xfs: pass shutdown method into xfs_trans_ail_delete_bulk
[deliverable/linux.git] / fs / xfs / xfs_sync.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_trans_priv.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_mount.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_inode.h"
31 #include "xfs_dinode.h"
32 #include "xfs_error.h"
33 #include "xfs_filestream.h"
34 #include "xfs_vnodeops.h"
35 #include "xfs_inode_item.h"
36 #include "xfs_quota.h"
37 #include "xfs_trace.h"
38 #include "xfs_fsops.h"
39
40 #include <linux/kthread.h>
41 #include <linux/freezer.h>
42
43 struct workqueue_struct *xfs_syncd_wq; /* sync workqueue */
44
45 /*
46 * The inode lookup is done in batches to keep the amount of lock traffic and
47 * radix tree lookups to a minimum. The batch size is a trade off between
48 * lookup reduction and stack usage. This is in the reclaim path, so we can't
49 * be too greedy.
50 */
51 #define XFS_LOOKUP_BATCH 32
52
53 STATIC int
54 xfs_inode_ag_walk_grab(
55 struct xfs_inode *ip)
56 {
57 struct inode *inode = VFS_I(ip);
58
59 ASSERT(rcu_read_lock_held());
60
61 /*
62 * check for stale RCU freed inode
63 *
64 * If the inode has been reallocated, it doesn't matter if it's not in
65 * the AG we are walking - we are walking for writeback, so if it
66 * passes all the "valid inode" checks and is dirty, then we'll write
67 * it back anyway. If it has been reallocated and still being
68 * initialised, the XFS_INEW check below will catch it.
69 */
70 spin_lock(&ip->i_flags_lock);
71 if (!ip->i_ino)
72 goto out_unlock_noent;
73
74 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
75 if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
76 goto out_unlock_noent;
77 spin_unlock(&ip->i_flags_lock);
78
79 /* nothing to sync during shutdown */
80 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
81 return EFSCORRUPTED;
82
83 /* If we can't grab the inode, it must on it's way to reclaim. */
84 if (!igrab(inode))
85 return ENOENT;
86
87 if (is_bad_inode(inode)) {
88 IRELE(ip);
89 return ENOENT;
90 }
91
92 /* inode is valid */
93 return 0;
94
95 out_unlock_noent:
96 spin_unlock(&ip->i_flags_lock);
97 return ENOENT;
98 }
99
100 STATIC int
101 xfs_inode_ag_walk(
102 struct xfs_mount *mp,
103 struct xfs_perag *pag,
104 int (*execute)(struct xfs_inode *ip,
105 struct xfs_perag *pag, int flags),
106 int flags)
107 {
108 uint32_t first_index;
109 int last_error = 0;
110 int skipped;
111 int done;
112 int nr_found;
113
114 restart:
115 done = 0;
116 skipped = 0;
117 first_index = 0;
118 nr_found = 0;
119 do {
120 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
121 int error = 0;
122 int i;
123
124 rcu_read_lock();
125 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
126 (void **)batch, first_index,
127 XFS_LOOKUP_BATCH);
128 if (!nr_found) {
129 rcu_read_unlock();
130 break;
131 }
132
133 /*
134 * Grab the inodes before we drop the lock. if we found
135 * nothing, nr == 0 and the loop will be skipped.
136 */
137 for (i = 0; i < nr_found; i++) {
138 struct xfs_inode *ip = batch[i];
139
140 if (done || xfs_inode_ag_walk_grab(ip))
141 batch[i] = NULL;
142
143 /*
144 * Update the index for the next lookup. Catch
145 * overflows into the next AG range which can occur if
146 * we have inodes in the last block of the AG and we
147 * are currently pointing to the last inode.
148 *
149 * Because we may see inodes that are from the wrong AG
150 * due to RCU freeing and reallocation, only update the
151 * index if it lies in this AG. It was a race that lead
152 * us to see this inode, so another lookup from the
153 * same index will not find it again.
