Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[deliverable/linux.git] / fs / xfs / xfs_super.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18
19 #include "xfs.h"
20 #include "xfs_bit.h"
21 #include "xfs_log.h"
22 #include "xfs_inum.h"
23 #include "xfs_trans.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_dir2.h"
27 #include "xfs_alloc.h"
28 #include "xfs_quota.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dinode.h"
34 #include "xfs_inode.h"
35 #include "xfs_btree.h"
36 #include "xfs_ialloc.h"
37 #include "xfs_bmap.h"
38 #include "xfs_rtalloc.h"
39 #include "xfs_error.h"
40 #include "xfs_itable.h"
41 #include "xfs_fsops.h"
42 #include "xfs_attr.h"
43 #include "xfs_buf_item.h"
44 #include "xfs_utils.h"
45 #include "xfs_vnodeops.h"
46 #include "xfs_log_priv.h"
47 #include "xfs_trans_priv.h"
48 #include "xfs_filestream.h"
49 #include "xfs_da_btree.h"
50 #include "xfs_extfree_item.h"
51 #include "xfs_mru_cache.h"
52 #include "xfs_inode_item.h"
53 #include "xfs_sync.h"
54 #include "xfs_trace.h"
55
56 #include <linux/namei.h>
57 #include <linux/init.h>
58 #include <linux/slab.h>
59 #include <linux/mount.h>
60 #include <linux/mempool.h>
61 #include <linux/writeback.h>
62 #include <linux/kthread.h>
63 #include <linux/freezer.h>
64 #include <linux/parser.h>
65
66 static const struct super_operations xfs_super_operations;
67 static kmem_zone_t *xfs_ioend_zone;
68 mempool_t *xfs_ioend_pool;
69
70 #define MNTOPT_LOGBUFS "logbufs" /* number of XFS log buffers */
71 #define MNTOPT_LOGBSIZE "logbsize" /* size of XFS log buffers */
72 #define MNTOPT_LOGDEV "logdev" /* log device */
73 #define MNTOPT_RTDEV "rtdev" /* realtime I/O device */
74 #define MNTOPT_BIOSIZE "biosize" /* log2 of preferred buffered io size */
75 #define MNTOPT_WSYNC "wsync" /* safe-mode nfs compatible mount */
76 #define MNTOPT_NOALIGN "noalign" /* turn off stripe alignment */
77 #define MNTOPT_SWALLOC "swalloc" /* turn on stripe width allocation */
78 #define MNTOPT_SUNIT "sunit" /* data volume stripe unit */
79 #define MNTOPT_SWIDTH "swidth" /* data volume stripe width */
80 #define MNTOPT_NOUUID "nouuid" /* ignore filesystem UUID */
81 #define MNTOPT_MTPT "mtpt" /* filesystem mount point */
82 #define MNTOPT_GRPID "grpid" /* group-ID from parent directory */
83 #define MNTOPT_NOGRPID "nogrpid" /* group-ID from current process */
84 #define MNTOPT_BSDGROUPS "bsdgroups" /* group-ID from parent directory */
85 #define MNTOPT_SYSVGROUPS "sysvgroups" /* group-ID from current process */
86 #define MNTOPT_ALLOCSIZE "allocsize" /* preferred allocation size */
87 #define MNTOPT_NORECOVERY "norecovery" /* don't run XFS recovery */
88 #define MNTOPT_BARRIER "barrier" /* use writer barriers for log write and
89 * unwritten extent conversion */
90 #define MNTOPT_NOBARRIER "nobarrier" /* .. disable */
91 #define MNTOPT_64BITINODE "inode64" /* inodes can be allocated anywhere */
92 #define MNTOPT_IKEEP "ikeep" /* do not free empty inode clusters */
93 #define MNTOPT_NOIKEEP "noikeep" /* free empty inode clusters */
94 #define MNTOPT_LARGEIO "largeio" /* report large I/O sizes in stat() */
95 #define MNTOPT_NOLARGEIO "nolargeio" /* do not report large I/O sizes
96 * in stat(). */
97 #define MNTOPT_ATTR2 "attr2" /* do use attr2 attribute format */
98 #define MNTOPT_NOATTR2 "noattr2" /* do not use attr2 attribute format */
99 #define MNTOPT_FILESTREAM "filestreams" /* use filestreams allocator */
100 #define MNTOPT_QUOTA "quota" /* disk quotas (user) */
101 #define MNTOPT_NOQUOTA "noquota" /* no quotas */
102 #define MNTOPT_USRQUOTA "usrquota" /* user quota enabled */
103 #define MNTOPT_GRPQUOTA "grpquota" /* group quota enabled */
104 #define MNTOPT_PRJQUOTA "prjquota" /* project quota enabled */
105 #define MNTOPT_UQUOTA "uquota" /* user quota (IRIX variant) */
106 #define MNTOPT_GQUOTA "gquota" /* group quota (IRIX variant) */
107 #define MNTOPT_PQUOTA "pquota" /* project quota (IRIX variant) */
108 #define MNTOPT_UQUOTANOENF "uqnoenforce"/* user quota limit enforcement */
109 #define MNTOPT_GQUOTANOENF "gqnoenforce"/* group quota limit enforcement */
110 #define MNTOPT_PQUOTANOENF "pqnoenforce"/* project quota limit enforcement */
111 #define MNTOPT_QUOTANOENF "qnoenforce" /* same as uqnoenforce */
112 #define MNTOPT_DELAYLOG "delaylog" /* Delayed logging enabled */
113 #define MNTOPT_NODELAYLOG "nodelaylog" /* Delayed logging disabled */
114 #define MNTOPT_DISCARD "discard" /* Discard unused blocks */
115 #define MNTOPT_NODISCARD "nodiscard" /* Do not discard unused blocks */
116
117 /*
118 * Table driven mount option parser.
119 *
120 * Currently only used for remount, but it will be used for mount
121 * in the future, too.
122 */
123 enum {
124 Opt_barrier, Opt_nobarrier, Opt_err
125 };
126
127 static const match_table_t tokens = {
128 {Opt_barrier, "barrier"},
129 {Opt_nobarrier, "nobarrier"},
130 {Opt_err, NULL}
131 };
132
133
134 STATIC unsigned long
135 suffix_strtoul(char *s, char **endp, unsigned int base)
136 {
137 int last, shift_left_factor = 0;
138 char *value = s;
139
140 last = strlen(value) - 1;
141 if (value[last] == 'K' || value[last] == 'k') {
142 shift_left_factor = 10;
143 value[last] = '\0';
144 }
145 if (value[last] == 'M' || value[last] == 'm') {
146 shift_left_factor = 20;
147 value[last] = '\0';
148 }
149 if (value[last] == 'G' || value[last] == 'g') {
150 shift_left_factor = 30;
151 value[last] = '\0';
152 }
153
154 return simple_strtoul((const char *)s, endp, base) << shift_left_factor;
155 }
156
157 /*
158 * This function fills in xfs_mount_t fields based on mount args.
159 * Note: the superblock has _not_ yet been read in.
160 *
161 * Note that this function leaks the various device name allocations on
162 * failure. The caller takes care of them.
163 */
164 STATIC int
165 xfs_parseargs(
166 struct xfs_mount *mp,
167 char *options)
168 {
169 struct super_block *sb = mp->m_super;
170 char *this_char, *value, *eov;
171 int dsunit = 0;
172 int dswidth = 0;
173 int iosize = 0;
174 __uint8_t iosizelog = 0;
175
176 /*
177 * set up the mount name first so all the errors will refer to the
178 * correct device.
179 */
180 mp->m_fsname = kstrndup(sb->s_id, MAXNAMELEN, GFP_KERNEL);
181 if (!mp->m_fsname)
182 return ENOMEM;
183 mp->m_fsname_len = strlen(mp->m_fsname) + 1;
184
185 /*
186 * Copy binary VFS mount flags we are interested in.
187 */
188 if (sb->s_flags & MS_RDONLY)
189 mp->m_flags |= XFS_MOUNT_RDONLY;
190 if (sb->s_flags & MS_DIRSYNC)
191 mp->m_flags |= XFS_MOUNT_DIRSYNC;
192 if (sb->s_flags & MS_SYNCHRONOUS)
193 mp->m_flags |= XFS_MOUNT_WSYNC;
194
195 /*
196 * Set some default flags that could be cleared by the mount option
197 * parsing.
198 */
199 mp->m_flags |= XFS_MOUNT_BARRIER;
200 mp->m_flags |= XFS_MOUNT_COMPAT_IOSIZE;
201 mp->m_flags |= XFS_MOUNT_SMALL_INUMS;
202 mp->m_flags |= XFS_MOUNT_DELAYLOG;
203
204 /*
205 * These can be overridden by the mount option parsing.
