update use of valueT and addressT
[deliverable/binutils-gdb.git] / gas / config / tc-a29k.c
1 /* tc-a29k.c -- Assemble for the AMD 29000.
2 Copyright (C) 1989, 1990, 1991, 1992 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 /* John Gilmore has reorganized this module somewhat, to make it easier
21 to convert it to new machines' assemblers as desired. There was too
22 much bloody rewriting required before. There still probably is. */
23
24 #include "ctype.h"
25 #include "as.h"
26
27 #include "opcode/a29k.h"
28
29 /* Make it easier to clone this machine desc into another one. */
30 #define machine_opcode a29k_opcode
31 #define machine_opcodes a29k_opcodes
32 #define machine_ip a29k_ip
33 #define machine_it a29k_it
34
35 const relax_typeS md_relax_table[] =
36 {0};
37
38 #define IMMEDIATE_BIT 0x01000000 /* Turns RB into Immediate */
39 #define ABSOLUTE_BIT 0x01000000 /* Turns PC-relative to Absolute */
40 #define CE_BIT 0x00800000 /* Coprocessor enable in LOAD */
41 #define UI_BIT 0x00000080 /* Unsigned integer in CONVERT */
42
43 /* handle of the OPCODE hash table */
44 static struct hash_control *op_hash = NULL;
45
46 struct machine_it
47 {
48 char *error;
49 unsigned long opcode;
50 struct nlist *nlistp;
51 expressionS exp;
52 int pcrel;
53 int reloc_offset; /* Offset of reloc within insn */
54
55 int reloc;
56
57
58 }
59
60 the_insn;
61
62 #if __STDC__ == 1
63
64 /* static int getExpression(char *str); */
65 static void machine_ip (char *str);
66 /* static void print_insn(struct machine_it *insn); */
67 static void s_data1 (void);
68 static void s_use (void);
69
70 #else /* not __STDC__ */
71
72 /* static int getExpression(); */
73 static void machine_ip ();
74 /* static void print_insn(); */
75 static void s_data1 ();
76 static void s_use ();
77
78 #endif /* not __STDC__ */
79
80 const pseudo_typeS
81 md_pseudo_table[] =
82 {
83 {"align", s_align_bytes, 4},
84 {"block", s_space, 0},
85 {"cputype", s_ignore, 0}, /* CPU as 29000 or 29050 */
86 {"reg", s_lsym, 0}, /* Register equate, same as equ */
87 {"space", s_ignore, 0}, /* Listing control */
88 {"sect", s_ignore, 0}, /* Creation of coff sections */
89 #ifndef OBJ_COFF
90 /* We can do this right with coff */
91 {"use", s_use, 0},
92 #endif
93 {"word", cons, 4},
94 {NULL, 0, 0},
95 };
96
97 int md_short_jump_size = 4;
98 int md_long_jump_size = 4;
99 #if defined(BFD_HEADERS)
100 #ifdef RELSZ
101 const int md_reloc_size = RELSZ; /* Coff headers */
102 #else
103 const int md_reloc_size = 12; /* something else headers */
104 #endif
105 #else
106 const int md_reloc_size = 12; /* Not bfdized*/
107 #endif
108
109 /* This array holds the chars that always start a comment. If the
110 pre-processor is disabled, these aren't very useful */
111 const char comment_chars[] = ";";
112
113 /* This array holds the chars that only start a comment at the beginning of
114 a line. If the line seems to have the form '# 123 filename'
115 .line and .file directives will appear in the pre-processed output */
116 /* Note that input_file.c hand checks for '#' at the beginning of the
117 first line of the input file. This is because the compiler outputs
118 #NO_APP at the beginning of its output. */
119 /* Also note that comments like this one will always work */
120 const char line_comment_chars[] = "#";
121
122 /* We needed an unused char for line separation to work around the
123 lack of macros, using sed and such. */
124 const char line_separator_chars[] = "@";
125
126 /* Chars that can be used to separate mant from exp in floating point nums */
127 const char EXP_CHARS[] = "eE";
128
129 /* Chars that mean this number is a floating point constant */
130 /* As in 0f12.456 */
131 /* or 0d1.2345e12 */
132 const char FLT_CHARS[] = "rRsSfFdDxXpP";
133
134 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
135 changed in read.c . Ideally it shouldn't have to know about it at all,
136 but nothing is ideal around here.