154 */
155 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
156 continue;
157 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
158 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
159 done = 1;
160 }
161
162 /* unlock now we've grabbed the inodes. */
163 rcu_read_unlock();
164
165 for (i = 0; i < nr_found; i++) {
166 if (!batch[i])
167 continue;
168 error = execute(batch[i], pag, flags);
169 IRELE(batch[i]);
170 if (error == EAGAIN) {
171 skipped++;
172 continue;
173 }
174 if (error && last_error != EFSCORRUPTED)
175 last_error = error;
176 }
177
178 /* bail out if the filesystem is corrupted. */
179 if (error == EFSCORRUPTED)
180 break;
181
182 cond_resched();
183
184 } while (nr_found && !done);
185
186 if (skipped) {
187 delay(1);
188 goto restart;
189 }
190 return last_error;
191 }
192
193 int
194 xfs_inode_ag_iterator(
195 struct xfs_mount *mp,
196 int (*execute)(struct xfs_inode *ip,
197 struct xfs_perag *pag, int flags),
198 int flags)
199 {
200 struct xfs_perag *pag;
201 int error = 0;
202 int last_error = 0;
203 xfs_agnumber_t ag;
204
205 ag = 0;
206 while ((pag = xfs_perag_get(mp, ag))) {
207 ag = pag->pag_agno + 1;
208 error = xfs_inode_ag_walk(mp, pag, execute, flags);
209 xfs_perag_put(pag);
210 if (error) {
211 last_error = error;
212 if (error == EFSCORRUPTED)
213 break;
214 }
215 }
216 return XFS_ERROR(last_error);
217 }
218
219 STATIC int
220 xfs_sync_inode_data(
221 struct xfs_inode *ip,
222 struct xfs_perag *pag,
223 int flags)
224 {
225 struct inode *inode = VFS_I(ip);
226 struct address_space *mapping = inode->i_mapping;
227 int error = 0;
228
229 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
230 return 0;
231
232 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) {
233 if (flags & SYNC_TRYLOCK)
234 return 0;
235 xfs_ilock(ip, XFS_IOLOCK_SHARED);
236 }
237
238 error = xfs_flush_pages(ip, 0, -1, (flags & SYNC_WAIT) ?
239 0 : XBF_ASYNC, FI_NONE);
240 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
241 return error;
242 }
243
244 /*
245 * Write out pagecache data for the whole filesystem.
246 */
247 STATIC int
248 xfs_sync_data(
249 struct xfs_mount *mp,
250 int flags)
251 {
252 int error;
253
254 ASSERT((flags & ~(SYNC_TRYLOCK|SYNC_WAIT)) == 0);
255
256 error = xfs_inode_ag_iterator(mp, xfs_sync_inode_data, flags);
257 if (error)
258 return XFS_ERROR(error);
259
260 xfs_log_force(mp, (flags & SYNC_WAIT) ? XFS_LOG_SYNC : 0);
261 return 0;
262 }
263
264 STATIC int
265 xfs_sync_fsdata(
266 struct xfs_mount *mp)
267 {
268 struct xfs_buf *bp;
269 int error;
270
271 /*
272 * If the buffer is pinned then push on the log so we won't get stuck
273 * waiting in the write for someone, maybe ourselves, to flush the log.
274 *
275 * Even though we just pushed the log above, we did not have the
276 * superblock buffer locked at that point so it can become pinned in
277 * between there and here.
278 */
279 bp = xfs_getsb(mp, 0);
280 if (xfs_buf_ispinned(bp))
281 xfs_log_force(mp, 0);
282 error = xfs_bwrite(bp);
283 xfs_buf_relse(bp);
284 return error;
285 }
286
287 /*
288 * When remounting a filesystem read-only or freezing the filesystem, we have
289 * two phases to execute. This first phase is syncing the data before we
290 * quiesce the filesystem, and the second is flushing all the inodes out after
291 * we've waited for all the transactions created by the first phase to
292 * complete. The second phase ensures that the inodes are written to their
293 * location on disk rather than just existing in transactions in the log. This
294 * means after a quiesce there is no log replay required to write the inodes to
295 * disk (this is the main difference between a sync and a quiesce).
296 */
297 /*
298 * First stage of freeze - no writers will make progress now we are here,
299 * so we flush delwri and delalloc buffers here, then wait for all I/O to
300 * complete. Data is frozen at that point. Metadata is not frozen,
301 * transactions can still occur here so don't bother emptying the AIL
302 * because it'll just get dirty again.
303 */
304 int
305 xfs_quiesce_data(
306 struct xfs_mount *mp)
307 {
308 int error, error2 = 0;
309
310 /* force out the log */
311 xfs_log_force(mp, XFS_LOG_SYNC);
312
313 /* write superblock and hoover up shutdown errors */
314 error = xfs_sync_fsdata(mp);
315
316 /* mark the log as covered if needed */
317 if (xfs_log_need_covered(mp))
318 error2 = xfs_fs_log_dummy(mp);
319
320 return error ? error : error2;
321 }
322
323 /*
324 * Second stage of a quiesce. The data is already synced, now we have to take
325 * care of the metadata. New transactions are already blocked, so we need to
326 * wait for any remaining transactions to drain out before proceeding.
