xfs: xfs_syncd_stop must die
[deliverable/linux.git] / fs / xfs / xfs_sync.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_log.h"
22 #include "xfs_inum.h"
23 #include "xfs_trans.h"
24 #include "xfs_trans_priv.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_bmap_btree.h"
29 #include "xfs_inode.h"
30 #include "xfs_dinode.h"
31 #include "xfs_error.h"
32 #include "xfs_filestream.h"
33 #include "xfs_vnodeops.h"
34 #include "xfs_inode_item.h"
35 #include "xfs_quota.h"
36 #include "xfs_trace.h"
37 #include "xfs_fsops.h"
38
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41
42 struct workqueue_struct *xfs_syncd_wq; /* sync workqueue */
43
44 /*
45 * The inode lookup is done in batches to keep the amount of lock traffic and
46 * radix tree lookups to a minimum. The batch size is a trade off between
47 * lookup reduction and stack usage. This is in the reclaim path, so we can't
48 * be too greedy.
49 */
50 #define XFS_LOOKUP_BATCH 32
51
52 STATIC int
53 xfs_inode_ag_walk_grab(
54 struct xfs_inode *ip)
55 {
56 struct inode *inode = VFS_I(ip);
57
58 ASSERT(rcu_read_lock_held());
59
60 /*
61 * check for stale RCU freed inode
62 *
63 * If the inode has been reallocated, it doesn't matter if it's not in
64 * the AG we are walking - we are walking for writeback, so if it
65 * passes all the "valid inode" checks and is dirty, then we'll write
66 * it back anyway. If it has been reallocated and still being
67 * initialised, the XFS_INEW check below will catch it.
68 */
69 spin_lock(&ip->i_flags_lock);
70 if (!ip->i_ino)
71 goto out_unlock_noent;
72
73 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
74 if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
75 goto out_unlock_noent;
76 spin_unlock(&ip->i_flags_lock);
77
78 /* nothing to sync during shutdown */
79 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
80 return EFSCORRUPTED;
81
82 /* If we can't grab the inode, it must on it's way to reclaim. */
83 if (!igrab(inode))
84 return ENOENT;
85
86 if (is_bad_inode(inode)) {
87 IRELE(ip);
88 return ENOENT;
89 }
90
91 /* inode is valid */
92 return 0;
93
94 out_unlock_noent:
95 spin_unlock(&ip->i_flags_lock);
96 return ENOENT;
97 }
98
99 STATIC int
100 xfs_inode_ag_walk(
101 struct xfs_mount *mp,
102 struct xfs_perag *pag,
103 int (*execute)(struct xfs_inode *ip,
104 struct xfs_perag *pag, int flags),
105 int flags)
106 {
107 uint32_t first_index;
108 int last_error = 0;
109 int skipped;
110 int done;
111 int nr_found;
112
113 restart:
114 done = 0;
115 skipped = 0;
116 first_index = 0;
117 nr_found = 0;
118 do {
119 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
120 int error = 0;
121 int i;
122
123 rcu_read_lock();
124 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
125 (void **)batch, first_index,
126 XFS_LOOKUP_BATCH);
127 if (!nr_found) {
128 rcu_read_unlock();
129 break;
130 }
131
132 /*
133 * Grab the inodes before we drop the lock. if we found
134 * nothing, nr == 0 and the loop will be skipped.
135 */
136 for (i = 0; i < nr_found; i++) {
137 struct xfs_inode *ip = batch[i];
138
139 if (done || xfs_inode_ag_walk_grab(ip))
140 batch[i] = NULL;
141
142 /*
143 * Update the index for the next lookup. Catch
144 * overflows into the next AG range which can occur if
145 * we have inodes in the last block of the AG and we
146 * are currently pointing to the last inode.
147 *
148 * Because we may see inodes that are from the wrong AG
149 * due to RCU freeing and reallocation, only update the
150 * index if it lies in this AG. It was a race that lead
151 * us to see this inode, so another lookup from the
152 * same index will not find it again.
