7a7eb7043e1bc20bc6a51c57b448e12b29a7413a
[deliverable/binutils-gdb.git] / gas / config / rx-parse.y
1 /* rx-parse.y Renesas RX parser
2 Copyright (C) 2008-2016 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20 %{
21
22 #include "as.h"
23 #include "safe-ctype.h"
24 #include "rx-defs.h"
25
26 static int rx_lex (void);
27
28 #define COND_EQ 0
29 #define COND_NE 1
30
31 #define MEMEX 0x06
32
33 #define BSIZE 0
34 #define WSIZE 1
35 #define LSIZE 2
36
37 /* .sb .sw .l .uw */
38 static int sizemap[] = { BSIZE, WSIZE, LSIZE, WSIZE };
39
40 /* Ok, here are the rules for using these macros...
41
42 B*() is used to specify the base opcode bytes. Fields to be filled
43 in later, leave zero. Call this first.
44
45 F() and FE() are used to fill in fields within the base opcode bytes. You MUST
46 call B*() before any F() or FE().
47
48 [UN]*O*(), PC*() appends operands to the end of the opcode. You
49 must call P() and B*() before any of these, so that the fixups
50 have the right byte location.
51 O = signed, UO = unsigned, NO = negated, PC = pcrel
52
53 IMM() adds an immediate and fills in the field for it.
54 NIMM() same, but negates the immediate.
55 NBIMM() same, but negates the immediate, for sbb.
56 DSP() adds a displacement, and fills in the field for it.
57
58 Note that order is significant for the O, IMM, and DSP macros, as
59 they append their data to the operand buffer in the order that you
60 call them.
61
62 Use "disp" for displacements whenever possible; this handles the
63 "0" case properly. */
64
65 #define B1(b1) rx_base1 (b1)
66 #define B2(b1, b2) rx_base2 (b1, b2)
67 #define B3(b1, b2, b3) rx_base3 (b1, b2, b3)
68 #define B4(b1, b2, b3, b4) rx_base4 (b1, b2, b3, b4)
69
70 /* POS is bits from the MSB of the first byte to the LSB of the last byte. */
71 #define F(val,pos,sz) rx_field (val, pos, sz)
72 #define FE(exp,pos,sz) rx_field (exp_val (exp), pos, sz);
73
74 #define O1(v) rx_op (v, 1, RXREL_SIGNED); rx_range (v, -128, 255)
75 #define O2(v) rx_op (v, 2, RXREL_SIGNED); rx_range (v, -32768, 65536)
76 #define O3(v) rx_op (v, 3, RXREL_SIGNED); rx_range (v, -8388608, 16777216)
77 #define O4(v) rx_op (v, 4, RXREL_SIGNED)
78
79 #define UO1(v) rx_op (v, 1, RXREL_UNSIGNED); rx_range (v, 0, 255)
80 #define UO2(v) rx_op (v, 2, RXREL_UNSIGNED); rx_range (v, 0, 65536)
81 #define UO3(v) rx_op (v, 3, RXREL_UNSIGNED); rx_range (v, 0, 16777216)
82 #define UO4(v) rx_op (v, 4, RXREL_UNSIGNED)
83
84 #define NO1(v) rx_op (v, 1, RXREL_NEGATIVE)
85 #define NO2(v) rx_op (v, 2, RXREL_NEGATIVE)
86 #define NO3(v) rx_op (v, 3, RXREL_NEGATIVE)
87 #define NO4(v) rx_op (v, 4, RXREL_NEGATIVE)
88
89 #define PC1(v) rx_op (v, 1, RXREL_PCREL)
90 #define PC2(v) rx_op (v, 2, RXREL_PCREL)
91 #define PC3(v) rx_op (v, 3, RXREL_PCREL)
92
93 #define IMM_(v,pos,size) F (immediate (v, RXREL_SIGNED, pos, size), pos, 2); \
94 if (v.X_op != O_constant && v.X_op != O_big) rx_linkrelax_imm (pos)
95 #define IMM(v,pos) IMM_ (v, pos, 32)
96 #define IMMW(v,pos) IMM_ (v, pos, 16); rx_range (v, -32768, 65536)
97 #define IMMB(v,pos) IMM_ (v, pos, 8); rx_range (v, -128, 255)
98 #define NIMM(v,pos) F (immediate (v, RXREL_NEGATIVE, pos, 32), pos, 2)
99 #define NBIMM(v,pos) F (immediate (v, RXREL_NEGATIVE_BORROW, pos, 32), pos, 2)
100 #define DSP(v,pos,msz) if (!v.X_md) rx_relax (RX_RELAX_DISP, pos); \
101 else rx_linkrelax_dsp (pos); \
102 F (displacement (v, msz), pos, 2)
103
104 #define id24(a,b2,b3) B3 (0xfb + a, b2, b3)
105
106 static void rx_check_float_support (void);
107 static int rx_intop (expressionS, int, int);
108 static int rx_uintop (expressionS, int);
109 static int rx_disp3op (expressionS);
110 static int rx_disp5op (expressionS *, int);
111 static int rx_disp5op0 (expressionS *, int);
112 static int exp_val (expressionS exp);
113 static expressionS zero_expr (void);
114 static int immediate (expressionS, int, int, int);
115 static int displacement (expressionS, int);
116 static void rtsd_immediate (expressionS);
117 static void rx_range (expressionS, int, int);
118 static void rx_check_v2 (void);
119
120 static int need_flag = 0;
121 static int rx_in_brackets = 0;
122 static int rx_last_token = 0;
123 static char * rx_init_start;
124 static char * rx_last_exp_start = 0;
125 static int sub_op;
126 static int sub_op2;
127
128 #define YYDEBUG 1
129 #define YYERROR_VERBOSE 1
130
131 %}
132
133 %name-prefix="rx_"
134
135 %union {
136 int regno;
137 expressionS exp;
138 }
139
140 %type <regno> REG FLAG CREG BCND BMCND SCCND ACC
141 %type <regno> flag bwl bw memex
142 %type <exp> EXPR disp
143
144 %token REG FLAG CREG ACC
145
146 %token EXPR UNKNOWN_OPCODE IS_OPCODE
147
148 %token DOT_S DOT_B DOT_W DOT_L DOT_A DOT_UB DOT_UW
149
150 %token ABS ADC ADD AND_
151 %token BCLR BCND BMCND BNOT BRA BRK BSET BSR BTST
152 %token CLRPSW CMP
153 %token DBT DIV DIVU
154 %token EDIV EDIVU EMACA EMSBA EMUL EMULA EMULU
155 %token FADD FCMP FDIV FMUL FREIT FSUB FSQRT FTOI FTOU
156 %token INT ITOF
157 %token JMP JSR
158 %token MACHI MACLH MACLO MAX MIN MOV MOVCO MOVLI MOVU MSBHI MSBLH MSBLO MUL
159 %token MULHI MULLH MULLO MULU MVFACHI MVFACGU MVFACMI MVFACLO MVFC MVTACGU
160 %token MVTACHI MVTACLO MVTC MVTIPL
161 %token NEG NOP NOT
162 %token OR
163 %token POP POPC POPM PUSH PUSHA PUSHC PUSHM
164 %token RACL RACW RDACL RDACW REIT REVL REVW RMPA ROLC RORC ROTL ROTR ROUND
165 %token RTE RTFI RTS RTSD
166 %token SAT SATR SBB SCCND SCMPU SETPSW SHAR SHLL SHLR SMOVB SMOVF
167 %token SMOVU SSTR STNZ STOP STZ SUB SUNTIL SWHILE
168 %token TST
169 %token UTOF
170 %token WAIT
171 %token XCHG XOR
172
173 %%
174 /* ====================================================================== */
175
176 statement :
177
178 UNKNOWN_OPCODE
179 { as_bad (_("Unknown opcode: %s"), rx_init_start); }
180
181 /* ---------------------------------------------------------------------- */
182
183 | BRK
184 { B1 (0x00); }
185
186 | DBT
187 { B1 (0x01); }
188
189 | RTS
190 { B1 (0x02); }
191
192 | NOP
193 { B1 (0x03); }
194
195 /* ---------------------------------------------------------------------- */
196
197 | BRA EXPR
198 { if (rx_disp3op ($2))
199 { B1 (0x08); rx_disp3 ($2, 5); }
200 else if (rx_intop ($2, 8, 8))
201 { B1 (0x2e); PC1 ($2); }
202 else if (rx_intop ($2, 16, 16))
203 { B1 (0x38); PC2 ($2); }
204 else if (rx_intop ($2, 24, 24))
205 { B1 (0x04); PC3 ($2); }
206 else
207 { rx_relax (RX_RELAX_BRANCH, 0);
208 rx_linkrelax_branch ();
209 /* We'll convert this to a longer one later if needed. */
210 B1 (0x08); rx_disp3 ($2, 5); } }
211