137 */
138
139 static unsigned char octal[256];
140 #define isoctal(c) octal[c]
141 static unsigned char toHex[256];
142
143 /*
144 * anull bit - causes the branch delay slot instructions to not be executed
145 */
146 #define ANNUL (1 << 29)
147
148 static void
149 s_use ()
150 {
151
152 if (strncmp (input_line_pointer, ".text", 5) == 0)
153 {
154 input_line_pointer += 5;
155 s_text ();
156 return;
157 }
158 if (strncmp (input_line_pointer, ".data", 5) == 0)
159 {
160 input_line_pointer += 5;
161 s_data ();
162 return;
163 }
164 if (strncmp (input_line_pointer, ".data1", 6) == 0)
165 {
166 input_line_pointer += 6;
167 s_data1 ();
168 return;
169 }
170 /* Literals can't go in the text segment because you can't read
171 from instruction memory on some 29k's. So, into initialized data. */
172 if (strncmp (input_line_pointer, ".lit", 4) == 0)
173 {
174 input_line_pointer += 4;
175 subseg_new (SEG_DATA, 200);
176 demand_empty_rest_of_line ();
177 return;
178 }
179
180 as_bad ("Unknown segment type");
181 demand_empty_rest_of_line ();
182 return;
183 }
184
185 static void
186 s_data1 ()
187 {
188 subseg_new (SEG_DATA, 1);
189 demand_empty_rest_of_line ();
190 return;
191 }
192
193 /* Install symbol definition that maps REGNAME to REGNO.
194 FIXME-SOON: These are not recognized in mixed case. */
195
196 static void
197 insert_sreg (regname, regnum)
198 char *regname;
199 int regnum;
200 {
201 /* FIXME-SOON, put something in these syms so they won't be output to the symbol
202 table of the resulting object file. */
203
204 /* Must be large enough to hold the names of the special registers. */
205 char buf[80];
206 int i;
207
208 symbol_table_insert (symbol_new (regname, SEG_REGISTER, regnum, &zero_address_frag));
209 for (i = 0; regname[i]; i++)
210 buf[i] = islower (regname[i]) ? toupper (regname[i]) : regname[i];
211 buf[i] = '\0';
212
213 symbol_table_insert (symbol_new (buf, SEG_REGISTER, regnum, &zero_address_frag));
214 } /* insert_sreg() */
215
216 /* Install symbol definitions for assorted special registers.
217 See ASM29K Ref page 2-9. */
218
219 void
220 define_some_regs ()
221 {
222 #define SREG 256
223
224 /* Protected special-purpose register names */
225 insert_sreg ("vab", SREG + 0);
226 insert_sreg ("ops", SREG + 1);
227 insert_sreg ("cps", SREG + 2);
228 insert_sreg ("cfg", SREG + 3);
229 insert_sreg ("cha", SREG + 4);
230 insert_sreg ("chd", SREG + 5);
231 insert_sreg ("chc", SREG + 6);
232 insert_sreg ("rbp", SREG + 7);
233 insert_sreg ("tmc", SREG + 8);
234 insert_sreg ("tmr", SREG + 9);
235 insert_sreg ("pc0", SREG + 10);
236 insert_sreg ("pc1", SREG + 11);
237 insert_sreg ("pc2", SREG + 12);
238 insert_sreg ("mmu", SREG + 13);
239 insert_sreg ("lru", SREG + 14);
240
241 /* Additional protected special-purpose registers for the 29050 */
242 insert_sreg ("rsn", SREG + 15);
243 insert_sreg ("rma0", SREG + 16);
244 insert_sreg ("rmc0", SREG + 17);
245 insert_sreg ("rma1", SREG + 18);
246 insert_sreg ("rmc1", SREG + 19);
247 insert_sreg ("spc0", SREG + 20);
248 insert_sreg ("spc1", SREG + 21);
249 insert_sreg ("spc2", SREG + 22);
250 insert_sreg ("iba0", SREG + 23);
251 insert_sreg ("ibc0", SREG + 24);
252 insert_sreg ("iba1", SREG + 25);
253 insert_sreg ("ibc1", SREG + 26);
254
255 /* Unprotected special-purpose register names */
256 insert_sreg ("ipc", SREG + 128);
257 insert_sreg ("ipa", SREG + 129);
258 insert_sreg ("ipb", SREG + 130);
259 insert_sreg ("q", SREG + 131);
260 insert_sreg ("alu", SREG + 132);
261 insert_sreg ("bp", SREG + 133);
262 insert_sreg ("fc", SREG + 134);
263 insert_sreg ("cr", SREG + 135);
264 insert_sreg ("fpe", SREG + 160);
265 insert_sreg ("inte", SREG + 161);
266 insert_sreg ("fps", SREG + 162);
