* gas/config/tc-arm.c (ARM_IT_MAX_OPERANDS): New define.
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3, or (at your option)
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
27
28 #include "as.h"
29 #include <limits.h>
30 #include <stdarg.h>
31 #define NO_RELOC 0
32 #include "safe-ctype.h"
33 #include "subsegs.h"
34 #include "obstack.h"
35 #include "libiberty.h"
36 #include "opcode/arm.h"
37
38 #ifdef OBJ_ELF
39 #include "elf/arm.h"
40 #include "dw2gencfi.h"
41 #endif
42
43 #include "dwarf2dbg.h"
44
45 #ifdef OBJ_ELF
46 /* Must be at least the size of the largest unwind opcode (currently two). */
47 #define ARM_OPCODE_CHUNK_SIZE 8
48
49 /* This structure holds the unwinding state. */
50
51 static struct
52 {
53 symbolS * proc_start;
54 symbolS * table_entry;
55 symbolS * personality_routine;
56 int personality_index;
57 /* The segment containing the function. */
58 segT saved_seg;
59 subsegT saved_subseg;
60 /* Opcodes generated from this function. */
61 unsigned char * opcodes;
62 int opcode_count;
63 int opcode_alloc;
64 /* The number of bytes pushed to the stack. */
65 offsetT frame_size;
66 /* We don't add stack adjustment opcodes immediately so that we can merge
67 multiple adjustments. We can also omit the final adjustment
68 when using a frame pointer. */
69 offsetT pending_offset;
70 /* These two fields are set by both unwind_movsp and unwind_setfp. They
71 hold the reg+offset to use when restoring sp from a frame pointer. */
72 offsetT fp_offset;
73 int fp_reg;
74 /* Nonzero if an unwind_setfp directive has been seen. */
75 unsigned fp_used:1;
76 /* Nonzero if the last opcode restores sp from fp_reg. */
77 unsigned sp_restored:1;
78 } unwind;
79
80 #endif /* OBJ_ELF */
81
82 /* Results from operand parsing worker functions. */
83
84 typedef enum
85 {
86 PARSE_OPERAND_SUCCESS,
87 PARSE_OPERAND_FAIL,
88 PARSE_OPERAND_FAIL_NO_BACKTRACK
89 } parse_operand_result;
90
91 enum arm_float_abi
92 {
93 ARM_FLOAT_ABI_HARD,
94 ARM_FLOAT_ABI_SOFTFP,
95 ARM_FLOAT_ABI_SOFT
96 };
97
98 /* Types of processor to assemble for. */
99 #ifndef CPU_DEFAULT
100 /* The code that was here used to select a default CPU depending on compiler
101 pre-defines which were only present when doing native builds, thus
102 changing gas' default behaviour depending upon the build host.
103
104 If you have a target that requires a default CPU option then the you
105 should define CPU_DEFAULT here. */
106 #endif
107
108 #ifndef FPU_DEFAULT
109 # ifdef TE_LINUX
110 # define FPU_DEFAULT FPU_ARCH_FPA
111 # elif defined (TE_NetBSD)
112 # ifdef OBJ_ELF
113 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
114 # else
115 /* Legacy a.out format. */
116 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
117 # endif
118 # elif defined (TE_VXWORKS)
119 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
120 # else
121 /* For backwards compatibility, default to FPA. */
122 # define FPU_DEFAULT FPU_ARCH_FPA
123 # endif
124 #endif /* ifndef FPU_DEFAULT */
125
126 #define streq(a, b) (strcmp (a, b) == 0)
127
128 static arm_feature_set cpu_variant;
129 static arm_feature_set arm_arch_used;
130 static arm_feature_set thumb_arch_used;
131
132 /* Flags stored in private area of BFD structure. */
133 static int uses_apcs_26 = FALSE;
134 static int atpcs = FALSE;
135 static int support_interwork = FALSE;
136 static int uses_apcs_float = FALSE;
137 static int pic_code = FALSE;
138 static int fix_v4bx = FALSE;
139 /* Warn on using deprecated features. */
140 static int warn_on_deprecated = TRUE;
141
142
143 /* Variables that we set while parsing command-line options. Once all
144 options have been read we re-process these values to set the real
145 assembly flags. */
146 static const arm_feature_set *legacy_cpu = NULL;
147 static const arm_feature_set *legacy_fpu = NULL;
148
149 static const arm_feature_set *mcpu_cpu_opt = NULL;
150 static const arm_feature_set *mcpu_fpu_opt = NULL;
151 static const arm_feature_set *march_cpu_opt = NULL;
152 static const arm_feature_set *march_fpu_opt = NULL;
153 static const arm_feature_set *mfpu_opt = NULL;
154 static const arm_feature_set *object_arch = NULL;
155
156 /* Constants for known architecture features. */
157 static const arm_feature_set fpu_default = FPU_DEFAULT;
158 static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
159 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
160 static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
161 static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
162 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
163 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
164 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
165 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
166
167 #ifdef CPU_DEFAULT
168 static const arm_feature_set cpu_default = CPU_DEFAULT;
169 #endif
170
171 static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
172 static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
173 static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
174 static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
175 static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
176 static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
177 static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
178 static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
179 static const arm_feature_set arm_ext_v4t_5 =
180 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
181 static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
182 static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
183 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
184 static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
185 static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
186 static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
187 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
188 static const arm_feature_set arm_ext_v6m = ARM_FEATURE (ARM_EXT_V6M, 0);
189 static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
190 static const arm_feature_set arm_ext_v6_dsp = ARM_FEATURE (ARM_EXT_V6_DSP, 0);
191 static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
192 static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
193 static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
194 static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
195 static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
196 static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
197 static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
198 static const arm_feature_set arm_ext_m =
199 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_OS | ARM_EXT_V7M, 0);
200 static const arm_feature_set arm_ext_mp = ARM_FEATURE (ARM_EXT_MP, 0);
201 static const arm_feature_set arm_ext_sec = ARM_FEATURE (ARM_EXT_SEC, 0);
202 static const arm_feature_set arm_ext_os = ARM_FEATURE (ARM_EXT_OS, 0);
203 static const arm_feature_set arm_ext_adiv = ARM_FEATURE (ARM_EXT_ADIV, 0);
204 static const arm_feature_set arm_ext_virt = ARM_FEATURE (ARM_EXT_VIRT, 0);
205
206 static const arm_feature_set arm_arch_any = ARM_ANY;
207 static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
208 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
209 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
210 static const arm_feature_set arm_arch_v6m_only = ARM_ARCH_V6M_ONLY;
211
212 static const arm_feature_set arm_cext_iwmmxt2 =
213 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
214 static const arm_feature_set arm_cext_iwmmxt =
215 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
216 static const arm_feature_set arm_cext_xscale =
217 ARM_FEATURE (0, ARM_CEXT_XSCALE);
218 static const arm_feature_set arm_cext_maverick =
219 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
220 static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
221 static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
222 static const arm_feature_set fpu_vfp_ext_v1xd =
223 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
224 static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
225 static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
226 static const arm_feature_set fpu_vfp_ext_v3xd = ARM_FEATURE (0, FPU_VFP_EXT_V3xD);
227 static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
228 static const arm_feature_set fpu_vfp_ext_d32 =
229 ARM_FEATURE (0, FPU_VFP_EXT_D32);
230 static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
231 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
232 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
233 static const arm_feature_set fpu_vfp_fp16 = ARM_FEATURE (0, FPU_VFP_EXT_FP16);
234 static const arm_feature_set fpu_neon_ext_fma = ARM_FEATURE (0, FPU_NEON_EXT_FMA);
235 static const arm_feature_set fpu_vfp_ext_fma = ARM_FEATURE (0, FPU_VFP_EXT_FMA);
236
237 static int mfloat_abi_opt = -1;
238 /* Record user cpu selection for object attributes. */
239 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
240 /* Must be long enough to hold any of the names in arm_cpus. */
241 static char selected_cpu_name[16];
242
243 /* Return if no cpu was selected on command-line. */
244 static bfd_boolean
245 no_cpu_selected (void)
246 {
247 return selected_cpu.core == arm_arch_none.core
248 && selected_cpu.coproc == arm_arch_none.coproc;
249 }
250
251 #ifdef OBJ_ELF
252 # ifdef EABI_DEFAULT
253 static int meabi_flags = EABI_DEFAULT;
254 # else
255 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
256 # endif
257
258 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
259
260 bfd_boolean
261 arm_is_eabi (void)
262 {
263 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
264 }
265 #endif
266
267 #ifdef OBJ_ELF
268 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
269 symbolS * GOT_symbol;
270 #endif
271
272 /* 0: assemble for ARM,
273 1: assemble for Thumb,
274 2: assemble for Thumb even though target CPU does not support thumb
275 instructions. */
276 static int thumb_mode = 0;
277 /* A value distinct from the possible values for thumb_mode that we
278 can use to record whether thumb_mode has been copied into the
279 tc_frag_data field of a frag. */
280 #define MODE_RECORDED (1 << 4)
281
282 /* Specifies the intrinsic IT insn behavior mode. */
283 enum implicit_it_mode
284 {
285 IMPLICIT_IT_MODE_NEVER = 0x00,
286 IMPLICIT_IT_MODE_ARM = 0x01,
287 IMPLICIT_IT_MODE_THUMB = 0x02,
288 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
289 };
290 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
291
292 /* If unified_syntax is true, we are processing the new unified
293 ARM/Thumb syntax. Important differences from the old ARM mode:
294
295 - Immediate operands do not require a # prefix.
296 - Conditional affixes always appear at the end of the
297 instruction. (For backward compatibility, those instructions
298 that formerly had them in the middle, continue to accept them
299 there.)
300 - The IT instruction may appear, and if it does is validated
301 against subsequent conditional affixes. It does not generate
302 machine code.
303
304 Important differences from the old Thumb mode:
305
306 - Immediate operands do not require a # prefix.
307 - Most of the V6T2 instructions are only available in unified mode.
308 - The .N and .W suffixes are recognized and honored (it is an error
309 if they cannot be honored).
310 - All instructions set the flags if and only if they have an 's' affix.
311 - Conditional affixes may be used. They are validated against
312 preceding IT instructions. Unlike ARM mode, you cannot use a
313 conditional affix except in the scope of an IT instruction. */
314
315 static bfd_boolean unified_syntax = FALSE;
316
317 enum neon_el_type
318 {
319 NT_invtype,
320 NT_untyped,
321 NT_integer,
322 NT_float,
323 NT_poly,
324 NT_signed,
325 NT_unsigned
326 };
327
328 struct neon_type_el
329 {
330 enum neon_el_type type;
331 unsigned size;
332 };
333
334 #define NEON_MAX_TYPE_ELS 4
335
336 struct neon_type
337 {
338 struct neon_type_el el[NEON_MAX_TYPE_ELS];
339 unsigned elems;
340 };
341
342 enum it_instruction_type
343 {
344 OUTSIDE_IT_INSN,
345 INSIDE_IT_INSN,
346 INSIDE_IT_LAST_INSN,
347 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
348 if inside, should be the last one. */
349 NEUTRAL_IT_INSN, /* This could be either inside or outside,
350 i.e. BKPT and NOP. */
351 IT_INSN /* The IT insn has been parsed. */
352 };
353
354 /* The maximum number of operands we need. */
355 #define ARM_IT_MAX_OPERANDS 6
356
357 struct arm_it
358 {
359 const char * error;
360 unsigned long instruction;
361 int size;
362 int size_req;
363 int cond;
364 /* "uncond_value" is set to the value in place of the conditional field in
365 unconditional versions of the instruction, or -1 if nothing is
366 appropriate. */
367 int uncond_value;
368 struct neon_type vectype;
369 /* This does not indicate an actual NEON instruction, only that
370 the mnemonic accepts neon-style type suffixes. */
371 int is_neon;
372 /* Set to the opcode if the instruction needs relaxation.
373 Zero if the instruction is not relaxed. */
374 unsigned long relax;
375 struct
376 {
377 bfd_reloc_code_real_type type;
378 expressionS exp;
379 int pc_rel;
380 } reloc;
381
382 enum it_instruction_type it_insn_type;
383
384 struct
385 {
386 unsigned reg;
387 signed int imm;
388 struct neon_type_el vectype;
389 unsigned present : 1; /* Operand present. */
390 unsigned isreg : 1; /* Operand was a register. */
391 unsigned immisreg : 1; /* .imm field is a second register. */
392 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
393 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
394 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
395 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
396 instructions. This allows us to disambiguate ARM <-> vector insns. */
397 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
398 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
399 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
400 unsigned issingle : 1; /* Operand is VFP single-precision register. */
401 unsigned hasreloc : 1; /* Operand has relocation suffix. */
402 unsigned writeback : 1; /* Operand has trailing ! */
403 unsigned preind : 1; /* Preindexed address. */
404 unsigned postind : 1; /* Postindexed address. */
405 unsigned negative : 1; /* Index register was negated. */
406 unsigned shifted : 1; /* Shift applied to operation. */
407 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
408 } operands[ARM_IT_MAX_OPERANDS];
409 };
410
411 static struct arm_it inst;
412
413 #define NUM_FLOAT_VALS 8
414
415 const char * fp_const[] =
416 {
417 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
418 };
419
420 /* Number of littlenums required to hold an extended precision number. */
421 #define MAX_LITTLENUMS 6
422
423 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
424
425 #define FAIL (-1)
426 #define SUCCESS (0)
427
428 #define SUFF_S 1
429 #define SUFF_D 2
430 #define SUFF_E 3
431 #define SUFF_P 4
432
433 #define CP_T_X 0x00008000
434 #define CP_T_Y 0x00400000
435
436 #define CONDS_BIT 0x00100000
437 #define LOAD_BIT 0x00100000
438
439 #define DOUBLE_LOAD_FLAG 0x00000001
440
441 struct asm_cond
442 {
443 const char * template_name;
444 unsigned long value;
445 };
446
447 #define COND_ALWAYS 0xE
448
449 struct asm_psr
450 {
451 const char * template_name;
452 unsigned long field;
453 };
454
455 struct asm_barrier_opt
456 {
457 const char * template_name;
458 unsigned long value;
459 };
460
461 /* The bit that distinguishes CPSR and SPSR. */
462 #define SPSR_BIT (1 << 22)
463
464 /* The individual PSR flag bits. */
465 #define PSR_c (1 << 16)
466 #define PSR_x (1 << 17)
467 #define PSR_s (1 << 18)
468 #define PSR_f (1 << 19)
469
470 struct reloc_entry
471 {
472 char * name;
473 bfd_reloc_code_real_type reloc;
474 };
475
476 enum vfp_reg_pos
477 {
478 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
479 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
480 };
481
482 enum vfp_ldstm_type
483 {
484 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
485 };
486
487 /* Bits for DEFINED field in neon_typed_alias. */
488 #define NTA_HASTYPE 1
489 #define NTA_HASINDEX 2
490
491 struct neon_typed_alias
492 {
493 unsigned char defined;
494 unsigned char index;
495 struct neon_type_el eltype;
496 };
497
498 /* ARM register categories. This includes coprocessor numbers and various
499 architecture extensions' registers. */
500 enum arm_reg_type
501 {
502 REG_TYPE_RN,
503 REG_TYPE_CP,
504 REG_TYPE_CN,
505 REG_TYPE_FN,
506 REG_TYPE_VFS,
507 REG_TYPE_VFD,
508 REG_TYPE_NQ,
509 REG_TYPE_VFSD,
510 REG_TYPE_NDQ,
511 REG_TYPE_NSDQ,
512 REG_TYPE_VFC,
513 REG_TYPE_MVF,
514 REG_TYPE_MVD,
515 REG_TYPE_MVFX,
516 REG_TYPE_MVDX,
517 REG_TYPE_MVAX,
518 REG_TYPE_DSPSC,
519 REG_TYPE_MMXWR,
520 REG_TYPE_MMXWC,
521 REG_TYPE_MMXWCG,
522 REG_TYPE_XSCALE,
523 REG_TYPE_RNB
524 };
525
526 /* Structure for a hash table entry for a register.
527 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
528 information which states whether a vector type or index is specified (for a
529 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
530 struct reg_entry
531 {
532 const char * name;
533 unsigned int number;
534 unsigned char type;
535 unsigned char builtin;
536 struct neon_typed_alias * neon;
537 };
538
539 /* Diagnostics used when we don't get a register of the expected type. */
540 const char * const reg_expected_msgs[] =
541 {
542 N_("ARM register expected"),
543 N_("bad or missing co-processor number"),
544 N_("co-processor register expected"),
545 N_("FPA register expected"),
546 N_("VFP single precision register expected"),
547 N_("VFP/Neon double precision register expected"),
548 N_("Neon quad precision register expected"),
549 N_("VFP single or double precision register expected"),
550 N_("Neon double or quad precision register expected"),
551 N_("VFP single, double or Neon quad precision register expected"),
552 N_("VFP system register expected"),
553 N_("Maverick MVF register expected"),
554 N_("Maverick MVD register expected"),
555 N_("Maverick MVFX register expected"),
556 N_("Maverick MVDX register expected"),
557 N_("Maverick MVAX register expected"),
558 N_("Maverick DSPSC register expected"),
559 N_("iWMMXt data register expected"),
560 N_("iWMMXt control register expected"),
561 N_("iWMMXt scalar register expected"),
562 N_("XScale accumulator register expected"),
563 };
564
565 /* Some well known registers that we refer to directly elsewhere. */
566 #define REG_SP 13
567 #define REG_LR 14
568 #define REG_PC 15
569
570 /* ARM instructions take 4bytes in the object file, Thumb instructions
571 take 2: */
572 #define INSN_SIZE 4
573
574 struct asm_opcode
575 {
576 /* Basic string to match. */
577 const char * template_name;
578
579 /* Parameters to instruction. */
580 unsigned int operands[8];
581
582 /* Conditional tag - see opcode_lookup. */
583 unsigned int tag : 4;
584
585 /* Basic instruction code. */
586 unsigned int avalue : 28;
587
588 /* Thumb-format instruction code. */
589 unsigned int tvalue;
590
591 /* Which architecture variant provides this instruction. */
592 const arm_feature_set * avariant;
593 const arm_feature_set * tvariant;
594
595 /* Function to call to encode instruction in ARM format. */
596 void (* aencode) (void);
597
598 /* Function to call to encode instruction in Thumb format. */
599 void (* tencode) (void);
600 };
601
602 /* Defines for various bits that we will want to toggle. */
603 #define INST_IMMEDIATE 0x02000000
604 #define OFFSET_REG 0x02000000
605 #define HWOFFSET_IMM 0x00400000
606 #define SHIFT_BY_REG 0x00000010
607 #define PRE_INDEX 0x01000000
608 #define INDEX_UP 0x00800000
609 #define WRITE_BACK 0x00200000
610 #define LDM_TYPE_2_OR_3 0x00400000
611 #define CPSI_MMOD 0x00020000
612
613 #define LITERAL_MASK 0xf000f000
614 #define OPCODE_MASK 0xfe1fffff
615 #define V4_STR_BIT 0x00000020
616
617 #define T2_SUBS_PC_LR 0xf3de8f00
618
619 #define DATA_OP_SHIFT 21
620
621 #define T2_OPCODE_MASK 0xfe1fffff
622 #define T2_DATA_OP_SHIFT 21
623
624 /* Codes to distinguish the arithmetic instructions. */
625 #define OPCODE_AND 0
626 #define OPCODE_EOR 1
627 #define OPCODE_SUB 2
628 #define OPCODE_RSB 3
629 #define OPCODE_ADD 4
630 #define OPCODE_ADC 5
631 #define OPCODE_SBC 6
632 #define OPCODE_RSC 7
633 #define OPCODE_TST 8
634 #define OPCODE_TEQ 9
635 #define OPCODE_CMP 10
636 #define OPCODE_CMN 11
637 #define OPCODE_ORR 12
638 #define OPCODE_MOV 13
639 #define OPCODE_BIC 14
640 #define OPCODE_MVN 15
641
642 #define T2_OPCODE_AND 0
643 #define T2_OPCODE_BIC 1
644 #define T2_OPCODE_ORR 2
645 #define T2_OPCODE_ORN 3
646 #define T2_OPCODE_EOR 4
647 #define T2_OPCODE_ADD 8
648 #define T2_OPCODE_ADC 10
649 #define T2_OPCODE_SBC 11
650 #define T2_OPCODE_SUB 13
651 #define T2_OPCODE_RSB 14
652
653 #define T_OPCODE_MUL 0x4340
654 #define T_OPCODE_TST 0x4200
655 #define T_OPCODE_CMN 0x42c0
656 #define T_OPCODE_NEG 0x4240
657 #define T_OPCODE_MVN 0x43c0
658
659 #define T_OPCODE_ADD_R3 0x1800
660 #define T_OPCODE_SUB_R3 0x1a00
661 #define T_OPCODE_ADD_HI 0x4400
662 #define T_OPCODE_ADD_ST 0xb000
663 #define T_OPCODE_SUB_ST 0xb080
664 #define T_OPCODE_ADD_SP 0xa800
665 #define T_OPCODE_ADD_PC 0xa000
666 #define T_OPCODE_ADD_I8 0x3000
667 #define T_OPCODE_SUB_I8 0x3800
668 #define T_OPCODE_ADD_I3 0x1c00
669 #define T_OPCODE_SUB_I3 0x1e00
670
671 #define T_OPCODE_ASR_R 0x4100
672 #define T_OPCODE_LSL_R 0x4080
673 #define T_OPCODE_LSR_R 0x40c0
674 #define T_OPCODE_ROR_R 0x41c0
675 #define T_OPCODE_ASR_I 0x1000
676 #define T_OPCODE_LSL_I 0x0000
677 #define T_OPCODE_LSR_I 0x0800
678
679 #define T_OPCODE_MOV_I8 0x2000
680 #define T_OPCODE_CMP_I8 0x2800
681 #define T_OPCODE_CMP_LR 0x4280
682 #define T_OPCODE_MOV_HR 0x4600
683 #define T_OPCODE_CMP_HR 0x4500
684
685 #define T_OPCODE_LDR_PC 0x4800
686 #define T_OPCODE_LDR_SP 0x9800
687 #define T_OPCODE_STR_SP 0x9000
688 #define T_OPCODE_LDR_IW 0x6800
689 #define T_OPCODE_STR_IW 0x6000
690 #define T_OPCODE_LDR_IH 0x8800
691 #define T_OPCODE_STR_IH 0x8000
692 #define T_OPCODE_LDR_IB 0x7800
693 #define T_OPCODE_STR_IB 0x7000
694 #define T_OPCODE_LDR_RW 0x5800
695 #define T_OPCODE_STR_RW 0x5000
696 #define T_OPCODE_LDR_RH 0x5a00
697 #define T_OPCODE_STR_RH 0x5200
698 #define T_OPCODE_LDR_RB 0x5c00
699 #define T_OPCODE_STR_RB 0x5400
700
701 #define T_OPCODE_PUSH 0xb400
702 #define T_OPCODE_POP 0xbc00
703
704 #define T_OPCODE_BRANCH 0xe000
705
706 #define THUMB_SIZE 2 /* Size of thumb instruction. */
707 #define THUMB_PP_PC_LR 0x0100
708 #define THUMB_LOAD_BIT 0x0800
709 #define THUMB2_LOAD_BIT 0x00100000
710
711 #define BAD_ARGS _("bad arguments to instruction")
712 #define BAD_SP _("r13 not allowed here")
713 #define BAD_PC _("r15 not allowed here")
714 #define BAD_COND _("instruction cannot be conditional")
715 #define BAD_OVERLAP _("registers may not be the same")
716 #define BAD_HIREG _("lo register required")
717 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
718 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
719 #define BAD_BRANCH _("branch must be last instruction in IT block")
720 #define BAD_NOT_IT _("instruction not allowed in IT block")
721 #define BAD_FPU _("selected FPU does not support instruction")
722 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
723 #define BAD_IT_COND _("incorrect condition in IT block")
724 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
725 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
726 #define BAD_PC_ADDRESSING \
727 _("cannot use register index with PC-relative addressing")
728 #define BAD_PC_WRITEBACK \
729 _("cannot use writeback with PC-relative addressing")
730 #define BAD_RANGE _("branch out of range")
731
732 static struct hash_control * arm_ops_hsh;
733 static struct hash_control * arm_cond_hsh;
734 static struct hash_control * arm_shift_hsh;
735 static struct hash_control * arm_psr_hsh;
736 static struct hash_control * arm_v7m_psr_hsh;
737 static struct hash_control * arm_reg_hsh;
738 static struct hash_control * arm_reloc_hsh;
739 static struct hash_control * arm_barrier_opt_hsh;
740
741 /* Stuff needed to resolve the label ambiguity
742 As:
743 ...
744 label: <insn>
745 may differ from:
746 ...
747 label:
748 <insn> */
749
750 symbolS * last_label_seen;
751 static int label_is_thumb_function_name = FALSE;
752
753 /* Literal pool structure. Held on a per-section
754 and per-sub-section basis. */
755
756 #define MAX_LITERAL_POOL_SIZE 1024
757 typedef struct literal_pool
758 {
759 expressionS literals [MAX_LITERAL_POOL_SIZE];
760 unsigned int next_free_entry;
761 unsigned int id;
762 symbolS * symbol;
763 segT section;
764 subsegT sub_section;
765 #ifdef OBJ_ELF
766 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
767 #endif
768 struct literal_pool * next;
769 } literal_pool;
770
771 /* Pointer to a linked list of literal pools. */
772 literal_pool * list_of_pools = NULL;
773
774 #ifdef OBJ_ELF
775 # define now_it seg_info (now_seg)->tc_segment_info_data.current_it
776 #else
777 static struct current_it now_it;
778 #endif
779
780 static inline int
781 now_it_compatible (int cond)
782 {
783 return (cond & ~1) == (now_it.cc & ~1);
784 }
785
786 static inline int
787 conditional_insn (void)
788 {
789 return inst.cond != COND_ALWAYS;
790 }
791
792 static int in_it_block (void);
793
794 static int handle_it_state (void);
795
796 static void force_automatic_it_block_close (void);
797
798 static void it_fsm_post_encode (void);
799
800 #define set_it_insn_type(type) \
801 do \
802 { \
803 inst.it_insn_type = type; \
804 if (handle_it_state () == FAIL) \
805 return; \
806 } \
807 while (0)
808
809 #define set_it_insn_type_nonvoid(type, failret) \
810 do \
811 { \
812 inst.it_insn_type = type; \
813 if (handle_it_state () == FAIL) \
814 return failret; \
815 } \
816 while(0)
817
818 #define set_it_insn_type_last() \
819 do \
820 { \
821 if (inst.cond == COND_ALWAYS) \
822 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
823 else \
824 set_it_insn_type (INSIDE_IT_LAST_INSN); \
825 } \
826 while (0)
827
828 /* Pure syntax. */
829
830 /* This array holds the chars that always start a comment. If the
831 pre-processor is disabled, these aren't very useful. */
832 const char comment_chars[] = "@";
833
834 /* This array holds the chars that only start a comment at the beginning of
835 a line. If the line seems to have the form '# 123 filename'
836 .line and .file directives will appear in the pre-processed output. */
837 /* Note that input_file.c hand checks for '#' at the beginning of the
838 first line of the input file. This is because the compiler outputs
839 #NO_APP at the beginning of its output. */
840 /* Also note that comments like this one will always work. */
841 const char line_comment_chars[] = "#";
842
843 const char line_separator_chars[] = ";";
844
845 /* Chars that can be used to separate mant
846 from exp in floating point numbers. */
847 const char EXP_CHARS[] = "eE";
848
849 /* Chars that mean this number is a floating point constant. */
850 /* As in 0f12.456 */
851 /* or 0d1.2345e12 */
852
853 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
854
855 /* Prefix characters that indicate the start of an immediate
856 value. */
857 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
858
859 /* Separator character handling. */
860
861 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
862
863 static inline int
864 skip_past_char (char ** str, char c)
865 {
866 if (**str == c)
867 {
868 (*str)++;
869 return SUCCESS;
870 }
871 else
872 return FAIL;
873 }
874
875 #define skip_past_comma(str) skip_past_char (str, ',')
876
877 /* Arithmetic expressions (possibly involving symbols). */
878
879 /* Return TRUE if anything in the expression is a bignum. */
880
881 static int
882 walk_no_bignums (symbolS * sp)
883 {
884 if (symbol_get_value_expression (sp)->X_op == O_big)
885 return 1;
886
887 if (symbol_get_value_expression (sp)->X_add_symbol)
888 {
889 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
890 || (symbol_get_value_expression (sp)->X_op_symbol
891 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
892 }
893
894 return 0;
895 }
896
897 static int in_my_get_expression = 0;
898
899 /* Third argument to my_get_expression. */
900 #define GE_NO_PREFIX 0
901 #define GE_IMM_PREFIX 1
902 #define GE_OPT_PREFIX 2
903 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
904 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
905 #define GE_OPT_PREFIX_BIG 3
906
907 static int
908 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
909 {
910 char * save_in;
911 segT seg;
912
913 /* In unified syntax, all prefixes are optional. */
914 if (unified_syntax)
915 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
916 : GE_OPT_PREFIX;
917
918 switch (prefix_mode)
919 {
920 case GE_NO_PREFIX: break;
921 case GE_IMM_PREFIX:
922 if (!is_immediate_prefix (**str))
923 {
924 inst.error = _("immediate expression requires a # prefix");
925 return FAIL;
926 }
927 (*str)++;
928 break;
929 case GE_OPT_PREFIX:
930 case GE_OPT_PREFIX_BIG:
931 if (is_immediate_prefix (**str))
932 (*str)++;
933 break;
934 default: abort ();
935 }
936
937 memset (ep, 0, sizeof (expressionS));
938
939 save_in = input_line_pointer;
940 input_line_pointer = *str;
941 in_my_get_expression = 1;
942 seg = expression (ep);
943 in_my_get_expression = 0;
944
945 if (ep->X_op == O_illegal || ep->X_op == O_absent)
946 {
947 /* We found a bad or missing expression in md_operand(). */
948 *str = input_line_pointer;
949 input_line_pointer = save_in;
950 if (inst.error == NULL)
951 inst.error = (ep->X_op == O_absent
952 ? _("missing expression") :_("bad expression"));
953 return 1;
954 }
955
956 #ifdef OBJ_AOUT
957 if (seg != absolute_section
958 && seg != text_section
959 && seg != data_section
960 && seg != bss_section
961 && seg != undefined_section)
962 {
963 inst.error = _("bad segment");
964 *str = input_line_pointer;
965 input_line_pointer = save_in;
966 return 1;
967 }
968 #else
969 (void) seg;
970 #endif
971
972 /* Get rid of any bignums now, so that we don't generate an error for which
973 we can't establish a line number later on. Big numbers are never valid
974 in instructions, which is where this routine is always called. */
975 if (prefix_mode != GE_OPT_PREFIX_BIG
976 && (ep->X_op == O_big
977 || (ep->X_add_symbol
978 && (walk_no_bignums (ep->X_add_symbol)
979 || (ep->X_op_symbol
980 && walk_no_bignums (ep->X_op_symbol))))))
981 {
982 inst.error = _("invalid constant");
983 *str = input_line_pointer;
984 input_line_pointer = save_in;
985 return 1;
986 }
987
988 *str = input_line_pointer;
989 input_line_pointer = save_in;
990 return 0;
991 }
992
993 /* Turn a string in input_line_pointer into a floating point constant
994 of type TYPE, and store the appropriate bytes in *LITP. The number
995 of LITTLENUMS emitted is stored in *SIZEP. An error message is
996 returned, or NULL on OK.
997
998 Note that fp constants aren't represent in the normal way on the ARM.
999 In big endian mode, things are as expected. However, in little endian
1000 mode fp constants are big-endian word-wise, and little-endian byte-wise
1001 within the words. For example, (double) 1.1 in big endian mode is
1002 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1003 the byte sequence 99 99 f1 3f 9a 99 99 99.
1004
1005 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
1006
1007 char *
1008 md_atof (int type, char * litP, int * sizeP)
1009 {
1010 int prec;
1011 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1012 char *t;
1013 int i;
1014
1015 switch (type)
1016 {
1017 case 'f':
1018 case 'F':
1019 case 's':
1020 case 'S':
1021 prec = 2;
1022 break;
1023
1024 case 'd':
1025 case 'D':
1026 case 'r':
1027 case 'R':
1028 prec = 4;
1029 break;
1030
1031 case 'x':
1032 case 'X':
1033 prec = 5;
1034 break;
1035
1036 case 'p':
1037 case 'P':
1038 prec = 5;
1039 break;
1040
1041 default:
1042 *sizeP = 0;
1043 return _("Unrecognized or unsupported floating point constant");
1044 }
1045
1046 t = atof_ieee (input_line_pointer, type, words);
1047 if (t)
1048 input_line_pointer = t;
1049 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1050
1051 if (target_big_endian)
1052 {
1053 for (i = 0; i < prec; i++)
1054 {
1055 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1056 litP += sizeof (LITTLENUM_TYPE);
1057 }
1058 }
1059 else
1060 {
1061 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1062 for (i = prec - 1; i >= 0; i--)
1063 {
1064 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1065 litP += sizeof (LITTLENUM_TYPE);
1066 }
1067 else
1068 /* For a 4 byte float the order of elements in `words' is 1 0.
1069 For an 8 byte float the order is 1 0 3 2. */
1070 for (i = 0; i < prec; i += 2)
1071 {
1072 md_number_to_chars (litP, (valueT) words[i + 1],
1073 sizeof (LITTLENUM_TYPE));
1074 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1075 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1076 litP += 2 * sizeof (LITTLENUM_TYPE);
1077 }
1078 }
1079
1080 return NULL;
1081 }
1082
1083 /* We handle all bad expressions here, so that we can report the faulty
1084 instruction in the error message. */
1085 void
1086 md_operand (expressionS * exp)
1087 {
1088 if (in_my_get_expression)
1089 exp->X_op = O_illegal;
1090 }
1091
1092 /* Immediate values. */
1093
1094 /* Generic immediate-value read function for use in directives.
1095 Accepts anything that 'expression' can fold to a constant.
1096 *val receives the number. */
1097 #ifdef OBJ_ELF
1098 static int
1099 immediate_for_directive (int *val)
1100 {
1101 expressionS exp;
1102 exp.X_op = O_illegal;
1103
1104 if (is_immediate_prefix (*input_line_pointer))
1105 {
1106 input_line_pointer++;
1107 expression (&exp);
1108 }
1109
1110 if (exp.X_op != O_constant)
1111 {
1112 as_bad (_("expected #constant"));
1113 ignore_rest_of_line ();
1114 return FAIL;
1115 }
1116 *val = exp.X_add_number;
1117 return SUCCESS;
1118 }
1119 #endif
1120
1121 /* Register parsing. */
1122
1123 /* Generic register parser. CCP points to what should be the
1124 beginning of a register name. If it is indeed a valid register
1125 name, advance CCP over it and return the reg_entry structure;
1126 otherwise return NULL. Does not issue diagnostics. */
1127
1128 static struct reg_entry *
1129 arm_reg_parse_multi (char **ccp)
1130 {
1131 char *start = *ccp;
1132 char *p;
1133 struct reg_entry *reg;
1134
1135 #ifdef REGISTER_PREFIX
1136 if (*start != REGISTER_PREFIX)
1137 return NULL;
1138 start++;
1139 #endif
1140 #ifdef OPTIONAL_REGISTER_PREFIX
1141 if (*start == OPTIONAL_REGISTER_PREFIX)
1142 start++;
1143 #endif
1144
1145 p = start;
1146 if (!ISALPHA (*p) || !is_name_beginner (*p))
1147 return NULL;
1148
1149 do
1150 p++;
1151 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1152
1153 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1154
1155 if (!reg)
1156 return NULL;
1157
1158 *ccp = p;
1159 return reg;
1160 }
1161
1162 static int
1163 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1164 enum arm_reg_type type)
1165 {
1166 /* Alternative syntaxes are accepted for a few register classes. */
1167 switch (type)
1168 {
1169 case REG_TYPE_MVF:
1170 case REG_TYPE_MVD:
1171 case REG_TYPE_MVFX:
1172 case REG_TYPE_MVDX:
1173 /* Generic coprocessor register names are allowed for these. */
1174 if (reg && reg->type == REG_TYPE_CN)
1175 return reg->number;
1176 break;
1177
1178 case REG_TYPE_CP:
1179 /* For backward compatibility, a bare number is valid here. */
1180 {
1181 unsigned long processor = strtoul (start, ccp, 10);
1182 if (*ccp != start && processor <= 15)
1183 return processor;
1184 }
1185
1186 case REG_TYPE_MMXWC:
1187 /* WC includes WCG. ??? I'm not sure this is true for all
1188 instructions that take WC registers. */
1189 if (reg && reg->type == REG_TYPE_MMXWCG)
1190 return reg->number;
1191 break;
1192
1193 default:
1194 break;
1195 }
1196
1197 return FAIL;
1198 }
1199
1200 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1201 return value is the register number or FAIL. */
1202
1203 static int
1204 arm_reg_parse (char **ccp, enum arm_reg_type type)
1205 {
1206 char *start = *ccp;
1207 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1208 int ret;
1209
1210 /* Do not allow a scalar (reg+index) to parse as a register. */
1211 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1212 return FAIL;
1213
1214 if (reg && reg->type == type)
1215 return reg->number;
1216
1217 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1218 return ret;
1219
1220 *ccp = start;
1221 return FAIL;
1222 }
1223
1224 /* Parse a Neon type specifier. *STR should point at the leading '.'
1225 character. Does no verification at this stage that the type fits the opcode
1226 properly. E.g.,
1227
1228 .i32.i32.s16
1229 .s32.f32
1230 .u16
1231
1232 Can all be legally parsed by this function.
1233
1234 Fills in neon_type struct pointer with parsed information, and updates STR
1235 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1236 type, FAIL if not. */
1237
1238 static int
1239 parse_neon_type (struct neon_type *type, char **str)
1240 {
1241 char *ptr = *str;
1242
1243 if (type)
1244 type->elems = 0;
1245
1246 while (type->elems < NEON_MAX_TYPE_ELS)
1247 {
1248 enum neon_el_type thistype = NT_untyped;
1249 unsigned thissize = -1u;
1250
1251 if (*ptr != '.')
1252 break;
1253
1254 ptr++;
1255
1256 /* Just a size without an explicit type. */
1257 if (ISDIGIT (*ptr))
1258 goto parsesize;
1259
1260 switch (TOLOWER (*ptr))
1261 {
1262 case 'i': thistype = NT_integer; break;
1263 case 'f': thistype = NT_float; break;
1264 case 'p': thistype = NT_poly; break;
1265 case 's': thistype = NT_signed; break;
1266 case 'u': thistype = NT_unsigned; break;
1267 case 'd':
1268 thistype = NT_float;
1269 thissize = 64;
1270 ptr++;
1271 goto done;
1272 default:
1273 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1274 return FAIL;
1275 }
1276
1277 ptr++;
1278
1279 /* .f is an abbreviation for .f32. */
1280 if (thistype == NT_float && !ISDIGIT (*ptr))
1281 thissize = 32;
1282 else
1283 {
1284 parsesize:
1285 thissize = strtoul (ptr, &ptr, 10);
1286
1287 if (thissize != 8 && thissize != 16 && thissize != 32
1288 && thissize != 64)
1289 {
1290 as_bad (_("bad size %d in type specifier"), thissize);
1291 return FAIL;
1292 }
1293 }
1294
1295 done:
1296 if (type)
1297 {
1298 type->el[type->elems].type = thistype;
1299 type->el[type->elems].size = thissize;
1300 type->elems++;
1301 }
1302 }
1303
1304 /* Empty/missing type is not a successful parse. */
1305 if (type->elems == 0)
1306 return FAIL;
1307
1308 *str = ptr;
1309
1310 return SUCCESS;
1311 }
1312
1313 /* Errors may be set multiple times during parsing or bit encoding
1314 (particularly in the Neon bits), but usually the earliest error which is set
1315 will be the most meaningful. Avoid overwriting it with later (cascading)
1316 errors by calling this function. */
1317
1318 static void
1319 first_error (const char *err)
1320 {
1321 if (!inst.error)
1322 inst.error = err;
1323 }
1324
1325 /* Parse a single type, e.g. ".s32", leading period included. */
1326 static int
1327 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1328 {
1329 char *str = *ccp;
1330 struct neon_type optype;
1331
1332 if (*str == '.')
1333 {
1334 if (parse_neon_type (&optype, &str) == SUCCESS)
1335 {
1336 if (optype.elems == 1)
1337 *vectype = optype.el[0];
1338 else
1339 {
1340 first_error (_("only one type should be specified for operand"));
1341 return FAIL;
1342 }
1343 }
1344 else
1345 {
1346 first_error (_("vector type expected"));
1347 return FAIL;
1348 }
1349 }
1350 else
1351 return FAIL;
1352
1353 *ccp = str;
1354
1355 return SUCCESS;
1356 }
1357
1358 /* Special meanings for indices (which have a range of 0-7), which will fit into
1359 a 4-bit integer. */
1360
1361 #define NEON_ALL_LANES 15
1362 #define NEON_INTERLEAVE_LANES 14
1363
1364 /* Parse either a register or a scalar, with an optional type. Return the
1365 register number, and optionally fill in the actual type of the register
1366 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1367 type/index information in *TYPEINFO. */
1368
1369 static int
1370 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1371 enum arm_reg_type *rtype,
1372 struct neon_typed_alias *typeinfo)
1373 {
1374 char *str = *ccp;
1375 struct reg_entry *reg = arm_reg_parse_multi (&str);
1376 struct neon_typed_alias atype;
1377 struct neon_type_el parsetype;
1378
1379 atype.defined = 0;
1380 atype.index = -1;
1381 atype.eltype.type = NT_invtype;
1382 atype.eltype.size = -1;
1383
1384 /* Try alternate syntax for some types of register. Note these are mutually
1385 exclusive with the Neon syntax extensions. */
1386 if (reg == NULL)
1387 {
1388 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1389 if (altreg != FAIL)
1390 *ccp = str;
1391 if (typeinfo)
1392 *typeinfo = atype;
1393 return altreg;
1394 }
1395
1396 /* Undo polymorphism when a set of register types may be accepted. */
1397 if ((type == REG_TYPE_NDQ
1398 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1399 || (type == REG_TYPE_VFSD
1400 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1401 || (type == REG_TYPE_NSDQ
1402 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1403 || reg->type == REG_TYPE_NQ))
1404 || (type == REG_TYPE_MMXWC
1405 && (reg->type == REG_TYPE_MMXWCG)))
1406 type = (enum arm_reg_type) reg->type;
1407
1408 if (type != reg->type)
1409 return FAIL;
1410
1411 if (reg->neon)
1412 atype = *reg->neon;
1413
1414 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1415 {
1416 if ((atype.defined & NTA_HASTYPE) != 0)
1417 {
1418 first_error (_("can't redefine type for operand"));
1419 return FAIL;
1420 }
1421 atype.defined |= NTA_HASTYPE;
1422 atype.eltype = parsetype;
1423 }
1424
1425 if (skip_past_char (&str, '[') == SUCCESS)
1426 {
1427 if (type != REG_TYPE_VFD)
1428 {
1429 first_error (_("only D registers may be indexed"));
1430 return FAIL;
1431 }
1432
1433 if ((atype.defined & NTA_HASINDEX) != 0)
1434 {
1435 first_error (_("can't change index for operand"));
1436 return FAIL;
1437 }
1438
1439 atype.defined |= NTA_HASINDEX;
1440
1441 if (skip_past_char (&str, ']') == SUCCESS)
1442 atype.index = NEON_ALL_LANES;
1443 else
1444 {
1445 expressionS exp;
1446
1447 my_get_expression (&exp, &str, GE_NO_PREFIX);
1448
1449 if (exp.X_op != O_constant)
1450 {
1451 first_error (_("constant expression required"));
1452 return FAIL;
1453 }
1454
1455 if (skip_past_char (&str, ']') == FAIL)
1456 return FAIL;
1457
1458 atype.index = exp.X_add_number;
1459 }
1460 }
1461
1462 if (typeinfo)
1463 *typeinfo = atype;
1464
1465 if (rtype)
1466 *rtype = type;
1467
1468 *ccp = str;
1469
1470 return reg->number;
1471 }
1472
1473 /* Like arm_reg_parse, but allow allow the following extra features:
1474 - If RTYPE is non-zero, return the (possibly restricted) type of the
1475 register (e.g. Neon double or quad reg when either has been requested).
1476 - If this is a Neon vector type with additional type information, fill
1477 in the struct pointed to by VECTYPE (if non-NULL).
