initialise the XFS quota management subsystem for this mount
908 */
909 if (XFS_IS_QUOTA_RUNNING(mp)) {
910 error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
911 if (error)
912 goto out_rtunmount;
913 } else {
914 ASSERT(!XFS_IS_QUOTA_ON(mp));
915
916 /*
917 * If a file system had quotas running earlier, but decided to
918 * mount without -o uquota/pquota/gquota options, revoke the
919 * quotachecked license.
920 */
921 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
922 xfs_notice(mp, "resetting quota flags");
923 error = xfs_mount_reset_sbqflags(mp);
924 if (error)
925 goto out_rtunmount;
926 }
927 }
928
929 /*
930 * Finish recovering the file system. This part needed to be
931 * delayed until after the root and real-time bitmap inodes
932 * were consistently read in.
933 */
934 error = xfs_log_mount_finish(mp);
935 if (error) {
936 xfs_warn(mp, "log mount finish failed");
937 goto out_rtunmount;
938 }
939
940 /*
941 * Complete the quota initialisation, post-log-replay component.
942 */
943 if (quotamount) {
944 ASSERT(mp->m_qflags == 0);
945 mp->m_qflags = quotaflags;
946
947 xfs_qm_mount_quotas(mp);
948 }
949
950 /*
951 * Now we are mounted, reserve a small amount of unused space for
952 * privileged transactions. This is needed so that transaction
953 * space required for critical operations can dip into this pool
954 * when at ENOSPC. This is needed for operations like create with
955 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
956 * are not allowed to use this reserved space.
957 *
958 * This may drive us straight to ENOSPC on mount, but that implies
959 * we were already there on the last unmount. Warn if this occurs.
960 */
961 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
962 resblks = xfs_default_resblks(mp);
963 error = xfs_reserve_blocks(mp, &resblks, NULL);
964 if (error)
965 xfs_warn(mp,
966 "Unable to allocate reserve blocks. Continuing without reserve pool.");
967 }
968
969 return 0;
970
971 out_rtunmount:
972 xfs_rtunmount_inodes(mp);
973 out_rele_rip:
974 IRELE(rip);
975 out_log_dealloc:
976 xfs_log_unmount(mp);
977 out_fail_wait:
978 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
979 xfs_wait_buftarg(mp->m_logdev_targp);
980 xfs_wait_buftarg(mp->m_ddev_targp);
981 out_free_perag:
982 xfs_free_perag(mp);
983 out_free_dir:
984 xfs_da_unmount(mp);
985 out_remove_uuid:
986 xfs_uuid_unmount(mp);
987 out_remove_sysfs:
988 xfs_sysfs_del(&mp->m_kobj);
989 out:
990 return error;
991 }
992
993 /*
994 * This flushes out the inodes,dquots and the superblock, unmounts the
995 * log and makes sure that incore structures are freed.
996 */
997 void
998 xfs_unmountfs(
999 struct xfs_mount *mp)
1000 {
1001 __uint64_t resblks;
1002 int error;
1003
1004 cancel_delayed_work_sync(&mp->m_eofblocks_work);
1005
1006 xfs_qm_unmount_quotas(mp);
1007 xfs_rtunmount_inodes(mp);
1008 IRELE(mp->m_rootip);
1009
1010 /*
1011 * We can potentially deadlock here if we have an inode cluster
1012 * that has been freed has its buffer still pinned in memory because
1013 * the transaction is still sitting in a iclog. The stale inodes
1014 * on that buffer will have their flush locks held until the
1015 * transaction hits the disk and the callbacks run. the inode
1016 * flush takes the flush lock unconditionally and with nothing to
1017 * push out the iclog we will never get that unlocked. hence we
1018 * need to force the log first.
1019 */
1020 xfs_log_force(mp, XFS_LOG_SYNC);
1021
1022 /*
1023 * Flush all pending changes from the AIL.
1024 */
1025 xfs_ail_push_all_sync(mp->m_ail);
1026
1027 /*
1028 * And reclaim all inodes. At this point there should be no dirty
1029 * inodes and none should be pinned or locked, but use synchronous
1030 * reclaim just to be sure. We can stop background inode reclaim
1031 * here as well if it is still running.
1032 */
1033 cancel_delayed_work_sync(&mp->m_reclaim_work);
1034 xfs_reclaim_inodes(mp, SYNC_WAIT);
1035
1036 xfs_qm_unmount(mp);
1037
1038 /*
1039 * Unreserve any blocks we have so that when we unmount we don't account
1040 * the reserved free space as used. This is really only necessary for
1041 * lazy superblock counting because it trusts the incore superblock
1042 * counters to be absolutely correct on clean unmount.