206 */
207 mp->m_logbufs = -1;
208 mp->m_logbsize = -1;
209
210 if (!options)
211 goto done;
212
213 while ((this_char = strsep(&options, ",")) != NULL) {
214 if (!*this_char)
215 continue;
216 if ((value = strchr(this_char, '=')) != NULL)
217 *value++ = 0;
218
219 if (!strcmp(this_char, MNTOPT_LOGBUFS)) {
220 if (!value || !*value) {
221 xfs_warn(mp, "%s option requires an argument",
222 this_char);
223 return EINVAL;
224 }
225 mp->m_logbufs = simple_strtoul(value, &eov, 10);
226 } else if (!strcmp(this_char, MNTOPT_LOGBSIZE)) {
227 if (!value || !*value) {
228 xfs_warn(mp, "%s option requires an argument",
229 this_char);
230 return EINVAL;
231 }
232 mp->m_logbsize = suffix_strtoul(value, &eov, 10);
233 } else if (!strcmp(this_char, MNTOPT_LOGDEV)) {
234 if (!value || !*value) {
235 xfs_warn(mp, "%s option requires an argument",
236 this_char);
237 return EINVAL;
238 }
239 mp->m_logname = kstrndup(value, MAXNAMELEN, GFP_KERNEL);
240 if (!mp->m_logname)
241 return ENOMEM;
242 } else if (!strcmp(this_char, MNTOPT_MTPT)) {
243 xfs_warn(mp, "%s option not allowed on this system",
244 this_char);
245 return EINVAL;
246 } else if (!strcmp(this_char, MNTOPT_RTDEV)) {
247 if (!value || !*value) {
248 xfs_warn(mp, "%s option requires an argument",
249 this_char);
250 return EINVAL;
251 }
252 mp->m_rtname = kstrndup(value, MAXNAMELEN, GFP_KERNEL);
253 if (!mp->m_rtname)
254 return ENOMEM;
255 } else if (!strcmp(this_char, MNTOPT_BIOSIZE)) {
256 if (!value || !*value) {
257 xfs_warn(mp, "%s option requires an argument",
258 this_char);
259 return EINVAL;
260 }
261 iosize = simple_strtoul(value, &eov, 10);
262 iosizelog = ffs(iosize) - 1;
263 } else if (!strcmp(this_char, MNTOPT_ALLOCSIZE)) {
264 if (!value || !*value) {
265 xfs_warn(mp, "%s option requires an argument",
266 this_char);
267 return EINVAL;
268 }
269 iosize = suffix_strtoul(value, &eov, 10);
270 iosizelog = ffs(iosize) - 1;
271 } else if (!strcmp(this_char, MNTOPT_GRPID) ||
272 !strcmp(this_char, MNTOPT_BSDGROUPS)) {
273 mp->m_flags |= XFS_MOUNT_GRPID;
274 } else if (!strcmp(this_char, MNTOPT_NOGRPID) ||
275 !strcmp(this_char, MNTOPT_SYSVGROUPS)) {
276 mp->m_flags &= ~XFS_MOUNT_GRPID;
277 } else if (!strcmp(this_char, MNTOPT_WSYNC)) {
278 mp->m_flags |= XFS_MOUNT_WSYNC;
279 } else if (!strcmp(this_char, MNTOPT_NORECOVERY)) {
280 mp->m_flags |= XFS_MOUNT_NORECOVERY;
281 } else if (!strcmp(this_char, MNTOPT_NOALIGN)) {
282 mp->m_flags |= XFS_MOUNT_NOALIGN;
283 } else if (!strcmp(this_char, MNTOPT_SWALLOC)) {
284 mp->m_flags |= XFS_MOUNT_SWALLOC;
285 } else if (!strcmp(this_char, MNTOPT_SUNIT)) {
286 if (!value || !*value) {
287 xfs_warn(mp, "%s option requires an argument",
288 this_char);
289 return EINVAL;
290 }
291 dsunit = simple_strtoul(value, &eov, 10);
292 } else if (!strcmp(this_char, MNTOPT_SWIDTH)) {
293 if (!value || !*value) {
294 xfs_warn(mp, "%s option requires an argument",
295 this_char);
296 return EINVAL;
297 }
298 dswidth = simple_strtoul(value, &eov, 10);
299 } else if (!strcmp(this_char, MNTOPT_64BITINODE)) {
300 mp->m_flags &= ~XFS_MOUNT_SMALL_INUMS;
301 #if !XFS_BIG_INUMS
302 xfs_warn(mp, "%s option not allowed on this system",
303 this_char);
304 return EINVAL;
305 #endif
306 } else if (!strcmp(this_char, MNTOPT_NOUUID)) {
307 mp->m_flags |= XFS_MOUNT_NOUUID;
308 } else if (!strcmp(this_char, MNTOPT_BARRIER)) {
309 mp->m_flags |= XFS_MOUNT_BARRIER;
310 } else if (!strcmp(this_char, MNTOPT_NOBARRIER)) {
311 mp->m_flags &= ~XFS_MOUNT_BARRIER;
312 } else if (!strcmp(this_char, MNTOPT_IKEEP)) {
313 mp->m_flags |= XFS_MOUNT_IKEEP;
314 } else if (!strcmp(this_char, MNTOPT_NOIKEEP)) {
315 mp->m_flags &= ~XFS_MOUNT_IKEEP;
316 } else if (!strcmp(this_char, MNTOPT_LARGEIO)) {
317 mp->m_flags &= ~XFS_MOUNT_COMPAT_IOSIZE;
318 } else if (!strcmp(this_char, MNTOPT_NOLARGEIO)) {
319 mp->m_flags |= XFS_MOUNT_COMPAT_IOSIZE;
320 } else if (!strcmp(this_char, MNTOPT_ATTR2)) {
321 mp->m_flags |= XFS_MOUNT_ATTR2;
322 } else if (!strcmp(this_char, MNTOPT_NOATTR2)) {
323 mp->m_flags &= ~XFS_MOUNT_ATTR2;
324 mp->m_flags |= XFS_MOUNT_NOATTR2;
325 } else if (!strcmp(this_char, MNTOPT_FILESTREAM)) {
326 mp->m_flags |= XFS_MOUNT_FILESTREAMS;
327 } else if (!strcmp(this_char, MNTOPT_NOQUOTA)) {
328 mp->m_qflags &= ~(XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE |
329 XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE |
330 XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE |
331 XFS_UQUOTA_ENFD | XFS_OQUOTA_ENFD);
332 } else if (!strcmp(this_char, MNTOPT_QUOTA) ||
333 !strcmp(this_char, MNTOPT_UQUOTA) ||
334 !strcmp(this_char, MNTOPT_USRQUOTA)) {
335 mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE |
336 XFS_UQUOTA_ENFD);
337 } else if (!strcmp(this_char, MNTOPT_QUOTANOENF) ||
338 !strcmp(this_char, MNTOPT_UQUOTANOENF)) {
339 mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE);
340 mp->m_qflags &= ~XFS_UQUOTA_ENFD;
341 } else if (!strcmp(this_char, MNTOPT_PQUOTA) ||
342 !strcmp(this_char, MNTOPT_PRJQUOTA)) {
343 mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE |
344 XFS_OQUOTA_ENFD);
345 } else if (!strcmp(this_char, MNTOPT_PQUOTANOENF)) {
346 mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE);
347 mp->m_qflags &= ~XFS_OQUOTA_ENFD;
348 } else if (!strcmp(this_char, MNTOPT_GQUOTA) ||
349 !strcmp(this_char, MNTOPT_GRPQUOTA)) {
350 mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE |
351 XFS_OQUOTA_ENFD);
352 } else if (!strcmp(this_char, MNTOPT_GQUOTANOENF)) {
353 mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE);
354 mp->m_qflags &= ~XFS_OQUOTA_ENFD;
355 } else if (!strcmp(this_char, MNTOPT_DELAYLOG)) {
356 mp->m_flags |= XFS_MOUNT_DELAYLOG;
357 } else if (!strcmp(this_char, MNTOPT_NODELAYLOG)) {
358 mp->m_flags &= ~XFS_MOUNT_DELAYLOG;
359 xfs_warn(mp,
360 "nodelaylog is deprecated and will be removed in Linux 3.3");
361 } else if (!strcmp(this_char, MNTOPT_DISCARD)) {
362 mp->m_flags |= XFS_MOUNT_DISCARD;
363 } else if (!strcmp(this_char, MNTOPT_NODISCARD)) {
364 mp->m_flags &= ~XFS_MOUNT_DISCARD;
365 } else if (!strcmp(this_char, "ihashsize")) {
366 xfs_warn(mp,
367 "ihashsize no longer used, option is deprecated.");
368 } else if (!strcmp(this_char, "osyncisdsync")) {
369 xfs_warn(mp,
370 "osyncisdsync has no effect, option is deprecated.");
371 } else if (!strcmp(this_char, "osyncisosync")) {
