323d4e123bdb7286bddb972b02fadcf285387a24
[deliverable/binutils-gdb.git] / gas / config / atof-ieee.c
1 /* atof_ieee.c - turn a Flonum into an IEEE floating point number
2 Copyright (C) 1987 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 1, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "as.h"
21
22 #ifdef USG
23 #define bzero(s,n) memset(s,0,n)
24 #define bcopy(from,to,n) memcpy((to),(from),(n))
25 #endif
26
27 extern FLONUM_TYPE generic_floating_point_number; /* Flonums returned here. */
28
29 #ifndef NULL
30 #define NULL (0)
31 #endif
32
33 extern char EXP_CHARS[];
34 /* Precision in LittleNums. */
35 #define MAX_PRECISION (6)
36 #define F_PRECISION (2)
37 #define D_PRECISION (4)
38 #define X_PRECISION (6)
39 #define P_PRECISION (6)
40
41 /* Length in LittleNums of guard bits. */
42 #define GUARD (2)
43
44 static unsigned long mask [] = {
45 0x00000000,
46 0x00000001,
47 0x00000003,
48 0x00000007,
49 0x0000000f,
50 0x0000001f,
51 0x0000003f,
52 0x0000007f,
53 0x000000ff,
54 0x000001ff,
55 0x000003ff,
56 0x000007ff,
57 0x00000fff,
58 0x00001fff,
59 0x00003fff,
60 0x00007fff,
61 0x0000ffff,
62 0x0001ffff,
63 0x0003ffff,
64 0x0007ffff,
65 0x000fffff,
66 0x001fffff,
67 0x003fffff,
68 0x007fffff,
69 0x00ffffff,
70 0x01ffffff,
71 0x03ffffff,
72 0x07ffffff,
73 0x0fffffff,
74 0x1fffffff,
75 0x3fffffff,
76 0x7fffffff,
77 0xffffffff
78 };
79 \f
80
81 static int bits_left_in_littlenum;
82 static int littlenums_left;
83 static LITTLENUM_TYPE *littlenum_pointer;
84
85 static int
86 next_bits (number_of_bits)
87 int number_of_bits;
88 {
89 int return_value;
90
91 if(!littlenums_left)
92 return 0;
93 if (number_of_bits >= bits_left_in_littlenum)
94 {
95 return_value = mask [bits_left_in_littlenum] & *littlenum_pointer;
96 number_of_bits -= bits_left_in_littlenum;
97 return_value <<= number_of_bits;
98 if(--littlenums_left) {
99 bits_left_in_littlenum = LITTLENUM_NUMBER_OF_BITS - number_of_bits;
100 littlenum_pointer --;
101 return_value |= (*littlenum_pointer>>bits_left_in_littlenum) & mask[number_of_bits];
102 }
103 }
104 else
105 {
106 bits_left_in_littlenum -= number_of_bits;
107 return_value = mask [number_of_bits] & (*littlenum_pointer>>bits_left_in_littlenum);
108 }
109 return (return_value);
110 }
111
112 /* Num had better be less than LITTLENUM_NUMBER_OF_BITS */
113 static void
114 unget_bits(num)
115 int num;
116 {
117 if(!littlenums_left) {
118 ++littlenum_pointer;
119 ++littlenums_left;
120 bits_left_in_littlenum=num;
121 } else if(bits_left_in_littlenum+num>LITTLENUM_NUMBER_OF_BITS) {
122 bits_left_in_littlenum= num-(LITTLENUM_NUMBER_OF_BITS-bits_left_in_littlenum);
123 ++littlenum_pointer;
124 ++littlenums_left;
125 } else
126 bits_left_in_littlenum+=num;
127 }
128
129 static void
130 make_invalid_floating_point_number (words)
131 LITTLENUM_TYPE * words;
132 {
133 as_bad("cannot create floating-point number");
134 words[0]= ((unsigned)-1)>>1; /* Zero the leftmost bit */
135 words[1]= -1;
136 words[2]= -1;
137 words[3]= -1;
138 words[4]= -1;
139 words[5]= -1;
140 }
141 \f
142 /***********************************************************************\
143 * Warning: this returns 16-bit LITTLENUMs. It is up to the caller *
144 * to figure out any alignment problems and to conspire for the *
145 * bytes/word to be emitted in the right order. Bigendians beware! *
146 * *
147 \***********************************************************************/
148
149 /* Note that atof-ieee always has X and P precisions enabled. it is up
150 to md_atof to filter them out if the target machine does not support
151 them. */
152
153 char * /* Return pointer past text consumed. */
154 atof_ieee (str, what_kind, words)
155 char * str; /* Text to convert to binary. */