153 */
154 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
155 continue;
156 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
157 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
158 done = 1;
159 }
160
161 /* unlock now we've grabbed the inodes. */
162 rcu_read_unlock();
163
164 for (i = 0; i < nr_found; i++) {
165 if (!batch[i])
166 continue;
167 error = execute(batch[i], pag, flags);
168 IRELE(batch[i]);
169 if (error == EAGAIN) {
170 skipped++;
171 continue;
172 }
173 if (error && last_error != EFSCORRUPTED)
174 last_error = error;
175 }
176
177 /* bail out if the filesystem is corrupted. */
178 if (error == EFSCORRUPTED)
179 break;
180
181 cond_resched();
182
183 } while (nr_found && !done);
184
185 if (skipped) {
186 delay(1);
187 goto restart;
188 }
189 return last_error;
190 }
191
192 int
193 xfs_inode_ag_iterator(
194 struct xfs_mount *mp,
195 int (*execute)(struct xfs_inode *ip,
196 struct xfs_perag *pag, int flags),
197 int flags)
198 {
199 struct xfs_perag *pag;
200 int error = 0;
201 int last_error = 0;
202 xfs_agnumber_t ag;
203
204 ag = 0;
205 while ((pag = xfs_perag_get(mp, ag))) {
206 ag = pag->pag_agno + 1;
207 error = xfs_inode_ag_walk(mp, pag, execute, flags);
208 xfs_perag_put(pag);
209 if (error) {
210 last_error = error;
211 if (error == EFSCORRUPTED)
212 break;
213 }
214 }
215 return XFS_ERROR(last_error);
216 }
217
218 STATIC int
219 xfs_sync_inode_data(
220 struct xfs_inode *ip,
221 struct xfs_perag *pag,
222 int flags)
223 {
224 struct inode *inode = VFS_I(ip);
225 struct address_space *mapping = inode->i_mapping;
226 int error = 0;
227
228 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
229 return 0;
230
231 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) {
232 if (flags & SYNC_TRYLOCK)
233 return 0;
234 xfs_ilock(ip, XFS_IOLOCK_SHARED);
235 }
236
237 error = xfs_flush_pages(ip, 0, -1, (flags & SYNC_WAIT) ?
238 0 : XBF_ASYNC, FI_NONE);
239 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
240 return error;
241 }
242
243 /*
244 * Write out pagecache data for the whole filesystem.
245 */
246 STATIC int
247 xfs_sync_data(
248 struct xfs_mount *mp,
249 int flags)
250 {
251 int error;
252
253 ASSERT((flags & ~(SYNC_TRYLOCK|SYNC_WAIT)) == 0);
254
255 error = xfs_inode_ag_iterator(mp, xfs_sync_inode_data, flags);
256 if (error)
257 return XFS_ERROR(error);
258
259 xfs_log_force(mp, (flags & SYNC_WAIT) ? XFS_LOG_SYNC : 0);
260 return 0;
261 }
262
263 STATIC int
264 xfs_sync_fsdata(
265 struct xfs_mount *mp)
266 {
267 struct xfs_buf *bp;
268 int error;
269
270 /*
271 * If the buffer is pinned then push on the log so we won't get stuck
272 * waiting in the write for someone, maybe ourselves, to flush the log.
273 *
274 * Even though we just pushed the log above, we did not have the
275 * superblock buffer locked at that point so it can become pinned in
276 * between there and here.
277 */
278 bp = xfs_getsb(mp, 0);
279 if (xfs_buf_ispinned(bp))
280 xfs_log_force(mp, 0);
281 error = xfs_bwrite(bp);
282 xfs_buf_relse(bp);
283 return error;
284 }
285
286 /*
287 * When remounting a filesystem read-only or freezing the filesystem, we have
288 * two phases to execute. This first phase is syncing the data before we
289 * quiesce the filesystem, and the second is flushing all the inodes out after
290 * we've waited for all the transactions created by the first phase to
291 * complete. The second phase ensures that the inodes are written to their
292 * location on disk rather than just existing in transactions in the log. This
293 * means after a quiesce there is no log replay required to write the inodes to
294 * disk (this is the main difference between a sync and a quiesce).
295 */
296 /*
297 * First stage of freeze - no writers will make progress now we are here,
298 * so we flush delwri and delalloc buffers here, then wait for all I/O to
299 * complete. Data is frozen at that point. Metadata is not frozen,
300 * transactions can still occur here so don't bother emptying the AIL
301 * because it'll just get dirty again.