1478 This function will fault on encountering a scalar. */
1479
1480 static int
1481 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1482 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1483 {
1484 struct neon_typed_alias atype;
1485 char *str = *ccp;
1486 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1487
1488 if (reg == FAIL)
1489 return FAIL;
1490
1491 /* Do not allow regname(... to parse as a register. */
1492 if (*str == '(')
1493 return FAIL;
1494
1495 /* Do not allow a scalar (reg+index) to parse as a register. */
1496 if ((atype.defined & NTA_HASINDEX) != 0)
1497 {
1498 first_error (_("register operand expected, but got scalar"));
1499 return FAIL;
1500 }
1501
1502 if (vectype)
1503 *vectype = atype.eltype;
1504
1505 *ccp = str;
1506
1507 return reg;
1508 }
1509
1510 #define NEON_SCALAR_REG(X) ((X) >> 4)
1511 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1512
1513 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1514 have enough information to be able to do a good job bounds-checking. So, we
1515 just do easy checks here, and do further checks later. */
1516
1517 static int
1518 parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
1519 {
1520 int reg;
1521 char *str = *ccp;
1522 struct neon_typed_alias atype;
1523
1524 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
1525
1526 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1527 return FAIL;
1528
1529 if (atype.index == NEON_ALL_LANES)
1530 {
1531 first_error (_("scalar must have an index"));
1532 return FAIL;
1533 }
1534 else if (atype.index >= 64 / elsize)
1535 {
1536 first_error (_("scalar index out of range"));
1537 return FAIL;
1538 }
1539
1540 if (type)
1541 *type = atype.eltype;
1542
1543 *ccp = str;
1544
1545 return reg * 16 + atype.index;
1546 }
1547
1548 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1549
1550 static long
1551 parse_reg_list (char ** strp)
1552 {
1553 char * str = * strp;
1554 long range = 0;
1555 int another_range;
1556
1557 /* We come back here if we get ranges concatenated by '+' or '|'. */
1558 do
1559 {
1560 another_range = 0;
1561
1562 if (*str == '{')
1563 {
1564 int in_range = 0;
1565 int cur_reg = -1;
1566
1567 str++;
1568 do
1569 {
1570 int reg;
1571
1572 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
1573 {
1574 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
1575 return FAIL;
1576 }
1577
1578 if (in_range)
1579 {
1580 int i;
1581
1582 if (reg <= cur_reg)
1583 {
1584 first_error (_("bad range in register list"));
1585 return FAIL;
1586 }
1587
1588 for (i = cur_reg + 1; i < reg; i++)
1589 {
1590 if (range & (1 << i))
1591 as_tsktsk
1592 (_("Warning: duplicated register (r%d) in register list"),
1593 i);
1594 else
1595 range |= 1 << i;
1596 }
1597 in_range = 0;
1598 }
1599
1600 if (range & (1 << reg))
1601 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1602 reg);
1603 else if (reg <= cur_reg)
1604 as_tsktsk (_("Warning: register range not in ascending order"));
1605
1606 range |= 1 << reg;
1607 cur_reg = reg;
1608 }
1609 while (skip_past_comma (&str) != FAIL
1610 || (in_range = 1, *str++ == '-'));
1611 str--;
1612
1613 if (*str++ != '}')
1614 {
1615 first_error (_("missing `}'"));
1616 return FAIL;
1617 }
1618 }
1619 else
1620 {
1621 expressionS exp;
1622
1623 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
1624 return FAIL;
1625
1626 if (exp.X_op == O_constant)
1627 {
1628 if (exp.X_add_number
1629 != (exp.X_add_number & 0x0000ffff))
1630 {
1631 inst.error = _("invalid register mask");
1632 return FAIL;
1633 }
1634
1635 if ((range & exp.X_add_number) != 0)
1636 {
1637 int regno = range & exp.X_add_number;
1638
1639 regno &= -regno;
1640 regno = (1 << regno) - 1;
1641 as_tsktsk
1642 (_("Warning: duplicated register (r%d) in register list"),
1643 regno);
1644 }
1645
1646 range |= exp.X_add_number;
1647 }
1648 else
1649 {
1650 if (inst.reloc.type != 0)
1651 {
1652 inst.error = _("expression too complex");
1653 return FAIL;
1654 }
1655
1656 memcpy (&inst.reloc.exp, &exp, sizeof (expressionS));
1657 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1658 inst.reloc.pc_rel = 0;
1659 }
1660 }
1661
1662 if (*str == '|' || *str == '+')
1663 {
1664 str++;
1665 another_range = 1;
1666 }
1667 }
1668 while (another_range);
1669
1670 *strp = str;
1671 return range;
1672 }
1673
1674 /* Types of registers in a list. */
1675
1676 enum reg_list_els
1677 {
1678 REGLIST_VFP_S,
1679 REGLIST_VFP_D,
1680 REGLIST_NEON_D
1681 };
1682
1683 /* Parse a VFP register list. If the string is invalid return FAIL.
1684 Otherwise return the number of registers, and set PBASE to the first
1685 register. Parses registers of type ETYPE.
1686 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1687 - Q registers can be used to specify pairs of D registers
1688 - { } can be omitted from around a singleton register list
1689 FIXME: This is not implemented, as it would require backtracking in
1690 some cases, e.g.:
1691 vtbl.8 d3,d4,d5
1692 This could be done (the meaning isn't really ambiguous), but doesn't
1693 fit in well with the current parsing framework.
1694 - 32 D registers may be used (also true for VFPv3).
1695 FIXME: Types are ignored in these register lists, which is probably a
1696 bug. */
1697
1698 static int
1699 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
1700 {
1701 char *str = *ccp;
1702 int base_reg;
1703 int new_base;
1704 enum arm_reg_type regtype = (enum arm_reg_type) 0;
1705 int max_regs = 0;
1706 int count = 0;
1707 int warned = 0;
1708 unsigned long mask = 0;
1709 int i;
1710
1711 if (*str != '{')
1712 {
1713 inst.error = _("expecting {");
1714 return FAIL;
1715 }
1716
1717 str++;
1718
1719 switch (etype)
1720 {
1721 case REGLIST_VFP_S:
1722 regtype = REG_TYPE_VFS;
1723 max_regs = 32;
1724 break;
1725
1726 case REGLIST_VFP_D:
1727 regtype = REG_TYPE_VFD;
1728 break;
1729
1730 case REGLIST_NEON_D:
1731 regtype = REG_TYPE_NDQ;
1732 break;
1733 }
1734
1735 if (etype != REGLIST_VFP_S)
1736 {
1737 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1738 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
1739 {
1740 max_regs = 32;
1741 if (thumb_mode)
1742 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1743 fpu_vfp_ext_d32);
1744 else
1745 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1746 fpu_vfp_ext_d32);
1747 }
1748 else
1749 max_regs = 16;
1750 }
1751
1752 base_reg = max_regs;
1753
1754 do
1755 {
1756 int setmask = 1, addregs = 1;
1757
1758 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
1759
1760 if (new_base == FAIL)
1761 {
1762 first_error (_(reg_expected_msgs[regtype]));
1763 return FAIL;
1764 }
1765
1766 if (new_base >= max_regs)
1767 {
1768 first_error (_("register out of range in list"));
1769 return FAIL;
1770 }
1771
1772 /* Note: a value of 2 * n is returned for the register Q<n>. */
1773 if (regtype == REG_TYPE_NQ)
1774 {
1775 setmask = 3;
1776 addregs = 2;
1777 }
1778
1779 if (new_base < base_reg)
1780 base_reg = new_base;
1781
1782 if (mask & (setmask << new_base))
1783 {
1784 first_error (_("invalid register list"));
1785 return FAIL;
1786 }
1787
1788 if ((mask >> new_base) != 0 && ! warned)
1789 {
1790 as_tsktsk (_("register list not in ascending order"));
1791 warned = 1;
1792 }
1793
1794 mask |= setmask << new_base;
1795 count += addregs;
1796
1797 if (*str == '-') /* We have the start of a range expression */
1798 {
1799 int high_range;
1800
1801 str++;
1802
1803 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
1804 == FAIL)
1805 {
1806 inst.error = gettext (reg_expected_msgs[regtype]);
1807 return FAIL;
1808 }
1809
1810 if (high_range >= max_regs)
1811 {
1812 first_error (_("register out of range in list"));
1813 return FAIL;
1814 }
1815
1816 if (regtype == REG_TYPE_NQ)
1817 high_range = high_range + 1;
1818
1819 if (high_range <= new_base)
1820 {
1821 inst.error = _("register range not in ascending order");
1822 return FAIL;
1823 }
1824
1825 for (new_base += addregs; new_base <= high_range; new_base += addregs)
1826 {
1827 if (mask & (setmask << new_base))
1828 {
1829 inst.error = _("invalid register list");
1830 return FAIL;
1831 }
1832
1833 mask |= setmask << new_base;
1834 count += addregs;
1835 }
1836 }
1837 }
1838 while (skip_past_comma (&str) != FAIL);
1839
1840 str++;
1841
1842 /* Sanity check -- should have raised a parse error above. */
1843 if (count == 0 || count > max_regs)
1844 abort ();
1845
1846 *pbase = base_reg;
1847
1848 /* Final test -- the registers must be consecutive. */
1849 mask >>= base_reg;
1850 for (i = 0; i < count; i++)
1851 {
1852 if ((mask & (1u << i)) == 0)
1853 {
1854 inst.error = _("non-contiguous register range");
1855 return FAIL;
1856 }
1857 }
1858
1859 *ccp = str;
1860
1861 return count;
1862 }
1863
1864 /* True if two alias types are the same. */
1865
1866 static bfd_boolean
1867 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1868 {
1869 if (!a && !b)
1870 return TRUE;
1871
1872 if (!a || !b)
1873 return FALSE;
1874
1875 if (a->defined != b->defined)
1876 return FALSE;
1877
1878 if ((a->defined & NTA_HASTYPE) != 0
1879 && (a->eltype.type != b->eltype.type
1880 || a->eltype.size != b->eltype.size))
1881 return FALSE;
1882
1883 if ((a->defined & NTA_HASINDEX) != 0
1884 && (a->index != b->index))
1885 return FALSE;
1886
1887 return TRUE;
1888 }
1889
1890 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1891 The base register is put in *PBASE.
1892 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
1893 the return value.
1894 The register stride (minus one) is put in bit 4 of the return value.
1895 Bits [6:5] encode the list length (minus one).
1896 The type of the list elements is put in *ELTYPE, if non-NULL. */
1897
1898 #define NEON_LANE(X) ((X) & 0xf)
1899 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
1900 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1901
1902 static int
1903 parse_neon_el_struct_list (char **str, unsigned *pbase,
1904 struct neon_type_el *eltype)
1905 {
1906 char *ptr = *str;
1907 int base_reg = -1;
1908 int reg_incr = -1;
1909 int count = 0;
1910 int lane = -1;
1911 int leading_brace = 0;
1912 enum arm_reg_type rtype = REG_TYPE_NDQ;
1913 const char *const incr_error = _("register stride must be 1 or 2");
1914 const char *const type_error = _("mismatched element/structure types in list");
1915 struct neon_typed_alias firsttype;
1916
1917 if (skip_past_char (&ptr, '{') == SUCCESS)
1918 leading_brace = 1;
1919
1920 do
1921 {
1922 struct neon_typed_alias atype;
1923 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1924
1925 if (getreg == FAIL)
1926 {
1927 first_error (_(reg_expected_msgs[rtype]));
1928 return FAIL;
1929 }
1930
1931 if (base_reg == -1)
1932 {
1933 base_reg = getreg;
1934 if (rtype == REG_TYPE_NQ)
1935 {
1936 reg_incr = 1;
1937 }
1938 firsttype = atype;
1939 }
1940 else if (reg_incr == -1)
1941 {
1942 reg_incr = getreg - base_reg;
1943 if (reg_incr < 1 || reg_incr > 2)
1944 {
1945 first_error (_(incr_error));
1946 return FAIL;
1947 }
1948 }
1949 else if (getreg != base_reg + reg_incr * count)
1950 {
1951 first_error (_(incr_error));
1952 return FAIL;
1953 }
1954
1955 if (! neon_alias_types_same (&atype, &firsttype))
1956 {
1957 first_error (_(type_error));
1958 return FAIL;
1959 }
1960
1961 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1962 modes. */
1963 if (ptr[0] == '-')
1964 {
1965 struct neon_typed_alias htype;
1966 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1967 if (lane == -1)
1968 lane = NEON_INTERLEAVE_LANES;
1969 else if (lane != NEON_INTERLEAVE_LANES)
1970 {
1971 first_error (_(type_error));
1972 return FAIL;
1973 }
1974 if (reg_incr == -1)
1975 reg_incr = 1;
1976 else if (reg_incr != 1)
1977 {
1978 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
1979 return FAIL;
1980 }
1981 ptr++;
1982 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
1983 if (hireg == FAIL)
1984 {
1985 first_error (_(reg_expected_msgs[rtype]));
1986 return FAIL;
1987 }
1988 if (! neon_alias_types_same (&htype, &firsttype))
1989 {
1990 first_error (_(type_error));
1991 return FAIL;
1992 }
1993 count += hireg + dregs - getreg;
1994 continue;
1995 }
1996
1997 /* If we're using Q registers, we can't use [] or [n] syntax. */
1998 if (rtype == REG_TYPE_NQ)
1999 {
2000 count += 2;
2001 continue;
2002 }
2003
2004 if ((atype.defined & NTA_HASINDEX) != 0)
2005 {
2006 if (lane == -1)
2007 lane = atype.index;
2008 else if (lane != atype.index)
2009 {
2010 first_error (_(type_error));
2011 return FAIL;
2012 }
2013 }
2014 else if (lane == -1)
2015 lane = NEON_INTERLEAVE_LANES;
2016 else if (lane != NEON_INTERLEAVE_LANES)
2017 {
2018 first_error (_(type_error));
2019 return FAIL;
2020 }
2021 count++;
2022 }
2023 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
2024
2025 /* No lane set by [x]. We must be interleaving structures. */
2026 if (lane == -1)
2027 lane = NEON_INTERLEAVE_LANES;
2028
2029 /* Sanity check. */
2030 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2031 || (count > 1 && reg_incr == -1))
2032 {
2033 first_error (_("error parsing element/structure list"));
2034 return FAIL;
2035 }
2036
2037 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2038 {
2039 first_error (_("expected }"));
2040 return FAIL;
2041 }
2042
2043 if (reg_incr == -1)
2044 reg_incr = 1;
2045
2046 if (eltype)
2047 *eltype = firsttype.eltype;
2048
2049 *pbase = base_reg;
2050 *str = ptr;
2051
2052 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2053 }
2054
2055 /* Parse an explicit relocation suffix on an expression. This is
2056 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2057 arm_reloc_hsh contains no entries, so this function can only
2058 succeed if there is no () after the word. Returns -1 on error,
2059 BFD_RELOC_UNUSED if there wasn't any suffix. */
2060
2061 static int
2062 parse_reloc (char **str)
2063 {
2064 struct reloc_entry *r;
2065 char *p, *q;
2066
2067 if (**str != '(')
2068 return BFD_RELOC_UNUSED;
2069
2070 p = *str + 1;
2071 q = p;
2072
2073 while (*q && *q != ')' && *q != ',')
2074 q++;
2075 if (*q != ')')
2076 return -1;
2077
2078 if ((r = (struct reloc_entry *)
2079 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2080 return -1;
2081
2082 *str = q + 1;
2083 return r->reloc;
2084 }
2085
2086 /* Directives: register aliases. */
2087
2088 static struct reg_entry *
2089 insert_reg_alias (char *str, unsigned number, int type)
2090 {
2091 struct reg_entry *new_reg;
2092 const char *name;
2093
2094 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2095 {
2096 if (new_reg->builtin)
2097 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2098
2099 /* Only warn about a redefinition if it's not defined as the
2100 same register. */
2101 else if (new_reg->number != number || new_reg->type != type)
2102 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2103
2104 return NULL;
2105 }
2106
2107 name = xstrdup (str);
2108 new_reg = (struct reg_entry *) xmalloc (sizeof (struct reg_entry));
2109
2110 new_reg->name = name;
2111 new_reg->number = number;
2112 new_reg->type = type;
2113 new_reg->builtin = FALSE;
2114 new_reg->neon = NULL;
2115
2116 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2117 abort ();
2118
2119 return new_reg;
2120 }
2121
2122 static void
2123 insert_neon_reg_alias (char *str, int number, int type,
2124 struct neon_typed_alias *atype)
2125 {
2126 struct reg_entry *reg = insert_reg_alias (str, number, type);
2127
2128 if (!reg)
2129 {
2130 first_error (_("attempt to redefine typed alias"));
2131 return;
2132 }
2133
2134 if (atype)
2135 {
2136 reg->neon = (struct neon_typed_alias *)
2137 xmalloc (sizeof (struct neon_typed_alias));
2138 *reg->neon = *atype;
2139 }
2140 }
2141
2142 /* Look for the .req directive. This is of the form:
2143
2144 new_register_name .req existing_register_name
2145
2146 If we find one, or if it looks sufficiently like one that we want to
2147 handle any error here, return TRUE. Otherwise return FALSE. */
2148
2149 static bfd_boolean
2150 create_register_alias (char * newname, char *p)
2151 {
2152 struct reg_entry *old;
2153 char *oldname, *nbuf;
2154 size_t nlen;
2155
2156 /* The input scrubber ensures that whitespace after the mnemonic is
2157 collapsed to single spaces. */
2158 oldname = p;
2159 if (strncmp (oldname, " .req ", 6) != 0)
2160 return FALSE;
2161
2162 oldname += 6;
2163 if (*oldname == '\0')
2164 return FALSE;
2165
2166 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2167 if (!old)
2168 {
2169 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2170 return TRUE;
2171 }
2172
2173 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2174 the desired alias name, and p points to its end. If not, then
2175 the desired alias name is in the global original_case_string. */
2176 #ifdef TC_CASE_SENSITIVE
2177 nlen = p - newname;
2178 #else
2179 newname = original_case_string;
2180 nlen = strlen (newname);
2181 #endif
2182
2183 nbuf = (char *) alloca (nlen + 1);
2184 memcpy (nbuf, newname, nlen);
2185 nbuf[nlen] = '\0';
2186
2187 /* Create aliases under the new name as stated; an all-lowercase
2188 version of the new name; and an all-uppercase version of the new
2189 name. */
2190 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2191 {
2192 for (p = nbuf; *p; p++)
2193 *p = TOUPPER (*p);
2194
2195 if (strncmp (nbuf, newname, nlen))
2196 {
2197 /* If this attempt to create an additional alias fails, do not bother
2198 trying to create the all-lower case alias. We will fail and issue
2199 a second, duplicate error message. This situation arises when the
2200 programmer does something like:
2201 foo .req r0
2202 Foo .req r1
2203 The second .req creates the "Foo" alias but then fails to create
2204 the artificial FOO alias because it has already been created by the
2205 first .req. */
2206 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2207 return TRUE;
2208 }
2209
2210 for (p = nbuf; *p; p++)
2211 *p = TOLOWER (*p);
2212
2213 if (strncmp (nbuf, newname, nlen))
2214 insert_reg_alias (nbuf, old->number, old->type);
2215 }
2216
2217 return TRUE;
2218 }
2219
2220 /* Create a Neon typed/indexed register alias using directives, e.g.:
2221 X .dn d5.s32[1]
2222 Y .qn 6.s16
2223 Z .dn d7
2224 T .dn Z[0]
2225 These typed registers can be used instead of the types specified after the
2226 Neon mnemonic, so long as all operands given have types. Types can also be
2227 specified directly, e.g.:
2228 vadd d0.s32, d1.s32, d2.s32 */
2229
2230 static bfd_boolean
2231 create_neon_reg_alias (char *newname, char *p)
2232 {
2233 enum arm_reg_type basetype;
2234 struct reg_entry *basereg;
2235 struct reg_entry mybasereg;
2236 struct neon_type ntype;
2237 struct neon_typed_alias typeinfo;
2238 char *namebuf, *nameend ATTRIBUTE_UNUSED;
2239 int namelen;
2240
2241 typeinfo.defined = 0;
2242 typeinfo.eltype.type = NT_invtype;
2243 typeinfo.eltype.size = -1;
2244 typeinfo.index = -1;
2245
2246 nameend = p;
2247
2248 if (strncmp (p, " .dn ", 5) == 0)
2249 basetype = REG_TYPE_VFD;
2250 else if (strncmp (p, " .qn ", 5) == 0)
2251 basetype = REG_TYPE_NQ;
2252 else
2253 return FALSE;
2254
2255 p += 5;
2256
2257 if (*p == '\0')
2258 return FALSE;
2259
2260 basereg = arm_reg_parse_multi (&p);
2261
2262 if (basereg && basereg->type != basetype)
2263 {
2264 as_bad (_("bad type for register"));
2265 return FALSE;
2266 }
2267
2268 if (basereg == NULL)
2269 {
2270 expressionS exp;
2271 /* Try parsing as an integer. */
2272 my_get_expression (&exp, &p, GE_NO_PREFIX);
2273 if (exp.X_op != O_constant)
2274 {
2275 as_bad (_("expression must be constant"));
2276 return FALSE;
2277 }
2278 basereg = &mybasereg;
2279 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2280 : exp.X_add_number;
2281 basereg->neon = 0;
2282 }
2283
2284 if (basereg->neon)
2285 typeinfo = *basereg->neon;
2286
2287 if (parse_neon_type (&ntype, &p) == SUCCESS)
2288 {
2289 /* We got a type. */
2290 if (typeinfo.defined & NTA_HASTYPE)
2291 {
2292 as_bad (_("can't redefine the type of a register alias"));
2293 return FALSE;
2294 }
2295
2296 typeinfo.defined |= NTA_HASTYPE;
2297 if (ntype.elems != 1)
2298 {
2299 as_bad (_("you must specify a single type only"));
2300 return FALSE;
2301 }
2302 typeinfo.eltype = ntype.el[0];
2303 }
2304
2305 if (skip_past_char (&p, '[') == SUCCESS)
2306 {
2307 expressionS exp;
2308 /* We got a scalar index. */
2309
2310 if (typeinfo.defined & NTA_HASINDEX)
2311 {
2312 as_bad (_("can't redefine the index of a scalar alias"));
2313 return FALSE;
2314 }
2315
2316 my_get_expression (&exp, &p, GE_NO_PREFIX);
2317
2318 if (exp.X_op != O_constant)
2319 {
2320 as_bad (_("scalar index must be constant"));
2321 return FALSE;
2322 }
2323
2324 typeinfo.defined |= NTA_HASINDEX;
2325 typeinfo.index = exp.X_add_number;
2326
2327 if (skip_past_char (&p, ']') == FAIL)
2328 {
2329 as_bad (_("expecting ]"));
2330 return FALSE;
2331 }
2332 }
2333
2334 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2335 the desired alias name, and p points to its end. If not, then
2336 the desired alias name is in the global original_case_string. */
2337 #ifdef TC_CASE_SENSITIVE
2338 namelen = nameend - newname;
2339 #else
2340 newname = original_case_string;
2341 namelen = strlen (newname);
2342 #endif
2343
2344 namebuf = (char *) alloca (namelen + 1);
2345 strncpy (namebuf, newname, namelen);
2346 namebuf[namelen] = '\0';
2347
2348 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2349 typeinfo.defined != 0 ? &typeinfo : NULL);
2350
2351 /* Insert name in all uppercase. */
2352 for (p = namebuf; *p; p++)
2353 *p = TOUPPER (*p);
2354
2355 if (strncmp (namebuf, newname, namelen))
2356 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2357 typeinfo.defined != 0 ? &typeinfo : NULL);
2358
2359 /* Insert name in all lowercase. */
2360 for (p = namebuf; *p; p++)
2361 *p = TOLOWER (*p);
2362
2363 if (strncmp (namebuf, newname, namelen))
2364 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2365 typeinfo.defined != 0 ? &typeinfo : NULL);
2366
2367 return TRUE;
2368 }
2369
2370 /* Should never be called, as .req goes between the alias and the
2371 register name, not at the beginning of the line. */
2372
2373 static void
2374 s_req (int a ATTRIBUTE_UNUSED)
2375 {
2376 as_bad (_("invalid syntax for .req directive"));
2377 }
2378
2379 static void
2380 s_dn (int a ATTRIBUTE_UNUSED)
2381 {
2382 as_bad (_("invalid syntax for .dn directive"));
2383 }
2384
2385 static void
2386 s_qn (int a ATTRIBUTE_UNUSED)
2387 {
2388 as_bad (_("invalid syntax for .qn directive"));
2389 }
2390
2391 /* The .unreq directive deletes an alias which was previously defined
2392 by .req. For example:
2393
2394 my_alias .req r11
2395 .unreq my_alias */
2396
2397 static void
2398 s_unreq (int a ATTRIBUTE_UNUSED)
2399 {
2400 char * name;
2401 char saved_char;
2402
2403 name = input_line_pointer;
2404
2405 while (*input_line_pointer != 0
2406 && *input_line_pointer != ' '
2407 && *input_line_pointer != '\n')
2408 ++input_line_pointer;
2409
2410 saved_char = *input_line_pointer;
2411 *input_line_pointer = 0;
2412
2413 if (!*name)
2414 as_bad (_("invalid syntax for .unreq directive"));
2415 else
2416 {
2417 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2418 name);
2419
2420 if (!reg)
2421 as_bad (_("unknown register alias '%s'"), name);
2422 else if (reg->builtin)
2423 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
2424 name);
2425 else
2426 {
2427 char * p;
2428 char * nbuf;
2429
2430 hash_delete (arm_reg_hsh, name, FALSE);
2431 free ((char *) reg->name);
2432 if (reg->neon)
2433 free (reg->neon);
2434 free (reg);
2435
2436 /* Also locate the all upper case and all lower case versions.
2437 Do not complain if we cannot find one or the other as it
2438 was probably deleted above. */
2439
2440 nbuf = strdup (name);
2441 for (p = nbuf; *p; p++)
2442 *p = TOUPPER (*p);
2443 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2444 if (reg)
2445 {
2446 hash_delete (arm_reg_hsh, nbuf, FALSE);
2447 free ((char *) reg->name);
2448 if (reg->neon)
2449 free (reg->neon);
2450 free (reg);
2451 }
2452
2453 for (p = nbuf; *p; p++)
2454 *p = TOLOWER (*p);
2455 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2456 if (reg)
2457 {
2458 hash_delete (arm_reg_hsh, nbuf, FALSE);
2459 free ((char *) reg->name);
2460 if (reg->neon)
2461 free (reg->neon);
2462 free (reg);
2463 }
2464
2465 free (nbuf);
2466 }
2467 }
2468
2469 *input_line_pointer = saved_char;
2470 demand_empty_rest_of_line ();
2471 }
2472
2473 /* Directives: Instruction set selection. */
2474
2475 #ifdef OBJ_ELF
2476 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2477 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2478 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2479 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2480
2481 /* Create a new mapping symbol for the transition to STATE. */
2482
2483 static void
2484 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2485 {
2486 symbolS * symbolP;
2487 const char * symname;
2488 int type;
2489
2490 switch (state)
2491 {
2492 case MAP_DATA:
2493 symname = "$d";
2494 type = BSF_NO_FLAGS;
2495 break;
2496 case MAP_ARM:
2497 symname = "$a";
2498 type = BSF_NO_FLAGS;
2499 break;
2500 case MAP_THUMB:
2501 symname = "$t";
2502 type = BSF_NO_FLAGS;
2503 break;
2504 default:
2505 abort ();
2506 }
2507
2508 symbolP = symbol_new (symname, now_seg, value, frag);
2509 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2510
2511 switch (state)
2512 {
2513 case MAP_ARM:
2514 THUMB_SET_FUNC (symbolP, 0);
2515 ARM_SET_THUMB (symbolP, 0);
2516 ARM_SET_INTERWORK (symbolP, support_interwork);
2517 break;
2518
2519 case MAP_THUMB:
2520 THUMB_SET_FUNC (symbolP, 1);
2521 ARM_SET_THUMB (symbolP, 1);
2522 ARM_SET_INTERWORK (symbolP, support_interwork);
2523 break;
2524
2525 case MAP_DATA:
2526 default:
2527 break;
2528 }
2529
2530 /* Save the mapping symbols for future reference. Also check that
2531 we do not place two mapping symbols at the same offset within a
2532 frag. We'll handle overlap between frags in
2533 check_mapping_symbols.
2534
2535 If .fill or other data filling directive generates zero sized data,
2536 the mapping symbol for the following code will have the same value
2537 as the one generated for the data filling directive. In this case,
2538 we replace the old symbol with the new one at the same address. */
2539 if (value == 0)
2540 {
2541 if (frag->tc_frag_data.first_map != NULL)
2542 {
2543 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2544 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2545 }
2546 frag->tc_frag_data.first_map = symbolP;
2547 }
2548 if (frag->tc_frag_data.last_map != NULL)
2549 {
2550 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
2551 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2552 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2553 }
2554 frag->tc_frag_data.last_map = symbolP;
2555 }
2556
2557 /* We must sometimes convert a region marked as code to data during
2558 code alignment, if an odd number of bytes have to be padded. The
2559 code mapping symbol is pushed to an aligned address. */
2560
2561 static void
2562 insert_data_mapping_symbol (enum mstate state,
2563 valueT value, fragS *frag, offsetT bytes)
2564 {
2565 /* If there was already a mapping symbol, remove it. */
2566 if (frag->tc_frag_data.last_map != NULL
2567 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2568 {
2569 symbolS *symp = frag->tc_frag_data.last_map;
2570
2571 if (value == 0)
2572 {
2573 know (frag->tc_frag_data.first_map == symp);
2574 frag->tc_frag_data.first_map = NULL;
2575 }
2576 frag->tc_frag_data.last_map = NULL;
2577 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
2578 }
2579
2580 make_mapping_symbol (MAP_DATA, value, frag);
2581 make_mapping_symbol (state, value + bytes, frag);
2582 }
2583
2584 static void mapping_state_2 (enum mstate state, int max_chars);
2585
2586 /* Set the mapping state to STATE. Only call this when about to
2587 emit some STATE bytes to the file. */
2588
2589 void
2590 mapping_state (enum mstate state)
2591 {
2592 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2593
2594 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2595
2596 if (mapstate == state)
2597 /* The mapping symbol has already been emitted.
2598 There is nothing else to do. */
2599 return;
2600
2601 if (state == MAP_ARM || state == MAP_THUMB)
2602 /* PR gas/12931
2603 All ARM instructions require 4-byte alignment.
2604 (Almost) all Thumb instructions require 2-byte alignment.
2605
2606 When emitting instructions into any section, mark the section
2607 appropriately.
2608
2609 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2610 but themselves require 2-byte alignment; this applies to some
2611 PC- relative forms. However, these cases will invovle implicit
2612 literal pool generation or an explicit .align >=2, both of
2613 which will cause the section to me marked with sufficient
2614 alignment. Thus, we don't handle those cases here. */
2615 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2616
2617 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2618 /* This case will be evaluated later in the next else. */
2619 return;
2620 else if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2621 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2622 {
2623 /* Only add the symbol if the offset is > 0:
2624 if we're at the first frag, check it's size > 0;
2625 if we're not at the first frag, then for sure
2626 the offset is > 0. */
2627 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2628 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2629
2630 if (add_symbol)
2631 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2632 }
2633
2634 mapping_state_2 (state, 0);
2635 #undef TRANSITION
2636 }
2637
2638 /* Same as mapping_state, but MAX_CHARS bytes have already been
2639 allocated. Put the mapping symbol that far back. */
2640
2641 static void
2642 mapping_state_2 (enum mstate state, int max_chars)
2643 {
2644 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2645
2646 if (!SEG_NORMAL (now_seg))
2647 return;
2648
2649 if (mapstate == state)
2650 /* The mapping symbol has already been emitted.
2651 There is nothing else to do. */
2652 return;
2653
2654 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2655 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
2656 }
2657 #else
2658 #define mapping_state(x) ((void)0)
2659 #define mapping_state_2(x, y) ((void)0)
2660 #endif
2661
2662 /* Find the real, Thumb encoded start of a Thumb function. */
2663
2664 #ifdef OBJ_COFF
2665 static symbolS *
2666 find_real_start (symbolS * symbolP)
2667 {
2668 char * real_start;
2669 const char * name = S_GET_NAME (symbolP);
2670 symbolS * new_target;
2671
2672 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2673 #define STUB_NAME ".real_start_of"
2674
2675 if (name == NULL)
2676 abort ();
2677
2678 /* The compiler may generate BL instructions to local labels because
2679 it needs to perform a branch to a far away location. These labels
2680 do not have a corresponding ".real_start_of" label. We check
2681 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2682 the ".real_start_of" convention for nonlocal branches. */
2683 if (S_IS_LOCAL (symbolP) || name[0] == '.')
2684 return symbolP;
2685
2686 real_start = ACONCAT ((STUB_NAME, name, NULL));
2687 new_target = symbol_find (real_start);
2688
2689 if (new_target == NULL)
2690 {
2691 as_warn (_("Failed to find real start of function: %s\n"), name);
2692 new_target = symbolP;
2693 }
2694
2695 return new_target;
2696 }
2697 #endif
2698
2699 static void
2700 opcode_select (int width)
2701 {
2702 switch (width)
2703 {
2704 case 16:
2705 if (! thumb_mode)
2706 {
2707 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
2708 as_bad (_("selected processor does not support THUMB opcodes"));
2709
2710 thumb_mode = 1;
2711 /* No need to force the alignment, since we will have been
2712 coming from ARM mode, which is word-aligned. */
2713 record_alignment (now_seg, 1);
2714 }
2715 break;
2716
2717 case 32:
2718 if (thumb_mode)
2719 {
2720 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
2721 as_bad (_("selected processor does not support ARM opcodes"));
2722
2723 thumb_mode = 0;
2724
2725 if (!need_pass_2)
2726 frag_align (2, 0, 0);
2727
2728 record_alignment (now_seg, 1);
2729 }
2730 break;
2731
2732 default:
2733 as_bad (_("invalid instruction size selected (%d)"), width);
2734 }
2735 }
2736
2737 static void
2738 s_arm (int ignore ATTRIBUTE_UNUSED)
2739 {
2740 opcode_select (32);
2741 demand_empty_rest_of_line ();
2742 }
2743
2744 static void
2745 s_thumb (int ignore ATTRIBUTE_UNUSED)
2746 {
2747 opcode_select (16);
2748 demand_empty_rest_of_line ();
2749 }
2750
2751 static void
2752 s_code (int unused ATTRIBUTE_UNUSED)
2753 {
2754 int temp;
2755
2756 temp = get_absolute_expression ();
2757 switch (temp)
2758 {
2759 case 16:
2760 case 32:
2761 opcode_select (temp);
2762 break;
2763
2764 default:
2765 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2766 }
2767 }
2768
2769 static void
2770 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2771 {
2772 /* If we are not already in thumb mode go into it, EVEN if
2773 the target processor does not support thumb instructions.
2774 This is used by gcc/config/arm/lib1funcs.asm for example
2775 to compile interworking support functions even if the
2776 target processor should not support interworking. */
2777 if (! thumb_mode)
2778 {
2779 thumb_mode = 2;
2780 record_alignment (now_seg, 1);
2781 }
2782
2783 demand_empty_rest_of_line ();
2784 }
2785
2786 static void
2787 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2788 {
2789 s_thumb (0);
2790
2791 /* The following label is the name/address of the start of a Thumb function.
2792 We need to know this for the interworking support. */
2793 label_is_thumb_function_name = TRUE;
2794 }
2795
2796 /* Perform a .set directive, but also mark the alias as
2797 being a thumb function. */
2798
2799 static void
2800 s_thumb_set (int equiv)
2801 {
2802 /* XXX the following is a duplicate of the code for s_set() in read.c
2803 We cannot just call that code as we need to get at the symbol that
2804 is created. */
2805 char * name;
2806 char delim;
2807 char * end_name;
2808 symbolS * symbolP;
2809
2810 /* Especial apologies for the random logic:
2811 This just grew, and could be parsed much more simply!
2812 Dean - in haste. */
2813 name = input_line_pointer;
2814 delim = get_symbol_end ();
2815 end_name = input_line_pointer;
2816 *end_name = delim;
2817
2818 if (*input_line_pointer != ',')
2819 {
2820 *end_name = 0;
2821 as_bad (_("expected comma after name \"%s\""), name);
2822 *end_name = delim;
2823 ignore_rest_of_line ();
2824 return;
2825 }
2826
2827 input_line_pointer++;
2828 *end_name = 0;
2829
2830 if (name[0] == '.' && name[1] == '\0')
2831 {
2832 /* XXX - this should not happen to .thumb_set. */
2833 abort ();
2834 }
2835
2836 if ((symbolP = symbol_find (name)) == NULL
2837 && (symbolP = md_undefined_symbol (name)) == NULL)
2838 {
2839 #ifndef NO_LISTING
2840 /* When doing symbol listings, play games with dummy fragments living
2841 outside the normal fragment chain to record the file and line info
2842 for this symbol. */
2843 if (listing & LISTING_SYMBOLS)
2844 {
2845 extern struct list_info_struct * listing_tail;
2846 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
2847
2848 memset (dummy_frag, 0, sizeof (fragS));
2849 dummy_frag->fr_type = rs_fill;
2850 dummy_frag->line = listing_tail;
2851 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2852 dummy_frag->fr_symbol = symbolP;
2853 }
2854 else
2855 #endif
2856 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2857
2858 #ifdef OBJ_COFF
2859 /* "set" symbols are local unless otherwise specified. */
2860 SF_SET_LOCAL (symbolP);
2861 #endif /* OBJ_COFF */
2862 } /* Make a new symbol. */
2863
2864 symbol_table_insert (symbolP);
2865
2866 * end_name = delim;
2867
2868 if (equiv
2869 && S_IS_DEFINED (symbolP)
2870 && S_GET_SEGMENT (symbolP) != reg_section)
2871 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2872
2873 pseudo_set (symbolP);
2874
2875 demand_empty_rest_of_line ();
2876
2877 /* XXX Now we come to the Thumb specific bit of code. */
2878
2879 THUMB_SET_FUNC (symbolP, 1);
2880 ARM_SET_THUMB (symbolP, 1);
2881 #if defined OBJ_ELF || defined OBJ_COFF
2882 ARM_SET_INTERWORK (symbolP, support_interwork);
2883 #endif
2884 }
2885
2886 /* Directives: Mode selection. */
2887
2888 /* .syntax [unified|divided] - choose the new unified syntax
2889 (same for Arm and Thumb encoding, modulo slight differences in what
2890 can be represented) or the old divergent syntax for each mode. */
2891 static void
2892 s_syntax (int unused ATTRIBUTE_UNUSED)
2893 {
2894 char *name, delim;
2895
2896 name = input_line_pointer;
2897 delim = get_symbol_end ();
2898
2899 if (!strcasecmp (name, "unified"))
2900 unified_syntax = TRUE;
2901 else if (!strcasecmp (name, "divided"))
2902 unified_syntax = FALSE;
2903 else
2904 {
2905 as_bad (_("unrecognized syntax mode \"%s\""), name);
2906 return;
2907 }
2908 *input_line_pointer = delim;
2909 demand_empty_rest_of_line ();
2910 }
2911
2912 /* Directives: sectioning and alignment. */
2913
2914 /* Same as s_align_ptwo but align 0 => align 2. */
2915
2916 static void
2917 s_align (int unused ATTRIBUTE_UNUSED)
2918 {
2919 int temp;
2920 bfd_boolean fill_p;
2921 long temp_fill;
2922 long max_alignment = 15;
2923
2924 temp = get_absolute_expression ();
2925 if (temp > max_alignment)
2926 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2927 else if (temp < 0)
2928 {
2929 as_bad (_("alignment negative. 0 assumed."));
2930 temp = 0;
2931 }
2932
2933 if (*input_line_pointer == ',')
2934 {
2935 input_line_pointer++;
2936 temp_fill = get_absolute_expression ();
2937 fill_p = TRUE;
2938 }
2939 else
2940 {
2941 fill_p = FALSE;
2942 temp_fill = 0;
2943 }
2944
2945 if (!temp)
2946 temp = 2;
2947
2948 /* Only make a frag if we HAVE to. */
2949 if (temp && !need_pass_2)
2950 {
2951 if (!fill_p && subseg_text_p (now_seg))
2952 frag_align_code (temp, 0);
2953 else
2954 frag_align (temp, (int) temp_fill, 0);
2955 }
2956 demand_empty_rest_of_line ();
2957
2958 record_alignment (now_seg, temp);
2959 }
2960
2961 static void
2962 s_bss (int ignore ATTRIBUTE_UNUSED)
2963 {
2964 /* We don't support putting frags in the BSS segment, we fake it by
2965 marking in_bss, then looking at s_skip for clues. */
2966 subseg_set (bss_section, 0);
2967 demand_empty_rest_of_line ();
2968
2969 #ifdef md_elf_section_change_hook
2970 md_elf_section_change_hook ();
2971 #endif
2972 }
2973
2974 static void
2975 s_even (int ignore ATTRIBUTE_UNUSED)
2976 {
2977 /* Never make frag if expect extra pass. */
2978 if (!need_pass_2)
2979 frag_align (1, 0, 0);
2980
2981 record_alignment (now_seg, 1);
2982
2983 demand_empty_rest_of_line ();
2984 }
2985
2986 /* Directives: Literal pools. */
2987
2988 static literal_pool *
2989 find_literal_pool (void)
2990 {
2991 literal_pool * pool;
2992
2993 for (pool = list_of_pools; pool != NULL; pool = pool->next)
2994 {
2995 if (pool->section == now_seg
2996 && pool->sub_section == now_subseg)
2997 break;
2998 }
2999
3000 return pool;
3001 }
3002
3003 static literal_pool *
3004 find_or_make_literal_pool (void)
3005 {
3006 /* Next literal pool ID number. */
3007 static unsigned int latest_pool_num = 1;
3008 literal_pool * pool;
3009
3010 pool = find_literal_pool ();
3011
3012 if (pool == NULL)
3013 {
3014 /* Create a new pool. */
3015 pool = (literal_pool *) xmalloc (sizeof (* pool));
3016 if (! pool)
3017 return NULL;
3018
3019 pool->next_free_entry = 0;
3020 pool->section = now_seg;
3021 pool->sub_section = now_subseg;
3022 pool->next = list_of_pools;
3023 pool->symbol = NULL;
3024
3025 /* Add it to the list. */
3026 list_of_pools = pool;
3027 }
3028
3029 /* New pools, and emptied pools, will have a NULL symbol. */
3030 if (pool->symbol == NULL)
3031 {
3032 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3033 (valueT) 0, &zero_address_frag);
3034 pool->id = latest_pool_num ++;
3035 }
3036
3037 /* Done. */
3038 return pool;
3039 }
3040
3041 /* Add the literal in the global 'inst'
3042 structure to the relevant literal pool. */
3043
3044 static int
3045 add_to_lit_pool (void)
3046 {
3047 literal_pool * pool;
3048 unsigned int entry;
3049
3050 pool = find_or_make_literal_pool ();
3051
3052 /* Check if this literal value is already in the pool. */
3053 for (entry = 0; entry < pool->next_free_entry; entry ++)
3054 {
3055 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3056 && (inst.reloc.exp.X_op == O_constant)
3057 && (pool->literals[entry].X_add_number
3058 == inst.reloc.exp.X_add_number)
3059 && (pool->literals[entry].X_unsigned
3060 == inst.reloc.exp.X_unsigned))
3061 break;
3062
3063 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3064 && (inst.reloc.exp.X_op == O_symbol)
3065 && (pool->literals[entry].X_add_number
3066 == inst.reloc.exp.X_add_number)
3067 && (pool->literals[entry].X_add_symbol
3068 == inst.reloc.exp.X_add_symbol)
3069 && (pool->literals[entry].X_op_symbol
3070 == inst.reloc.exp.X_op_symbol))
3071 break;
3072 }
3073
3074 /* Do we need to create a new entry? */
3075 if (entry == pool->next_free_entry)
3076 {
3077 if (entry >= MAX_LITERAL_POOL_SIZE)
3078 {
3079 inst.error = _("literal pool overflow");
3080 return FAIL;
3081 }
3082
3083 pool->literals[entry] = inst.reloc.exp;
3084 #ifdef OBJ_ELF
3085 /* PR ld/12974: Record the location of the first source line to reference
3086 this entry in the literal pool. If it turns out during linking that the
3087 symbol does not exist we will be able to give an accurate line number for
3088 the (first use of the) missing reference. */
3089 if (debug_type == DEBUG_DWARF2)
3090 dwarf2_where (pool->locs + entry);
3091 #endif
3092 pool->next_free_entry += 1;
3093 }
3094
3095 inst.reloc.exp.X_op = O_symbol;
3096 inst.reloc.exp.X_add_number = ((int) entry) * 4;
3097 inst.reloc.exp.X_add_symbol = pool->symbol;
3098
3099 return SUCCESS;
3100 }
3101
3102 /* Can't use symbol_new here, so have to create a symbol and then at
3103 a later date assign it a value. Thats what these functions do. */
3104
3105 static void
3106 symbol_locate (symbolS * symbolP,
3107 const char * name, /* It is copied, the caller can modify. */
3108 segT segment, /* Segment identifier (SEG_<something>). */
3109 valueT valu, /* Symbol value. */
3110 fragS * frag) /* Associated fragment. */
3111 {
3112 unsigned int name_length;
3113 char * preserved_copy_of_name;
3114
3115 name_length = strlen (name) + 1; /* +1 for \0. */
3116 obstack_grow (&notes, name, name_length);
3117 preserved_copy_of_name = (char *) obstack_finish (&notes);
3118
3119 #ifdef tc_canonicalize_symbol_name
3120 preserved_copy_of_name =
3121 tc_canonicalize_symbol_name (preserved_copy_of_name);
3122 #endif
3123
3124 S_SET_NAME (symbolP, preserved_copy_of_name);
3125
3126 S_SET_SEGMENT (symbolP, segment);
3127 S_SET_VALUE (symbolP, valu);
3128 symbol_clear_list_pointers (symbolP);
3129
3130 symbol_set_frag (symbolP, frag);
3131
3132 /* Link to end of symbol chain. */
3133 {
3134 extern int symbol_table_frozen;
3135
3136 if (symbol_table_frozen)
3137 abort ();
3138 }
3139
3140 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3141
3142 obj_symbol_new_hook (symbolP);
3143
3144 #ifdef tc_symbol_new_hook
3145 tc_symbol_new_hook (symbolP);
3146 #endif
3147
3148 #ifdef DEBUG_SYMS
3149 verify_symbol_chain (symbol_rootP, symbol_lastP);
3150 #endif /* DEBUG_SYMS */
3151 }
3152
3153
3154 static void
3155 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3156 {
3157 unsigned int entry;
3158 literal_pool * pool;
3159 char sym_name[20];
3160
3161 pool = find_literal_pool ();
3162 if (pool == NULL
3163 || pool->symbol == NULL
3164 || pool->next_free_entry == 0)
3165 return;
3166
3167 mapping_state (MAP_DATA);
3168
3169 /* Align pool as you have word accesses.