1043 *
1044 * We don't bother correcting this elsewhere for lazy superblock
1045 * counting because on mount of an unclean filesystem we reconstruct the
1046 * correct counter value and this is irrelevant.
1047 *
1048 * For non-lazy counter filesystems, this doesn't matter at all because
1049 * we only every apply deltas to the superblock and hence the incore
1050 * value does not matter....
1051 */
1052 resblks = 0;
1053 error = xfs_reserve_blocks(mp, &resblks, NULL);
1054 if (error)
1055 xfs_warn(mp, "Unable to free reserved block pool. "
1056 "Freespace may not be correct on next mount.");
1057
1058 error = xfs_log_sbcount(mp);
1059 if (error)
1060 xfs_warn(mp, "Unable to update superblock counters. "
1061 "Freespace may not be correct on next mount.");
1062
1063 xfs_log_unmount(mp);
1064 xfs_da_unmount(mp);
1065 xfs_uuid_unmount(mp);
1066
1067 #if defined(DEBUG)
1068 xfs_errortag_clearall(mp, 0);
1069 #endif
1070 xfs_free_perag(mp);
1071
1072 xfs_sysfs_del(&mp->m_kobj);
1073 }
1074
1075 /*
1076 * Determine whether modifications can proceed. The caller specifies the minimum
1077 * freeze level for which modifications should not be allowed. This allows
1078 * certain operations to proceed while the freeze sequence is in progress, if
1079 * necessary.
1080 */
1081 bool
1082 xfs_fs_writable(
1083 struct xfs_mount *mp,
1084 int level)
1085 {
1086 ASSERT(level > SB_UNFROZEN);
1087 if ((mp->m_super->s_writers.frozen >= level) ||
1088 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1089 return false;
1090
1091 return true;
1092 }
1093
1094 /*
1095 * xfs_log_sbcount
1096 *
1097 * Sync the superblock counters to disk.
1098 *
1099 * Note this code can be called during the process of freezing, so we use the
1100 * transaction allocator that does not block when the transaction subsystem is
1101 * in its frozen state.
1102 */
1103 int
1104 xfs_log_sbcount(xfs_mount_t *mp)
1105 {
1106 xfs_trans_t *tp;
1107 int error;
1108
1109 /* allow this to proceed during the freeze sequence... */
1110 if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
1111 return 0;
1112
1113 xfs_icsb_sync_counters(mp, 0);
1114
1115 /*
1116 * we don't need to do this if we are updating the superblock
1117 * counters on every modification.
1118 */
1119 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1120 return 0;
1121
1122 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
1123 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0);
1124 if (error) {
1125 xfs_trans_cancel(tp, 0);
1126 return error;
1127 }
1128
1129 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1130 xfs_trans_set_sync(tp);
1131 error = xfs_trans_commit(tp, 0);
1132 return error;
1133 }
1134
1135 /*
1136 * xfs_mod_incore_sb_unlocked() is a utility routine commonly used to apply
1137 * a delta to a specified field in the in-core superblock. Simply
1138 * switch on the field indicated and apply the delta to that field.
1139 * Fields are not allowed to dip below zero, so if the delta would
1140 * do this do not apply it and return EINVAL.
1141 *
1142 * The m_sb_lock must be held when this routine is called.
1143 */
1144 STATIC int
1145 xfs_mod_incore_sb_unlocked(
1146 xfs_mount_t *mp,
1147 xfs_sb_field_t field,
1148 int64_t delta,
1149 int rsvd)
1150 {
1151 int scounter; /* short counter for 32 bit fields */
1152 long long lcounter; /* long counter for 64 bit fields */
1153 long long res_used, rem;
1154
1155 /*
1156 * With the in-core superblock spin lock held, switch
1157 * on the indicated field. Apply the delta to the
1158 * proper field. If the fields value would dip below
1159 * 0, then do not apply the delta and return EINVAL.
1160 */
1161 switch (field) {
1162 case XFS_SBS_ICOUNT:
1163 lcounter = (long long)mp->m_sb.sb_icount;
1164 lcounter += delta;
1165 if (lcounter < 0) {
1166 ASSERT(0);
1167 return -EINVAL;
1168 }
1169 mp->m_sb.sb_icount = lcounter;
1170 return 0;
1171 case XFS_SBS_IFREE:
1172 lcounter = (long long)mp->m_sb.sb_ifree;
1173 lcounter += delta;
1174 if (lcounter < 0) {
1175 ASSERT(0);
1176 return -EINVAL;
1177 }
1178 mp->m_sb.sb_ifree = lcounter;
1179 return 0;
1180 case XFS_SBS_FDBLOCKS:
1181 lcounter = (long long)
1182 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1183 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1184
1185 if (delta > 0) { /* Putting blocks back */
1186 if (res_used > delta) {
1187 mp->m_resblks_avail += delta;
1188 } else {
1189 rem = delta - res_used;
1190 mp->m_resblks_avail = mp->m_resblks;
1191 lcounter += rem;
1192 }
1193 } else { /* Taking blocks away */
1194 lcounter += delta;
1195 if (lcounter >= 0) {
1196 mp->m_sb.sb_fdblocks = lcounter +
1197 XFS_ALLOC_SET_ASIDE(mp);
1198 return 0;
1199 }
1200
1201 /*
1202 * We are out of blocks, use any available reserved
1203 * blocks if were allowed to.