372 xfs_warn(mp,
373 "osyncisosync has no effect, option is deprecated.");
374 } else if (!strcmp(this_char, "irixsgid")) {
375 xfs_warn(mp,
376 "irixsgid is now a sysctl(2) variable, option is deprecated.");
377 } else {
378 xfs_warn(mp, "unknown mount option [%s].", this_char);
379 return EINVAL;
380 }
381 }
382
383 /*
384 * no recovery flag requires a read-only mount
385 */
386 if ((mp->m_flags & XFS_MOUNT_NORECOVERY) &&
387 !(mp->m_flags & XFS_MOUNT_RDONLY)) {
388 xfs_warn(mp, "no-recovery mounts must be read-only.");
389 return EINVAL;
390 }
391
392 if ((mp->m_flags & XFS_MOUNT_NOALIGN) && (dsunit || dswidth)) {
393 xfs_warn(mp,
394 "sunit and swidth options incompatible with the noalign option");
395 return EINVAL;
396 }
397
398 if ((mp->m_flags & XFS_MOUNT_DISCARD) &&
399 !(mp->m_flags & XFS_MOUNT_DELAYLOG)) {
400 xfs_warn(mp,
401 "the discard option is incompatible with the nodelaylog option");
402 return EINVAL;
403 }
404
405 #ifndef CONFIG_XFS_QUOTA
406 if (XFS_IS_QUOTA_RUNNING(mp)) {
407 xfs_warn(mp, "quota support not available in this kernel.");
408 return EINVAL;
409 }
410 #endif
411
412 if ((mp->m_qflags & (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE)) &&
413 (mp->m_qflags & (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE))) {
414 xfs_warn(mp, "cannot mount with both project and group quota");
415 return EINVAL;
416 }
417
418 if ((dsunit && !dswidth) || (!dsunit && dswidth)) {
419 xfs_warn(mp, "sunit and swidth must be specified together");
420 return EINVAL;
421 }
422
423 if (dsunit && (dswidth % dsunit != 0)) {
424 xfs_warn(mp,
425 "stripe width (%d) must be a multiple of the stripe unit (%d)",
426 dswidth, dsunit);
427 return EINVAL;
428 }
429
430 done:
431 if (!(mp->m_flags & XFS_MOUNT_NOALIGN)) {
432 /*
433 * At this point the superblock has not been read
434 * in, therefore we do not know the block size.
435 * Before the mount call ends we will convert
436 * these to FSBs.
437 */
438 if (dsunit) {
439 mp->m_dalign = dsunit;
440 mp->m_flags |= XFS_MOUNT_RETERR;
441 }
442
443 if (dswidth)
444 mp->m_swidth = dswidth;
445 }
446
447 if (mp->m_logbufs != -1 &&
448 mp->m_logbufs != 0 &&
449 (mp->m_logbufs < XLOG_MIN_ICLOGS ||
450 mp->m_logbufs > XLOG_MAX_ICLOGS)) {
451 xfs_warn(mp, "invalid logbufs value: %d [not %d-%d]",
452 mp->m_logbufs, XLOG_MIN_ICLOGS, XLOG_MAX_ICLOGS);
453 return XFS_ERROR(EINVAL);
454 }
455 if (mp->m_logbsize != -1 &&
456 mp->m_logbsize != 0 &&
457 (mp->m_logbsize < XLOG_MIN_RECORD_BSIZE ||
458 mp->m_logbsize > XLOG_MAX_RECORD_BSIZE ||
459 !is_power_of_2(mp->m_logbsize))) {
460 xfs_warn(mp,
461 "invalid logbufsize: %d [not 16k,32k,64k,128k or 256k]",
462 mp->m_logbsize);
463 return XFS_ERROR(EINVAL);
464 }
465
466 if (iosizelog) {
467 if (iosizelog > XFS_MAX_IO_LOG ||
468 iosizelog < XFS_MIN_IO_LOG) {
469 xfs_warn(mp, "invalid log iosize: %d [not %d-%d]",
470 iosizelog, XFS_MIN_IO_LOG,
471 XFS_MAX_IO_LOG);
472 return XFS_ERROR(EINVAL);
473 }
474
475 mp->m_flags |= XFS_MOUNT_DFLT_IOSIZE;
476 mp->m_readio_log = iosizelog;
477 mp->m_writeio_log = iosizelog;
478 }
479
480 return 0;
481 }
482
483 struct proc_xfs_info {
484 int flag;
485 char *str;
486 };
487
488 STATIC int
489 xfs_showargs(
490 struct xfs_mount *mp,
491 struct seq_file *m)
492 {
493 static struct proc_xfs_info xfs_info_set[] = {
494 /* the few simple ones we can get from the mount struct */
495 { XFS_MOUNT_IKEEP, "," MNTOPT_IKEEP },
496 { XFS_MOUNT_WSYNC, "," MNTOPT_WSYNC },
497 { XFS_MOUNT_NOALIGN, "," MNTOPT_NOALIGN },
498 { XFS_MOUNT_SWALLOC, "," MNTOPT_SWALLOC },
499 { XFS_MOUNT_NOUUID, "," MNTOPT_NOUUID },
500 { XFS_MOUNT_NORECOVERY, "," MNTOPT_NORECOVERY },
501 { XFS_MOUNT_ATTR2, "," MNTOPT_ATTR2 },
502 { XFS_MOUNT_FILESTREAMS, "," MNTOPT_FILESTREAM },
503 { XFS_MOUNT_GRPID, "," MNTOPT_GRPID },
504 { XFS_MOUNT_DELAYLOG, "," MNTOPT_DELAYLOG },
505 { XFS_MOUNT_DISCARD, "," MNTOPT_DISCARD },
506 { 0, NULL }
507 };
508 static struct proc_xfs_info xfs_info_unset[] = {
509 /* the few simple ones we can get from the mount struct */
510 { XFS_MOUNT_COMPAT_IOSIZE, "," MNTOPT_LARGEIO },
511 { XFS_MOUNT_BARRIER, "," MNTOPT_NOBARRIER },
512 { XFS_MOUNT_SMALL_INUMS, "," MNTOPT_64BITINODE },
513 { 0, NULL }
514 };
515 struct proc_xfs_info *xfs_infop;
516
517 for (xfs_infop = xfs_info_set; xfs_infop->flag; xfs_infop++) {
518 if (mp->m_flags & xfs_infop->flag)
519 seq_puts(m, xfs_infop->str);
520 }
521 for (xfs_infop = xfs_info_unset; xfs_infop->flag; xfs_infop++) {
522 if (!(mp->m_flags & xfs_infop->flag))
523 seq_puts(m, xfs_infop->str);
524 }
525
526 if (mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)
527 seq_printf(m, "," MNTOPT_ALLOCSIZE "=%dk",
528 (int)(1 << mp->m_writeio_log) >> 10);
529
530 if (mp->m_logbufs > 0)
531 seq_printf(m, "," MNTOPT_LOGBUFS "=%d", mp->m_logbufs);
532 if (mp->m_logbsize > 0)
533 seq_printf(m, "," MNTOPT_LOGBSIZE "=%dk", mp->m_logbsize >> 10);
534
535 if (mp->m_logname)
536 seq_printf(m, "," MNTOPT_LOGDEV "=%s", mp->m_logname);
537 if (mp->m_rtname)
538 seq_printf(m, "," MNTOPT_RTDEV "=%s", mp->m_rtname);
539
540 if (mp->m_dalign > 0)
541 seq_printf(m, "," MNTOPT_SUNIT "=%d",
542 (int)XFS_FSB_TO_BB(mp, mp->m_dalign));
543 if (mp->m_swidth > 0)
544 seq_printf(m, "," MNTOPT_SWIDTH "=%d",
545 (int)XFS_FSB_TO_BB(mp, mp->m_swidth));
546
547 if (mp->m_qflags & (XFS_UQUOTA_ACCT|XFS_UQUOTA_ENFD))
548 seq_puts(m, "," MNTOPT_USRQUOTA);
549 else if (mp->m_qflags & XFS_UQUOTA_ACCT)
550 seq_puts(m, "," MNTOPT_UQUOTANOENF);
551
552 /* Either project or group quotas can be active, not both */
553
554 if (mp->m_qflags & XFS_PQUOTA_ACCT) {
555 if (mp->m_qflags & XFS_OQUOTA_ENFD)
556 seq_puts(m, "," MNTOPT_PRJQUOTA);
557 else
558 seq_puts(m, "," MNTOPT_PQUOTANOENF);
559 } else if (mp->m_qflags & XFS_GQUOTA_ACCT) {
560 if (mp->m_qflags & XFS_OQUOTA_ENFD)
561 seq_puts(m, "," MNTOPT_GRPQUOTA);
562 else
563 seq_puts(m, "," MNTOPT_GQUOTANOENF);
564 }
565
566 if (!(mp->m_qflags & XFS_ALL_QUOTA_ACCT))
567 seq_puts(m, "," MNTOPT_NOQUOTA);
568
569 return 0;
570 }
571 __uint64_t
572 xfs_max_file_offset(
573 unsigned int blockshift)
574 {
575 unsigned int pagefactor = 1;
576 unsigned int bitshift = BITS_PER_LONG - 1;
577
578 /* Figure out maximum filesize, on Linux this can depend on
579 * the filesystem blocksize (on 32 bit platforms).
