xfs: don't run the sync work if the filesystem is read-only
[deliverable/linux.git] / fs / xfs / xfs_sync.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_log.h"
22 #include "xfs_inum.h"
23 #include "xfs_trans.h"
24 #include "xfs_trans_priv.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_bmap_btree.h"
29 #include "xfs_inode.h"
30 #include "xfs_dinode.h"
31 #include "xfs_error.h"
32 #include "xfs_filestream.h"
33 #include "xfs_vnodeops.h"
34 #include "xfs_inode_item.h"
35 #include "xfs_quota.h"
36 #include "xfs_trace.h"
37 #include "xfs_fsops.h"
38
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41
42 struct workqueue_struct *xfs_syncd_wq; /* sync workqueue */
43
44 /*
45 * The inode lookup is done in batches to keep the amount of lock traffic and
46 * radix tree lookups to a minimum. The batch size is a trade off between
47 * lookup reduction and stack usage. This is in the reclaim path, so we can't
48 * be too greedy.
49 */
50 #define XFS_LOOKUP_BATCH 32
51
52 STATIC int
53 xfs_inode_ag_walk_grab(
54 struct xfs_inode *ip)
55 {
56 struct inode *inode = VFS_I(ip);
57
58 ASSERT(rcu_read_lock_held());
59
60 /*
61 * check for stale RCU freed inode
62 *
63 * If the inode has been reallocated, it doesn't matter if it's not in
64 * the AG we are walking - we are walking for writeback, so if it
65 * passes all the "valid inode" checks and is dirty, then we'll write
66 * it back anyway. If it has been reallocated and still being
67 * initialised, the XFS_INEW check below will catch it.
68 */
69 spin_lock(&ip->i_flags_lock);
70 if (!ip->i_ino)
71 goto out_unlock_noent;
72
73 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
74 if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
75 goto out_unlock_noent;
76 spin_unlock(&ip->i_flags_lock);
77
78 /* nothing to sync during shutdown */
79 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
80 return EFSCORRUPTED;
81
82 /* If we can't grab the inode, it must on it's way to reclaim. */
83 if (!igrab(inode))
84 return ENOENT;
85
86 if (is_bad_inode(inode)) {
87 IRELE(ip);
88 return ENOENT;
89 }
90
91 /* inode is valid */
92 return 0;
93
94 out_unlock_noent:
95 spin_unlock(&ip->i_flags_lock);
96 return ENOENT;
97 }
98
99 STATIC int
100 xfs_inode_ag_walk(
101 struct xfs_mount *mp,
102 struct xfs_perag *pag,
103 int (*execute)(struct xfs_inode *ip,
104 struct xfs_perag *pag, int flags),
105 int flags)
106 {
107 uint32_t first_index;
108 int last_error = 0;
109 int skipped;
110 int done;
111 int nr_found;
112
113 restart:
114 done = 0;
115 skipped = 0;
116 first_index = 0;
117 nr_found = 0;
118 do {
119 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
120 int error = 0;
121 int i;
122
123 rcu_read_lock();
124 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
125 (void **)batch, first_index,
126 XFS_LOOKUP_BATCH);
127 if (!nr_found) {
128 rcu_read_unlock();
129 break;
130 }
131
132 /*
133 * Grab the inodes before we drop the lock. if we found
134 * nothing, nr == 0 and the loop will be skipped.
135 */
136 for (i = 0; i < nr_found; i++) {
137 struct xfs_inode *ip = batch[i];
138
139 if (done || xfs_inode_ag_walk_grab(ip))
140 batch[i] = NULL;
141
142 /*
143 * Update the index for the next lookup. Catch
144 * overflows into the next AG range which can occur if
145 * we have inodes in the last block of the AG and we
146 * are currently pointing to the last inode.
147 *
148 * Because we may see inodes that are from the wrong AG
149 * due to RCU freeing and reallocation, only update the
150 * index if it lies in this AG. It was a race that lead
151 * us to see this inode, so another lookup from the
152 * same index will not find it again.