327 */
328 void
329 xfs_quiesce_attr(
330 struct xfs_mount *mp)
331 {
332 int error = 0;
333
334 /* wait for all modifications to complete */
335 while (atomic_read(&mp->m_active_trans) > 0)
336 delay(100);
337
338 /* reclaim inodes to do any IO before the freeze completes */
339 xfs_reclaim_inodes(mp, 0);
340 xfs_reclaim_inodes(mp, SYNC_WAIT);
341
342 /* flush all pending changes from the AIL */
343 xfs_ail_push_all_sync(mp->m_ail);
344
345 /*
346 * Just warn here till VFS can correctly support
347 * read-only remount without racing.
348 */
349 WARN_ON(atomic_read(&mp->m_active_trans) != 0);
350
351 /* Push the superblock and write an unmount record */
352 error = xfs_log_sbcount(mp);
353 if (error)
354 xfs_warn(mp, "xfs_attr_quiesce: failed to log sb changes. "
355 "Frozen image may not be consistent.");
356 xfs_log_unmount_write(mp);
357
358 /*
359 * At this point we might have modified the superblock again and thus
360 * added an item to the AIL, thus flush it again.
361 */
362 xfs_ail_push_all_sync(mp->m_ail);
363 }
364
365 static void
366 xfs_syncd_queue_sync(
367 struct xfs_mount *mp)
368 {
369 queue_delayed_work(xfs_syncd_wq, &mp->m_sync_work,
370 msecs_to_jiffies(xfs_syncd_centisecs * 10));
371 }
372
373 /*
374 * Every sync period we need to unpin all items, reclaim inodes and sync
375 * disk quotas. We might need to cover the log to indicate that the
376 * filesystem is idle and not frozen.
377 */
378 STATIC void
379 xfs_sync_worker(
380 struct work_struct *work)
381 {
382 struct xfs_mount *mp = container_of(to_delayed_work(work),
383 struct xfs_mount, m_sync_work);
384 int error;
385
386 /*
387 * We shouldn't write/force the log if we are in the mount/unmount
388 * process or on a read only filesystem. The workqueue still needs to be
389 * active in both cases, however, because it is used for inode reclaim
390 * during these times. hence use the MS_ACTIVE flag to avoid doing
391 * anything in these periods.
392 */
393 if (!(mp->m_super->s_flags & MS_ACTIVE) &&
394 !(mp->m_flags & XFS_MOUNT_RDONLY)) {
395 /* dgc: errors ignored here */
396 if (mp->m_super->s_frozen == SB_UNFROZEN &&
397 xfs_log_need_covered(mp))
398 error = xfs_fs_log_dummy(mp);
399 else
400 xfs_log_force(mp, 0);
401
402 /* start pushing all the metadata that is currently dirty */
403 xfs_ail_push_all(mp->m_ail);
404 }
405
406 /* queue us up again */
407 xfs_syncd_queue_sync(mp);
408 }
409
410 /*
411 * Queue a new inode reclaim pass if there are reclaimable inodes and there
412 * isn't a reclaim pass already in progress. By default it runs every 5s based
413 * on the xfs syncd work default of 30s. Perhaps this should have it's own
414 * tunable, but that can be done if this method proves to be ineffective or too
415 * aggressive.
416 */
417 static void
418 xfs_syncd_queue_reclaim(
419 struct xfs_mount *mp)
420 {
421
422 rcu_read_lock();
423 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
424 queue_delayed_work(xfs_syncd_wq, &mp->m_reclaim_work,
425 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
426 }
427 rcu_read_unlock();
428 }
429
430 /*
431 * This is a fast pass over the inode cache to try to get reclaim moving on as
432 * many inodes as possible in a short period of time. It kicks itself every few
433 * seconds, as well as being kicked by the inode cache shrinker when memory
434 * goes low. It scans as quickly as possible avoiding locked inodes or those
435 * already being flushed, and once done schedules a future pass.