580 * __block_write_begin does this in an [unsigned] long...
581 * page->index << (PAGE_CACHE_SHIFT - bbits)
582 * So, for page sized blocks (4K on 32 bit platforms),
583 * this wraps at around 8Tb (hence MAX_LFS_FILESIZE which is
584 * (((u64)PAGE_CACHE_SIZE << (BITS_PER_LONG-1))-1)
585 * but for smaller blocksizes it is less (bbits = log2 bsize).
586 * Note1: get_block_t takes a long (implicit cast from above)
587 * Note2: The Large Block Device (LBD and HAVE_SECTOR_T) patch
588 * can optionally convert the [unsigned] long from above into
589 * an [unsigned] long long.
590 */
591
592 #if BITS_PER_LONG == 32
593 # if defined(CONFIG_LBDAF)
594 ASSERT(sizeof(sector_t) == 8);
595 pagefactor = PAGE_CACHE_SIZE;
596 bitshift = BITS_PER_LONG;
597 # else
598 pagefactor = PAGE_CACHE_SIZE >> (PAGE_CACHE_SHIFT - blockshift);
599 # endif
600 #endif
601
602 return (((__uint64_t)pagefactor) << bitshift) - 1;
603 }
604
605 STATIC int
606 xfs_blkdev_get(
607 xfs_mount_t *mp,
608 const char *name,
609 struct block_device **bdevp)
610 {
611 int error = 0;
612
613 *bdevp = blkdev_get_by_path(name, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
614 mp);
615 if (IS_ERR(*bdevp)) {
616 error = PTR_ERR(*bdevp);
617 xfs_warn(mp, "Invalid device [%s], error=%d\n", name, error);
618 }
619
620 return -error;
621 }
622
623 STATIC void
624 xfs_blkdev_put(
625 struct block_device *bdev)
626 {
627 if (bdev)
628 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
629 }
630
631 void
632 xfs_blkdev_issue_flush(
633 xfs_buftarg_t *buftarg)
634 {
635 blkdev_issue_flush(buftarg->bt_bdev, GFP_KERNEL, NULL);
636 }
637
638 STATIC void
639 xfs_close_devices(
640 struct xfs_mount *mp)
641 {
642 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) {
643 struct block_device *logdev = mp->m_logdev_targp->bt_bdev;
644 xfs_free_buftarg(mp, mp->m_logdev_targp);
645 xfs_blkdev_put(logdev);
646 }
647 if (mp->m_rtdev_targp) {
648 struct block_device *rtdev = mp->m_rtdev_targp->bt_bdev;
649 xfs_free_buftarg(mp, mp->m_rtdev_targp);
650 xfs_blkdev_put(rtdev);
651 }
652 xfs_free_buftarg(mp, mp->m_ddev_targp);
653 }
654
655 /*
656 * The file system configurations are:
657 * (1) device (partition) with data and internal log
658 * (2) logical volume with data and log subvolumes.
659 * (3) logical volume with data, log, and realtime subvolumes.
660 *
661 * We only have to handle opening the log and realtime volumes here if
662 * they are present. The data subvolume has already been opened by
663 * get_sb_bdev() and is stored in sb->s_bdev.
664 */
665 STATIC int
666 xfs_open_devices(
667 struct xfs_mount *mp)
668 {
669 struct block_device *ddev = mp->m_super->s_bdev;
670 struct block_device *logdev = NULL, *rtdev = NULL;
671 int error;
672
673 /*
674 * Open real time and log devices - order is important.
675 */
676 if (mp->m_logname) {
677 error = xfs_blkdev_get(mp, mp->m_logname, &logdev);
678 if (error)
679 goto out;
680 }
681
682 if (mp->m_rtname) {
683 error = xfs_blkdev_get(mp, mp->m_rtname, &rtdev);
684 if (error)
685 goto out_close_logdev;
686
687 if (rtdev == ddev || rtdev == logdev) {
688 xfs_warn(mp,
689 "Cannot mount filesystem with identical rtdev and ddev/logdev.");
690 error = EINVAL;
691 goto out_close_rtdev;
692 }
693 }
694
695 /*
696 * Setup xfs_mount buffer target pointers
697 */
698 error = ENOMEM;
699 mp->m_ddev_targp = xfs_alloc_buftarg(mp, ddev, 0, mp->m_fsname);
700 if (!mp->m_ddev_targp)
701 goto out_close_rtdev;
702
703 if (rtdev) {
704 mp->m_rtdev_targp = xfs_alloc_buftarg(mp, rtdev, 1,
705 mp->m_fsname);
706 if (!mp->m_rtdev_targp)
707 goto out_free_ddev_targ;
708 }
709
710 if (logdev && logdev != ddev) {
711 mp->m_logdev_targp = xfs_alloc_buftarg(mp, logdev, 1,
712 mp->m_fsname);
713 if (!mp->m_logdev_targp)
714 goto out_free_rtdev_targ;
715 } else {
716 mp->m_logdev_targp = mp->m_ddev_targp;
717 }
718
719 return 0;
720
721 out_free_rtdev_targ:
722 if (mp->m_rtdev_targp)
723 xfs_free_buftarg(mp, mp->m_rtdev_targp);
724 out_free_ddev_targ:
725 xfs_free_buftarg(mp, mp->m_ddev_targp);
726 out_close_rtdev:
727 if (rtdev)
728 xfs_blkdev_put(rtdev);
729 out_close_logdev:
730 if (logdev && logdev != ddev)
731 xfs_blkdev_put(logdev);
732 out:
733 return error;
734 }
735
736 /*
737 * Setup xfs_mount buffer target pointers based on superblock
738 */
739 STATIC int
740 xfs_setup_devices(
741 struct xfs_mount *mp)
742 {
743 int error;
744
745 error = xfs_setsize_buftarg(mp->m_ddev_targp, mp->m_sb.sb_blocksize,
746 mp->m_sb.sb_sectsize);
747 if (error)
748 return error;
749
750 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) {
751 unsigned int log_sector_size = BBSIZE;
752
753 if (xfs_sb_version_hassector(&mp->m_sb))
754 log_sector_size = mp->m_sb.sb_logsectsize;
755 error = xfs_setsize_buftarg(mp->m_logdev_targp,
756 mp->m_sb.sb_blocksize,
757 log_sector_size);
758 if (error)
759 return error;
760 }
761 if (mp->m_rtdev_targp) {
762 error = xfs_setsize_buftarg(mp->m_rtdev_targp,
763 mp->m_sb.sb_blocksize,
764 mp->m_sb.sb_sectsize);
765 if (error)
766 return error;
767 }
768
769 return 0;
770 }
771
772 /* Catch misguided souls that try to use this interface on XFS */
773 STATIC struct inode *
774 xfs_fs_alloc_inode(
775 struct super_block *sb)
776 {
777 BUG();
778 return NULL;
779 }
780
781 /*
782 * Now that the generic code is guaranteed not to be accessing
783 * the linux inode, we can reclaim the inode.
784 */
785 STATIC void
786 xfs_fs_destroy_inode(
787 struct inode *inode)
788 {
789 struct xfs_inode *ip = XFS_I(inode);
790
791 trace_xfs_destroy_inode(ip);
792
793 XFS_STATS_INC(vn_reclaim);
794
795 /* bad inode, get out here ASAP */
796 if (is_bad_inode(inode))
797 goto out_reclaim;
798
799 ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) || ip->i_delayed_blks == 0);
800
801 /*
802 * We should never get here with one of the reclaim flags already set.