3170 Only make a frag if we have to. */
3171 if (!need_pass_2)
3172 frag_align (2, 0, 0);
3173
3174 record_alignment (now_seg, 2);
3175
3176 sprintf (sym_name, "$$lit_\002%x", pool->id);
3177
3178 symbol_locate (pool->symbol, sym_name, now_seg,
3179 (valueT) frag_now_fix (), frag_now);
3180 symbol_table_insert (pool->symbol);
3181
3182 ARM_SET_THUMB (pool->symbol, thumb_mode);
3183
3184 #if defined OBJ_COFF || defined OBJ_ELF
3185 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3186 #endif
3187
3188 for (entry = 0; entry < pool->next_free_entry; entry ++)
3189 {
3190 #ifdef OBJ_ELF
3191 if (debug_type == DEBUG_DWARF2)
3192 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3193 #endif
3194 /* First output the expression in the instruction to the pool. */
3195 emit_expr (&(pool->literals[entry]), 4); /* .word */
3196 }
3197
3198 /* Mark the pool as empty. */
3199 pool->next_free_entry = 0;
3200 pool->symbol = NULL;
3201 }
3202
3203 #ifdef OBJ_ELF
3204 /* Forward declarations for functions below, in the MD interface
3205 section. */
3206 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3207 static valueT create_unwind_entry (int);
3208 static void start_unwind_section (const segT, int);
3209 static void add_unwind_opcode (valueT, int);
3210 static void flush_pending_unwind (void);
3211
3212 /* Directives: Data. */
3213
3214 static void
3215 s_arm_elf_cons (int nbytes)
3216 {
3217 expressionS exp;
3218
3219 #ifdef md_flush_pending_output
3220 md_flush_pending_output ();
3221 #endif
3222
3223 if (is_it_end_of_statement ())
3224 {
3225 demand_empty_rest_of_line ();
3226 return;
3227 }
3228
3229 #ifdef md_cons_align
3230 md_cons_align (nbytes);
3231 #endif
3232
3233 mapping_state (MAP_DATA);
3234 do
3235 {
3236 int reloc;
3237 char *base = input_line_pointer;
3238
3239 expression (& exp);
3240
3241 if (exp.X_op != O_symbol)
3242 emit_expr (&exp, (unsigned int) nbytes);
3243 else
3244 {
3245 char *before_reloc = input_line_pointer;
3246 reloc = parse_reloc (&input_line_pointer);
3247 if (reloc == -1)
3248 {
3249 as_bad (_("unrecognized relocation suffix"));
3250 ignore_rest_of_line ();
3251 return;
3252 }
3253 else if (reloc == BFD_RELOC_UNUSED)
3254 emit_expr (&exp, (unsigned int) nbytes);
3255 else
3256 {
3257 reloc_howto_type *howto = (reloc_howto_type *)
3258 bfd_reloc_type_lookup (stdoutput,
3259 (bfd_reloc_code_real_type) reloc);
3260 int size = bfd_get_reloc_size (howto);
3261
3262 if (reloc == BFD_RELOC_ARM_PLT32)
3263 {
3264 as_bad (_("(plt) is only valid on branch targets"));
3265 reloc = BFD_RELOC_UNUSED;
3266 size = 0;
3267 }
3268
3269 if (size > nbytes)
3270 as_bad (_("%s relocations do not fit in %d bytes"),
3271 howto->name, nbytes);
3272 else
3273 {
3274 /* We've parsed an expression stopping at O_symbol.
3275 But there may be more expression left now that we
3276 have parsed the relocation marker. Parse it again.
3277 XXX Surely there is a cleaner way to do this. */
3278 char *p = input_line_pointer;
3279 int offset;
3280 char *save_buf = (char *) alloca (input_line_pointer - base);
3281 memcpy (save_buf, base, input_line_pointer - base);
3282 memmove (base + (input_line_pointer - before_reloc),
3283 base, before_reloc - base);
3284
3285 input_line_pointer = base + (input_line_pointer-before_reloc);
3286 expression (&exp);
3287 memcpy (base, save_buf, p - base);
3288
3289 offset = nbytes - size;
3290 p = frag_more ((int) nbytes);
3291 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3292 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3293 }
3294 }
3295 }
3296 }
3297 while (*input_line_pointer++ == ',');
3298
3299 /* Put terminator back into stream. */
3300 input_line_pointer --;
3301 demand_empty_rest_of_line ();
3302 }
3303
3304 /* Emit an expression containing a 32-bit thumb instruction.
3305 Implementation based on put_thumb32_insn. */
3306
3307 static void
3308 emit_thumb32_expr (expressionS * exp)
3309 {
3310 expressionS exp_high = *exp;
3311
3312 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3313 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3314 exp->X_add_number &= 0xffff;
3315 emit_expr (exp, (unsigned int) THUMB_SIZE);
3316 }
3317
3318 /* Guess the instruction size based on the opcode. */
3319
3320 static int
3321 thumb_insn_size (int opcode)
3322 {
3323 if ((unsigned int) opcode < 0xe800u)
3324 return 2;
3325 else if ((unsigned int) opcode >= 0xe8000000u)
3326 return 4;
3327 else
3328 return 0;
3329 }
3330
3331 static bfd_boolean
3332 emit_insn (expressionS *exp, int nbytes)
3333 {
3334 int size = 0;
3335
3336 if (exp->X_op == O_constant)
3337 {
3338 size = nbytes;
3339
3340 if (size == 0)
3341 size = thumb_insn_size (exp->X_add_number);
3342
3343 if (size != 0)
3344 {
3345 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3346 {
3347 as_bad (_(".inst.n operand too big. "\
3348 "Use .inst.w instead"));
3349 size = 0;
3350 }
3351 else
3352 {
3353 if (now_it.state == AUTOMATIC_IT_BLOCK)
3354 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3355 else
3356 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3357
3358 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3359 emit_thumb32_expr (exp);
3360 else
3361 emit_expr (exp, (unsigned int) size);
3362
3363 it_fsm_post_encode ();
3364 }
3365 }
3366 else
3367 as_bad (_("cannot determine Thumb instruction size. " \
3368 "Use .inst.n/.inst.w instead"));
3369 }
3370 else
3371 as_bad (_("constant expression required"));
3372
3373 return (size != 0);
3374 }
3375
3376 /* Like s_arm_elf_cons but do not use md_cons_align and
3377 set the mapping state to MAP_ARM/MAP_THUMB. */
3378
3379 static void
3380 s_arm_elf_inst (int nbytes)
3381 {
3382 if (is_it_end_of_statement ())
3383 {
3384 demand_empty_rest_of_line ();
3385 return;
3386 }
3387
3388 /* Calling mapping_state () here will not change ARM/THUMB,
3389 but will ensure not to be in DATA state. */
3390
3391 if (thumb_mode)
3392 mapping_state (MAP_THUMB);
3393 else
3394 {
3395 if (nbytes != 0)
3396 {
3397 as_bad (_("width suffixes are invalid in ARM mode"));
3398 ignore_rest_of_line ();
3399 return;
3400 }
3401
3402 nbytes = 4;
3403
3404 mapping_state (MAP_ARM);
3405 }
3406
3407 do
3408 {
3409 expressionS exp;
3410
3411 expression (& exp);
3412
3413 if (! emit_insn (& exp, nbytes))
3414 {
3415 ignore_rest_of_line ();
3416 return;
3417 }
3418 }
3419 while (*input_line_pointer++ == ',');
3420
3421 /* Put terminator back into stream. */
3422 input_line_pointer --;
3423 demand_empty_rest_of_line ();
3424 }
3425
3426 /* Parse a .rel31 directive. */
3427
3428 static void
3429 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3430 {
3431 expressionS exp;
3432 char *p;
3433 valueT highbit;
3434
3435 highbit = 0;
3436 if (*input_line_pointer == '1')
3437 highbit = 0x80000000;
3438 else if (*input_line_pointer != '0')
3439 as_bad (_("expected 0 or 1"));
3440
3441 input_line_pointer++;
3442 if (*input_line_pointer != ',')
3443 as_bad (_("missing comma"));
3444 input_line_pointer++;
3445
3446 #ifdef md_flush_pending_output
3447 md_flush_pending_output ();
3448 #endif
3449
3450 #ifdef md_cons_align
3451 md_cons_align (4);
3452 #endif
3453
3454 mapping_state (MAP_DATA);
3455
3456 expression (&exp);
3457
3458 p = frag_more (4);
3459 md_number_to_chars (p, highbit, 4);
3460 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3461 BFD_RELOC_ARM_PREL31);
3462
3463 demand_empty_rest_of_line ();
3464 }
3465
3466 /* Directives: AEABI stack-unwind tables. */
3467
3468 /* Parse an unwind_fnstart directive. Simply records the current location. */
3469
3470 static void
3471 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3472 {
3473 demand_empty_rest_of_line ();
3474 if (unwind.proc_start)
3475 {
3476 as_bad (_("duplicate .fnstart directive"));
3477 return;
3478 }
3479
3480 /* Mark the start of the function. */
3481 unwind.proc_start = expr_build_dot ();
3482
3483 /* Reset the rest of the unwind info. */
3484 unwind.opcode_count = 0;
3485 unwind.table_entry = NULL;
3486 unwind.personality_routine = NULL;
3487 unwind.personality_index = -1;
3488 unwind.frame_size = 0;
3489 unwind.fp_offset = 0;
3490 unwind.fp_reg = REG_SP;
3491 unwind.fp_used = 0;
3492 unwind.sp_restored = 0;
3493 }
3494
3495
3496 /* Parse a handlerdata directive. Creates the exception handling table entry
3497 for the function. */
3498
3499 static void
3500 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3501 {
3502 demand_empty_rest_of_line ();
3503 if (!unwind.proc_start)
3504 as_bad (MISSING_FNSTART);
3505
3506 if (unwind.table_entry)
3507 as_bad (_("duplicate .handlerdata directive"));
3508
3509 create_unwind_entry (1);
3510 }
3511
3512 /* Parse an unwind_fnend directive. Generates the index table entry. */
3513
3514 static void
3515 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3516 {
3517 long where;
3518 char *ptr;
3519 valueT val;
3520 unsigned int marked_pr_dependency;
3521
3522 demand_empty_rest_of_line ();
3523
3524 if (!unwind.proc_start)
3525 {
3526 as_bad (_(".fnend directive without .fnstart"));
3527 return;
3528 }
3529
3530 /* Add eh table entry. */
3531 if (unwind.table_entry == NULL)
3532 val = create_unwind_entry (0);
3533 else
3534 val = 0;
3535
3536 /* Add index table entry. This is two words. */
3537 start_unwind_section (unwind.saved_seg, 1);
3538 frag_align (2, 0, 0);
3539 record_alignment (now_seg, 2);
3540
3541 ptr = frag_more (8);
3542 where = frag_now_fix () - 8;
3543
3544 /* Self relative offset of the function start. */
3545 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3546 BFD_RELOC_ARM_PREL31);
3547
3548 /* Indicate dependency on EHABI-defined personality routines to the
3549 linker, if it hasn't been done already. */
3550 marked_pr_dependency
3551 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
3552 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3553 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3554 {
3555 static const char *const name[] =
3556 {
3557 "__aeabi_unwind_cpp_pr0",
3558 "__aeabi_unwind_cpp_pr1",
3559 "__aeabi_unwind_cpp_pr2"
3560 };
3561 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3562 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3563 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3564 |= 1 << unwind.personality_index;
3565 }
3566
3567 if (val)
3568 /* Inline exception table entry. */
3569 md_number_to_chars (ptr + 4, val, 4);
3570 else
3571 /* Self relative offset of the table entry. */
3572 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3573 BFD_RELOC_ARM_PREL31);
3574
3575 /* Restore the original section. */
3576 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3577
3578 unwind.proc_start = NULL;
3579 }
3580
3581
3582 /* Parse an unwind_cantunwind directive. */
3583
3584 static void
3585 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3586 {
3587 demand_empty_rest_of_line ();
3588 if (!unwind.proc_start)
3589 as_bad (MISSING_FNSTART);
3590
3591 if (unwind.personality_routine || unwind.personality_index != -1)
3592 as_bad (_("personality routine specified for cantunwind frame"));
3593
3594 unwind.personality_index = -2;
3595 }
3596
3597
3598 /* Parse a personalityindex directive. */
3599
3600 static void
3601 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3602 {
3603 expressionS exp;
3604
3605 if (!unwind.proc_start)
3606 as_bad (MISSING_FNSTART);
3607
3608 if (unwind.personality_routine || unwind.personality_index != -1)
3609 as_bad (_("duplicate .personalityindex directive"));
3610
3611 expression (&exp);
3612
3613 if (exp.X_op != O_constant
3614 || exp.X_add_number < 0 || exp.X_add_number > 15)
3615 {
3616 as_bad (_("bad personality routine number"));
3617 ignore_rest_of_line ();
3618 return;
3619 }
3620
3621 unwind.personality_index = exp.X_add_number;
3622
3623 demand_empty_rest_of_line ();
3624 }
3625
3626
3627 /* Parse a personality directive. */
3628
3629 static void
3630 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3631 {
3632 char *name, *p, c;
3633
3634 if (!unwind.proc_start)
3635 as_bad (MISSING_FNSTART);
3636
3637 if (unwind.personality_routine || unwind.personality_index != -1)
3638 as_bad (_("duplicate .personality directive"));
3639
3640 name = input_line_pointer;
3641 c = get_symbol_end ();
3642 p = input_line_pointer;
3643 unwind.personality_routine = symbol_find_or_make (name);
3644 *p = c;
3645 demand_empty_rest_of_line ();
3646 }
3647
3648
3649 /* Parse a directive saving core registers. */
3650
3651 static void
3652 s_arm_unwind_save_core (void)
3653 {
3654 valueT op;
3655 long range;
3656 int n;
3657
3658 range = parse_reg_list (&input_line_pointer);
3659 if (range == FAIL)
3660 {
3661 as_bad (_("expected register list"));
3662 ignore_rest_of_line ();
3663 return;
3664 }
3665
3666 demand_empty_rest_of_line ();
3667
3668 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3669 into .unwind_save {..., sp...}. We aren't bothered about the value of
3670 ip because it is clobbered by calls. */
3671 if (unwind.sp_restored && unwind.fp_reg == 12
3672 && (range & 0x3000) == 0x1000)
3673 {
3674 unwind.opcode_count--;
3675 unwind.sp_restored = 0;
3676 range = (range | 0x2000) & ~0x1000;
3677 unwind.pending_offset = 0;
3678 }
3679
3680 /* Pop r4-r15. */
3681 if (range & 0xfff0)
3682 {
3683 /* See if we can use the short opcodes. These pop a block of up to 8
3684 registers starting with r4, plus maybe r14. */
3685 for (n = 0; n < 8; n++)
3686 {
3687 /* Break at the first non-saved register. */
3688 if ((range & (1 << (n + 4))) == 0)
3689 break;
3690 }
3691 /* See if there are any other bits set. */
3692 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3693 {
3694 /* Use the long form. */
3695 op = 0x8000 | ((range >> 4) & 0xfff);
3696 add_unwind_opcode (op, 2);
3697 }
3698 else
3699 {
3700 /* Use the short form. */
3701 if (range & 0x4000)
3702 op = 0xa8; /* Pop r14. */
3703 else
3704 op = 0xa0; /* Do not pop r14. */
3705 op |= (n - 1);
3706 add_unwind_opcode (op, 1);
3707 }
3708 }
3709
3710 /* Pop r0-r3. */
3711 if (range & 0xf)
3712 {
3713 op = 0xb100 | (range & 0xf);
3714 add_unwind_opcode (op, 2);
3715 }
3716
3717 /* Record the number of bytes pushed. */
3718 for (n = 0; n < 16; n++)
3719 {
3720 if (range & (1 << n))
3721 unwind.frame_size += 4;
3722 }
3723 }
3724
3725
3726 /* Parse a directive saving FPA registers. */
3727
3728 static void
3729 s_arm_unwind_save_fpa (int reg)
3730 {
3731 expressionS exp;
3732 int num_regs;
3733 valueT op;
3734
3735 /* Get Number of registers to transfer. */
3736 if (skip_past_comma (&input_line_pointer) != FAIL)
3737 expression (&exp);
3738 else
3739 exp.X_op = O_illegal;
3740
3741 if (exp.X_op != O_constant)
3742 {
3743 as_bad (_("expected , <constant>"));
3744 ignore_rest_of_line ();
3745 return;
3746 }
3747
3748 num_regs = exp.X_add_number;
3749
3750 if (num_regs < 1 || num_regs > 4)
3751 {
3752 as_bad (_("number of registers must be in the range [1:4]"));
3753 ignore_rest_of_line ();
3754 return;
3755 }
3756
3757 demand_empty_rest_of_line ();
3758
3759 if (reg == 4)
3760 {
3761 /* Short form. */
3762 op = 0xb4 | (num_regs - 1);
3763 add_unwind_opcode (op, 1);
3764 }
3765 else
3766 {
3767 /* Long form. */
3768 op = 0xc800 | (reg << 4) | (num_regs - 1);
3769 add_unwind_opcode (op, 2);
3770 }
3771 unwind.frame_size += num_regs * 12;
3772 }
3773
3774
3775 /* Parse a directive saving VFP registers for ARMv6 and above. */
3776
3777 static void
3778 s_arm_unwind_save_vfp_armv6 (void)
3779 {
3780 int count;
3781 unsigned int start;
3782 valueT op;
3783 int num_vfpv3_regs = 0;
3784 int num_regs_below_16;
3785
3786 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3787 if (count == FAIL)
3788 {
3789 as_bad (_("expected register list"));
3790 ignore_rest_of_line ();
3791 return;
3792 }
3793
3794 demand_empty_rest_of_line ();
3795
3796 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3797 than FSTMX/FLDMX-style ones). */
3798
3799 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3800 if (start >= 16)
3801 num_vfpv3_regs = count;
3802 else if (start + count > 16)
3803 num_vfpv3_regs = start + count - 16;
3804
3805 if (num_vfpv3_regs > 0)
3806 {
3807 int start_offset = start > 16 ? start - 16 : 0;
3808 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3809 add_unwind_opcode (op, 2);
3810 }
3811
3812 /* Generate opcode for registers numbered in the range 0 .. 15. */
3813 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
3814 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
3815 if (num_regs_below_16 > 0)
3816 {
3817 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3818 add_unwind_opcode (op, 2);
3819 }
3820
3821 unwind.frame_size += count * 8;
3822 }
3823
3824
3825 /* Parse a directive saving VFP registers for pre-ARMv6. */
3826
3827 static void
3828 s_arm_unwind_save_vfp (void)
3829 {
3830 int count;
3831 unsigned int reg;
3832 valueT op;
3833
3834 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
3835 if (count == FAIL)
3836 {
3837 as_bad (_("expected register list"));
3838 ignore_rest_of_line ();
3839 return;
3840 }
3841
3842 demand_empty_rest_of_line ();
3843
3844 if (reg == 8)
3845 {
3846 /* Short form. */
3847 op = 0xb8 | (count - 1);
3848 add_unwind_opcode (op, 1);
3849 }
3850 else
3851 {
3852 /* Long form. */
3853 op = 0xb300 | (reg << 4) | (count - 1);
3854 add_unwind_opcode (op, 2);
3855 }
3856 unwind.frame_size += count * 8 + 4;
3857 }
3858
3859
3860 /* Parse a directive saving iWMMXt data registers. */
3861
3862 static void
3863 s_arm_unwind_save_mmxwr (void)
3864 {
3865 int reg;
3866 int hi_reg;
3867 int i;
3868 unsigned mask = 0;
3869 valueT op;
3870
3871 if (*input_line_pointer == '{')
3872 input_line_pointer++;
3873
3874 do
3875 {
3876 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3877
3878 if (reg == FAIL)
3879 {
3880 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3881 goto error;
3882 }
3883
3884 if (mask >> reg)
3885 as_tsktsk (_("register list not in ascending order"));
3886 mask |= 1 << reg;
3887
3888 if (*input_line_pointer == '-')
3889 {
3890 input_line_pointer++;
3891 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3892 if (hi_reg == FAIL)
3893 {
3894 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3895 goto error;
3896 }
3897 else if (reg >= hi_reg)
3898 {
3899 as_bad (_("bad register range"));
3900 goto error;
3901 }
3902 for (; reg < hi_reg; reg++)
3903 mask |= 1 << reg;
3904 }
3905 }
3906 while (skip_past_comma (&input_line_pointer) != FAIL);
3907
3908 if (*input_line_pointer == '}')
3909 input_line_pointer++;
3910
3911 demand_empty_rest_of_line ();
3912
3913 /* Generate any deferred opcodes because we're going to be looking at
3914 the list. */
3915 flush_pending_unwind ();
3916
3917 for (i = 0; i < 16; i++)
3918 {
3919 if (mask & (1 << i))
3920 unwind.frame_size += 8;
3921 }
3922
3923 /* Attempt to combine with a previous opcode. We do this because gcc
3924 likes to output separate unwind directives for a single block of
3925 registers. */
3926 if (unwind.opcode_count > 0)
3927 {
3928 i = unwind.opcodes[unwind.opcode_count - 1];
3929 if ((i & 0xf8) == 0xc0)
3930 {
3931 i &= 7;
3932 /* Only merge if the blocks are contiguous. */
3933 if (i < 6)
3934 {
3935 if ((mask & 0xfe00) == (1 << 9))
3936 {
3937 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3938 unwind.opcode_count--;
3939 }
3940 }
3941 else if (i == 6 && unwind.opcode_count >= 2)
3942 {
3943 i = unwind.opcodes[unwind.opcode_count - 2];
3944 reg = i >> 4;
3945 i &= 0xf;
3946
3947 op = 0xffff << (reg - 1);
3948 if (reg > 0
3949 && ((mask & op) == (1u << (reg - 1))))
3950 {
3951 op = (1 << (reg + i + 1)) - 1;
3952 op &= ~((1 << reg) - 1);
3953 mask |= op;
3954 unwind.opcode_count -= 2;
3955 }
3956 }
3957 }
3958 }
3959
3960 hi_reg = 15;
3961 /* We want to generate opcodes in the order the registers have been
3962 saved, ie. descending order. */
3963 for (reg = 15; reg >= -1; reg--)
3964 {
3965 /* Save registers in blocks. */
3966 if (reg < 0
3967 || !(mask & (1 << reg)))
3968 {
3969 /* We found an unsaved reg. Generate opcodes to save the
3970 preceding block. */
3971 if (reg != hi_reg)
3972 {
3973 if (reg == 9)
3974 {
3975 /* Short form. */
3976 op = 0xc0 | (hi_reg - 10);
3977 add_unwind_opcode (op, 1);
3978 }
3979 else
3980 {
3981 /* Long form. */
3982 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
3983 add_unwind_opcode (op, 2);
3984 }
3985 }
3986 hi_reg = reg - 1;
3987 }
3988 }
3989
3990 return;
3991 error:
3992 ignore_rest_of_line ();
3993 }
3994
3995 static void
3996 s_arm_unwind_save_mmxwcg (void)
3997 {
3998 int reg;
3999 int hi_reg;
4000 unsigned mask = 0;
4001 valueT op;
4002
4003 if (*input_line_pointer == '{')
4004 input_line_pointer++;
4005
4006 do
4007 {
4008 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4009
4010 if (reg == FAIL)
4011 {
4012 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4013 goto error;
4014 }
4015
4016 reg -= 8;
4017 if (mask >> reg)
4018 as_tsktsk (_("register list not in ascending order"));
4019 mask |= 1 << reg;
4020
4021 if (*input_line_pointer == '-')
4022 {
4023 input_line_pointer++;
4024 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4025 if (hi_reg == FAIL)
4026 {
4027 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4028 goto error;
4029 }
4030 else if (reg >= hi_reg)
4031 {
4032 as_bad (_("bad register range"));
4033 goto error;
4034 }
4035 for (; reg < hi_reg; reg++)
4036 mask |= 1 << reg;
4037 }
4038 }
4039 while (skip_past_comma (&input_line_pointer) != FAIL);
4040
4041 if (*input_line_pointer == '}')
4042 input_line_pointer++;
4043
4044 demand_empty_rest_of_line ();
4045
4046 /* Generate any deferred opcodes because we're going to be looking at
4047 the list. */
4048 flush_pending_unwind ();
4049
4050 for (reg = 0; reg < 16; reg++)
4051 {
4052 if (mask & (1 << reg))
4053 unwind.frame_size += 4;
4054 }
4055 op = 0xc700 | mask;
4056 add_unwind_opcode (op, 2);
4057 return;
4058 error:
4059 ignore_rest_of_line ();
4060 }
4061
4062
4063 /* Parse an unwind_save directive.
4064 If the argument is non-zero, this is a .vsave directive. */
4065
4066 static void
4067 s_arm_unwind_save (int arch_v6)
4068 {
4069 char *peek;
4070 struct reg_entry *reg;
4071 bfd_boolean had_brace = FALSE;
4072
4073 if (!unwind.proc_start)
4074 as_bad (MISSING_FNSTART);
4075
4076 /* Figure out what sort of save we have. */
4077 peek = input_line_pointer;
4078
4079 if (*peek == '{')
4080 {
4081 had_brace = TRUE;
4082 peek++;
4083 }
4084
4085 reg = arm_reg_parse_multi (&peek);
4086
4087 if (!reg)
4088 {
4089 as_bad (_("register expected"));
4090 ignore_rest_of_line ();
4091 return;
4092 }
4093
4094 switch (reg->type)
4095 {
4096 case REG_TYPE_FN:
4097 if (had_brace)
4098 {
4099 as_bad (_("FPA .unwind_save does not take a register list"));
4100 ignore_rest_of_line ();
4101 return;
4102 }
4103 input_line_pointer = peek;
4104 s_arm_unwind_save_fpa (reg->number);
4105 return;
4106
4107 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
4108 case REG_TYPE_VFD:
4109 if (arch_v6)
4110 s_arm_unwind_save_vfp_armv6 ();
4111 else
4112 s_arm_unwind_save_vfp ();
4113 return;
4114 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
4115 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
4116
4117 default:
4118 as_bad (_(".unwind_save does not support this kind of register"));
4119 ignore_rest_of_line ();
4120 }
4121 }
4122
4123
4124 /* Parse an unwind_movsp directive. */
4125
4126 static void
4127 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4128 {
4129 int reg;
4130 valueT op;
4131 int offset;
4132
4133 if (!unwind.proc_start)
4134 as_bad (MISSING_FNSTART);
4135
4136 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4137 if (reg == FAIL)
4138 {
4139 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4140 ignore_rest_of_line ();
4141 return;
4142 }
4143
4144 /* Optional constant. */
4145 if (skip_past_comma (&input_line_pointer) != FAIL)
4146 {
4147 if (immediate_for_directive (&offset) == FAIL)
4148 return;
4149 }
4150 else
4151 offset = 0;
4152
4153 demand_empty_rest_of_line ();
4154
4155 if (reg == REG_SP || reg == REG_PC)
4156 {
4157 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4158 return;
4159 }
4160
4161 if (unwind.fp_reg != REG_SP)
4162 as_bad (_("unexpected .unwind_movsp directive"));
4163
4164 /* Generate opcode to restore the value. */
4165 op = 0x90 | reg;
4166 add_unwind_opcode (op, 1);
4167
4168 /* Record the information for later. */
4169 unwind.fp_reg = reg;
4170 unwind.fp_offset = unwind.frame_size - offset;
4171 unwind.sp_restored = 1;
4172 }
4173
4174 /* Parse an unwind_pad directive. */
4175
4176 static void
4177 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4178 {
4179 int offset;
4180
4181 if (!unwind.proc_start)
4182 as_bad (MISSING_FNSTART);
4183
4184 if (immediate_for_directive (&offset) == FAIL)
4185 return;
4186
4187 if (offset & 3)
4188 {
4189 as_bad (_("stack increment must be multiple of 4"));
4190 ignore_rest_of_line ();
4191 return;
4192 }
4193
4194 /* Don't generate any opcodes, just record the details for later. */
4195 unwind.frame_size += offset;
4196 unwind.pending_offset += offset;
4197
4198 demand_empty_rest_of_line ();
4199 }
4200
4201 /* Parse an unwind_setfp directive. */
4202
4203 static void
4204 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4205 {
4206 int sp_reg;
4207 int fp_reg;
4208 int offset;
4209
4210 if (!unwind.proc_start)
4211 as_bad (MISSING_FNSTART);
4212
4213 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4214 if (skip_past_comma (&input_line_pointer) == FAIL)
4215 sp_reg = FAIL;
4216 else
4217 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4218
4219 if (fp_reg == FAIL || sp_reg == FAIL)
4220 {
4221 as_bad (_("expected <reg>, <reg>"));
4222 ignore_rest_of_line ();
4223 return;
4224 }
4225
4226 /* Optional constant. */
4227 if (skip_past_comma (&input_line_pointer) != FAIL)
4228 {
4229 if (immediate_for_directive (&offset) == FAIL)
4230 return;
4231 }
4232 else
4233 offset = 0;
4234
4235 demand_empty_rest_of_line ();
4236
4237 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4238 {
4239 as_bad (_("register must be either sp or set by a previous"
4240 "unwind_movsp directive"));
4241 return;
4242 }
4243
4244 /* Don't generate any opcodes, just record the information for later. */
4245 unwind.fp_reg = fp_reg;
4246 unwind.fp_used = 1;
4247 if (sp_reg == REG_SP)
4248 unwind.fp_offset = unwind.frame_size - offset;
4249 else
4250 unwind.fp_offset -= offset;
4251 }
4252
4253 /* Parse an unwind_raw directive. */
4254
4255 static void
4256 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4257 {
4258 expressionS exp;
4259 /* This is an arbitrary limit. */
4260 unsigned char op[16];
4261 int count;
4262
4263 if (!unwind.proc_start)
4264 as_bad (MISSING_FNSTART);
4265
4266 expression (&exp);
4267 if (exp.X_op == O_constant
4268 && skip_past_comma (&input_line_pointer) != FAIL)
4269 {
4270 unwind.frame_size += exp.X_add_number;
4271 expression (&exp);
4272 }
4273 else
4274 exp.X_op = O_illegal;
4275
4276 if (exp.X_op != O_constant)
4277 {
4278 as_bad (_("expected <offset>, <opcode>"));
4279 ignore_rest_of_line ();
4280 return;
4281 }
4282
4283 count = 0;
4284
4285 /* Parse the opcode. */
4286 for (;;)
4287 {
4288 if (count >= 16)
4289 {
4290 as_bad (_("unwind opcode too long"));
4291 ignore_rest_of_line ();
4292 }
4293 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4294 {
4295 as_bad (_("invalid unwind opcode"));
4296 ignore_rest_of_line ();
4297 return;
4298 }
4299 op[count++] = exp.X_add_number;
4300
4301 /* Parse the next byte. */
4302 if (skip_past_comma (&input_line_pointer) == FAIL)
4303 break;
4304
4305 expression (&exp);
4306 }
4307
4308 /* Add the opcode bytes in reverse order. */
4309 while (count--)
4310 add_unwind_opcode (op[count], 1);
4311
4312 demand_empty_rest_of_line ();
4313 }
4314
4315
4316 /* Parse a .eabi_attribute directive. */
4317
4318 static void
4319 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4320 {
4321 int tag = s_vendor_attribute (OBJ_ATTR_PROC);
4322
4323 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4324 attributes_set_explicitly[tag] = 1;
4325 }
4326
4327 /* Emit a tls fix for the symbol. */
4328
4329 static void
4330 s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4331 {
4332 char *p;
4333 expressionS exp;
4334 #ifdef md_flush_pending_output
4335 md_flush_pending_output ();
4336 #endif
4337
4338 #ifdef md_cons_align
4339 md_cons_align (4);
4340 #endif
4341
4342 /* Since we're just labelling the code, there's no need to define a
4343 mapping symbol. */
4344 expression (&exp);
4345 p = obstack_next_free (&frchain_now->frch_obstack);
4346 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4347 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4348 : BFD_RELOC_ARM_TLS_DESCSEQ);
4349 }
4350 #endif /* OBJ_ELF */
4351
4352 static void s_arm_arch (int);
4353 static void s_arm_object_arch (int);
4354 static void s_arm_cpu (int);
4355 static void s_arm_fpu (int);
4356 static void s_arm_arch_extension (int);
4357
4358 #ifdef TE_PE
4359
4360 static void
4361 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
4362 {
4363 expressionS exp;
4364
4365 do
4366 {
4367 expression (&exp);
4368 if (exp.X_op == O_symbol)
4369 exp.X_op = O_secrel;
4370
4371 emit_expr (&exp, 4);
4372 }
4373 while (*input_line_pointer++ == ',');
4374
4375 input_line_pointer--;
4376 demand_empty_rest_of_line ();
4377 }
4378 #endif /* TE_PE */
4379
4380 /* This table describes all the machine specific pseudo-ops the assembler
4381 has to support. The fields are:
4382 pseudo-op name without dot
4383 function to call to execute this pseudo-op
4384 Integer arg to pass to the function. */
4385
4386 const pseudo_typeS md_pseudo_table[] =
4387 {
4388 /* Never called because '.req' does not start a line. */
4389 { "req", s_req, 0 },
4390 /* Following two are likewise never called. */
4391 { "dn", s_dn, 0 },
4392 { "qn", s_qn, 0 },
4393 { "unreq", s_unreq, 0 },
4394 { "bss", s_bss, 0 },
4395 { "align", s_align, 0 },
4396 { "arm", s_arm, 0 },
4397 { "thumb", s_thumb, 0 },
4398 { "code", s_code, 0 },
4399 { "force_thumb", s_force_thumb, 0 },
4400 { "thumb_func", s_thumb_func, 0 },
4401 { "thumb_set", s_thumb_set, 0 },
4402 { "even", s_even, 0 },
4403 { "ltorg", s_ltorg, 0 },
4404 { "pool", s_ltorg, 0 },
4405 { "syntax", s_syntax, 0 },
4406 { "cpu", s_arm_cpu, 0 },
4407 { "arch", s_arm_arch, 0 },
4408 { "object_arch", s_arm_object_arch, 0 },
4409 { "fpu", s_arm_fpu, 0 },
4410 { "arch_extension", s_arm_arch_extension, 0 },
4411 #ifdef OBJ_ELF
4412 { "word", s_arm_elf_cons, 4 },
4413 { "long", s_arm_elf_cons, 4 },
4414 { "inst.n", s_arm_elf_inst, 2 },
4415 { "inst.w", s_arm_elf_inst, 4 },
4416 { "inst", s_arm_elf_inst, 0 },
4417 { "rel31", s_arm_rel31, 0 },
4418 { "fnstart", s_arm_unwind_fnstart, 0 },
4419 { "fnend", s_arm_unwind_fnend, 0 },
4420 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4421 { "personality", s_arm_unwind_personality, 0 },
4422 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4423 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4424 { "save", s_arm_unwind_save, 0 },
4425 { "vsave", s_arm_unwind_save, 1 },
4426 { "movsp", s_arm_unwind_movsp, 0 },
4427 { "pad", s_arm_unwind_pad, 0 },
4428 { "setfp", s_arm_unwind_setfp, 0 },
4429 { "unwind_raw", s_arm_unwind_raw, 0 },
4430 { "eabi_attribute", s_arm_eabi_attribute, 0 },
4431 { "tlsdescseq", s_arm_tls_descseq, 0 },
4432 #else
4433 { "word", cons, 4},
4434
4435 /* These are used for dwarf. */
4436 {"2byte", cons, 2},
4437 {"4byte", cons, 4},
4438 {"8byte", cons, 8},
4439 /* These are used for dwarf2. */
4440 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4441 { "loc", dwarf2_directive_loc, 0 },
4442 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
4443 #endif
4444 { "extend", float_cons, 'x' },
4445 { "ldouble", float_cons, 'x' },
4446 { "packed", float_cons, 'p' },
4447 #ifdef TE_PE
4448 {"secrel32", pe_directive_secrel, 0},
4449 #endif
4450 { 0, 0, 0 }
4451 };
4452 \f
4453 /* Parser functions used exclusively in instruction operands. */
4454
4455 /* Generic immediate-value read function for use in insn parsing.
4456 STR points to the beginning of the immediate (the leading #);
4457 VAL receives the value; if the value is outside [MIN, MAX]
4458 issue an error. PREFIX_OPT is true if the immediate prefix is
4459 optional. */
4460
4461 static int
4462 parse_immediate (char **str, int *val, int min, int max,
4463 bfd_boolean prefix_opt)
4464 {
4465 expressionS exp;
4466 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4467 if (exp.X_op != O_constant)
4468 {
4469 inst.error = _("constant expression required");
4470 return FAIL;
4471 }
4472
4473 if (exp.X_add_number < min || exp.X_add_number > max)
4474 {
4475 inst.error = _("immediate value out of range");
4476 return FAIL;
4477 }
4478
4479 *val = exp.X_add_number;
4480 return SUCCESS;
4481 }
4482
4483 /* Less-generic immediate-value read function with the possibility of loading a
4484 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
4485 instructions. Puts the result directly in inst.operands[i]. */
4486
4487 static int
4488 parse_big_immediate (char **str, int i)
4489 {
4490 expressionS exp;
4491 char *ptr = *str;
4492
4493 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4494
4495 if (exp.X_op == O_constant)
4496 {
4497 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4498 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4499 O_constant. We have to be careful not to break compilation for
4500 32-bit X_add_number, though. */
4501 if ((exp.X_add_number & ~(offsetT)(0xffffffffU)) != 0)
4502 {
4503 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4504 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4505 inst.operands[i].regisimm = 1;
4506 }
4507 }
4508 else if (exp.X_op == O_big
4509 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32)
4510 {
4511 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4512
4513 /* Bignums have their least significant bits in
4514 generic_bignum[0]. Make sure we put 32 bits in imm and
4515 32 bits in reg, in a (hopefully) portable way. */
4516 gas_assert (parts != 0);
4517
4518 /* Make sure that the number is not too big.
4519 PR 11972: Bignums can now be sign-extended to the
4520 size of a .octa so check that the out of range bits
4521 are all zero or all one. */
4522 if (LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 64)
4523 {
4524 LITTLENUM_TYPE m = -1;
4525
4526 if (generic_bignum[parts * 2] != 0
4527 && generic_bignum[parts * 2] != m)
4528 return FAIL;
4529
4530 for (j = parts * 2 + 1; j < (unsigned) exp.X_add_number; j++)
4531 if (generic_bignum[j] != generic_bignum[j-1])
4532 return FAIL;
4533 }
4534
4535 inst.operands[i].imm = 0;
4536 for (j = 0; j < parts; j++, idx++)
4537 inst.operands[i].imm |= generic_bignum[idx]
4538 << (LITTLENUM_NUMBER_OF_BITS * j);
4539 inst.operands[i].reg = 0;
4540 for (j = 0; j < parts; j++, idx++)
4541 inst.operands[i].reg |= generic_bignum[idx]
4542 << (LITTLENUM_NUMBER_OF_BITS * j);
4543 inst.operands[i].regisimm = 1;
4544 }
4545 else
4546 return FAIL;
4547
4548 *str = ptr;
4549
4550 return SUCCESS;
4551 }
4552
4553 /* Returns the pseudo-register number of an FPA immediate constant,
4554 or FAIL if there isn't a valid constant here. */
4555
4556 static int
4557 parse_fpa_immediate (char ** str)
4558 {
4559 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4560 char * save_in;
4561 expressionS exp;
4562 int i;
4563 int j;
4564
4565 /* First try and match exact strings, this is to guarantee
4566 that some formats will work even for cross assembly. */
4567
4568 for (i = 0; fp_const[i]; i++)
4569 {
4570 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
4571 {
4572 char *start = *str;
4573
4574 *str += strlen (fp_const[i]);
4575 if (is_end_of_line[(unsigned char) **str])
4576 return i + 8;
4577 *str = start;
4578 }
4579 }
4580
4581 /* Just because we didn't get a match doesn't mean that the constant
4582 isn't valid, just that it is in a format that we don't
4583 automatically recognize. Try parsing it with the standard
4584 expression routines. */
4585
4586 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
4587
4588 /* Look for a raw floating point number. */
4589 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4590 && is_end_of_line[(unsigned char) *save_in])
4591 {
4592 for (i = 0; i < NUM_FLOAT_VALS; i++)
4593 {
4594 for (j = 0; j < MAX_LITTLENUMS; j++)
4595 {
4596 if (words[j] != fp_values[i][j])
4597 break;
4598 }
4599
4600 if (j == MAX_LITTLENUMS)
4601 {
4602 *str = save_in;
4603 return i + 8;
4604 }
4605 }
4606 }
4607
4608 /* Try and parse a more complex expression, this will probably fail
4609 unless the code uses a floating point prefix (eg "0f"). */
4610 save_in = input_line_pointer;
4611 input_line_pointer = *str;
4612 if (expression (&exp) == absolute_section
4613 && exp.X_op == O_big
4614 && exp.X_add_number < 0)
4615 {
4616 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4617 Ditto for 15. */
4618 if (gen_to_words (words, 5, (long) 15) == 0)
4619 {
4620 for (i = 0; i < NUM_FLOAT_VALS; i++)
4621 {
4622 for (j = 0; j < MAX_LITTLENUMS; j++)
4623 {
4624 if (words[j] != fp_values[i][j])
4625 break;
4626 }
4627
4628 if (j == MAX_LITTLENUMS)
4629 {
4630 *str = input_line_pointer;
4631 input_line_pointer = save_in;
4632 return i + 8;
4633 }
4634 }
4635 }
4636 }
4637
4638 *str = input_line_pointer;
4639 input_line_pointer = save_in;
4640 inst.error = _("invalid FPA immediate expression");
4641 return FAIL;
4642 }
4643
4644 /* Returns 1 if a number has "quarter-precision" float format
4645 0baBbbbbbc defgh000 00000000 00000000. */
4646
4647 static int
4648 is_quarter_float (unsigned imm)
4649 {
4650 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4651 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4652 }
4653
4654 /* Parse an 8-bit "quarter-precision" floating point number of the form:
4655 0baBbbbbbc defgh000 00000000 00000000.
4656 The zero and minus-zero cases need special handling, since they can't be
4657 encoded in the "quarter-precision" float format, but can nonetheless be
4658 loaded as integer constants. */
4659
4660 static unsigned
4661 parse_qfloat_immediate (char **ccp, int *immed)
4662 {
4663 char *str = *ccp;
4664 char *fpnum;
4665 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4666 int found_fpchar = 0;
4667
4668 skip_past_char (&str, '#');
4669
4670 /* We must not accidentally parse an integer as a floating-point number. Make
4671 sure that the value we parse is not an integer by checking for special
4672 characters '.' or 'e'.
4673 FIXME: This is a horrible hack, but doing better is tricky because type
4674 information isn't in a very usable state at parse time. */
4675 fpnum = str;
4676 skip_whitespace (fpnum);
4677
4678 if (strncmp (fpnum, "0x", 2) == 0)
4679 return FAIL;
4680 else
4681 {
4682 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4683 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4684 {
4685 found_fpchar = 1;
4686 break;
4687 }
4688
4689 if (!found_fpchar)
4690 return FAIL;
4691 }
4692
4693 if ((str = atof_ieee (str, 's', words)) != NULL)
4694 {
4695 unsigned fpword = 0;
4696 int i;
4697
4698 /* Our FP word must be 32 bits (single-precision FP). */
4699 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4700 {
4701 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4702 fpword |= words[i];
4703 }
4704
4705 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
4706 *immed = fpword;
4707 else
4708 return FAIL;
4709
4710 *ccp = str;
4711
4712 return SUCCESS;
4713 }
4714
4715 return FAIL;
4716 }
4717
4718 /* Shift operands. */
4719 enum shift_kind
4720 {
4721 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4722 };
4723
4724 struct asm_shift_name
4725 {
4726 const char *name;
4727 enum shift_kind kind;
4728 };
4729
4730 /* Third argument to parse_shift. */
4731 enum parse_shift_mode
4732 {
4733 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4734 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4735 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4736 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4737 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4738 };
4739
4740 /* Parse a <shift> specifier on an ARM data processing instruction.