436 */
437 STATIC void
438 xfs_reclaim_worker(
439 struct work_struct *work)
440 {
441 struct xfs_mount *mp = container_of(to_delayed_work(work),
442 struct xfs_mount, m_reclaim_work);
443
444 xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
445 xfs_syncd_queue_reclaim(mp);
446 }
447
448 /*
449 * Flush delayed allocate data, attempting to free up reserved space
450 * from existing allocations. At this point a new allocation attempt
451 * has failed with ENOSPC and we are in the process of scratching our
452 * heads, looking about for more room.
453 *
454 * Queue a new data flush if there isn't one already in progress and
455 * wait for completion of the flush. This means that we only ever have one
456 * inode flush in progress no matter how many ENOSPC events are occurring and
457 * so will prevent the system from bogging down due to every concurrent
458 * ENOSPC event scanning all the active inodes in the system for writeback.
459 */
460 void
461 xfs_flush_inodes(
462 struct xfs_inode *ip)
463 {
464 struct xfs_mount *mp = ip->i_mount;
465
466 queue_work(xfs_syncd_wq, &mp->m_flush_work);
467 flush_work_sync(&mp->m_flush_work);
468 }
469
470 STATIC void
471 xfs_flush_worker(
472 struct work_struct *work)
473 {
474 struct xfs_mount *mp = container_of(work,
475 struct xfs_mount, m_flush_work);
476
477 xfs_sync_data(mp, SYNC_TRYLOCK);
478 xfs_sync_data(mp, SYNC_TRYLOCK | SYNC_WAIT);
479 }
480
481 int
482 xfs_syncd_init(
483 struct xfs_mount *mp)
484 {
485 INIT_WORK(&mp->m_flush_work, xfs_flush_worker);
486 INIT_DELAYED_WORK(&mp->m_sync_work, xfs_sync_worker);
487 INIT_DELAYED_WORK(&mp->m_reclaim_work, xfs_reclaim_worker);
488
489 xfs_syncd_queue_sync(mp);
490
491 return 0;
492 }
493
494 void
495 xfs_syncd_stop(
496 struct xfs_mount *mp)
497 {
498 cancel_delayed_work_sync(&mp->m_sync_work);
499 cancel_delayed_work_sync(&mp->m_reclaim_work);
500 cancel_work_sync(&mp->m_flush_work);
501 }
502
503 void
504 __xfs_inode_set_reclaim_tag(
505 struct xfs_perag *pag,
506 struct xfs_inode *ip)
507 {
508 radix_tree_tag_set(&pag->pag_ici_root,
509 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
510 XFS_ICI_RECLAIM_TAG);
511
512 if (!pag->pag_ici_reclaimable) {
513 /* propagate the reclaim tag up into the perag radix tree */
514 spin_lock(&ip->i_mount->m_perag_lock);
515 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
516 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
517 XFS_ICI_RECLAIM_TAG);
518 spin_unlock(&ip->i_mount->m_perag_lock);
519
520 /* schedule periodic background inode reclaim */
521 xfs_syncd_queue_reclaim(ip->i_mount);
522
523 trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
524 -1, _RET_IP_);
525 }
526 pag->pag_ici_reclaimable++;
527 }
528
529 /*
530 * We set the inode flag atomically with the radix tree tag.
531 * Once we get tag lookups on the radix tree, this inode flag
532 * can go away.
533 */
534 void
535 xfs_inode_set_reclaim_tag(
536 xfs_inode_t *ip)
537 {
538 struct xfs_mount *mp = ip->i_mount;
539 struct xfs_perag *pag;
540
541 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
542 spin_lock(&pag->pag_ici_lock);
543 spin_lock(&ip->i_flags_lock);
544 __xfs_inode_set_reclaim_tag(pag, ip);
545 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
546 spin_unlock(&ip->i_flags_lock);
547 spin_unlock(&pag->pag_ici_lock);
548 xfs_perag_put(pag);
549 }
550
551 STATIC void
552 __xfs_inode_clear_reclaim(
553 xfs_perag_t *pag,
554 xfs_inode_t *ip)
555 {
556 pag->pag_ici_reclaimable--;
557 if (!pag->pag_ici_reclaimable) {
558 /* clear the reclaim tag from the perag radix tree */
559 spin_lock(&ip->i_mount->m_perag_lock);
560 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
561 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
562 XFS_ICI_RECLAIM_TAG);
563 spin_unlock(&ip->i_mount->m_perag_lock);
564 trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
565 -1, _RET_IP_);
566 }
567 }
568
569 void
570 __xfs_inode_clear_reclaim_tag(
571 xfs_mount_t *mp,
572 xfs_perag_t *pag,
573 xfs_inode_t *ip)
574 {
575 radix_tree_tag_clear(&pag->pag_ici_root,
576 XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
577 __xfs_inode_clear_reclaim(pag, ip);
578 }
579
580 /*
581 * Grab the inode for reclaim exclusively.