212 | BRA DOT_A EXPR
213 { B1 (0x04); PC3 ($3); }
214
215 | BRA DOT_S EXPR
216 { B1 (0x08); rx_disp3 ($3, 5); }
217
218 /* ---------------------------------------------------------------------- */
219
220 | BSR EXPR
221 { if (rx_intop ($2, 16, 16))
222 { B1 (0x39); PC2 ($2); }
223 else if (rx_intop ($2, 24, 24))
224 { B1 (0x05); PC3 ($2); }
225 else
226 { rx_relax (RX_RELAX_BRANCH, 0);
227 rx_linkrelax_branch ();
228 B1 (0x39); PC2 ($2); } }
229 | BSR DOT_A EXPR
230 { B1 (0x05), PC3 ($3); }
231
232 /* ---------------------------------------------------------------------- */
233
234 | BCND DOT_S EXPR
235 { if ($1 == COND_EQ || $1 == COND_NE)
236 { B1 ($1 == COND_EQ ? 0x10 : 0x18); rx_disp3 ($3, 5); }
237 else
238 as_bad (_("Only BEQ and BNE may have .S")); }
239
240 /* ---------------------------------------------------------------------- */
241
242 | BCND DOT_B EXPR
243 { B1 (0x20); F ($1, 4, 4); PC1 ($3); }
244
245 | BRA DOT_B EXPR
246 { B1 (0x2e), PC1 ($3); }
247
248 /* ---------------------------------------------------------------------- */
249
250 | BRA DOT_W EXPR
251 { B1 (0x38), PC2 ($3); }
252 | BSR DOT_W EXPR
253 { B1 (0x39), PC2 ($3); }
254 | BCND DOT_W EXPR
255 { if ($1 == COND_EQ || $1 == COND_NE)
256 { B1 ($1 == COND_EQ ? 0x3a : 0x3b); PC2 ($3); }
257 else
258 as_bad (_("Only BEQ and BNE may have .W")); }
259 | BCND EXPR
260 { if ($1 == COND_EQ || $1 == COND_NE)
261 {
262 rx_relax (RX_RELAX_BRANCH, 0);
263 rx_linkrelax_branch ();
264 B1 ($1 == COND_EQ ? 0x10 : 0x18); rx_disp3 ($2, 5);
265 }
266 else
267 {
268 rx_relax (RX_RELAX_BRANCH, 0);
269 /* This is because we might turn it into a
270 jump-over-jump long branch. */
271 rx_linkrelax_branch ();
272 B1 (0x20); F ($1, 4, 4); PC1 ($2);
273 } }
274
275 /* ---------------------------------------------------------------------- */
276
277 | MOV DOT_B '#' EXPR ',' '[' REG ']'
278 { B2 (0xf8, 0x04); F ($7, 8, 4); IMMB ($4, 12);}
279
280 | MOV DOT_W '#' EXPR ',' '[' REG ']'
281 { B2 (0xf8, 0x01); F ($7, 8, 4); IMMW ($4, 12);}
282
283 | MOV DOT_L '#' EXPR ',' '[' REG ']'
284 { B2 (0xf8, 0x02); F ($7, 8, 4); IMM ($4, 12);}
285
286 | MOV DOT_B '#' EXPR ',' disp '[' REG ']'
287 /* rx_disp5op changes the value if it succeeds, so keep it last. */
288 { if ($8 <= 7 && rx_uintop ($4, 8) && rx_disp5op0 (&$6, BSIZE))
289 { B2 (0x3c, 0); rx_field5s2 ($6); F ($8, 9, 3); O1 ($4); }
290 else
291 { B2 (0xf8, 0x04); F ($8, 8, 4); DSP ($6, 6, BSIZE); O1 ($4);
292 if ($4.X_op != O_constant && $4.X_op != O_big) rx_linkrelax_imm (12); } }
293
294 | MOV DOT_W '#' EXPR ',' disp '[' REG ']'
295 { if ($8 <= 7 && rx_uintop ($4, 8) && rx_disp5op0 (&$6, WSIZE))
296 { B2 (0x3d, 0); rx_field5s2 ($6); F ($8, 9, 3); O1 ($4); }
297 else
298 { B2 (0xf8, 0x01); F ($8, 8, 4); DSP ($6, 6, WSIZE); IMMW ($4, 12); } }
299
300 | MOV DOT_L '#' EXPR ',' disp '[' REG ']'
301 { if ($8 <= 7 && rx_uintop ($4, 8) && rx_disp5op0 (&$6, LSIZE))
302 { B2 (0x3e, 0); rx_field5s2 ($6); F ($8, 9, 3); O1 ($4); }
303 else
304 { B2 (0xf8, 0x02); F ($8, 8, 4); DSP ($6, 6, LSIZE); IMM ($4, 12); } }
305
306 /* ---------------------------------------------------------------------- */
307
308 | RTSD '#' EXPR ',' REG '-' REG
309 { B2 (0x3f, 0); F ($5, 8, 4); F ($7, 12, 4); rtsd_immediate ($3);
310 if ($5 == 0)
311 rx_error (_("RTSD cannot pop R0"));
312 if ($5 > $7)
313 rx_error (_("RTSD first reg must be <= second reg")); }
314
315 /* ---------------------------------------------------------------------- */
316
317 | CMP REG ',' REG
318 { B2 (0x47, 0); F ($2, 8, 4); F ($4, 12, 4); }
319
320 /* ---------------------------------------------------------------------- */
321
322 | CMP disp '[' REG ']' DOT_UB ',' REG
323 { B2 (0x44, 0); F ($4, 8, 4); F ($8, 12, 4); DSP ($2, 6, BSIZE); }
324
325 | CMP disp '[' REG ']' memex ',' REG
326 { B3 (MEMEX, 0x04, 0); F ($6, 8, 2); F ($4, 16, 4); F ($8, 20, 4); DSP ($2, 14, sizemap[$6]); }
327
328 /* ---------------------------------------------------------------------- */
329
330 | MOVU bw REG ',' REG
331 { B2 (0x5b, 0x00); F ($2, 5, 1); F ($3, 8, 4); F ($5, 12, 4); }
332
333 /* ---------------------------------------------------------------------- */
334
335 | MOVU bw '[' REG ']' ',' REG
336 { B2 (0x58, 0x00); F ($2, 5, 1); F ($4, 8, 4); F ($7, 12, 4); }
337
338 | MOVU bw EXPR '[' REG ']' ',' REG
339 { if ($5 <= 7 && $8 <= 7 && rx_disp5op (&$3, $2))
340 { B2 (0xb0, 0); F ($2, 4, 1); F ($5, 9, 3); F ($8, 13, 3); rx_field5s ($3); }
341 else
342 { B2 (0x58, 0x00); F ($2, 5, 1); F ($5, 8, 4); F ($8, 12, 4); DSP ($3, 6, $2); } }
343
344 /* ---------------------------------------------------------------------- */
345
346 | SUB '#' EXPR ',' REG
347 { if (rx_uintop ($3, 4))
348 { B2 (0x60, 0); FE ($3, 8, 4); F ($5, 12, 4); }
349 else
350 /* This is really an add, but we negate the immediate. */
351 { B2 (0x70, 0); F ($5, 8, 4); F ($5, 12, 4); NIMM ($3, 6); } }
352
353 | CMP '#' EXPR ',' REG
354 { if (rx_uintop ($3, 4))
355 { B2 (0x61, 0); FE ($3, 8, 4); F ($5, 12, 4); }
356 else if (rx_uintop ($3, 8))
357 { B2 (0x75, 0x50); F ($5, 12, 4); UO1 ($3); }
358 else
359 { B2 (0x74, 0x00); F ($5, 12, 4); IMM ($3, 6); } }
360
361 | ADD '#' EXPR ',' REG
362 { if (rx_uintop ($3, 4))
363 { B2 (0x62, 0); FE ($3, 8, 4); F ($5, 12, 4); }
364 else
365 { B2 (0x70, 0); F ($5, 8, 4); F ($5, 12, 4); IMM ($3, 6); } }
366
367 | MUL '#' EXPR ',' REG
368 { if (rx_uintop ($3, 4))
369 { B2 (0x63, 0); FE ($3, 8, 4); F ($5, 12, 4); }
370 else
371 { B2 (0x74, 0x10); F ($5, 12, 4); IMM ($3, 6); } }
372
373 | AND_ '#' EXPR ',' REG
374 { if (rx_uintop ($3, 4))
375 { B2 (0x64, 0); FE ($3, 8, 4); F ($5, 12, 4); }
376 else
377 { B2 (0x74, 0x20); F ($5, 12, 4); IMM ($3, 6); } }
378
379 | OR '#' EXPR ',' REG
380 { if (rx_uintop ($3, 4))
381 { B2 (0x65, 0); FE ($3, 8, 4); F ($5, 12, 4); }
382 else
383 { B2 (0x74, 0x30); F ($5, 12, 4); IMM ($3, 6); } }
384
385 | MOV DOT_L '#' EXPR ',' REG
386 { if (rx_uintop ($4, 4))
387 { B2 (0x66, 0); FE ($4, 8, 4); F ($6, 12, 4); }
388 else if (rx_uintop ($4, 8))
389 { B2 (0x75, 0x40); F ($6, 12, 4); UO1 ($4); }
390 else
391 { B2 (0xfb, 0x02); F ($6, 8, 4); IMM ($4, 12); } }
392
393 | MOV '#' EXPR ',' REG
394 { if (rx_uintop ($3, 4))
395 { B2 (0x66, 0); FE ($3, 8, 4); F ($5, 12, 4); }
396 else if (rx_uintop ($3, 8))
397 { B2 (0x75, 0x40); F ($5, 12, 4); UO1 ($3); }
398 else
399 { B2 (0xfb, 0x02); F ($5, 8, 4); IMM ($3, 12); } }
400
401 /* ---------------------------------------------------------------------- */
402
403 | RTSD '#' EXPR