4741 This has three forms:
4742
4743 (LSL|LSR|ASL|ASR|ROR) Rs
4744 (LSL|LSR|ASL|ASR|ROR) #imm
4745 RRX
4746
4747 Note that ASL is assimilated to LSL in the instruction encoding, and
4748 RRX to ROR #0 (which cannot be written as such). */
4749
4750 static int
4751 parse_shift (char **str, int i, enum parse_shift_mode mode)
4752 {
4753 const struct asm_shift_name *shift_name;
4754 enum shift_kind shift;
4755 char *s = *str;
4756 char *p = s;
4757 int reg;
4758
4759 for (p = *str; ISALPHA (*p); p++)
4760 ;
4761
4762 if (p == *str)
4763 {
4764 inst.error = _("shift expression expected");
4765 return FAIL;
4766 }
4767
4768 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
4769 p - *str);
4770
4771 if (shift_name == NULL)
4772 {
4773 inst.error = _("shift expression expected");
4774 return FAIL;
4775 }
4776
4777 shift = shift_name->kind;
4778
4779 switch (mode)
4780 {
4781 case NO_SHIFT_RESTRICT:
4782 case SHIFT_IMMEDIATE: break;
4783
4784 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4785 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4786 {
4787 inst.error = _("'LSL' or 'ASR' required");
4788 return FAIL;
4789 }
4790 break;
4791
4792 case SHIFT_LSL_IMMEDIATE:
4793 if (shift != SHIFT_LSL)
4794 {
4795 inst.error = _("'LSL' required");
4796 return FAIL;
4797 }
4798 break;
4799
4800 case SHIFT_ASR_IMMEDIATE:
4801 if (shift != SHIFT_ASR)
4802 {
4803 inst.error = _("'ASR' required");
4804 return FAIL;
4805 }
4806 break;
4807
4808 default: abort ();
4809 }
4810
4811 if (shift != SHIFT_RRX)
4812 {
4813 /* Whitespace can appear here if the next thing is a bare digit. */
4814 skip_whitespace (p);
4815
4816 if (mode == NO_SHIFT_RESTRICT
4817 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4818 {
4819 inst.operands[i].imm = reg;
4820 inst.operands[i].immisreg = 1;
4821 }
4822 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4823 return FAIL;
4824 }
4825 inst.operands[i].shift_kind = shift;
4826 inst.operands[i].shifted = 1;
4827 *str = p;
4828 return SUCCESS;
4829 }
4830
4831 /* Parse a <shifter_operand> for an ARM data processing instruction:
4832
4833 #<immediate>
4834 #<immediate>, <rotate>
4835 <Rm>
4836 <Rm>, <shift>
4837
4838 where <shift> is defined by parse_shift above, and <rotate> is a
4839 multiple of 2 between 0 and 30. Validation of immediate operands
4840 is deferred to md_apply_fix. */
4841
4842 static int
4843 parse_shifter_operand (char **str, int i)
4844 {
4845 int value;
4846 expressionS exp;
4847
4848 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
4849 {
4850 inst.operands[i].reg = value;
4851 inst.operands[i].isreg = 1;
4852
4853 /* parse_shift will override this if appropriate */
4854 inst.reloc.exp.X_op = O_constant;
4855 inst.reloc.exp.X_add_number = 0;
4856
4857 if (skip_past_comma (str) == FAIL)
4858 return SUCCESS;
4859
4860 /* Shift operation on register. */
4861 return parse_shift (str, i, NO_SHIFT_RESTRICT);
4862 }
4863
4864 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4865 return FAIL;
4866
4867 if (skip_past_comma (str) == SUCCESS)
4868 {
4869 /* #x, y -- ie explicit rotation by Y. */
4870 if (my_get_expression (&exp, str, GE_NO_PREFIX))
4871 return FAIL;
4872
4873 if (exp.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
4874 {
4875 inst.error = _("constant expression expected");
4876 return FAIL;
4877 }
4878
4879 value = exp.X_add_number;
4880 if (value < 0 || value > 30 || value % 2 != 0)
4881 {
4882 inst.error = _("invalid rotation");
4883 return FAIL;
4884 }
4885 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4886 {
4887 inst.error = _("invalid constant");
4888 return FAIL;
4889 }
4890
4891 /* Encode as specified. */
4892 inst.operands[i].imm = inst.reloc.exp.X_add_number | value << 7;
4893 return SUCCESS;
4894 }
4895
4896 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4897 inst.reloc.pc_rel = 0;
4898 return SUCCESS;
4899 }
4900
4901 /* Group relocation information. Each entry in the table contains the
4902 textual name of the relocation as may appear in assembler source
4903 and must end with a colon.
4904 Along with this textual name are the relocation codes to be used if
4905 the corresponding instruction is an ALU instruction (ADD or SUB only),
4906 an LDR, an LDRS, or an LDC. */
4907
4908 struct group_reloc_table_entry
4909 {
4910 const char *name;
4911 int alu_code;
4912 int ldr_code;
4913 int ldrs_code;
4914 int ldc_code;
4915 };
4916
4917 typedef enum
4918 {
4919 /* Varieties of non-ALU group relocation. */
4920
4921 GROUP_LDR,
4922 GROUP_LDRS,
4923 GROUP_LDC
4924 } group_reloc_type;
4925
4926 static struct group_reloc_table_entry group_reloc_table[] =
4927 { /* Program counter relative: */
4928 { "pc_g0_nc",
4929 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4930 0, /* LDR */
4931 0, /* LDRS */
4932 0 }, /* LDC */
4933 { "pc_g0",
4934 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4935 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4936 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4937 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4938 { "pc_g1_nc",
4939 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4940 0, /* LDR */
4941 0, /* LDRS */
4942 0 }, /* LDC */
4943 { "pc_g1",
4944 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4945 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4946 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4947 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4948 { "pc_g2",
4949 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4950 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4951 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4952 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4953 /* Section base relative */
4954 { "sb_g0_nc",
4955 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4956 0, /* LDR */
4957 0, /* LDRS */
4958 0 }, /* LDC */
4959 { "sb_g0",
4960 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4961 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4962 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4963 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4964 { "sb_g1_nc",
4965 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4966 0, /* LDR */
4967 0, /* LDRS */
4968 0 }, /* LDC */
4969 { "sb_g1",
4970 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4971 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4972 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4973 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4974 { "sb_g2",
4975 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4976 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4977 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4978 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4979
4980 /* Given the address of a pointer pointing to the textual name of a group
4981 relocation as may appear in assembler source, attempt to find its details
4982 in group_reloc_table. The pointer will be updated to the character after
4983 the trailing colon. On failure, FAIL will be returned; SUCCESS
4984 otherwise. On success, *entry will be updated to point at the relevant
4985 group_reloc_table entry. */
4986
4987 static int
4988 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
4989 {
4990 unsigned int i;
4991 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
4992 {
4993 int length = strlen (group_reloc_table[i].name);
4994
4995 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
4996 && (*str)[length] == ':')
4997 {
4998 *out = &group_reloc_table[i];
4999 *str += (length + 1);
5000 return SUCCESS;
5001 }
5002 }
5003
5004 return FAIL;
5005 }
5006
5007 /* Parse a <shifter_operand> for an ARM data processing instruction
5008 (as for parse_shifter_operand) where group relocations are allowed:
5009
5010 #<immediate>
5011 #<immediate>, <rotate>
5012 #:<group_reloc>:<expression>
5013 <Rm>
5014 <Rm>, <shift>
5015
5016 where <group_reloc> is one of the strings defined in group_reloc_table.
5017 The hashes are optional.
5018
5019 Everything else is as for parse_shifter_operand. */
5020
5021 static parse_operand_result
5022 parse_shifter_operand_group_reloc (char **str, int i)
5023 {
5024 /* Determine if we have the sequence of characters #: or just :
5025 coming next. If we do, then we check for a group relocation.
5026 If we don't, punt the whole lot to parse_shifter_operand. */
5027
5028 if (((*str)[0] == '#' && (*str)[1] == ':')
5029 || (*str)[0] == ':')
5030 {
5031 struct group_reloc_table_entry *entry;
5032
5033 if ((*str)[0] == '#')
5034 (*str) += 2;
5035 else
5036 (*str)++;
5037
5038 /* Try to parse a group relocation. Anything else is an error. */
5039 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5040 {
5041 inst.error = _("unknown group relocation");
5042 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5043 }
5044
5045 /* We now have the group relocation table entry corresponding to
5046 the name in the assembler source. Next, we parse the expression. */
5047 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
5048 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5049
5050 /* Record the relocation type (always the ALU variant here). */
5051 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
5052 gas_assert (inst.reloc.type != 0);
5053
5054 return PARSE_OPERAND_SUCCESS;
5055 }
5056 else
5057 return parse_shifter_operand (str, i) == SUCCESS
5058 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5059
5060 /* Never reached. */
5061 }
5062
5063 /* Parse a Neon alignment expression. Information is written to
5064 inst.operands[i]. We assume the initial ':' has been skipped.
5065
5066 align .imm = align << 8, .immisalign=1, .preind=0 */
5067 static parse_operand_result
5068 parse_neon_alignment (char **str, int i)
5069 {
5070 char *p = *str;
5071 expressionS exp;
5072
5073 my_get_expression (&exp, &p, GE_NO_PREFIX);
5074
5075 if (exp.X_op != O_constant)
5076 {
5077 inst.error = _("alignment must be constant");
5078 return PARSE_OPERAND_FAIL;
5079 }
5080
5081 inst.operands[i].imm = exp.X_add_number << 8;
5082 inst.operands[i].immisalign = 1;
5083 /* Alignments are not pre-indexes. */
5084 inst.operands[i].preind = 0;
5085
5086 *str = p;
5087 return PARSE_OPERAND_SUCCESS;
5088 }
5089
5090 /* Parse all forms of an ARM address expression. Information is written
5091 to inst.operands[i] and/or inst.reloc.
5092
5093 Preindexed addressing (.preind=1):
5094
5095 [Rn, #offset] .reg=Rn .reloc.exp=offset
5096 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5097 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5098 .shift_kind=shift .reloc.exp=shift_imm
5099
5100 These three may have a trailing ! which causes .writeback to be set also.
5101
5102 Postindexed addressing (.postind=1, .writeback=1):
5103
5104 [Rn], #offset .reg=Rn .reloc.exp=offset
5105 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5106 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5107 .shift_kind=shift .reloc.exp=shift_imm
5108
5109 Unindexed addressing (.preind=0, .postind=0):
5110
5111 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5112
5113 Other:
5114
5115 [Rn]{!} shorthand for [Rn,#0]{!}
5116 =immediate .isreg=0 .reloc.exp=immediate
5117 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
5118
5119 It is the caller's responsibility to check for addressing modes not
5120 supported by the instruction, and to set inst.reloc.type. */
5121
5122 static parse_operand_result
5123 parse_address_main (char **str, int i, int group_relocations,
5124 group_reloc_type group_type)
5125 {
5126 char *p = *str;
5127 int reg;
5128
5129 if (skip_past_char (&p, '[') == FAIL)
5130 {
5131 if (skip_past_char (&p, '=') == FAIL)
5132 {
5133 /* Bare address - translate to PC-relative offset. */
5134 inst.reloc.pc_rel = 1;
5135 inst.operands[i].reg = REG_PC;
5136 inst.operands[i].isreg = 1;
5137 inst.operands[i].preind = 1;
5138 }
5139 /* Otherwise a load-constant pseudo op, no special treatment needed here. */
5140
5141 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5142 return PARSE_OPERAND_FAIL;
5143
5144 *str = p;
5145 return PARSE_OPERAND_SUCCESS;
5146 }
5147
5148 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5149 {
5150 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5151 return PARSE_OPERAND_FAIL;
5152 }
5153 inst.operands[i].reg = reg;
5154 inst.operands[i].isreg = 1;
5155
5156 if (skip_past_comma (&p) == SUCCESS)
5157 {
5158 inst.operands[i].preind = 1;
5159
5160 if (*p == '+') p++;
5161 else if (*p == '-') p++, inst.operands[i].negative = 1;
5162
5163 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5164 {
5165 inst.operands[i].imm = reg;
5166 inst.operands[i].immisreg = 1;
5167
5168 if (skip_past_comma (&p) == SUCCESS)
5169 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5170 return PARSE_OPERAND_FAIL;
5171 }
5172 else if (skip_past_char (&p, ':') == SUCCESS)
5173 {
5174 /* FIXME: '@' should be used here, but it's filtered out by generic
5175 code before we get to see it here. This may be subject to
5176 change. */
5177 parse_operand_result result = parse_neon_alignment (&p, i);
5178
5179 if (result != PARSE_OPERAND_SUCCESS)
5180 return result;
5181 }
5182 else
5183 {
5184 if (inst.operands[i].negative)
5185 {
5186 inst.operands[i].negative = 0;
5187 p--;
5188 }
5189
5190 if (group_relocations
5191 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
5192 {
5193 struct group_reloc_table_entry *entry;
5194
5195 /* Skip over the #: or : sequence. */
5196 if (*p == '#')
5197 p += 2;
5198 else
5199 p++;
5200
5201 /* Try to parse a group relocation. Anything else is an
5202 error. */
5203 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5204 {
5205 inst.error = _("unknown group relocation");
5206 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5207 }
5208
5209 /* We now have the group relocation table entry corresponding to
5210 the name in the assembler source. Next, we parse the
5211 expression. */
5212 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5213 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5214
5215 /* Record the relocation type. */
5216 switch (group_type)
5217 {
5218 case GROUP_LDR:
5219 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
5220 break;
5221
5222 case GROUP_LDRS:
5223 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
5224 break;
5225
5226 case GROUP_LDC:
5227 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
5228 break;
5229
5230 default:
5231 gas_assert (0);
5232 }
5233
5234 if (inst.reloc.type == 0)
5235 {
5236 inst.error = _("this group relocation is not allowed on this instruction");
5237 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5238 }
5239 }
5240 else
5241 {
5242 char *q = p;
5243 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5244 return PARSE_OPERAND_FAIL;
5245 /* If the offset is 0, find out if it's a +0 or -0. */
5246 if (inst.reloc.exp.X_op == O_constant
5247 && inst.reloc.exp.X_add_number == 0)
5248 {
5249 skip_whitespace (q);
5250 if (*q == '#')
5251 {
5252 q++;
5253 skip_whitespace (q);
5254 }
5255 if (*q == '-')
5256 inst.operands[i].negative = 1;
5257 }
5258 }
5259 }
5260 }
5261 else if (skip_past_char (&p, ':') == SUCCESS)
5262 {
5263 /* FIXME: '@' should be used here, but it's filtered out by generic code
5264 before we get to see it here. This may be subject to change. */
5265 parse_operand_result result = parse_neon_alignment (&p, i);
5266
5267 if (result != PARSE_OPERAND_SUCCESS)
5268 return result;
5269 }
5270
5271 if (skip_past_char (&p, ']') == FAIL)
5272 {
5273 inst.error = _("']' expected");
5274 return PARSE_OPERAND_FAIL;
5275 }
5276
5277 if (skip_past_char (&p, '!') == SUCCESS)
5278 inst.operands[i].writeback = 1;
5279
5280 else if (skip_past_comma (&p) == SUCCESS)
5281 {
5282 if (skip_past_char (&p, '{') == SUCCESS)
5283 {
5284 /* [Rn], {expr} - unindexed, with option */
5285 if (parse_immediate (&p, &inst.operands[i].imm,
5286 0, 255, TRUE) == FAIL)
5287 return PARSE_OPERAND_FAIL;
5288
5289 if (skip_past_char (&p, '}') == FAIL)
5290 {
5291 inst.error = _("'}' expected at end of 'option' field");
5292 return PARSE_OPERAND_FAIL;
5293 }
5294 if (inst.operands[i].preind)
5295 {
5296 inst.error = _("cannot combine index with option");
5297 return PARSE_OPERAND_FAIL;
5298 }
5299 *str = p;
5300 return PARSE_OPERAND_SUCCESS;
5301 }
5302 else
5303 {
5304 inst.operands[i].postind = 1;
5305 inst.operands[i].writeback = 1;
5306
5307 if (inst.operands[i].preind)
5308 {
5309 inst.error = _("cannot combine pre- and post-indexing");
5310 return PARSE_OPERAND_FAIL;
5311 }
5312
5313 if (*p == '+') p++;
5314 else if (*p == '-') p++, inst.operands[i].negative = 1;
5315
5316 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5317 {
5318 /* We might be using the immediate for alignment already. If we
5319 are, OR the register number into the low-order bits. */
5320 if (inst.operands[i].immisalign)
5321 inst.operands[i].imm |= reg;
5322 else
5323 inst.operands[i].imm = reg;
5324 inst.operands[i].immisreg = 1;
5325
5326 if (skip_past_comma (&p) == SUCCESS)
5327 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5328 return PARSE_OPERAND_FAIL;
5329 }
5330 else
5331 {
5332 char *q = p;
5333 if (inst.operands[i].negative)
5334 {
5335 inst.operands[i].negative = 0;
5336 p--;
5337 }
5338 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5339 return PARSE_OPERAND_FAIL;
5340 /* If the offset is 0, find out if it's a +0 or -0. */
5341 if (inst.reloc.exp.X_op == O_constant
5342 && inst.reloc.exp.X_add_number == 0)
5343 {
5344 skip_whitespace (q);
5345 if (*q == '#')
5346 {
5347 q++;
5348 skip_whitespace (q);
5349 }
5350 if (*q == '-')
5351 inst.operands[i].negative = 1;
5352 }
5353 }
5354 }
5355 }
5356
5357 /* If at this point neither .preind nor .postind is set, we have a
5358 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5359 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5360 {
5361 inst.operands[i].preind = 1;
5362 inst.reloc.exp.X_op = O_constant;
5363 inst.reloc.exp.X_add_number = 0;
5364 }
5365 *str = p;
5366 return PARSE_OPERAND_SUCCESS;
5367 }
5368
5369 static int
5370 parse_address (char **str, int i)
5371 {
5372 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
5373 ? SUCCESS : FAIL;
5374 }
5375
5376 static parse_operand_result
5377 parse_address_group_reloc (char **str, int i, group_reloc_type type)
5378 {
5379 return parse_address_main (str, i, 1, type);
5380 }
5381
5382 /* Parse an operand for a MOVW or MOVT instruction. */
5383 static int
5384 parse_half (char **str)
5385 {
5386 char * p;
5387
5388 p = *str;
5389 skip_past_char (&p, '#');
5390 if (strncasecmp (p, ":lower16:", 9) == 0)
5391 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5392 else if (strncasecmp (p, ":upper16:", 9) == 0)
5393 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5394
5395 if (inst.reloc.type != BFD_RELOC_UNUSED)
5396 {
5397 p += 9;
5398 skip_whitespace (p);
5399 }
5400
5401 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5402 return FAIL;
5403
5404 if (inst.reloc.type == BFD_RELOC_UNUSED)
5405 {
5406 if (inst.reloc.exp.X_op != O_constant)
5407 {
5408 inst.error = _("constant expression expected");
5409 return FAIL;
5410 }
5411 if (inst.reloc.exp.X_add_number < 0
5412 || inst.reloc.exp.X_add_number > 0xffff)
5413 {
5414 inst.error = _("immediate value out of range");
5415 return FAIL;
5416 }
5417 }
5418 *str = p;
5419 return SUCCESS;
5420 }
5421
5422 /* Miscellaneous. */
5423
5424 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5425 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5426 static int
5427 parse_psr (char **str, bfd_boolean lhs)
5428 {
5429 char *p;
5430 unsigned long psr_field;
5431 const struct asm_psr *psr;
5432 char *start;
5433 bfd_boolean is_apsr = FALSE;
5434 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
5435
5436 /* PR gas/12698: If the user has specified -march=all then m_profile will
5437 be TRUE, but we want to ignore it in this case as we are building for any
5438 CPU type, including non-m variants. */
5439 if (selected_cpu.core == arm_arch_any.core)
5440 m_profile = FALSE;
5441
5442 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5443 feature for ease of use and backwards compatibility. */
5444 p = *str;
5445 if (strncasecmp (p, "SPSR", 4) == 0)
5446 {
5447 if (m_profile)
5448 goto unsupported_psr;
5449
5450 psr_field = SPSR_BIT;
5451 }
5452 else if (strncasecmp (p, "CPSR", 4) == 0)
5453 {
5454 if (m_profile)
5455 goto unsupported_psr;
5456
5457 psr_field = 0;
5458 }
5459 else if (strncasecmp (p, "APSR", 4) == 0)
5460 {
5461 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
5462 and ARMv7-R architecture CPUs. */
5463 is_apsr = TRUE;
5464 psr_field = 0;
5465 }
5466 else if (m_profile)
5467 {
5468 start = p;
5469 do
5470 p++;
5471 while (ISALNUM (*p) || *p == '_');
5472
5473 if (strncasecmp (start, "iapsr", 5) == 0
5474 || strncasecmp (start, "eapsr", 5) == 0
5475 || strncasecmp (start, "xpsr", 4) == 0
5476 || strncasecmp (start, "psr", 3) == 0)
5477 p = start + strcspn (start, "rR") + 1;
5478
5479 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5480 p - start);
5481
5482 if (!psr)
5483 return FAIL;
5484
5485 /* If APSR is being written, a bitfield may be specified. Note that
5486 APSR itself is handled above. */
5487 if (psr->field <= 3)
5488 {
5489 psr_field = psr->field;
5490 is_apsr = TRUE;
5491 goto check_suffix;
5492 }
5493
5494 *str = p;
5495 /* M-profile MSR instructions have the mask field set to "10", except
5496 *PSR variants which modify APSR, which may use a different mask (and
5497 have been handled already). Do that by setting the PSR_f field
5498 here. */
5499 return psr->field | (lhs ? PSR_f : 0);
5500 }
5501 else
5502 goto unsupported_psr;
5503
5504 p += 4;
5505 check_suffix:
5506 if (*p == '_')
5507 {
5508 /* A suffix follows. */
5509 p++;
5510 start = p;
5511
5512 do
5513 p++;
5514 while (ISALNUM (*p) || *p == '_');
5515
5516 if (is_apsr)
5517 {
5518 /* APSR uses a notation for bits, rather than fields. */
5519 unsigned int nzcvq_bits = 0;
5520 unsigned int g_bit = 0;
5521 char *bit;
5522
5523 for (bit = start; bit != p; bit++)
5524 {
5525 switch (TOLOWER (*bit))
5526 {
5527 case 'n':
5528 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
5529 break;
5530
5531 case 'z':
5532 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
5533 break;
5534
5535 case 'c':
5536 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
5537 break;
5538
5539 case 'v':
5540 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
5541 break;
5542
5543 case 'q':
5544 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
5545 break;
5546
5547 case 'g':
5548 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
5549 break;
5550
5551 default:
5552 inst.error = _("unexpected bit specified after APSR");
5553 return FAIL;
5554 }
5555 }
5556
5557 if (nzcvq_bits == 0x1f)
5558 psr_field |= PSR_f;
5559
5560 if (g_bit == 0x1)
5561 {
5562 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
5563 {
5564 inst.error = _("selected processor does not "
5565 "support DSP extension");
5566 return FAIL;
5567 }
5568
5569 psr_field |= PSR_s;
5570 }
5571
5572 if ((nzcvq_bits & 0x20) != 0
5573 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
5574 || (g_bit & 0x2) != 0)
5575 {
5576 inst.error = _("bad bitmask specified after APSR");
5577 return FAIL;
5578 }
5579 }
5580 else
5581 {
5582 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
5583 p - start);
5584 if (!psr)
5585 goto error;
5586
5587 psr_field |= psr->field;
5588 }
5589 }
5590 else
5591 {
5592 if (ISALNUM (*p))
5593 goto error; /* Garbage after "[CS]PSR". */
5594
5595 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
5596 is deprecated, but allow it anyway. */
5597 if (is_apsr && lhs)
5598 {
5599 psr_field |= PSR_f;
5600 as_tsktsk (_("writing to APSR without specifying a bitmask is "
5601 "deprecated"));
5602 }
5603 else if (!m_profile)
5604 /* These bits are never right for M-profile devices: don't set them
5605 (only code paths which read/write APSR reach here). */
5606 psr_field |= (PSR_c | PSR_f);
5607 }
5608 *str = p;
5609 return psr_field;
5610
5611 unsupported_psr:
5612 inst.error = _("selected processor does not support requested special "
5613 "purpose register");
5614 return FAIL;
5615
5616 error:
5617 inst.error = _("flag for {c}psr instruction expected");
5618 return FAIL;
5619 }
5620
5621 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5622 value suitable for splatting into the AIF field of the instruction. */
5623
5624 static int
5625 parse_cps_flags (char **str)
5626 {
5627 int val = 0;
5628 int saw_a_flag = 0;
5629 char *s = *str;
5630
5631 for (;;)
5632 switch (*s++)
5633 {
5634 case '\0': case ',':
5635 goto done;
5636
5637 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
5638 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
5639 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
5640
5641 default:
5642 inst.error = _("unrecognized CPS flag");
5643 return FAIL;
5644 }
5645
5646 done:
5647 if (saw_a_flag == 0)
5648 {
5649 inst.error = _("missing CPS flags");
5650 return FAIL;
5651 }
5652
5653 *str = s - 1;
5654 return val;
5655 }
5656
5657 /* Parse an endian specifier ("BE" or "LE", case insensitive);
5658 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
5659
5660 static int
5661 parse_endian_specifier (char **str)
5662 {
5663 int little_endian;
5664 char *s = *str;
5665
5666 if (strncasecmp (s, "BE", 2))
5667 little_endian = 0;
5668 else if (strncasecmp (s, "LE", 2))
5669 little_endian = 1;
5670 else
5671 {
5672 inst.error = _("valid endian specifiers are be or le");
5673 return FAIL;
5674 }
5675
5676 if (ISALNUM (s[2]) || s[2] == '_')
5677 {
5678 inst.error = _("valid endian specifiers are be or le");
5679 return FAIL;
5680 }
5681
5682 *str = s + 2;
5683 return little_endian;
5684 }
5685
5686 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5687 value suitable for poking into the rotate field of an sxt or sxta
5688 instruction, or FAIL on error. */
5689
5690 static int
5691 parse_ror (char **str)
5692 {
5693 int rot;
5694 char *s = *str;
5695
5696 if (strncasecmp (s, "ROR", 3) == 0)
5697 s += 3;
5698 else
5699 {
5700 inst.error = _("missing rotation field after comma");
5701 return FAIL;
5702 }
5703
5704 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5705 return FAIL;
5706
5707 switch (rot)
5708 {
5709 case 0: *str = s; return 0x0;
5710 case 8: *str = s; return 0x1;
5711 case 16: *str = s; return 0x2;
5712 case 24: *str = s; return 0x3;
5713
5714 default:
5715 inst.error = _("rotation can only be 0, 8, 16, or 24");
5716 return FAIL;
5717 }
5718 }
5719
5720 /* Parse a conditional code (from conds[] below). The value returned is in the
5721 range 0 .. 14, or FAIL. */
5722 static int
5723 parse_cond (char **str)
5724 {
5725 char *q;
5726 const struct asm_cond *c;
5727 int n;
5728 /* Condition codes are always 2 characters, so matching up to
5729 3 characters is sufficient. */
5730 char cond[3];
5731
5732 q = *str;
5733 n = 0;
5734 while (ISALPHA (*q) && n < 3)
5735 {
5736 cond[n] = TOLOWER (*q);
5737 q++;
5738 n++;
5739 }
5740
5741 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
5742 if (!c)
5743 {
5744 inst.error = _("condition required");
5745 return FAIL;
5746 }
5747
5748 *str = q;
5749 return c->value;
5750 }
5751
5752 /* Parse an option for a barrier instruction. Returns the encoding for the
5753 option, or FAIL. */
5754 static int
5755 parse_barrier (char **str)
5756 {
5757 char *p, *q;
5758 const struct asm_barrier_opt *o;
5759
5760 p = q = *str;
5761 while (ISALPHA (*q))
5762 q++;
5763
5764 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
5765 q - p);
5766 if (!o)
5767 return FAIL;
5768
5769 *str = q;
5770 return o->value;
5771 }
5772
5773 /* Parse the operands of a table branch instruction. Similar to a memory
5774 operand. */
5775 static int
5776 parse_tb (char **str)
5777 {
5778 char * p = *str;
5779 int reg;
5780
5781 if (skip_past_char (&p, '[') == FAIL)
5782 {
5783 inst.error = _("'[' expected");
5784 return FAIL;
5785 }
5786
5787 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5788 {
5789 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5790 return FAIL;
5791 }
5792 inst.operands[0].reg = reg;
5793
5794 if (skip_past_comma (&p) == FAIL)
5795 {
5796 inst.error = _("',' expected");
5797 return FAIL;
5798 }
5799
5800 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5801 {
5802 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5803 return FAIL;
5804 }
5805 inst.operands[0].imm = reg;
5806
5807 if (skip_past_comma (&p) == SUCCESS)
5808 {
5809 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5810 return FAIL;
5811 if (inst.reloc.exp.X_add_number != 1)
5812 {
5813 inst.error = _("invalid shift");
5814 return FAIL;
5815 }
5816 inst.operands[0].shifted = 1;
5817 }
5818
5819 if (skip_past_char (&p, ']') == FAIL)
5820 {
5821 inst.error = _("']' expected");
5822 return FAIL;
5823 }
5824 *str = p;
5825 return SUCCESS;
5826 }
5827
5828 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5829 information on the types the operands can take and how they are encoded.
5830 Up to four operands may be read; this function handles setting the
5831 ".present" field for each read operand itself.
5832 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5833 else returns FAIL. */
5834
5835 static int
5836 parse_neon_mov (char **str, int *which_operand)
5837 {
5838 int i = *which_operand, val;
5839 enum arm_reg_type rtype;
5840 char *ptr = *str;
5841 struct neon_type_el optype;
5842
5843 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5844 {
5845 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5846 inst.operands[i].reg = val;
5847 inst.operands[i].isscalar = 1;
5848 inst.operands[i].vectype = optype;
5849 inst.operands[i++].present = 1;
5850
5851 if (skip_past_comma (&ptr) == FAIL)
5852 goto wanted_comma;
5853
5854 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5855 goto wanted_arm;
5856
5857 inst.operands[i].reg = val;
5858 inst.operands[i].isreg = 1;
5859 inst.operands[i].present = 1;
5860 }
5861 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
5862 != FAIL)
5863 {
5864 /* Cases 0, 1, 2, 3, 5 (D only). */
5865 if (skip_past_comma (&ptr) == FAIL)
5866 goto wanted_comma;
5867
5868 inst.operands[i].reg = val;
5869 inst.operands[i].isreg = 1;
5870 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5871 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5872 inst.operands[i].isvec = 1;
5873 inst.operands[i].vectype = optype;
5874 inst.operands[i++].present = 1;
5875
5876 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5877 {
5878 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5879 Case 13: VMOV <Sd>, <Rm> */
5880 inst.operands[i].reg = val;
5881 inst.operands[i].isreg = 1;
5882 inst.operands[i].present = 1;
5883
5884 if (rtype == REG_TYPE_NQ)
5885 {
5886 first_error (_("can't use Neon quad register here"));
5887 return FAIL;
5888 }
5889 else if (rtype != REG_TYPE_VFS)
5890 {
5891 i++;
5892 if (skip_past_comma (&ptr) == FAIL)
5893 goto wanted_comma;
5894 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5895 goto wanted_arm;
5896 inst.operands[i].reg = val;
5897 inst.operands[i].isreg = 1;
5898 inst.operands[i].present = 1;
5899 }
5900 }
5901 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5902 &optype)) != FAIL)
5903 {
5904 /* Case 0: VMOV<c><q> <Qd>, <Qm>
5905 Case 1: VMOV<c><q> <Dd>, <Dm>
5906 Case 8: VMOV.F32 <Sd>, <Sm>
5907 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5908
5909 inst.operands[i].reg = val;
5910 inst.operands[i].isreg = 1;
5911 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5912 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5913 inst.operands[i].isvec = 1;
5914 inst.operands[i].vectype = optype;
5915 inst.operands[i].present = 1;
5916
5917 if (skip_past_comma (&ptr) == SUCCESS)
5918 {
5919 /* Case 15. */
5920 i++;
5921
5922 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5923 goto wanted_arm;
5924
5925 inst.operands[i].reg = val;
5926 inst.operands[i].isreg = 1;
5927 inst.operands[i++].present = 1;
5928
5929 if (skip_past_comma (&ptr) == FAIL)
5930 goto wanted_comma;
5931
5932 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5933 goto wanted_arm;
5934
5935 inst.operands[i].reg = val;
5936 inst.operands[i].isreg = 1;
5937 inst.operands[i].present = 1;
5938 }
5939 }
5940 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5941 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5942 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5943 Case 10: VMOV.F32 <Sd>, #<imm>
5944 Case 11: VMOV.F64 <Dd>, #<imm> */
5945 inst.operands[i].immisfloat = 1;
5946 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5947 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5948 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5949 ;
5950 else
5951 {
5952 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5953 return FAIL;
5954 }
5955 }
5956 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5957 {
5958 /* Cases 6, 7. */
5959 inst.operands[i].reg = val;
5960 inst.operands[i].isreg = 1;
5961 inst.operands[i++].present = 1;
5962
5963 if (skip_past_comma (&ptr) == FAIL)
5964 goto wanted_comma;
5965
5966 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5967 {
5968 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
5969 inst.operands[i].reg = val;
5970 inst.operands[i].isscalar = 1;
5971 inst.operands[i].present = 1;
5972 inst.operands[i].vectype = optype;
5973 }
5974 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5975 {
5976 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
5977 inst.operands[i].reg = val;
5978 inst.operands[i].isreg = 1;
5979 inst.operands[i++].present = 1;
5980
5981 if (skip_past_comma (&ptr) == FAIL)
5982 goto wanted_comma;
5983
5984 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
5985 == FAIL)
5986 {
5987 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5988 return FAIL;
5989 }
5990
5991 inst.operands[i].reg = val;
5992 inst.operands[i].isreg = 1;
5993 inst.operands[i].isvec = 1;
5994 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5995 inst.operands[i].vectype = optype;
5996 inst.operands[i].present = 1;
5997
5998 if (rtype == REG_TYPE_VFS)
5999 {
6000 /* Case 14. */
6001 i++;
6002 if (skip_past_comma (&ptr) == FAIL)
6003 goto wanted_comma;
6004 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6005 &optype)) == FAIL)
6006 {
6007 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6008 return FAIL;
6009 }
6010 inst.operands[i].reg = val;
6011 inst.operands[i].isreg = 1;
6012 inst.operands[i].isvec = 1;
6013 inst.operands[i].issingle = 1;
6014 inst.operands[i].vectype = optype;
6015 inst.operands[i].present = 1;
6016 }
6017 }
6018 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
6019 != FAIL)
6020 {
6021 /* Case 13. */
6022 inst.operands[i].reg = val;
6023 inst.operands[i].isreg = 1;
6024 inst.operands[i].isvec = 1;
6025 inst.operands[i].issingle = 1;
6026 inst.operands[i].vectype = optype;
6027 inst.operands[i].present = 1;
6028 }
6029 }
6030 else
6031 {
6032 first_error (_("parse error"));
6033 return FAIL;
6034 }
6035
6036 /* Successfully parsed the operands. Update args. */
6037 *which_operand = i;
6038 *str = ptr;
6039 return SUCCESS;
6040
6041 wanted_comma:
6042 first_error (_("expected comma"));
6043 return FAIL;
6044
6045 wanted_arm:
6046 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
6047 return FAIL;
6048 }
6049
6050 /* Use this macro when the operand constraints are different
6051 for ARM and THUMB (e.g. ldrd). */
6052 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6053 ((arm_operand) | ((thumb_operand) << 16))
6054
6055 /* Matcher codes for parse_operands. */
6056 enum operand_parse_code
6057 {
6058 OP_stop, /* end of line */
6059
6060 OP_RR, /* ARM register */
6061 OP_RRnpc, /* ARM register, not r15 */
6062 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
6063 OP_RRnpcb, /* ARM register, not r15, in square brackets */
6064 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
6065 optional trailing ! */
6066 OP_RRw, /* ARM register, not r15, optional trailing ! */
6067 OP_RCP, /* Coprocessor number */
6068 OP_RCN, /* Coprocessor register */
6069 OP_RF, /* FPA register */
6070 OP_RVS, /* VFP single precision register */
6071 OP_RVD, /* VFP double precision register (0..15) */
6072 OP_RND, /* Neon double precision register (0..31) */
6073 OP_RNQ, /* Neon quad precision register */
6074 OP_RVSD, /* VFP single or double precision register */
6075 OP_RNDQ, /* Neon double or quad precision register */
6076 OP_RNSDQ, /* Neon single, double or quad precision register */
6077 OP_RNSC, /* Neon scalar D[X] */
6078 OP_RVC, /* VFP control register */
6079 OP_RMF, /* Maverick F register */
6080 OP_RMD, /* Maverick D register */
6081 OP_RMFX, /* Maverick FX register */
6082 OP_RMDX, /* Maverick DX register */
6083 OP_RMAX, /* Maverick AX register */
6084 OP_RMDS, /* Maverick DSPSC register */
6085 OP_RIWR, /* iWMMXt wR register */
6086 OP_RIWC, /* iWMMXt wC register */
6087 OP_RIWG, /* iWMMXt wCG register */
6088 OP_RXA, /* XScale accumulator register */
6089
6090 OP_REGLST, /* ARM register list */
6091 OP_VRSLST, /* VFP single-precision register list */
6092 OP_VRDLST, /* VFP double-precision register list */
6093 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
6094 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6095 OP_NSTRLST, /* Neon element/structure list */
6096
6097 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
6098 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
6099 OP_RR_RNSC, /* ARM reg or Neon scalar. */
6100 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
6101 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6102 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6103 OP_VMOV, /* Neon VMOV operands. */
6104 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
6105 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
6106 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
6107
6108 OP_I0, /* immediate zero */
6109 OP_I7, /* immediate value 0 .. 7 */
6110 OP_I15, /* 0 .. 15 */
6111 OP_I16, /* 1 .. 16 */
6112 OP_I16z, /* 0 .. 16 */
6113 OP_I31, /* 0 .. 31 */
6114 OP_I31w, /* 0 .. 31, optional trailing ! */
6115 OP_I32, /* 1 .. 32 */
6116 OP_I32z, /* 0 .. 32 */
6117 OP_I63, /* 0 .. 63 */
6118 OP_I63s, /* -64 .. 63 */
6119 OP_I64, /* 1 .. 64 */
6120 OP_I64z, /* 0 .. 64 */
6121 OP_I255, /* 0 .. 255 */
6122
6123 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6124 OP_I7b, /* 0 .. 7 */
6125 OP_I15b, /* 0 .. 15 */
6126 OP_I31b, /* 0 .. 31 */
6127
6128 OP_SH, /* shifter operand */
6129 OP_SHG, /* shifter operand with possible group relocation */
6130 OP_ADDR, /* Memory address expression (any mode) */
6131 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6132 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6133 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
6134 OP_EXP, /* arbitrary expression */
6135 OP_EXPi, /* same, with optional immediate prefix */
6136 OP_EXPr, /* same, with optional relocation suffix */
6137 OP_HALF, /* 0 .. 65535 or low/high reloc. */
6138
6139 OP_CPSF, /* CPS flags */
6140 OP_ENDI, /* Endianness specifier */
6141 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
6142 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
6143 OP_COND, /* conditional code */
6144 OP_TB, /* Table branch. */
6145
6146 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
6147
6148 OP_RRnpc_I0, /* ARM register or literal 0 */
6149 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
6150 OP_RR_EXi, /* ARM register or expression with imm prefix */
6151 OP_RF_IF, /* FPA register or immediate */
6152 OP_RIWR_RIWC, /* iWMMXt R or C reg */
6153 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
6154
6155 /* Optional operands. */
6156 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
6157 OP_oI31b, /* 0 .. 31 */
6158 OP_oI32b, /* 1 .. 32 */
6159 OP_oI32z, /* 0 .. 32 */
6160 OP_oIffffb, /* 0 .. 65535 */
6161 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
6162
6163 OP_oRR, /* ARM register */
6164 OP_oRRnpc, /* ARM register, not the PC */
6165 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
6166 OP_oRRw, /* ARM register, not r15, optional trailing ! */
6167 OP_oRND, /* Optional Neon double precision register */
6168 OP_oRNQ, /* Optional Neon quad precision register */
6169 OP_oRNDQ, /* Optional Neon double or quad precision register */
6170 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
6171 OP_oSHll, /* LSL immediate */
6172 OP_oSHar, /* ASR immediate */
6173 OP_oSHllar, /* LSL or ASR immediate */
6174 OP_oROR, /* ROR 0/8/16/24 */
6175 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
6176
6177 /* Some pre-defined mixed (ARM/THUMB) operands. */
6178 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
6179 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
6180 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
6181
6182 OP_FIRST_OPTIONAL = OP_oI7b
6183 };
6184
6185 /* Generic instruction operand parser. This does no encoding and no
6186 semantic validation; it merely squirrels values away in the inst
6187 structure. Returns SUCCESS or FAIL depending on whether the
6188 specified grammar matched. */
6189 static int
6190 parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
6191 {
6192 unsigned const int *upat = pattern;
6193 char *backtrack_pos = 0;
6194 const char *backtrack_error = 0;
6195 int i, val, backtrack_index = 0;
6196 enum arm_reg_type rtype;
6197 parse_operand_result result;
6198 unsigned int op_parse_code;
6199
6200 #define po_char_or_fail(chr) \
6201 do \
6202 { \
6203 if (skip_past_char (&str, chr) == FAIL) \
6204 goto bad_args; \
6205 } \
6206 while (0)
6207
6208 #define po_reg_or_fail(regtype) \
6209 do \
6210 { \
6211 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6212 & inst.operands[i].vectype); \
6213 if (val == FAIL) \
6214 { \
6215 first_error (_(reg_expected_msgs[regtype])); \
6216 goto failure; \
6217 } \
6218 inst.operands[i].reg = val; \
6219 inst.operands[i].isreg = 1; \
6220 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6221 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6222 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6223 || rtype == REG_TYPE_VFD \
6224 || rtype == REG_TYPE_NQ); \
6225 } \
6226 while (0)
6227
6228 #define po_reg_or_goto(regtype, label) \
6229 do \
6230 { \
6231 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6232 & inst.operands[i].vectype); \
6233 if (val == FAIL) \
6234 goto label; \
6235 \
6236 inst.operands[i].reg = val; \
6237 inst.operands[i].isreg = 1; \
6238 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6239 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6240 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6241 || rtype == REG_TYPE_VFD \
6242 || rtype == REG_TYPE_NQ); \
6243 } \
6244 while (0)
6245
6246 #define po_imm_or_fail(min, max, popt) \
6247 do \
6248 { \
6249 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
6250 goto failure; \
6251 inst.operands[i].imm = val; \
6252 } \
6253 while (0)
6254
6255 #define po_scalar_or_goto(elsz, label) \
6256 do \
6257 { \
6258 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
6259 if (val == FAIL) \
6260 goto label; \
6261 inst.operands[i].reg = val; \
6262 inst.operands[i].isscalar = 1; \
6263 } \
6264 while (0)
6265
6266 #define po_misc_or_fail(expr) \
6267 do \
6268 { \
6269 if (expr) \
6270 goto failure; \
6271 } \
6272 while (0)
6273
6274 #define po_misc_or_fail_no_backtrack(expr) \
6275 do \
6276 { \
6277 result = expr; \
6278 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
6279 backtrack_pos = 0; \
6280 if (result != PARSE_OPERAND_SUCCESS) \
6281 goto failure; \
6282 } \
6283 while (0)
6284
6285 #define po_barrier_or_imm(str) \
6286 do \
6287 { \
6288 val = parse_barrier (&str); \
6289 if (val == FAIL) \
6290 { \
6291 if (ISALPHA (*str)) \
6292 goto failure; \
6293 else \
6294 goto immediate; \
6295 } \
6296 else \
6297 { \
6298 if ((inst.instruction & 0xf0) == 0x60 \
6299 && val != 0xf) \
6300 { \
6301 /* ISB can only take SY as an option. */ \
6302 inst.error = _("invalid barrier type"); \
6303 goto failure; \
6304 } \
6305 } \
6306 } \
6307 while (0)
6308
6309 skip_whitespace (str);
6310
6311 for (i = 0; upat[i] != OP_stop; i++)
6312 {
6313 op_parse_code = upat[i];
6314 if (op_parse_code >= 1<<16)
6315 op_parse_code = thumb ? (op_parse_code >> 16)
6316 : (op_parse_code & ((1<<16)-1));
6317
6318 if (op_parse_code >= OP_FIRST_OPTIONAL)
6319 {
6320 /* Remember where we are in case we need to backtrack. */
6321 gas_assert (!backtrack_pos);
6322 backtrack_pos = str;
6323 backtrack_error = inst.error;
6324 backtrack_index = i;
6325 }
6326
6327 if (i > 0 && (i > 1 || inst.operands[0].present))
6328 po_char_or_fail (',');
6329
6330 switch (op_parse_code)
6331 {
6332 /* Registers */
6333 case OP_oRRnpc:
6334 case OP_oRRnpcsp:
6335 case OP_RRnpc:
6336 case OP_RRnpcsp:
6337 case OP_oRR:
6338 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
6339 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
6340 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
6341 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6342 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6343 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
6344 case OP_oRND:
6345 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
6346 case OP_RVC:
6347 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6348 break;
6349 /* Also accept generic coprocessor regs for unknown registers. */
6350 coproc_reg:
6351 po_reg_or_fail (REG_TYPE_CN);
6352 break;
6353 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6354 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6355 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6356 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6357 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6358 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6359 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6360 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6361 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6362 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
6363 case OP_oRNQ:
6364 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
6365 case OP_oRNDQ:
6366 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
6367 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6368 case OP_oRNSDQ:
6369 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
6370
6371 /* Neon scalar. Using an element size of 8 means that some invalid
6372 scalars are accepted here, so deal with those in later code. */
6373 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6374
6375 case OP_RNDQ_I0:
6376 {
6377 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6378 break;
6379 try_imm0:
6380 po_imm_or_fail (0, 0, TRUE);
6381 }
6382 break;
6383
6384 case OP_RVSD_I0:
6385 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6386 break;
6387
6388 case OP_RR_RNSC:
6389 {
6390 po_scalar_or_goto (8, try_rr);
6391 break;
6392 try_rr:
6393 po_reg_or_fail (REG_TYPE_RN);
6394 }
6395 break;
6396
6397 case OP_RNSDQ_RNSC:
6398 {
6399 po_scalar_or_goto (8, try_nsdq);
6400 break;
6401 try_nsdq:
6402 po_reg_or_fail (REG_TYPE_NSDQ);
6403 }
6404 break;
6405
6406 case OP_RNDQ_RNSC:
6407 {
6408 po_scalar_or_goto (8, try_ndq);
6409 break;
6410 try_ndq:
6411 po_reg_or_fail (REG_TYPE_NDQ);
6412 }
6413 break;
6414
6415 case OP_RND_RNSC:
6416 {
6417 po_scalar_or_goto (8, try_vfd);
6418 break;
6419 try_vfd:
6420 po_reg_or_fail (REG_TYPE_VFD);
6421 }
6422 break;
6423
6424 case OP_VMOV:
6425 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6426 not careful then bad things might happen. */
6427 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6428 break;
6429
6430 case OP_RNDQ_Ibig:
6431 {
6432 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
6433 break;
6434 try_immbig:
6435 /* There's a possibility of getting a 64-bit immediate here, so
6436 we need special handling. */
6437 if (parse_big_immediate (&str, i) == FAIL)
6438 {
6439 inst.error = _("immediate value is out of range");
6440 goto failure;
6441 }
6442 }
6443 break;
6444
6445 case OP_RNDQ_I63b:
6446 {
6447 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6448 break;
6449 try_shimm:
6450 po_imm_or_fail (0, 63, TRUE);
6451 }
6452 break;
6453
6454 case OP_RRnpcb:
6455 po_char_or_fail ('[');
6456 po_reg_or_fail (REG_TYPE_RN);
6457 po_char_or_fail (']');
6458 break;
6459
6460 case OP_RRnpctw:
6461 case OP_RRw:
6462 case OP_oRRw:
6463 po_reg_or_fail (REG_TYPE_RN);
6464 if (skip_past_char (&str, '!') == SUCCESS)
6465 inst.operands[i].writeback = 1;
6466 break;
6467
6468 /* Immediates */
6469 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6470 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6471 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
6472 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
6473 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6474 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
6475 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
6476 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
6477 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6478 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6479 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
6480 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
6481
6482 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6483 case OP_oI7b:
6484 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6485 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6486 case OP_oI31b:
6487 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
6488 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
6489 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
6490 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6491
6492 /* Immediate variants */
6493 case OP_oI255c:
6494 po_char_or_fail ('{');
6495 po_imm_or_fail (0, 255, TRUE);
6496 po_char_or_fail ('}');
6497 break;
6498
6499 case OP_I31w:
6500 /* The expression parser chokes on a trailing !, so we have
6501 to find it first and zap it. */
6502 {
6503 char *s = str;
6504 while (*s && *s != ',')
6505 s++;
6506 if (s[-1] == '!')