153 */
154 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
155 continue;
156 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
157 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
158 done = 1;
159 }
160
161 /* unlock now we've grabbed the inodes. */
162 rcu_read_unlock();
163
164 for (i = 0; i < nr_found; i++) {
165 if (!batch[i])
166 continue;
167 error = execute(batch[i], pag, flags);
168 IRELE(batch[i]);
169 if (error == EAGAIN) {
170 skipped++;
171 continue;
172 }
173 if (error && last_error != EFSCORRUPTED)
174 last_error = error;
175 }
176
177 /* bail out if the filesystem is corrupted. */
178 if (error == EFSCORRUPTED)
179 break;
180
181 cond_resched();
182
183 } while (nr_found && !done);
184
185 if (skipped) {
186 delay(1);
187 goto restart;
188 }
189 return last_error;
190 }
191
192 int
193 xfs_inode_ag_iterator(
194 struct xfs_mount *mp,
195 int (*execute)(struct xfs_inode *ip,
196 struct xfs_perag *pag, int flags),
197 int flags)
198 {
199 struct xfs_perag *pag;
200 int error = 0;
201 int last_error = 0;
202 xfs_agnumber_t ag;
203
204 ag = 0;
205 while ((pag = xfs_perag_get(mp, ag))) {
206 ag = pag->pag_agno + 1;
207 error = xfs_inode_ag_walk(mp, pag, execute, flags);
208 xfs_perag_put(pag);
209 if (error) {
210 last_error = error;
211 if (error == EFSCORRUPTED)
212 break;
213 }
214 }
215 return XFS_ERROR(last_error);
216 }
217
218 STATIC int
219 xfs_sync_inode_data(
220 struct xfs_inode *ip,
221 struct xfs_perag *pag,
222 int flags)
223 {
224 struct inode *inode = VFS_I(ip);
225 struct address_space *mapping = inode->i_mapping;
226 int error = 0;
227
228 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
229 return 0;
230
231 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) {
232 if (flags & SYNC_TRYLOCK)
233 return 0;
234 xfs_ilock(ip, XFS_IOLOCK_SHARED);
235 }
236
237 error = xfs_flush_pages(ip, 0, -1, (flags & SYNC_WAIT) ?
238 0 : XBF_ASYNC, FI_NONE);
239 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
240 return error;
241 }
242
243 /*
244 * Write out pagecache data for the whole filesystem.
245 */
246 STATIC int
247 xfs_sync_data(
248 struct xfs_mount *mp,
249 int flags)
250 {
251 int error;
252
253 ASSERT((flags & ~(SYNC_TRYLOCK|SYNC_WAIT)) == 0);
254
255 error = xfs_inode_ag_iterator(mp, xfs_sync_inode_data, flags);
256 if (error)
257 return XFS_ERROR(error);
258
259 xfs_log_force(mp, (flags & SYNC_WAIT) ? XFS_LOG_SYNC : 0);
260 return 0;
261 }
262
263 STATIC int
264 xfs_sync_fsdata(
265 struct xfs_mount *mp)
266 {
267 struct xfs_buf *bp;
268 int error;
269
270 /*
271 * If the buffer is pinned then push on the log so we won't get stuck
272 * waiting in the write for someone, maybe ourselves, to flush the log.
273 *
274 * Even though we just pushed the log above, we did not have the
275 * superblock buffer locked at that point so it can become pinned in
276 * between there and here.
277 */
278 bp = xfs_getsb(mp, 0);
279 if (xfs_buf_ispinned(bp))
280 xfs_log_force(mp, 0);
281 error = xfs_bwrite(bp);
282 xfs_buf_relse(bp);
283 return error;
284 }
285
286 /*
287 * When remounting a filesystem read-only or freezing the filesystem, we have
288 * two phases to execute. This first phase is syncing the data before we
289 * quiesce the filesystem, and the second is flushing all the inodes out after
290 * we've waited for all the transactions created by the first phase to
291 * complete. The second phase ensures that the inodes are written to their
292 * location on disk rather than just existing in transactions in the log. This
293 * means after a quiesce there is no log replay required to write the inodes to
294 * disk (this is the main difference between a sync and a quiesce).
295 */
296 /*
297 * First stage of freeze - no writers will make progress now we are here,
298 * so we flush delwri and delalloc buffers here, then wait for all I/O to
299 * complete. Data is frozen at that point. Metadata is not frozen,
300 * transactions can still occur here so don't bother emptying the AIL
301 * because it'll just get dirty again.
