xfs: syncd workqueue is no more
[deliverable/linux.git] / fs / xfs / xfs_sync.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_log.h"
22 #include "xfs_log_priv.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_trans_priv.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_mount.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_inode.h"
31 #include "xfs_dinode.h"
32 #include "xfs_error.h"
33 #include "xfs_filestream.h"
34 #include "xfs_vnodeops.h"
35 #include "xfs_inode_item.h"
36 #include "xfs_quota.h"
37 #include "xfs_trace.h"
38 #include "xfs_fsops.h"
39
40 #include <linux/kthread.h>
41 #include <linux/freezer.h>
42
43 /*
44 * The inode lookup is done in batches to keep the amount of lock traffic and
45 * radix tree lookups to a minimum. The batch size is a trade off between
46 * lookup reduction and stack usage. This is in the reclaim path, so we can't
47 * be too greedy.
48 */
49 #define XFS_LOOKUP_BATCH 32
50
51 STATIC int
52 xfs_inode_ag_walk_grab(
53 struct xfs_inode *ip)
54 {
55 struct inode *inode = VFS_I(ip);
56
57 ASSERT(rcu_read_lock_held());
58
59 /*
60 * check for stale RCU freed inode
61 *
62 * If the inode has been reallocated, it doesn't matter if it's not in
63 * the AG we are walking - we are walking for writeback, so if it
64 * passes all the "valid inode" checks and is dirty, then we'll write
65 * it back anyway. If it has been reallocated and still being
66 * initialised, the XFS_INEW check below will catch it.
67 */
68 spin_lock(&ip->i_flags_lock);
69 if (!ip->i_ino)
70 goto out_unlock_noent;
71
72 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
73 if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
74 goto out_unlock_noent;
75 spin_unlock(&ip->i_flags_lock);
76
77 /* nothing to sync during shutdown */
78 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
79 return EFSCORRUPTED;
80
81 /* If we can't grab the inode, it must on it's way to reclaim. */
82 if (!igrab(inode))
83 return ENOENT;
84
85 if (is_bad_inode(inode)) {
86 IRELE(ip);
87 return ENOENT;
88 }
89
90 /* inode is valid */
91 return 0;
92
93 out_unlock_noent:
94 spin_unlock(&ip->i_flags_lock);
95 return ENOENT;
96 }
97
98 STATIC int
99 xfs_inode_ag_walk(
100 struct xfs_mount *mp,
101 struct xfs_perag *pag,
102 int (*execute)(struct xfs_inode *ip,
103 struct xfs_perag *pag, int flags),
104 int flags)
105 {
106 uint32_t first_index;
107 int last_error = 0;
108 int skipped;
109 int done;
110 int nr_found;
111
112 restart:
113 done = 0;
114 skipped = 0;
115 first_index = 0;
116 nr_found = 0;
117 do {
118 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
119 int error = 0;
120 int i;
121
122 rcu_read_lock();
123 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
124 (void **)batch, first_index,
125 XFS_LOOKUP_BATCH);
126 if (!nr_found) {
127 rcu_read_unlock();
128 break;
129 }
130
131 /*
132 * Grab the inodes before we drop the lock. if we found
133 * nothing, nr == 0 and the loop will be skipped.
134 */
135 for (i = 0; i < nr_found; i++) {
136 struct xfs_inode *ip = batch[i];
137
138 if (done || xfs_inode_ag_walk_grab(ip))
139 batch[i] = NULL;
140
141 /*
142 * Update the index for the next lookup. Catch
143 * overflows into the next AG range which can occur if
144 * we have inodes in the last block of the AG and we
145 * are currently pointing to the last inode.
146 *
147 * Because we may see inodes that are from the wrong AG
148 * due to RCU freeing and reallocation, only update the
149 * index if it lies in this AG. It was a race that lead
150 * us to see this inode, so another lookup from the
151 * same index will not find it again.