803 */
804 ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIMABLE));
805 ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIM));
806
807 /*
808 * We always use background reclaim here because even if the
809 * inode is clean, it still may be under IO and hence we have
810 * to take the flush lock. The background reclaim path handles
811 * this more efficiently than we can here, so simply let background
812 * reclaim tear down all inodes.
813 */
814 out_reclaim:
815 xfs_inode_set_reclaim_tag(ip);
816 }
817
818 /*
819 * Slab object creation initialisation for the XFS inode.
820 * This covers only the idempotent fields in the XFS inode;
821 * all other fields need to be initialised on allocation
822 * from the slab. This avoids the need to repeatedly initialise
823 * fields in the xfs inode that left in the initialise state
824 * when freeing the inode.
825 */
826 STATIC void
827 xfs_fs_inode_init_once(
828 void *inode)
829 {
830 struct xfs_inode *ip = inode;
831
832 memset(ip, 0, sizeof(struct xfs_inode));
833
834 /* vfs inode */
835 inode_init_once(VFS_I(ip));
836
837 /* xfs inode */
838 atomic_set(&ip->i_pincount, 0);
839 spin_lock_init(&ip->i_flags_lock);
840 init_waitqueue_head(&ip->i_ipin_wait);
841 /*
842 * Because we want to use a counting completion, complete
843 * the flush completion once to allow a single access to
844 * the flush completion without blocking.
845 */
846 init_completion(&ip->i_flush);
847 complete(&ip->i_flush);
848
849 mrlock_init(&ip->i_lock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER,
850 "xfsino", ip->i_ino);
851 }
852
853 /*
854 * Dirty the XFS inode when mark_inode_dirty_sync() is called so that
855 * we catch unlogged VFS level updates to the inode.
856 *
857 * We need the barrier() to maintain correct ordering between unlogged
858 * updates and the transaction commit code that clears the i_update_core
859 * field. This requires all updates to be completed before marking the
860 * inode dirty.
861 */
862 STATIC void
863 xfs_fs_dirty_inode(
864 struct inode *inode,
865 int flags)
866 {
867 barrier();
868 XFS_I(inode)->i_update_core = 1;
869 }
870
871 STATIC int
872 xfs_log_inode(
873 struct xfs_inode *ip)
874 {
875 struct xfs_mount *mp = ip->i_mount;
876 struct xfs_trans *tp;
877 int error;
878
879 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
880 error = xfs_trans_reserve(tp, 0, XFS_FSYNC_TS_LOG_RES(mp), 0, 0, 0);
881 if (error) {
882 xfs_trans_cancel(tp, 0);
883 return error;
884 }
885
886 xfs_ilock(ip, XFS_ILOCK_EXCL);
887 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
888 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
889 return xfs_trans_commit(tp, 0);
890 }
891
892 STATIC int
893 xfs_fs_write_inode(
894 struct inode *inode,
895 struct writeback_control *wbc)
896 {
897 struct xfs_inode *ip = XFS_I(inode);
898 struct xfs_mount *mp = ip->i_mount;
899 int error = EAGAIN;
900
901 trace_xfs_write_inode(ip);
902
903 if (XFS_FORCED_SHUTDOWN(mp))
904 return -XFS_ERROR(EIO);
905 if (!ip->i_update_core)
906 return 0;
907
908 if (wbc->sync_mode == WB_SYNC_ALL) {
909 /*
910 * Make sure the inode has made it it into the log. Instead
911 * of forcing it all the way to stable storage using a
912 * synchronous transaction we let the log force inside the
913 * ->sync_fs call do that for thus, which reduces the number
914 * of synchronous log forces dramatically.
915 */
916 error = xfs_log_inode(ip);
917 if (error)
918 goto out;
919 return 0;
920 } else {
921 /*
922 * We make this non-blocking if the inode is contended, return
923 * EAGAIN to indicate to the caller that they did not succeed.
924 * This prevents the flush path from blocking on inodes inside
925 * another operation right now, they get caught later by
926 * xfs_sync.
927 */
928 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
929 goto out;
930
931 if (xfs_ipincount(ip) || !xfs_iflock_nowait(ip))
932 goto out_unlock;
933
934 /*
935 * Now we have the flush lock and the inode is not pinned, we
936 * can check if the inode is really clean as we know that
937 * there are no pending transaction completions, it is not
938 * waiting on the delayed write queue and there is no IO in
939 * progress.
940 */
941 if (xfs_inode_clean(ip)) {
942 xfs_ifunlock(ip);
943 error = 0;
944 goto out_unlock;
945 }
946 error = xfs_iflush(ip, SYNC_TRYLOCK);
947 }
948
949 out_unlock:
950 xfs_iunlock(ip, XFS_ILOCK_SHARED);
951 out:
952 /*
953 * if we failed to write out the inode then mark
954 * it dirty again so we'll try again later.
955 */
956 if (error)
957 xfs_mark_inode_dirty_sync(ip);
958 return -error;
959 }
960
961 STATIC void
962 xfs_fs_evict_inode(
963 struct inode *inode)
964 {
965 xfs_inode_t *ip = XFS_I(inode);
966
967 trace_xfs_evict_inode(ip);
968
969 truncate_inode_pages(&inode->i_data, 0);
970 end_writeback(inode);
971 XFS_STATS_INC(vn_rele);
972 XFS_STATS_INC(vn_remove);
973 XFS_STATS_DEC(vn_active);
974
975 /*
976 * The iolock is used by the file system to coordinate reads,
977 * writes, and block truncates. Up to this point the lock
978 * protected concurrent accesses by users of the inode. But
979 * from here forward we're doing some final processing of the
980 * inode because we're done with it, and although we reuse the
981 * iolock for protection it is really a distinct lock class
982 * (in the lockdep sense) from before. To keep lockdep happy
983 * (and basically indicate what we are doing), we explicitly
984 * re-init the iolock here.
985 */
986 ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock));
987 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
988 lockdep_set_class_and_name(&ip->i_iolock.mr_lock,
989 &xfs_iolock_reclaimable, "xfs_iolock_reclaimable");
990
991 xfs_inactive(ip);
992 }
993
994 STATIC void
995 xfs_free_fsname(
996 struct xfs_mount *mp)
997 {
998 kfree(mp->m_fsname);
999 kfree(mp->m_rtname);
1000 kfree(mp->m_logname);
1001 }
1002
1003 STATIC void
1004 xfs_fs_put_super(
1005 struct super_block *sb)
1006 {
1007 struct xfs_mount *mp = XFS_M(sb);
1008
1009 xfs_syncd_stop(mp);
1010
1011 /*
1012 * Blow away any referenced inode in the filestreams cache.
1013 * This can and will cause log traffic as inodes go inactive
1014 * here.
1015 */
1016 xfs_filestream_unmount(mp);
1017
1018 xfs_flush_buftarg(mp->m_ddev_targp, 1);
1019
1020 xfs_unmountfs(mp);
1021 xfs_freesb(mp);
1022 xfs_icsb_destroy_counters(mp);
1023 xfs_close_devices(mp);
1024 xfs_free_fsname(mp);
1025 kfree(mp);
1026 }
1027
1028 STATIC int
1029 xfs_fs_sync_fs(
1030 struct super_block *sb,
1031 int wait)
1032 {
1033 struct xfs_mount *mp = XFS_M(sb);
1034 int error;
1035
1036 /*
1037 * Not much we can do for the first async pass. Writing out the
1038 * superblock would be counter-productive as we are going to redirty
1039 * when writing out other data and metadata (and writing out a single
1040 * block is quite fast anyway).
1041 *
1042 * Try to asynchronously kick off quota syncing at least.
1043 */
1044 if (!wait) {
1045 xfs_qm_sync(mp, SYNC_TRYLOCK);
1046 return 0;
1047 }
1048
1049 error = xfs_quiesce_data(mp);
1050 if (error)
1051 return -error;
1052
1053 if (laptop_mode) {
1054 /*
1055 * The disk must be active because we're syncing.
1056 * We schedule xfssyncd now (now that the disk is
1057 * active) instead of later (when it might not be).