582 * Return 0 if we grabbed it, non-zero otherwise.
583 */
584 STATIC int
585 xfs_reclaim_inode_grab(
586 struct xfs_inode *ip,
587 int flags)
588 {
589 ASSERT(rcu_read_lock_held());
590
591 /* quick check for stale RCU freed inode */
592 if (!ip->i_ino)
593 return 1;
594
595 /*
596 * If we are asked for non-blocking operation, do unlocked checks to
597 * see if the inode already is being flushed or in reclaim to avoid
598 * lock traffic.
599 */
600 if ((flags & SYNC_TRYLOCK) &&
601 __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
602 return 1;
603
604 /*
605 * The radix tree lock here protects a thread in xfs_iget from racing
606 * with us starting reclaim on the inode. Once we have the
607 * XFS_IRECLAIM flag set it will not touch us.
608 *
609 * Due to RCU lookup, we may find inodes that have been freed and only
610 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
611 * aren't candidates for reclaim at all, so we must check the
612 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
613 */
614 spin_lock(&ip->i_flags_lock);
615 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
616 __xfs_iflags_test(ip, XFS_IRECLAIM)) {
617 /* not a reclaim candidate. */
618 spin_unlock(&ip->i_flags_lock);
619 return 1;
620 }
621 __xfs_iflags_set(ip, XFS_IRECLAIM);
622 spin_unlock(&ip->i_flags_lock);
623 return 0;
624 }
625
626 /*
627 * Inodes in different states need to be treated differently. The following
628 * table lists the inode states and the reclaim actions necessary:
629 *
630 * inode state iflush ret required action
631 * --------------- ---------- ---------------
632 * bad - reclaim
633 * shutdown EIO unpin and reclaim
634 * clean, unpinned 0 reclaim
635 * stale, unpinned 0 reclaim
636 * clean, pinned(*) 0 requeue
637 * stale, pinned EAGAIN requeue
638 * dirty, async - requeue
639 * dirty, sync 0 reclaim
640 *
641 * (*) dgc: I don't think the clean, pinned state is possible but it gets
642 * handled anyway given the order of checks implemented.
643 *
644 * Also, because we get the flush lock first, we know that any inode that has
645 * been flushed delwri has had the flush completed by the time we check that
646 * the inode is clean.
647 *
648 * Note that because the inode is flushed delayed write by AIL pushing, the
649 * flush lock may already be held here and waiting on it can result in very
650 * long latencies. Hence for sync reclaims, where we wait on the flush lock,
651 * the caller should push the AIL first before trying to reclaim inodes to
652 * minimise the amount of time spent waiting. For background relaim, we only
653 * bother to reclaim clean inodes anyway.
654 *
655 * Hence the order of actions after gaining the locks should be:
656 * bad => reclaim
657 * shutdown => unpin and reclaim
658 * pinned, async => requeue
659 * pinned, sync => unpin
660 * stale => reclaim
661 * clean => reclaim
662 * dirty, async => requeue
663 * dirty, sync => flush, wait and reclaim
664 */
665 STATIC int
666 xfs_reclaim_inode(
667 struct xfs_inode *ip,
668 struct xfs_perag *pag,
669 int sync_mode)
670 {
671 struct xfs_buf *bp = NULL;
672 int error;
673
674 restart:
675 error = 0;
676 xfs_ilock(ip, XFS_ILOCK_EXCL);
677 if (!xfs_iflock_nowait(ip)) {
678 if (!(sync_mode & SYNC_WAIT))
679 goto out;
680 xfs_iflock(ip);
681 }
682
683 if (is_bad_inode(VFS_I(ip)))
684 goto reclaim;
685 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
686 xfs_iunpin_wait(ip);
687 xfs_iflush_abort(ip, false);
688 goto reclaim;
689 }
690 if (xfs_ipincount(ip)) {
691 if (!(sync_mode & SYNC_WAIT))
692 goto out_ifunlock;
693 xfs_iunpin_wait(ip);
694 }
695 if (xfs_iflags_test(ip, XFS_ISTALE))
696 goto reclaim;
697 if (xfs_inode_clean(ip))
698 goto reclaim;
699
700 /*
701 * Never flush out dirty data during non-blocking reclaim, as it would
702 * just contend with AIL pushing trying to do the same job.