6507 {
6508 s[-1] = '\0';
6509 inst.operands[i].writeback = 1;
6510 }
6511 po_imm_or_fail (0, 31, TRUE);
6512 if (str == s - 1)
6513 str = s;
6514 }
6515 break;
6516
6517 /* Expressions */
6518 case OP_EXPi: EXPi:
6519 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6520 GE_OPT_PREFIX));
6521 break;
6522
6523 case OP_EXP:
6524 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6525 GE_NO_PREFIX));
6526 break;
6527
6528 case OP_EXPr: EXPr:
6529 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6530 GE_NO_PREFIX));
6531 if (inst.reloc.exp.X_op == O_symbol)
6532 {
6533 val = parse_reloc (&str);
6534 if (val == -1)
6535 {
6536 inst.error = _("unrecognized relocation suffix");
6537 goto failure;
6538 }
6539 else if (val != BFD_RELOC_UNUSED)
6540 {
6541 inst.operands[i].imm = val;
6542 inst.operands[i].hasreloc = 1;
6543 }
6544 }
6545 break;
6546
6547 /* Operand for MOVW or MOVT. */
6548 case OP_HALF:
6549 po_misc_or_fail (parse_half (&str));
6550 break;
6551
6552 /* Register or expression. */
6553 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
6554 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
6555
6556 /* Register or immediate. */
6557 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
6558 I0: po_imm_or_fail (0, 0, FALSE); break;
6559
6560 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
6561 IF:
6562 if (!is_immediate_prefix (*str))
6563 goto bad_args;
6564 str++;
6565 val = parse_fpa_immediate (&str);
6566 if (val == FAIL)
6567 goto failure;
6568 /* FPA immediates are encoded as registers 8-15.
6569 parse_fpa_immediate has already applied the offset. */
6570 inst.operands[i].reg = val;
6571 inst.operands[i].isreg = 1;
6572 break;
6573
6574 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
6575 I32z: po_imm_or_fail (0, 32, FALSE); break;
6576
6577 /* Two kinds of register. */
6578 case OP_RIWR_RIWC:
6579 {
6580 struct reg_entry *rege = arm_reg_parse_multi (&str);
6581 if (!rege
6582 || (rege->type != REG_TYPE_MMXWR
6583 && rege->type != REG_TYPE_MMXWC
6584 && rege->type != REG_TYPE_MMXWCG))
6585 {
6586 inst.error = _("iWMMXt data or control register expected");
6587 goto failure;
6588 }
6589 inst.operands[i].reg = rege->number;
6590 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
6591 }
6592 break;
6593
6594 case OP_RIWC_RIWG:
6595 {
6596 struct reg_entry *rege = arm_reg_parse_multi (&str);
6597 if (!rege
6598 || (rege->type != REG_TYPE_MMXWC
6599 && rege->type != REG_TYPE_MMXWCG))
6600 {
6601 inst.error = _("iWMMXt control register expected");
6602 goto failure;
6603 }
6604 inst.operands[i].reg = rege->number;
6605 inst.operands[i].isreg = 1;
6606 }
6607 break;
6608
6609 /* Misc */
6610 case OP_CPSF: val = parse_cps_flags (&str); break;
6611 case OP_ENDI: val = parse_endian_specifier (&str); break;
6612 case OP_oROR: val = parse_ror (&str); break;
6613 case OP_COND: val = parse_cond (&str); break;
6614 case OP_oBARRIER_I15:
6615 po_barrier_or_imm (str); break;
6616 immediate:
6617 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
6618 goto failure;
6619 break;
6620
6621 case OP_wPSR:
6622 case OP_rPSR:
6623 po_reg_or_goto (REG_TYPE_RNB, try_psr);
6624 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
6625 {
6626 inst.error = _("Banked registers are not available with this "
6627 "architecture.");
6628 goto failure;
6629 }
6630 break;
6631 try_psr:
6632 val = parse_psr (&str, op_parse_code == OP_wPSR);
6633 break;
6634
6635 case OP_APSR_RR:
6636 po_reg_or_goto (REG_TYPE_RN, try_apsr);
6637 break;
6638 try_apsr:
6639 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
6640 instruction). */
6641 if (strncasecmp (str, "APSR_", 5) == 0)
6642 {
6643 unsigned found = 0;
6644 str += 5;
6645 while (found < 15)
6646 switch (*str++)
6647 {
6648 case 'c': found = (found & 1) ? 16 : found | 1; break;
6649 case 'n': found = (found & 2) ? 16 : found | 2; break;
6650 case 'z': found = (found & 4) ? 16 : found | 4; break;
6651 case 'v': found = (found & 8) ? 16 : found | 8; break;
6652 default: found = 16;
6653 }
6654 if (found != 15)
6655 goto failure;
6656 inst.operands[i].isvec = 1;
6657 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
6658 inst.operands[i].reg = REG_PC;
6659 }
6660 else
6661 goto failure;
6662 break;
6663
6664 case OP_TB:
6665 po_misc_or_fail (parse_tb (&str));
6666 break;
6667
6668 /* Register lists. */
6669 case OP_REGLST:
6670 val = parse_reg_list (&str);
6671 if (*str == '^')
6672 {
6673 inst.operands[1].writeback = 1;
6674 str++;
6675 }
6676 break;
6677
6678 case OP_VRSLST:
6679 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
6680 break;
6681
6682 case OP_VRDLST:
6683 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
6684 break;
6685
6686 case OP_VRSDLST:
6687 /* Allow Q registers too. */
6688 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6689 REGLIST_NEON_D);
6690 if (val == FAIL)
6691 {
6692 inst.error = NULL;
6693 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6694 REGLIST_VFP_S);
6695 inst.operands[i].issingle = 1;
6696 }
6697 break;
6698
6699 case OP_NRDLST:
6700 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6701 REGLIST_NEON_D);
6702 break;
6703
6704 case OP_NSTRLST:
6705 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
6706 &inst.operands[i].vectype);
6707 break;
6708
6709 /* Addressing modes */
6710 case OP_ADDR:
6711 po_misc_or_fail (parse_address (&str, i));
6712 break;
6713
6714 case OP_ADDRGLDR:
6715 po_misc_or_fail_no_backtrack (
6716 parse_address_group_reloc (&str, i, GROUP_LDR));
6717 break;
6718
6719 case OP_ADDRGLDRS:
6720 po_misc_or_fail_no_backtrack (
6721 parse_address_group_reloc (&str, i, GROUP_LDRS));
6722 break;
6723
6724 case OP_ADDRGLDC:
6725 po_misc_or_fail_no_backtrack (
6726 parse_address_group_reloc (&str, i, GROUP_LDC));
6727 break;
6728
6729 case OP_SH:
6730 po_misc_or_fail (parse_shifter_operand (&str, i));
6731 break;
6732
6733 case OP_SHG:
6734 po_misc_or_fail_no_backtrack (
6735 parse_shifter_operand_group_reloc (&str, i));
6736 break;
6737
6738 case OP_oSHll:
6739 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6740 break;
6741
6742 case OP_oSHar:
6743 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6744 break;
6745
6746 case OP_oSHllar:
6747 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6748 break;
6749
6750 default:
6751 as_fatal (_("unhandled operand code %d"), op_parse_code);
6752 }
6753
6754 /* Various value-based sanity checks and shared operations. We
6755 do not signal immediate failures for the register constraints;
6756 this allows a syntax error to take precedence. */
6757 switch (op_parse_code)
6758 {
6759 case OP_oRRnpc:
6760 case OP_RRnpc:
6761 case OP_RRnpcb:
6762 case OP_RRw:
6763 case OP_oRRw:
6764 case OP_RRnpc_I0:
6765 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6766 inst.error = BAD_PC;
6767 break;
6768
6769 case OP_oRRnpcsp:
6770 case OP_RRnpcsp:
6771 if (inst.operands[i].isreg)
6772 {
6773 if (inst.operands[i].reg == REG_PC)
6774 inst.error = BAD_PC;
6775 else if (inst.operands[i].reg == REG_SP)
6776 inst.error = BAD_SP;
6777 }
6778 break;
6779
6780 case OP_RRnpctw:
6781 if (inst.operands[i].isreg
6782 && inst.operands[i].reg == REG_PC
6783 && (inst.operands[i].writeback || thumb))
6784 inst.error = BAD_PC;
6785 break;
6786
6787 case OP_CPSF:
6788 case OP_ENDI:
6789 case OP_oROR:
6790 case OP_wPSR:
6791 case OP_rPSR:
6792 case OP_COND:
6793 case OP_oBARRIER_I15:
6794 case OP_REGLST:
6795 case OP_VRSLST:
6796 case OP_VRDLST:
6797 case OP_VRSDLST:
6798 case OP_NRDLST:
6799 case OP_NSTRLST:
6800 if (val == FAIL)
6801 goto failure;
6802 inst.operands[i].imm = val;
6803 break;
6804
6805 default:
6806 break;
6807 }
6808
6809 /* If we get here, this operand was successfully parsed. */
6810 inst.operands[i].present = 1;
6811 continue;
6812
6813 bad_args:
6814 inst.error = BAD_ARGS;
6815
6816 failure:
6817 if (!backtrack_pos)
6818 {
6819 /* The parse routine should already have set inst.error, but set a
6820 default here just in case. */
6821 if (!inst.error)
6822 inst.error = _("syntax error");
6823 return FAIL;
6824 }
6825
6826 /* Do not backtrack over a trailing optional argument that
6827 absorbed some text. We will only fail again, with the
6828 'garbage following instruction' error message, which is
6829 probably less helpful than the current one. */
6830 if (backtrack_index == i && backtrack_pos != str
6831 && upat[i+1] == OP_stop)
6832 {
6833 if (!inst.error)
6834 inst.error = _("syntax error");
6835 return FAIL;
6836 }
6837
6838 /* Try again, skipping the optional argument at backtrack_pos. */
6839 str = backtrack_pos;
6840 inst.error = backtrack_error;
6841 inst.operands[backtrack_index].present = 0;
6842 i = backtrack_index;
6843 backtrack_pos = 0;
6844 }
6845
6846 /* Check that we have parsed all the arguments. */
6847 if (*str != '\0' && !inst.error)
6848 inst.error = _("garbage following instruction");
6849
6850 return inst.error ? FAIL : SUCCESS;
6851 }
6852
6853 #undef po_char_or_fail
6854 #undef po_reg_or_fail
6855 #undef po_reg_or_goto
6856 #undef po_imm_or_fail
6857 #undef po_scalar_or_fail
6858 #undef po_barrier_or_imm
6859
6860 /* Shorthand macro for instruction encoding functions issuing errors. */
6861 #define constraint(expr, err) \
6862 do \
6863 { \
6864 if (expr) \
6865 { \
6866 inst.error = err; \
6867 return; \
6868 } \
6869 } \
6870 while (0)
6871
6872 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
6873 instructions are unpredictable if these registers are used. This
6874 is the BadReg predicate in ARM's Thumb-2 documentation. */
6875 #define reject_bad_reg(reg) \
6876 do \
6877 if (reg == REG_SP || reg == REG_PC) \
6878 { \
6879 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
6880 return; \
6881 } \
6882 while (0)
6883
6884 /* If REG is R13 (the stack pointer), warn that its use is
6885 deprecated. */
6886 #define warn_deprecated_sp(reg) \
6887 do \
6888 if (warn_on_deprecated && reg == REG_SP) \
6889 as_warn (_("use of r13 is deprecated")); \
6890 while (0)
6891
6892 /* Functions for operand encoding. ARM, then Thumb. */
6893
6894 #define rotate_left(v, n) (v << n | v >> (32 - n))
6895
6896 /* If VAL can be encoded in the immediate field of an ARM instruction,
6897 return the encoded form. Otherwise, return FAIL. */
6898
6899 static unsigned int
6900 encode_arm_immediate (unsigned int val)
6901 {
6902 unsigned int a, i;
6903
6904 for (i = 0; i < 32; i += 2)
6905 if ((a = rotate_left (val, i)) <= 0xff)
6906 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6907
6908 return FAIL;
6909 }
6910
6911 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6912 return the encoded form. Otherwise, return FAIL. */
6913 static unsigned int
6914 encode_thumb32_immediate (unsigned int val)
6915 {
6916 unsigned int a, i;
6917
6918 if (val <= 0xff)
6919 return val;
6920
6921 for (i = 1; i <= 24; i++)
6922 {
6923 a = val >> i;
6924 if ((val & ~(0xff << i)) == 0)
6925 return ((val >> i) & 0x7f) | ((32 - i) << 7);
6926 }
6927
6928 a = val & 0xff;
6929 if (val == ((a << 16) | a))
6930 return 0x100 | a;
6931 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6932 return 0x300 | a;
6933
6934 a = val & 0xff00;
6935 if (val == ((a << 16) | a))
6936 return 0x200 | (a >> 8);
6937
6938 return FAIL;
6939 }
6940 /* Encode a VFP SP or DP register number into inst.instruction. */
6941
6942 static void
6943 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6944 {
6945 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6946 && reg > 15)
6947 {
6948 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
6949 {
6950 if (thumb_mode)
6951 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
6952 fpu_vfp_ext_d32);
6953 else
6954 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
6955 fpu_vfp_ext_d32);
6956 }
6957 else
6958 {
6959 first_error (_("D register out of range for selected VFP version"));
6960 return;
6961 }
6962 }
6963
6964 switch (pos)
6965 {
6966 case VFP_REG_Sd:
6967 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
6968 break;
6969
6970 case VFP_REG_Sn:
6971 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
6972 break;
6973
6974 case VFP_REG_Sm:
6975 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
6976 break;
6977
6978 case VFP_REG_Dd:
6979 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
6980 break;
6981
6982 case VFP_REG_Dn:
6983 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
6984 break;
6985
6986 case VFP_REG_Dm:
6987 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
6988 break;
6989
6990 default:
6991 abort ();
6992 }
6993 }
6994
6995 /* Encode a <shift> in an ARM-format instruction. The immediate,
6996 if any, is handled by md_apply_fix. */
6997 static void
6998 encode_arm_shift (int i)
6999 {
7000 if (inst.operands[i].shift_kind == SHIFT_RRX)
7001 inst.instruction |= SHIFT_ROR << 5;
7002 else
7003 {
7004 inst.instruction |= inst.operands[i].shift_kind << 5;
7005 if (inst.operands[i].immisreg)
7006 {
7007 inst.instruction |= SHIFT_BY_REG;
7008 inst.instruction |= inst.operands[i].imm << 8;
7009 }
7010 else
7011 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7012 }
7013 }
7014
7015 static void
7016 encode_arm_shifter_operand (int i)
7017 {
7018 if (inst.operands[i].isreg)
7019 {
7020 inst.instruction |= inst.operands[i].reg;
7021 encode_arm_shift (i);
7022 }
7023 else
7024 {
7025 inst.instruction |= INST_IMMEDIATE;
7026 if (inst.reloc.type != BFD_RELOC_ARM_IMMEDIATE)
7027 inst.instruction |= inst.operands[i].imm;
7028 }
7029 }
7030
7031 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
7032 static void
7033 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
7034 {
7035 gas_assert (inst.operands[i].isreg);
7036 inst.instruction |= inst.operands[i].reg << 16;
7037
7038 if (inst.operands[i].preind)
7039 {
7040 if (is_t)
7041 {
7042 inst.error = _("instruction does not accept preindexed addressing");
7043 return;
7044 }
7045 inst.instruction |= PRE_INDEX;
7046 if (inst.operands[i].writeback)
7047 inst.instruction |= WRITE_BACK;
7048
7049 }
7050 else if (inst.operands[i].postind)
7051 {
7052 gas_assert (inst.operands[i].writeback);
7053 if (is_t)
7054 inst.instruction |= WRITE_BACK;
7055 }
7056 else /* unindexed - only for coprocessor */
7057 {
7058 inst.error = _("instruction does not accept unindexed addressing");
7059 return;
7060 }
7061
7062 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
7063 && (((inst.instruction & 0x000f0000) >> 16)
7064 == ((inst.instruction & 0x0000f000) >> 12)))
7065 as_warn ((inst.instruction & LOAD_BIT)
7066 ? _("destination register same as write-back base")
7067 : _("source register same as write-back base"));
7068 }
7069
7070 /* inst.operands[i] was set up by parse_address. Encode it into an
7071 ARM-format mode 2 load or store instruction. If is_t is true,
7072 reject forms that cannot be used with a T instruction (i.e. not
7073 post-indexed). */
7074 static void
7075 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
7076 {
7077 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
7078
7079 encode_arm_addr_mode_common (i, is_t);
7080
7081 if (inst.operands[i].immisreg)
7082 {
7083 constraint ((inst.operands[i].imm == REG_PC
7084 || (is_pc && inst.operands[i].writeback)),
7085 BAD_PC_ADDRESSING);
7086 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
7087 inst.instruction |= inst.operands[i].imm;
7088 if (!inst.operands[i].negative)
7089 inst.instruction |= INDEX_UP;
7090 if (inst.operands[i].shifted)
7091 {
7092 if (inst.operands[i].shift_kind == SHIFT_RRX)
7093 inst.instruction |= SHIFT_ROR << 5;
7094 else
7095 {
7096 inst.instruction |= inst.operands[i].shift_kind << 5;
7097 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7098 }
7099 }
7100 }
7101 else /* immediate offset in inst.reloc */
7102 {
7103 if (is_pc && !inst.reloc.pc_rel)
7104 {
7105 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
7106
7107 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
7108 cannot use PC in addressing.
7109 PC cannot be used in writeback addressing, either. */
7110 constraint ((is_t || inst.operands[i].writeback),
7111 BAD_PC_ADDRESSING);
7112
7113 /* Use of PC in str is deprecated for ARMv7. */
7114 if (warn_on_deprecated
7115 && !is_load
7116 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
7117 as_warn (_("use of PC in this instruction is deprecated"));
7118 }
7119
7120 if (inst.reloc.type == BFD_RELOC_UNUSED)
7121 {
7122 /* Prefer + for zero encoded value. */
7123 if (!inst.operands[i].negative)
7124 inst.instruction |= INDEX_UP;
7125 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
7126 }
7127 }
7128 }
7129
7130 /* inst.operands[i] was set up by parse_address. Encode it into an
7131 ARM-format mode 3 load or store instruction. Reject forms that
7132 cannot be used with such instructions. If is_t is true, reject
7133 forms that cannot be used with a T instruction (i.e. not
7134 post-indexed). */
7135 static void
7136 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
7137 {
7138 if (inst.operands[i].immisreg && inst.operands[i].shifted)
7139 {
7140 inst.error = _("instruction does not accept scaled register index");
7141 return;
7142 }
7143
7144 encode_arm_addr_mode_common (i, is_t);
7145
7146 if (inst.operands[i].immisreg)
7147 {
7148 constraint ((inst.operands[i].imm == REG_PC
7149 || inst.operands[i].reg == REG_PC),
7150 BAD_PC_ADDRESSING);
7151 inst.instruction |= inst.operands[i].imm;
7152 if (!inst.operands[i].negative)
7153 inst.instruction |= INDEX_UP;
7154 }
7155 else /* immediate offset in inst.reloc */
7156 {
7157 constraint ((inst.operands[i].reg == REG_PC && !inst.reloc.pc_rel
7158 && inst.operands[i].writeback),
7159 BAD_PC_WRITEBACK);
7160 inst.instruction |= HWOFFSET_IMM;
7161 if (inst.reloc.type == BFD_RELOC_UNUSED)
7162 {
7163 /* Prefer + for zero encoded value. */
7164 if (!inst.operands[i].negative)
7165 inst.instruction |= INDEX_UP;
7166
7167 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
7168 }
7169 }
7170 }
7171
7172 /* inst.operands[i] was set up by parse_address. Encode it into an
7173 ARM-format instruction. Reject all forms which cannot be encoded
7174 into a coprocessor load/store instruction. If wb_ok is false,
7175 reject use of writeback; if unind_ok is false, reject use of
7176 unindexed addressing. If reloc_override is not 0, use it instead
7177 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
7178 (in which case it is preserved). */
7179
7180 static int
7181 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
7182 {
7183 inst.instruction |= inst.operands[i].reg << 16;
7184
7185 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
7186
7187 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
7188 {
7189 gas_assert (!inst.operands[i].writeback);
7190 if (!unind_ok)
7191 {
7192 inst.error = _("instruction does not support unindexed addressing");
7193 return FAIL;
7194 }
7195 inst.instruction |= inst.operands[i].imm;
7196 inst.instruction |= INDEX_UP;
7197 return SUCCESS;
7198 }
7199
7200 if (inst.operands[i].preind)
7201 inst.instruction |= PRE_INDEX;
7202
7203 if (inst.operands[i].writeback)
7204 {
7205 if (inst.operands[i].reg == REG_PC)
7206 {
7207 inst.error = _("pc may not be used with write-back");
7208 return FAIL;
7209 }
7210 if (!wb_ok)
7211 {
7212 inst.error = _("instruction does not support writeback");
7213 return FAIL;
7214 }
7215 inst.instruction |= WRITE_BACK;
7216 }
7217
7218 if (reloc_override)
7219 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
7220 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
7221 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
7222 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
7223 {
7224 if (thumb_mode)
7225 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
7226 else
7227 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
7228 }
7229
7230 /* Prefer + for zero encoded value. */
7231 if (!inst.operands[i].negative)
7232 inst.instruction |= INDEX_UP;
7233
7234 return SUCCESS;
7235 }
7236
7237 /* inst.reloc.exp describes an "=expr" load pseudo-operation.
7238 Determine whether it can be performed with a move instruction; if
7239 it can, convert inst.instruction to that move instruction and
7240 return TRUE; if it can't, convert inst.instruction to a literal-pool
7241 load and return FALSE. If this is not a valid thing to do in the
7242 current context, set inst.error and return TRUE.
7243
7244 inst.operands[i] describes the destination register. */
7245
7246 static bfd_boolean
7247 move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
7248 {
7249 unsigned long tbit;
7250
7251 if (thumb_p)
7252 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
7253 else
7254 tbit = LOAD_BIT;
7255
7256 if ((inst.instruction & tbit) == 0)
7257 {
7258 inst.error = _("invalid pseudo operation");
7259 return TRUE;
7260 }
7261 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
7262 {
7263 inst.error = _("constant expression expected");
7264 return TRUE;
7265 }
7266 if (inst.reloc.exp.X_op == O_constant)
7267 {
7268 if (thumb_p)
7269 {
7270 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
7271 {
7272 /* This can be done with a mov(1) instruction. */
7273 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
7274 inst.instruction |= inst.reloc.exp.X_add_number;
7275 return TRUE;
7276 }
7277 }
7278 else
7279 {
7280 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
7281 if (value != FAIL)
7282 {
7283 /* This can be done with a mov instruction. */
7284 inst.instruction &= LITERAL_MASK;
7285 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
7286 inst.instruction |= value & 0xfff;
7287 return TRUE;
7288 }
7289
7290 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
7291 if (value != FAIL)
7292 {
7293 /* This can be done with a mvn instruction. */
7294 inst.instruction &= LITERAL_MASK;
7295 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
7296 inst.instruction |= value & 0xfff;
7297 return TRUE;
7298 }
7299 }
7300 }
7301
7302 if (add_to_lit_pool () == FAIL)
7303 {
7304 inst.error = _("literal pool insertion failed");
7305 return TRUE;
7306 }
7307 inst.operands[1].reg = REG_PC;
7308 inst.operands[1].isreg = 1;
7309 inst.operands[1].preind = 1;
7310 inst.reloc.pc_rel = 1;
7311 inst.reloc.type = (thumb_p
7312 ? BFD_RELOC_ARM_THUMB_OFFSET
7313 : (mode_3
7314 ? BFD_RELOC_ARM_HWLITERAL
7315 : BFD_RELOC_ARM_LITERAL));
7316 return FALSE;
7317 }
7318
7319 /* Functions for instruction encoding, sorted by sub-architecture.
7320 First some generics; their names are taken from the conventional
7321 bit positions for register arguments in ARM format instructions. */
7322
7323 static void
7324 do_noargs (void)
7325 {
7326 }
7327
7328 static void
7329 do_rd (void)
7330 {
7331 inst.instruction |= inst.operands[0].reg << 12;
7332 }
7333
7334 static void
7335 do_rd_rm (void)
7336 {
7337 inst.instruction |= inst.operands[0].reg << 12;
7338 inst.instruction |= inst.operands[1].reg;
7339 }
7340
7341 static void
7342 do_rd_rn (void)
7343 {
7344 inst.instruction |= inst.operands[0].reg << 12;
7345 inst.instruction |= inst.operands[1].reg << 16;
7346 }
7347
7348 static void
7349 do_rn_rd (void)
7350 {
7351 inst.instruction |= inst.operands[0].reg << 16;
7352 inst.instruction |= inst.operands[1].reg << 12;
7353 }
7354
7355 static void
7356 do_rd_rm_rn (void)
7357 {
7358 unsigned Rn = inst.operands[2].reg;
7359 /* Enforce restrictions on SWP instruction. */
7360 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
7361 {
7362 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
7363 _("Rn must not overlap other operands"));
7364
7365 /* SWP{b} is deprecated for ARMv6* and ARMv7. */
7366 if (warn_on_deprecated
7367 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7368 as_warn (_("swp{b} use is deprecated for this architecture"));
7369
7370 }
7371 inst.instruction |= inst.operands[0].reg << 12;
7372 inst.instruction |= inst.operands[1].reg;
7373 inst.instruction |= Rn << 16;
7374 }
7375
7376 static void
7377 do_rd_rn_rm (void)
7378 {
7379 inst.instruction |= inst.operands[0].reg << 12;
7380 inst.instruction |= inst.operands[1].reg << 16;
7381 inst.instruction |= inst.operands[2].reg;
7382 }
7383
7384 static void
7385 do_rm_rd_rn (void)
7386 {
7387 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
7388 constraint (((inst.reloc.exp.X_op != O_constant
7389 && inst.reloc.exp.X_op != O_illegal)
7390 || inst.reloc.exp.X_add_number != 0),
7391 BAD_ADDR_MODE);
7392 inst.instruction |= inst.operands[0].reg;
7393 inst.instruction |= inst.operands[1].reg << 12;
7394 inst.instruction |= inst.operands[2].reg << 16;
7395 }
7396
7397 static void
7398 do_imm0 (void)
7399 {
7400 inst.instruction |= inst.operands[0].imm;
7401 }
7402
7403 static void
7404 do_rd_cpaddr (void)
7405 {
7406 inst.instruction |= inst.operands[0].reg << 12;
7407 encode_arm_cp_address (1, TRUE, TRUE, 0);
7408 }
7409
7410 /* ARM instructions, in alphabetical order by function name (except
7411 that wrapper functions appear immediately after the function they
7412 wrap). */
7413
7414 /* This is a pseudo-op of the form "adr rd, label" to be converted
7415 into a relative address of the form "add rd, pc, #label-.-8". */
7416
7417 static void
7418 do_adr (void)
7419 {
7420 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
7421
7422 /* Frag hacking will turn this into a sub instruction if the offset turns
7423 out to be negative. */
7424 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7425 inst.reloc.pc_rel = 1;
7426 inst.reloc.exp.X_add_number -= 8;
7427 }
7428
7429 /* This is a pseudo-op of the form "adrl rd, label" to be converted
7430 into a relative address of the form:
7431 add rd, pc, #low(label-.-8)"
7432 add rd, rd, #high(label-.-8)" */
7433
7434 static void
7435 do_adrl (void)
7436 {
7437 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
7438
7439 /* Frag hacking will turn this into a sub instruction if the offset turns
7440 out to be negative. */
7441 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
7442 inst.reloc.pc_rel = 1;
7443 inst.size = INSN_SIZE * 2;
7444 inst.reloc.exp.X_add_number -= 8;
7445 }
7446
7447 static void
7448 do_arit (void)
7449 {
7450 if (!inst.operands[1].present)
7451 inst.operands[1].reg = inst.operands[0].reg;
7452 inst.instruction |= inst.operands[0].reg << 12;
7453 inst.instruction |= inst.operands[1].reg << 16;
7454 encode_arm_shifter_operand (2);
7455 }
7456
7457 static void
7458 do_barrier (void)
7459 {
7460 if (inst.operands[0].present)
7461 {
7462 constraint ((inst.instruction & 0xf0) != 0x40
7463 && inst.operands[0].imm > 0xf
7464 && inst.operands[0].imm < 0x0,
7465 _("bad barrier type"));
7466 inst.instruction |= inst.operands[0].imm;
7467 }
7468 else
7469 inst.instruction |= 0xf;
7470 }
7471
7472 static void
7473 do_bfc (void)
7474 {
7475 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
7476 constraint (msb > 32, _("bit-field extends past end of register"));
7477 /* The instruction encoding stores the LSB and MSB,
7478 not the LSB and width. */
7479 inst.instruction |= inst.operands[0].reg << 12;
7480 inst.instruction |= inst.operands[1].imm << 7;
7481 inst.instruction |= (msb - 1) << 16;
7482 }
7483
7484 static void
7485 do_bfi (void)
7486 {
7487 unsigned int msb;
7488
7489 /* #0 in second position is alternative syntax for bfc, which is
7490 the same instruction but with REG_PC in the Rm field. */
7491 if (!inst.operands[1].isreg)
7492 inst.operands[1].reg = REG_PC;
7493
7494 msb = inst.operands[2].imm + inst.operands[3].imm;
7495 constraint (msb > 32, _("bit-field extends past end of register"));
7496 /* The instruction encoding stores the LSB and MSB,
7497 not the LSB and width. */
7498 inst.instruction |= inst.operands[0].reg << 12;
7499 inst.instruction |= inst.operands[1].reg;
7500 inst.instruction |= inst.operands[2].imm << 7;
7501 inst.instruction |= (msb - 1) << 16;
7502 }
7503
7504 static void
7505 do_bfx (void)
7506 {
7507 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
7508 _("bit-field extends past end of register"));
7509 inst.instruction |= inst.operands[0].reg << 12;
7510 inst.instruction |= inst.operands[1].reg;
7511 inst.instruction |= inst.operands[2].imm << 7;
7512 inst.instruction |= (inst.operands[3].imm - 1) << 16;
7513 }
7514
7515 /* ARM V5 breakpoint instruction (argument parse)
7516 BKPT <16 bit unsigned immediate>
7517 Instruction is not conditional.
7518 The bit pattern given in insns[] has the COND_ALWAYS condition,
7519 and it is an error if the caller tried to override that. */
7520
7521 static void
7522 do_bkpt (void)
7523 {
7524 /* Top 12 of 16 bits to bits 19:8. */
7525 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
7526
7527 /* Bottom 4 of 16 bits to bits 3:0. */
7528 inst.instruction |= inst.operands[0].imm & 0xf;
7529 }
7530
7531 static void
7532 encode_branch (int default_reloc)
7533 {
7534 if (inst.operands[0].hasreloc)
7535 {
7536 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
7537 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
7538 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
7539 inst.reloc.type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
7540 ? BFD_RELOC_ARM_PLT32
7541 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
7542 }
7543 else
7544 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
7545 inst.reloc.pc_rel = 1;
7546 }
7547
7548 static void
7549 do_branch (void)
7550 {
7551 #ifdef OBJ_ELF
7552 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7553 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7554 else
7555 #endif
7556 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7557 }
7558
7559 static void
7560 do_bl (void)
7561 {
7562 #ifdef OBJ_ELF
7563 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7564 {
7565 if (inst.cond == COND_ALWAYS)
7566 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
7567 else
7568 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7569 }
7570 else
7571 #endif
7572 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7573 }
7574
7575 /* ARM V5 branch-link-exchange instruction (argument parse)
7576 BLX <target_addr> ie BLX(1)
7577 BLX{<condition>} <Rm> ie BLX(2)
7578 Unfortunately, there are two different opcodes for this mnemonic.
7579 So, the insns[].value is not used, and the code here zaps values
7580 into inst.instruction.
7581 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
7582
7583 static void
7584 do_blx (void)
7585 {
7586 if (inst.operands[0].isreg)
7587 {
7588 /* Arg is a register; the opcode provided by insns[] is correct.
7589 It is not illegal to do "blx pc", just useless. */
7590 if (inst.operands[0].reg == REG_PC)
7591 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
7592
7593 inst.instruction |= inst.operands[0].reg;
7594 }
7595 else
7596 {
7597 /* Arg is an address; this instruction cannot be executed
7598 conditionally, and the opcode must be adjusted.
7599 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
7600 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
7601 constraint (inst.cond != COND_ALWAYS, BAD_COND);
7602 inst.instruction = 0xfa000000;
7603 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
7604 }
7605 }
7606
7607 static void
7608 do_bx (void)
7609 {
7610 bfd_boolean want_reloc;
7611
7612 if (inst.operands[0].reg == REG_PC)
7613 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
7614
7615 inst.instruction |= inst.operands[0].reg;
7616 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
7617 it is for ARMv4t or earlier. */
7618 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
7619 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
7620 want_reloc = TRUE;
7621
7622 #ifdef OBJ_ELF
7623 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
7624 #endif
7625 want_reloc = FALSE;
7626
7627 if (want_reloc)
7628 inst.reloc.type = BFD_RELOC_ARM_V4BX;
7629 }
7630
7631
7632 /* ARM v5TEJ. Jump to Jazelle code. */
7633
7634 static void
7635 do_bxj (void)
7636 {
7637 if (inst.operands[0].reg == REG_PC)
7638 as_tsktsk (_("use of r15 in bxj is not really useful"));
7639
7640 inst.instruction |= inst.operands[0].reg;
7641 }
7642
7643 /* Co-processor data operation:
7644 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
7645 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
7646 static void
7647 do_cdp (void)
7648 {
7649 inst.instruction |= inst.operands[0].reg << 8;
7650 inst.instruction |= inst.operands[1].imm << 20;
7651 inst.instruction |= inst.operands[2].reg << 12;
7652 inst.instruction |= inst.operands[3].reg << 16;
7653 inst.instruction |= inst.operands[4].reg;
7654 inst.instruction |= inst.operands[5].imm << 5;
7655 }
7656
7657 static void
7658 do_cmp (void)
7659 {
7660 inst.instruction |= inst.operands[0].reg << 16;
7661 encode_arm_shifter_operand (1);
7662 }
7663
7664 /* Transfer between coprocessor and ARM registers.
7665 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
7666 MRC2
7667 MCR{cond}
7668 MCR2
7669
7670 No special properties. */
7671
7672 static void
7673 do_co_reg (void)
7674 {
7675 unsigned Rd;
7676
7677 Rd = inst.operands[2].reg;
7678 if (thumb_mode)
7679 {
7680 if (inst.instruction == 0xee000010
7681 || inst.instruction == 0xfe000010)
7682 /* MCR, MCR2 */
7683 reject_bad_reg (Rd);
7684 else
7685 /* MRC, MRC2 */
7686 constraint (Rd == REG_SP, BAD_SP);
7687 }
7688 else
7689 {
7690 /* MCR */
7691 if (inst.instruction == 0xe000010)
7692 constraint (Rd == REG_PC, BAD_PC);
7693 }
7694
7695
7696 inst.instruction |= inst.operands[0].reg << 8;
7697 inst.instruction |= inst.operands[1].imm << 21;
7698 inst.instruction |= Rd << 12;
7699 inst.instruction |= inst.operands[3].reg << 16;
7700 inst.instruction |= inst.operands[4].reg;
7701 inst.instruction |= inst.operands[5].imm << 5;
7702 }
7703
7704 /* Transfer between coprocessor register and pair of ARM registers.
7705 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
7706 MCRR2
7707 MRRC{cond}
7708 MRRC2
7709
7710 Two XScale instructions are special cases of these:
7711
7712 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
7713 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
7714
7715 Result unpredictable if Rd or Rn is R15. */
7716
7717 static void
7718 do_co_reg2c (void)
7719 {
7720 unsigned Rd, Rn;
7721
7722 Rd = inst.operands[2].reg;
7723 Rn = inst.operands[3].reg;
7724
7725 if (thumb_mode)
7726 {
7727 reject_bad_reg (Rd);
7728 reject_bad_reg (Rn);
7729 }
7730 else
7731 {
7732 constraint (Rd == REG_PC, BAD_PC);
7733 constraint (Rn == REG_PC, BAD_PC);
7734 }
7735
7736 inst.instruction |= inst.operands[0].reg << 8;
7737 inst.instruction |= inst.operands[1].imm << 4;
7738 inst.instruction |= Rd << 12;
7739 inst.instruction |= Rn << 16;
7740 inst.instruction |= inst.operands[4].reg;
7741 }
7742
7743 static void
7744 do_cpsi (void)
7745 {
7746 inst.instruction |= inst.operands[0].imm << 6;
7747 if (inst.operands[1].present)
7748 {
7749 inst.instruction |= CPSI_MMOD;
7750 inst.instruction |= inst.operands[1].imm;
7751 }
7752 }
7753
7754 static void
7755 do_dbg (void)
7756 {
7757 inst.instruction |= inst.operands[0].imm;
7758 }
7759
7760 static void
7761 do_div (void)
7762 {
7763 unsigned Rd, Rn, Rm;
7764
7765 Rd = inst.operands[0].reg;
7766 Rn = (inst.operands[1].present
7767 ? inst.operands[1].reg : Rd);
7768 Rm = inst.operands[2].reg;
7769
7770 constraint ((Rd == REG_PC), BAD_PC);
7771 constraint ((Rn == REG_PC), BAD_PC);
7772 constraint ((Rm == REG_PC), BAD_PC);
7773
7774 inst.instruction |= Rd << 16;
7775 inst.instruction |= Rn << 0;
7776 inst.instruction |= Rm << 8;
7777 }
7778
7779 static void
7780 do_it (void)
7781 {
7782 /* There is no IT instruction in ARM mode. We
7783 process it to do the validation as if in
7784 thumb mode, just in case the code gets
7785 assembled for thumb using the unified syntax. */
7786
7787 inst.size = 0;
7788 if (unified_syntax)
7789 {
7790 set_it_insn_type (IT_INSN);
7791 now_it.mask = (inst.instruction & 0xf) | 0x10;
7792 now_it.cc = inst.operands[0].imm;
7793 }
7794 }
7795
7796 static void
7797 do_ldmstm (void)
7798 {
7799 int base_reg = inst.operands[0].reg;
7800 int range = inst.operands[1].imm;
7801
7802 inst.instruction |= base_reg << 16;
7803 inst.instruction |= range;
7804
7805 if (inst.operands[1].writeback)
7806 inst.instruction |= LDM_TYPE_2_OR_3;
7807
7808 if (inst.operands[0].writeback)
7809 {
7810 inst.instruction |= WRITE_BACK;
7811 /* Check for unpredictable uses of writeback. */
7812 if (inst.instruction & LOAD_BIT)
7813 {
7814 /* Not allowed in LDM type 2. */
7815 if ((inst.instruction & LDM_TYPE_2_OR_3)
7816 && ((range & (1 << REG_PC)) == 0))
7817 as_warn (_("writeback of base register is UNPREDICTABLE"));
7818 /* Only allowed if base reg not in list for other types. */
7819 else if (range & (1 << base_reg))
7820 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
7821 }
7822 else /* STM. */
7823 {
7824 /* Not allowed for type 2. */
7825 if (inst.instruction & LDM_TYPE_2_OR_3)
7826 as_warn (_("writeback of base register is UNPREDICTABLE"));
7827 /* Only allowed if base reg not in list, or first in list. */
7828 else if ((range & (1 << base_reg))
7829 && (range & ((1 << base_reg) - 1)))
7830 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
7831 }
7832 }
7833 }
7834
7835 /* ARMv5TE load-consecutive (argument parse)
7836 Mode is like LDRH.
7837
7838 LDRccD R, mode
7839 STRccD R, mode. */
7840
7841 static void
7842 do_ldrd (void)
7843 {
7844 constraint (inst.operands[0].reg % 2 != 0,
7845 _("first transfer register must be even"));
7846 constraint (inst.operands[1].present
7847 && inst.operands[1].reg != inst.operands[0].reg + 1,
7848 _("can only transfer two consecutive registers"));
7849 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7850 constraint (!inst.operands[2].isreg, _("'[' expected"));
7851
7852 if (!inst.operands[1].present)
7853 inst.operands[1].reg = inst.operands[0].reg + 1;
7854
7855 /* encode_arm_addr_mode_3 will diagnose overlap between the base
7856 register and the first register written; we have to diagnose
7857 overlap between the base and the second register written here. */
7858
7859 if (inst.operands[2].reg == inst.operands[1].reg
7860 && (inst.operands[2].writeback || inst.operands[2].postind))
7861 as_warn (_("base register written back, and overlaps "
7862 "second transfer register"));
7863
7864 if (!(inst.instruction & V4_STR_BIT))
7865 {
7866 /* For an index-register load, the index register must not overlap the
7867 destination (even if not write-back). */
7868 if (inst.operands[2].immisreg
7869 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
7870 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
7871 as_warn (_("index register overlaps transfer register"));
7872 }
7873 inst.instruction |= inst.operands[0].reg << 12;
7874 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
7875 }
7876
7877 static void
7878 do_ldrex (void)
7879 {
7880 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
7881 || inst.operands[1].postind || inst.operands[1].writeback
7882 || inst.operands[1].immisreg || inst.operands[1].shifted
7883 || inst.operands[1].negative
7884 /* This can arise if the programmer has written
7885 strex rN, rM, foo
7886 or if they have mistakenly used a register name as the last
7887 operand, eg:
7888 strex rN, rM, rX
7889 It is very difficult to distinguish between these two cases
7890 because "rX" might actually be a label. ie the register
7891 name has been occluded by a symbol of the same name. So we
7892 just generate a general 'bad addressing mode' type error
7893 message and leave it up to the programmer to discover the
7894 true cause and fix their mistake. */
7895 || (inst.operands[1].reg == REG_PC),
7896 BAD_ADDR_MODE);
7897
7898 constraint (inst.reloc.exp.X_op != O_constant
7899 || inst.reloc.exp.X_add_number != 0,
7900 _("offset must be zero in ARM encoding"));
7901
7902 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
7903
7904 inst.instruction |= inst.operands[0].reg << 12;
7905 inst.instruction |= inst.operands[1].reg << 16;
7906 inst.reloc.type = BFD_RELOC_UNUSED;
7907 }
7908
7909 static void
7910 do_ldrexd (void)
7911 {
7912 constraint (inst.operands[0].reg % 2 != 0,
7913 _("even register required"));
7914 constraint (inst.operands[1].present
7915 && inst.operands[1].reg != inst.operands[0].reg + 1,
7916 _("can only load two consecutive registers"));
7917 /* If op 1 were present and equal to PC, this function wouldn't
7918 have been called in the first place. */
7919 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7920
7921 inst.instruction |= inst.operands[0].reg << 12;
7922 inst.instruction |= inst.operands[2].reg << 16;
7923 }
7924
7925 /* In both ARM and thumb state 'ldr pc, #imm' with an immediate
7926 which is not a multiple of four is UNPREDICTABLE. */
7927 static void
7928 check_ldr_r15_aligned (void)
7929 {
7930 constraint (!(inst.operands[1].immisreg)
7931 && (inst.operands[0].reg == REG_PC
7932 && inst.operands[1].reg == REG_PC
7933 && (inst.reloc.exp.X_add_number & 0x3)),
7934 _("ldr to register 15 must be 4-byte alligned"));
7935 }
7936
7937 static void
7938 do_ldst (void)
7939 {
7940 inst.instruction |= inst.operands[0].reg << 12;
7941 if (!inst.operands[1].isreg)
7942 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
7943 return;
7944 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
7945 check_ldr_r15_aligned ();
7946 }
7947
7948 static void
7949 do_ldstt (void)
7950 {
7951 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7952 reject [Rn,...]. */
7953 if (inst.operands[1].preind)
7954 {
7955 constraint (inst.reloc.exp.X_op != O_constant
7956 || inst.reloc.exp.X_add_number != 0,
7957 _("this instruction requires a post-indexed address"));
7958
7959 inst.operands[1].preind = 0;
7960 inst.operands[1].postind = 1;
7961 inst.operands[1].writeback = 1;
7962 }
7963 inst.instruction |= inst.operands[0].reg << 12;
7964 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
7965 }
7966
7967 /* Halfword and signed-byte load/store operations. */
7968
7969 static void
7970 do_ldstv4 (void)
7971 {
7972 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
7973 inst.instruction |= inst.operands[0].reg << 12;
7974 if (!inst.operands[1].isreg)
7975 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
7976 return;
7977 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
7978 }
7979
7980 static void
7981 do_ldsttv4 (void)
7982 {
7983 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7984 reject [Rn,...]. */
7985 if (inst.operands[1].preind)
7986 {
7987 constraint (inst.reloc.exp.X_op != O_constant
7988 || inst.reloc.exp.X_add_number != 0,
7989 _("this instruction requires a post-indexed address"));
7990
7991 inst.operands[1].preind = 0;
7992 inst.operands[1].postind = 1;
7993 inst.operands[1].writeback = 1;
7994 }
7995 inst.instruction |= inst.operands[0].reg << 12;
7996 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
7997 }
7998
7999 /* Co-processor register load/store.