1204 */
1205 if (!rsvd)
1206 return -ENOSPC;
1207
1208 lcounter = (long long)mp->m_resblks_avail + delta;
1209 if (lcounter >= 0) {
1210 mp->m_resblks_avail = lcounter;
1211 return 0;
1212 }
1213 printk_once(KERN_WARNING
1214 "Filesystem \"%s\": reserve blocks depleted! "
1215 "Consider increasing reserve pool size.",
1216 mp->m_fsname);
1217 return -ENOSPC;
1218 }
1219
1220 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1221 return 0;
1222 case XFS_SBS_FREXTENTS:
1223 lcounter = (long long)mp->m_sb.sb_frextents;
1224 lcounter += delta;
1225 if (lcounter < 0) {
1226 return -ENOSPC;
1227 }
1228 mp->m_sb.sb_frextents = lcounter;
1229 return 0;
1230 case XFS_SBS_DBLOCKS:
1231 lcounter = (long long)mp->m_sb.sb_dblocks;
1232 lcounter += delta;
1233 if (lcounter < 0) {
1234 ASSERT(0);
1235 return -EINVAL;
1236 }
1237 mp->m_sb.sb_dblocks = lcounter;
1238 return 0;
1239 case XFS_SBS_AGCOUNT:
1240 scounter = mp->m_sb.sb_agcount;
1241 scounter += delta;
1242 if (scounter < 0) {
1243 ASSERT(0);
1244 return -EINVAL;
1245 }
1246 mp->m_sb.sb_agcount = scounter;
1247 return 0;
1248 case XFS_SBS_IMAX_PCT:
1249 scounter = mp->m_sb.sb_imax_pct;
1250 scounter += delta;
1251 if (scounter < 0) {
1252 ASSERT(0);
1253 return -EINVAL;
1254 }
1255 mp->m_sb.sb_imax_pct = scounter;
1256 return 0;
1257 case XFS_SBS_REXTSIZE:
1258 scounter = mp->m_sb.sb_rextsize;
1259 scounter += delta;
1260 if (scounter < 0) {
1261 ASSERT(0);
1262 return -EINVAL;
1263 }
1264 mp->m_sb.sb_rextsize = scounter;
1265 return 0;
1266 case XFS_SBS_RBMBLOCKS:
1267 scounter = mp->m_sb.sb_rbmblocks;
1268 scounter += delta;
1269 if (scounter < 0) {
1270 ASSERT(0);
1271 return -EINVAL;
1272 }
1273 mp->m_sb.sb_rbmblocks = scounter;
1274 return 0;
1275 case XFS_SBS_RBLOCKS:
1276 lcounter = (long long)mp->m_sb.sb_rblocks;
1277 lcounter += delta;
1278 if (lcounter < 0) {
1279 ASSERT(0);
1280 return -EINVAL;
1281 }
1282 mp->m_sb.sb_rblocks = lcounter;
1283 return 0;
1284 case XFS_SBS_REXTENTS:
1285 lcounter = (long long)mp->m_sb.sb_rextents;
1286 lcounter += delta;
1287 if (lcounter < 0) {
1288 ASSERT(0);
1289 return -EINVAL;
1290 }
1291 mp->m_sb.sb_rextents = lcounter;
1292 return 0;
1293 case XFS_SBS_REXTSLOG:
1294 scounter = mp->m_sb.sb_rextslog;
1295 scounter += delta;
1296 if (scounter < 0) {
1297 ASSERT(0);
1298 return -EINVAL;
1299 }
1300 mp->m_sb.sb_rextslog = scounter;
1301 return 0;
1302 default:
1303 ASSERT(0);
1304 return -EINVAL;
1305 }
1306 }
1307
1308 /*
1309 * xfs_mod_incore_sb() is used to change a field in the in-core
1310 * superblock structure by the specified delta. This modification
1311 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked()
1312 * routine to do the work.