267 /* "", SREG+163); Reserved */
268 insert_sreg ("exop", SREG + 164);
269 } /* define_some_regs() */
270
271 /* This function is called once, at assembler startup time. It should
272 set up all the tables, etc. that the MD part of the assembler will need. */
273 void
274 md_begin ()
275 {
276 register char *retval = NULL;
277 int lose = 0;
278 register int skipnext = 0;
279 register unsigned int i;
280 register char *strend, *strend2;
281
282 /* Hash up all the opcodes for fast use later. */
283
284 op_hash = hash_new ();
285
286 for (i = 0; i < num_opcodes; i++)
287 {
288 const char *name = machine_opcodes[i].name;
289
290 if (skipnext)
291 {
292 skipnext = 0;
293 continue;
294 }
295
296 /* Hack to avoid multiple opcode entries. We pre-locate all the
297 variations (b/i field and P/A field) and handle them. */
298
299 if (!strcmp (name, machine_opcodes[i + 1].name))
300 {
301 if ((machine_opcodes[i].opcode ^ machine_opcodes[i + 1].opcode)
302 != 0x01000000)
303 goto bad_table;
304 strend = machine_opcodes[i].args + strlen (machine_opcodes[i].args) - 1;
305 strend2 = machine_opcodes[i + 1].args + strlen (machine_opcodes[i + 1].args) - 1;
306 switch (*strend)
307 {
308 case 'b':
309 if (*strend2 != 'i')
310 goto bad_table;
311 break;
312 case 'i':
313 if (*strend2 != 'b')
314 goto bad_table;
315 break;
316 case 'P':
317 if (*strend2 != 'A')
318 goto bad_table;
319 break;
320 case 'A':
321 if (*strend2 != 'P')
322 goto bad_table;
323 break;
324 default:
325 bad_table:
326 fprintf (stderr, "internal error: can't handle opcode %s\n", name);
327 lose = 1;
328 }
329
330 /* OK, this is an i/b or A/P pair. We skip the higher-valued one,
331 and let the code for operand checking handle OR-ing in the bit. */
332 if (machine_opcodes[i].opcode & 1)
333 continue;
334 else
335 skipnext = 1;
336 }
337
338 retval = hash_insert (op_hash, name, &machine_opcodes[i]);
339 if (retval != NULL && *retval != '\0')
340 {
341 fprintf (stderr, "internal error: can't hash `%s': %s\n",
342 machine_opcodes[i].name, retval);
343 lose = 1;
344 }
345 }
346
347 if (lose)
348 as_fatal ("Broken assembler. No assembly attempted.");
349
350 for (i = '0'; i < '8'; ++i)
351 octal[i] = 1;
352 for (i = '0'; i <= '9'; ++i)
353 toHex[i] = i - '0';
354 for (i = 'a'; i <= 'f'; ++i)
355 toHex[i] = i + 10 - 'a';
356 for (i = 'A'; i <= 'F'; ++i)
357 toHex[i] = i + 10 - 'A';
358
359 define_some_regs ();
360 }
361
362 void
363 md_end ()
364 {
365 return;
366 }
367
368 /* Assemble a single instruction. Its label has already been handled
369 by the generic front end. We just parse opcode and operands, and
370 produce the bytes of data and relocation. */
371
372 void
373 md_assemble (str)
374 char *str;
375 {
376 char *toP;
377 /* !!!! int rsd; */
378
379 know (str);
380 machine_ip (str);
381 toP = frag_more (4);
382 /* put out the opcode */
383 md_number_to_chars (toP, the_insn.opcode, 4);
384
385 /* put out the symbol-dependent stuff */
386 if (the_insn.reloc != NO_RELOC)
387 {
388 fix_new (
389 frag_now, /* which frag */
390 (toP - frag_now->fr_literal + the_insn.reloc_offset), /* where */
391 4, /* size */
392 the_insn.exp.X_add_symbol,
393 the_insn.exp.X_subtract_symbol,
394 the_insn.exp.X_add_number,
395 the_insn.pcrel,
396 the_insn.reloc
397 );
398 }
399 }
400
401 char *
402 parse_operand (s, operandp)
403 char *s;
404 expressionS *operandp;
405 {
406 char *save = input_line_pointer;
407 char *new;
408 segT seg;
409
410 input_line_pointer = s;
411 seg = expr (0, operandp);
412 new = input_line_pointer;
413 input_line_pointer = save;
414
415 if (seg == SEG_ABSENT)
416 as_bad ("Missing operand");
417 return new;
418 }
419
420 /* Instruction parsing. Takes a string containing the opcode.