404 { B1 (0x67); rtsd_immediate ($3); }
405
406 /* ---------------------------------------------------------------------- */
407
408 | SHLR { sub_op = 0; } op_shift
409 | SHAR { sub_op = 1; } op_shift
410 | SHLL { sub_op = 2; } op_shift
411
412 /* ---------------------------------------------------------------------- */
413
414 | PUSHM REG '-' REG
415 {
416 if ($2 == $4)
417 { B2 (0x7e, 0x80); F (LSIZE, 10, 2); F ($2, 12, 4); }
418 else
419 { B2 (0x6e, 0); F ($2, 8, 4); F ($4, 12, 4); }
420 if ($2 == 0)
421 rx_error (_("PUSHM cannot push R0"));
422 if ($2 > $4)
423 rx_error (_("PUSHM first reg must be <= second reg")); }
424
425 /* ---------------------------------------------------------------------- */
426
427 | POPM REG '-' REG
428 {
429 if ($2 == $4)
430 { B2 (0x7e, 0xb0); F ($2, 12, 4); }
431 else
432 { B2 (0x6f, 0); F ($2, 8, 4); F ($4, 12, 4); }
433 if ($2 == 0)
434 rx_error (_("POPM cannot pop R0"));
435 if ($2 > $4)
436 rx_error (_("POPM first reg must be <= second reg")); }
437
438 /* ---------------------------------------------------------------------- */
439
440 | ADD '#' EXPR ',' REG ',' REG
441 { B2 (0x70, 0x00); F ($5, 8, 4); F ($7, 12, 4); IMM ($3, 6); }
442
443 /* ---------------------------------------------------------------------- */
444
445 | INT '#' EXPR
446 { B2(0x75, 0x60), UO1 ($3); }
447
448 /* ---------------------------------------------------------------------- */
449
450 | BSET '#' EXPR ',' REG
451 { B2 (0x78, 0); FE ($3, 7, 5); F ($5, 12, 4); }
452 | BCLR '#' EXPR ',' REG
453 { B2 (0x7a, 0); FE ($3, 7, 5); F ($5, 12, 4); }
454
455 /* ---------------------------------------------------------------------- */
456
457 | BTST '#' EXPR ',' REG
458 { B2 (0x7c, 0x00); FE ($3, 7, 5); F ($5, 12, 4); }
459
460 /* ---------------------------------------------------------------------- */
461
462 | SAT REG
463 { B2 (0x7e, 0x30); F ($2, 12, 4); }
464 | RORC REG
465 { B2 (0x7e, 0x40); F ($2, 12, 4); }
466 | ROLC REG
467 { B2 (0x7e, 0x50); F ($2, 12, 4); }
468
469 /* ---------------------------------------------------------------------- */
470
471 | PUSH bwl REG
472 { B2 (0x7e, 0x80); F ($2, 10, 2); F ($3, 12, 4); }
473
474 /* ---------------------------------------------------------------------- */
475
476 | POP REG
477 { B2 (0x7e, 0xb0); F ($2, 12, 4); }
478
479 /* ---------------------------------------------------------------------- */
480
481 | PUSHC CREG
482 { if ($2 == 13)
483 { rx_check_v2 (); }
484 if ($2 < 16)
485 { B2 (0x7e, 0xc0); F ($2, 12, 4); }
486 else
487 as_bad (_("PUSHC can only push the first 16 control registers")); }
488
489 /* ---------------------------------------------------------------------- */
490
491 | POPC CREG
492 { if ($2 == 13)
493 { rx_check_v2 (); }
494 if ($2 < 16)
495 { B2 (0x7e, 0xe0); F ($2, 12, 4); }
496 else
497 as_bad (_("POPC can only pop the first 16 control registers")); }
498
499 /* ---------------------------------------------------------------------- */
500
501 | SETPSW flag
502 { B2 (0x7f, 0xa0); F ($2, 12, 4); }
503 | CLRPSW flag
504 { B2 (0x7f, 0xb0); F ($2, 12, 4); }
505
506 /* ---------------------------------------------------------------------- */
507
508 | JMP REG
509 { B2 (0x7f, 0x00); F ($2, 12, 4); }
510 | JSR REG
511 { B2 (0x7f, 0x10); F ($2, 12, 4); }
512 | BRA opt_l REG
513 { B2 (0x7f, 0x40); F ($3, 12, 4); }
514 | BSR opt_l REG
515 { B2 (0x7f, 0x50); F ($3, 12, 4); }
516
517 /* ---------------------------------------------------------------------- */
518
519 | SCMPU
520 { B2 (0x7f, 0x83); rx_note_string_insn_use (); }
521 | SMOVU
522 { B2 (0x7f, 0x87); rx_note_string_insn_use (); }
523 | SMOVB
524 { B2 (0x7f, 0x8b); rx_note_string_insn_use (); }
525 | SMOVF
526 { B2 (0x7f, 0x8f); rx_note_string_insn_use (); }
527
528 /* ---------------------------------------------------------------------- */
529
530 | SUNTIL bwl
531 { B2 (0x7f, 0x80); F ($2, 14, 2); rx_note_string_insn_use (); }
532 | SWHILE bwl
533 { B2 (0x7f, 0x84); F ($2, 14, 2); rx_note_string_insn_use (); }
534 | SSTR bwl
535 { B2 (0x7f, 0x88); F ($2, 14, 2); }
536
537 /* ---------------------------------------------------------------------- */
538
539 | RMPA bwl
540 { B2 (0x7f, 0x8c); F ($2, 14, 2); rx_note_string_insn_use (); }
541
542 /* ---------------------------------------------------------------------- */
543
544 | RTFI
545 { B2 (0x7f, 0x94); }
546 | RTE
547 { B2 (0x7f, 0x95); }
548 | WAIT
549 { B2 (0x7f, 0x96); }
550 | SATR
551 { B2 (0x7f, 0x93); }
552
553 /* ---------------------------------------------------------------------- */
554
555 | MVTIPL '#' EXPR
556 { B3 (0x75, 0x70, 0x00); FE ($3, 20, 4); }
557
558 /* ---------------------------------------------------------------------- */
559
560 /* rx_disp5op changes the value if it succeeds, so keep it last. */
561 | MOV bwl REG ',' EXPR '[' REG ']'
562 { if ($3 <= 7 && $7 <= 7 && rx_disp5op (&$5, $2))
563 { B2 (0x80, 0); F ($2, 2, 2); F ($7, 9, 3); F ($3, 13, 3); rx_field5s ($5); }
564 else
565 { B2 (0xc3, 0x00); F ($2, 2, 2); F ($7, 8, 4); F ($3, 12, 4); DSP ($5, 4, $2); }}
566
567 /* ---------------------------------------------------------------------- */
568
569 | MOV bwl EXPR '[' REG ']' ',' REG
570 { if ($5 <= 7 && $8 <= 7 && rx_disp5op (&$3, $2))
571 { B2 (0x88, 0); F ($2, 2, 2); F ($5, 9, 3); F ($8, 13, 3); rx_field5s ($3); }
572 else
573 { B2 (0xcc, 0x00); F ($2, 2, 2); F ($5, 8, 4); F ($8, 12, 4); DSP ($3, 6, $2); } }
574
575 /* ---------------------------------------------------------------------- */
576
577 /* MOV a,b - if a is a reg and b is mem, src and dest are
578 swapped. */
579
580 /* We don't use "disp" here because it causes a shift/reduce
581 conflict with the other displacement-less patterns. */
582
583 | MOV bwl REG ',' '[' REG ']'
584 { B2 (0xc3, 0x00); F ($2, 2, 2); F ($6, 8, 4); F ($3, 12, 4); }
585
586 /* ---------------------------------------------------------------------- */
587
588 | MOV bwl '[' REG ']' ',' disp '[' REG ']'
589 { B2 (0xc0, 0); F ($2, 2, 2); F ($4, 8, 4); F ($9, 12, 4); DSP ($7, 4, $2); }
590
591 /* ---------------------------------------------------------------------- */
592
593 | MOV bwl EXPR '[' REG ']' ',' disp '[' REG ']'
594 { B2 (0xc0, 0x00); F ($2, 2, 2); F ($5, 8, 4); F ($10, 12, 4); DSP ($3, 6, $2); DSP ($8, 4, $2); }
595
596 /* ---------------------------------------------------------------------- */
597
598 | MOV bwl REG ',' REG
599 { B2 (0xcf, 0x00); F ($2, 2, 2); F ($3, 8, 4); F ($5, 12, 4); }
600