1313 */
1314 int
1315 xfs_mod_incore_sb(
1316 struct xfs_mount *mp,
1317 xfs_sb_field_t field,
1318 int64_t delta,
1319 int rsvd)
1320 {
1321 int status;
1322
1323 #ifdef HAVE_PERCPU_SB
1324 ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS);
1325 #endif
1326 spin_lock(&mp->m_sb_lock);
1327 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1328 spin_unlock(&mp->m_sb_lock);
1329
1330 return status;
1331 }
1332
1333 /*
1334 * Change more than one field in the in-core superblock structure at a time.
1335 *
1336 * The fields and changes to those fields are specified in the array of
1337 * xfs_mod_sb structures passed in. Either all of the specified deltas
1338 * will be applied or none of them will. If any modified field dips below 0,
1339 * then all modifications will be backed out and EINVAL will be returned.
1340 *
1341 * Note that this function may not be used for the superblock values that
1342 * are tracked with the in-memory per-cpu counters - a direct call to
1343 * xfs_icsb_modify_counters is required for these.
1344 */
1345 int
1346 xfs_mod_incore_sb_batch(
1347 struct xfs_mount *mp,
1348 xfs_mod_sb_t *msb,
1349 uint nmsb,
1350 int rsvd)
1351 {
1352 xfs_mod_sb_t *msbp;
1353 int error = 0;
1354
1355 /*
1356 * Loop through the array of mod structures and apply each individually.
1357 * If any fail, then back out all those which have already been applied.
1358 * Do all of this within the scope of the m_sb_lock so that all of the
1359 * changes will be atomic.
1360 */
1361 spin_lock(&mp->m_sb_lock);
1362 for (msbp = msb; msbp < (msb + nmsb); msbp++) {
1363 ASSERT(msbp->msb_field < XFS_SBS_ICOUNT ||
1364 msbp->msb_field > XFS_SBS_FDBLOCKS);
1365
1366 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1367 msbp->msb_delta, rsvd);
1368 if (error)
1369 goto unwind;
1370 }
1371 spin_unlock(&mp->m_sb_lock);
1372 return 0;
1373
1374 unwind:
1375 while (--msbp >= msb) {
1376 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1377 -msbp->msb_delta, rsvd);
1378 ASSERT(error == 0);
1379 }
1380 spin_unlock(&mp->m_sb_lock);
1381 return error;
1382 }
1383
1384 /*
1385 * xfs_getsb() is called to obtain the buffer for the superblock.
1386 * The buffer is returned locked and read in from disk.
1387 * The buffer should be released with a call to xfs_brelse().
1388 *
1389 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1390 * the superblock buffer if it can be locked without sleeping.
1391 * If it can't then we'll return NULL.
1392 */
1393 struct xfs_buf *
1394 xfs_getsb(
1395 struct xfs_mount *mp,
1396 int flags)
1397 {
1398 struct xfs_buf *bp = mp->m_sb_bp;
1399
1400 if (!xfs_buf_trylock(bp)) {
1401 if (flags & XBF_TRYLOCK)
1402 return NULL;
1403 xfs_buf_lock(bp);
1404 }
1405
1406 xfs_buf_hold(bp);
1407 ASSERT(XFS_BUF_ISDONE(bp));
1408 return bp;
1409 }
1410
1411 /*
1412 * Used to free the superblock along various error paths.
1413 */
1414 void
1415 xfs_freesb(
1416 struct xfs_mount *mp)
1417 {
1418 struct xfs_buf *bp = mp->m_sb_bp;
1419
1420 xfs_buf_lock(bp);
1421 mp->m_sb_bp = NULL;
1422 xfs_buf_relse(bp);
1423 }
1424
1425 /*
1426 * Used to log changes to the superblock unit and width fields which could
1427 * be altered by the mount options, as well as any potential sb_features2
1428 * fixup. Only the first superblock is updated.
1429 */
1430 int
1431 xfs_mount_log_sb(
1432 xfs_mount_t *mp,
1433 __int64_t fields)
1434 {
1435 xfs_trans_t *tp;
1436 int error;
1437
1438 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
1439 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
1440 XFS_SB_VERSIONNUM));
1441
1442 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
1443 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0);
1444 if (error) {
1445 xfs_trans_cancel(tp, 0);
1446 return error;
1447 }
1448 xfs_mod_sb(tp, fields);
1449 error = xfs_trans_commit(tp, 0);
1450 return error;
1451 }
1452
1453 /*
1454 * If the underlying (data/log/rt) device is readonly, there are some
1455 * operations that cannot proceed.