8000 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
8001 static void
8002 do_lstc (void)
8003 {
8004 inst.instruction |= inst.operands[0].reg << 8;
8005 inst.instruction |= inst.operands[1].reg << 12;
8006 encode_arm_cp_address (2, TRUE, TRUE, 0);
8007 }
8008
8009 static void
8010 do_mlas (void)
8011 {
8012 /* This restriction does not apply to mls (nor to mla in v6 or later). */
8013 if (inst.operands[0].reg == inst.operands[1].reg
8014 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
8015 && !(inst.instruction & 0x00400000))
8016 as_tsktsk (_("Rd and Rm should be different in mla"));
8017
8018 inst.instruction |= inst.operands[0].reg << 16;
8019 inst.instruction |= inst.operands[1].reg;
8020 inst.instruction |= inst.operands[2].reg << 8;
8021 inst.instruction |= inst.operands[3].reg << 12;
8022 }
8023
8024 static void
8025 do_mov (void)
8026 {
8027 inst.instruction |= inst.operands[0].reg << 12;
8028 encode_arm_shifter_operand (1);
8029 }
8030
8031 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
8032 static void
8033 do_mov16 (void)
8034 {
8035 bfd_vma imm;
8036 bfd_boolean top;
8037
8038 top = (inst.instruction & 0x00400000) != 0;
8039 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
8040 _(":lower16: not allowed this instruction"));
8041 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
8042 _(":upper16: not allowed instruction"));
8043 inst.instruction |= inst.operands[0].reg << 12;
8044 if (inst.reloc.type == BFD_RELOC_UNUSED)
8045 {
8046 imm = inst.reloc.exp.X_add_number;
8047 /* The value is in two pieces: 0:11, 16:19. */
8048 inst.instruction |= (imm & 0x00000fff);
8049 inst.instruction |= (imm & 0x0000f000) << 4;
8050 }
8051 }
8052
8053 static void do_vfp_nsyn_opcode (const char *);
8054
8055 static int
8056 do_vfp_nsyn_mrs (void)
8057 {
8058 if (inst.operands[0].isvec)
8059 {
8060 if (inst.operands[1].reg != 1)
8061 first_error (_("operand 1 must be FPSCR"));
8062 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
8063 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
8064 do_vfp_nsyn_opcode ("fmstat");
8065 }
8066 else if (inst.operands[1].isvec)
8067 do_vfp_nsyn_opcode ("fmrx");
8068 else
8069 return FAIL;
8070
8071 return SUCCESS;
8072 }
8073
8074 static int
8075 do_vfp_nsyn_msr (void)
8076 {
8077 if (inst.operands[0].isvec)
8078 do_vfp_nsyn_opcode ("fmxr");
8079 else
8080 return FAIL;
8081
8082 return SUCCESS;
8083 }
8084
8085 static void
8086 do_vmrs (void)
8087 {
8088 unsigned Rt = inst.operands[0].reg;
8089
8090 if (thumb_mode && inst.operands[0].reg == REG_SP)
8091 {
8092 inst.error = BAD_SP;
8093 return;
8094 }
8095
8096 /* APSR_ sets isvec. All other refs to PC are illegal. */
8097 if (!inst.operands[0].isvec && inst.operands[0].reg == REG_PC)
8098 {
8099 inst.error = BAD_PC;
8100 return;
8101 }
8102
8103 if (inst.operands[1].reg != 1)
8104 first_error (_("operand 1 must be FPSCR"));
8105
8106 inst.instruction |= (Rt << 12);
8107 }
8108
8109 static void
8110 do_vmsr (void)
8111 {
8112 unsigned Rt = inst.operands[1].reg;
8113
8114 if (thumb_mode)
8115 reject_bad_reg (Rt);
8116 else if (Rt == REG_PC)
8117 {
8118 inst.error = BAD_PC;
8119 return;
8120 }
8121
8122 if (inst.operands[0].reg != 1)
8123 first_error (_("operand 0 must be FPSCR"));
8124
8125 inst.instruction |= (Rt << 12);
8126 }
8127
8128 static void
8129 do_mrs (void)
8130 {
8131 unsigned br;
8132
8133 if (do_vfp_nsyn_mrs () == SUCCESS)
8134 return;
8135
8136 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
8137 inst.instruction |= inst.operands[0].reg << 12;
8138
8139 if (inst.operands[1].isreg)
8140 {
8141 br = inst.operands[1].reg;
8142 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf000))
8143 as_bad (_("bad register for mrs"));
8144 }
8145 else
8146 {
8147 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
8148 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
8149 != (PSR_c|PSR_f),
8150 _("'APSR', 'CPSR' or 'SPSR' expected"));
8151 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
8152 }
8153
8154 inst.instruction |= br;
8155 }
8156
8157 /* Two possible forms:
8158 "{C|S}PSR_<field>, Rm",
8159 "{C|S}PSR_f, #expression". */
8160
8161 static void
8162 do_msr (void)
8163 {
8164 if (do_vfp_nsyn_msr () == SUCCESS)
8165 return;
8166
8167 inst.instruction |= inst.operands[0].imm;
8168 if (inst.operands[1].isreg)
8169 inst.instruction |= inst.operands[1].reg;
8170 else
8171 {
8172 inst.instruction |= INST_IMMEDIATE;
8173 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
8174 inst.reloc.pc_rel = 0;
8175 }
8176 }
8177
8178 static void
8179 do_mul (void)
8180 {
8181 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
8182
8183 if (!inst.operands[2].present)
8184 inst.operands[2].reg = inst.operands[0].reg;
8185 inst.instruction |= inst.operands[0].reg << 16;
8186 inst.instruction |= inst.operands[1].reg;
8187 inst.instruction |= inst.operands[2].reg << 8;
8188
8189 if (inst.operands[0].reg == inst.operands[1].reg
8190 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
8191 as_tsktsk (_("Rd and Rm should be different in mul"));
8192 }
8193
8194 /* Long Multiply Parser
8195 UMULL RdLo, RdHi, Rm, Rs
8196 SMULL RdLo, RdHi, Rm, Rs
8197 UMLAL RdLo, RdHi, Rm, Rs
8198 SMLAL RdLo, RdHi, Rm, Rs. */
8199
8200 static void
8201 do_mull (void)
8202 {
8203 inst.instruction |= inst.operands[0].reg << 12;
8204 inst.instruction |= inst.operands[1].reg << 16;
8205 inst.instruction |= inst.operands[2].reg;
8206 inst.instruction |= inst.operands[3].reg << 8;
8207
8208 /* rdhi and rdlo must be different. */
8209 if (inst.operands[0].reg == inst.operands[1].reg)
8210 as_tsktsk (_("rdhi and rdlo must be different"));
8211
8212 /* rdhi, rdlo and rm must all be different before armv6. */
8213 if ((inst.operands[0].reg == inst.operands[2].reg
8214 || inst.operands[1].reg == inst.operands[2].reg)
8215 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
8216 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
8217 }
8218
8219 static void
8220 do_nop (void)
8221 {
8222 if (inst.operands[0].present
8223 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
8224 {
8225 /* Architectural NOP hints are CPSR sets with no bits selected. */
8226 inst.instruction &= 0xf0000000;
8227 inst.instruction |= 0x0320f000;
8228 if (inst.operands[0].present)
8229 inst.instruction |= inst.operands[0].imm;
8230 }
8231 }
8232
8233 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
8234 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
8235 Condition defaults to COND_ALWAYS.
8236 Error if Rd, Rn or Rm are R15. */
8237
8238 static void
8239 do_pkhbt (void)
8240 {
8241 inst.instruction |= inst.operands[0].reg << 12;
8242 inst.instruction |= inst.operands[1].reg << 16;
8243 inst.instruction |= inst.operands[2].reg;
8244 if (inst.operands[3].present)
8245 encode_arm_shift (3);
8246 }
8247
8248 /* ARM V6 PKHTB (Argument Parse). */
8249
8250 static void
8251 do_pkhtb (void)
8252 {
8253 if (!inst.operands[3].present)
8254 {
8255 /* If the shift specifier is omitted, turn the instruction
8256 into pkhbt rd, rm, rn. */
8257 inst.instruction &= 0xfff00010;
8258 inst.instruction |= inst.operands[0].reg << 12;
8259 inst.instruction |= inst.operands[1].reg;
8260 inst.instruction |= inst.operands[2].reg << 16;
8261 }
8262 else
8263 {
8264 inst.instruction |= inst.operands[0].reg << 12;
8265 inst.instruction |= inst.operands[1].reg << 16;
8266 inst.instruction |= inst.operands[2].reg;
8267 encode_arm_shift (3);
8268 }
8269 }
8270
8271 /* ARMv5TE: Preload-Cache
8272 MP Extensions: Preload for write
8273
8274 PLD(W) <addr_mode>
8275
8276 Syntactically, like LDR with B=1, W=0, L=1. */
8277
8278 static void
8279 do_pld (void)
8280 {
8281 constraint (!inst.operands[0].isreg,
8282 _("'[' expected after PLD mnemonic"));
8283 constraint (inst.operands[0].postind,
8284 _("post-indexed expression used in preload instruction"));
8285 constraint (inst.operands[0].writeback,
8286 _("writeback used in preload instruction"));
8287 constraint (!inst.operands[0].preind,
8288 _("unindexed addressing used in preload instruction"));
8289 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8290 }
8291
8292 /* ARMv7: PLI <addr_mode> */
8293 static void
8294 do_pli (void)
8295 {
8296 constraint (!inst.operands[0].isreg,
8297 _("'[' expected after PLI mnemonic"));
8298 constraint (inst.operands[0].postind,
8299 _("post-indexed expression used in preload instruction"));
8300 constraint (inst.operands[0].writeback,
8301 _("writeback used in preload instruction"));
8302 constraint (!inst.operands[0].preind,
8303 _("unindexed addressing used in preload instruction"));
8304 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8305 inst.instruction &= ~PRE_INDEX;
8306 }
8307
8308 static void
8309 do_push_pop (void)
8310 {
8311 inst.operands[1] = inst.operands[0];
8312 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
8313 inst.operands[0].isreg = 1;
8314 inst.operands[0].writeback = 1;
8315 inst.operands[0].reg = REG_SP;
8316 do_ldmstm ();
8317 }
8318
8319 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
8320 word at the specified address and the following word
8321 respectively.
8322 Unconditionally executed.
8323 Error if Rn is R15. */
8324
8325 static void
8326 do_rfe (void)
8327 {
8328 inst.instruction |= inst.operands[0].reg << 16;
8329 if (inst.operands[0].writeback)
8330 inst.instruction |= WRITE_BACK;
8331 }
8332
8333 /* ARM V6 ssat (argument parse). */
8334
8335 static void
8336 do_ssat (void)
8337 {
8338 inst.instruction |= inst.operands[0].reg << 12;
8339 inst.instruction |= (inst.operands[1].imm - 1) << 16;
8340 inst.instruction |= inst.operands[2].reg;
8341
8342 if (inst.operands[3].present)
8343 encode_arm_shift (3);
8344 }
8345
8346 /* ARM V6 usat (argument parse). */
8347
8348 static void
8349 do_usat (void)
8350 {
8351 inst.instruction |= inst.operands[0].reg << 12;
8352 inst.instruction |= inst.operands[1].imm << 16;
8353 inst.instruction |= inst.operands[2].reg;
8354
8355 if (inst.operands[3].present)
8356 encode_arm_shift (3);
8357 }
8358
8359 /* ARM V6 ssat16 (argument parse). */
8360
8361 static void
8362 do_ssat16 (void)
8363 {
8364 inst.instruction |= inst.operands[0].reg << 12;
8365 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
8366 inst.instruction |= inst.operands[2].reg;
8367 }
8368
8369 static void
8370 do_usat16 (void)
8371 {
8372 inst.instruction |= inst.operands[0].reg << 12;
8373 inst.instruction |= inst.operands[1].imm << 16;
8374 inst.instruction |= inst.operands[2].reg;
8375 }
8376
8377 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
8378 preserving the other bits.
8379
8380 setend <endian_specifier>, where <endian_specifier> is either
8381 BE or LE. */
8382
8383 static void
8384 do_setend (void)
8385 {
8386 if (inst.operands[0].imm)
8387 inst.instruction |= 0x200;
8388 }
8389
8390 static void
8391 do_shift (void)
8392 {
8393 unsigned int Rm = (inst.operands[1].present
8394 ? inst.operands[1].reg
8395 : inst.operands[0].reg);
8396
8397 inst.instruction |= inst.operands[0].reg << 12;
8398 inst.instruction |= Rm;
8399 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
8400 {
8401 inst.instruction |= inst.operands[2].reg << 8;
8402 inst.instruction |= SHIFT_BY_REG;
8403 /* PR 12854: Error on extraneous shifts. */
8404 constraint (inst.operands[2].shifted,
8405 _("extraneous shift as part of operand to shift insn"));
8406 }
8407 else
8408 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
8409 }
8410
8411 static void
8412 do_smc (void)
8413 {
8414 inst.reloc.type = BFD_RELOC_ARM_SMC;
8415 inst.reloc.pc_rel = 0;
8416 }
8417
8418 static void
8419 do_hvc (void)
8420 {
8421 inst.reloc.type = BFD_RELOC_ARM_HVC;
8422 inst.reloc.pc_rel = 0;
8423 }
8424
8425 static void
8426 do_swi (void)
8427 {
8428 inst.reloc.type = BFD_RELOC_ARM_SWI;
8429 inst.reloc.pc_rel = 0;
8430 }
8431
8432 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
8433 SMLAxy{cond} Rd,Rm,Rs,Rn
8434 SMLAWy{cond} Rd,Rm,Rs,Rn
8435 Error if any register is R15. */
8436
8437 static void
8438 do_smla (void)
8439 {
8440 inst.instruction |= inst.operands[0].reg << 16;
8441 inst.instruction |= inst.operands[1].reg;
8442 inst.instruction |= inst.operands[2].reg << 8;
8443 inst.instruction |= inst.operands[3].reg << 12;
8444 }
8445
8446 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
8447 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
8448 Error if any register is R15.
8449 Warning if Rdlo == Rdhi. */
8450
8451 static void
8452 do_smlal (void)
8453 {
8454 inst.instruction |= inst.operands[0].reg << 12;
8455 inst.instruction |= inst.operands[1].reg << 16;
8456 inst.instruction |= inst.operands[2].reg;
8457 inst.instruction |= inst.operands[3].reg << 8;
8458
8459 if (inst.operands[0].reg == inst.operands[1].reg)
8460 as_tsktsk (_("rdhi and rdlo must be different"));
8461 }
8462
8463 /* ARM V5E (El Segundo) signed-multiply (argument parse)
8464 SMULxy{cond} Rd,Rm,Rs
8465 Error if any register is R15. */
8466
8467 static void
8468 do_smul (void)
8469 {
8470 inst.instruction |= inst.operands[0].reg << 16;
8471 inst.instruction |= inst.operands[1].reg;
8472 inst.instruction |= inst.operands[2].reg << 8;
8473 }
8474
8475 /* ARM V6 srs (argument parse). The variable fields in the encoding are
8476 the same for both ARM and Thumb-2. */
8477
8478 static void
8479 do_srs (void)
8480 {
8481 int reg;
8482
8483 if (inst.operands[0].present)
8484 {
8485 reg = inst.operands[0].reg;
8486 constraint (reg != REG_SP, _("SRS base register must be r13"));
8487 }
8488 else
8489 reg = REG_SP;
8490
8491 inst.instruction |= reg << 16;
8492 inst.instruction |= inst.operands[1].imm;
8493 if (inst.operands[0].writeback || inst.operands[1].writeback)
8494 inst.instruction |= WRITE_BACK;
8495 }
8496
8497 /* ARM V6 strex (argument parse). */
8498
8499 static void
8500 do_strex (void)
8501 {
8502 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8503 || inst.operands[2].postind || inst.operands[2].writeback
8504 || inst.operands[2].immisreg || inst.operands[2].shifted
8505 || inst.operands[2].negative
8506 /* See comment in do_ldrex(). */
8507 || (inst.operands[2].reg == REG_PC),
8508 BAD_ADDR_MODE);
8509
8510 constraint (inst.operands[0].reg == inst.operands[1].reg
8511 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8512
8513 constraint (inst.reloc.exp.X_op != O_constant
8514 || inst.reloc.exp.X_add_number != 0,
8515 _("offset must be zero in ARM encoding"));
8516
8517 inst.instruction |= inst.operands[0].reg << 12;
8518 inst.instruction |= inst.operands[1].reg;
8519 inst.instruction |= inst.operands[2].reg << 16;
8520 inst.reloc.type = BFD_RELOC_UNUSED;
8521 }
8522
8523 static void
8524 do_t_strexbh (void)
8525 {
8526 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8527 || inst.operands[2].postind || inst.operands[2].writeback
8528 || inst.operands[2].immisreg || inst.operands[2].shifted
8529 || inst.operands[2].negative,
8530 BAD_ADDR_MODE);
8531
8532 constraint (inst.operands[0].reg == inst.operands[1].reg
8533 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8534
8535 do_rm_rd_rn ();
8536 }
8537
8538 static void
8539 do_strexd (void)
8540 {
8541 constraint (inst.operands[1].reg % 2 != 0,
8542 _("even register required"));
8543 constraint (inst.operands[2].present
8544 && inst.operands[2].reg != inst.operands[1].reg + 1,
8545 _("can only store two consecutive registers"));
8546 /* If op 2 were present and equal to PC, this function wouldn't
8547 have been called in the first place. */
8548 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
8549
8550 constraint (inst.operands[0].reg == inst.operands[1].reg
8551 || inst.operands[0].reg == inst.operands[1].reg + 1
8552 || inst.operands[0].reg == inst.operands[3].reg,
8553 BAD_OVERLAP);
8554
8555 inst.instruction |= inst.operands[0].reg << 12;
8556 inst.instruction |= inst.operands[1].reg;
8557 inst.instruction |= inst.operands[3].reg << 16;
8558 }
8559
8560 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
8561 extends it to 32-bits, and adds the result to a value in another
8562 register. You can specify a rotation by 0, 8, 16, or 24 bits
8563 before extracting the 16-bit value.
8564 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
8565 Condition defaults to COND_ALWAYS.
8566 Error if any register uses R15. */
8567
8568 static void
8569 do_sxtah (void)
8570 {
8571 inst.instruction |= inst.operands[0].reg << 12;
8572 inst.instruction |= inst.operands[1].reg << 16;
8573 inst.instruction |= inst.operands[2].reg;
8574 inst.instruction |= inst.operands[3].imm << 10;
8575 }
8576
8577 /* ARM V6 SXTH.
8578
8579 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
8580 Condition defaults to COND_ALWAYS.
8581 Error if any register uses R15. */
8582
8583 static void
8584 do_sxth (void)
8585 {
8586 inst.instruction |= inst.operands[0].reg << 12;
8587 inst.instruction |= inst.operands[1].reg;
8588 inst.instruction |= inst.operands[2].imm << 10;
8589 }
8590 \f
8591 /* VFP instructions. In a logical order: SP variant first, monad
8592 before dyad, arithmetic then move then load/store. */
8593
8594 static void
8595 do_vfp_sp_monadic (void)
8596 {
8597 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8598 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8599 }
8600
8601 static void
8602 do_vfp_sp_dyadic (void)
8603 {
8604 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8605 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8606 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8607 }
8608
8609 static void
8610 do_vfp_sp_compare_z (void)
8611 {
8612 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8613 }
8614
8615 static void
8616 do_vfp_dp_sp_cvt (void)
8617 {
8618 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8619 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8620 }
8621
8622 static void
8623 do_vfp_sp_dp_cvt (void)
8624 {
8625 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8626 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8627 }
8628
8629 static void
8630 do_vfp_reg_from_sp (void)
8631 {
8632 inst.instruction |= inst.operands[0].reg << 12;
8633 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8634 }
8635
8636 static void
8637 do_vfp_reg2_from_sp2 (void)
8638 {
8639 constraint (inst.operands[2].imm != 2,
8640 _("only two consecutive VFP SP registers allowed here"));
8641 inst.instruction |= inst.operands[0].reg << 12;
8642 inst.instruction |= inst.operands[1].reg << 16;
8643 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8644 }
8645
8646 static void
8647 do_vfp_sp_from_reg (void)
8648 {
8649 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
8650 inst.instruction |= inst.operands[1].reg << 12;
8651 }
8652
8653 static void
8654 do_vfp_sp2_from_reg2 (void)
8655 {
8656 constraint (inst.operands[0].imm != 2,
8657 _("only two consecutive VFP SP registers allowed here"));
8658 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
8659 inst.instruction |= inst.operands[1].reg << 12;
8660 inst.instruction |= inst.operands[2].reg << 16;
8661 }
8662
8663 static void
8664 do_vfp_sp_ldst (void)
8665 {
8666 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8667 encode_arm_cp_address (1, FALSE, TRUE, 0);
8668 }
8669
8670 static void
8671 do_vfp_dp_ldst (void)
8672 {
8673 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8674 encode_arm_cp_address (1, FALSE, TRUE, 0);
8675 }
8676
8677
8678 static void
8679 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
8680 {
8681 if (inst.operands[0].writeback)
8682 inst.instruction |= WRITE_BACK;
8683 else
8684 constraint (ldstm_type != VFP_LDSTMIA,
8685 _("this addressing mode requires base-register writeback"));
8686 inst.instruction |= inst.operands[0].reg << 16;
8687 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
8688 inst.instruction |= inst.operands[1].imm;
8689 }
8690
8691 static void
8692 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
8693 {
8694 int count;
8695
8696 if (inst.operands[0].writeback)
8697 inst.instruction |= WRITE_BACK;
8698 else
8699 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
8700 _("this addressing mode requires base-register writeback"));
8701
8702 inst.instruction |= inst.operands[0].reg << 16;
8703 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8704
8705 count = inst.operands[1].imm << 1;
8706 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
8707 count += 1;
8708
8709 inst.instruction |= count;
8710 }
8711
8712 static void
8713 do_vfp_sp_ldstmia (void)
8714 {
8715 vfp_sp_ldstm (VFP_LDSTMIA);
8716 }
8717
8718 static void
8719 do_vfp_sp_ldstmdb (void)
8720 {
8721 vfp_sp_ldstm (VFP_LDSTMDB);
8722 }
8723
8724 static void
8725 do_vfp_dp_ldstmia (void)
8726 {
8727 vfp_dp_ldstm (VFP_LDSTMIA);
8728 }
8729
8730 static void
8731 do_vfp_dp_ldstmdb (void)
8732 {
8733 vfp_dp_ldstm (VFP_LDSTMDB);
8734 }
8735
8736 static void
8737 do_vfp_xp_ldstmia (void)
8738 {
8739 vfp_dp_ldstm (VFP_LDSTMIAX);
8740 }
8741
8742 static void
8743 do_vfp_xp_ldstmdb (void)
8744 {
8745 vfp_dp_ldstm (VFP_LDSTMDBX);
8746 }
8747
8748 static void
8749 do_vfp_dp_rd_rm (void)
8750 {
8751 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8752 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8753 }
8754
8755 static void
8756 do_vfp_dp_rn_rd (void)
8757 {
8758 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
8759 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8760 }
8761
8762 static void
8763 do_vfp_dp_rd_rn (void)
8764 {
8765 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8766 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8767 }
8768
8769 static void
8770 do_vfp_dp_rd_rn_rm (void)
8771 {
8772 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8773 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8774 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
8775 }
8776
8777 static void
8778 do_vfp_dp_rd (void)
8779 {
8780 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8781 }
8782
8783 static void
8784 do_vfp_dp_rm_rd_rn (void)
8785 {
8786 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
8787 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8788 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
8789 }
8790
8791 /* VFPv3 instructions. */
8792 static void
8793 do_vfp_sp_const (void)
8794 {
8795 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8796 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8797 inst.instruction |= (inst.operands[1].imm & 0x0f);
8798 }
8799
8800 static void
8801 do_vfp_dp_const (void)
8802 {
8803 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8804 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8805 inst.instruction |= (inst.operands[1].imm & 0x0f);
8806 }
8807
8808 static void
8809 vfp_conv (int srcsize)
8810 {
8811 int immbits = srcsize - inst.operands[1].imm;
8812
8813 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
8814 {
8815 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
8816 i.e. immbits must be in range 0 - 16. */
8817 inst.error = _("immediate value out of range, expected range [0, 16]");
8818 return;
8819 }
8820 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
8821 {
8822 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
8823 i.e. immbits must be in range 0 - 31. */
8824 inst.error = _("immediate value out of range, expected range [1, 32]");
8825 return;
8826 }
8827
8828 inst.instruction |= (immbits & 1) << 5;
8829 inst.instruction |= (immbits >> 1);
8830 }
8831
8832 static void
8833 do_vfp_sp_conv_16 (void)
8834 {
8835 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8836 vfp_conv (16);
8837 }
8838
8839 static void
8840 do_vfp_dp_conv_16 (void)
8841 {
8842 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8843 vfp_conv (16);
8844 }
8845
8846 static void
8847 do_vfp_sp_conv_32 (void)
8848 {
8849 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8850 vfp_conv (32);
8851 }
8852
8853 static void
8854 do_vfp_dp_conv_32 (void)
8855 {
8856 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8857 vfp_conv (32);
8858 }
8859 \f
8860 /* FPA instructions. Also in a logical order. */
8861
8862 static void
8863 do_fpa_cmp (void)
8864 {
8865 inst.instruction |= inst.operands[0].reg << 16;
8866 inst.instruction |= inst.operands[1].reg;
8867 }
8868
8869 static void
8870 do_fpa_ldmstm (void)
8871 {
8872 inst.instruction |= inst.operands[0].reg << 12;
8873 switch (inst.operands[1].imm)
8874 {
8875 case 1: inst.instruction |= CP_T_X; break;
8876 case 2: inst.instruction |= CP_T_Y; break;
8877 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
8878 case 4: break;
8879 default: abort ();
8880 }
8881
8882 if (inst.instruction & (PRE_INDEX | INDEX_UP))
8883 {
8884 /* The instruction specified "ea" or "fd", so we can only accept
8885 [Rn]{!}. The instruction does not really support stacking or
8886 unstacking, so we have to emulate these by setting appropriate
8887 bits and offsets. */
8888 constraint (inst.reloc.exp.X_op != O_constant
8889 || inst.reloc.exp.X_add_number != 0,
8890 _("this instruction does not support indexing"));
8891
8892 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
8893 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
8894
8895 if (!(inst.instruction & INDEX_UP))
8896 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
8897
8898 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
8899 {
8900 inst.operands[2].preind = 0;
8901 inst.operands[2].postind = 1;
8902 }
8903 }
8904
8905 encode_arm_cp_address (2, TRUE, TRUE, 0);
8906 }
8907 \f
8908 /* iWMMXt instructions: strictly in alphabetical order. */
8909
8910 static void
8911 do_iwmmxt_tandorc (void)
8912 {
8913 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
8914 }
8915
8916 static void
8917 do_iwmmxt_textrc (void)
8918 {
8919 inst.instruction |= inst.operands[0].reg << 12;
8920 inst.instruction |= inst.operands[1].imm;
8921 }
8922
8923 static void
8924 do_iwmmxt_textrm (void)
8925 {
8926 inst.instruction |= inst.operands[0].reg << 12;
8927 inst.instruction |= inst.operands[1].reg << 16;
8928 inst.instruction |= inst.operands[2].imm;
8929 }
8930
8931 static void
8932 do_iwmmxt_tinsr (void)
8933 {
8934 inst.instruction |= inst.operands[0].reg << 16;
8935 inst.instruction |= inst.operands[1].reg << 12;
8936 inst.instruction |= inst.operands[2].imm;
8937 }
8938
8939 static void
8940 do_iwmmxt_tmia (void)
8941 {
8942 inst.instruction |= inst.operands[0].reg << 5;
8943 inst.instruction |= inst.operands[1].reg;
8944 inst.instruction |= inst.operands[2].reg << 12;
8945 }
8946
8947 static void
8948 do_iwmmxt_waligni (void)
8949 {
8950 inst.instruction |= inst.operands[0].reg << 12;
8951 inst.instruction |= inst.operands[1].reg << 16;
8952 inst.instruction |= inst.operands[2].reg;
8953 inst.instruction |= inst.operands[3].imm << 20;
8954 }
8955
8956 static void
8957 do_iwmmxt_wmerge (void)
8958 {
8959 inst.instruction |= inst.operands[0].reg << 12;
8960 inst.instruction |= inst.operands[1].reg << 16;
8961 inst.instruction |= inst.operands[2].reg;
8962 inst.instruction |= inst.operands[3].imm << 21;
8963 }
8964
8965 static void
8966 do_iwmmxt_wmov (void)
8967 {
8968 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
8969 inst.instruction |= inst.operands[0].reg << 12;
8970 inst.instruction |= inst.operands[1].reg << 16;
8971 inst.instruction |= inst.operands[1].reg;
8972 }
8973
8974 static void
8975 do_iwmmxt_wldstbh (void)
8976 {
8977 int reloc;
8978 inst.instruction |= inst.operands[0].reg << 12;
8979 if (thumb_mode)
8980 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
8981 else
8982 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
8983 encode_arm_cp_address (1, TRUE, FALSE, reloc);
8984 }
8985
8986 static void
8987 do_iwmmxt_wldstw (void)
8988 {
8989 /* RIWR_RIWC clears .isreg for a control register. */
8990 if (!inst.operands[0].isreg)
8991 {
8992 constraint (inst.cond != COND_ALWAYS, BAD_COND);
8993 inst.instruction |= 0xf0000000;
8994 }
8995
8996 inst.instruction |= inst.operands[0].reg << 12;
8997 encode_arm_cp_address (1, TRUE, TRUE, 0);
8998 }
8999
9000 static void
9001 do_iwmmxt_wldstd (void)
9002 {
9003 inst.instruction |= inst.operands[0].reg << 12;
9004 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
9005 && inst.operands[1].immisreg)
9006 {
9007 inst.instruction &= ~0x1a000ff;
9008 inst.instruction |= (0xf << 28);
9009 if (inst.operands[1].preind)
9010 inst.instruction |= PRE_INDEX;
9011 if (!inst.operands[1].negative)
9012 inst.instruction |= INDEX_UP;
9013 if (inst.operands[1].writeback)
9014 inst.instruction |= WRITE_BACK;
9015 inst.instruction |= inst.operands[1].reg << 16;
9016 inst.instruction |= inst.reloc.exp.X_add_number << 4;
9017 inst.instruction |= inst.operands[1].imm;
9018 }
9019 else
9020 encode_arm_cp_address (1, TRUE, FALSE, 0);
9021 }
9022
9023 static void
9024 do_iwmmxt_wshufh (void)
9025 {
9026 inst.instruction |= inst.operands[0].reg << 12;
9027 inst.instruction |= inst.operands[1].reg << 16;
9028 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
9029 inst.instruction |= (inst.operands[2].imm & 0x0f);
9030 }
9031
9032 static void
9033 do_iwmmxt_wzero (void)
9034 {
9035 /* WZERO reg is an alias for WANDN reg, reg, reg. */
9036 inst.instruction |= inst.operands[0].reg;
9037 inst.instruction |= inst.operands[0].reg << 12;
9038 inst.instruction |= inst.operands[0].reg << 16;
9039 }
9040
9041 static void
9042 do_iwmmxt_wrwrwr_or_imm5 (void)
9043 {
9044 if (inst.operands[2].isreg)
9045 do_rd_rn_rm ();
9046 else {
9047 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
9048 _("immediate operand requires iWMMXt2"));
9049 do_rd_rn ();
9050 if (inst.operands[2].imm == 0)
9051 {
9052 switch ((inst.instruction >> 20) & 0xf)
9053 {
9054 case 4:
9055 case 5:
9056 case 6:
9057 case 7:
9058 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
9059 inst.operands[2].imm = 16;
9060 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
9061 break;
9062 case 8:
9063 case 9:
9064 case 10:
9065 case 11:
9066 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
9067 inst.operands[2].imm = 32;
9068 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
9069 break;
9070 case 12:
9071 case 13:
9072 case 14:
9073 case 15:
9074 {
9075 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
9076 unsigned long wrn;
9077 wrn = (inst.instruction >> 16) & 0xf;
9078 inst.instruction &= 0xff0fff0f;
9079 inst.instruction |= wrn;
9080 /* Bail out here; the instruction is now assembled. */
9081 return;
9082 }
9083 }
9084 }
9085 /* Map 32 -> 0, etc. */
9086 inst.operands[2].imm &= 0x1f;
9087 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
9088 }
9089 }
9090 \f
9091 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
9092 operations first, then control, shift, and load/store. */
9093
9094 /* Insns like "foo X,Y,Z". */
9095
9096 static void
9097 do_mav_triple (void)
9098 {
9099 inst.instruction |= inst.operands[0].reg << 16;
9100 inst.instruction |= inst.operands[1].reg;
9101 inst.instruction |= inst.operands[2].reg << 12;
9102 }
9103
9104 /* Insns like "foo W,X,Y,Z".
9105 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
9106
9107 static void
9108 do_mav_quad (void)
9109 {
9110 inst.instruction |= inst.operands[0].reg << 5;
9111 inst.instruction |= inst.operands[1].reg << 12;
9112 inst.instruction |= inst.operands[2].reg << 16;
9113 inst.instruction |= inst.operands[3].reg;
9114 }
9115
9116 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
9117 static void
9118 do_mav_dspsc (void)
9119 {
9120 inst.instruction |= inst.operands[1].reg << 12;
9121 }
9122
9123 /* Maverick shift immediate instructions.
9124 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
9125 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
9126
9127 static void
9128 do_mav_shift (void)
9129 {
9130 int imm = inst.operands[2].imm;
9131
9132 inst.instruction |= inst.operands[0].reg << 12;
9133 inst.instruction |= inst.operands[1].reg << 16;
9134
9135 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
9136 Bits 5-7 of the insn should have bits 4-6 of the immediate.
9137 Bit 4 should be 0. */
9138 imm = (imm & 0xf) | ((imm & 0x70) << 1);
9139
9140 inst.instruction |= imm;
9141 }
9142 \f
9143 /* XScale instructions. Also sorted arithmetic before move. */
9144
9145 /* Xscale multiply-accumulate (argument parse)
9146 MIAcc acc0,Rm,Rs
9147 MIAPHcc acc0,Rm,Rs
9148 MIAxycc acc0,Rm,Rs. */
9149
9150 static void
9151 do_xsc_mia (void)
9152 {
9153 inst.instruction |= inst.operands[1].reg;
9154 inst.instruction |= inst.operands[2].reg << 12;
9155 }
9156
9157 /* Xscale move-accumulator-register (argument parse)
9158
9159 MARcc acc0,RdLo,RdHi. */
9160
9161 static void
9162 do_xsc_mar (void)
9163 {
9164 inst.instruction |= inst.operands[1].reg << 12;
9165 inst.instruction |= inst.operands[2].reg << 16;
9166 }
9167
9168 /* Xscale move-register-accumulator (argument parse)
9169
9170 MRAcc RdLo,RdHi,acc0. */
9171
9172 static void
9173 do_xsc_mra (void)
9174 {
9175 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
9176 inst.instruction |= inst.operands[0].reg << 12;
9177 inst.instruction |= inst.operands[1].reg << 16;
9178 }
9179 \f
9180 /* Encoding functions relevant only to Thumb. */
9181
9182 /* inst.operands[i] is a shifted-register operand; encode
9183 it into inst.instruction in the format used by Thumb32. */
9184
9185 static void
9186 encode_thumb32_shifted_operand (int i)
9187 {
9188 unsigned int value = inst.reloc.exp.X_add_number;
9189 unsigned int shift = inst.operands[i].shift_kind;
9190
9191 constraint (inst.operands[i].immisreg,
9192 _("shift by register not allowed in thumb mode"));
9193 inst.instruction |= inst.operands[i].reg;
9194 if (shift == SHIFT_RRX)
9195 inst.instruction |= SHIFT_ROR << 4;
9196 else
9197 {
9198 constraint (inst.reloc.exp.X_op != O_constant,
9199 _("expression too complex"));
9200
9201 constraint (value > 32
9202 || (value == 32 && (shift == SHIFT_LSL
9203 || shift == SHIFT_ROR)),
9204 _("shift expression is too large"));
9205
9206 if (value == 0)
9207 shift = SHIFT_LSL;
9208 else if (value == 32)
9209 value = 0;
9210
9211 inst.instruction |= shift << 4;
9212 inst.instruction |= (value & 0x1c) << 10;
9213 inst.instruction |= (value & 0x03) << 6;
9214 }
9215 }
9216
9217
9218 /* inst.operands[i] was set up by parse_address. Encode it into a
9219 Thumb32 format load or store instruction. Reject forms that cannot
9220 be used with such instructions. If is_t is true, reject forms that
9221 cannot be used with a T instruction; if is_d is true, reject forms
9222 that cannot be used with a D instruction. If it is a store insn,
9223 reject PC in Rn. */
9224
9225 static void
9226 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
9227 {
9228 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
9229
9230 constraint (!inst.operands[i].isreg,
9231 _("Instruction does not support =N addresses"));
9232
9233 inst.instruction |= inst.operands[i].reg << 16;
9234 if (inst.operands[i].immisreg)
9235 {
9236 constraint (is_pc, BAD_PC_ADDRESSING);
9237 constraint (is_t || is_d, _("cannot use register index with this instruction"));
9238 constraint (inst.operands[i].negative,
9239 _("Thumb does not support negative register indexing"));
9240 constraint (inst.operands[i].postind,
9241 _("Thumb does not support register post-indexing"));
9242 constraint (inst.operands[i].writeback,
9243 _("Thumb does not support register indexing with writeback"));
9244 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
9245 _("Thumb supports only LSL in shifted register indexing"));
9246
9247 inst.instruction |= inst.operands[i].imm;
9248 if (inst.operands[i].shifted)
9249 {
9250 constraint (inst.reloc.exp.X_op != O_constant,
9251 _("expression too complex"));
9252 constraint (inst.reloc.exp.X_add_number < 0
9253 || inst.reloc.exp.X_add_number > 3,
9254 _("shift out of range"));
9255 inst.instruction |= inst.reloc.exp.X_add_number << 4;
9256 }
9257 inst.reloc.type = BFD_RELOC_UNUSED;
9258 }
9259 else if (inst.operands[i].preind)
9260 {
9261 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
9262 constraint (is_t && inst.operands[i].writeback,
9263 _("cannot use writeback with this instruction"));
9264 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0)
9265 && !inst.reloc.pc_rel, BAD_PC_ADDRESSING);
9266
9267 if (is_d)
9268 {
9269 inst.instruction |= 0x01000000;
9270 if (inst.operands[i].writeback)
9271 inst.instruction |= 0x00200000;
9272 }
9273 else
9274 {
9275 inst.instruction |= 0x00000c00;
9276 if (inst.operands[i].writeback)
9277 inst.instruction |= 0x00000100;
9278 }
9279 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
9280 }
9281 else if (inst.operands[i].postind)
9282 {
9283 gas_assert (inst.operands[i].writeback);
9284 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
9285 constraint (is_t, _("cannot use post-indexing with this instruction"));
9286
9287 if (is_d)
9288 inst.instruction |= 0x00200000;
9289 else
9290 inst.instruction |= 0x00000900;
9291 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
9292 }
9293 else /* unindexed - only for coprocessor */
9294 inst.error = _("instruction does not accept unindexed addressing");
9295 }
9296
9297 /* Table of Thumb instructions which exist in both 16- and 32-bit
9298 encodings (the latter only in post-V6T2 cores). The index is the
9299 value used in the insns table below. When there is more than one
9300 possible 16-bit encoding for the instruction, this table always
9301 holds variant (1).