601 /* ---------------------------------------------------------------------- */
602
603 | MOV bwl '[' REG ']' ',' REG
604 { B2 (0xcc, 0x00); F ($2, 2, 2); F ($4, 8, 4); F ($7, 12, 4); }
605
606 /* ---------------------------------------------------------------------- */
607
608 | BSET '#' EXPR ',' disp '[' REG ']' DOT_B
609 { B2 (0xf0, 0x00); F ($7, 8, 4); FE ($3, 13, 3); DSP ($5, 6, BSIZE); }
610 | BCLR '#' EXPR ',' disp '[' REG ']' DOT_B
611 { B2 (0xf0, 0x08); F ($7, 8, 4); FE ($3, 13, 3); DSP ($5, 6, BSIZE); }
612 | BTST '#' EXPR ',' disp '[' REG ']' DOT_B
613 { B2 (0xf4, 0x00); F ($7, 8, 4); FE ($3, 13, 3); DSP ($5, 6, BSIZE); }
614
615 /* ---------------------------------------------------------------------- */
616
617 | PUSH bwl disp '[' REG ']'
618 { B2 (0xf4, 0x08); F ($2, 14, 2); F ($5, 8, 4); DSP ($3, 6, $2); }
619
620 /* ---------------------------------------------------------------------- */
621
622 | SBB { sub_op = 0; } op_dp20_rm_l
623 | NEG { sub_op = 1; sub_op2 = 1; } op_dp20_rr
624 | ADC { sub_op = 2; } op_dp20_rim_l
625 | ABS { sub_op = 3; sub_op2 = 2; } op_dp20_rr
626 | MAX { sub_op = 4; } op_dp20_rim
627 | MIN { sub_op = 5; } op_dp20_rim
628 | EMUL { sub_op = 6; } op_dp20_i
629 | EMULU { sub_op = 7; } op_dp20_i
630 | DIV { sub_op = 8; } op_dp20_rim
631 | DIVU { sub_op = 9; } op_dp20_rim
632 | TST { sub_op = 12; } op_dp20_rim
633 | XOR { sub_op = 13; } op_dp20_rim
634 | NOT { sub_op = 14; sub_op2 = 0; } op_dp20_rr
635 | STZ { sub_op = 14; sub_op2 = 0; } op_dp20_ri
636 | STNZ { sub_op = 15; sub_op2 = 1; } op_dp20_ri
637
638 /* ---------------------------------------------------------------------- */
639
640 | EMUL { sub_op = 6; } op_xchg
641 | EMULU { sub_op = 7; } op_xchg
642 | XCHG { sub_op = 16; } op_xchg
643 | ITOF { sub_op = 17; } op_xchg
644 | UTOF { sub_op = 21; } op_xchg
645
646 /* ---------------------------------------------------------------------- */
647
648 | BSET REG ',' REG
649 { id24 (1, 0x63, 0x00); F ($4, 16, 4); F ($2, 20, 4); }
650 | BCLR REG ',' REG
651 { id24 (1, 0x67, 0x00); F ($4, 16, 4); F ($2, 20, 4); }
652 | BTST REG ',' REG
653 { id24 (1, 0x6b, 0x00); F ($4, 16, 4); F ($2, 20, 4); }
654 | BNOT REG ',' REG
655 { id24 (1, 0x6f, 0x00); F ($4, 16, 4); F ($2, 20, 4); }
656
657 | BSET REG ',' disp '[' REG ']' opt_b
658 { id24 (1, 0x60, 0x00); F ($6, 16, 4); F ($2, 20, 4); DSP ($4, 14, BSIZE); }
659 | BCLR REG ',' disp '[' REG ']' opt_b
660 { id24 (1, 0x64, 0x00); F ($6, 16, 4); F ($2, 20, 4); DSP ($4, 14, BSIZE); }
661 | BTST REG ',' disp '[' REG ']' opt_b
662 { id24 (1, 0x68, 0x00); F ($6, 16, 4); F ($2, 20, 4); DSP ($4, 14, BSIZE); }
663 | BNOT REG ',' disp '[' REG ']' opt_b
664 { id24 (1, 0x6c, 0x00); F ($6, 16, 4); F ($2, 20, 4); DSP ($4, 14, BSIZE); }
665
666 /* ---------------------------------------------------------------------- */
667
668 | FSUB { sub_op = 0; } float3_op
669 | FCMP { sub_op = 1; } float2_op
670 | FADD { sub_op = 2; } float3_op
671 | FMUL { sub_op = 3; } float3_op
672 | FDIV { sub_op = 4; } float2_op
673 | FSQRT { sub_op = 8; } float2_op_ni
674 | FTOI { sub_op = 5; } float2_op_ni
675 | FTOU { sub_op = 9; } float2_op_ni
676 | ROUND { sub_op = 6; } float2_op_ni
677
678 /* ---------------------------------------------------------------------- */
679
680
681 /* ---------------------------------------------------------------------- */
682
683 | SCCND DOT_L REG
684 { id24 (1, 0xdb, 0x00); F ($1, 20, 4); F ($3, 16, 4); }
685 | SCCND bwl disp '[' REG ']'
686 { id24 (1, 0xd0, 0x00); F ($1, 20, 4); F ($2, 12, 2); F ($5, 16, 4); DSP ($3, 14, $2); }
687
688 /* ---------------------------------------------------------------------- */
689
690 | BMCND '#' EXPR ',' disp '[' REG ']' opt_b
691 { id24 (1, 0xe0, 0x00); F ($1, 20, 4); FE ($3, 11, 3);
692 F ($7, 16, 4); DSP ($5, 14, BSIZE); }
693
694 /* ---------------------------------------------------------------------- */
695
696 | BNOT '#' EXPR ',' disp '[' REG ']' opt_b
697 { id24 (1, 0xe0, 0x0f); FE ($3, 11, 3); F ($7, 16, 4);
698 DSP ($5, 14, BSIZE); }
699
700 /* ---------------------------------------------------------------------- */
701
702 | MULHI REG ',' REG
703 { id24 (2, 0x00, 0x00); F ($2, 16, 4); F ($4, 20, 4); }
704 | MULHI REG ',' REG ',' ACC
705 { rx_check_v2 (); id24 (2, 0x00, 0x00); F ($2, 16, 4); F ($4, 20, 4); F ($6, 12, 1); }
706 | MULLO REG ',' REG
707 { id24 (2, 0x01, 0x00); F ($2, 16, 4); F ($4, 20, 4); }
708 | MULLO REG ',' REG ',' ACC
709 { rx_check_v2 (); id24 (2, 0x01, 0x00); F ($2, 16, 4); F ($4, 20, 4); F ($6, 12, 1); }
710 | MACHI REG ',' REG
711 { id24 (2, 0x04, 0x00); F ($2, 16, 4); F ($4, 20, 4); }
712 | MACHI REG ',' REG ',' ACC
713 { rx_check_v2 (); id24 (2, 0x04, 0x00); F ($2, 16, 4); F ($4, 20, 4); F ($6, 12, 1); }
714 | MACLO REG ',' REG
715 { id24 (2, 0x05, 0x00); F ($2, 16, 4); F ($4, 20, 4); }
716 | MACLO REG ',' REG ',' ACC
717 { rx_check_v2 (); id24 (2, 0x05, 0x00); F ($2, 16, 4); F ($4, 20, 4); F ($6, 12, 1); }
718
719 /* ---------------------------------------------------------------------- */
720
721 /* We don't have syntax for these yet. */
722 | MVTACHI REG
723 { id24 (2, 0x17, 0x00); F ($2, 20, 4); }
724 | MVTACHI REG ',' ACC
725 { rx_check_v2 (); id24 (2, 0x17, 0x00); F ($2, 20, 4); F ($4, 16, 1); }
726 | MVTACLO REG
727 { id24 (2, 0x17, 0x10); F ($2, 20, 4); }
728 | MVTACLO REG ',' ACC
729 { rx_check_v2 (); id24 (2, 0x17, 0x10); F ($2, 20, 4); F ($4, 16, 1); }
730 | MVFACHI REG
731 { id24 (2, 0x1f, 0x00); F ($2, 20, 4); }
732 | MVFACHI { sub_op = 0; } mvfa_op
733 | MVFACMI REG
734 { id24 (2, 0x1f, 0x20); F ($2, 20, 4); }
735 | MVFACMI { sub_op = 2; } mvfa_op
736 | MVFACLO REG
737 { id24 (2, 0x1f, 0x10); F ($2, 20, 4); }
738 | MVFACLO { sub_op = 1; } mvfa_op
739 | RACW '#' EXPR
740 { id24 (2, 0x18, 0x00);
741 if (rx_uintop ($3, 4) && $3.X_add_number == 1)
742 ;
743 else if (rx_uintop ($3, 4) && $3.X_add_number == 2)
744 F (1, 19, 1);
745 else
746 as_bad (_("RACW expects #1 or #2"));}
747 | RACW '#' EXPR ',' ACC
748 { rx_check_v2 (); id24 (2, 0x18, 0x00); F ($5, 16, 1);
749 if (rx_uintop ($3, 4) && $3.X_add_number == 1)
750 ;
751 else if (rx_uintop ($3, 4) && $3.X_add_number == 2)
752 F (1, 19, 1);
753 else
754 as_bad (_("RACW expects #1 or #2"));}
755
756 /* ---------------------------------------------------------------------- */
757
758 | MOV bwl REG ',' '[' REG '+' ']'
759 { id24 (2, 0x20, 0); F ($2, 14, 2); F ($6, 16, 4); F ($3, 20, 4); }
760 | MOV bwl REG ',' '[' '-' REG ']'
761 { id24 (2, 0x24, 0); F ($2, 14, 2); F ($7, 16, 4); F ($3, 20, 4); }
762