156 char what_kind; /* 'd', 'f', 'g', 'h' */
157 LITTLENUM_TYPE * words; /* Build the binary here. */
158 {
159 static LITTLENUM_TYPE bits [MAX_PRECISION + MAX_PRECISION + GUARD];
160 /* Extra bits for zeroed low-order bits. */
161 /* The 1st MAX_PRECISION are zeroed, */
162 /* the last contain flonum bits. */
163 char * return_value;
164 int precision; /* Number of 16-bit words in the format. */
165 long exponent_bits;
166
167 return_value = str;
168 generic_floating_point_number.low = bits + MAX_PRECISION;
169 generic_floating_point_number.high = NULL;
170 generic_floating_point_number.leader = NULL;
171 generic_floating_point_number.exponent = NULL;
172 generic_floating_point_number.sign = '\0';
173
174 /* Use more LittleNums than seems */
175 /* necessary: the highest flonum may have */
176 /* 15 leading 0 bits, so could be useless. */
177
178 bzero (bits, sizeof(LITTLENUM_TYPE) * MAX_PRECISION);
179
180 switch(what_kind) {
181 case 'f':
182 case 'F':
183 case 's':
184 case 'S':
185 precision = F_PRECISION;
186 exponent_bits = 8;
187 break;
188
189 case 'd':
190 case 'D':
191 case 'r':
192 case 'R':
193 precision = D_PRECISION;
194 exponent_bits = 11;
195 break;
196
197 case 'x':
198 case 'X':
199 case 'e':
200 case 'E':
201 precision = X_PRECISION;
202 exponent_bits = 15;
203 break;
204
205 case 'p':
206 case 'P':
207
208 precision = P_PRECISION;
209 exponent_bits= -1;
210 break;
211
212 default:
213 make_invalid_floating_point_number (words);
214 return NULL;
215 }
216
217 generic_floating_point_number.high = generic_floating_point_number.low + precision - 1 + GUARD;
218
219 if (atof_generic (& return_value, ".", EXP_CHARS, & generic_floating_point_number)) {
220 /* as_bad("Error converting floating point number (Exponent overflow?)"); */
221 make_invalid_floating_point_number (words);
222 return NULL;
223 }
224 gen_to_words(words, precision, exponent_bits);
225 return return_value;
226 }
227
228 /* Turn generic_floating_point_number into a real float/double/extended */
229 int gen_to_words(words, precision, exponent_bits)
230 LITTLENUM_TYPE *words;
231 int precision;
232 long exponent_bits;
233 {
234 int return_value=0;
235
236 long exponent_1;
237 long exponent_2;
238 long exponent_3;
239 long exponent_4;
240 int exponent_skippage;
241 LITTLENUM_TYPE word1;
242 LITTLENUM_TYPE * lp;
243
244 if (generic_floating_point_number.low > generic_floating_point_number.leader) {
245 /* 0.0e0 seen. */
246 if(generic_floating_point_number.sign=='+')
247 words[0]=0x0000;
248 else
249 words[0]=0x8000;
250 bzero (&words[1], sizeof(LITTLENUM_TYPE) * (precision-1));
251 return return_value;
252 }
253
254 /* NaN: Do the right thing */
255 if(generic_floating_point_number.sign==0) {
256 if(precision==F_PRECISION) {
257 words[0]=0x7fff;
258 words[1]=0xffff;
259 } else {
260 words[0]=0x7fff;
261 words[1]=0xffff;
262 words[2]=0xffff;
263 words[3]=0xffff;
264 }
265 return return_value;
266 } else if(generic_floating_point_number.sign=='P') {
267 /* +INF: Do the right thing */
268 if(precision==F_PRECISION) {
269 words[0]=0x7f80;
270 words[1]=0;
271 } else {
272 words[0]=0x7ff0;
273 words[1]=0;
274 words[2]=0;
275 words[3]=0;
276 }
277 return return_value;
278 } else if(generic_floating_point_number.sign=='N') {
279 /* Negative INF */
280 if(precision==F_PRECISION) {
281 words[0]=0xff80;
282 words[1]=0x0;
283 } else {
284 words[0]=0xfff0;
285 words[1]=0x0;
286 words[2]=0x0;
287 words[3]=0x0;
288 }
289 return return_value;
290 }
291 /*
292 * The floating point formats we support have:
293 * Bit 15 is sign bit.
294 * Bits 14:n are excess-whatever exponent.
295 * Bits n-1:0 (if any) are most significant bits of fraction.
296 * Bits 15:0 of the next word(s) are the next most significant bits.