302 */
303 int
304 xfs_quiesce_data(
305 struct xfs_mount *mp)
306 {
307 int error, error2 = 0;
308
309 /* force out the log */
310 xfs_log_force(mp, XFS_LOG_SYNC);
311
312 /* write superblock and hoover up shutdown errors */
313 error = xfs_sync_fsdata(mp);
314
315 /* mark the log as covered if needed */
316 if (xfs_log_need_covered(mp))
317 error2 = xfs_fs_log_dummy(mp);
318
319 return error ? error : error2;
320 }
321
322 /*
323 * Second stage of a quiesce. The data is already synced, now we have to take
324 * care of the metadata. New transactions are already blocked, so we need to
325 * wait for any remaining transactions to drain out before proceeding.
326 *
327 * Note: this stops background sync work - the callers must ensure it is started
328 * again when appropriate.
329 */
330 void
331 xfs_quiesce_attr(
332 struct xfs_mount *mp)
333 {
334 int error = 0;
335
336 /* wait for all modifications to complete */
337 while (atomic_read(&mp->m_active_trans) > 0)
338 delay(100);
339
340 /* reclaim inodes to do any IO before the freeze completes */
341 xfs_reclaim_inodes(mp, 0);
342 xfs_reclaim_inodes(mp, SYNC_WAIT);
343
344 /* flush all pending changes from the AIL */
345 xfs_ail_push_all_sync(mp->m_ail);
346
347 /* stop background sync work */
348 cancel_delayed_work_sync(&mp->m_sync_work);
349
350 /*
351 * Just warn here till VFS can correctly support
352 * read-only remount without racing.
353 */
354 WARN_ON(atomic_read(&mp->m_active_trans) != 0);
355
356 /* Push the superblock and write an unmount record */
357 error = xfs_log_sbcount(mp);
358 if (error)
359 xfs_warn(mp, "xfs_attr_quiesce: failed to log sb changes. "
360 "Frozen image may not be consistent.");
361 xfs_log_unmount_write(mp);
362
363 /*
364 * At this point we might have modified the superblock again and thus
365 * added an item to the AIL, thus flush it again.
366 */
367 xfs_ail_push_all_sync(mp->m_ail);
368
369 /*
370 * The superblock buffer is uncached and xfsaild_push() will lock and
371 * set the XBF_ASYNC flag on the buffer. We cannot do xfs_buf_iowait()
372 * here but a lock on the superblock buffer will block until iodone()
373 * has completed.
374 */
375 xfs_buf_lock(mp->m_sb_bp);
376 xfs_buf_unlock(mp->m_sb_bp);
377 }
378
379 void
380 xfs_syncd_queue_sync(
381 struct xfs_mount *mp)
382 {
383 queue_delayed_work(xfs_syncd_wq, &mp->m_sync_work,
384 msecs_to_jiffies(xfs_syncd_centisecs * 10));
385 }
386
387 /*
388 * Every sync period we need to push dirty metadata and try to cover the log
389 * to indicate the filesystem is idle and not frozen.
390 */
391 void
392 xfs_sync_worker(
393 struct work_struct *work)
394 {
395 struct xfs_mount *mp = container_of(to_delayed_work(work),
396 struct xfs_mount, m_sync_work);
397 int error;
398
399 /* dgc: errors ignored here */
400 if (mp->m_super->s_writers.frozen == SB_UNFROZEN &&
401 xfs_log_need_covered(mp))
402 error = xfs_fs_log_dummy(mp);
403 else
404 xfs_log_force(mp, 0);
405
406 /* start pushing all the metadata that is currently dirty */
407 xfs_ail_push_all(mp->m_ail);
408
409 /* queue us up again */
410 xfs_syncd_queue_sync(mp);
411 }
412
413 /*
414 * Queue a new inode reclaim pass if there are reclaimable inodes and there
415 * isn't a reclaim pass already in progress. By default it runs every 5s based
416 * on the xfs syncd work default of 30s. Perhaps this should have it's own
417 * tunable, but that can be done if this method proves to be ineffective or too
418 * aggressive.
419 */
420 static void
421 xfs_syncd_queue_reclaim(
422 struct xfs_mount *mp)
423 {
424
425 rcu_read_lock();
426 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
427 queue_delayed_work(xfs_syncd_wq, &mp->m_reclaim_work,
428 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
429 }
430 rcu_read_unlock();
431 }
432
433 /*
434 * This is a fast pass over the inode cache to try to get reclaim moving on as
435 * many inodes as possible in a short period of time. It kicks itself every few
436 * seconds, as well as being kicked by the inode cache shrinker when memory
437 * goes low. It scans as quickly as possible avoiding locked inodes or those
438 * already being flushed, and once done schedules a future pass.