763 /* ---------------------------------------------------------------------- */
764
765 | MOV bwl '[' REG '+' ']' ',' REG
766 { id24 (2, 0x28, 0); F ($2, 14, 2); F ($4, 16, 4); F ($8, 20, 4); }
767 | MOV bwl '[' '-' REG ']' ',' REG
768 { id24 (2, 0x2c, 0); F ($2, 14, 2); F ($5, 16, 4); F ($8, 20, 4); }
769
770 /* ---------------------------------------------------------------------- */
771
772 | MOVU bw '[' REG '+' ']' ',' REG
773 { id24 (2, 0x38, 0); F ($2, 15, 1); F ($4, 16, 4); F ($8, 20, 4); }
774 | MOVU bw '[' '-' REG ']' ',' REG
775 { id24 (2, 0x3c, 0); F ($2, 15, 1); F ($5, 16, 4); F ($8, 20, 4); }
776
777 /* ---------------------------------------------------------------------- */
778
779 | ROTL { sub_op = 6; } op_shift_rot
780 | ROTR { sub_op = 4; } op_shift_rot
781 | REVW { sub_op = 5; } op_shift_rot
782 | REVL { sub_op = 7; } op_shift_rot
783
784 /* ---------------------------------------------------------------------- */
785
786 | MVTC REG ',' CREG
787 { if ($4 == 13)
788 rx_check_v2 ();
789 id24 (2, 0x68, 0x00); F ($4 % 16, 20, 4); F ($4 / 16, 15, 1);
790 F ($2, 16, 4); }
791
792 /* ---------------------------------------------------------------------- */
793
794 | MVFC CREG ',' REG
795 { if ($2 == 13)
796 rx_check_v2 ();
797 id24 (2, 0x6a, 0); F ($2, 15, 5); F ($4, 20, 4); }
798
799 /* ---------------------------------------------------------------------- */
800
801 | ROTL '#' EXPR ',' REG
802 { id24 (2, 0x6e, 0); FE ($3, 15, 5); F ($5, 20, 4); }
803 | ROTR '#' EXPR ',' REG
804 { id24 (2, 0x6c, 0); FE ($3, 15, 5); F ($5, 20, 4); }
805
806 /* ---------------------------------------------------------------------- */
807
808 | MVTC '#' EXPR ',' CREG
809 { if ($5 == 13)
810 rx_check_v2 ();
811 id24 (2, 0x73, 0x00); F ($5, 19, 5); IMM ($3, 12); }
812
813 /* ---------------------------------------------------------------------- */
814
815 | BMCND '#' EXPR ',' REG
816 { id24 (2, 0xe0, 0x00); F ($1, 16, 4); FE ($3, 11, 5);
817 F ($5, 20, 4); }
818
819 /* ---------------------------------------------------------------------- */
820
821 | BNOT '#' EXPR ',' REG
822 { id24 (2, 0xe0, 0xf0); FE ($3, 11, 5); F ($5, 20, 4); }
823
824 /* ---------------------------------------------------------------------- */
825
826 | MOV bwl REG ',' '[' REG ',' REG ']'
827 { id24 (3, 0x00, 0); F ($2, 10, 2); F ($6, 12, 4); F ($8, 16, 4); F ($3, 20, 4); }
828
829 | MOV bwl '[' REG ',' REG ']' ',' REG
830 { id24 (3, 0x40, 0); F ($2, 10, 2); F ($4, 12, 4); F ($6, 16, 4); F ($9, 20, 4); }
831
832 | MOVU bw '[' REG ',' REG ']' ',' REG
833 { id24 (3, 0xc0, 0); F ($2, 10, 2); F ($4, 12, 4); F ($6, 16, 4); F ($9, 20, 4); }
834
835 /* ---------------------------------------------------------------------- */
836
837 | SUB { sub_op = 0; } op_subadd
838 | ADD { sub_op = 2; } op_subadd
839 | MUL { sub_op = 3; } op_subadd
840 | AND_ { sub_op = 4; } op_subadd
841 | OR { sub_op = 5; } op_subadd
842
843 /* ---------------------------------------------------------------------- */
844 /* There is no SBB #imm so we fake it with ADC. */
845
846 | SBB '#' EXPR ',' REG
847 { id24 (2, 0x70, 0x20); F ($5, 20, 4); NBIMM ($3, 12); }
848
849 /* ---------------------------------------------------------------------- */
850
851 | MOVCO REG ',' '[' REG ']'
852 { rx_check_v2 (); B3 (0xfd, 0x27, 0x00); F ($5, 16, 4); F ($2, 20, 4); }
853
854 /* ---------------------------------------------------------------------- */
855
856 | MOVLI '[' REG ']' ',' REG
857 { rx_check_v2 (); B3 (0xfd, 0x2f, 0x00); F ($3, 16, 4); F ($6, 20, 4); }
858
859 /* ---------------------------------------------------------------------- */
860
861 | EMACA REG ',' REG ',' ACC
862 { rx_check_v2 (); id24 (2, 0x07, 0x00); F ($2, 16, 4); F ($4, 20, 4); F ($6, 12, 1); }
863 | EMSBA REG ',' REG ',' ACC
864 { rx_check_v2 (); id24 (2, 0x47, 0x00); F ($2, 16, 4); F ($4, 20, 4); F ($6, 12, 1); }
865 | EMULA REG ',' REG ',' ACC
866 { rx_check_v2 (); id24 (2, 0x03, 0x00); F ($2, 16, 4); F ($4, 20, 4); F ($6, 12, 1); }
867 | MACLH REG ',' REG ',' ACC
868 { rx_check_v2 (); id24 (2, 0x06, 0x00); F ($2, 16, 4); F ($4, 20, 4); F ($6, 12, 1); }
869 | MSBHI REG ',' REG ',' ACC
870 { rx_check_v2 (); id24 (2, 0x44, 0x00); F ($2, 16, 4); F ($4, 20, 4); F ($6, 12, 1); }
871 | MSBLH REG ',' REG ',' ACC
872 { rx_check_v2 (); id24 (2, 0x46, 0x00); F ($2, 16, 4); F ($4, 20, 4); F ($6, 12, 1); }
873 | MSBLO REG ',' REG ',' ACC
874 { rx_check_v2 (); id24 (2, 0x45, 0x00); F ($2, 16, 4); F ($4, 20, 4); F ($6, 12, 1); }
875 | MULLH REG ',' REG ',' ACC
876 { rx_check_v2 (); id24 (2, 0x02, 0x00); F ($2, 16, 4); F ($4, 20, 4); F ($6, 12, 1); }
877 | MVFACGU { sub_op = 3; } mvfa_op
878 | MVTACGU REG ',' ACC
879 { rx_check_v2 (); id24 (2, 0x17, 0x30); F ($4, 16, 1); F ($2, 20, 4); }
880 | RACL '#' EXPR ',' ACC
881 { rx_check_v2 (); id24 (2, 0x19, 0x00); F ($5, 16, 1);
882 if (rx_uintop ($3, 4) && $3.X_add_number == 1)
883 ;
884 else if (rx_uintop ($3, 4) && $3.X_add_number == 2)
885 F (1, 19, 1);
886 else
887 as_bad (_("RACL expects #1 or #2"));}
888 | RDACL '#' EXPR ',' ACC
889 { rx_check_v2 (); id24 (2, 0x19, 0x40); F ($5, 16, 1);
890 if (rx_uintop ($3, 4) && $3.X_add_number == 1)
891 ;
892 else if (rx_uintop ($3, 4) && $3.X_add_number == 2)
893 F (1, 19, 1);
894 else
895 as_bad (_("RDACL expects #1 or #2"));}
896 | RDACW '#' EXPR ',' ACC
897 { rx_check_v2 (); id24 (2, 0x18, 0x40); F ($5, 16, 1);
898 if (rx_uintop ($3, 4) && $3.X_add_number == 1)
899 ;
900 else if (rx_uintop ($3, 4) && $3.X_add_number == 2)
901 F (1, 19, 1);
902 else
903 as_bad (_("RDACW expects #1 or #2"));}
904
905 /* ---------------------------------------------------------------------- */
906
907 ;
908
909 /* ====================================================================== */
910
911 op_subadd
912 : REG ',' REG
913 { B2 (0x43 + (sub_op<<2), 0); F ($1, 8, 4); F ($3, 12, 4); }
914 | disp '[' REG ']' DOT_UB ',' REG
915 { B2 (0x40 + (sub_op<<2), 0); F ($3, 8, 4); F ($7, 12, 4); DSP ($1, 6, BSIZE); }
916 | disp '[' REG ']' memex ',' REG
917 { B3 (MEMEX, sub_op<<2, 0); F ($5, 8, 2); F ($3, 16, 4); F ($7, 20, 4); DSP ($1, 14, sizemap[$5]); }
918 | REG ',' REG ',' REG
919 { id24 (4, sub_op<<4, 0), F ($5, 12, 4), F ($1, 16, 4), F ($3, 20, 4); }
920 ;
921
922 /* sbb, neg, adc, abs, max, min, div, divu, tst, not, xor, stz, stnz, emul, emulu */
923
924 op_dp20_rm_l
925 : REG ',' REG
926 { id24 (1, 0x03 + (sub_op<<2), 0x00); F ($1, 16, 4); F ($3, 20, 4); }
927 | disp '[' REG ']' opt_l ',' REG
928 { B4 (MEMEX, 0xa0, 0x00 + sub_op, 0x00);