297 *
298 * So we need: number of bits of exponent, number of bits of
299 * mantissa.
300 */
301 bits_left_in_littlenum = LITTLENUM_NUMBER_OF_BITS;
302 littlenum_pointer = generic_floating_point_number.leader;
303 littlenums_left = 1+generic_floating_point_number.leader - generic_floating_point_number.low;
304 /* Seek (and forget) 1st significant bit */
305 for (exponent_skippage = 0;! next_bits(1); exponent_skippage ++)
306 ;
307 exponent_1 = generic_floating_point_number.exponent + generic_floating_point_number.leader + 1 -
308 generic_floating_point_number.low;
309 /* Radix LITTLENUM_RADIX, point just higher than generic_floating_point_number.leader. */
310 exponent_2 = exponent_1 * LITTLENUM_NUMBER_OF_BITS;
311 /* Radix 2. */
312 exponent_3 = exponent_2 - exponent_skippage;
313 /* Forget leading zeros, forget 1st bit. */
314 exponent_4 = exponent_3 + ((1 << (exponent_bits - 1)) - 2);
315 /* Offset exponent. */
316
317 lp = words;
318
319 /* Word 1. Sign, exponent and perhaps high bits. */
320 word1 = (generic_floating_point_number.sign == '+') ? 0 : (1<<(LITTLENUM_NUMBER_OF_BITS-1));
321
322 /* Assume 2's complement integers. */
323 if(exponent_4<1 && exponent_4>=-62) {
324 int prec_bits;
325 int num_bits;
326
327 unget_bits(1);
328 num_bits= -exponent_4;
329 prec_bits=LITTLENUM_NUMBER_OF_BITS*precision-(exponent_bits+1+num_bits);
330 if(precision==X_PRECISION && exponent_bits==15)
331 prec_bits-=LITTLENUM_NUMBER_OF_BITS+1;
332
333 if(num_bits>=LITTLENUM_NUMBER_OF_BITS-exponent_bits) {
334 /* Bigger than one littlenum */
335 num_bits-=(LITTLENUM_NUMBER_OF_BITS-1)-exponent_bits;
336 *lp++=word1;
337 if(num_bits+exponent_bits+1>=precision*LITTLENUM_NUMBER_OF_BITS) {
338 /* Exponent overflow */
339 make_invalid_floating_point_number(words);
340 return return_value;
341 }
342 if(precision==X_PRECISION && exponent_bits==15) {
343 *lp++=0;
344 *lp++=0;
345 num_bits-=LITTLENUM_NUMBER_OF_BITS-1;
346 }
347 while(num_bits>=LITTLENUM_NUMBER_OF_BITS) {
348 num_bits-=LITTLENUM_NUMBER_OF_BITS;
349 *lp++=0;
350 }
351 if(num_bits)
352 *lp++=next_bits(LITTLENUM_NUMBER_OF_BITS-(num_bits));
353 } else {
354 if(precision==X_PRECISION && exponent_bits==15) {
355 *lp++=word1;
356 *lp++=0;
357 if(num_bits==LITTLENUM_NUMBER_OF_BITS) {
358 *lp++=0;
359 *lp++=next_bits(LITTLENUM_NUMBER_OF_BITS-1);
360 } else if(num_bits==LITTLENUM_NUMBER_OF_BITS-1)
361 *lp++=0;
362 else
363 *lp++=next_bits(LITTLENUM_NUMBER_OF_BITS-1-num_bits);
364 num_bits=0;
365 } else {
366 word1|= next_bits ((LITTLENUM_NUMBER_OF_BITS-1) - (exponent_bits+num_bits));
367 *lp++=word1;
368 }
369 }
370 while(lp<words+precision)
371 *lp++=next_bits(LITTLENUM_NUMBER_OF_BITS);
372
373 /* Round the mantissa up, but don't change the number */
374 if(next_bits(1)) {
375 --lp;
376 if(prec_bits>LITTLENUM_NUMBER_OF_BITS) {
377 int n = 0;
378 int tmp_bits;
379
380 n=0;
381 tmp_bits=prec_bits;
382 while(tmp_bits>LITTLENUM_NUMBER_OF_BITS) {
383 if(lp[n]!=(LITTLENUM_TYPE)-1)
384 break;
385 --n;
386 tmp_bits-=LITTLENUM_NUMBER_OF_BITS;
387 }
388 if(tmp_bits>LITTLENUM_NUMBER_OF_BITS || (lp[n]&mask[tmp_bits])!=mask[tmp_bits]) {
389 unsigned long carry;
390
391 for (carry = 1; carry && (lp >= words); lp --) {
392 carry = * lp + carry;
393 * lp = carry;
394 carry >>= LITTLENUM_NUMBER_OF_BITS;
395 }
396 }
397 } else if((*lp&mask[prec_bits])!=mask[prec_bits])
398 lp++;
399 }
400
401 return return_value;
402 } else if (exponent_4 & ~ mask [exponent_bits]) {
403 /*
404 * Exponent overflow. Lose immediately.