152 */
153 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
154 continue;
155 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
156 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
157 done = 1;
158 }
159
160 /* unlock now we've grabbed the inodes. */
161 rcu_read_unlock();
162
163 for (i = 0; i < nr_found; i++) {
164 if (!batch[i])
165 continue;
166 error = execute(batch[i], pag, flags);
167 IRELE(batch[i]);
168 if (error == EAGAIN) {
169 skipped++;
170 continue;
171 }
172 if (error && last_error != EFSCORRUPTED)
173 last_error = error;
174 }
175
176 /* bail out if the filesystem is corrupted. */
177 if (error == EFSCORRUPTED)
178 break;
179
180 cond_resched();
181
182 } while (nr_found && !done);
183
184 if (skipped) {
185 delay(1);
186 goto restart;
187 }
188 return last_error;
189 }
190
191 int
192 xfs_inode_ag_iterator(
193 struct xfs_mount *mp,
194 int (*execute)(struct xfs_inode *ip,
195 struct xfs_perag *pag, int flags),
196 int flags)
197 {
198 struct xfs_perag *pag;
199 int error = 0;
200 int last_error = 0;
201 xfs_agnumber_t ag;
202
203 ag = 0;
204 while ((pag = xfs_perag_get(mp, ag))) {
205 ag = pag->pag_agno + 1;
206 error = xfs_inode_ag_walk(mp, pag, execute, flags);
207 xfs_perag_put(pag);
208 if (error) {
209 last_error = error;
210 if (error == EFSCORRUPTED)
211 break;
212 }
213 }
214 return XFS_ERROR(last_error);
215 }
216
217 STATIC int
218 xfs_sync_fsdata(
219 struct xfs_mount *mp)
220 {
221 struct xfs_buf *bp;
222 int error;
223
224 /*
225 * If the buffer is pinned then push on the log so we won't get stuck
226 * waiting in the write for someone, maybe ourselves, to flush the log.
227 *
228 * Even though we just pushed the log above, we did not have the
229 * superblock buffer locked at that point so it can become pinned in
230 * between there and here.
231 */
232 bp = xfs_getsb(mp, 0);
233 if (xfs_buf_ispinned(bp))
234 xfs_log_force(mp, 0);
235 error = xfs_bwrite(bp);
236 xfs_buf_relse(bp);
237 return error;
238 }
239
240 /*
241 * When remounting a filesystem read-only or freezing the filesystem, we have
242 * two phases to execute. This first phase is syncing the data before we
243 * quiesce the filesystem, and the second is flushing all the inodes out after
244 * we've waited for all the transactions created by the first phase to
245 * complete. The second phase ensures that the inodes are written to their
246 * location on disk rather than just existing in transactions in the log. This
247 * means after a quiesce there is no log replay required to write the inodes to
248 * disk (this is the main difference between a sync and a quiesce).
249 */
250 /*
251 * First stage of freeze - no writers will make progress now we are here,
252 * so we flush delwri and delalloc buffers here, then wait for all I/O to
253 * complete. Data is frozen at that point. Metadata is not frozen,
254 * transactions can still occur here so don't bother emptying the AIL
255 * because it'll just get dirty again.
256 */
257 int
258 xfs_quiesce_data(
259 struct xfs_mount *mp)
260 {
261 int error, error2 = 0;
262
263 /* force out the log */
264 xfs_log_force(mp, XFS_LOG_SYNC);
265
266 /* write superblock and hoover up shutdown errors */
267 error = xfs_sync_fsdata(mp);
268
269 /* mark the log as covered if needed */
270 if (xfs_log_need_covered(mp))
271 error2 = xfs_fs_log_dummy(mp);
272
273 return error ? error : error2;
274 }
275
276 /*
277 * Second stage of a quiesce. The data is already synced, now we have to take
278 * care of the metadata. New transactions are already blocked, so we need to
279 * wait for any remaining transactions to drain out before proceeding.
280 *
281 * Note: this stops background sync work - the callers must ensure it is started
282 * again when appropriate.
283 */
284 void
285 xfs_quiesce_attr(
286 struct xfs_mount *mp)
287 {
288 int error = 0;
289
290 /* wait for all modifications to complete */
291 while (atomic_read(&mp->m_active_trans) > 0)
292 delay(100);
293
294 /* reclaim inodes to do any IO before the freeze completes */
295 xfs_reclaim_inodes(mp, 0);
296 xfs_reclaim_inodes(mp, SYNC_WAIT);
297
298 /* flush all pending changes from the AIL */
299 xfs_ail_push_all_sync(mp->m_ail);
300
301 /* stop background log work */
302 cancel_delayed_work_sync(&mp->m_log->l_work);
303
304 /*
305 * Just warn here till VFS can correctly support
306 * read-only remount without racing.