929 F ($3, 24, 4); F ($7, 28, 4); DSP ($1, 14, LSIZE); }
930 ;
931
932 /* neg, adc, abs, max, min, div, divu, tst, not, xor, stz, stnz, emul, emulu */
933
934 op_dp20_rm
935 : REG ',' REG
936 { id24 (1, 0x03 + (sub_op<<2), 0x00); F ($1, 16, 4); F ($3, 20, 4); }
937 | disp '[' REG ']' DOT_UB ',' REG
938 { id24 (1, 0x00 + (sub_op<<2), 0x00); F ($3, 16, 4); F ($7, 20, 4); DSP ($1, 14, BSIZE); }
939 | disp '[' REG ']' memex ',' REG
940 { B4 (MEMEX, 0x20 + ($5 << 6), 0x00 + sub_op, 0x00);
941 F ($3, 24, 4); F ($7, 28, 4); DSP ($1, 14, sizemap[$5]); }
942 ;
943
944 op_dp20_i
945 : '#' EXPR ',' REG
946 { id24 (2, 0x70, sub_op<<4); F ($4, 20, 4); IMM ($2, 12); }
947 ;
948
949 op_dp20_rim
950 : op_dp20_rm
951 | op_dp20_i
952 ;
953
954 op_dp20_rim_l
955 : op_dp20_rm_l
956 | op_dp20_i
957 ;
958
959 op_dp20_rr
960 : REG ',' REG
961 { id24 (1, 0x03 + (sub_op<<2), 0x00); F ($1, 16, 4); F ($3, 20, 4); }
962 | REG
963 { B2 (0x7e, sub_op2 << 4); F ($1, 12, 4); }
964 ;
965
966 op_dp20_r
967 : REG ',' REG
968 { id24 (1, 0x4b + (sub_op2<<2), 0x00); F ($1, 16, 4); F ($3, 20, 4); }
969 ;
970
971 op_dp20_ri
972 : { rx_check_v2 (); }
973 op_dp20_r
974 | op_dp20_i
975 ;
976
977 /* xchg, utof, itof, emul, emulu */
978 op_xchg
979 : REG ',' REG
980 { id24 (1, 0x03 + (sub_op<<2), 0); F ($1, 16, 4); F ($3, 20, 4); }
981 | disp '[' REG ']' DOT_UB ',' REG
982 { id24 (1, 0x00 + (sub_op<<2), 0); F ($3, 16, 4); F ($7, 20, 4); DSP ($1, 14, BSIZE); }
983 | disp '[' REG ']' memex ',' REG
984 { B4 (MEMEX, 0x20, 0x00 + sub_op, 0); F ($5, 8, 2); F ($3, 24, 4); F ($7, 28, 4);
985 DSP ($1, 14, sizemap[$5]); }
986 ;
987
988 /* 000:SHLR, 001:SHAR, 010:SHLL, 011:-, 100:ROTR, 101:REVW, 110:ROTL, 111:REVL */
989 op_shift_rot
990 : REG ',' REG
991 { id24 (2, 0x60 + sub_op, 0); F ($1, 16, 4); F ($3, 20, 4); }
992 ;
993 op_shift
994 : '#' EXPR ',' REG
995 { B2 (0x68 + (sub_op<<1), 0); FE ($2, 7, 5); F ($4, 12, 4); }
996 | '#' EXPR ',' REG ',' REG
997 { id24 (2, 0x80 + (sub_op << 5), 0); FE ($2, 11, 5); F ($4, 16, 4); F ($6, 20, 4); }
998 | op_shift_rot
999 ;
1000
1001 float3_op
1002 : '#' EXPR ',' REG
1003 { rx_check_float_support (); id24 (2, 0x72, sub_op << 4); F ($4, 20, 4); O4 ($2); }
1004 | REG ',' REG
1005 { rx_check_float_support (); id24 (1, 0x83 + (sub_op << 2), 0); F ($1, 16, 4); F ($3, 20, 4); }
1006 | disp '[' REG ']' opt_l ',' REG
1007 { rx_check_float_support (); id24 (1, 0x80 + (sub_op << 2), 0); F ($3, 16, 4); F ($7, 20, 4); DSP ($1, 14, LSIZE); }
1008 | REG ',' REG ',' REG
1009 { rx_check_v2 (); id24 (4, 0x80 + (sub_op << 4), 0 ); F ($1, 16, 4); F ($3, 20, 4); F ($5, 12, 4); }
1010 ;
1011
1012 float2_op
1013 : { rx_check_float_support (); }
1014 '#' EXPR ',' REG
1015 { id24 (2, 0x72, sub_op << 4); F ($5, 20, 4); O4 ($3); }
1016 | float2_op_ni
1017 ;
1018
1019 float2_op_ni
1020 : { rx_check_float_support (); }
1021 REG ',' REG
1022 { id24 (1, 0x83 + (sub_op << 2), 0); F ($2, 16, 4); F ($4, 20, 4); }
1023 | { rx_check_float_support (); }
1024 disp '[' REG ']' opt_l ',' REG
1025 { id24 (1, 0x80 + (sub_op << 2), 0); F ($4, 16, 4); F ($8, 20, 4); DSP ($2, 14, LSIZE); }
1026 ;
1027
1028 mvfa_op
1029 : { rx_check_v2 (); }
1030 '#' EXPR ',' ACC ',' REG
1031 { id24 (2, 0x1e, sub_op << 4); F ($7, 20, 4); F ($5, 16, 1);
1032 if (rx_uintop ($3, 4))
1033 {
1034 switch (exp_val ($3))
1035 {
1036 case 0:
1037 F (1, 15, 1);
1038 break;
1039 case 1:
1040 F (1, 15, 1);
1041 F (1, 17, 1);
1042 break;
1043 case 2:
1044 break;
1045 default:
1046 as_bad (_("IMM expects #0 to #2"));}
1047 } else
1048 as_bad (_("IMM expects #0 to #2"));}
1049 ;
1050
1051 /* ====================================================================== */
1052
1053 disp : { $$ = zero_expr (); }
1054 | EXPR { $$ = $1; }
1055 ;
1056
1057 flag : { need_flag = 1; } FLAG { need_flag = 0; $$ = $2; }
1058 ;
1059
1060 /* DOT_UB is not listed here, it's handled with a separate pattern. */
1061 /* Use sizemap[$n] to get LSIZE etc. */
1062 memex : DOT_B { $$ = 0; }
1063 | DOT_W { $$ = 1; }
1064 | { $$ = 2; }
1065 | DOT_L { $$ = 2; }
1066 | DOT_UW { $$ = 3; }
1067 ;
1068
1069 bwl : { $$ = LSIZE; }
1070 | DOT_B { $$ = BSIZE; }
1071 | DOT_W { $$ = WSIZE; }
1072 | DOT_L { $$ = LSIZE; }
1073 ;
1074
1075 bw : { $$ = 1; }
1076 | DOT_B { $$ = 0; }
1077 | DOT_W { $$ = 1; }
1078 ;
1079
1080 opt_l : {}
1081 | DOT_L {}
1082 ;
1083
1084 opt_b : {}
1085 | DOT_B {}
1086 ;
1087
1088 %%
1089 /* ====================================================================== */
1090
1091 static struct
1092 {
1093 const char * string;
1094 int token;
1095 int val;
1096 }
1097 token_table[] =
1098 {
1099 { "r0", REG, 0 },
1100 { "r1", REG, 1 },
1101 { "r2", REG, 2 },
1102 { "r3", REG, 3 },
1103 { "r4", REG, 4 },
1104 { "r5", REG, 5 },
1105 { "r6", REG, 6 },
1106 { "r7", REG, 7 },
1107 { "r8", REG, 8 },
1108 { "r9", REG, 9 },
1109 { "r10", REG, 10 },
1110 { "r11", REG, 11 },
1111 { "r12", REG, 12 },
1112 { "r13", REG, 13 },
1113 { "r14", REG, 14 },
1114 { "r15", REG, 15 },
1115
1116 { "psw", CREG, 0 },
1117 { "pc", CREG, 1 },
1118 { "usp", CREG, 2 },
1119 { "fpsw", CREG, 3 },
1120 /* reserved */
1121 /* reserved */
1122 /* reserved */
1123 { "wr", CREG, 7 },
1124
1125 { "bpsw", CREG, 8 },
1126 { "bpc", CREG, 9 },
1127 { "isp", CREG, 10 },
1128 { "fintv", CREG, 11 },
1129 { "intb", CREG, 12 },
1130 { "extb", CREG, 13 },
1131
1132 { "pbp", CREG, 16 },
1133 { "pben", CREG, 17 },
1134
1135 { "bbpsw", CREG, 24 },
1136 { "bbpc", CREG, 25 },
1137
1138 { ".s", DOT_S, 0 },
1139 { ".b", DOT_B, 0 },
1140 { ".w", DOT_W, 0 },
1141 { ".l", DOT_L, 0 },
1142 { ".a", DOT_A , 0},
1143 { ".ub", DOT_UB, 0 },
1144 { ".uw", DOT_UW , 0},
1145
1146 { "c", FLAG, 0 },
1147 { "z", FLAG, 1 },
1148 { "s", FLAG, 2 },
1149 { "o", FLAG, 3 },
1150 { "i", FLAG, 8 },
1151 { "u", FLAG, 9 },
1152
1153 { "a0", ACC, 0 },
1154 { "a1", ACC, 1 },
1155
1156 #define OPC(x) { #x, x, IS_OPCODE }
1157 OPC(ABS),
1158 OPC(ADC),
1159 OPC(ADD),
1160 { "and", AND_, IS_OPCODE },
1161 OPC(BCLR),
1162 OPC(BCND),
1163 OPC(BMCND),
1164 OPC(BNOT),
1165 OPC(BRA),
1166 OPC(BRK),
1167 OPC(BSET),
1168 OPC(BSR),
1169 OPC(BTST),
1170 OPC(CLRPSW),
1171 OPC(CMP),
1172 OPC(DBT),
1173 OPC(DIV),
1174 OPC(DIVU),
1175 OPC(EDIV),
1176 OPC(EDIVU),
1177 OPC(EMACA),
1178 OPC(EMSBA),
1179 OPC(EMUL),
1180 OPC(EMULA),
1181 OPC(EMULU),
1182 OPC(FADD),
1183 OPC(FCMP),
1184 OPC(FDIV),
1185 OPC(FMUL),
1186 OPC(FREIT),
1187 OPC(FSQRT),
1188 OPC(FTOU),
1189 OPC(FSUB),
1190 OPC(FTOI),
1191 OPC(INT),
1192 OPC(ITOF),
1193 OPC(JMP),
1194 OPC(JSR),