439 */
440 void
441 xfs_reclaim_worker(
442 struct work_struct *work)
443 {
444 struct xfs_mount *mp = container_of(to_delayed_work(work),
445 struct xfs_mount, m_reclaim_work);
446
447 xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
448 xfs_syncd_queue_reclaim(mp);
449 }
450
451 /*
452 * Flush delayed allocate data, attempting to free up reserved space
453 * from existing allocations. At this point a new allocation attempt
454 * has failed with ENOSPC and we are in the process of scratching our
455 * heads, looking about for more room.
456 *
457 * Queue a new data flush if there isn't one already in progress and
458 * wait for completion of the flush. This means that we only ever have one
459 * inode flush in progress no matter how many ENOSPC events are occurring and
460 * so will prevent the system from bogging down due to every concurrent
461 * ENOSPC event scanning all the active inodes in the system for writeback.
462 */
463 void
464 xfs_flush_inodes(
465 struct xfs_inode *ip)
466 {
467 struct xfs_mount *mp = ip->i_mount;
468
469 queue_work(xfs_syncd_wq, &mp->m_flush_work);
470 flush_work(&mp->m_flush_work);
471 }
472
473 void
474 xfs_flush_worker(
475 struct work_struct *work)
476 {
477 struct xfs_mount *mp = container_of(work,
478 struct xfs_mount, m_flush_work);
479
480 xfs_sync_data(mp, SYNC_TRYLOCK);
481 xfs_sync_data(mp, SYNC_TRYLOCK | SYNC_WAIT);
482 }
483
484 void
485 __xfs_inode_set_reclaim_tag(
486 struct xfs_perag *pag,
487 struct xfs_inode *ip)
488 {
489 radix_tree_tag_set(&pag->pag_ici_root,
490 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
491 XFS_ICI_RECLAIM_TAG);
492
493 if (!pag->pag_ici_reclaimable) {
494 /* propagate the reclaim tag up into the perag radix tree */
495 spin_lock(&ip->i_mount->m_perag_lock);
496 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
497 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
498 XFS_ICI_RECLAIM_TAG);
499 spin_unlock(&ip->i_mount->m_perag_lock);
500
501 /* schedule periodic background inode reclaim */
502 xfs_syncd_queue_reclaim(ip->i_mount);
503
504 trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
505 -1, _RET_IP_);
506 }
507 pag->pag_ici_reclaimable++;
508 }
509
510 /*
511 * We set the inode flag atomically with the radix tree tag.
512 * Once we get tag lookups on the radix tree, this inode flag
513 * can go away.
514 */
515 void
516 xfs_inode_set_reclaim_tag(
517 xfs_inode_t *ip)
518 {
519 struct xfs_mount *mp = ip->i_mount;
520 struct xfs_perag *pag;
521
522 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
523 spin_lock(&pag->pag_ici_lock);
524 spin_lock(&ip->i_flags_lock);
525 __xfs_inode_set_reclaim_tag(pag, ip);
526 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
527 spin_unlock(&ip->i_flags_lock);
528 spin_unlock(&pag->pag_ici_lock);
529 xfs_perag_put(pag);
530 }
531
532 STATIC void
533 __xfs_inode_clear_reclaim(
534 xfs_perag_t *pag,
535 xfs_inode_t *ip)
536 {
537 pag->pag_ici_reclaimable--;
538 if (!pag->pag_ici_reclaimable) {
539 /* clear the reclaim tag from the perag radix tree */
540 spin_lock(&ip->i_mount->m_perag_lock);
541 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
542 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
543 XFS_ICI_RECLAIM_TAG);
544 spin_unlock(&ip->i_mount->m_perag_lock);
545 trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
546 -1, _RET_IP_);
547 }
548 }
549
550 void
551 __xfs_inode_clear_reclaim_tag(
552 xfs_mount_t *mp,
553 xfs_perag_t *pag,
554 xfs_inode_t *ip)
555 {
556 radix_tree_tag_clear(&pag->pag_ici_root,
557 XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
558 __xfs_inode_clear_reclaim(pag, ip);
559 }
560
561 /*
562 * Grab the inode for reclaim exclusively.