1058 */
1059 flush_delayed_work_sync(&mp->m_sync_work);
1060 }
1061
1062 return 0;
1063 }
1064
1065 STATIC int
1066 xfs_fs_statfs(
1067 struct dentry *dentry,
1068 struct kstatfs *statp)
1069 {
1070 struct xfs_mount *mp = XFS_M(dentry->d_sb);
1071 xfs_sb_t *sbp = &mp->m_sb;
1072 struct xfs_inode *ip = XFS_I(dentry->d_inode);
1073 __uint64_t fakeinos, id;
1074 xfs_extlen_t lsize;
1075 __int64_t ffree;
1076
1077 statp->f_type = XFS_SB_MAGIC;
1078 statp->f_namelen = MAXNAMELEN - 1;
1079
1080 id = huge_encode_dev(mp->m_ddev_targp->bt_dev);
1081 statp->f_fsid.val[0] = (u32)id;
1082 statp->f_fsid.val[1] = (u32)(id >> 32);
1083
1084 xfs_icsb_sync_counters(mp, XFS_ICSB_LAZY_COUNT);
1085
1086 spin_lock(&mp->m_sb_lock);
1087 statp->f_bsize = sbp->sb_blocksize;
1088 lsize = sbp->sb_logstart ? sbp->sb_logblocks : 0;
1089 statp->f_blocks = sbp->sb_dblocks - lsize;
1090 statp->f_bfree = statp->f_bavail =
1091 sbp->sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1092 fakeinos = statp->f_bfree << sbp->sb_inopblog;
1093 statp->f_files =
1094 MIN(sbp->sb_icount + fakeinos, (__uint64_t)XFS_MAXINUMBER);
1095 if (mp->m_maxicount)
1096 statp->f_files = min_t(typeof(statp->f_files),
1097 statp->f_files,
1098 mp->m_maxicount);
1099
1100 /* make sure statp->f_ffree does not underflow */
1101 ffree = statp->f_files - (sbp->sb_icount - sbp->sb_ifree);
1102 statp->f_ffree = max_t(__int64_t, ffree, 0);
1103
1104 spin_unlock(&mp->m_sb_lock);
1105
1106 if ((ip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) ||
1107 ((mp->m_qflags & (XFS_PQUOTA_ACCT|XFS_OQUOTA_ENFD))) ==
1108 (XFS_PQUOTA_ACCT|XFS_OQUOTA_ENFD))
1109 xfs_qm_statvfs(ip, statp);
1110 return 0;
1111 }
1112
1113 STATIC void
1114 xfs_save_resvblks(struct xfs_mount *mp)
1115 {
1116 __uint64_t resblks = 0;
1117
1118 mp->m_resblks_save = mp->m_resblks;
1119 xfs_reserve_blocks(mp, &resblks, NULL);
1120 }
1121
1122 STATIC void
1123 xfs_restore_resvblks(struct xfs_mount *mp)
1124 {
1125 __uint64_t resblks;
1126
1127 if (mp->m_resblks_save) {
1128 resblks = mp->m_resblks_save;
1129 mp->m_resblks_save = 0;
1130 } else
1131 resblks = xfs_default_resblks(mp);
1132
1133 xfs_reserve_blocks(mp, &resblks, NULL);
1134 }
1135
1136 STATIC int
1137 xfs_fs_remount(
1138 struct super_block *sb,
1139 int *flags,
1140 char *options)
1141 {
1142 struct xfs_mount *mp = XFS_M(sb);
1143 substring_t args[MAX_OPT_ARGS];
1144 char *p;
1145 int error;
1146
1147 while ((p = strsep(&options, ",")) != NULL) {
1148 int token;
1149
1150 if (!*p)
1151 continue;
1152
1153 token = match_token(p, tokens, args);
1154 switch (token) {
1155 case Opt_barrier:
1156 mp->m_flags |= XFS_MOUNT_BARRIER;
1157 break;
1158 case Opt_nobarrier:
1159 mp->m_flags &= ~XFS_MOUNT_BARRIER;
1160 break;
1161 default:
1162 /*
1163 * Logically we would return an error here to prevent
1164 * users from believing they might have changed
1165 * mount options using remount which can't be changed.
1166 *
1167 * But unfortunately mount(8) adds all options from
1168 * mtab and fstab to the mount arguments in some cases
1169 * so we can't blindly reject options, but have to
1170 * check for each specified option if it actually
1171 * differs from the currently set option and only
1172 * reject it if that's the case.
1173 *
1174 * Until that is implemented we return success for
1175 * every remount request, and silently ignore all
1176 * options that we can't actually change.
1177 */
1178 #if 0
1179 xfs_info(mp,
1180 "mount option \"%s\" not supported for remount\n", p);
1181 return -EINVAL;
1182 #else
1183 break;
1184 #endif
1185 }
1186 }
1187
1188 /* ro -> rw */
1189 if ((mp->m_flags & XFS_MOUNT_RDONLY) && !(*flags & MS_RDONLY)) {
1190 mp->m_flags &= ~XFS_MOUNT_RDONLY;
1191
1192 /*
1193 * If this is the first remount to writeable state we
1194 * might have some superblock changes to update.
1195 */
1196 if (mp->m_update_flags) {
1197 error = xfs_mount_log_sb(mp, mp->m_update_flags);
1198 if (error) {
1199 xfs_warn(mp, "failed to write sb changes");
1200 return error;
1201 }
1202 mp->m_update_flags = 0;
1203 }
1204
1205 /*
1206 * Fill out the reserve pool if it is empty. Use the stashed
1207 * value if it is non-zero, otherwise go with the default.
1208 */
1209 xfs_restore_resvblks(mp);
1210 }
1211
1212 /* rw -> ro */
1213 if (!(mp->m_flags & XFS_MOUNT_RDONLY) && (*flags & MS_RDONLY)) {
1214 /*
1215 * After we have synced the data but before we sync the
1216 * metadata, we need to free up the reserve block pool so that
1217 * the used block count in the superblock on disk is correct at
1218 * the end of the remount. Stash the current reserve pool size
1219 * so that if we get remounted rw, we can return it to the same
1220 * size.
1221 */
1222
1223 xfs_quiesce_data(mp);
1224 xfs_save_resvblks(mp);
1225 xfs_quiesce_attr(mp);
1226 mp->m_flags |= XFS_MOUNT_RDONLY;
1227 }
1228
1229 return 0;
1230 }
1231
1232 /*
1233 * Second stage of a freeze. The data is already frozen so we only
1234 * need to take care of the metadata. Once that's done write a dummy
1235 * record to dirty the log in case of a crash while frozen.
1236 */
1237 STATIC int
1238 xfs_fs_freeze(
1239 struct super_block *sb)
1240 {
1241 struct xfs_mount *mp = XFS_M(sb);
1242
1243 xfs_save_resvblks(mp);
1244 xfs_quiesce_attr(mp);
1245 return -xfs_fs_log_dummy(mp);
1246 }
1247
1248 STATIC int
1249 xfs_fs_unfreeze(
1250 struct super_block *sb)
1251 {
1252 struct xfs_mount *mp = XFS_M(sb);
1253
1254 xfs_restore_resvblks(mp);
1255 return 0;
1256 }
1257
1258 STATIC int
1259 xfs_fs_show_options(
1260 struct seq_file *m,
1261 struct vfsmount *mnt)
1262 {
1263 return -xfs_showargs(XFS_M(mnt->mnt_sb), m);
1264 }
1265
1266 /*
1267 * This function fills in xfs_mount_t fields based on mount args.
1268 * Note: the superblock _has_ now been read in.