302 */
303 int
304 xfs_quiesce_data(
305 struct xfs_mount *mp)
306 {
307 int error, error2 = 0;
308
309 /* force out the log */
310 xfs_log_force(mp, XFS_LOG_SYNC);
311
312 /* write superblock and hoover up shutdown errors */
313 error = xfs_sync_fsdata(mp);
314
315 /* mark the log as covered if needed */
316 if (xfs_log_need_covered(mp))
317 error2 = xfs_fs_log_dummy(mp);
318
319 return error ? error : error2;
320 }
321
322 /*
323 * Second stage of a quiesce. The data is already synced, now we have to take
324 * care of the metadata. New transactions are already blocked, so we need to
325 * wait for any remaining transactions to drain out before proceeding.
326 */
327 void
328 xfs_quiesce_attr(
329 struct xfs_mount *mp)
330 {
331 int error = 0;
332
333 /* wait for all modifications to complete */
334 while (atomic_read(&mp->m_active_trans) > 0)
335 delay(100);
336
337 /* reclaim inodes to do any IO before the freeze completes */
338 xfs_reclaim_inodes(mp, 0);
339 xfs_reclaim_inodes(mp, SYNC_WAIT);
340
341 /* flush all pending changes from the AIL */
342 xfs_ail_push_all_sync(mp->m_ail);
343
344 /*
345 * Just warn here till VFS can correctly support
346 * read-only remount without racing.
347 */
348 WARN_ON(atomic_read(&mp->m_active_trans) != 0);
349
350 /* Push the superblock and write an unmount record */
351 error = xfs_log_sbcount(mp);
352 if (error)
353 xfs_warn(mp, "xfs_attr_quiesce: failed to log sb changes. "
354 "Frozen image may not be consistent.");
355 xfs_log_unmount_write(mp);
356
357 /*
358 * At this point we might have modified the superblock again and thus
359 * added an item to the AIL, thus flush it again.
360 */
361 xfs_ail_push_all_sync(mp->m_ail);
362
363 /*
364 * The superblock buffer is uncached and xfsaild_push() will lock and
365 * set the XBF_ASYNC flag on the buffer. We cannot do xfs_buf_iowait()
366 * here but a lock on the superblock buffer will block until iodone()
367 * has completed.
368 */
369 xfs_buf_lock(mp->m_sb_bp);
370 xfs_buf_unlock(mp->m_sb_bp);
371 }
372
373 void
374 xfs_syncd_queue_sync(
375 struct xfs_mount *mp)
376 {
377 queue_delayed_work(xfs_syncd_wq, &mp->m_sync_work,
378 msecs_to_jiffies(xfs_syncd_centisecs * 10));
379 }
380
381 /*
382 * Every sync period we need to unpin all items, reclaim inodes and sync
383 * disk quotas. We might need to cover the log to indicate that the
384 * filesystem is idle and not frozen.
385 */
386 void
387 xfs_sync_worker(
388 struct work_struct *work)
389 {
390 struct xfs_mount *mp = container_of(to_delayed_work(work),
391 struct xfs_mount, m_sync_work);
392 int error;
393
394 /*
395 * We shouldn't write/force the log if we are in the mount/unmount
396 * process or on a read only filesystem. The workqueue still needs to be
397 * active in both cases, however, because it is used for inode reclaim
398 * during these times. Use the MS_ACTIVE flag to avoid doing anything
399 * during mount. Doing work during unmount is avoided by calling
400 * cancel_delayed_work_sync on this work queue before tearing down
401 * the ail and the log in xfs_log_unmount.
402 */
403 if (!(mp->m_super->s_flags & MS_ACTIVE) &&
404 !(mp->m_flags & XFS_MOUNT_RDONLY)) {
405 /* dgc: errors ignored here */
406 if (mp->m_super->s_writers.frozen == SB_UNFROZEN &&
407 xfs_log_need_covered(mp))
408 error = xfs_fs_log_dummy(mp);
409 else
410 xfs_log_force(mp, 0);
411
412 /* start pushing all the metadata that is currently
413 * dirty */
414 xfs_ail_push_all(mp->m_ail);
415 }
416
417 /* queue us up again */
418 xfs_syncd_queue_sync(mp);
419 }
420
421 /*
422 * Queue a new inode reclaim pass if there are reclaimable inodes and there
423 * isn't a reclaim pass already in progress. By default it runs every 5s based
424 * on the xfs syncd work default of 30s. Perhaps this should have it's own
425 * tunable, but that can be done if this method proves to be ineffective or too
426 * aggressive.