421 Operands are at input_line_pointer. Output is in the_insn.
422 Warnings or errors are generated. */
423
424 static void
425 machine_ip (str)
426 char *str;
427 {
428 char *s;
429 const char *args;
430 /* !!!! char c; */
431 /* !!!! unsigned long i; */
432 struct machine_opcode *insn;
433 char *argsStart;
434 unsigned long opcode;
435 /* !!!! unsigned int mask; */
436 expressionS the_operand;
437 expressionS *operand = &the_operand;
438 unsigned int reg;
439
440 /* Must handle `div0' opcode. */
441 s = str;
442 if (isalpha (*s))
443 for (; isalnum (*s); ++s)
444 if (isupper (*s))
445 *s = tolower (*s);
446
447 switch (*s)
448 {
449 case '\0':
450 break;
451
452 case ' ': /* FIXME-SOMEDAY more whitespace */
453 *s++ = '\0';
454 break;
455
456 default:
457 as_bad ("Unknown opcode: `%s'", str);
458 return;
459 }
460 if ((insn = (struct machine_opcode *) hash_find (op_hash, str)) == NULL)
461 {
462 as_bad ("Unknown opcode `%s'.", str);
463 return;
464 }
465 argsStart = s;
466 opcode = insn->opcode;
467 memset (&the_insn, '\0', sizeof (the_insn));
468 the_insn.reloc = NO_RELOC;
469
470 /*
471 * Build the opcode, checking as we go to make
472 * sure that the operands match.
473 *
474 * If an operand matches, we modify the_insn or opcode appropriately,
475 * and do a "continue". If an operand fails to match, we "break".
476 */
477 if (insn->args[0] != '\0')
478 s = parse_operand (s, operand); /* Prime the pump */
479
480 for (args = insn->args;; ++args)
481 {
482 switch (*args)
483 {
484
485 case '\0': /* end of args */
486 if (*s == '\0')
487 {
488 /* We are truly done. */
489 the_insn.opcode = opcode;
490 return;
491 }
492 as_bad ("Too many operands: %s", s);
493 break;
494
495 case ',': /* Must match a comma */
496 if (*s++ == ',')
497 {
498 s = parse_operand (s, operand); /* Parse next opnd */
499 continue;
500 }
501 break;
502
503 case 'v': /* Trap numbers (immediate field) */
504 if (operand->X_seg == SEG_ABSOLUTE)
505 {
506 if (operand->X_add_number < 256)
507 {
508 opcode |= (operand->X_add_number << 16);
509 continue;
510 }
511 else
512 {
513 as_bad ("Immediate value of %d is too large",
514 operand->X_add_number);
515 continue;
516 }
517 }
518 the_insn.reloc = RELOC_8;
519 the_insn.reloc_offset = 1; /* BIG-ENDIAN Byte 1 of insn */
520 the_insn.exp = *operand;
521 continue;
522
523 case 'b': /* A general register or 8-bit immediate */
524 case 'i':
525 /* We treat the two cases identically since we mashed
526 them together in the opcode table. */
527 if (operand->X_seg == SEG_REGISTER)
528 goto general_reg;
529
530 opcode |= IMMEDIATE_BIT;
531 if (operand->X_seg == SEG_ABSOLUTE)
532 {
533 if (operand->X_add_number < 256)
534 {
535 opcode |= operand->X_add_number;
536 continue;
537 }
538 else
539 {
540 as_bad ("Immediate value of %d is too large",
541 operand->X_add_number);
542 continue;
543 }
544 }
545 the_insn.reloc = RELOC_8;
546 the_insn.reloc_offset = 3; /* BIG-ENDIAN Byte 3 of insn */
547 the_insn.exp = *operand;
548 continue;
549
550 case 'a': /* next operand must be a register */
551 case 'c':
552 general_reg:
553 /* lrNNN or grNNN or %%expr or a user-def register name */
554 if (operand->X_seg != SEG_REGISTER)
555 break; /* Only registers */
556 know (operand->X_add_symbol == 0);
557 know (operand->X_subtract_symbol == 0);
558 reg = operand->X_add_number;
559 if (reg >= SREG)
560 break; /* No special registers */
561
562 /*
563 * Got the register, now figure out where
564 * it goes in the opcode.