307 */
308 WARN_ON(atomic_read(&mp->m_active_trans) != 0);
309
310 /* Push the superblock and write an unmount record */
311 error = xfs_log_sbcount(mp);
312 if (error)
313 xfs_warn(mp, "xfs_attr_quiesce: failed to log sb changes. "
314 "Frozen image may not be consistent.");
315 xfs_log_unmount_write(mp);
316
317 /*
318 * At this point we might have modified the superblock again and thus
319 * added an item to the AIL, thus flush it again.
320 */
321 xfs_ail_push_all_sync(mp->m_ail);
322
323 /*
324 * The superblock buffer is uncached and xfsaild_push() will lock and
325 * set the XBF_ASYNC flag on the buffer. We cannot do xfs_buf_iowait()
326 * here but a lock on the superblock buffer will block until iodone()
327 * has completed.
328 */
329 xfs_buf_lock(mp->m_sb_bp);
330 xfs_buf_unlock(mp->m_sb_bp);
331 }
332
333 /*
334 * Queue a new inode reclaim pass if there are reclaimable inodes and there
335 * isn't a reclaim pass already in progress. By default it runs every 5s based
336 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
337 * tunable, but that can be done if this method proves to be ineffective or too
338 * aggressive.
339 */
340 static void
341 xfs_reclaim_work_queue(
342 struct xfs_mount *mp)
343 {
344
345 rcu_read_lock();
346 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
347 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
348 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
349 }
350 rcu_read_unlock();
351 }
352
353 /*
354 * This is a fast pass over the inode cache to try to get reclaim moving on as
355 * many inodes as possible in a short period of time. It kicks itself every few
356 * seconds, as well as being kicked by the inode cache shrinker when memory
357 * goes low. It scans as quickly as possible avoiding locked inodes or those
358 * already being flushed, and once done schedules a future pass.
359 */
360 void
361 xfs_reclaim_worker(
362 struct work_struct *work)
363 {
364 struct xfs_mount *mp = container_of(to_delayed_work(work),
365 struct xfs_mount, m_reclaim_work);
366
367 xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
368 xfs_reclaim_work_queue(mp);
369 }
370
371 void
372 __xfs_inode_set_reclaim_tag(
373 struct xfs_perag *pag,
374 struct xfs_inode *ip)
375 {
376 radix_tree_tag_set(&pag->pag_ici_root,
377 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
378 XFS_ICI_RECLAIM_TAG);
379
380 if (!pag->pag_ici_reclaimable) {
381 /* propagate the reclaim tag up into the perag radix tree */
382 spin_lock(&ip->i_mount->m_perag_lock);
383 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
384 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
385 XFS_ICI_RECLAIM_TAG);
386 spin_unlock(&ip->i_mount->m_perag_lock);
387
388 /* schedule periodic background inode reclaim */
389 xfs_reclaim_work_queue(ip->i_mount);
390
391 trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
392 -1, _RET_IP_);
393 }
394 pag->pag_ici_reclaimable++;
395 }
396
397 /*
398 * We set the inode flag atomically with the radix tree tag.
399 * Once we get tag lookups on the radix tree, this inode flag
400 * can go away.
401 */
402 void
403 xfs_inode_set_reclaim_tag(
404 xfs_inode_t *ip)
405 {
406 struct xfs_mount *mp = ip->i_mount;
407 struct xfs_perag *pag;
408
409 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
410 spin_lock(&pag->pag_ici_lock);
411 spin_lock(&ip->i_flags_lock);
412 __xfs_inode_set_reclaim_tag(pag, ip);
413 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
414 spin_unlock(&ip->i_flags_lock);
415 spin_unlock(&pag->pag_ici_lock);
416 xfs_perag_put(pag);
417 }
418
419 STATIC void
420 __xfs_inode_clear_reclaim(
421 xfs_perag_t *pag,
422 xfs_inode_t *ip)
423 {
424 pag->pag_ici_reclaimable--;
425 if (!pag->pag_ici_reclaimable) {
426 /* clear the reclaim tag from the perag radix tree */
427 spin_lock(&ip->i_mount->m_perag_lock);
428 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
429 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
430 XFS_ICI_RECLAIM_TAG);
431 spin_unlock(&ip->i_mount->m_perag_lock);
432 trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
433 -1, _RET_IP_);
434 }
435 }
436
437 void
438 __xfs_inode_clear_reclaim_tag(
439 xfs_mount_t *mp,
440 xfs_perag_t *pag,
441 xfs_inode_t *ip)
442 {
443 radix_tree_tag_clear(&pag->pag_ici_root,
444 XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
445 __xfs_inode_clear_reclaim(pag, ip);
446 }
447
448 /*
449 * Grab the inode for reclaim exclusively.