703 */
704 if (!(sync_mode & SYNC_WAIT))
705 goto out_ifunlock;
706
707 /*
708 * Now we have an inode that needs flushing.
709 *
710 * Note that xfs_iflush will never block on the inode buffer lock, as
711 * xfs_ifree_cluster() can lock the inode buffer before it locks the
712 * ip->i_lock, and we are doing the exact opposite here. As a result,
713 * doing a blocking xfs_itobp() to get the cluster buffer would result
714 * in an ABBA deadlock with xfs_ifree_cluster().
715 *
716 * As xfs_ifree_cluser() must gather all inodes that are active in the
717 * cache to mark them stale, if we hit this case we don't actually want
718 * to do IO here - we want the inode marked stale so we can simply
719 * reclaim it. Hence if we get an EAGAIN error here, just unlock the
720 * inode, back off and try again. Hopefully the next pass through will
721 * see the stale flag set on the inode.
722 */
723 error = xfs_iflush(ip, &bp);
724 if (error == EAGAIN) {
725 xfs_iunlock(ip, XFS_ILOCK_EXCL);
726 /* backoff longer than in xfs_ifree_cluster */
727 delay(2);
728 goto restart;
729 }
730
731 if (!error) {
732 error = xfs_bwrite(bp);
733 xfs_buf_relse(bp);
734 }
735
736 xfs_iflock(ip);
737 reclaim:
738 xfs_ifunlock(ip);
739 xfs_iunlock(ip, XFS_ILOCK_EXCL);
740
741 XFS_STATS_INC(xs_ig_reclaims);
742 /*
743 * Remove the inode from the per-AG radix tree.
744 *
745 * Because radix_tree_delete won't complain even if the item was never
746 * added to the tree assert that it's been there before to catch
747 * problems with the inode life time early on.
748 */
749 spin_lock(&pag->pag_ici_lock);
750 if (!radix_tree_delete(&pag->pag_ici_root,
751 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino)))
752 ASSERT(0);
753 __xfs_inode_clear_reclaim(pag, ip);
754 spin_unlock(&pag->pag_ici_lock);
755
756 /*
757 * Here we do an (almost) spurious inode lock in order to coordinate
758 * with inode cache radix tree lookups. This is because the lookup
759 * can reference the inodes in the cache without taking references.
760 *
761 * We make that OK here by ensuring that we wait until the inode is
762 * unlocked after the lookup before we go ahead and free it.
763 */
764 xfs_ilock(ip, XFS_ILOCK_EXCL);
765 xfs_qm_dqdetach(ip);
766 xfs_iunlock(ip, XFS_ILOCK_EXCL);
767
768 xfs_inode_free(ip);
769 return error;
770
771 out_ifunlock:
772 xfs_ifunlock(ip);
773 out:
774 xfs_iflags_clear(ip, XFS_IRECLAIM);
775 xfs_iunlock(ip, XFS_ILOCK_EXCL);
776 /*
777 * We could return EAGAIN here to make reclaim rescan the inode tree in
778 * a short while. However, this just burns CPU time scanning the tree
779 * waiting for IO to complete and xfssyncd never goes back to the idle
780 * state. Instead, return 0 to let the next scheduled background reclaim
781 * attempt to reclaim the inode again.
782 */
783 return 0;
784 }
785
786 /*
787 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
788 * corrupted, we still want to try to reclaim all the inodes. If we don't,
789 * then a shut down during filesystem unmount reclaim walk leak all the
790 * unreclaimed inodes.