427 */
428 static void
429 xfs_syncd_queue_reclaim(
430 struct xfs_mount *mp)
431 {
432
433 rcu_read_lock();
434 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
435 queue_delayed_work(xfs_syncd_wq, &mp->m_reclaim_work,
436 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
437 }
438 rcu_read_unlock();
439 }
440
441 /*
442 * This is a fast pass over the inode cache to try to get reclaim moving on as
443 * many inodes as possible in a short period of time. It kicks itself every few
444 * seconds, as well as being kicked by the inode cache shrinker when memory
445 * goes low. It scans as quickly as possible avoiding locked inodes or those
446 * already being flushed, and once done schedules a future pass.
447 */
448 void
449 xfs_reclaim_worker(
450 struct work_struct *work)
451 {
452 struct xfs_mount *mp = container_of(to_delayed_work(work),
453 struct xfs_mount, m_reclaim_work);
454
455 xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
456 xfs_syncd_queue_reclaim(mp);
457 }
458
459 /*
460 * Flush delayed allocate data, attempting to free up reserved space
461 * from existing allocations. At this point a new allocation attempt
462 * has failed with ENOSPC and we are in the process of scratching our
463 * heads, looking about for more room.
464 *
465 * Queue a new data flush if there isn't one already in progress and
466 * wait for completion of the flush. This means that we only ever have one
467 * inode flush in progress no matter how many ENOSPC events are occurring and
468 * so will prevent the system from bogging down due to every concurrent
469 * ENOSPC event scanning all the active inodes in the system for writeback.
470 */
471 void
472 xfs_flush_inodes(
473 struct xfs_inode *ip)
474 {
475 struct xfs_mount *mp = ip->i_mount;
476
477 queue_work(xfs_syncd_wq, &mp->m_flush_work);
478 flush_work(&mp->m_flush_work);
479 }
480
481 void
482 xfs_flush_worker(
483 struct work_struct *work)
484 {
485 struct xfs_mount *mp = container_of(work,
486 struct xfs_mount, m_flush_work);
487
488 xfs_sync_data(mp, SYNC_TRYLOCK);
489 xfs_sync_data(mp, SYNC_TRYLOCK | SYNC_WAIT);
490 }
491
492 void
493 __xfs_inode_set_reclaim_tag(
494 struct xfs_perag *pag,
495 struct xfs_inode *ip)
496 {
497 radix_tree_tag_set(&pag->pag_ici_root,
498 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
499 XFS_ICI_RECLAIM_TAG);
500
501 if (!pag->pag_ici_reclaimable) {
502 /* propagate the reclaim tag up into the perag radix tree */
503 spin_lock(&ip->i_mount->m_perag_lock);
504 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
505 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
506 XFS_ICI_RECLAIM_TAG);
507 spin_unlock(&ip->i_mount->m_perag_lock);
508
509 /* schedule periodic background inode reclaim */
510 xfs_syncd_queue_reclaim(ip->i_mount);
511
512 trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
513 -1, _RET_IP_);
514 }
515 pag->pag_ici_reclaimable++;
516 }
517
518 /*
519 * We set the inode flag atomically with the radix tree tag.
520 * Once we get tag lookups on the radix tree, this inode flag
521 * can go away.
522 */
523 void
524 xfs_inode_set_reclaim_tag(
525 xfs_inode_t *ip)
526 {
527 struct xfs_mount *mp = ip->i_mount;
528 struct xfs_perag *pag;
529
530 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
531 spin_lock(&pag->pag_ici_lock);
532 spin_lock(&ip->i_flags_lock);
533 __xfs_inode_set_reclaim_tag(pag, ip);
534 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
535 spin_unlock(&ip->i_flags_lock);
536 spin_unlock(&pag->pag_ici_lock);
537 xfs_perag_put(pag);
538 }
539
540 STATIC void
541 __xfs_inode_clear_reclaim(
542 xfs_perag_t *pag,
543 xfs_inode_t *ip)
544 {
545 pag->pag_ici_reclaimable--;
546 if (!pag->pag_ici_reclaimable) {
547 /* clear the reclaim tag from the perag radix tree */
548 spin_lock(&ip->i_mount->m_perag_lock);
549 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
550 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
551 XFS_ICI_RECLAIM_TAG);
552 spin_unlock(&ip->i_mount->m_perag_lock);
553 trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
554 -1, _RET_IP_);
555 }
556 }
557
558 void
559 __xfs_inode_clear_reclaim_tag(
560 xfs_mount_t *mp,
561 xfs_perag_t *pag,
562 xfs_inode_t *ip)
563 {
564 radix_tree_tag_clear(&pag->pag_ici_root,
565 XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
566 __xfs_inode_clear_reclaim(pag, ip);
567 }
568
569 /*
570 * Grab the inode for reclaim exclusively.