1456 */
1457 int
1458 xfs_dev_is_read_only(
1459 struct xfs_mount *mp,
1460 char *message)
1461 {
1462 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1463 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1464 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1465 xfs_notice(mp, "%s required on read-only device.", message);
1466 xfs_notice(mp, "write access unavailable, cannot proceed.");
1467 return -EROFS;
1468 }
1469 return 0;
1470 }
1471
1472 #ifdef HAVE_PERCPU_SB
1473 /*
1474 * Per-cpu incore superblock counters
1475 *
1476 * Simple concept, difficult implementation
1477 *
1478 * Basically, replace the incore superblock counters with a distributed per cpu
1479 * counter for contended fields (e.g. free block count).
1480 *
1481 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1482 * hence needs to be accurately read when we are running low on space. Hence
1483 * there is a method to enable and disable the per-cpu counters based on how
1484 * much "stuff" is available in them.
1485 *
1486 * Basically, a counter is enabled if there is enough free resource to justify
1487 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1488 * ENOSPC), then we disable the counters to synchronise all callers and
1489 * re-distribute the available resources.
1490 *
1491 * If, once we redistributed the available resources, we still get a failure,
1492 * we disable the per-cpu counter and go through the slow path.
1493 *
1494 * The slow path is the current xfs_mod_incore_sb() function. This means that
1495 * when we disable a per-cpu counter, we need to drain its resources back to
1496 * the global superblock. We do this after disabling the counter to prevent
1497 * more threads from queueing up on the counter.
1498 *
1499 * Essentially, this means that we still need a lock in the fast path to enable
1500 * synchronisation between the global counters and the per-cpu counters. This
1501 * is not a problem because the lock will be local to a CPU almost all the time
1502 * and have little contention except when we get to ENOSPC conditions.
1503 *
1504 * Basically, this lock becomes a barrier that enables us to lock out the fast
1505 * path while we do things like enabling and disabling counters and
1506 * synchronising the counters.
1507 *
1508 * Locking rules:
1509 *
1510 * 1. m_sb_lock before picking up per-cpu locks
1511 * 2. per-cpu locks always picked up via for_each_online_cpu() order
1512 * 3. accurate counter sync requires m_sb_lock + per cpu locks
1513 * 4. modifying per-cpu counters requires holding per-cpu lock
1514 * 5. modifying global counters requires holding m_sb_lock
1515 * 6. enabling or disabling a counter requires holding the m_sb_lock
1516 * and _none_ of the per-cpu locks.
1517 *
1518 * Disabled counters are only ever re-enabled by a balance operation
1519 * that results in more free resources per CPU than a given threshold.
1520 * To ensure counters don't remain disabled, they are rebalanced when
1521 * the global resource goes above a higher threshold (i.e. some hysteresis
1522 * is present to prevent thrashing).
1523 */
1524
1525 #ifdef CONFIG_HOTPLUG_CPU
1526 /*
1527 * hot-plug CPU notifier support.
1528 *
1529 * We need a notifier per filesystem as we need to be able to identify
1530 * the filesystem to balance the counters out. This is achieved by
1531 * having a notifier block embedded in the xfs_mount_t and doing pointer
1532 * magic to get the mount pointer from the notifier block address.
1533 */
1534 STATIC int
1535 xfs_icsb_cpu_notify(
1536 struct notifier_block *nfb,
1537 unsigned long action,
1538 void *hcpu)
1539 {
1540 xfs_icsb_cnts_t *cntp;
1541 xfs_mount_t *mp;
1542
1543 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
1544 cntp = (xfs_icsb_cnts_t *)
1545 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
1546 switch (action) {
1547 case CPU_UP_PREPARE:
1548 case CPU_UP_PREPARE_FROZEN:
1549 /* Easy Case - initialize the area and locks, and
1550 * then rebalance when online does everything else for us. */
1551 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1552 break;
1553 case CPU_ONLINE:
1554 case CPU_ONLINE_FROZEN:
1555 xfs_icsb_lock(mp);
1556 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1557 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1558 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
1559 xfs_icsb_unlock(mp);
1560 break;
1561 case CPU_DEAD:
1562 case CPU_DEAD_FROZEN:
1563 /* Disable all the counters, then fold the dead cpu's
1564 * count into the total on the global superblock and
1565 * re-enable the counters. */