1195 OPC(MVFACGU),
1196 OPC(MVFACHI),
1197 OPC(MVFACMI),
1198 OPC(MVFACLO),
1199 OPC(MVFC),
1200 OPC(MVTACGU),
1201 OPC(MVTACHI),
1202 OPC(MVTACLO),
1203 OPC(MVTC),
1204 OPC(MVTIPL),
1205 OPC(MACHI),
1206 OPC(MACLO),
1207 OPC(MACLH),
1208 OPC(MAX),
1209 OPC(MIN),
1210 OPC(MOV),
1211 OPC(MOVCO),
1212 OPC(MOVLI),
1213 OPC(MOVU),
1214 OPC(MSBHI),
1215 OPC(MSBLH),
1216 OPC(MSBLO),
1217 OPC(MUL),
1218 OPC(MULHI),
1219 OPC(MULLH),
1220 OPC(MULLO),
1221 OPC(MULU),
1222 OPC(NEG),
1223 OPC(NOP),
1224 OPC(NOT),
1225 OPC(OR),
1226 OPC(POP),
1227 OPC(POPC),
1228 OPC(POPM),
1229 OPC(PUSH),
1230 OPC(PUSHA),
1231 OPC(PUSHC),
1232 OPC(PUSHM),
1233 OPC(RACL),
1234 OPC(RACW),
1235 OPC(RDACL),
1236 OPC(RDACW),
1237 OPC(REIT),
1238 OPC(REVL),
1239 OPC(REVW),
1240 OPC(RMPA),
1241 OPC(ROLC),
1242 OPC(RORC),
1243 OPC(ROTL),
1244 OPC(ROTR),
1245 OPC(ROUND),
1246 OPC(RTE),
1247 OPC(RTFI),
1248 OPC(RTS),
1249 OPC(RTSD),
1250 OPC(SAT),
1251 OPC(SATR),
1252 OPC(SBB),
1253 OPC(SCCND),
1254 OPC(SCMPU),
1255 OPC(SETPSW),
1256 OPC(SHAR),
1257 OPC(SHLL),
1258 OPC(SHLR),
1259 OPC(SMOVB),
1260 OPC(SMOVF),
1261 OPC(SMOVU),
1262 OPC(SSTR),
1263 OPC(STNZ),
1264 OPC(STOP),
1265 OPC(STZ),
1266 OPC(SUB),
1267 OPC(SUNTIL),
1268 OPC(SWHILE),
1269 OPC(TST),
1270 OPC(UTOF),
1271 OPC(WAIT),
1272 OPC(XCHG),
1273 OPC(XOR),
1274 };
1275
1276 #define NUM_TOKENS (sizeof (token_table) / sizeof (token_table[0]))
1277
1278 static struct
1279 {
1280 char * string;
1281 int token;
1282 }
1283 condition_opcode_table[] =
1284 {
1285 { "b", BCND },
1286 { "bm", BMCND },
1287 { "sc", SCCND },
1288 };
1289
1290 #define NUM_CONDITION_OPCODES (sizeof (condition_opcode_table) / sizeof (condition_opcode_table[0]))
1291
1292 static struct
1293 {
1294 char * string;
1295 int val;
1296 }
1297 condition_table[] =
1298 {
1299 { "z", 0 },
1300 { "eq", 0 },
1301 { "geu", 2 },
1302 { "c", 2 },
1303 { "gtu", 4 },
1304 { "pz", 6 },
1305 { "ge", 8 },
1306 { "gt", 10 },
1307 { "o", 12},
1308 /* always = 14 */
1309 { "nz", 1 },
1310 { "ne", 1 },
1311 { "ltu", 3 },
1312 { "nc", 3 },
1313 { "leu", 5 },
1314 { "n", 7 },
1315 { "lt", 9 },
1316 { "le", 11 },
1317 { "no", 13 }
1318 /* never = 15 */
1319 };
1320
1321 #define NUM_CONDITIONS (sizeof (condition_table) / sizeof (condition_table[0]))
1322
1323 void
1324 rx_lex_init (char * beginning, char * ending)
1325 {
1326 rx_init_start = beginning;
1327 rx_lex_start = beginning;
1328 rx_lex_end = ending;
1329 rx_in_brackets = 0;
1330 rx_last_token = 0;
1331
1332 setbuf (stdout, 0);
1333 }
1334
1335 static int
1336 check_condition (char * base)
1337 {
1338 char * cp;
1339 unsigned int i;
1340
1341 if ((unsigned) (rx_lex_end - rx_lex_start) < strlen (base) + 1)
1342 return 0;
1343 if (memcmp (rx_lex_start, base, strlen (base)))
1344 return 0;
1345 cp = rx_lex_start + strlen (base);
1346 for (i = 0; i < NUM_CONDITIONS; i ++)
1347 {
1348 if (strcasecmp (cp, condition_table[i].string) == 0)
1349 {
1350 rx_lval.regno = condition_table[i].val;
1351 return 1;
1352 }
1353 }
1354 return 0;
1355 }
1356
1357 static int
1358 rx_lex (void)
1359 {
1360 unsigned int ci;
1361 char * save_input_pointer;
1362
1363 while (ISSPACE (*rx_lex_start)
1364 && rx_lex_start != rx_lex_end)
1365 rx_lex_start ++;
1366
1367 rx_last_exp_start = rx_lex_start;
1368
1369 if (rx_lex_start == rx_lex_end)
1370 return 0;
1371
1372 if (ISALPHA (*rx_lex_start)
1373 || (rx_pid_register != -1 && memcmp (rx_lex_start, "%pidreg", 7) == 0)
1374 || (rx_gp_register != -1 && memcmp (rx_lex_start, "%gpreg", 6) == 0)
1375 || (*rx_lex_start == '.' && ISALPHA (rx_lex_start[1])))
1376 {
1377 unsigned int i;
1378 char * e;
1379 char save;
1380
1381 for (e = rx_lex_start + 1;
1382 e < rx_lex_end && ISALNUM (*e);
1383 e ++)
1384 ;
1385 save = *e;
1386 *e = 0;
1387
1388 if (strcmp (rx_lex_start, "%pidreg") == 0)
1389 {
1390 {
1391 rx_lval.regno = rx_pid_register;
1392 *e = save;
1393 rx_lex_start = e;
1394 rx_last_token = REG;
1395 return REG;
1396 }
1397 }
1398
1399 if (strcmp (rx_lex_start, "%gpreg") == 0)
1400 {
1401 {
1402 rx_lval.regno = rx_gp_register;
1403 *e = save;
1404 rx_lex_start = e;
1405 rx_last_token = REG;
1406 return REG;
1407 }
1408 }
1409
1410 if (rx_last_token == 0)
1411 for (ci = 0; ci < NUM_CONDITION_OPCODES; ci ++)
1412 if (check_condition (condition_opcode_table[ci].string))
1413 {
1414 *e = save;
1415 rx_lex_start = e;
1416 rx_last_token = condition_opcode_table[ci].token;
1417 return condition_opcode_table[ci].token;
1418 }
1419
1420 for (i = 0; i < NUM_TOKENS; i++)
1421 if (strcasecmp (rx_lex_start, token_table[i].string) == 0
1422 && !(token_table[i].val == IS_OPCODE && rx_last_token != 0)
1423 && !(token_table[i].token == FLAG && !need_flag))
1424 {
1425 rx_lval.regno = token_table[i].val;
1426 *e = save;
1427 rx_lex_start = e;
1428 rx_last_token = token_table[i].token;
1429 return token_table[i].token;
1430 }
1431 *e = save;
1432 }
1433
1434 if (rx_last_token == 0)
1435 {
1436 rx_last_token = UNKNOWN_OPCODE;
1437 return UNKNOWN_OPCODE;
1438 }
1439
1440 if (rx_last_token == UNKNOWN_OPCODE)
1441 return 0;
1442
1443 if (*rx_lex_start == '[')
1444 rx_in_brackets = 1;
1445 if (*rx_lex_start == ']')
1446 rx_in_brackets = 0;
1447
1448 if (rx_in_brackets
1449 || rx_last_token == REG
1450 || strchr ("[],#", *rx_lex_start))
1451 {
1452 rx_last_token = *rx_lex_start;
1453 return *rx_lex_start ++;
1454 }
1455
1456 save_input_pointer = input_line_pointer;
1457 input_line_pointer = rx_lex_start;
1458 rx_lval.exp.X_md = 0;
1459 expression (&rx_lval.exp);
1460
1461 /* We parse but ignore any :<size> modifier on expressions. */
1462 if (*input_line_pointer == ':')
1463 {
1464 char *cp;
1465
1466 for (cp = input_line_pointer + 1; *cp && cp < rx_lex_end; cp++)
1467 if (!ISDIGIT (*cp))
1468 break;
1469 if (cp > input_line_pointer+1)
1470 input_line_pointer = cp;
1471 }
1472
1473 rx_lex_start = input_line_pointer;
1474 input_line_pointer = save_input_pointer;
1475 rx_last_token = EXPR;
1476 return EXPR;
1477 }
1478
1479 int
1480 rx_error (const char * str)
1481 {
1482 int len;
1483
1484 len = rx_last_exp_start - rx_init_start;
1485
1486 as_bad ("%s", rx_init_start);
1487 as_bad ("%*s^ %s", len, "", str);
1488 return 0;
1489 }
1490
1491 static int
1492 rx_intop (expressionS exp, int nbits, int opbits)
1493 {
1494 long v;
1495 long mask, msb;
1496
1497 if (exp.X_op == O_big && nbits == 32)
1498 return 1;
1499 if (exp.X_op != O_constant)
1500 return 0;
1501 v = exp.X_add_number;
1502
1503 msb = 1UL << (opbits - 1);
1504 mask = (1UL << opbits) - 1;
1505