571 * Return 0 if we grabbed it, non-zero otherwise.
572 */
573 STATIC int
574 xfs_reclaim_inode_grab(
575 struct xfs_inode *ip,
576 int flags)
577 {
578 ASSERT(rcu_read_lock_held());
579
580 /* quick check for stale RCU freed inode */
581 if (!ip->i_ino)
582 return 1;
583
584 /*
585 * If we are asked for non-blocking operation, do unlocked checks to
586 * see if the inode already is being flushed or in reclaim to avoid
587 * lock traffic.
588 */
589 if ((flags & SYNC_TRYLOCK) &&
590 __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
591 return 1;
592
593 /*
594 * The radix tree lock here protects a thread in xfs_iget from racing
595 * with us starting reclaim on the inode. Once we have the
596 * XFS_IRECLAIM flag set it will not touch us.
597 *
598 * Due to RCU lookup, we may find inodes that have been freed and only
599 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
600 * aren't candidates for reclaim at all, so we must check the
601 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
602 */
603 spin_lock(&ip->i_flags_lock);
604 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
605 __xfs_iflags_test(ip, XFS_IRECLAIM)) {
606 /* not a reclaim candidate. */
607 spin_unlock(&ip->i_flags_lock);
608 return 1;
609 }
610 __xfs_iflags_set(ip, XFS_IRECLAIM);
611 spin_unlock(&ip->i_flags_lock);
612 return 0;
613 }
614
615 /*
616 * Inodes in different states need to be treated differently. The following
617 * table lists the inode states and the reclaim actions necessary:
618 *
619 * inode state iflush ret required action
620 * --------------- ---------- ---------------
621 * bad - reclaim
622 * shutdown EIO unpin and reclaim
623 * clean, unpinned 0 reclaim
624 * stale, unpinned 0 reclaim
625 * clean, pinned(*) 0 requeue
626 * stale, pinned EAGAIN requeue
627 * dirty, async - requeue
628 * dirty, sync 0 reclaim
629 *
630 * (*) dgc: I don't think the clean, pinned state is possible but it gets
631 * handled anyway given the order of checks implemented.
632 *
633 * Also, because we get the flush lock first, we know that any inode that has
634 * been flushed delwri has had the flush completed by the time we check that
635 * the inode is clean.
636 *
637 * Note that because the inode is flushed delayed write by AIL pushing, the
638 * flush lock may already be held here and waiting on it can result in very
639 * long latencies. Hence for sync reclaims, where we wait on the flush lock,
640 * the caller should push the AIL first before trying to reclaim inodes to
641 * minimise the amount of time spent waiting. For background relaim, we only
642 * bother to reclaim clean inodes anyway.
643 *
644 * Hence the order of actions after gaining the locks should be:
645 * bad => reclaim
646 * shutdown => unpin and reclaim
647 * pinned, async => requeue
648 * pinned, sync => unpin
649 * stale => reclaim
650 * clean => reclaim
651 * dirty, async => requeue
652 * dirty, sync => flush, wait and reclaim
653 */
654 STATIC int
655 xfs_reclaim_inode(
656 struct xfs_inode *ip,
657 struct xfs_perag *pag,
658 int sync_mode)
659 {
660 struct xfs_buf *bp = NULL;
661 int error;
662
663 restart:
664 error = 0;
665 xfs_ilock(ip, XFS_ILOCK_EXCL);
666 if (!xfs_iflock_nowait(ip)) {
667 if (!(sync_mode & SYNC_WAIT))
668 goto out;
669 xfs_iflock(ip);
670 }
671
672 if (is_bad_inode(VFS_I(ip)))
673 goto reclaim;
674 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
675 xfs_iunpin_wait(ip);
676 xfs_iflush_abort(ip, false);
677 goto reclaim;
678 }
679 if (xfs_ipincount(ip)) {
680 if (!(sync_mode & SYNC_WAIT))
681 goto out_ifunlock;
682 xfs_iunpin_wait(ip);
683 }
684 if (xfs_iflags_test(ip, XFS_ISTALE))
685 goto reclaim;
686 if (xfs_inode_clean(ip))
687 goto reclaim;
688
689 /*
690 * Never flush out dirty data during non-blocking reclaim, as it would
691 * just contend with AIL pushing trying to do the same job.