1566 xfs_icsb_lock(mp);
1567 spin_lock(&mp->m_sb_lock);
1568 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
1569 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
1570 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
1571
1572 mp->m_sb.sb_icount += cntp->icsb_icount;
1573 mp->m_sb.sb_ifree += cntp->icsb_ifree;
1574 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
1575
1576 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1577
1578 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
1579 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
1580 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
1581 spin_unlock(&mp->m_sb_lock);
1582 xfs_icsb_unlock(mp);
1583 break;
1584 }
1585
1586 return NOTIFY_OK;
1587 }
1588 #endif /* CONFIG_HOTPLUG_CPU */
1589
1590 int
1591 xfs_icsb_init_counters(
1592 xfs_mount_t *mp)
1593 {
1594 xfs_icsb_cnts_t *cntp;
1595 int i;
1596
1597 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
1598 if (mp->m_sb_cnts == NULL)
1599 return -ENOMEM;
1600
1601 for_each_online_cpu(i) {
1602 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1603 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1604 }
1605
1606 mutex_init(&mp->m_icsb_mutex);
1607
1608 /*
1609 * start with all counters disabled so that the
1610 * initial balance kicks us off correctly
1611 */
1612 mp->m_icsb_counters = -1;
1613
1614 #ifdef CONFIG_HOTPLUG_CPU
1615 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
1616 mp->m_icsb_notifier.priority = 0;
1617 register_hotcpu_notifier(&mp->m_icsb_notifier);
1618 #endif /* CONFIG_HOTPLUG_CPU */
1619
1620 return 0;
1621 }
1622
1623 void
1624 xfs_icsb_reinit_counters(
1625 xfs_mount_t *mp)
1626 {
1627 xfs_icsb_lock(mp);
1628 /*
1629 * start with all counters disabled so that the
1630 * initial balance kicks us off correctly
1631 */
1632 mp->m_icsb_counters = -1;
1633 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1634 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1635 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
1636 xfs_icsb_unlock(mp);
1637 }
1638
1639 void
1640 xfs_icsb_destroy_counters(
1641 xfs_mount_t *mp)
1642 {
1643 if (mp->m_sb_cnts) {
1644 unregister_hotcpu_notifier(&mp->m_icsb_notifier);
1645 free_percpu(mp->m_sb_cnts);
1646 }
1647 mutex_destroy(&mp->m_icsb_mutex);
1648 }
1649
1650 STATIC void
1651 xfs_icsb_lock_cntr(
1652 xfs_icsb_cnts_t *icsbp)
1653 {
1654 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
1655 ndelay(1000);
1656 }
1657 }
1658
1659 STATIC void
1660 xfs_icsb_unlock_cntr(
1661 xfs_icsb_cnts_t *icsbp)
1662 {
1663 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
1664 }
1665
1666
1667 STATIC void
1668 xfs_icsb_lock_all_counters(
1669 xfs_mount_t *mp)
1670 {
1671 xfs_icsb_cnts_t *cntp;
1672 int i;
1673
1674 for_each_online_cpu(i) {
1675 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1676 xfs_icsb_lock_cntr(cntp);
1677 }
1678 }
1679
1680 STATIC void
1681 xfs_icsb_unlock_all_counters(
1682 xfs_mount_t *mp)
1683 {
1684 xfs_icsb_cnts_t *cntp;
1685 int i;
1686
1687 for_each_online_cpu(i) {
1688 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1689 xfs_icsb_unlock_cntr(cntp);
1690 }
1691 }
1692
1693 STATIC void
1694 xfs_icsb_count(
1695 xfs_mount_t *mp,
1696 xfs_icsb_cnts_t *cnt,
1697 int flags)
1698 {
1699 xfs_icsb_cnts_t *cntp;
1700 int i;
1701
1702 memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
1703
1704 if (!(flags & XFS_ICSB_LAZY_COUNT))
1705 xfs_icsb_lock_all_counters(mp);
1706
1707 for_each_online_cpu(i) {
1708 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1709 cnt->icsb_icount += cntp->icsb_icount;
1710 cnt->icsb_ifree += cntp->icsb_ifree;
1711 cnt->icsb_fdblocks += cntp->icsb_fdblocks;
1712 }
1713
1714 if (!(flags & XFS_ICSB_LAZY_COUNT))
1715 xfs_icsb_unlock_all_counters(mp);
1716 }
1717
1718 STATIC int
1719 xfs_icsb_counter_disabled(
1720 xfs_mount_t *mp,
1721 xfs_sb_field_t field)
1722 {
1723 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1724 return test_bit(field, &mp->m_icsb_counters);
1725 }
1726
1727 STATIC void
1728 xfs_icsb_disable_counter(
1729 xfs_mount_t *mp,
1730 xfs_sb_field_t field)
1731 {
1732 xfs_icsb_cnts_t cnt;
1733
1734 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1735
1736 /*
1737 * If we are already disabled, then there is nothing to do
1738 * here. We check before locking all the counters to avoid
1739 * the expensive lock operation when being called in the
1740 * slow path and the counter is already disabled. This is
1741 * safe because the only time we set or clear this state is under
1742 * the m_icsb_mutex.