565 */
566 switch (*args)
567 {
568 case 'a':
569 opcode |= reg << 8;
570 continue;
571
572 case 'b':
573 case 'i':
574 opcode |= reg;
575 continue;
576
577 case 'c':
578 opcode |= reg << 16;
579 continue;
580 }
581 as_fatal ("failed sanity check.");
582 break;
583
584 case 'x': /* 16 bit constant, zero-extended */
585 case 'X': /* 16 bit constant, one-extended */
586 if (operand->X_seg == SEG_ABSOLUTE)
587 {
588 opcode |= (operand->X_add_number & 0xFF) << 0 |
589 ((operand->X_add_number & 0xFF00) << 8);
590 continue;
591 }
592 the_insn.reloc = RELOC_CONST;
593 the_insn.exp = *operand;
594 continue;
595
596 case 'h':
597 if (operand->X_seg == SEG_ABSOLUTE)
598 {
599 opcode |= (operand->X_add_number & 0x00FF0000) >> 16 |
600 (((unsigned long) operand->X_add_number
601 /* avoid sign ext */ & 0xFF000000) >> 8);
602 continue;
603 }
604 the_insn.reloc = RELOC_CONSTH;
605 the_insn.exp = *operand;
606 continue;
607
608 case 'P': /* PC-relative jump address */
609 case 'A': /* Absolute jump address */
610 /* These two are treated together since we folded the
611 opcode table entries together. */
612 if (operand->X_seg == SEG_ABSOLUTE)
613 {
614 opcode |= ABSOLUTE_BIT |
615 (operand->X_add_number & 0x0003FC00) << 6 |
616 ((operand->X_add_number & 0x000003FC) >> 2);
617 continue;
618 }
619 the_insn.reloc = RELOC_JUMPTARG;
620 the_insn.exp = *operand;
621 the_insn.pcrel = 1; /* Assume PC-relative jump */
622 /* FIXME-SOON, Do we figure out whether abs later, after know sym val? */
623 continue;
624
625 case 'e': /* Coprocessor enable bit for LOAD/STORE insn */
626 if (operand->X_seg == SEG_ABSOLUTE)
627 {
628 if (operand->X_add_number == 0)
629 continue;
630 if (operand->X_add_number == 1)
631 {
632 opcode |= CE_BIT;
633 continue;
634 }
635 }
636 break;
637
638 case 'n': /* Control bits for LOAD/STORE instructions */
639 if (operand->X_seg == SEG_ABSOLUTE &&
640 operand->X_add_number < 128)
641 {
642 opcode |= (operand->X_add_number << 16);
643 continue;
644 }
645 break;
646
647 case 's': /* Special register number */
648 if (operand->X_seg != SEG_REGISTER)
649 break; /* Only registers */
650 if (operand->X_add_number < SREG)
651 break; /* Not a special register */
652 opcode |= (operand->X_add_number & 0xFF) << 8;
653 continue;
654
655 case 'u': /* UI bit of CONVERT */
656 if (operand->X_seg == SEG_ABSOLUTE)
657 {
658 if (operand->X_add_number == 0)
659 continue;
660 if (operand->X_add_number == 1)
661 {
662 opcode |= UI_BIT;
663 continue;
664 }
665 }
666 break;
667
668 case 'r': /* RND bits of CONVERT */
669 if (operand->X_seg == SEG_ABSOLUTE &&
670 operand->X_add_number < 8)
671 {
672 opcode |= operand->X_add_number << 4;
673 continue;
674 }
675 break;
676
677 case 'd': /* FD bits of CONVERT */
678 if (operand->X_seg == SEG_ABSOLUTE &&
679 operand->X_add_number < 4)
680 {
681 opcode |= operand->X_add_number << 2;
682 continue;
683 }
684 break;
685
686
687 case 'f': /* FS bits of CONVERT */
688 if (operand->X_seg == SEG_ABSOLUTE &&
689 operand->X_add_number < 4)
690 {
691 opcode |= operand->X_add_number << 0;
692 continue;
693 }
694 break;
695
696 case 'C':
697 if (operand->X_seg == SEG_ABSOLUTE &&
698 operand->X_add_number < 4)
699 {
700 opcode |= operand->X_add_number << 16;
701 continue;
702 }
703 break;
704
705 case 'F':
706 if (operand->X_seg == SEG_ABSOLUTE &&
707 operand->X_add_number < 16)
708 {
709 opcode |= operand->X_add_number << 18;
710 continue;
711 }
712 break;
713
714 default:
715 BAD_CASE (*args);
716 }
717 /* Types or values of args don't match. */
718 as_bad ("Invalid operands");
719 return;
720 }
721 }
722
723 /*
724 This is identical to the md_atof in m68k.c. I think this is right,
725 but I'm not sure.
726
727 Turn a string in input_line_pointer into a floating point constant of type
728 type, and store the appropriate bytes in *litP. The number of LITTLENUMS
729 emitted is stored in *sizeP . An error message is returned, or NULL on OK.