563 * Return 0 if we grabbed it, non-zero otherwise.
564 */
565 STATIC int
566 xfs_reclaim_inode_grab(
567 struct xfs_inode *ip,
568 int flags)
569 {
570 ASSERT(rcu_read_lock_held());
571
572 /* quick check for stale RCU freed inode */
573 if (!ip->i_ino)
574 return 1;
575
576 /*
577 * If we are asked for non-blocking operation, do unlocked checks to
578 * see if the inode already is being flushed or in reclaim to avoid
579 * lock traffic.
580 */
581 if ((flags & SYNC_TRYLOCK) &&
582 __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
583 return 1;
584
585 /*
586 * The radix tree lock here protects a thread in xfs_iget from racing
587 * with us starting reclaim on the inode. Once we have the
588 * XFS_IRECLAIM flag set it will not touch us.
589 *
590 * Due to RCU lookup, we may find inodes that have been freed and only
591 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
592 * aren't candidates for reclaim at all, so we must check the
593 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
594 */
595 spin_lock(&ip->i_flags_lock);
596 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
597 __xfs_iflags_test(ip, XFS_IRECLAIM)) {
598 /* not a reclaim candidate. */
599 spin_unlock(&ip->i_flags_lock);
600 return 1;
601 }
602 __xfs_iflags_set(ip, XFS_IRECLAIM);
603 spin_unlock(&ip->i_flags_lock);
604 return 0;
605 }
606
607 /*
608 * Inodes in different states need to be treated differently. The following
609 * table lists the inode states and the reclaim actions necessary:
610 *
611 * inode state iflush ret required action
612 * --------------- ---------- ---------------
613 * bad - reclaim
614 * shutdown EIO unpin and reclaim
615 * clean, unpinned 0 reclaim
616 * stale, unpinned 0 reclaim
617 * clean, pinned(*) 0 requeue
618 * stale, pinned EAGAIN requeue
619 * dirty, async - requeue
620 * dirty, sync 0 reclaim
621 *
622 * (*) dgc: I don't think the clean, pinned state is possible but it gets
623 * handled anyway given the order of checks implemented.
624 *
625 * Also, because we get the flush lock first, we know that any inode that has
626 * been flushed delwri has had the flush completed by the time we check that
627 * the inode is clean.
628 *
629 * Note that because the inode is flushed delayed write by AIL pushing, the
630 * flush lock may already be held here and waiting on it can result in very
631 * long latencies. Hence for sync reclaims, where we wait on the flush lock,
632 * the caller should push the AIL first before trying to reclaim inodes to
633 * minimise the amount of time spent waiting. For background relaim, we only
634 * bother to reclaim clean inodes anyway.
635 *
636 * Hence the order of actions after gaining the locks should be:
637 * bad => reclaim
638 * shutdown => unpin and reclaim
639 * pinned, async => requeue
640 * pinned, sync => unpin
641 * stale => reclaim
642 * clean => reclaim
643 * dirty, async => requeue
644 * dirty, sync => flush, wait and reclaim
645 */
646 STATIC int
647 xfs_reclaim_inode(
648 struct xfs_inode *ip,
649 struct xfs_perag *pag,
650 int sync_mode)
651 {
652 struct xfs_buf *bp = NULL;
653 int error;
654
655 restart:
656 error = 0;
657 xfs_ilock(ip, XFS_ILOCK_EXCL);
658 if (!xfs_iflock_nowait(ip)) {
659 if (!(sync_mode & SYNC_WAIT))
660 goto out;
661 xfs_iflock(ip);
662 }
663
664 if (is_bad_inode(VFS_I(ip)))
665 goto reclaim;
666 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
667 xfs_iunpin_wait(ip);
668 xfs_iflush_abort(ip, false);
669 goto reclaim;
670 }
671 if (xfs_ipincount(ip)) {
672 if (!(sync_mode & SYNC_WAIT))
673 goto out_ifunlock;
674 xfs_iunpin_wait(ip);
675 }
676 if (xfs_iflags_test(ip, XFS_ISTALE))
677 goto reclaim;
678 if (xfs_inode_clean(ip))
679 goto reclaim;
680
681 /*
682 * Never flush out dirty data during non-blocking reclaim, as it would
683 * just contend with AIL pushing trying to do the same job.