1743 */
1744 if (xfs_icsb_counter_disabled(mp, field))
1745 return;
1746
1747 xfs_icsb_lock_all_counters(mp);
1748 if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
1749 /* drain back to superblock */
1750
1751 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
1752 switch(field) {
1753 case XFS_SBS_ICOUNT:
1754 mp->m_sb.sb_icount = cnt.icsb_icount;
1755 break;
1756 case XFS_SBS_IFREE:
1757 mp->m_sb.sb_ifree = cnt.icsb_ifree;
1758 break;
1759 case XFS_SBS_FDBLOCKS:
1760 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
1761 break;
1762 default:
1763 BUG();
1764 }
1765 }
1766
1767 xfs_icsb_unlock_all_counters(mp);
1768 }
1769
1770 STATIC void
1771 xfs_icsb_enable_counter(
1772 xfs_mount_t *mp,
1773 xfs_sb_field_t field,
1774 uint64_t count,
1775 uint64_t resid)
1776 {
1777 xfs_icsb_cnts_t *cntp;
1778 int i;
1779
1780 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1781
1782 xfs_icsb_lock_all_counters(mp);
1783 for_each_online_cpu(i) {
1784 cntp = per_cpu_ptr(mp->m_sb_cnts, i);
1785 switch (field) {
1786 case XFS_SBS_ICOUNT:
1787 cntp->icsb_icount = count + resid;
1788 break;
1789 case XFS_SBS_IFREE:
1790 cntp->icsb_ifree = count + resid;
1791 break;
1792 case XFS_SBS_FDBLOCKS:
1793 cntp->icsb_fdblocks = count + resid;
1794 break;
1795 default:
1796 BUG();
1797 break;
1798 }
1799 resid = 0;
1800 }
1801 clear_bit(field, &mp->m_icsb_counters);
1802 xfs_icsb_unlock_all_counters(mp);
1803 }
1804
1805 void
1806 xfs_icsb_sync_counters_locked(
1807 xfs_mount_t *mp,
1808 int flags)
1809 {
1810 xfs_icsb_cnts_t cnt;
1811
1812 xfs_icsb_count(mp, &cnt, flags);
1813
1814 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
1815 mp->m_sb.sb_icount = cnt.icsb_icount;
1816 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
1817 mp->m_sb.sb_ifree = cnt.icsb_ifree;
1818 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
1819 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
1820 }
1821
1822 /*
1823 * Accurate update of per-cpu counters to incore superblock
1824 */
1825 void
1826 xfs_icsb_sync_counters(
1827 xfs_mount_t *mp,
1828 int flags)
1829 {
1830 spin_lock(&mp->m_sb_lock);
1831 xfs_icsb_sync_counters_locked(mp, flags);
1832 spin_unlock(&mp->m_sb_lock);
1833 }
1834
1835 /*
1836 * Balance and enable/disable counters as necessary.
1837 *
1838 * Thresholds for re-enabling counters are somewhat magic. inode counts are
1839 * chosen to be the same number as single on disk allocation chunk per CPU, and
1840 * free blocks is something far enough zero that we aren't going thrash when we
1841 * get near ENOSPC. We also need to supply a minimum we require per cpu to
1842 * prevent looping endlessly when xfs_alloc_space asks for more than will
1843 * be distributed to a single CPU but each CPU has enough blocks to be
1844 * reenabled.
1845 *
1846 * Note that we can be called when counters are already disabled.
1847 * xfs_icsb_disable_counter() optimises the counter locking in this case to
1848 * prevent locking every per-cpu counter needlessly.
1849 */
1850
1851 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64
1852 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
1853 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
1854 STATIC void
1855 xfs_icsb_balance_counter_locked(
1856 xfs_mount_t *mp,
1857 xfs_sb_field_t field,
1858 int min_per_cpu)
1859 {
1860 uint64_t count, resid;
1861 int weight = num_online_cpus();
1862 uint64_t min = (uint64_t)min_per_cpu;
1863
1864 /* disable counter and sync counter */
1865 xfs_icsb_disable_counter(mp, field);
1866
1867 /* update counters - first CPU gets residual*/
1868 switch (field) {
1869 case XFS_SBS_ICOUNT:
1870 count = mp->m_sb.sb_icount;
1871 resid = do_div(count, weight);
1872 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
1873 return;
1874 break;
1875 case XFS_SBS_IFREE:
1876 count = mp->m_sb.sb_ifree;
1877 resid = do_div(count, weight);
1878 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
1879 return;
1880 break;
1881 case XFS_SBS_FDBLOCKS:
1882 count = mp->m_sb.sb_fdblocks;
1883 resid = do_div(count, weight);
1884 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
1885 return;
1886 break;
1887 default:
1888 BUG();
1889 count = resid = 0; /* quiet, gcc */
1890 break;
1891 }