450 * Return 0 if we grabbed it, non-zero otherwise.
451 */
452 STATIC int
453 xfs_reclaim_inode_grab(
454 struct xfs_inode *ip,
455 int flags)
456 {
457 ASSERT(rcu_read_lock_held());
458
459 /* quick check for stale RCU freed inode */
460 if (!ip->i_ino)
461 return 1;
462
463 /*
464 * If we are asked for non-blocking operation, do unlocked checks to
465 * see if the inode already is being flushed or in reclaim to avoid
466 * lock traffic.
467 */
468 if ((flags & SYNC_TRYLOCK) &&
469 __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
470 return 1;
471
472 /*
473 * The radix tree lock here protects a thread in xfs_iget from racing
474 * with us starting reclaim on the inode. Once we have the
475 * XFS_IRECLAIM flag set it will not touch us.
476 *
477 * Due to RCU lookup, we may find inodes that have been freed and only
478 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
479 * aren't candidates for reclaim at all, so we must check the
480 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
481 */
482 spin_lock(&ip->i_flags_lock);
483 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
484 __xfs_iflags_test(ip, XFS_IRECLAIM)) {
485 /* not a reclaim candidate. */
486 spin_unlock(&ip->i_flags_lock);
487 return 1;
488 }
489 __xfs_iflags_set(ip, XFS_IRECLAIM);
490 spin_unlock(&ip->i_flags_lock);
491 return 0;
492 }
493
494 /*
495 * Inodes in different states need to be treated differently. The following
496 * table lists the inode states and the reclaim actions necessary:
497 *
498 * inode state iflush ret required action
499 * --------------- ---------- ---------------
500 * bad - reclaim
501 * shutdown EIO unpin and reclaim
502 * clean, unpinned 0 reclaim
503 * stale, unpinned 0 reclaim
504 * clean, pinned(*) 0 requeue
505 * stale, pinned EAGAIN requeue
506 * dirty, async - requeue
507 * dirty, sync 0 reclaim
508 *
509 * (*) dgc: I don't think the clean, pinned state is possible but it gets
510 * handled anyway given the order of checks implemented.
511 *
512 * Also, because we get the flush lock first, we know that any inode that has
513 * been flushed delwri has had the flush completed by the time we check that
514 * the inode is clean.
515 *
516 * Note that because the inode is flushed delayed write by AIL pushing, the
517 * flush lock may already be held here and waiting on it can result in very
518 * long latencies. Hence for sync reclaims, where we wait on the flush lock,
519 * the caller should push the AIL first before trying to reclaim inodes to
520 * minimise the amount of time spent waiting. For background relaim, we only
521 * bother to reclaim clean inodes anyway.
522 *
523 * Hence the order of actions after gaining the locks should be:
524 * bad => reclaim
525 * shutdown => unpin and reclaim
526 * pinned, async => requeue
527 * pinned, sync => unpin
528 * stale => reclaim
529 * clean => reclaim
530 * dirty, async => requeue
531 * dirty, sync => flush, wait and reclaim
532 */
533 STATIC int
534 xfs_reclaim_inode(
535 struct xfs_inode *ip,
536 struct xfs_perag *pag,
537 int sync_mode)
538 {
539 struct xfs_buf *bp = NULL;
540 int error;
541
542 restart:
543 error = 0;
544 xfs_ilock(ip, XFS_ILOCK_EXCL);
545 if (!xfs_iflock_nowait(ip)) {
546 if (!(sync_mode & SYNC_WAIT))
547 goto out;
548 xfs_iflock(ip);
549 }
550
551 if (is_bad_inode(VFS_I(ip)))
552 goto reclaim;
553 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
554 xfs_iunpin_wait(ip);
555 xfs_iflush_abort(ip, false);
556 goto reclaim;
557 }
558 if (xfs_ipincount(ip)) {
559 if (!(sync_mode & SYNC_WAIT))
560 goto out_ifunlock;
561 xfs_iunpin_wait(ip);
562 }
563 if (xfs_iflags_test(ip, XFS_ISTALE))
564 goto reclaim;
565 if (xfs_inode_clean(ip))
566 goto reclaim;
567
568 /*
569 * Never flush out dirty data during non-blocking reclaim, as it would
570 * just contend with AIL pushing trying to do the same job.