730 */
731
732 /* Equal to MAX_PRECISION in atof-ieee.c */
733 #define MAX_LITTLENUMS 6
734
735 char *
736 md_atof (type, litP, sizeP)
737 char type;
738 char *litP;
739 int *sizeP;
740 {
741 int prec;
742 LITTLENUM_TYPE words[MAX_LITTLENUMS];
743 LITTLENUM_TYPE *wordP;
744 char *t;
745
746 switch (type)
747 {
748
749 case 'f':
750 case 'F':
751 case 's':
752 case 'S':
753 prec = 2;
754 break;
755
756 case 'd':
757 case 'D':
758 case 'r':
759 case 'R':
760 prec = 4;
761 break;
762
763 case 'x':
764 case 'X':
765 prec = 6;
766 break;
767
768 case 'p':
769 case 'P':
770 prec = 6;
771 break;
772
773 default:
774 *sizeP = 0;
775 return "Bad call to MD_ATOF()";
776 }
777 t = atof_ieee (input_line_pointer, type, words);
778 if (t)
779 input_line_pointer = t;
780 *sizeP = prec * sizeof (LITTLENUM_TYPE);
781 for (wordP = words; prec--;)
782 {
783 md_number_to_chars (litP, (long) (*wordP++), sizeof (LITTLENUM_TYPE));
784 litP += sizeof (LITTLENUM_TYPE);
785 }
786 return ""; /* Someone should teach Dean about null pointers */
787 }
788
789 /*
790 * Write out big-endian.
791 */
792 void
793 md_number_to_chars (buf, val, n)
794 char *buf;
795 valueT val;
796 int n;
797 {
798
799 switch (n)
800 {
801
802 case 4:
803 *buf++ = val >> 24;
804 *buf++ = val >> 16;
805 case 2:
806 *buf++ = val >> 8;
807 case 1:
808 *buf = val;
809 break;
810
811 default:
812 as_fatal ("failed sanity check.");
813 }
814 return;
815 }
816
817 void
818 md_apply_fix (fixP, val)
819 fixS *fixP;
820 long val;
821 {
822 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
823
824 fixP->fx_addnumber = val; /* Remember value for emit_reloc */
825
826
827 know (fixP->fx_size == 4);
828 know (fixP->fx_r_type < NO_RELOC);
829
830 /*
831 * This is a hack. There should be a better way to
832 * handle this.
833 */
834 if (fixP->fx_r_type == RELOC_WDISP30 && fixP->fx_addsy)
835 {
836 val += fixP->fx_where + fixP->fx_frag->fr_address;
837 }
838
839 switch (fixP->fx_r_type)
840 {
841
842 case RELOC_32:
843 buf[0] = val >> 24;
844 buf[1] = val >> 16;
845 buf[2] = val >> 8;
846 buf[3] = val;
847 break;
848
849 case RELOC_8:
850 buf[0] = val;
851 break;
852
853 case RELOC_WDISP30:
854 val = (val >>= 2) + 1;
855 buf[0] |= (val >> 24) & 0x3f;
856 buf[1] = (val >> 16);
857 buf[2] = val >> 8;
858 buf[3] = val;
859 break;
860
861 case RELOC_HI22:
862 buf[1] |= (val >> 26) & 0x3f;
863 buf[2] = val >> 18;
864 buf[3] = val >> 10;
865 break;
866
867 case RELOC_LO10:
868 buf[2] |= (val >> 8) & 0x03;
869 buf[3] = val;
870 break;
871
872 case RELOC_BASE13:
873 buf[2] |= (val >> 8) & 0x1f;
874 buf[3] = val;
875 break;
876
877 case RELOC_WDISP22:
878 val = (val >>= 2) + 1;
879 /* FALLTHROUGH */
880 case RELOC_BASE22:
881 buf[1] |= (val >> 16) & 0x3f;
882 buf[2] = val >> 8;
883 buf[3] = val;
884 break;
885
886 #if 0
887 case RELOC_PC10:
888 case RELOC_PC22:
889 case RELOC_JMP_TBL:
890 case RELOC_SEGOFF16:
891 case RELOC_GLOB_DAT:
892 case RELOC_JMP_SLOT:
893 case RELOC_RELATIVE:
894 #endif
895 case RELOC_JUMPTARG: /* 00XX00XX pattern in a word */
896 buf[1] = val >> 10; /* Holds bits 0003FFFC of address */
897 buf[3] = val >> 2;
898 break;
899
900 case RELOC_CONST: /* 00XX00XX pattern in a word */
901 buf[1] = val >> 8; /* Holds bits 0000XXXX */
902 buf[3] = val;