791 */
792 int
793 xfs_reclaim_inodes_ag(
794 struct xfs_mount *mp,
795 int flags,
796 int *nr_to_scan)
797 {
798 struct xfs_perag *pag;
799 int error = 0;
800 int last_error = 0;
801 xfs_agnumber_t ag;
802 int trylock = flags & SYNC_TRYLOCK;
803 int skipped;
804
805 restart:
806 ag = 0;
807 skipped = 0;
808 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
809 unsigned long first_index = 0;
810 int done = 0;
811 int nr_found = 0;
812
813 ag = pag->pag_agno + 1;
814
815 if (trylock) {
816 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
817 skipped++;
818 xfs_perag_put(pag);
819 continue;
820 }
821 first_index = pag->pag_ici_reclaim_cursor;
822 } else
823 mutex_lock(&pag->pag_ici_reclaim_lock);
824
825 do {
826 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
827 int i;
828
829 rcu_read_lock();
830 nr_found = radix_tree_gang_lookup_tag(
831 &pag->pag_ici_root,
832 (void **)batch, first_index,
833 XFS_LOOKUP_BATCH,
834 XFS_ICI_RECLAIM_TAG);
835 if (!nr_found) {
836 done = 1;
837 rcu_read_unlock();
838 break;
839 }
840
841 /*
842 * Grab the inodes before we drop the lock. if we found
843 * nothing, nr == 0 and the loop will be skipped.
844 */
845 for (i = 0; i < nr_found; i++) {
846 struct xfs_inode *ip = batch[i];
847
848 if (done || xfs_reclaim_inode_grab(ip, flags))
849 batch[i] = NULL;
850
851 /*
852 * Update the index for the next lookup. Catch
853 * overflows into the next AG range which can
854 * occur if we have inodes in the last block of
855 * the AG and we are currently pointing to the
856 * last inode.
857 *
858 * Because we may see inodes that are from the
859 * wrong AG due to RCU freeing and
860 * reallocation, only update the index if it
861 * lies in this AG. It was a race that lead us
862 * to see this inode, so another lookup from
863 * the same index will not find it again.
864 */
865 if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
866 pag->pag_agno)
867 continue;
868 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
869 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
870 done = 1;
871 }
872
873 /* unlock now we've grabbed the inodes. */
874 rcu_read_unlock();
875
876 for (i = 0; i < nr_found; i++) {
877 if (!batch[i])
878 continue;
879 error = xfs_reclaim_inode(batch[i], pag, flags);
880 if (error && last_error != EFSCORRUPTED)
881 last_error = error;
882 }
883
884 *nr_to_scan -= XFS_LOOKUP_BATCH;
885
886 cond_resched();
887
888 } while (nr_found && !done && *nr_to_scan > 0);
889
890 if (trylock && !done)
891 pag->pag_ici_reclaim_cursor = first_index;
892 else
893 pag->pag_ici_reclaim_cursor = 0;
894 mutex_unlock(&pag->pag_ici_reclaim_lock);
895 xfs_perag_put(pag);
896 }
897
898 /*
899 * if we skipped any AG, and we still have scan count remaining, do
900 * another pass this time using blocking reclaim semantics (i.e
901 * waiting on the reclaim locks and ignoring the reclaim cursors). This
902 * ensure that when we get more reclaimers than AGs we block rather
903 * than spin trying to execute reclaim.
904 */
905 if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
906 trylock = 0;
907 goto restart;
908 }
909 return XFS_ERROR(last_error);
910 }
911
912 int
913 xfs_reclaim_inodes(
914 xfs_mount_t *mp,
915 int mode)
916 {
917 int nr_to_scan = INT_MAX;
918
919 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
920 }
921
922 /*
923 * Scan a certain number of inodes for reclaim.
924 *
925 * When called we make sure that there is a background (fast) inode reclaim in
926 * progress, while we will throttle the speed of reclaim via doing synchronous
927 * reclaim of inodes. That means if we come across dirty inodes, we wait for
928 * them to be cleaned, which we hope will not be very long due to the
929 * background walker having already kicked the IO off on those dirty inodes.
930 */
931 void
932 xfs_reclaim_inodes_nr(
933 struct xfs_mount *mp,
934 int nr_to_scan)
935 {
936 /* kick background reclaimer and push the AIL */
937 xfs_syncd_queue_reclaim(mp);
938 xfs_ail_push_all(mp->m_ail);
939
940 xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
941 }
942
943 /*
944 * Return the number of reclaimable inodes in the filesystem for
945 * the shrinker to determine how much to reclaim.
946 */
947 int
948 xfs_reclaim_inodes_count(
949 struct xfs_mount *mp)
950 {
951 struct xfs_perag *pag;
952 xfs_agnumber_t ag = 0;
953 int reclaimable = 0;
954
955 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
956 ag = pag->pag_agno + 1;
957 reclaimable += pag->pag_ici_reclaimable;
958 xfs_perag_put(pag);
959 }
960 return reclaimable;
961 }
962
This page took 0.049511 seconds and 5 git commands to generate.