571 */
572 if (!(sync_mode & SYNC_WAIT))
573 goto out_ifunlock;
574
575 /*
576 * Now we have an inode that needs flushing.
577 *
578 * Note that xfs_iflush will never block on the inode buffer lock, as
579 * xfs_ifree_cluster() can lock the inode buffer before it locks the
580 * ip->i_lock, and we are doing the exact opposite here. As a result,
581 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
582 * result in an ABBA deadlock with xfs_ifree_cluster().
583 *
584 * As xfs_ifree_cluser() must gather all inodes that are active in the
585 * cache to mark them stale, if we hit this case we don't actually want
586 * to do IO here - we want the inode marked stale so we can simply
587 * reclaim it. Hence if we get an EAGAIN error here, just unlock the
588 * inode, back off and try again. Hopefully the next pass through will
589 * see the stale flag set on the inode.
590 */
591 error = xfs_iflush(ip, &bp);
592 if (error == EAGAIN) {
593 xfs_iunlock(ip, XFS_ILOCK_EXCL);
594 /* backoff longer than in xfs_ifree_cluster */
595 delay(2);
596 goto restart;
597 }
598
599 if (!error) {
600 error = xfs_bwrite(bp);
601 xfs_buf_relse(bp);
602 }
603
604 xfs_iflock(ip);
605 reclaim:
606 xfs_ifunlock(ip);
607 xfs_iunlock(ip, XFS_ILOCK_EXCL);
608
609 XFS_STATS_INC(xs_ig_reclaims);
610 /*
611 * Remove the inode from the per-AG radix tree.
612 *
613 * Because radix_tree_delete won't complain even if the item was never
614 * added to the tree assert that it's been there before to catch
615 * problems with the inode life time early on.
616 */
617 spin_lock(&pag->pag_ici_lock);
618 if (!radix_tree_delete(&pag->pag_ici_root,
619 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino)))
620 ASSERT(0);
621 __xfs_inode_clear_reclaim(pag, ip);
622 spin_unlock(&pag->pag_ici_lock);
623
624 /*
625 * Here we do an (almost) spurious inode lock in order to coordinate
626 * with inode cache radix tree lookups. This is because the lookup
627 * can reference the inodes in the cache without taking references.
628 *
629 * We make that OK here by ensuring that we wait until the inode is
630 * unlocked after the lookup before we go ahead and free it.
631 */
632 xfs_ilock(ip, XFS_ILOCK_EXCL);
633 xfs_qm_dqdetach(ip);
634 xfs_iunlock(ip, XFS_ILOCK_EXCL);
635
636 xfs_inode_free(ip);
637 return error;
638
639 out_ifunlock:
640 xfs_ifunlock(ip);
641 out:
642 xfs_iflags_clear(ip, XFS_IRECLAIM);
643 xfs_iunlock(ip, XFS_ILOCK_EXCL);
644 /*
645 * We could return EAGAIN here to make reclaim rescan the inode tree in
646 * a short while. However, this just burns CPU time scanning the tree
647 * waiting for IO to complete and the reclaim work never goes back to
648 * the idle state. Instead, return 0 to let the next scheduled
649 * background reclaim attempt to reclaim the inode again.
650 */
651 return 0;
652 }
653
654 /*
655 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
656 * corrupted, we still want to try to reclaim all the inodes. If we don't,
657 * then a shut down during filesystem unmount reclaim walk leak all the
658 * unreclaimed inodes.