684 */
685 if (!(sync_mode & SYNC_WAIT))
686 goto out_ifunlock;
687
688 /*
689 * Now we have an inode that needs flushing.
690 *
691 * Note that xfs_iflush will never block on the inode buffer lock, as
692 * xfs_ifree_cluster() can lock the inode buffer before it locks the
693 * ip->i_lock, and we are doing the exact opposite here. As a result,
694 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
695 * result in an ABBA deadlock with xfs_ifree_cluster().
696 *
697 * As xfs_ifree_cluser() must gather all inodes that are active in the
698 * cache to mark them stale, if we hit this case we don't actually want
699 * to do IO here - we want the inode marked stale so we can simply
700 * reclaim it. Hence if we get an EAGAIN error here, just unlock the
701 * inode, back off and try again. Hopefully the next pass through will
702 * see the stale flag set on the inode.
703 */
704 error = xfs_iflush(ip, &bp);
705 if (error == EAGAIN) {
706 xfs_iunlock(ip, XFS_ILOCK_EXCL);
707 /* backoff longer than in xfs_ifree_cluster */
708 delay(2);
709 goto restart;
710 }
711
712 if (!error) {
713 error = xfs_bwrite(bp);
714 xfs_buf_relse(bp);
715 }
716
717 xfs_iflock(ip);
718 reclaim:
719 xfs_ifunlock(ip);
720 xfs_iunlock(ip, XFS_ILOCK_EXCL);
721
722 XFS_STATS_INC(xs_ig_reclaims);
723 /*
724 * Remove the inode from the per-AG radix tree.
725 *
726 * Because radix_tree_delete won't complain even if the item was never
727 * added to the tree assert that it's been there before to catch
728 * problems with the inode life time early on.
729 */
730 spin_lock(&pag->pag_ici_lock);
731 if (!radix_tree_delete(&pag->pag_ici_root,
732 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino)))
733 ASSERT(0);
734 __xfs_inode_clear_reclaim(pag, ip);
735 spin_unlock(&pag->pag_ici_lock);
736
737 /*
738 * Here we do an (almost) spurious inode lock in order to coordinate
739 * with inode cache radix tree lookups. This is because the lookup
740 * can reference the inodes in the cache without taking references.
741 *
742 * We make that OK here by ensuring that we wait until the inode is
743 * unlocked after the lookup before we go ahead and free it.
744 */
745 xfs_ilock(ip, XFS_ILOCK_EXCL);
746 xfs_qm_dqdetach(ip);
747 xfs_iunlock(ip, XFS_ILOCK_EXCL);
748
749 xfs_inode_free(ip);
750 return error;
751
752 out_ifunlock:
753 xfs_ifunlock(ip);
754 out:
755 xfs_iflags_clear(ip, XFS_IRECLAIM);
756 xfs_iunlock(ip, XFS_ILOCK_EXCL);
757 /*
758 * We could return EAGAIN here to make reclaim rescan the inode tree in
759 * a short while. However, this just burns CPU time scanning the tree
760 * waiting for IO to complete and xfssyncd never goes back to the idle
761 * state. Instead, return 0 to let the next scheduled background reclaim
762 * attempt to reclaim the inode again.
763 */
764 return 0;
765 }
766
767 /*
768 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
769 * corrupted, we still want to try to reclaim all the inodes. If we don't,
770 * then a shut down during filesystem unmount reclaim walk leak all the
771 * unreclaimed inodes.
772 */
773 int
774 xfs_reclaim_inodes_ag(
775 struct xfs_mount *mp,
776 int flags,
777 int *nr_to_scan)
778 {
779 struct xfs_perag *pag;
780 int error = 0;
781 int last_error = 0;
782 xfs_agnumber_t ag;
783 int trylock = flags & SYNC_TRYLOCK;
784 int skipped;
785
786 restart:
787 ag = 0;
788 skipped = 0;
789 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
790 unsigned long first_index = 0;
791 int done = 0;
792 int nr_found = 0;
793
794 ag = pag->pag_agno + 1;
795
796 if (trylock) {
797 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
798 skipped++;
799 xfs_perag_put(pag);
800 continue;
801 }
802 first_index = pag->pag_ici_reclaim_cursor;
803 } else
804 mutex_lock(&pag->pag_ici_reclaim_lock);
805
806 do {
807 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
808 int i;
809
810 rcu_read_lock();
811 nr_found = radix_tree_gang_lookup_tag(
812 &pag->pag_ici_root,
813 (void **)batch, first_index,
814 XFS_LOOKUP_BATCH,
815 XFS_ICI_RECLAIM_TAG);
816 if (!nr_found) {
817 done = 1;
818 rcu_read_unlock();
819 break;
820 }
821
822 /*
823 * Grab the inodes before we drop the lock. if we found
824 * nothing, nr == 0 and the loop will be skipped.