1269 */
1270 STATIC int
1271 xfs_finish_flags(
1272 struct xfs_mount *mp)
1273 {
1274 int ronly = (mp->m_flags & XFS_MOUNT_RDONLY);
1275
1276 /* Fail a mount where the logbuf is smaller than the log stripe */
1277 if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1278 if (mp->m_logbsize <= 0 &&
1279 mp->m_sb.sb_logsunit > XLOG_BIG_RECORD_BSIZE) {
1280 mp->m_logbsize = mp->m_sb.sb_logsunit;
1281 } else if (mp->m_logbsize > 0 &&
1282 mp->m_logbsize < mp->m_sb.sb_logsunit) {
1283 xfs_warn(mp,
1284 "logbuf size must be greater than or equal to log stripe size");
1285 return XFS_ERROR(EINVAL);
1286 }
1287 } else {
1288 /* Fail a mount if the logbuf is larger than 32K */
1289 if (mp->m_logbsize > XLOG_BIG_RECORD_BSIZE) {
1290 xfs_warn(mp,
1291 "logbuf size for version 1 logs must be 16K or 32K");
1292 return XFS_ERROR(EINVAL);
1293 }
1294 }
1295
1296 /*
1297 * mkfs'ed attr2 will turn on attr2 mount unless explicitly
1298 * told by noattr2 to turn it off
1299 */
1300 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1301 !(mp->m_flags & XFS_MOUNT_NOATTR2))
1302 mp->m_flags |= XFS_MOUNT_ATTR2;
1303
1304 /*
1305 * prohibit r/w mounts of read-only filesystems
1306 */
1307 if ((mp->m_sb.sb_flags & XFS_SBF_READONLY) && !ronly) {
1308 xfs_warn(mp,
1309 "cannot mount a read-only filesystem as read-write");
1310 return XFS_ERROR(EROFS);
1311 }
1312
1313 return 0;
1314 }
1315
1316 STATIC int
1317 xfs_fs_fill_super(
1318 struct super_block *sb,
1319 void *data,
1320 int silent)
1321 {
1322 struct inode *root;
1323 struct xfs_mount *mp = NULL;
1324 int flags = 0, error = ENOMEM;
1325
1326 mp = kzalloc(sizeof(struct xfs_mount), GFP_KERNEL);
1327 if (!mp)
1328 goto out;
1329
1330 spin_lock_init(&mp->m_sb_lock);
1331 mutex_init(&mp->m_growlock);
1332 atomic_set(&mp->m_active_trans, 0);
1333
1334 mp->m_super = sb;
1335 sb->s_fs_info = mp;
1336
1337 error = xfs_parseargs(mp, (char *)data);
1338 if (error)
1339 goto out_free_fsname;
1340
1341 sb_min_blocksize(sb, BBSIZE);
1342 sb->s_xattr = xfs_xattr_handlers;
1343 sb->s_export_op = &xfs_export_operations;
1344 #ifdef CONFIG_XFS_QUOTA
1345 sb->s_qcop = &xfs_quotactl_operations;
1346 #endif
1347 sb->s_op = &xfs_super_operations;
1348
1349 if (silent)
1350 flags |= XFS_MFSI_QUIET;
1351
1352 error = xfs_open_devices(mp);
1353 if (error)
1354 goto out_free_fsname;
1355
1356 error = xfs_icsb_init_counters(mp);
1357 if (error)
1358 goto out_close_devices;
1359
1360 error = xfs_readsb(mp, flags);
1361 if (error)
1362 goto out_destroy_counters;
1363
1364 error = xfs_finish_flags(mp);
1365 if (error)
1366 goto out_free_sb;
1367
1368 error = xfs_setup_devices(mp);
1369 if (error)
1370 goto out_free_sb;
1371
1372 error = xfs_filestream_mount(mp);
1373 if (error)
1374 goto out_free_sb;
1375
1376 /*
1377 * we must configure the block size in the superblock before we run the
1378 * full mount process as the mount process can lookup and cache inodes.
1379 * For the same reason we must also initialise the syncd and register
1380 * the inode cache shrinker so that inodes can be reclaimed during
1381 * operations like a quotacheck that iterate all inodes in the
1382 * filesystem.
1383 */
1384 sb->s_magic = XFS_SB_MAGIC;
1385 sb->s_blocksize = mp->m_sb.sb_blocksize;
1386 sb->s_blocksize_bits = ffs(sb->s_blocksize) - 1;
1387 sb->s_maxbytes = xfs_max_file_offset(sb->s_blocksize_bits);
1388 sb->s_time_gran = 1;
1389 set_posix_acl_flag(sb);
1390
1391 error = xfs_mountfs(mp);
1392 if (error)
1393 goto out_filestream_unmount;
1394
1395 error = xfs_syncd_init(mp);
1396 if (error)
1397 goto out_unmount;
1398
1399 root = igrab(VFS_I(mp->m_rootip));
1400 if (!root) {
1401 error = ENOENT;
1402 goto out_syncd_stop;
1403 }
1404 if (is_bad_inode(root)) {
1405 error = EINVAL;
1406 goto out_syncd_stop;
1407 }
1408 sb->s_root = d_alloc_root(root);
1409 if (!sb->s_root) {
1410 error = ENOMEM;
1411 goto out_iput;
1412 }
1413
1414 return 0;
1415
1416 out_filestream_unmount:
1417 xfs_filestream_unmount(mp);
1418 out_free_sb:
1419 xfs_freesb(mp);
1420 out_destroy_counters:
1421 xfs_icsb_destroy_counters(mp);
1422 out_close_devices:
1423 xfs_close_devices(mp);
1424 out_free_fsname:
1425 xfs_free_fsname(mp);
1426 kfree(mp);
1427 out:
1428 return -error;
1429
1430 out_iput:
1431 iput(root);
1432 out_syncd_stop:
1433 xfs_syncd_stop(mp);
1434 out_unmount:
1435 /*
1436 * Blow away any referenced inode in the filestreams cache.
1437 * This can and will cause log traffic as inodes go inactive
1438 * here.
1439 */
1440 xfs_filestream_unmount(mp);
1441
1442 xfs_flush_buftarg(mp->m_ddev_targp, 1);
1443
1444 xfs_unmountfs(mp);
1445 goto out_free_sb;
1446 }
1447
1448 STATIC struct dentry *
1449 xfs_fs_mount(
1450 struct file_system_type *fs_type,
1451 int flags,
1452 const char *dev_name,
1453 void *data)
1454 {
1455 return mount_bdev(fs_type, flags, dev_name, data, xfs_fs_fill_super);
1456 }
1457
1458 static int
1459 xfs_fs_nr_cached_objects(
1460 struct super_block *sb)
1461 {
1462 return xfs_reclaim_inodes_count(XFS_M(sb));
1463 }
1464
1465 static void
1466 xfs_fs_free_cached_objects(
1467 struct super_block *sb,
1468 int nr_to_scan)
1469 {
1470 xfs_reclaim_inodes_nr(XFS_M(sb), nr_to_scan);
1471 }
1472
1473 static const struct super_operations xfs_super_operations = {
1474 .alloc_inode = xfs_fs_alloc_inode,
1475 .destroy_inode = xfs_fs_destroy_inode,
1476 .dirty_inode = xfs_fs_dirty_inode,
1477 .write_inode = xfs_fs_write_inode,
1478 .evict_inode = xfs_fs_evict_inode,
1479 .put_super = xfs_fs_put_super,
1480 .sync_fs = xfs_fs_sync_fs,
1481 .freeze_fs = xfs_fs_freeze,
1482 .unfreeze_fs = xfs_fs_unfreeze,
1483 .statfs = xfs_fs_statfs,
1484 .remount_fs = xfs_fs_remount,
1485 .show_options = xfs_fs_show_options,
1486 .nr_cached_objects = xfs_fs_nr_cached_objects,
1487 .free_cached_objects = xfs_fs_free_cached_objects,
1488 };
1489
1490 static struct file_system_type xfs_fs_type = {
1491 .owner = THIS_MODULE,
1492 .name = "xfs",
1493 .mount = xfs_fs_mount,
1494 .kill_sb = kill_block_super,
1495 .fs_flags = FS_REQUIRES_DEV,
1496 };
1497
1498 STATIC int __init
1499 xfs_init_zones(void)
1500 {
1501
1502 xfs_ioend_zone = kmem_zone_init(sizeof(xfs_ioend_t), "xfs_ioend");
1503 if (!xfs_ioend_zone)
1504 goto out;
1505
1506 xfs_ioend_pool = mempool_create_slab_pool(4 * MAX_BUF_PER_PAGE,
1507 xfs_ioend_zone);
1508 if (!xfs_ioend_pool)
1509 goto out_destroy_ioend_zone;
1510
1511 xfs_log_ticket_zone = kmem_zone_init(sizeof(xlog_ticket_t),
1512 "xfs_log_ticket");
1513 if (!xfs_log_ticket_zone)
1514 goto out_destroy_ioend_pool;
1515
1516 xfs_bmap_free_item_zone = kmem_zone_init(sizeof(xfs_bmap_free_item_t),
1517 "xfs_bmap_free_item");
1518 if (!xfs_bmap_free_item_zone)
1519 goto out_destroy_log_ticket_zone;
1520
1521 xfs_btree_cur_zone = kmem_zone_init(sizeof(xfs_btree_cur_t),
1522 "xfs_btree_cur");
1523 if (!xfs_btree_cur_zone)
1524 goto out_destroy_bmap_free_item_zone;
1525
1526 xfs_da_state_zone = kmem_zone_init(sizeof(xfs_da_state_t),
1527 "xfs_da_state");
1528 if (!xfs_da_state_zone)
1529 goto out_destroy_btree_cur_zone;
1530
1531 xfs_dabuf_zone = kmem_zone_init(sizeof(xfs_dabuf_t), "xfs_dabuf");
1532 if (!xfs_dabuf_zone)
1533 goto out_destroy_da_state_zone;
1534
1535 xfs_ifork_zone = kmem_zone_init(sizeof(xfs_ifork_t), "xfs_ifork");
1536 if (!xfs_ifork_zone)
1537 goto out_destroy_dabuf_zone;
1538
1539 xfs_trans_zone = kmem_zone_init(sizeof(xfs_trans_t), "xfs_trans");
1540 if (!xfs_trans_zone)
1541 goto out_destroy_ifork_zone;
1542
1543 xfs_log_item_desc_zone =
1544 kmem_zone_init(sizeof(struct xfs_log_item_desc),
1545 "xfs_log_item_desc");
1546 if (!xfs_log_item_desc_zone)
1547 goto out_destroy_trans_zone;
1548
1549 /*
1550 * The size of the zone allocated buf log item is the maximum
1551 * size possible under XFS. This wastes a little bit of memory,
1552 * but it is much faster.