9302 Also contains several pseudo-instructions used during relaxation. */
9303 #define T16_32_TAB \
9304 X(_adc, 4140, eb400000), \
9305 X(_adcs, 4140, eb500000), \
9306 X(_add, 1c00, eb000000), \
9307 X(_adds, 1c00, eb100000), \
9308 X(_addi, 0000, f1000000), \
9309 X(_addis, 0000, f1100000), \
9310 X(_add_pc,000f, f20f0000), \
9311 X(_add_sp,000d, f10d0000), \
9312 X(_adr, 000f, f20f0000), \
9313 X(_and, 4000, ea000000), \
9314 X(_ands, 4000, ea100000), \
9315 X(_asr, 1000, fa40f000), \
9316 X(_asrs, 1000, fa50f000), \
9317 X(_b, e000, f000b000), \
9318 X(_bcond, d000, f0008000), \
9319 X(_bic, 4380, ea200000), \
9320 X(_bics, 4380, ea300000), \
9321 X(_cmn, 42c0, eb100f00), \
9322 X(_cmp, 2800, ebb00f00), \
9323 X(_cpsie, b660, f3af8400), \
9324 X(_cpsid, b670, f3af8600), \
9325 X(_cpy, 4600, ea4f0000), \
9326 X(_dec_sp,80dd, f1ad0d00), \
9327 X(_eor, 4040, ea800000), \
9328 X(_eors, 4040, ea900000), \
9329 X(_inc_sp,00dd, f10d0d00), \
9330 X(_ldmia, c800, e8900000), \
9331 X(_ldr, 6800, f8500000), \
9332 X(_ldrb, 7800, f8100000), \
9333 X(_ldrh, 8800, f8300000), \
9334 X(_ldrsb, 5600, f9100000), \
9335 X(_ldrsh, 5e00, f9300000), \
9336 X(_ldr_pc,4800, f85f0000), \
9337 X(_ldr_pc2,4800, f85f0000), \
9338 X(_ldr_sp,9800, f85d0000), \
9339 X(_lsl, 0000, fa00f000), \
9340 X(_lsls, 0000, fa10f000), \
9341 X(_lsr, 0800, fa20f000), \
9342 X(_lsrs, 0800, fa30f000), \
9343 X(_mov, 2000, ea4f0000), \
9344 X(_movs, 2000, ea5f0000), \
9345 X(_mul, 4340, fb00f000), \
9346 X(_muls, 4340, ffffffff), /* no 32b muls */ \
9347 X(_mvn, 43c0, ea6f0000), \
9348 X(_mvns, 43c0, ea7f0000), \
9349 X(_neg, 4240, f1c00000), /* rsb #0 */ \
9350 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
9351 X(_orr, 4300, ea400000), \
9352 X(_orrs, 4300, ea500000), \
9353 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
9354 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
9355 X(_rev, ba00, fa90f080), \
9356 X(_rev16, ba40, fa90f090), \
9357 X(_revsh, bac0, fa90f0b0), \
9358 X(_ror, 41c0, fa60f000), \
9359 X(_rors, 41c0, fa70f000), \
9360 X(_sbc, 4180, eb600000), \
9361 X(_sbcs, 4180, eb700000), \
9362 X(_stmia, c000, e8800000), \
9363 X(_str, 6000, f8400000), \
9364 X(_strb, 7000, f8000000), \
9365 X(_strh, 8000, f8200000), \
9366 X(_str_sp,9000, f84d0000), \
9367 X(_sub, 1e00, eba00000), \
9368 X(_subs, 1e00, ebb00000), \
9369 X(_subi, 8000, f1a00000), \
9370 X(_subis, 8000, f1b00000), \
9371 X(_sxtb, b240, fa4ff080), \
9372 X(_sxth, b200, fa0ff080), \
9373 X(_tst, 4200, ea100f00), \
9374 X(_uxtb, b2c0, fa5ff080), \
9375 X(_uxth, b280, fa1ff080), \
9376 X(_nop, bf00, f3af8000), \
9377 X(_yield, bf10, f3af8001), \
9378 X(_wfe, bf20, f3af8002), \
9379 X(_wfi, bf30, f3af8003), \
9380 X(_sev, bf40, f3af8004),
9381
9382 /* To catch errors in encoding functions, the codes are all offset by
9383 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
9384 as 16-bit instructions. */
9385 #define X(a,b,c) T_MNEM##a
9386 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
9387 #undef X
9388
9389 #define X(a,b,c) 0x##b
9390 static const unsigned short thumb_op16[] = { T16_32_TAB };
9391 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
9392 #undef X
9393
9394 #define X(a,b,c) 0x##c
9395 static const unsigned int thumb_op32[] = { T16_32_TAB };
9396 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
9397 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
9398 #undef X
9399 #undef T16_32_TAB
9400
9401 /* Thumb instruction encoders, in alphabetical order. */
9402
9403 /* ADDW or SUBW. */
9404
9405 static void
9406 do_t_add_sub_w (void)
9407 {
9408 int Rd, Rn;
9409
9410 Rd = inst.operands[0].reg;
9411 Rn = inst.operands[1].reg;
9412
9413 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
9414 is the SP-{plus,minus}-immediate form of the instruction. */
9415 if (Rn == REG_SP)
9416 constraint (Rd == REG_PC, BAD_PC);
9417 else
9418 reject_bad_reg (Rd);
9419
9420 inst.instruction |= (Rn << 16) | (Rd << 8);
9421 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9422 }
9423
9424 /* Parse an add or subtract instruction. We get here with inst.instruction
9425 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
9426
9427 static void
9428 do_t_add_sub (void)
9429 {
9430 int Rd, Rs, Rn;
9431
9432 Rd = inst.operands[0].reg;
9433 Rs = (inst.operands[1].present
9434 ? inst.operands[1].reg /* Rd, Rs, foo */
9435 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9436
9437 if (Rd == REG_PC)
9438 set_it_insn_type_last ();
9439
9440 if (unified_syntax)
9441 {
9442 bfd_boolean flags;
9443 bfd_boolean narrow;
9444 int opcode;
9445
9446 flags = (inst.instruction == T_MNEM_adds
9447 || inst.instruction == T_MNEM_subs);
9448 if (flags)
9449 narrow = !in_it_block ();
9450 else
9451 narrow = in_it_block ();
9452 if (!inst.operands[2].isreg)
9453 {
9454 int add;
9455
9456 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9457
9458 add = (inst.instruction == T_MNEM_add
9459 || inst.instruction == T_MNEM_adds);
9460 opcode = 0;
9461 if (inst.size_req != 4)
9462 {
9463 /* Attempt to use a narrow opcode, with relaxation if
9464 appropriate. */
9465 if (Rd == REG_SP && Rs == REG_SP && !flags)
9466 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
9467 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
9468 opcode = T_MNEM_add_sp;
9469 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
9470 opcode = T_MNEM_add_pc;
9471 else if (Rd <= 7 && Rs <= 7 && narrow)
9472 {
9473 if (flags)
9474 opcode = add ? T_MNEM_addis : T_MNEM_subis;
9475 else
9476 opcode = add ? T_MNEM_addi : T_MNEM_subi;
9477 }
9478 if (opcode)
9479 {
9480 inst.instruction = THUMB_OP16(opcode);
9481 inst.instruction |= (Rd << 4) | Rs;
9482 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9483 if (inst.size_req != 2)
9484 inst.relax = opcode;
9485 }
9486 else
9487 constraint (inst.size_req == 2, BAD_HIREG);
9488 }
9489 if (inst.size_req == 4
9490 || (inst.size_req != 2 && !opcode))
9491 {
9492 if (Rd == REG_PC)
9493 {
9494 constraint (add, BAD_PC);
9495 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
9496 _("only SUBS PC, LR, #const allowed"));
9497 constraint (inst.reloc.exp.X_op != O_constant,
9498 _("expression too complex"));
9499 constraint (inst.reloc.exp.X_add_number < 0
9500 || inst.reloc.exp.X_add_number > 0xff,
9501 _("immediate value out of range"));
9502 inst.instruction = T2_SUBS_PC_LR
9503 | inst.reloc.exp.X_add_number;
9504 inst.reloc.type = BFD_RELOC_UNUSED;
9505 return;
9506 }
9507 else if (Rs == REG_PC)
9508 {
9509 /* Always use addw/subw. */
9510 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
9511 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9512 }
9513 else
9514 {
9515 inst.instruction = THUMB_OP32 (inst.instruction);
9516 inst.instruction = (inst.instruction & 0xe1ffffff)
9517 | 0x10000000;
9518 if (flags)
9519 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9520 else
9521 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
9522 }
9523 inst.instruction |= Rd << 8;
9524 inst.instruction |= Rs << 16;
9525 }
9526 }
9527 else
9528 {
9529 unsigned int value = inst.reloc.exp.X_add_number;
9530 unsigned int shift = inst.operands[2].shift_kind;
9531
9532 Rn = inst.operands[2].reg;
9533 /* See if we can do this with a 16-bit instruction. */
9534 if (!inst.operands[2].shifted && inst.size_req != 4)
9535 {
9536 if (Rd > 7 || Rs > 7 || Rn > 7)
9537 narrow = FALSE;
9538
9539 if (narrow)
9540 {
9541 inst.instruction = ((inst.instruction == T_MNEM_adds
9542 || inst.instruction == T_MNEM_add)
9543 ? T_OPCODE_ADD_R3
9544 : T_OPCODE_SUB_R3);
9545 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9546 return;
9547 }
9548
9549 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
9550 {
9551 /* Thumb-1 cores (except v6-M) require at least one high
9552 register in a narrow non flag setting add. */
9553 if (Rd > 7 || Rn > 7
9554 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
9555 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
9556 {
9557 if (Rd == Rn)
9558 {
9559 Rn = Rs;
9560 Rs = Rd;
9561 }
9562 inst.instruction = T_OPCODE_ADD_HI;
9563 inst.instruction |= (Rd & 8) << 4;
9564 inst.instruction |= (Rd & 7);
9565 inst.instruction |= Rn << 3;
9566 return;
9567 }
9568 }
9569 }
9570
9571 constraint (Rd == REG_PC, BAD_PC);
9572 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9573 constraint (Rs == REG_PC, BAD_PC);
9574 reject_bad_reg (Rn);
9575
9576 /* If we get here, it can't be done in 16 bits. */
9577 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
9578 _("shift must be constant"));
9579 inst.instruction = THUMB_OP32 (inst.instruction);
9580 inst.instruction |= Rd << 8;
9581 inst.instruction |= Rs << 16;
9582 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
9583 _("shift value over 3 not allowed in thumb mode"));
9584 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
9585 _("only LSL shift allowed in thumb mode"));
9586 encode_thumb32_shifted_operand (2);
9587 }
9588 }
9589 else
9590 {
9591 constraint (inst.instruction == T_MNEM_adds
9592 || inst.instruction == T_MNEM_subs,
9593 BAD_THUMB32);
9594
9595 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
9596 {
9597 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
9598 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
9599 BAD_HIREG);
9600
9601 inst.instruction = (inst.instruction == T_MNEM_add
9602 ? 0x0000 : 0x8000);
9603 inst.instruction |= (Rd << 4) | Rs;
9604 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9605 return;
9606 }
9607
9608 Rn = inst.operands[2].reg;
9609 constraint (inst.operands[2].shifted, _("unshifted register required"));
9610
9611 /* We now have Rd, Rs, and Rn set to registers. */
9612 if (Rd > 7 || Rs > 7 || Rn > 7)
9613 {
9614 /* Can't do this for SUB. */
9615 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
9616 inst.instruction = T_OPCODE_ADD_HI;
9617 inst.instruction |= (Rd & 8) << 4;
9618 inst.instruction |= (Rd & 7);
9619 if (Rs == Rd)
9620 inst.instruction |= Rn << 3;
9621 else if (Rn == Rd)
9622 inst.instruction |= Rs << 3;
9623 else
9624 constraint (1, _("dest must overlap one source register"));
9625 }
9626 else
9627 {
9628 inst.instruction = (inst.instruction == T_MNEM_add
9629 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
9630 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9631 }
9632 }
9633 }
9634
9635 static void
9636 do_t_adr (void)
9637 {
9638 unsigned Rd;
9639
9640 Rd = inst.operands[0].reg;
9641 reject_bad_reg (Rd);
9642
9643 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
9644 {
9645 /* Defer to section relaxation. */
9646 inst.relax = inst.instruction;
9647 inst.instruction = THUMB_OP16 (inst.instruction);
9648 inst.instruction |= Rd << 4;
9649 }
9650 else if (unified_syntax && inst.size_req != 2)
9651 {
9652 /* Generate a 32-bit opcode. */
9653 inst.instruction = THUMB_OP32 (inst.instruction);
9654 inst.instruction |= Rd << 8;
9655 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
9656 inst.reloc.pc_rel = 1;
9657 }
9658 else
9659 {
9660 /* Generate a 16-bit opcode. */
9661 inst.instruction = THUMB_OP16 (inst.instruction);
9662 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9663 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
9664 inst.reloc.pc_rel = 1;
9665
9666 inst.instruction |= Rd << 4;
9667 }
9668 }
9669
9670 /* Arithmetic instructions for which there is just one 16-bit
9671 instruction encoding, and it allows only two low registers.
9672 For maximal compatibility with ARM syntax, we allow three register
9673 operands even when Thumb-32 instructions are not available, as long
9674 as the first two are identical. For instance, both "sbc r0,r1" and
9675 "sbc r0,r0,r1" are allowed. */
9676 static void
9677 do_t_arit3 (void)
9678 {
9679 int Rd, Rs, Rn;
9680
9681 Rd = inst.operands[0].reg;
9682 Rs = (inst.operands[1].present
9683 ? inst.operands[1].reg /* Rd, Rs, foo */
9684 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9685 Rn = inst.operands[2].reg;
9686
9687 reject_bad_reg (Rd);
9688 reject_bad_reg (Rs);
9689 if (inst.operands[2].isreg)
9690 reject_bad_reg (Rn);
9691
9692 if (unified_syntax)
9693 {
9694 if (!inst.operands[2].isreg)
9695 {
9696 /* For an immediate, we always generate a 32-bit opcode;
9697 section relaxation will shrink it later if possible. */
9698 inst.instruction = THUMB_OP32 (inst.instruction);
9699 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9700 inst.instruction |= Rd << 8;
9701 inst.instruction |= Rs << 16;
9702 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9703 }
9704 else
9705 {
9706 bfd_boolean narrow;
9707
9708 /* See if we can do this with a 16-bit instruction. */
9709 if (THUMB_SETS_FLAGS (inst.instruction))
9710 narrow = !in_it_block ();
9711 else
9712 narrow = in_it_block ();
9713
9714 if (Rd > 7 || Rn > 7 || Rs > 7)
9715 narrow = FALSE;
9716 if (inst.operands[2].shifted)
9717 narrow = FALSE;
9718 if (inst.size_req == 4)
9719 narrow = FALSE;
9720
9721 if (narrow
9722 && Rd == Rs)
9723 {
9724 inst.instruction = THUMB_OP16 (inst.instruction);
9725 inst.instruction |= Rd;
9726 inst.instruction |= Rn << 3;
9727 return;
9728 }
9729
9730 /* If we get here, it can't be done in 16 bits. */
9731 constraint (inst.operands[2].shifted
9732 && inst.operands[2].immisreg,
9733 _("shift must be constant"));
9734 inst.instruction = THUMB_OP32 (inst.instruction);
9735 inst.instruction |= Rd << 8;
9736 inst.instruction |= Rs << 16;
9737 encode_thumb32_shifted_operand (2);
9738 }
9739 }
9740 else
9741 {
9742 /* On its face this is a lie - the instruction does set the
9743 flags. However, the only supported mnemonic in this mode
9744 says it doesn't. */
9745 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9746
9747 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9748 _("unshifted register required"));
9749 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9750 constraint (Rd != Rs,
9751 _("dest and source1 must be the same register"));
9752
9753 inst.instruction = THUMB_OP16 (inst.instruction);
9754 inst.instruction |= Rd;
9755 inst.instruction |= Rn << 3;
9756 }
9757 }
9758
9759 /* Similarly, but for instructions where the arithmetic operation is
9760 commutative, so we can allow either of them to be different from
9761 the destination operand in a 16-bit instruction. For instance, all
9762 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
9763 accepted. */
9764 static void
9765 do_t_arit3c (void)
9766 {
9767 int Rd, Rs, Rn;
9768
9769 Rd = inst.operands[0].reg;
9770 Rs = (inst.operands[1].present
9771 ? inst.operands[1].reg /* Rd, Rs, foo */
9772 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9773 Rn = inst.operands[2].reg;
9774
9775 reject_bad_reg (Rd);
9776 reject_bad_reg (Rs);
9777 if (inst.operands[2].isreg)
9778 reject_bad_reg (Rn);
9779
9780 if (unified_syntax)
9781 {
9782 if (!inst.operands[2].isreg)
9783 {
9784 /* For an immediate, we always generate a 32-bit opcode;
9785 section relaxation will shrink it later if possible. */
9786 inst.instruction = THUMB_OP32 (inst.instruction);
9787 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9788 inst.instruction |= Rd << 8;
9789 inst.instruction |= Rs << 16;
9790 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9791 }
9792 else
9793 {
9794 bfd_boolean narrow;
9795
9796 /* See if we can do this with a 16-bit instruction. */
9797 if (THUMB_SETS_FLAGS (inst.instruction))
9798 narrow = !in_it_block ();
9799 else
9800 narrow = in_it_block ();
9801
9802 if (Rd > 7 || Rn > 7 || Rs > 7)
9803 narrow = FALSE;
9804 if (inst.operands[2].shifted)
9805 narrow = FALSE;
9806 if (inst.size_req == 4)
9807 narrow = FALSE;
9808
9809 if (narrow)
9810 {
9811 if (Rd == Rs)
9812 {
9813 inst.instruction = THUMB_OP16 (inst.instruction);
9814 inst.instruction |= Rd;
9815 inst.instruction |= Rn << 3;
9816 return;
9817 }
9818 if (Rd == Rn)
9819 {
9820 inst.instruction = THUMB_OP16 (inst.instruction);
9821 inst.instruction |= Rd;
9822 inst.instruction |= Rs << 3;
9823 return;
9824 }
9825 }
9826
9827 /* If we get here, it can't be done in 16 bits. */
9828 constraint (inst.operands[2].shifted
9829 && inst.operands[2].immisreg,
9830 _("shift must be constant"));
9831 inst.instruction = THUMB_OP32 (inst.instruction);
9832 inst.instruction |= Rd << 8;
9833 inst.instruction |= Rs << 16;
9834 encode_thumb32_shifted_operand (2);
9835 }
9836 }
9837 else
9838 {
9839 /* On its face this is a lie - the instruction does set the
9840 flags. However, the only supported mnemonic in this mode
9841 says it doesn't. */
9842 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9843
9844 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9845 _("unshifted register required"));
9846 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9847
9848 inst.instruction = THUMB_OP16 (inst.instruction);
9849 inst.instruction |= Rd;
9850
9851 if (Rd == Rs)
9852 inst.instruction |= Rn << 3;
9853 else if (Rd == Rn)
9854 inst.instruction |= Rs << 3;
9855 else
9856 constraint (1, _("dest must overlap one source register"));
9857 }
9858 }
9859
9860 static void
9861 do_t_barrier (void)
9862 {
9863 if (inst.operands[0].present)
9864 {
9865 constraint ((inst.instruction & 0xf0) != 0x40
9866 && inst.operands[0].imm > 0xf
9867 && inst.operands[0].imm < 0x0,
9868 _("bad barrier type"));
9869 inst.instruction |= inst.operands[0].imm;
9870 }
9871 else
9872 inst.instruction |= 0xf;
9873 }
9874
9875 static void
9876 do_t_bfc (void)
9877 {
9878 unsigned Rd;
9879 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9880 constraint (msb > 32, _("bit-field extends past end of register"));
9881 /* The instruction encoding stores the LSB and MSB,
9882 not the LSB and width. */
9883 Rd = inst.operands[0].reg;
9884 reject_bad_reg (Rd);
9885 inst.instruction |= Rd << 8;
9886 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
9887 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
9888 inst.instruction |= msb - 1;
9889 }
9890
9891 static void
9892 do_t_bfi (void)
9893 {
9894 int Rd, Rn;
9895 unsigned int msb;
9896
9897 Rd = inst.operands[0].reg;
9898 reject_bad_reg (Rd);
9899
9900 /* #0 in second position is alternative syntax for bfc, which is
9901 the same instruction but with REG_PC in the Rm field. */
9902 if (!inst.operands[1].isreg)
9903 Rn = REG_PC;
9904 else
9905 {
9906 Rn = inst.operands[1].reg;
9907 reject_bad_reg (Rn);
9908 }
9909
9910 msb = inst.operands[2].imm + inst.operands[3].imm;
9911 constraint (msb > 32, _("bit-field extends past end of register"));
9912 /* The instruction encoding stores the LSB and MSB,
9913 not the LSB and width. */
9914 inst.instruction |= Rd << 8;
9915 inst.instruction |= Rn << 16;
9916 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9917 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9918 inst.instruction |= msb - 1;
9919 }
9920
9921 static void
9922 do_t_bfx (void)
9923 {
9924 unsigned Rd, Rn;
9925
9926 Rd = inst.operands[0].reg;
9927 Rn = inst.operands[1].reg;
9928
9929 reject_bad_reg (Rd);
9930 reject_bad_reg (Rn);
9931
9932 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9933 _("bit-field extends past end of register"));
9934 inst.instruction |= Rd << 8;
9935 inst.instruction |= Rn << 16;
9936 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9937 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9938 inst.instruction |= inst.operands[3].imm - 1;
9939 }
9940
9941 /* ARM V5 Thumb BLX (argument parse)
9942 BLX <target_addr> which is BLX(1)
9943 BLX <Rm> which is BLX(2)
9944 Unfortunately, there are two different opcodes for this mnemonic.
9945 So, the insns[].value is not used, and the code here zaps values
9946 into inst.instruction.
9947
9948 ??? How to take advantage of the additional two bits of displacement
9949 available in Thumb32 mode? Need new relocation? */
9950
9951 static void
9952 do_t_blx (void)
9953 {
9954 set_it_insn_type_last ();
9955
9956 if (inst.operands[0].isreg)
9957 {
9958 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9959 /* We have a register, so this is BLX(2). */
9960 inst.instruction |= inst.operands[0].reg << 3;
9961 }
9962 else
9963 {
9964 /* No register. This must be BLX(1). */
9965 inst.instruction = 0xf000e800;
9966 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
9967 }
9968 }
9969
9970 static void
9971 do_t_branch (void)
9972 {
9973 int opcode;
9974 int cond;
9975 int reloc;
9976
9977 cond = inst.cond;
9978 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
9979
9980 if (in_it_block ())
9981 {
9982 /* Conditional branches inside IT blocks are encoded as unconditional
9983 branches. */
9984 cond = COND_ALWAYS;
9985 }
9986 else
9987 cond = inst.cond;
9988
9989 if (cond != COND_ALWAYS)
9990 opcode = T_MNEM_bcond;
9991 else
9992 opcode = inst.instruction;
9993
9994 if (unified_syntax
9995 && (inst.size_req == 4
9996 || (inst.size_req != 2
9997 && (inst.operands[0].hasreloc
9998 || inst.reloc.exp.X_op == O_constant))))
9999 {
10000 inst.instruction = THUMB_OP32(opcode);
10001 if (cond == COND_ALWAYS)
10002 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
10003 else
10004 {
10005 gas_assert (cond != 0xF);
10006 inst.instruction |= cond << 22;
10007 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
10008 }
10009 }
10010 else
10011 {
10012 inst.instruction = THUMB_OP16(opcode);
10013 if (cond == COND_ALWAYS)
10014 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
10015 else
10016 {
10017 inst.instruction |= cond << 8;
10018 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
10019 }
10020 /* Allow section relaxation. */
10021 if (unified_syntax && inst.size_req != 2)
10022 inst.relax = opcode;
10023 }
10024 inst.reloc.type = reloc;
10025 inst.reloc.pc_rel = 1;
10026 }
10027
10028 static void
10029 do_t_bkpt (void)
10030 {
10031 constraint (inst.cond != COND_ALWAYS,
10032 _("instruction is always unconditional"));
10033 if (inst.operands[0].present)
10034 {
10035 constraint (inst.operands[0].imm > 255,
10036 _("immediate value out of range"));
10037 inst.instruction |= inst.operands[0].imm;
10038 set_it_insn_type (NEUTRAL_IT_INSN);
10039 }
10040 }
10041
10042 static void
10043 do_t_branch23 (void)
10044 {
10045 set_it_insn_type_last ();
10046 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
10047
10048 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
10049 this file. We used to simply ignore the PLT reloc type here --
10050 the branch encoding is now needed to deal with TLSCALL relocs.
10051 So if we see a PLT reloc now, put it back to how it used to be to
10052 keep the preexisting behaviour. */
10053 if (inst.reloc.type == BFD_RELOC_ARM_PLT32)
10054 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
10055
10056 #if defined(OBJ_COFF)
10057 /* If the destination of the branch is a defined symbol which does not have
10058 the THUMB_FUNC attribute, then we must be calling a function which has
10059 the (interfacearm) attribute. We look for the Thumb entry point to that
10060 function and change the branch to refer to that function instead. */
10061 if ( inst.reloc.exp.X_op == O_symbol
10062 && inst.reloc.exp.X_add_symbol != NULL
10063 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
10064 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
10065 inst.reloc.exp.X_add_symbol =
10066 find_real_start (inst.reloc.exp.X_add_symbol);
10067 #endif
10068 }
10069
10070 static void
10071 do_t_bx (void)
10072 {
10073 set_it_insn_type_last ();
10074 inst.instruction |= inst.operands[0].reg << 3;
10075 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
10076 should cause the alignment to be checked once it is known. This is
10077 because BX PC only works if the instruction is word aligned. */
10078 }
10079
10080 static void
10081 do_t_bxj (void)
10082 {
10083 int Rm;
10084
10085 set_it_insn_type_last ();
10086 Rm = inst.operands[0].reg;
10087 reject_bad_reg (Rm);
10088 inst.instruction |= Rm << 16;
10089 }
10090
10091 static void
10092 do_t_clz (void)
10093 {
10094 unsigned Rd;
10095 unsigned Rm;
10096
10097 Rd = inst.operands[0].reg;
10098 Rm = inst.operands[1].reg;
10099
10100 reject_bad_reg (Rd);
10101 reject_bad_reg (Rm);
10102
10103 inst.instruction |= Rd << 8;
10104 inst.instruction |= Rm << 16;
10105 inst.instruction |= Rm;
10106 }
10107
10108 static void
10109 do_t_cps (void)
10110 {
10111 set_it_insn_type (OUTSIDE_IT_INSN);
10112 inst.instruction |= inst.operands[0].imm;
10113 }
10114
10115 static void
10116 do_t_cpsi (void)
10117 {
10118 set_it_insn_type (OUTSIDE_IT_INSN);
10119 if (unified_syntax
10120 && (inst.operands[1].present || inst.size_req == 4)
10121 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
10122 {
10123 unsigned int imod = (inst.instruction & 0x0030) >> 4;
10124 inst.instruction = 0xf3af8000;
10125 inst.instruction |= imod << 9;
10126 inst.instruction |= inst.operands[0].imm << 5;
10127 if (inst.operands[1].present)
10128 inst.instruction |= 0x100 | inst.operands[1].imm;
10129 }
10130 else
10131 {
10132 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
10133 && (inst.operands[0].imm & 4),
10134 _("selected processor does not support 'A' form "
10135 "of this instruction"));
10136 constraint (inst.operands[1].present || inst.size_req == 4,
10137 _("Thumb does not support the 2-argument "
10138 "form of this instruction"));
10139 inst.instruction |= inst.operands[0].imm;
10140 }
10141 }
10142
10143 /* THUMB CPY instruction (argument parse). */
10144
10145 static void
10146 do_t_cpy (void)
10147 {
10148 if (inst.size_req == 4)
10149 {
10150 inst.instruction = THUMB_OP32 (T_MNEM_mov);
10151 inst.instruction |= inst.operands[0].reg << 8;
10152 inst.instruction |= inst.operands[1].reg;
10153 }
10154 else
10155 {
10156 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
10157 inst.instruction |= (inst.operands[0].reg & 0x7);
10158 inst.instruction |= inst.operands[1].reg << 3;
10159 }
10160 }
10161
10162 static void
10163 do_t_cbz (void)
10164 {
10165 set_it_insn_type (OUTSIDE_IT_INSN);
10166 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10167 inst.instruction |= inst.operands[0].reg;
10168 inst.reloc.pc_rel = 1;
10169 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
10170 }
10171
10172 static void
10173 do_t_dbg (void)
10174 {
10175 inst.instruction |= inst.operands[0].imm;
10176 }
10177
10178 static void
10179 do_t_div (void)
10180 {
10181 unsigned Rd, Rn, Rm;
10182
10183 Rd = inst.operands[0].reg;
10184 Rn = (inst.operands[1].present
10185 ? inst.operands[1].reg : Rd);
10186 Rm = inst.operands[2].reg;
10187
10188 reject_bad_reg (Rd);
10189 reject_bad_reg (Rn);
10190 reject_bad_reg (Rm);
10191
10192 inst.instruction |= Rd << 8;
10193 inst.instruction |= Rn << 16;
10194 inst.instruction |= Rm;
10195 }
10196
10197 static void
10198 do_t_hint (void)
10199 {
10200 if (unified_syntax && inst.size_req == 4)
10201 inst.instruction = THUMB_OP32 (inst.instruction);
10202 else
10203 inst.instruction = THUMB_OP16 (inst.instruction);
10204 }
10205
10206 static void
10207 do_t_it (void)
10208 {
10209 unsigned int cond = inst.operands[0].imm;
10210
10211 set_it_insn_type (IT_INSN);
10212 now_it.mask = (inst.instruction & 0xf) | 0x10;
10213 now_it.cc = cond;
10214
10215 /* If the condition is a negative condition, invert the mask. */
10216 if ((cond & 0x1) == 0x0)
10217 {
10218 unsigned int mask = inst.instruction & 0x000f;
10219
10220 if ((mask & 0x7) == 0)
10221 /* no conversion needed */;
10222 else if ((mask & 0x3) == 0)
10223 mask ^= 0x8;
10224 else if ((mask & 0x1) == 0)
10225 mask ^= 0xC;
10226 else
10227 mask ^= 0xE;
10228
10229 inst.instruction &= 0xfff0;
10230 inst.instruction |= mask;
10231 }
10232
10233 inst.instruction |= cond << 4;
10234 }
10235
10236 /* Helper function used for both push/pop and ldm/stm. */
10237 static void
10238 encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
10239 {
10240 bfd_boolean load;
10241
10242 load = (inst.instruction & (1 << 20)) != 0;
10243
10244 if (mask & (1 << 13))
10245 inst.error = _("SP not allowed in register list");
10246
10247 if ((mask & (1 << base)) != 0
10248 && writeback)
10249 inst.error = _("having the base register in the register list when "
10250 "using write back is UNPREDICTABLE");
10251
10252 if (load)
10253 {
10254 if (mask & (1 << 15))
10255 {
10256 if (mask & (1 << 14))
10257 inst.error = _("LR and PC should not both be in register list");
10258 else
10259 set_it_insn_type_last ();
10260 }
10261 }
10262 else
10263 {
10264 if (mask & (1 << 15))
10265 inst.error = _("PC not allowed in register list");
10266 }
10267
10268 if ((mask & (mask - 1)) == 0)
10269 {
10270 /* Single register transfers implemented as str/ldr. */
10271 if (writeback)
10272 {
10273 if (inst.instruction & (1 << 23))
10274 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
10275 else
10276 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
10277 }
10278 else
10279 {
10280 if (inst.instruction & (1 << 23))
10281 inst.instruction = 0x00800000; /* ia -> [base] */
10282 else
10283 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
10284 }
10285
10286 inst.instruction |= 0xf8400000;
10287 if (load)
10288 inst.instruction |= 0x00100000;
10289
10290 mask = ffs (mask) - 1;
10291 mask <<= 12;
10292 }
10293 else if (writeback)
10294 inst.instruction |= WRITE_BACK;
10295
10296 inst.instruction |= mask;
10297 inst.instruction |= base << 16;
10298 }
10299
10300 static void
10301 do_t_ldmstm (void)
10302 {
10303 /* This really doesn't seem worth it. */
10304 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
10305 _("expression too complex"));
10306 constraint (inst.operands[1].writeback,
10307 _("Thumb load/store multiple does not support {reglist}^"));
10308
10309 if (unified_syntax)
10310 {
10311 bfd_boolean narrow;
10312 unsigned mask;
10313
10314 narrow = FALSE;
10315 /* See if we can use a 16-bit instruction. */
10316 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
10317 && inst.size_req != 4
10318 && !(inst.operands[1].imm & ~0xff))
10319 {
10320 mask = 1 << inst.operands[0].reg;
10321
10322 if (inst.operands[0].reg <= 7)
10323 {
10324 if (inst.instruction == T_MNEM_stmia
10325 ? inst.operands[0].writeback
10326 : (inst.operands[0].writeback
10327 == !(inst.operands[1].imm & mask)))
10328 {
10329 if (inst.instruction == T_MNEM_stmia
10330 && (inst.operands[1].imm & mask)
10331 && (inst.operands[1].imm & (mask - 1)))
10332 as_warn (_("value stored for r%d is UNKNOWN"),
10333 inst.operands[0].reg);
10334
10335 inst.instruction = THUMB_OP16 (inst.instruction);
10336 inst.instruction |= inst.operands[0].reg << 8;
10337 inst.instruction |= inst.operands[1].imm;
10338 narrow = TRUE;
10339 }
10340 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10341 {
10342 /* This means 1 register in reg list one of 3 situations:
10343 1. Instruction is stmia, but without writeback.
10344 2. lmdia without writeback, but with Rn not in
10345 reglist.
10346 3. ldmia with writeback, but with Rn in reglist.
10347 Case 3 is UNPREDICTABLE behaviour, so we handle
10348 case 1 and 2 which can be converted into a 16-bit
10349 str or ldr. The SP cases are handled below. */
10350 unsigned long opcode;
10351 /* First, record an error for Case 3. */
10352 if (inst.operands[1].imm & mask
10353 && inst.operands[0].writeback)
10354 inst.error =
10355 _("having the base register in the register list when "
10356 "using write back is UNPREDICTABLE");
10357
10358 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
10359 : T_MNEM_ldr);
10360 inst.instruction = THUMB_OP16 (opcode);
10361 inst.instruction |= inst.operands[0].reg << 3;
10362 inst.instruction |= (ffs (inst.operands[1].imm)-1);
10363 narrow = TRUE;
10364 }
10365 }
10366 else if (inst.operands[0] .reg == REG_SP)
10367 {
10368 if (inst.operands[0].writeback)
10369 {
10370 inst.instruction =
10371 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10372 ? T_MNEM_push : T_MNEM_pop);
10373 inst.instruction |= inst.operands[1].imm;
10374 narrow = TRUE;
10375 }
10376 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10377 {
10378 inst.instruction =
10379 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10380 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
10381 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
10382 narrow = TRUE;
10383 }
10384 }
10385 }
10386
10387 if (!narrow)
10388 {
10389 if (inst.instruction < 0xffff)
10390 inst.instruction = THUMB_OP32 (inst.instruction);
10391
10392 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
10393 inst.operands[0].writeback);
10394 }
10395 }
10396 else
10397 {
10398 constraint (inst.operands[0].reg > 7
10399 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
10400 constraint (inst.instruction != T_MNEM_ldmia
10401 && inst.instruction != T_MNEM_stmia,
10402 _("Thumb-2 instruction only valid in unified syntax"));
10403 if (inst.instruction == T_MNEM_stmia)
10404 {
10405 if (!inst.operands[0].writeback)
10406 as_warn (_("this instruction will write back the base register"));
10407 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
10408 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
10409 as_warn (_("value stored for r%d is UNKNOWN"),
10410 inst.operands[0].reg);
10411 }
10412 else
10413 {
10414 if (!inst.operands[0].writeback
10415 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
10416 as_warn (_("this instruction will write back the base register"));
10417 else if (inst.operands[0].writeback
10418 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
10419 as_warn (_("this instruction will not write back the base register"));
10420 }
10421
10422 inst.instruction = THUMB_OP16 (inst.instruction);
10423 inst.instruction |= inst.operands[0].reg << 8;
10424 inst.instruction |= inst.operands[1].imm;
10425 }
10426 }
10427
10428 static void
10429 do_t_ldrex (void)
10430 {
10431 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
10432 || inst.operands[1].postind || inst.operands[1].writeback
10433 || inst.operands[1].immisreg || inst.operands[1].shifted
10434 || inst.operands[1].negative,
10435 BAD_ADDR_MODE);
10436
10437 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
10438
10439 inst.instruction |= inst.operands[0].reg << 12;
10440 inst.instruction |= inst.operands[1].reg << 16;
10441 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
10442 }
10443
10444 static void
10445 do_t_ldrexd (void)
10446 {
10447 if (!inst.operands[1].present)
10448 {
10449 constraint (inst.operands[0].reg == REG_LR,
10450 _("r14 not allowed as first register "
10451 "when second register is omitted"));
10452 inst.operands[1].reg = inst.operands[0].reg + 1;
10453 }
10454 constraint (inst.operands[0].reg == inst.operands[1].reg,
10455 BAD_OVERLAP);
10456
10457 inst.instruction |= inst.operands[0].reg << 12;
10458 inst.instruction |= inst.operands[1].reg << 8;
10459 inst.instruction |= inst.operands[2].reg << 16;
10460 }
10461
10462 static void
10463 do_t_ldst (void)
10464 {
10465 unsigned long opcode;
10466 int Rn;
10467
10468 if (inst.operands[0].isreg
10469 && !inst.operands[0].preind
10470 && inst.operands[0].reg == REG_PC)
10471 set_it_insn_type_last ();
10472
10473 opcode = inst.instruction;
10474 if (unified_syntax)
10475 {
10476 if (!inst.operands[1].isreg)
10477 {
10478 if (opcode <= 0xffff)
10479 inst.instruction = THUMB_OP32 (opcode);
10480 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10481 return;
10482 }
10483 if (inst.operands[1].isreg
10484 && !inst.operands[1].writeback
10485 && !inst.operands[1].shifted && !inst.operands[1].postind
10486 && !inst.operands[1].negative && inst.operands[0].reg <= 7
10487 && opcode <= 0xffff
10488 && inst.size_req != 4)
10489 {
10490 /* Insn may have a 16-bit form. */
10491 Rn = inst.operands[1].reg;
10492 if (inst.operands[1].immisreg)
10493 {
10494 inst.instruction = THUMB_OP16 (opcode);
10495 /* [Rn, Rik] */
10496 if (Rn <= 7 && inst.operands[1].imm <= 7)
10497 goto op16;
10498 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
10499 reject_bad_reg (inst.operands[1].imm);
10500 }
10501 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
10502 && opcode != T_MNEM_ldrsb)
10503 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
10504 || (Rn == REG_SP && opcode == T_MNEM_str))
10505 {
10506 /* [Rn, #const] */
10507 if (Rn > 7)
10508 {
10509 if (Rn == REG_PC)
10510 {
10511 if (inst.reloc.pc_rel)
10512 opcode = T_MNEM_ldr_pc2;
10513 else
10514 opcode = T_MNEM_ldr_pc;
10515 }
10516 else
10517 {
10518 if (opcode == T_MNEM_ldr)
10519 opcode = T_MNEM_ldr_sp;
10520 else
10521 opcode = T_MNEM_str_sp;
10522 }
10523 inst.instruction = inst.operands[0].reg << 8;
10524 }
10525 else
10526 {
10527 inst.instruction = inst.operands[0].reg;
10528 inst.instruction |= inst.operands[1].reg << 3;
10529 }
10530 inst.instruction |= THUMB_OP16 (opcode);
10531 if (inst.size_req == 2)
10532 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10533 else
10534 inst.relax = opcode;
10535 return;
10536 }
10537 }
10538 /* Definitely a 32-bit variant. */
10539
10540 /* Warning for Erratum 752419. */
10541 if (opcode == T_MNEM_ldr
10542 && inst.operands[0].reg == REG_SP
10543 && inst.operands[1].writeback == 1
10544 && !inst.operands[1].immisreg)
10545 {
10546 if (no_cpu_selected ()
10547 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
10548 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
10549 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
10550 as_warn (_("This instruction may be unpredictable "
10551 "if executed on M-profile cores "
10552 "with interrupts enabled."));
10553 }
10554
10555 /* Do some validations regarding addressing modes. */
10556 if (inst.operands[1].immisreg)
10557 reject_bad_reg (inst.operands[1].imm);
10558
10559 constraint (inst.operands[1].writeback == 1
10560 && inst.operands[0].reg == inst.operands[1].reg,
10561 BAD_OVERLAP);
10562
10563 inst.instruction = THUMB_OP32 (opcode);
10564 inst.instruction |= inst.operands[0].reg << 12;
10565 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
10566 check_ldr_r15_aligned ();
10567 return;
10568 }
10569
10570 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10571
10572 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
10573 {
10574 /* Only [Rn,Rm] is acceptable. */
10575 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
10576 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
10577 || inst.operands[1].postind || inst.operands[1].shifted
10578 || inst.operands[1].negative,
10579 _("Thumb does not support this addressing mode"));
10580 inst.instruction = THUMB_OP16 (inst.instruction);
10581 goto op16;
10582 }
10583
10584 inst.instruction = THUMB_OP16 (inst.instruction);
10585 if (!inst.operands[1].isreg)
10586 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10587 return;
10588
10589 constraint (!inst.operands[1].preind
10590 || inst.operands[1].shifted
10591 || inst.operands[1].writeback,
10592 _("Thumb does not support this addressing mode"));
10593 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
10594 {
10595 constraint (inst.instruction & 0x0600,
10596 _("byte or halfword not valid for base register"));
10597 constraint (inst.operands[1].reg == REG_PC
10598 && !(inst.instruction & THUMB_LOAD_BIT),
10599 _("r15 based store not allowed"));
10600 constraint (inst.operands[1].immisreg,
10601 _("invalid base register for register offset"));
10602
10603 if (inst.operands[1].reg == REG_PC)
10604 inst.instruction = T_OPCODE_LDR_PC;
10605 else if (inst.instruction & THUMB_LOAD_BIT)
10606 inst.instruction = T_OPCODE_LDR_SP;
10607 else
10608 inst.instruction = T_OPCODE_STR_SP;
10609
10610 inst.instruction |= inst.operands[0].reg << 8;
10611 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10612 return;
10613 }
10614
10615 constraint (inst.operands[1].reg > 7, BAD_HIREG);
10616 if (!inst.operands[1].immisreg)
10617 {
10618 /* Immediate offset. */
10619 inst.instruction |= inst.operands[0].reg;
10620 inst.instruction |= inst.operands[1].reg << 3;
10621 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10622 return;
10623 }
10624
10625 /* Register offset. */
10626 constraint (inst.operands[1].imm > 7, BAD_HIREG);
10627 constraint (inst.operands[1].negative,
10628 _("Thumb does not support this addressing mode"));
10629
10630 op16:
10631 switch (inst.instruction)
10632 {
10633 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
10634 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
10635 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
10636 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
10637 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
10638 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
10639 case 0x5600 /* ldrsb */:
10640 case 0x5e00 /* ldrsh */: break;
10641 default: abort ();
10642 }
10643
10644 inst.instruction |= inst.operands[0].reg;
10645 inst.instruction |= inst.operands[1].reg << 3;
10646 inst.instruction |= inst.operands[1].imm << 6;
10647 }
10648
10649 static void
10650 do_t_ldstd (void)
10651 {
10652 if (!inst.operands[1].present)
10653 {
10654 inst.operands[1].reg = inst.operands[0].reg + 1;
10655 constraint (inst.operands[0].reg == REG_LR,
10656 _("r14 not allowed here"));
10657 }
10658 inst.instruction |= inst.operands[0].reg << 12;
10659 inst.instruction |= inst.operands[1].reg << 8;
10660 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
10661 }
10662
10663 static void
10664 do_t_ldstt (void)
10665 {
10666 inst.instruction |= inst.operands[0].reg << 12;
10667 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
10668 }
10669
10670 static void
10671 do_t_mla (void)
10672 {
10673 unsigned Rd, Rn, Rm, Ra;
10674
10675 Rd = inst.operands[0].reg;
10676 Rn = inst.operands[1].reg;
10677 Rm = inst.operands[2].reg;
10678 Ra = inst.operands[3].reg;
10679
10680 reject_bad_reg (Rd);
10681 reject_bad_reg (Rn);
10682 reject_bad_reg (Rm);
10683 reject_bad_reg (Ra);
10684
10685 inst.instruction |= Rd << 8;
10686 inst.instruction |= Rn << 16;
10687 inst.instruction |= Rm;
10688 inst.instruction |= Ra << 12;
10689 }
10690
10691 static void
10692 do_t_mlal (void)
10693 {
10694 unsigned RdLo, RdHi, Rn, Rm;
10695
10696 RdLo = inst.operands[0].reg;
10697 RdHi = inst.operands[1].reg;
10698 Rn = inst.operands[2].reg;
10699 Rm = inst.operands[3].reg;
10700
10701 reject_bad_reg (RdLo);
10702 reject_bad_reg (RdHi);
10703 reject_bad_reg (Rn);
10704 reject_bad_reg (Rm);
10705
10706 inst.instruction |= RdLo << 12;
10707 inst.instruction |= RdHi << 8;
10708 inst.instruction |= Rn << 16;
10709 inst.instruction |= Rm;
10710 }
10711
10712 static void
10713 do_t_mov_cmp (void)
10714 {
10715 unsigned Rn, Rm;
10716
10717 Rn = inst.operands[0].reg;
10718 Rm = inst.operands[1].reg;
10719
10720 if (Rn == REG_PC)
10721 set_it_insn_type_last ();
10722
10723 if (unified_syntax)
10724 {
10725 int r0off = (inst.instruction == T_MNEM_mov
10726 || inst.instruction == T_MNEM_movs) ? 8 : 16;
10727 unsigned long opcode;
10728 bfd_boolean narrow;
10729 bfd_boolean low_regs;
10730
10731 low_regs = (Rn <= 7 && Rm <= 7);
10732 opcode = inst.instruction;
10733 if (in_it_block ())
10734 narrow = opcode != T_MNEM_movs;
10735 else
10736 narrow = opcode != T_MNEM_movs || low_regs;
10737 if (inst.size_req == 4
10738 || inst.operands[1].shifted)
10739 narrow = FALSE;
10740
10741 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
10742 if (opcode == T_MNEM_movs && inst.operands[1].isreg
10743 && !inst.operands[1].shifted
10744 && Rn == REG_PC
10745 && Rm == REG_LR)
10746 {
10747 inst.instruction = T2_SUBS_PC_LR;
10748 return;
10749 }
10750
10751 if (opcode == T_MNEM_cmp)
10752 {
10753 constraint (Rn == REG_PC, BAD_PC);
10754 if (narrow)
10755 {
10756 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
10757 but valid. */
10758 warn_deprecated_sp (Rm);
10759 /* R15 was documented as a valid choice for Rm in ARMv6,
10760 but as UNPREDICTABLE in ARMv7. ARM's proprietary
10761 tools reject R15, so we do too. */
10762 constraint (Rm == REG_PC, BAD_PC);
10763 }
10764 else
10765 reject_bad_reg (Rm);
10766 }
10767 else if (opcode == T_MNEM_mov
10768 || opcode == T_MNEM_movs)
10769 {
10770 if (inst.operands[1].isreg)
10771 {
10772 if (opcode == T_MNEM_movs)
10773 {
10774 reject_bad_reg (Rn);
10775 reject_bad_reg (Rm);
10776 }
10777 else if (narrow)
10778 {
10779 /* This is mov.n. */
10780 if ((Rn == REG_SP || Rn == REG_PC)
10781 && (Rm == REG_SP || Rm == REG_PC))
10782 {
10783 as_warn (_("Use of r%u as a source register is "
10784 "deprecated when r%u is the destination "
10785 "register."), Rm, Rn);
10786 }
10787 }
10788 else
10789 {
10790 /* This is mov.w. */
10791 constraint (Rn == REG_PC, BAD_PC);
10792 constraint (Rm == REG_PC, BAD_PC);
10793 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
10794 }
10795 }
10796 else
10797 reject_bad_reg (Rn);
10798 }
10799
10800 if (!inst.operands[1].isreg)
10801 {
10802 /* Immediate operand. */
10803 if (!in_it_block () && opcode == T_MNEM_mov)
10804 narrow = 0;
10805 if (low_regs && narrow)
10806 {
10807 inst.instruction = THUMB_OP16 (opcode);
10808 inst.instruction |= Rn << 8;
10809 if (inst.size_req == 2)
10810 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10811 else
10812 inst.relax = opcode;
10813 }
10814 else
10815 {
10816 inst.instruction = THUMB_OP32 (inst.instruction);
10817 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10818 inst.instruction |= Rn << r0off;
10819 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10820 }
10821 }
10822 else if (inst.operands[1].shifted && inst.operands[1].immisreg
10823 && (inst.instruction == T_MNEM_mov
10824 || inst.instruction == T_MNEM_movs))
10825 {
10826 /* Register shifts are encoded as separate shift instructions. */
10827 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
10828
10829 if (in_it_block ())
10830 narrow = !flags;
10831 else
10832 narrow = flags;
10833
10834 if (inst.size_req == 4)
10835 narrow = FALSE;
10836
10837 if (!low_regs || inst.operands[1].imm > 7)
10838 narrow = FALSE;
10839
10840 if (Rn != Rm)
10841 narrow = FALSE;
10842
10843 switch (inst.operands[1].shift_kind)
10844 {
10845 case SHIFT_LSL:
10846 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
10847 break;
10848 case SHIFT_ASR:
10849 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
10850 break;
10851 case SHIFT_LSR:
10852 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
10853 break;
10854 case SHIFT_ROR:
10855 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
10856 break;
10857 default:
10858 abort ();
10859 }
10860
10861 inst.instruction = opcode;
10862 if (narrow)
10863 {
10864 inst.instruction |= Rn;
10865 inst.instruction |= inst.operands[1].imm << 3;
10866 }
10867 else
10868 {
10869 if (flags)
10870 inst.instruction |= CONDS_BIT;
10871
10872 inst.instruction |= Rn << 8;
10873 inst.instruction |= Rm << 16;
10874 inst.instruction |= inst.operands[1].imm;
10875 }
10876 }
10877 else if (!narrow)
10878 {
10879 /* Some mov with immediate shift have narrow variants.