659 */
660 int
661 xfs_reclaim_inodes_ag(
662 struct xfs_mount *mp,
663 int flags,
664 int *nr_to_scan)
665 {
666 struct xfs_perag *pag;
667 int error = 0;
668 int last_error = 0;
669 xfs_agnumber_t ag;
670 int trylock = flags & SYNC_TRYLOCK;
671 int skipped;
672
673 restart:
674 ag = 0;
675 skipped = 0;
676 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
677 unsigned long first_index = 0;
678 int done = 0;
679 int nr_found = 0;
680
681 ag = pag->pag_agno + 1;
682
683 if (trylock) {
684 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
685 skipped++;
686 xfs_perag_put(pag);
687 continue;
688 }
689 first_index = pag->pag_ici_reclaim_cursor;
690 } else
691 mutex_lock(&pag->pag_ici_reclaim_lock);
692
693 do {
694 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
695 int i;
696
697 rcu_read_lock();
698 nr_found = radix_tree_gang_lookup_tag(
699 &pag->pag_ici_root,
700 (void **)batch, first_index,
701 XFS_LOOKUP_BATCH,
702 XFS_ICI_RECLAIM_TAG);
703 if (!nr_found) {
704 done = 1;
705 rcu_read_unlock();
706 break;
707 }
708
709 /*
710 * Grab the inodes before we drop the lock. if we found
711 * nothing, nr == 0 and the loop will be skipped.
712 */
713 for (i = 0; i < nr_found; i++) {
714 struct xfs_inode *ip = batch[i];
715
716 if (done || xfs_reclaim_inode_grab(ip, flags))
717 batch[i] = NULL;
718
719 /*
720 * Update the index for the next lookup. Catch
721 * overflows into the next AG range which can
722 * occur if we have inodes in the last block of
723 * the AG and we are currently pointing to the
724 * last inode.
725 *
726 * Because we may see inodes that are from the
727 * wrong AG due to RCU freeing and
728 * reallocation, only update the index if it
729 * lies in this AG. It was a race that lead us
730 * to see this inode, so another lookup from
731 * the same index will not find it again.
732 */
733 if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
734 pag->pag_agno)
735 continue;
736 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
737 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
738 done = 1;
739 }
740
741 /* unlock now we've grabbed the inodes. */
742 rcu_read_unlock();
743
744 for (i = 0; i < nr_found; i++) {
745 if (!batch[i])
746 continue;
747 error = xfs_reclaim_inode(batch[i], pag, flags);
748 if (error && last_error != EFSCORRUPTED)
749 last_error = error;
750 }
751
752 *nr_to_scan -= XFS_LOOKUP_BATCH;
753
754 cond_resched();
755
756 } while (nr_found && !done && *nr_to_scan > 0);
757
758 if (trylock && !done)
759 pag->pag_ici_reclaim_cursor = first_index;
760 else
761 pag->pag_ici_reclaim_cursor = 0;
762 mutex_unlock(&pag->pag_ici_reclaim_lock);
763 xfs_perag_put(pag);
764 }
765
766 /*
767 * if we skipped any AG, and we still have scan count remaining, do
768 * another pass this time using blocking reclaim semantics (i.e
769 * waiting on the reclaim locks and ignoring the reclaim cursors). This
770 * ensure that when we get more reclaimers than AGs we block rather
771 * than spin trying to execute reclaim.
772 */
773 if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
774 trylock = 0;
775 goto restart;
776 }
777 return XFS_ERROR(last_error);
778 }
779
780 int
781 xfs_reclaim_inodes(
782 xfs_mount_t *mp,
783 int mode)
784 {
785 int nr_to_scan = INT_MAX;
786
787 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
788 }
789
790 /*
791 * Scan a certain number of inodes for reclaim.
792 *
793 * When called we make sure that there is a background (fast) inode reclaim in
794 * progress, while we will throttle the speed of reclaim via doing synchronous
795 * reclaim of inodes. That means if we come across dirty inodes, we wait for
796 * them to be cleaned, which we hope will not be very long due to the
797 * background walker having already kicked the IO off on those dirty inodes.
798 */
799 void
800 xfs_reclaim_inodes_nr(
801 struct xfs_mount *mp,
802 int nr_to_scan)
803 {
804 /* kick background reclaimer and push the AIL */
805 xfs_reclaim_work_queue(mp);
806 xfs_ail_push_all(mp->m_ail);
807
808 xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
809 }
810
811 /*
812 * Return the number of reclaimable inodes in the filesystem for
813 * the shrinker to determine how much to reclaim.
814 */
815 int
816 xfs_reclaim_inodes_count(
817 struct xfs_mount *mp)
818 {
819 struct xfs_perag *pag;
820 xfs_agnumber_t ag = 0;
821 int reclaimable = 0;
822
823 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
824 ag = pag->pag_agno + 1;
825 reclaimable += pag->pag_ici_reclaimable;
826 xfs_perag_put(pag);
827 }
828 return reclaimable;
829 }
830
This page took 0.047851 seconds and 5 git commands to generate.