405 */
406
407 /*
408 * We leave return_value alone: admit we read the
409 * number, but return a floating exception
410 * because we can't encode the number.
411 */
412 make_invalid_floating_point_number (words);
413 return return_value;
414 } else {
415 word1 |= (exponent_4 << ((LITTLENUM_NUMBER_OF_BITS-1) - exponent_bits))
416 | next_bits ((LITTLENUM_NUMBER_OF_BITS-1) - exponent_bits);
417 }
418
419 * lp ++ = word1;
420
421 /* X_PRECISION is special: it has 16 bits of zero in the middle,
422 followed by a 1 bit. */
423 if(exponent_bits==15 && precision==X_PRECISION) {
424 *lp++=0;
425 *lp++= 1<<(LITTLENUM_NUMBER_OF_BITS)|next_bits(LITTLENUM_NUMBER_OF_BITS-1);
426 }
427
428 /* The rest of the words are just mantissa bits. */
429 while(lp < words + precision)
430 *lp++ = next_bits (LITTLENUM_NUMBER_OF_BITS);
431
432 if (next_bits (1)) {
433 unsigned long carry;
434 /*
435 * Since the NEXT bit is a 1, round UP the mantissa.
436 * The cunning design of these hidden-1 floats permits
437 * us to let the mantissa overflow into the exponent, and
438 * it 'does the right thing'. However, we lose if the
439 * highest-order bit of the lowest-order word flips.
440 * Is that clear?
441 */
442
443
444 /* #if (sizeof(carry)) < ((sizeof(bits[0]) * BITS_PER_CHAR) + 2)
445 Please allow at least 1 more bit in carry than is in a LITTLENUM.
446 We need that extra bit to hold a carry during a LITTLENUM carry
447 propagation. Another extra bit (kept 0) will assure us that we
448 don't get a sticky sign bit after shifting right, and that
449 permits us to propagate the carry without any masking of bits.
450 #endif */
451 for (carry = 1, lp --; carry && (lp >= words); lp --) {
452 carry = * lp + carry;
453 * lp = carry;
454 carry >>= LITTLENUM_NUMBER_OF_BITS;
455 }
456 if ( (word1 ^ *words) & (1 << (LITTLENUM_NUMBER_OF_BITS - 1)) ) {
457 /* We leave return_value alone: admit we read the
458 * number, but return a floating exception
459 * because we can't encode the number.
460 */
461 *words&= ~ (1 << (LITTLENUM_NUMBER_OF_BITS - 1));
462 /* make_invalid_floating_point_number (words); */
463 /* return return_value; */
464 }
465 }
466 return (return_value);
467 }
468
469 /* This routine is a real kludge. Someone really should do it better, but
470 I'm too lazy, and I don't understand this stuff all too well anyway
471 (JF)
472 */
473 void
474 int_to_gen(x)
475 long x;
476 {
477 char buf[20];
478 char *bufp;
479
480 sprintf(buf,"%ld",x);
481 bufp= &buf[0];
482 if(atof_generic(&bufp,".", EXP_CHARS, &generic_floating_point_number))
483 as_bad("Error converting number to floating point (Exponent overflow?)");
484 }
485
486 #ifdef TEST
487 char *
488 print_gen(gen)
489 FLONUM_TYPE *gen;
490 {
491 FLONUM_TYPE f;
492 LITTLENUM_TYPE arr[10];
493 double dv;
494 float fv;
495 static char sbuf[40];
496
497 if(gen) {
498 f=generic_floating_point_number;
499 generic_floating_point_number= *gen;
500 }
501 gen_to_words(&arr[0],4,11);
502 bcopy(&arr[0],&dv,sizeof(double));
503 sprintf(sbuf,"%x %x %x %x %.14G ",arr[0],arr[1],arr[2],arr[3],dv);
504 gen_to_words(&arr[0],2,8);
505 bcopy(&arr[0],&fv,sizeof(float));
506 sprintf(sbuf+strlen(sbuf),"%x %x %.12g\n",arr[0],arr[1],fv);
507 if(gen)
508 generic_floating_point_number=f;
509 return sbuf;
510 }
511 #endif
This page took 0.048009 seconds and 4 git commands to generate.