825 */
826 for (i = 0; i < nr_found; i++) {
827 struct xfs_inode *ip = batch[i];
828
829 if (done || xfs_reclaim_inode_grab(ip, flags))
830 batch[i] = NULL;
831
832 /*
833 * Update the index for the next lookup. Catch
834 * overflows into the next AG range which can
835 * occur if we have inodes in the last block of
836 * the AG and we are currently pointing to the
837 * last inode.
838 *
839 * Because we may see inodes that are from the
840 * wrong AG due to RCU freeing and
841 * reallocation, only update the index if it
842 * lies in this AG. It was a race that lead us
843 * to see this inode, so another lookup from
844 * the same index will not find it again.
845 */
846 if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
847 pag->pag_agno)
848 continue;
849 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
850 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
851 done = 1;
852 }
853
854 /* unlock now we've grabbed the inodes. */
855 rcu_read_unlock();
856
857 for (i = 0; i < nr_found; i++) {
858 if (!batch[i])
859 continue;
860 error = xfs_reclaim_inode(batch[i], pag, flags);
861 if (error && last_error != EFSCORRUPTED)
862 last_error = error;
863 }
864
865 *nr_to_scan -= XFS_LOOKUP_BATCH;
866
867 cond_resched();
868
869 } while (nr_found && !done && *nr_to_scan > 0);
870
871 if (trylock && !done)
872 pag->pag_ici_reclaim_cursor = first_index;
873 else
874 pag->pag_ici_reclaim_cursor = 0;
875 mutex_unlock(&pag->pag_ici_reclaim_lock);
876 xfs_perag_put(pag);
877 }
878
879 /*
880 * if we skipped any AG, and we still have scan count remaining, do
881 * another pass this time using blocking reclaim semantics (i.e
882 * waiting on the reclaim locks and ignoring the reclaim cursors). This
883 * ensure that when we get more reclaimers than AGs we block rather
884 * than spin trying to execute reclaim.
885 */
886 if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
887 trylock = 0;
888 goto restart;
889 }
890 return XFS_ERROR(last_error);
891 }
892
893 int
894 xfs_reclaim_inodes(
895 xfs_mount_t *mp,
896 int mode)
897 {
898 int nr_to_scan = INT_MAX;
899
900 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
901 }
902
903 /*
904 * Scan a certain number of inodes for reclaim.
905 *
906 * When called we make sure that there is a background (fast) inode reclaim in
907 * progress, while we will throttle the speed of reclaim via doing synchronous
908 * reclaim of inodes. That means if we come across dirty inodes, we wait for
909 * them to be cleaned, which we hope will not be very long due to the
910 * background walker having already kicked the IO off on those dirty inodes.
911 */
912 void
913 xfs_reclaim_inodes_nr(
914 struct xfs_mount *mp,
915 int nr_to_scan)
916 {
917 /* kick background reclaimer and push the AIL */
918 xfs_syncd_queue_reclaim(mp);
919 xfs_ail_push_all(mp->m_ail);
920
921 xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
922 }
923
924 /*
925 * Return the number of reclaimable inodes in the filesystem for
926 * the shrinker to determine how much to reclaim.
927 */
928 int
929 xfs_reclaim_inodes_count(
930 struct xfs_mount *mp)
931 {
932 struct xfs_perag *pag;
933 xfs_agnumber_t ag = 0;
934 int reclaimable = 0;
935
936 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
937 ag = pag->pag_agno + 1;
938 reclaimable += pag->pag_ici_reclaimable;
939 xfs_perag_put(pag);
940 }
941 return reclaimable;
942 }
943
This page took 0.064432 seconds and 6 git commands to generate.