903 break;
904
905 case RELOC_CONSTH: /* 00XX00XX pattern in a word */
906 buf[1] = val >> 24; /* Holds bits XXXX0000 */
907 buf[3] = val >> 16;
908 break;
909
910 case NO_RELOC:
911 default:
912 as_bad ("bad relocation type: 0x%02x", fixP->fx_r_type);
913 break;
914 }
915 return;
916 }
917
918 #ifdef OBJ_COFF
919 short
920 tc_coff_fix2rtype (fixP)
921 fixS *fixP;
922 {
923
924 switch (fixP->fx_r_type)
925 {
926 case RELOC_32:
927 return (R_WORD);
928 case RELOC_8:
929 return (R_BYTE);
930 case RELOC_CONST:
931 return (R_ILOHALF);
932 case RELOC_CONSTH:
933 return (R_IHIHALF);
934 case RELOC_JUMPTARG:
935 return (R_IREL);
936 default:
937 printf ("need %o3\n", fixP->fx_r_type);
938 abort ();
939 } /* switch on type */
940
941 return (0);
942 } /* tc_coff_fix2rtype() */
943
944 #endif /* OBJ_COFF */
945
946 /* should never be called for sparc */
947 void
948 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
949 char *ptr;
950 addressT from_addr, to_addr;
951 fragS *frag;
952 symbolS *to_symbol;
953 {
954 as_fatal ("a29k_create_short_jmp\n");
955 }
956
957 /* should never be called for 29k */
958 void
959 md_convert_frag (headers, fragP)
960 object_headers *headers;
961 register fragS *fragP;
962 {
963 as_fatal ("sparc_convert_frag\n");
964 }
965
966 /* should never be called for 29k */
967 void
968 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
969 char *ptr;
970 addressT from_addr;
971 addressT to_addr;
972 fragS *frag;
973 symbolS *to_symbol;
974 {
975 as_fatal ("sparc_create_long_jump\n");
976 }
977
978 /* should never be called for a29k */
979 int
980 md_estimate_size_before_relax (fragP, segtype)
981 register fragS *fragP;
982 segT segtype;
983 {
984 as_fatal ("sparc_estimate_size_before_relax\n");
985 return (0);
986 }
987
988 #if 0
989 /* for debugging only */
990 static void
991 print_insn (insn)
992 struct machine_it *insn;
993 {
994 char *Reloc[] =
995 {
996 "RELOC_8",
997 "RELOC_16",
998 "RELOC_32",
999 "RELOC_DISP8",
1000 "RELOC_DISP16",
1001 "RELOC_DISP32",
1002 "RELOC_WDISP30",
1003 "RELOC_WDISP22",
1004 "RELOC_HI22",
1005 "RELOC_22",
1006 "RELOC_13",
1007 "RELOC_LO10",
1008 "RELOC_SFA_BASE",
1009 "RELOC_SFA_OFF13",
1010 "RELOC_BASE10",
1011 "RELOC_BASE13",
1012 "RELOC_BASE22",
1013 "RELOC_PC10",
1014 "RELOC_PC22",
1015 "RELOC_JMP_TBL",
1016 "RELOC_SEGOFF16",
1017 "RELOC_GLOB_DAT",
1018 "RELOC_JMP_SLOT",
1019 "RELOC_RELATIVE",
1020 "NO_RELOC"
1021 };
1022
1023 if (insn->error)
1024 {
1025 fprintf (stderr, "ERROR: %s\n");
1026 }
1027 fprintf (stderr, "opcode=0x%08x\n", insn->opcode);
1028 fprintf (stderr, "reloc = %s\n", Reloc[insn->reloc]);
1029 fprintf (stderr, "exp = {\n");
1030 fprintf (stderr, "\t\tX_add_symbol = %s\n",
1031 insn->exp.X_add_symbol ?
1032 (S_GET_NAME (insn->exp.X_add_symbol) ?
1033 S_GET_NAME (insn->exp.X_add_symbol) : "???") : "0");
1034 fprintf (stderr, "\t\tX_sub_symbol = %s\n",
1035 insn->exp.X_subtract_symbol ?
1036 (S_GET_NAME (insn->exp.X_subtract_symbol) ?
1037 S_GET_NAME (insn->exp.X_subtract_symbol) : "???") : "0");
1038 fprintf (stderr, "\t\tX_add_number = %d\n",
1039 insn->exp.X_add_number);
1040 fprintf (stderr, "}\n");
1041 return;
1042 }
1043
1044 #endif
1045
1046 /* Translate internal representation of relocation info to target format.