692 */
693 if (!(sync_mode & SYNC_WAIT))
694 goto out_ifunlock;
695
696 /*
697 * Now we have an inode that needs flushing.
698 *
699 * Note that xfs_iflush will never block on the inode buffer lock, as
700 * xfs_ifree_cluster() can lock the inode buffer before it locks the
701 * ip->i_lock, and we are doing the exact opposite here. As a result,
702 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
703 * result in an ABBA deadlock with xfs_ifree_cluster().
704 *
705 * As xfs_ifree_cluser() must gather all inodes that are active in the
706 * cache to mark them stale, if we hit this case we don't actually want
707 * to do IO here - we want the inode marked stale so we can simply
708 * reclaim it. Hence if we get an EAGAIN error here, just unlock the
709 * inode, back off and try again. Hopefully the next pass through will
710 * see the stale flag set on the inode.
711 */
712 error = xfs_iflush(ip, &bp);
713 if (error == EAGAIN) {
714 xfs_iunlock(ip, XFS_ILOCK_EXCL);
715 /* backoff longer than in xfs_ifree_cluster */
716 delay(2);
717 goto restart;
718 }
719
720 if (!error) {
721 error = xfs_bwrite(bp);
722 xfs_buf_relse(bp);
723 }
724
725 xfs_iflock(ip);
726 reclaim:
727 xfs_ifunlock(ip);
728 xfs_iunlock(ip, XFS_ILOCK_EXCL);
729
730 XFS_STATS_INC(xs_ig_reclaims);
731 /*
732 * Remove the inode from the per-AG radix tree.
733 *
734 * Because radix_tree_delete won't complain even if the item was never
735 * added to the tree assert that it's been there before to catch
736 * problems with the inode life time early on.
737 */
738 spin_lock(&pag->pag_ici_lock);
739 if (!radix_tree_delete(&pag->pag_ici_root,
740 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino)))
741 ASSERT(0);
742 __xfs_inode_clear_reclaim(pag, ip);
743 spin_unlock(&pag->pag_ici_lock);
744
745 /*
746 * Here we do an (almost) spurious inode lock in order to coordinate
747 * with inode cache radix tree lookups. This is because the lookup
748 * can reference the inodes in the cache without taking references.
749 *
750 * We make that OK here by ensuring that we wait until the inode is
751 * unlocked after the lookup before we go ahead and free it.
752 */
753 xfs_ilock(ip, XFS_ILOCK_EXCL);
754 xfs_qm_dqdetach(ip);
755 xfs_iunlock(ip, XFS_ILOCK_EXCL);
756
757 xfs_inode_free(ip);
758 return error;
759
760 out_ifunlock:
761 xfs_ifunlock(ip);
762 out:
763 xfs_iflags_clear(ip, XFS_IRECLAIM);
764 xfs_iunlock(ip, XFS_ILOCK_EXCL);
765 /*
766 * We could return EAGAIN here to make reclaim rescan the inode tree in
767 * a short while. However, this just burns CPU time scanning the tree
768 * waiting for IO to complete and xfssyncd never goes back to the idle
769 * state. Instead, return 0 to let the next scheduled background reclaim
770 * attempt to reclaim the inode again.
771 */
772 return 0;
773 }
774
775 /*
776 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
777 * corrupted, we still want to try to reclaim all the inodes. If we don't,
778 * then a shut down during filesystem unmount reclaim walk leak all the
779 * unreclaimed inodes.