1553 */
1554 xfs_buf_item_zone = kmem_zone_init((sizeof(xfs_buf_log_item_t) +
1555 (((XFS_MAX_BLOCKSIZE / XFS_BLF_CHUNK) /
1556 NBWORD) * sizeof(int))), "xfs_buf_item");
1557 if (!xfs_buf_item_zone)
1558 goto out_destroy_log_item_desc_zone;
1559
1560 xfs_efd_zone = kmem_zone_init((sizeof(xfs_efd_log_item_t) +
1561 ((XFS_EFD_MAX_FAST_EXTENTS - 1) *
1562 sizeof(xfs_extent_t))), "xfs_efd_item");
1563 if (!xfs_efd_zone)
1564 goto out_destroy_buf_item_zone;
1565
1566 xfs_efi_zone = kmem_zone_init((sizeof(xfs_efi_log_item_t) +
1567 ((XFS_EFI_MAX_FAST_EXTENTS - 1) *
1568 sizeof(xfs_extent_t))), "xfs_efi_item");
1569 if (!xfs_efi_zone)
1570 goto out_destroy_efd_zone;
1571
1572 xfs_inode_zone =
1573 kmem_zone_init_flags(sizeof(xfs_inode_t), "xfs_inode",
1574 KM_ZONE_HWALIGN | KM_ZONE_RECLAIM | KM_ZONE_SPREAD,
1575 xfs_fs_inode_init_once);
1576 if (!xfs_inode_zone)
1577 goto out_destroy_efi_zone;
1578
1579 xfs_ili_zone =
1580 kmem_zone_init_flags(sizeof(xfs_inode_log_item_t), "xfs_ili",
1581 KM_ZONE_SPREAD, NULL);
1582 if (!xfs_ili_zone)
1583 goto out_destroy_inode_zone;
1584
1585 return 0;
1586
1587 out_destroy_inode_zone:
1588 kmem_zone_destroy(xfs_inode_zone);
1589 out_destroy_efi_zone:
1590 kmem_zone_destroy(xfs_efi_zone);
1591 out_destroy_efd_zone:
1592 kmem_zone_destroy(xfs_efd_zone);
1593 out_destroy_buf_item_zone:
1594 kmem_zone_destroy(xfs_buf_item_zone);
1595 out_destroy_log_item_desc_zone:
1596 kmem_zone_destroy(xfs_log_item_desc_zone);
1597 out_destroy_trans_zone:
1598 kmem_zone_destroy(xfs_trans_zone);
1599 out_destroy_ifork_zone:
1600 kmem_zone_destroy(xfs_ifork_zone);
1601 out_destroy_dabuf_zone:
1602 kmem_zone_destroy(xfs_dabuf_zone);
1603 out_destroy_da_state_zone:
1604 kmem_zone_destroy(xfs_da_state_zone);
1605 out_destroy_btree_cur_zone:
1606 kmem_zone_destroy(xfs_btree_cur_zone);
1607 out_destroy_bmap_free_item_zone:
1608 kmem_zone_destroy(xfs_bmap_free_item_zone);
1609 out_destroy_log_ticket_zone:
1610 kmem_zone_destroy(xfs_log_ticket_zone);
1611 out_destroy_ioend_pool:
1612 mempool_destroy(xfs_ioend_pool);
1613 out_destroy_ioend_zone:
1614 kmem_zone_destroy(xfs_ioend_zone);
1615 out:
1616 return -ENOMEM;
1617 }
1618
1619 STATIC void
1620 xfs_destroy_zones(void)
1621 {
1622 kmem_zone_destroy(xfs_ili_zone);
1623 kmem_zone_destroy(xfs_inode_zone);
1624 kmem_zone_destroy(xfs_efi_zone);
1625 kmem_zone_destroy(xfs_efd_zone);
1626 kmem_zone_destroy(xfs_buf_item_zone);
1627 kmem_zone_destroy(xfs_log_item_desc_zone);
1628 kmem_zone_destroy(xfs_trans_zone);
1629 kmem_zone_destroy(xfs_ifork_zone);
1630 kmem_zone_destroy(xfs_dabuf_zone);
1631 kmem_zone_destroy(xfs_da_state_zone);
1632 kmem_zone_destroy(xfs_btree_cur_zone);
1633 kmem_zone_destroy(xfs_bmap_free_item_zone);
1634 kmem_zone_destroy(xfs_log_ticket_zone);
1635 mempool_destroy(xfs_ioend_pool);
1636 kmem_zone_destroy(xfs_ioend_zone);
1637
1638 }
1639
1640 STATIC int __init
1641 xfs_init_workqueues(void)
1642 {
1643 /*
1644 * max_active is set to 8 to give enough concurency to allow
1645 * multiple work operations on each CPU to run. This allows multiple
1646 * filesystems to be running sync work concurrently, and scales with
1647 * the number of CPUs in the system.
1648 */
1649 xfs_syncd_wq = alloc_workqueue("xfssyncd", WQ_CPU_INTENSIVE, 8);
1650 if (!xfs_syncd_wq)
1651 return -ENOMEM;
1652 return 0;
1653 }
1654
1655 STATIC void
1656 xfs_destroy_workqueues(void)
1657 {
1658 destroy_workqueue(xfs_syncd_wq);
1659 }
1660
1661 STATIC int __init
1662 init_xfs_fs(void)
1663 {
1664 int error;
1665
1666 printk(KERN_INFO XFS_VERSION_STRING " with "
1667 XFS_BUILD_OPTIONS " enabled\n");
1668
1669 xfs_dir_startup();
1670
1671 error = xfs_init_zones();
1672 if (error)
1673 goto out;
1674
1675 error = xfs_init_workqueues();
1676 if (error)
1677 goto out_destroy_zones;
1678
1679 error = xfs_mru_cache_init();
1680 if (error)
1681 goto out_destroy_wq;
1682
1683 error = xfs_filestream_init();
1684 if (error)
1685 goto out_mru_cache_uninit;
1686
1687 error = xfs_buf_init();
1688 if (error)
1689 goto out_filestream_uninit;
1690
1691 error = xfs_init_procfs();
1692 if (error)
1693 goto out_buf_terminate;
1694
1695 error = xfs_sysctl_register();
1696 if (error)
1697 goto out_cleanup_procfs;
1698
1699 vfs_initquota();
1700
1701 error = register_filesystem(&xfs_fs_type);
1702 if (error)
1703 goto out_sysctl_unregister;
1704 return 0;
1705
1706 out_sysctl_unregister:
1707 xfs_sysctl_unregister();
1708 out_cleanup_procfs:
1709 xfs_cleanup_procfs();
1710 out_buf_terminate:
1711 xfs_buf_terminate();
1712 out_filestream_uninit:
1713 xfs_filestream_uninit();
1714 out_mru_cache_uninit:
1715 xfs_mru_cache_uninit();
1716 out_destroy_wq:
1717 xfs_destroy_workqueues();
1718 out_destroy_zones:
1719 xfs_destroy_zones();
1720 out:
1721 return error;
1722 }
1723
1724 STATIC void __exit
1725 exit_xfs_fs(void)
1726 {
1727 vfs_exitquota();
1728 unregister_filesystem(&xfs_fs_type);
1729 xfs_sysctl_unregister();
1730 xfs_cleanup_procfs();
1731 xfs_buf_terminate();
1732 xfs_filestream_uninit();
1733 xfs_mru_cache_uninit();
1734 xfs_destroy_workqueues();
1735 xfs_destroy_zones();
1736 }
1737
1738 module_init(init_xfs_fs);
1739 module_exit(exit_xfs_fs);
1740
1741 MODULE_AUTHOR("Silicon Graphics, Inc.");
1742 MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled");
1743 MODULE_LICENSE("GPL");
This page took 0.076351 seconds and 6 git commands to generate.