1506 if ((v & msb) && ! (v & ~mask))
1507 v -= 1UL << opbits;
1508
1509 switch (nbits)
1510 {
1511 case 4:
1512 return -0x8 <= v && v <= 0x7;
1513 case 5:
1514 return -0x10 <= v && v <= 0x17;
1515 case 8:
1516 return -0x80 <= v && v <= 0x7f;
1517 case 16:
1518 return -0x8000 <= v && v <= 0x7fff;
1519 case 24:
1520 return -0x800000 <= v && v <= 0x7fffff;
1521 case 32:
1522 return 1;
1523 default:
1524 printf ("rx_intop passed %d\n", nbits);
1525 abort ();
1526 }
1527 return 1;
1528 }
1529
1530 static int
1531 rx_uintop (expressionS exp, int nbits)
1532 {
1533 unsigned long v;
1534
1535 if (exp.X_op != O_constant)
1536 return 0;
1537 v = exp.X_add_number;
1538
1539 switch (nbits)
1540 {
1541 case 4:
1542 return v <= 0xf;
1543 case 8:
1544 return v <= 0xff;
1545 case 16:
1546 return v <= 0xffff;
1547 case 24:
1548 return v <= 0xffffff;
1549 default:
1550 printf ("rx_uintop passed %d\n", nbits);
1551 abort ();
1552 }
1553 return 1;
1554 }
1555
1556 static int
1557 rx_disp3op (expressionS exp)
1558 {
1559 unsigned long v;
1560
1561 if (exp.X_op != O_constant)
1562 return 0;
1563 v = exp.X_add_number;
1564 if (v < 3 || v > 10)
1565 return 0;
1566 return 1;
1567 }
1568
1569 static int
1570 rx_disp5op (expressionS * exp, int msize)
1571 {
1572 long v;
1573
1574 if (exp->X_op != O_constant)
1575 return 0;
1576 v = exp->X_add_number;
1577
1578 switch (msize)
1579 {
1580 case BSIZE:
1581 if (0 <= v && v <= 31)
1582 return 1;
1583 break;
1584 case WSIZE:
1585 if (v & 1)
1586 return 0;
1587 if (0 <= v && v <= 63)
1588 {
1589 exp->X_add_number >>= 1;
1590 return 1;
1591 }
1592 break;
1593 case LSIZE:
1594 if (v & 3)
1595 return 0;
1596 if (0 <= v && v <= 127)
1597 {
1598 exp->X_add_number >>= 2;
1599 return 1;
1600 }
1601 break;
1602 }
1603 return 0;
1604 }
1605
1606 /* Just like the above, but allows a zero displacement. */
1607
1608 static int
1609 rx_disp5op0 (expressionS * exp, int msize)
1610 {
1611 if (exp->X_op != O_constant)
1612 return 0;
1613 if (exp->X_add_number == 0)
1614 return 1;
1615 return rx_disp5op (exp, msize);
1616 }
1617
1618 static int
1619 exp_val (expressionS exp)
1620 {
1621 if (exp.X_op != O_constant)
1622 {
1623 rx_error (_("constant expected"));
1624 return 0;
1625 }
1626 return exp.X_add_number;
1627 }
1628
1629 static expressionS
1630 zero_expr (void)
1631 {
1632 /* Static, so program load sets it to all zeros, which is what we want. */
1633 static expressionS zero;
1634 zero.X_op = O_constant;
1635 return zero;
1636 }
1637
1638 static int
1639 immediate (expressionS exp, int type, int pos, int bits)
1640 {
1641 /* We will emit constants ourself here, so negate them. */
1642 if (type == RXREL_NEGATIVE && exp.X_op == O_constant)
1643 exp.X_add_number = - exp.X_add_number;
1644 if (type == RXREL_NEGATIVE_BORROW)
1645 {
1646 if (exp.X_op == O_constant)
1647 exp.X_add_number = - exp.X_add_number - 1;
1648 else
1649 rx_error (_("sbb cannot use symbolic immediates"));
1650 }
1651
1652 if (rx_intop (exp, 8, bits))
1653 {
1654 rx_op (exp, 1, type);
1655 return 1;
1656 }
1657 else if (rx_intop (exp, 16, bits))
1658 {
1659 rx_op (exp, 2, type);
1660 return 2;
1661 }
1662 else if (rx_uintop (exp, 16) && bits == 16)
1663 {
1664 rx_op (exp, 2, type);
1665 return 2;
1666 }
1667 else if (rx_intop (exp, 24, bits))
1668 {
1669 rx_op (exp, 3, type);
1670 return 3;
1671 }
1672 else if (rx_intop (exp, 32, bits))
1673 {
1674 rx_op (exp, 4, type);
1675 return 0;
1676 }
1677 else if (type == RXREL_SIGNED)
1678 {
1679 /* This is a symbolic immediate, we will relax it later. */
1680 rx_relax (RX_RELAX_IMM, pos);
1681 rx_op (exp, linkrelax ? 4 : 1, type);
1682 return 1;
1683 }
1684 else
1685 {
1686 /* Let the linker deal with it. */
1687 rx_op (exp, 4, type);
1688 return 0;
1689 }
1690 }
1691
1692 static int
1693 displacement (expressionS exp, int msize)
1694 {
1695 int val;
1696 int vshift = 0;
1697
1698 if (exp.X_op == O_symbol
1699 && exp.X_md)
1700 {
1701 switch (exp.X_md)
1702 {
1703 case BFD_RELOC_GPREL16:
1704 switch (msize)
1705 {
1706 case BSIZE:
1707 exp.X_md = BFD_RELOC_RX_GPRELB;
1708 break;
1709 case WSIZE:
1710 exp.X_md = BFD_RELOC_RX_GPRELW;
1711 break;
1712 case LSIZE:
1713 exp.X_md = BFD_RELOC_RX_GPRELL;
1714 break;
1715 }
1716 O2 (exp);
1717 return 2;
1718 }
1719 }
1720
1721 if (exp.X_op == O_subtract)
1722 {
1723 exp.X_md = BFD_RELOC_RX_DIFF;
1724 O2 (exp);
1725 return 2;
1726 }
1727
1728 if (exp.X_op != O_constant)
1729 {
1730 rx_error (_("displacements must be constants"));
1731 return -1;
1732 }
1733 val = exp.X_add_number;
1734
1735 if (val == 0)
1736 return 0;
1737
1738 switch (msize)
1739 {
1740 case BSIZE:
1741 break;
1742 case WSIZE:
1743 if (val & 1)
1744 rx_error (_("word displacement not word-aligned"));
1745 vshift = 1;
1746 break;
1747 case LSIZE:
1748 if (val & 3)
1749 rx_error (_("long displacement not long-aligned"));
1750 vshift = 2;
1751 break;
1752 default:
1753 as_bad (_("displacement with unknown size (internal bug?)\n"));
1754 break;
1755 }
1756
1757 val >>= vshift;
1758 exp.X_add_number = val;
1759
1760 if (0 <= val && val <= 255 )
1761 {
1762 O1 (exp);
1763 return 1;
1764 }
1765
1766 if (0 <= val && val <= 65535)
1767 {
1768 O2 (exp);
1769 return 2;
1770 }
1771 if (val < 0)
1772 rx_error (_("negative displacements not allowed"));
1773 else
1774 rx_error (_("displacement too large"));
1775 return -1;
1776 }
1777
1778 static void
1779 rtsd_immediate (expressionS exp)
1780 {
1781 int val;
1782
1783 if (exp.X_op != O_constant)
1784 {
1785 rx_error (_("rtsd size must be constant"));
1786 return;
1787 }
1788 val = exp.X_add_number;
1789 if (val & 3)
1790 rx_error (_("rtsd size must be multiple of 4"));
1791
1792 if (val < 0 || val > 1020)
1793 rx_error (_("rtsd size must be 0..1020"));
1794
1795 val >>= 2;
1796 exp.X_add_number = val;
1797 O1 (exp);
1798 }
1799
1800 static void
1801 rx_range (expressionS exp, int minv, int maxv)
1802 {
1803 int val;
1804
1805 if (exp.X_op != O_constant)
1806 return;
1807
1808 val = exp.X_add_number;
1809 if (val < minv || val > maxv)
1810 as_warn (_("Value %d out of range %d..%d"), val, minv, maxv);
1811 }
1812
1813 static void
1814 rx_check_float_support (void)
1815 {
1816 if (rx_cpu == RX100 || rx_cpu == RX200)
1817 rx_error (_("target CPU type does not support floating point instructions"));
1818 }
1819
1820 static void
1821 rx_check_v2 (void)
1822 {
1823 if (rx_cpu < RXV2)
1824 rx_error (_("target CPU type does not support v2 instructions"));
1825 }
This page took 0.066547 seconds and 4 git commands to generate.