780 */
781 int
782 xfs_reclaim_inodes_ag(
783 struct xfs_mount *mp,
784 int flags,
785 int *nr_to_scan)
786 {
787 struct xfs_perag *pag;
788 int error = 0;
789 int last_error = 0;
790 xfs_agnumber_t ag;
791 int trylock = flags & SYNC_TRYLOCK;
792 int skipped;
793
794 restart:
795 ag = 0;
796 skipped = 0;
797 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
798 unsigned long first_index = 0;
799 int done = 0;
800 int nr_found = 0;
801
802 ag = pag->pag_agno + 1;
803
804 if (trylock) {
805 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
806 skipped++;
807 xfs_perag_put(pag);
808 continue;
809 }
810 first_index = pag->pag_ici_reclaim_cursor;
811 } else
812 mutex_lock(&pag->pag_ici_reclaim_lock);
813
814 do {
815 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
816 int i;
817
818 rcu_read_lock();
819 nr_found = radix_tree_gang_lookup_tag(
820 &pag->pag_ici_root,
821 (void **)batch, first_index,
822 XFS_LOOKUP_BATCH,
823 XFS_ICI_RECLAIM_TAG);
824 if (!nr_found) {
825 done = 1;
826 rcu_read_unlock();
827 break;
828 }
829
830 /*
831 * Grab the inodes before we drop the lock. if we found
832 * nothing, nr == 0 and the loop will be skipped.
833 */
834 for (i = 0; i < nr_found; i++) {
835 struct xfs_inode *ip = batch[i];
836
837 if (done || xfs_reclaim_inode_grab(ip, flags))
838 batch[i] = NULL;
839
840 /*
841 * Update the index for the next lookup. Catch
842 * overflows into the next AG range which can
843 * occur if we have inodes in the last block of
844 * the AG and we are currently pointing to the
845 * last inode.
846 *
847 * Because we may see inodes that are from the
848 * wrong AG due to RCU freeing and
849 * reallocation, only update the index if it
850 * lies in this AG. It was a race that lead us
851 * to see this inode, so another lookup from
852 * the same index will not find it again.
853 */
854 if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
855 pag->pag_agno)
856 continue;
857 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
858 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
859 done = 1;
860 }
861
862 /* unlock now we've grabbed the inodes. */
863 rcu_read_unlock();
864
865 for (i = 0; i < nr_found; i++) {
866 if (!batch[i])
867 continue;
868 error = xfs_reclaim_inode(batch[i], pag, flags);
869 if (error && last_error != EFSCORRUPTED)
870 last_error = error;
871 }
872
873 *nr_to_scan -= XFS_LOOKUP_BATCH;
874
875 cond_resched();
876
877 } while (nr_found && !done && *nr_to_scan > 0);
878
879 if (trylock && !done)
880 pag->pag_ici_reclaim_cursor = first_index;
881 else
882 pag->pag_ici_reclaim_cursor = 0;
883 mutex_unlock(&pag->pag_ici_reclaim_lock);
884 xfs_perag_put(pag);
885 }
886
887 /*
888 * if we skipped any AG, and we still have scan count remaining, do
889 * another pass this time using blocking reclaim semantics (i.e
890 * waiting on the reclaim locks and ignoring the reclaim cursors). This
891 * ensure that when we get more reclaimers than AGs we block rather
892 * than spin trying to execute reclaim.
893 */
894 if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
895 trylock = 0;
896 goto restart;
897 }
898 return XFS_ERROR(last_error);
899 }
900
901 int
902 xfs_reclaim_inodes(
903 xfs_mount_t *mp,
904 int mode)
905 {
906 int nr_to_scan = INT_MAX;
907
908 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
909 }
910
911 /*
912 * Scan a certain number of inodes for reclaim.
913 *
914 * When called we make sure that there is a background (fast) inode reclaim in
915 * progress, while we will throttle the speed of reclaim via doing synchronous
916 * reclaim of inodes. That means if we come across dirty inodes, we wait for
917 * them to be cleaned, which we hope will not be very long due to the
918 * background walker having already kicked the IO off on those dirty inodes.
919 */
920 void
921 xfs_reclaim_inodes_nr(
922 struct xfs_mount *mp,
923 int nr_to_scan)
924 {
925 /* kick background reclaimer and push the AIL */
926 xfs_syncd_queue_reclaim(mp);
927 xfs_ail_push_all(mp->m_ail);
928
929 xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
930 }
931
932 /*
933 * Return the number of reclaimable inodes in the filesystem for
934 * the shrinker to determine how much to reclaim.
935 */
936 int
937 xfs_reclaim_inodes_count(
938 struct xfs_mount *mp)
939 {
940 struct xfs_perag *pag;
941 xfs_agnumber_t ag = 0;
942 int reclaimable = 0;
943
944 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
945 ag = pag->pag_agno + 1;
946 reclaimable += pag->pag_ici_reclaimable;
947 xfs_perag_put(pag);
948 }
949 return reclaimable;
950 }
951
This page took 0.052198 seconds and 6 git commands to generate.