1047
1048 On sparc/29k: first 4 bytes are normal unsigned long address, next three
1049 bytes are index, most sig. byte first. Byte 7 is broken up with
1050 bit 7 as external, bits 6 & 5 unused, and the lower
1051 five bits as relocation type. Next 4 bytes are long addend. */
1052 /* Thanx and a tip of the hat to Michael Bloom, mb@ttidca.tti.com */
1053
1054 #ifdef OBJ_AOUT
1055
1056 void
1057 tc_aout_fix_to_chars (where, fixP, segment_address_in_file)
1058 char *where;
1059 fixS *fixP;
1060 relax_addressT segment_address_in_file;
1061 {
1062 long r_symbolnum;
1063
1064 know (fixP->fx_r_type < NO_RELOC);
1065 know (fixP->fx_addsy != NULL);
1066
1067 md_number_to_chars (where,
1068 fixP->fx_frag->fr_address + fixP->fx_where - segment_address_in_file,
1069 4);
1070
1071 r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy)
1072 ? S_GET_TYPE (fixP->fx_addsy)
1073 : fixP->fx_addsy->sy_number);
1074
1075 where[4] = (r_symbolnum >> 16) & 0x0ff;
1076 where[5] = (r_symbolnum >> 8) & 0x0ff;
1077 where[6] = r_symbolnum & 0x0ff;
1078 where[7] = (((!S_IS_DEFINED (fixP->fx_addsy)) << 7) & 0x80) | (0 & 0x60) | (fixP->fx_r_type & 0x1F);
1079 /* Also easy */
1080 md_number_to_chars (&where[8], fixP->fx_addnumber, 4);
1081
1082 return;
1083 } /* tc_aout_fix_to_chars() */
1084
1085 #endif /* OBJ_AOUT */
1086
1087 int
1088 md_parse_option (argP, cntP, vecP)
1089 char **argP;
1090 int *cntP;
1091 char ***vecP;
1092 {
1093 return (0);
1094 }
1095
1096
1097 /* Default the values of symbols known that should be "predefined". We
1098 don't bother to predefine them unless you actually use one, since there
1099 are a lot of them. */
1100
1101 symbolS *
1102 md_undefined_symbol (name)
1103 char *name;
1104 {
1105 long regnum;
1106 char testbuf[5 + /*SLOP*/ 5];
1107
1108 if (name[0] == 'g' || name[0] == 'G' || name[0] == 'l' || name[0] == 'L')
1109 {
1110 /* Perhaps a global or local register name */
1111 if (name[1] == 'r' || name[1] == 'R')
1112 {
1113 /* Parse the number, make sure it has no extra zeroes or trailing
1114 chars */
1115 regnum = atol (&name[2]);
1116 if (regnum > 127)
1117 return 0;
1118 sprintf (testbuf, "%ld", regnum);
1119 if (strcmp (testbuf, &name[2]) != 0)
1120 return 0; /* gr007 or lr7foo or whatever */
1121
1122 /* We have a wiener! Define and return a new symbol for it. */
1123 if (name[0] == 'l' || name[0] == 'L')
1124 regnum += 128;
1125 return (symbol_new (name, SEG_REGISTER, regnum, &zero_address_frag));
1126 }
1127 }
1128
1129 return 0;
1130 }
1131
1132 /* Parse an operand that is machine-specific. */
1133
1134 void
1135 md_operand (expressionP)
1136 expressionS *expressionP;
1137 {
1138
1139 if (input_line_pointer[0] == '%' && input_line_pointer[1] == '%')
1140 {
1141 /* We have a numeric register expression. No biggy. */
1142 input_line_pointer += 2; /* Skip %% */
1143 (void) expression (expressionP);
1144 if (expressionP->X_seg != SEG_ABSOLUTE
1145 || expressionP->X_add_number > 255)
1146 as_bad ("Invalid expression after %%%%\n");
1147 expressionP->X_seg = SEG_REGISTER;
1148 }
1149 else if (input_line_pointer[0] == '&')
1150 {
1151 /* We are taking the 'address' of a register...this one is not
1152 in the manual, but it *is* in traps/fpsymbol.h! What they
1153 seem to want is the register number, as an absolute number. */
1154 input_line_pointer++; /* Skip & */
1155 (void) expression (expressionP);
1156 if (expressionP->X_seg != SEG_REGISTER)
1157 as_bad ("Invalid register in & expression");
1158 else
1159 expressionP->X_seg = SEG_ABSOLUTE;
1160 }
1161 }
1162
1163 /* Round up a section size to the appropriate boundary. */
1164 valueT
1165 md_section_align (segment, size)
1166 segT segment;
1167 valueT size;
1168 {
1169 return size; /* Byte alignment is fine */
1170 }
1171
1172 /* Exactly what point is a PC-relative offset relative TO?
1173 On the 29000, they're relative to the address of the instruction,
1174 which we have set up as the address of the fixup too. */
1175 long
1176 md_pcrel_from (fixP)
1177 fixS *fixP;
1178 {
1179 return fixP->fx_where + fixP->fx_frag->fr_address;
1180 }
1181
1182 /*
1183 * Local Variables:
1184 * comment-column: 0
1185 * End:
1186 */
1187
1188 /* end of tc-a29k.c */
This page took 0.074336 seconds and 5 git commands to generate.