1892
1893 xfs_icsb_enable_counter(mp, field, count, resid);
1894 }
1895
1896 STATIC void
1897 xfs_icsb_balance_counter(
1898 xfs_mount_t *mp,
1899 xfs_sb_field_t fields,
1900 int min_per_cpu)
1901 {
1902 spin_lock(&mp->m_sb_lock);
1903 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
1904 spin_unlock(&mp->m_sb_lock);
1905 }
1906
1907 int
1908 xfs_icsb_modify_counters(
1909 xfs_mount_t *mp,
1910 xfs_sb_field_t field,
1911 int64_t delta,
1912 int rsvd)
1913 {
1914 xfs_icsb_cnts_t *icsbp;
1915 long long lcounter; /* long counter for 64 bit fields */
1916 int ret = 0;
1917
1918 might_sleep();
1919 again:
1920 preempt_disable();
1921 icsbp = this_cpu_ptr(mp->m_sb_cnts);
1922
1923 /*
1924 * if the counter is disabled, go to slow path
1925 */
1926 if (unlikely(xfs_icsb_counter_disabled(mp, field)))
1927 goto slow_path;
1928 xfs_icsb_lock_cntr(icsbp);
1929 if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
1930 xfs_icsb_unlock_cntr(icsbp);
1931 goto slow_path;
1932 }
1933
1934 switch (field) {
1935 case XFS_SBS_ICOUNT:
1936 lcounter = icsbp->icsb_icount;
1937 lcounter += delta;
1938 if (unlikely(lcounter < 0))
1939 goto balance_counter;
1940 icsbp->icsb_icount = lcounter;
1941 break;
1942
1943 case XFS_SBS_IFREE:
1944 lcounter = icsbp->icsb_ifree;
1945 lcounter += delta;
1946 if (unlikely(lcounter < 0))
1947 goto balance_counter;
1948 icsbp->icsb_ifree = lcounter;
1949 break;
1950
1951 case XFS_SBS_FDBLOCKS:
1952 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
1953
1954 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1955 lcounter += delta;
1956 if (unlikely(lcounter < 0))
1957 goto balance_counter;
1958 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1959 break;
1960 default:
1961 BUG();
1962 break;
1963 }
1964 xfs_icsb_unlock_cntr(icsbp);
1965 preempt_enable();
1966 return 0;
1967
1968 slow_path:
1969 preempt_enable();
1970
1971 /*
1972 * serialise with a mutex so we don't burn lots of cpu on
1973 * the superblock lock. We still need to hold the superblock
1974 * lock, however, when we modify the global structures.
1975 */
1976 xfs_icsb_lock(mp);
1977
1978 /*
1979 * Now running atomically.
1980 *
1981 * If the counter is enabled, someone has beaten us to rebalancing.
1982 * Drop the lock and try again in the fast path....
1983 */
1984 if (!(xfs_icsb_counter_disabled(mp, field))) {
1985 xfs_icsb_unlock(mp);
1986 goto again;
1987 }
1988
1989 /*
1990 * The counter is currently disabled. Because we are
1991 * running atomically here, we know a rebalance cannot
1992 * be in progress. Hence we can go straight to operating
1993 * on the global superblock. We do not call xfs_mod_incore_sb()
1994 * here even though we need to get the m_sb_lock. Doing so
1995 * will cause us to re-enter this function and deadlock.
1996 * Hence we get the m_sb_lock ourselves and then call
1997 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
1998 * directly on the global counters.
1999 */
2000 spin_lock(&mp->m_sb_lock);
2001 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
2002 spin_unlock(&mp->m_sb_lock);
2003
2004 /*
2005 * Now that we've modified the global superblock, we
2006 * may be able to re-enable the distributed counters
2007 * (e.g. lots of space just got freed). After that
2008 * we are done.
2009 */
2010 if (ret != -ENOSPC)
2011 xfs_icsb_balance_counter(mp, field, 0);
2012 xfs_icsb_unlock(mp);
2013 return ret;
2014
2015 balance_counter:
2016 xfs_icsb_unlock_cntr(icsbp);
2017 preempt_enable();
2018
2019 /*
2020 * We may have multiple threads here if multiple per-cpu
2021 * counters run dry at the same time. This will mean we can
2022 * do more balances than strictly necessary but it is not
2023 * the common slowpath case.
2024 */
2025 xfs_icsb_lock(mp);
2026
2027 /*
2028 * running atomically.
2029 *
2030 * This will leave the counter in the correct state for future
2031 * accesses. After the rebalance, we simply try again and our retry
2032 * will either succeed through the fast path or slow path without
2033 * another balance operation being required.
2034 */
2035 xfs_icsb_balance_counter(mp, field, delta);
2036 xfs_icsb_unlock(mp);
2037 goto again;
2038 }
2039
2040 #endif
This page took 0.532212 seconds and 5 git commands to generate.