10880 Register shifts are handled above. */
10881 if (low_regs && inst.operands[1].shifted
10882 && (inst.instruction == T_MNEM_mov
10883 || inst.instruction == T_MNEM_movs))
10884 {
10885 if (in_it_block ())
10886 narrow = (inst.instruction == T_MNEM_mov);
10887 else
10888 narrow = (inst.instruction == T_MNEM_movs);
10889 }
10890
10891 if (narrow)
10892 {
10893 switch (inst.operands[1].shift_kind)
10894 {
10895 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
10896 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
10897 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
10898 default: narrow = FALSE; break;
10899 }
10900 }
10901
10902 if (narrow)
10903 {
10904 inst.instruction |= Rn;
10905 inst.instruction |= Rm << 3;
10906 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10907 }
10908 else
10909 {
10910 inst.instruction = THUMB_OP32 (inst.instruction);
10911 inst.instruction |= Rn << r0off;
10912 encode_thumb32_shifted_operand (1);
10913 }
10914 }
10915 else
10916 switch (inst.instruction)
10917 {
10918 case T_MNEM_mov:
10919 /* In v4t or v5t a move of two lowregs produces unpredictable
10920 results. Don't allow this. */
10921 if (low_regs)
10922 {
10923 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
10924 "MOV Rd, Rs with two low registers is not "
10925 "permitted on this architecture");
10926 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
10927 arm_ext_v6);
10928 }
10929
10930 inst.instruction = T_OPCODE_MOV_HR;
10931 inst.instruction |= (Rn & 0x8) << 4;
10932 inst.instruction |= (Rn & 0x7);
10933 inst.instruction |= Rm << 3;
10934 break;
10935
10936 case T_MNEM_movs:
10937 /* We know we have low registers at this point.
10938 Generate LSLS Rd, Rs, #0. */
10939 inst.instruction = T_OPCODE_LSL_I;
10940 inst.instruction |= Rn;
10941 inst.instruction |= Rm << 3;
10942 break;
10943
10944 case T_MNEM_cmp:
10945 if (low_regs)
10946 {
10947 inst.instruction = T_OPCODE_CMP_LR;
10948 inst.instruction |= Rn;
10949 inst.instruction |= Rm << 3;
10950 }
10951 else
10952 {
10953 inst.instruction = T_OPCODE_CMP_HR;
10954 inst.instruction |= (Rn & 0x8) << 4;
10955 inst.instruction |= (Rn & 0x7);
10956 inst.instruction |= Rm << 3;
10957 }
10958 break;
10959 }
10960 return;
10961 }
10962
10963 inst.instruction = THUMB_OP16 (inst.instruction);
10964
10965 /* PR 10443: Do not silently ignore shifted operands. */
10966 constraint (inst.operands[1].shifted,
10967 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
10968
10969 if (inst.operands[1].isreg)
10970 {
10971 if (Rn < 8 && Rm < 8)
10972 {
10973 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
10974 since a MOV instruction produces unpredictable results. */
10975 if (inst.instruction == T_OPCODE_MOV_I8)
10976 inst.instruction = T_OPCODE_ADD_I3;
10977 else
10978 inst.instruction = T_OPCODE_CMP_LR;
10979
10980 inst.instruction |= Rn;
10981 inst.instruction |= Rm << 3;
10982 }
10983 else
10984 {
10985 if (inst.instruction == T_OPCODE_MOV_I8)
10986 inst.instruction = T_OPCODE_MOV_HR;
10987 else
10988 inst.instruction = T_OPCODE_CMP_HR;
10989 do_t_cpy ();
10990 }
10991 }
10992 else
10993 {
10994 constraint (Rn > 7,
10995 _("only lo regs allowed with immediate"));
10996 inst.instruction |= Rn << 8;
10997 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10998 }
10999 }
11000
11001 static void
11002 do_t_mov16 (void)
11003 {
11004 unsigned Rd;
11005 bfd_vma imm;
11006 bfd_boolean top;
11007
11008 top = (inst.instruction & 0x00800000) != 0;
11009 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
11010 {
11011 constraint (top, _(":lower16: not allowed this instruction"));
11012 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
11013 }
11014 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
11015 {
11016 constraint (!top, _(":upper16: not allowed this instruction"));
11017 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
11018 }
11019
11020 Rd = inst.operands[0].reg;
11021 reject_bad_reg (Rd);
11022
11023 inst.instruction |= Rd << 8;
11024 if (inst.reloc.type == BFD_RELOC_UNUSED)
11025 {
11026 imm = inst.reloc.exp.X_add_number;
11027 inst.instruction |= (imm & 0xf000) << 4;
11028 inst.instruction |= (imm & 0x0800) << 15;
11029 inst.instruction |= (imm & 0x0700) << 4;
11030 inst.instruction |= (imm & 0x00ff);
11031 }
11032 }
11033
11034 static void
11035 do_t_mvn_tst (void)
11036 {
11037 unsigned Rn, Rm;
11038
11039 Rn = inst.operands[0].reg;
11040 Rm = inst.operands[1].reg;
11041
11042 if (inst.instruction == T_MNEM_cmp
11043 || inst.instruction == T_MNEM_cmn)
11044 constraint (Rn == REG_PC, BAD_PC);
11045 else
11046 reject_bad_reg (Rn);
11047 reject_bad_reg (Rm);
11048
11049 if (unified_syntax)
11050 {
11051 int r0off = (inst.instruction == T_MNEM_mvn
11052 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
11053 bfd_boolean narrow;
11054
11055 if (inst.size_req == 4
11056 || inst.instruction > 0xffff
11057 || inst.operands[1].shifted
11058 || Rn > 7 || Rm > 7)
11059 narrow = FALSE;
11060 else if (inst.instruction == T_MNEM_cmn)
11061 narrow = TRUE;
11062 else if (THUMB_SETS_FLAGS (inst.instruction))
11063 narrow = !in_it_block ();
11064 else
11065 narrow = in_it_block ();
11066
11067 if (!inst.operands[1].isreg)
11068 {
11069 /* For an immediate, we always generate a 32-bit opcode;
11070 section relaxation will shrink it later if possible. */
11071 if (inst.instruction < 0xffff)
11072 inst.instruction = THUMB_OP32 (inst.instruction);
11073 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11074 inst.instruction |= Rn << r0off;
11075 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11076 }
11077 else
11078 {
11079 /* See if we can do this with a 16-bit instruction. */
11080 if (narrow)
11081 {
11082 inst.instruction = THUMB_OP16 (inst.instruction);
11083 inst.instruction |= Rn;
11084 inst.instruction |= Rm << 3;
11085 }
11086 else
11087 {
11088 constraint (inst.operands[1].shifted
11089 && inst.operands[1].immisreg,
11090 _("shift must be constant"));
11091 if (inst.instruction < 0xffff)
11092 inst.instruction = THUMB_OP32 (inst.instruction);
11093 inst.instruction |= Rn << r0off;
11094 encode_thumb32_shifted_operand (1);
11095 }
11096 }
11097 }
11098 else
11099 {
11100 constraint (inst.instruction > 0xffff
11101 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
11102 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
11103 _("unshifted register required"));
11104 constraint (Rn > 7 || Rm > 7,
11105 BAD_HIREG);
11106
11107 inst.instruction = THUMB_OP16 (inst.instruction);
11108 inst.instruction |= Rn;
11109 inst.instruction |= Rm << 3;
11110 }
11111 }
11112
11113 static void
11114 do_t_mrs (void)
11115 {
11116 unsigned Rd;
11117
11118 if (do_vfp_nsyn_mrs () == SUCCESS)
11119 return;
11120
11121 Rd = inst.operands[0].reg;
11122 reject_bad_reg (Rd);
11123 inst.instruction |= Rd << 8;
11124
11125 if (inst.operands[1].isreg)
11126 {
11127 unsigned br = inst.operands[1].reg;
11128 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
11129 as_bad (_("bad register for mrs"));
11130
11131 inst.instruction |= br & (0xf << 16);
11132 inst.instruction |= (br & 0x300) >> 4;
11133 inst.instruction |= (br & SPSR_BIT) >> 2;
11134 }
11135 else
11136 {
11137 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
11138
11139 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
11140 constraint (flags != 0, _("selected processor does not support "
11141 "requested special purpose register"));
11142 else
11143 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
11144 devices). */
11145 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
11146 _("'APSR', 'CPSR' or 'SPSR' expected"));
11147
11148 inst.instruction |= (flags & SPSR_BIT) >> 2;
11149 inst.instruction |= inst.operands[1].imm & 0xff;
11150 inst.instruction |= 0xf0000;
11151 }
11152 }
11153
11154 static void
11155 do_t_msr (void)
11156 {
11157 int flags;
11158 unsigned Rn;
11159
11160 if (do_vfp_nsyn_msr () == SUCCESS)
11161 return;
11162
11163 constraint (!inst.operands[1].isreg,
11164 _("Thumb encoding does not support an immediate here"));
11165
11166 if (inst.operands[0].isreg)
11167 flags = (int)(inst.operands[0].reg);
11168 else
11169 flags = inst.operands[0].imm;
11170
11171 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
11172 {
11173 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
11174
11175 constraint ((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11176 && (bits & ~(PSR_s | PSR_f)) != 0)
11177 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11178 && bits != PSR_f),
11179 _("selected processor does not support requested special "
11180 "purpose register"));
11181 }
11182 else
11183 constraint ((flags & 0xff) != 0, _("selected processor does not support "
11184 "requested special purpose register"));
11185
11186 Rn = inst.operands[1].reg;
11187 reject_bad_reg (Rn);
11188
11189 inst.instruction |= (flags & SPSR_BIT) >> 2;
11190 inst.instruction |= (flags & 0xf0000) >> 8;
11191 inst.instruction |= (flags & 0x300) >> 4;
11192 inst.instruction |= (flags & 0xff);
11193 inst.instruction |= Rn << 16;
11194 }
11195
11196 static void
11197 do_t_mul (void)
11198 {
11199 bfd_boolean narrow;
11200 unsigned Rd, Rn, Rm;
11201
11202 if (!inst.operands[2].present)
11203 inst.operands[2].reg = inst.operands[0].reg;
11204
11205 Rd = inst.operands[0].reg;
11206 Rn = inst.operands[1].reg;
11207 Rm = inst.operands[2].reg;
11208
11209 if (unified_syntax)
11210 {
11211 if (inst.size_req == 4
11212 || (Rd != Rn
11213 && Rd != Rm)
11214 || Rn > 7
11215 || Rm > 7)
11216 narrow = FALSE;
11217 else if (inst.instruction == T_MNEM_muls)
11218 narrow = !in_it_block ();
11219 else
11220 narrow = in_it_block ();
11221 }
11222 else
11223 {
11224 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
11225 constraint (Rn > 7 || Rm > 7,
11226 BAD_HIREG);
11227 narrow = TRUE;
11228 }
11229
11230 if (narrow)
11231 {
11232 /* 16-bit MULS/Conditional MUL. */
11233 inst.instruction = THUMB_OP16 (inst.instruction);
11234 inst.instruction |= Rd;
11235
11236 if (Rd == Rn)
11237 inst.instruction |= Rm << 3;
11238 else if (Rd == Rm)
11239 inst.instruction |= Rn << 3;
11240 else
11241 constraint (1, _("dest must overlap one source register"));
11242 }
11243 else
11244 {
11245 constraint (inst.instruction != T_MNEM_mul,
11246 _("Thumb-2 MUL must not set flags"));
11247 /* 32-bit MUL. */
11248 inst.instruction = THUMB_OP32 (inst.instruction);
11249 inst.instruction |= Rd << 8;
11250 inst.instruction |= Rn << 16;
11251 inst.instruction |= Rm << 0;
11252
11253 reject_bad_reg (Rd);
11254 reject_bad_reg (Rn);
11255 reject_bad_reg (Rm);
11256 }
11257 }
11258
11259 static void
11260 do_t_mull (void)
11261 {
11262 unsigned RdLo, RdHi, Rn, Rm;
11263
11264 RdLo = inst.operands[0].reg;
11265 RdHi = inst.operands[1].reg;
11266 Rn = inst.operands[2].reg;
11267 Rm = inst.operands[3].reg;
11268
11269 reject_bad_reg (RdLo);
11270 reject_bad_reg (RdHi);
11271 reject_bad_reg (Rn);
11272 reject_bad_reg (Rm);
11273
11274 inst.instruction |= RdLo << 12;
11275 inst.instruction |= RdHi << 8;
11276 inst.instruction |= Rn << 16;
11277 inst.instruction |= Rm;
11278
11279 if (RdLo == RdHi)
11280 as_tsktsk (_("rdhi and rdlo must be different"));
11281 }
11282
11283 static void
11284 do_t_nop (void)
11285 {
11286 set_it_insn_type (NEUTRAL_IT_INSN);
11287
11288 if (unified_syntax)
11289 {
11290 if (inst.size_req == 4 || inst.operands[0].imm > 15)
11291 {
11292 inst.instruction = THUMB_OP32 (inst.instruction);
11293 inst.instruction |= inst.operands[0].imm;
11294 }
11295 else
11296 {
11297 /* PR9722: Check for Thumb2 availability before
11298 generating a thumb2 nop instruction. */
11299 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
11300 {
11301 inst.instruction = THUMB_OP16 (inst.instruction);
11302 inst.instruction |= inst.operands[0].imm << 4;
11303 }
11304 else
11305 inst.instruction = 0x46c0;
11306 }
11307 }
11308 else
11309 {
11310 constraint (inst.operands[0].present,
11311 _("Thumb does not support NOP with hints"));
11312 inst.instruction = 0x46c0;
11313 }
11314 }
11315
11316 static void
11317 do_t_neg (void)
11318 {
11319 if (unified_syntax)
11320 {
11321 bfd_boolean narrow;
11322
11323 if (THUMB_SETS_FLAGS (inst.instruction))
11324 narrow = !in_it_block ();
11325 else
11326 narrow = in_it_block ();
11327 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11328 narrow = FALSE;
11329 if (inst.size_req == 4)
11330 narrow = FALSE;
11331
11332 if (!narrow)
11333 {
11334 inst.instruction = THUMB_OP32 (inst.instruction);
11335 inst.instruction |= inst.operands[0].reg << 8;
11336 inst.instruction |= inst.operands[1].reg << 16;
11337 }
11338 else
11339 {
11340 inst.instruction = THUMB_OP16 (inst.instruction);
11341 inst.instruction |= inst.operands[0].reg;
11342 inst.instruction |= inst.operands[1].reg << 3;
11343 }
11344 }
11345 else
11346 {
11347 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
11348 BAD_HIREG);
11349 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11350
11351 inst.instruction = THUMB_OP16 (inst.instruction);
11352 inst.instruction |= inst.operands[0].reg;
11353 inst.instruction |= inst.operands[1].reg << 3;
11354 }
11355 }
11356
11357 static void
11358 do_t_orn (void)
11359 {
11360 unsigned Rd, Rn;
11361
11362 Rd = inst.operands[0].reg;
11363 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
11364
11365 reject_bad_reg (Rd);
11366 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
11367 reject_bad_reg (Rn);
11368
11369 inst.instruction |= Rd << 8;
11370 inst.instruction |= Rn << 16;
11371
11372 if (!inst.operands[2].isreg)
11373 {
11374 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11375 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11376 }
11377 else
11378 {
11379 unsigned Rm;
11380
11381 Rm = inst.operands[2].reg;
11382 reject_bad_reg (Rm);
11383
11384 constraint (inst.operands[2].shifted
11385 && inst.operands[2].immisreg,
11386 _("shift must be constant"));
11387 encode_thumb32_shifted_operand (2);
11388 }
11389 }
11390
11391 static void
11392 do_t_pkhbt (void)
11393 {
11394 unsigned Rd, Rn, Rm;
11395
11396 Rd = inst.operands[0].reg;
11397 Rn = inst.operands[1].reg;
11398 Rm = inst.operands[2].reg;
11399
11400 reject_bad_reg (Rd);
11401 reject_bad_reg (Rn);
11402 reject_bad_reg (Rm);
11403
11404 inst.instruction |= Rd << 8;
11405 inst.instruction |= Rn << 16;
11406 inst.instruction |= Rm;
11407 if (inst.operands[3].present)
11408 {
11409 unsigned int val = inst.reloc.exp.X_add_number;
11410 constraint (inst.reloc.exp.X_op != O_constant,
11411 _("expression too complex"));
11412 inst.instruction |= (val & 0x1c) << 10;
11413 inst.instruction |= (val & 0x03) << 6;
11414 }
11415 }
11416
11417 static void
11418 do_t_pkhtb (void)
11419 {
11420 if (!inst.operands[3].present)
11421 {
11422 unsigned Rtmp;
11423
11424 inst.instruction &= ~0x00000020;
11425
11426 /* PR 10168. Swap the Rm and Rn registers. */
11427 Rtmp = inst.operands[1].reg;
11428 inst.operands[1].reg = inst.operands[2].reg;
11429 inst.operands[2].reg = Rtmp;
11430 }
11431 do_t_pkhbt ();
11432 }
11433
11434 static void
11435 do_t_pld (void)
11436 {
11437 if (inst.operands[0].immisreg)
11438 reject_bad_reg (inst.operands[0].imm);
11439
11440 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
11441 }
11442
11443 static void
11444 do_t_push_pop (void)
11445 {
11446 unsigned mask;
11447
11448 constraint (inst.operands[0].writeback,
11449 _("push/pop do not support {reglist}^"));
11450 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
11451 _("expression too complex"));
11452
11453 mask = inst.operands[0].imm;
11454 if ((mask & ~0xff) == 0)
11455 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
11456 else if ((inst.instruction == T_MNEM_push
11457 && (mask & ~0xff) == 1 << REG_LR)
11458 || (inst.instruction == T_MNEM_pop
11459 && (mask & ~0xff) == 1 << REG_PC))
11460 {
11461 inst.instruction = THUMB_OP16 (inst.instruction);
11462 inst.instruction |= THUMB_PP_PC_LR;
11463 inst.instruction |= mask & 0xff;
11464 }
11465 else if (unified_syntax)
11466 {
11467 inst.instruction = THUMB_OP32 (inst.instruction);
11468 encode_thumb2_ldmstm (13, mask, TRUE);
11469 }
11470 else
11471 {
11472 inst.error = _("invalid register list to push/pop instruction");
11473 return;
11474 }
11475 }
11476
11477 static void
11478 do_t_rbit (void)
11479 {
11480 unsigned Rd, Rm;
11481
11482 Rd = inst.operands[0].reg;
11483 Rm = inst.operands[1].reg;
11484
11485 reject_bad_reg (Rd);
11486 reject_bad_reg (Rm);
11487
11488 inst.instruction |= Rd << 8;
11489 inst.instruction |= Rm << 16;
11490 inst.instruction |= Rm;
11491 }
11492
11493 static void
11494 do_t_rev (void)
11495 {
11496 unsigned Rd, Rm;
11497
11498 Rd = inst.operands[0].reg;
11499 Rm = inst.operands[1].reg;
11500
11501 reject_bad_reg (Rd);
11502 reject_bad_reg (Rm);
11503
11504 if (Rd <= 7 && Rm <= 7
11505 && inst.size_req != 4)
11506 {
11507 inst.instruction = THUMB_OP16 (inst.instruction);
11508 inst.instruction |= Rd;
11509 inst.instruction |= Rm << 3;
11510 }
11511 else if (unified_syntax)
11512 {
11513 inst.instruction = THUMB_OP32 (inst.instruction);
11514 inst.instruction |= Rd << 8;
11515 inst.instruction |= Rm << 16;
11516 inst.instruction |= Rm;
11517 }
11518 else
11519 inst.error = BAD_HIREG;
11520 }
11521
11522 static void
11523 do_t_rrx (void)
11524 {
11525 unsigned Rd, Rm;
11526
11527 Rd = inst.operands[0].reg;
11528 Rm = inst.operands[1].reg;
11529
11530 reject_bad_reg (Rd);
11531 reject_bad_reg (Rm);
11532
11533 inst.instruction |= Rd << 8;
11534 inst.instruction |= Rm;
11535 }
11536
11537 static void
11538 do_t_rsb (void)
11539 {
11540 unsigned Rd, Rs;
11541
11542 Rd = inst.operands[0].reg;
11543 Rs = (inst.operands[1].present
11544 ? inst.operands[1].reg /* Rd, Rs, foo */
11545 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11546
11547 reject_bad_reg (Rd);
11548 reject_bad_reg (Rs);
11549 if (inst.operands[2].isreg)
11550 reject_bad_reg (inst.operands[2].reg);
11551
11552 inst.instruction |= Rd << 8;
11553 inst.instruction |= Rs << 16;
11554 if (!inst.operands[2].isreg)
11555 {
11556 bfd_boolean narrow;
11557
11558 if ((inst.instruction & 0x00100000) != 0)
11559 narrow = !in_it_block ();
11560 else
11561 narrow = in_it_block ();
11562
11563 if (Rd > 7 || Rs > 7)
11564 narrow = FALSE;
11565
11566 if (inst.size_req == 4 || !unified_syntax)
11567 narrow = FALSE;
11568
11569 if (inst.reloc.exp.X_op != O_constant
11570 || inst.reloc.exp.X_add_number != 0)
11571 narrow = FALSE;
11572
11573 /* Turn rsb #0 into 16-bit neg. We should probably do this via
11574 relaxation, but it doesn't seem worth the hassle. */
11575 if (narrow)
11576 {
11577 inst.reloc.type = BFD_RELOC_UNUSED;
11578 inst.instruction = THUMB_OP16 (T_MNEM_negs);
11579 inst.instruction |= Rs << 3;
11580 inst.instruction |= Rd;
11581 }
11582 else
11583 {
11584 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11585 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11586 }
11587 }
11588 else
11589 encode_thumb32_shifted_operand (2);
11590 }
11591
11592 static void
11593 do_t_setend (void)
11594 {
11595 set_it_insn_type (OUTSIDE_IT_INSN);
11596 if (inst.operands[0].imm)
11597 inst.instruction |= 0x8;
11598 }
11599
11600 static void
11601 do_t_shift (void)
11602 {
11603 if (!inst.operands[1].present)
11604 inst.operands[1].reg = inst.operands[0].reg;
11605
11606 if (unified_syntax)
11607 {
11608 bfd_boolean narrow;
11609 int shift_kind;
11610
11611 switch (inst.instruction)
11612 {
11613 case T_MNEM_asr:
11614 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
11615 case T_MNEM_lsl:
11616 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
11617 case T_MNEM_lsr:
11618 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
11619 case T_MNEM_ror:
11620 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
11621 default: abort ();
11622 }
11623
11624 if (THUMB_SETS_FLAGS (inst.instruction))
11625 narrow = !in_it_block ();
11626 else
11627 narrow = in_it_block ();
11628 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11629 narrow = FALSE;
11630 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
11631 narrow = FALSE;
11632 if (inst.operands[2].isreg
11633 && (inst.operands[1].reg != inst.operands[0].reg
11634 || inst.operands[2].reg > 7))
11635 narrow = FALSE;
11636 if (inst.size_req == 4)
11637 narrow = FALSE;
11638
11639 reject_bad_reg (inst.operands[0].reg);
11640 reject_bad_reg (inst.operands[1].reg);
11641
11642 if (!narrow)
11643 {
11644 if (inst.operands[2].isreg)
11645 {
11646 reject_bad_reg (inst.operands[2].reg);
11647 inst.instruction = THUMB_OP32 (inst.instruction);
11648 inst.instruction |= inst.operands[0].reg << 8;
11649 inst.instruction |= inst.operands[1].reg << 16;
11650 inst.instruction |= inst.operands[2].reg;
11651
11652 /* PR 12854: Error on extraneous shifts. */
11653 constraint (inst.operands[2].shifted,
11654 _("extraneous shift as part of operand to shift insn"));
11655 }
11656 else
11657 {
11658 inst.operands[1].shifted = 1;
11659 inst.operands[1].shift_kind = shift_kind;
11660 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
11661 ? T_MNEM_movs : T_MNEM_mov);
11662 inst.instruction |= inst.operands[0].reg << 8;
11663 encode_thumb32_shifted_operand (1);
11664 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
11665 inst.reloc.type = BFD_RELOC_UNUSED;
11666 }
11667 }
11668 else
11669 {
11670 if (inst.operands[2].isreg)
11671 {
11672 switch (shift_kind)
11673 {
11674 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
11675 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
11676 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
11677 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
11678 default: abort ();
11679 }
11680
11681 inst.instruction |= inst.operands[0].reg;
11682 inst.instruction |= inst.operands[2].reg << 3;
11683
11684 /* PR 12854: Error on extraneous shifts. */
11685 constraint (inst.operands[2].shifted,
11686 _("extraneous shift as part of operand to shift insn"));
11687 }
11688 else
11689 {
11690 switch (shift_kind)
11691 {
11692 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11693 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11694 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
11695 default: abort ();
11696 }
11697 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11698 inst.instruction |= inst.operands[0].reg;
11699 inst.instruction |= inst.operands[1].reg << 3;
11700 }
11701 }
11702 }
11703 else
11704 {
11705 constraint (inst.operands[0].reg > 7
11706 || inst.operands[1].reg > 7, BAD_HIREG);
11707 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11708
11709 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
11710 {
11711 constraint (inst.operands[2].reg > 7, BAD_HIREG);
11712 constraint (inst.operands[0].reg != inst.operands[1].reg,
11713 _("source1 and dest must be same register"));
11714
11715 switch (inst.instruction)
11716 {
11717 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
11718 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
11719 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
11720 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
11721 default: abort ();
11722 }
11723
11724 inst.instruction |= inst.operands[0].reg;
11725 inst.instruction |= inst.operands[2].reg << 3;
11726
11727 /* PR 12854: Error on extraneous shifts. */
11728 constraint (inst.operands[2].shifted,
11729 _("extraneous shift as part of operand to shift insn"));
11730 }
11731 else
11732 {
11733 switch (inst.instruction)
11734 {
11735 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
11736 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
11737 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
11738 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
11739 default: abort ();
11740 }
11741 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11742 inst.instruction |= inst.operands[0].reg;
11743 inst.instruction |= inst.operands[1].reg << 3;
11744 }
11745 }
11746 }
11747
11748 static void
11749 do_t_simd (void)
11750 {
11751 unsigned Rd, Rn, Rm;
11752
11753 Rd = inst.operands[0].reg;
11754 Rn = inst.operands[1].reg;
11755 Rm = inst.operands[2].reg;
11756
11757 reject_bad_reg (Rd);
11758 reject_bad_reg (Rn);
11759 reject_bad_reg (Rm);
11760
11761 inst.instruction |= Rd << 8;
11762 inst.instruction |= Rn << 16;
11763 inst.instruction |= Rm;
11764 }
11765
11766 static void
11767 do_t_simd2 (void)
11768 {
11769 unsigned Rd, Rn, Rm;
11770
11771 Rd = inst.operands[0].reg;
11772 Rm = inst.operands[1].reg;
11773 Rn = inst.operands[2].reg;
11774
11775 reject_bad_reg (Rd);
11776 reject_bad_reg (Rn);
11777 reject_bad_reg (Rm);
11778
11779 inst.instruction |= Rd << 8;
11780 inst.instruction |= Rn << 16;
11781 inst.instruction |= Rm;
11782 }
11783
11784 static void
11785 do_t_smc (void)
11786 {
11787 unsigned int value = inst.reloc.exp.X_add_number;
11788 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
11789 _("SMC is not permitted on this architecture"));
11790 constraint (inst.reloc.exp.X_op != O_constant,
11791 _("expression too complex"));
11792 inst.reloc.type = BFD_RELOC_UNUSED;
11793 inst.instruction |= (value & 0xf000) >> 12;
11794 inst.instruction |= (value & 0x0ff0);
11795 inst.instruction |= (value & 0x000f) << 16;
11796 }
11797
11798 static void
11799 do_t_hvc (void)
11800 {
11801 unsigned int value = inst.reloc.exp.X_add_number;
11802
11803 inst.reloc.type = BFD_RELOC_UNUSED;
11804 inst.instruction |= (value & 0x0fff);
11805 inst.instruction |= (value & 0xf000) << 4;
11806 }
11807
11808 static void
11809 do_t_ssat_usat (int bias)
11810 {
11811 unsigned Rd, Rn;
11812
11813 Rd = inst.operands[0].reg;
11814 Rn = inst.operands[2].reg;
11815
11816 reject_bad_reg (Rd);
11817 reject_bad_reg (Rn);
11818
11819 inst.instruction |= Rd << 8;
11820 inst.instruction |= inst.operands[1].imm - bias;
11821 inst.instruction |= Rn << 16;
11822
11823 if (inst.operands[3].present)
11824 {
11825 offsetT shift_amount = inst.reloc.exp.X_add_number;
11826
11827 inst.reloc.type = BFD_RELOC_UNUSED;
11828
11829 constraint (inst.reloc.exp.X_op != O_constant,
11830 _("expression too complex"));
11831
11832 if (shift_amount != 0)
11833 {
11834 constraint (shift_amount > 31,
11835 _("shift expression is too large"));
11836
11837 if (inst.operands[3].shift_kind == SHIFT_ASR)
11838 inst.instruction |= 0x00200000; /* sh bit. */
11839
11840 inst.instruction |= (shift_amount & 0x1c) << 10;
11841 inst.instruction |= (shift_amount & 0x03) << 6;
11842 }
11843 }
11844 }
11845
11846 static void
11847 do_t_ssat (void)
11848 {
11849 do_t_ssat_usat (1);
11850 }
11851
11852 static void
11853 do_t_ssat16 (void)
11854 {
11855 unsigned Rd, Rn;
11856
11857 Rd = inst.operands[0].reg;
11858 Rn = inst.operands[2].reg;
11859
11860 reject_bad_reg (Rd);
11861 reject_bad_reg (Rn);
11862
11863 inst.instruction |= Rd << 8;
11864 inst.instruction |= inst.operands[1].imm - 1;
11865 inst.instruction |= Rn << 16;
11866 }
11867
11868 static void
11869 do_t_strex (void)
11870 {
11871 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
11872 || inst.operands[2].postind || inst.operands[2].writeback
11873 || inst.operands[2].immisreg || inst.operands[2].shifted
11874 || inst.operands[2].negative,
11875 BAD_ADDR_MODE);
11876
11877 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
11878
11879 inst.instruction |= inst.operands[0].reg << 8;
11880 inst.instruction |= inst.operands[1].reg << 12;
11881 inst.instruction |= inst.operands[2].reg << 16;
11882 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
11883 }
11884
11885 static void
11886 do_t_strexd (void)
11887 {
11888 if (!inst.operands[2].present)
11889 inst.operands[2].reg = inst.operands[1].reg + 1;
11890
11891 constraint (inst.operands[0].reg == inst.operands[1].reg
11892 || inst.operands[0].reg == inst.operands[2].reg
11893 || inst.operands[0].reg == inst.operands[3].reg,
11894 BAD_OVERLAP);
11895
11896 inst.instruction |= inst.operands[0].reg;
11897 inst.instruction |= inst.operands[1].reg << 12;
11898 inst.instruction |= inst.operands[2].reg << 8;
11899 inst.instruction |= inst.operands[3].reg << 16;
11900 }
11901
11902 static void
11903 do_t_sxtah (void)
11904 {
11905 unsigned Rd, Rn, Rm;
11906
11907 Rd = inst.operands[0].reg;
11908 Rn = inst.operands[1].reg;
11909 Rm = inst.operands[2].reg;
11910
11911 reject_bad_reg (Rd);
11912 reject_bad_reg (Rn);
11913 reject_bad_reg (Rm);
11914
11915 inst.instruction |= Rd << 8;
11916 inst.instruction |= Rn << 16;
11917 inst.instruction |= Rm;
11918 inst.instruction |= inst.operands[3].imm << 4;
11919 }
11920
11921 static void
11922 do_t_sxth (void)
11923 {
11924 unsigned Rd, Rm;
11925
11926 Rd = inst.operands[0].reg;
11927 Rm = inst.operands[1].reg;
11928
11929 reject_bad_reg (Rd);
11930 reject_bad_reg (Rm);
11931
11932 if (inst.instruction <= 0xffff
11933 && inst.size_req != 4
11934 && Rd <= 7 && Rm <= 7
11935 && (!inst.operands[2].present || inst.operands[2].imm == 0))
11936 {
11937 inst.instruction = THUMB_OP16 (inst.instruction);
11938 inst.instruction |= Rd;
11939 inst.instruction |= Rm << 3;
11940 }
11941 else if (unified_syntax)
11942 {
11943 if (inst.instruction <= 0xffff)
11944 inst.instruction = THUMB_OP32 (inst.instruction);
11945 inst.instruction |= Rd << 8;
11946 inst.instruction |= Rm;
11947 inst.instruction |= inst.operands[2].imm << 4;
11948 }
11949 else
11950 {
11951 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
11952 _("Thumb encoding does not support rotation"));
11953 constraint (1, BAD_HIREG);
11954 }
11955 }
11956
11957 static void
11958 do_t_swi (void)
11959 {
11960 /* We have to do the following check manually as ARM_EXT_OS only applies
11961 to ARM_EXT_V6M. */
11962 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6m))
11963 {
11964 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_os)
11965 /* This only applies to the v6m howver, not later architectures. */
11966 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7))
11967 as_bad (_("SVC is not permitted on this architecture"));
11968 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, arm_ext_os);
11969 }
11970
11971 inst.reloc.type = BFD_RELOC_ARM_SWI;
11972 }
11973
11974 static void
11975 do_t_tb (void)
11976 {
11977 unsigned Rn, Rm;
11978 int half;
11979
11980 half = (inst.instruction & 0x10) != 0;
11981 set_it_insn_type_last ();
11982 constraint (inst.operands[0].immisreg,
11983 _("instruction requires register index"));
11984
11985 Rn = inst.operands[0].reg;
11986 Rm = inst.operands[0].imm;
11987
11988 constraint (Rn == REG_SP, BAD_SP);
11989 reject_bad_reg (Rm);
11990
11991 constraint (!half && inst.operands[0].shifted,
11992 _("instruction does not allow shifted index"));
11993 inst.instruction |= (Rn << 16) | Rm;
11994 }
11995
11996 static void
11997 do_t_usat (void)
11998 {
11999 do_t_ssat_usat (0);
12000 }
12001
12002 static void
12003 do_t_usat16 (void)
12004 {
12005 unsigned Rd, Rn;
12006
12007 Rd = inst.operands[0].reg;
12008 Rn = inst.operands[2].reg;
12009
12010 reject_bad_reg (Rd);
12011 reject_bad_reg (Rn);
12012
12013 inst.instruction |= Rd << 8;
12014 inst.instruction |= inst.operands[1].imm;
12015 inst.instruction |= Rn << 16;
12016 }
12017
12018 /* Neon instruction encoder helpers. */
12019
12020 /* Encodings for the different types for various Neon opcodes. */
12021
12022 /* An "invalid" code for the following tables. */
12023 #define N_INV -1u
12024
12025 struct neon_tab_entry
12026 {
12027 unsigned integer;
12028 unsigned float_or_poly;
12029 unsigned scalar_or_imm;
12030 };
12031
12032 /* Map overloaded Neon opcodes to their respective encodings. */
12033 #define NEON_ENC_TAB \
12034 X(vabd, 0x0000700, 0x1200d00, N_INV), \
12035 X(vmax, 0x0000600, 0x0000f00, N_INV), \
12036 X(vmin, 0x0000610, 0x0200f00, N_INV), \
12037 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
12038 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
12039 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
12040 X(vadd, 0x0000800, 0x0000d00, N_INV), \
12041 X(vsub, 0x1000800, 0x0200d00, N_INV), \
12042 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
12043 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
12044 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
12045 /* Register variants of the following two instructions are encoded as
12046 vcge / vcgt with the operands reversed. */ \
12047 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
12048 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
12049 X(vfma, N_INV, 0x0000c10, N_INV), \
12050 X(vfms, N_INV, 0x0200c10, N_INV), \
12051 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
12052 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
12053 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
12054 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
12055 X(vmlal, 0x0800800, N_INV, 0x0800240), \
12056 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
12057 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
12058 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
12059 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
12060 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
12061 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
12062 X(vshl, 0x0000400, N_INV, 0x0800510), \
12063 X(vqshl, 0x0000410, N_INV, 0x0800710), \
12064 X(vand, 0x0000110, N_INV, 0x0800030), \
12065 X(vbic, 0x0100110, N_INV, 0x0800030), \
12066 X(veor, 0x1000110, N_INV, N_INV), \
12067 X(vorn, 0x0300110, N_INV, 0x0800010), \
12068 X(vorr, 0x0200110, N_INV, 0x0800010), \
12069 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
12070 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
12071 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
12072 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
12073 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
12074 X(vst1, 0x0000000, 0x0800000, N_INV), \
12075 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
12076 X(vst2, 0x0000100, 0x0800100, N_INV), \
12077 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
12078 X(vst3, 0x0000200, 0x0800200, N_INV), \
12079 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
12080 X(vst4, 0x0000300, 0x0800300, N_INV), \
12081 X(vmovn, 0x1b20200, N_INV, N_INV), \
12082 X(vtrn, 0x1b20080, N_INV, N_INV), \
12083 X(vqmovn, 0x1b20200, N_INV, N_INV), \
12084 X(vqmovun, 0x1b20240, N_INV, N_INV), \
12085 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
12086 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
12087 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
12088 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
12089 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
12090 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
12091 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
12092 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
12093 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
12094
12095 enum neon_opc
12096 {
12097 #define X(OPC,I,F,S) N_MNEM_##OPC
12098 NEON_ENC_TAB
12099 #undef X
12100 };
12101
12102 static const struct neon_tab_entry neon_enc_tab[] =
12103 {
12104 #define X(OPC,I,F,S) { (I), (F), (S) }
12105 NEON_ENC_TAB
12106 #undef X
12107 };
12108
12109 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
12110 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12111 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12112 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12113 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12114 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12115 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12116 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12117 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12118 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12119 #define NEON_ENC_SINGLE_(X) \
12120 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
12121 #define NEON_ENC_DOUBLE_(X) \
12122 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
12123
12124 #define NEON_ENCODE(type, inst) \
12125 do \
12126 { \
12127 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
12128 inst.is_neon = 1; \
12129 } \
12130 while (0)
12131
12132 #define check_neon_suffixes \
12133 do \
12134 { \
12135 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
12136 { \
12137 as_bad (_("invalid neon suffix for non neon instruction")); \
12138 return; \
12139 } \
12140 } \
12141 while (0)
12142
12143 /* Define shapes for instruction operands. The following mnemonic characters
12144 are used in this table:
12145
12146 F - VFP S<n> register
12147 D - Neon D<n> register
12148 Q - Neon Q<n> register
12149 I - Immediate
12150 S - Scalar
12151 R - ARM register
12152 L - D<n> register list
12153
12154 This table is used to generate various data:
12155 - enumerations of the form NS_DDR to be used as arguments to
12156 neon_select_shape.
12157 - a table classifying shapes into single, double, quad, mixed.
12158 - a table used to drive neon_select_shape. */
12159
12160 #define NEON_SHAPE_DEF \
12161 X(3, (D, D, D), DOUBLE), \
12162 X(3, (Q, Q, Q), QUAD), \
12163 X(3, (D, D, I), DOUBLE), \
12164 X(3, (Q, Q, I), QUAD), \
12165 X(3, (D, D, S), DOUBLE), \
12166 X(3, (Q, Q, S), QUAD), \
12167 X(2, (D, D), DOUBLE), \
12168 X(2, (Q, Q), QUAD), \
12169 X(2, (D, S), DOUBLE), \
12170 X(2, (Q, S), QUAD), \
12171 X(2, (D, R), DOUBLE), \
12172 X(2, (Q, R), QUAD), \
12173 X(2, (D, I), DOUBLE), \
12174 X(2, (Q, I), QUAD), \
12175 X(3, (D, L, D), DOUBLE), \
12176 X(2, (D, Q), MIXED), \
12177 X(2, (Q, D), MIXED), \
12178 X(3, (D, Q, I), MIXED), \
12179 X(3, (Q, D, I), MIXED), \
12180 X(3, (Q, D, D), MIXED), \
12181 X(3, (D, Q, Q), MIXED), \
12182 X(3, (Q, Q, D), MIXED), \
12183 X(3, (Q, D, S), MIXED), \
12184 X(3, (D, Q, S), MIXED), \
12185 X(4, (D, D, D, I), DOUBLE), \
12186 X(4, (Q, Q, Q, I), QUAD), \
12187 X(2, (F, F), SINGLE), \
12188 X(3, (F, F, F), SINGLE), \
12189 X(2, (F, I), SINGLE), \
12190 X(2, (F, D), MIXED), \
12191 X(2, (D, F), MIXED), \
12192 X(3, (F, F, I), MIXED), \
12193 X(4, (R, R, F, F), SINGLE), \
12194 X(4, (F, F, R, R), SINGLE), \
12195 X(3, (D, R, R), DOUBLE), \
12196 X(3, (R, R, D), DOUBLE), \
12197 X(2, (S, R), SINGLE), \
12198 X(2, (R, S), SINGLE), \
12199 X(2, (F, R), SINGLE), \
12200 X(2, (R, F), SINGLE)
12201
12202 #define S2(A,B) NS_##A##B
12203 #define S3(A,B,C) NS_##A##B##C
12204 #define S4(A,B,C,D) NS_##A##B##C##D
12205
12206 #define X(N, L, C) S##N L
12207
12208 enum neon_shape
12209 {
12210 NEON_SHAPE_DEF,
12211 NS_NULL
12212 };
12213
12214 #undef X
12215 #undef S2
12216 #undef S3
12217 #undef S4
12218
12219 enum neon_shape_class
12220 {
12221 SC_SINGLE,
12222 SC_DOUBLE,
12223 SC_QUAD,
12224 SC_MIXED
12225 };
12226
12227 #define X(N, L, C) SC_##C
12228
12229 static enum neon_shape_class neon_shape_class[] =
12230 {
12231 NEON_SHAPE_DEF
12232 };
12233
12234 #undef X
12235
12236 enum neon_shape_el
12237 {
12238 SE_F,
12239 SE_D,
12240 SE_Q,
12241 SE_I,
12242 SE_S,
12243 SE_R,
12244 SE_L
12245 };
12246
12247 /* Register widths of above. */
12248 static unsigned neon_shape_el_size[] =
12249 {
12250 32,
12251 64,
12252 128,
12253 0,
12254 32,
12255 32,
12256 0
12257 };
12258
12259 struct neon_shape_info
12260 {
12261 unsigned els;
12262 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
12263 };
12264
12265 #define S2(A,B) { SE_##A, SE_##B }
12266 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
12267 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
12268
12269 #define X(N, L, C) { N, S##N L }
12270
12271 static struct neon_shape_info neon_shape_tab[] =
12272 {
12273 NEON_SHAPE_DEF
12274 };
12275
12276 #undef X
12277 #undef S2
12278 #undef S3
12279 #undef S4
12280
12281 /* Bit masks used in type checking given instructions.
12282 'N_EQK' means the type must be the same as (or based on in some way) the key
12283 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
12284 set, various other bits can be set as well in order to modify the meaning of
12285 the type constraint. */
12286
12287 enum neon_type_mask
12288 {
12289 N_S8 = 0x0000001,
12290 N_S16 = 0x0000002,
12291 N_S32 = 0x0000004,
12292 N_S64 = 0x0000008,
12293 N_U8 = 0x0000010,
12294 N_U16 = 0x0000020,
12295 N_U32 = 0x0000040,
12296 N_U64 = 0x0000080,
12297 N_I8 = 0x0000100,
12298 N_I16 = 0x0000200,
12299 N_I32 = 0x0000400,
12300 N_I64 = 0x0000800,
12301 N_8 = 0x0001000,
12302 N_16 = 0x0002000,
12303 N_32 = 0x0004000,
12304 N_64 = 0x0008000,
12305 N_P8 = 0x0010000,
12306 N_P16 = 0x0020000,
12307 N_F16 = 0x0040000,
12308 N_F32 = 0x0080000,
12309 N_F64 = 0x0100000,
12310 N_KEY = 0x1000000, /* Key element (main type specifier). */
12311 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
12312 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
12313 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
12314 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
12315 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
12316 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
12317 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
12318 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
12319 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
12320 N_UTYP = 0,
12321 N_MAX_NONSPECIAL = N_F64
12322 };
12323
12324 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
12325
12326 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
12327 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
12328 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
12329 #define N_SUF_32 (N_SU_32 | N_F32)
12330 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
12331 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
12332
12333 /* Pass this as the first type argument to neon_check_type to ignore types
12334 altogether. */
12335 #define N_IGNORE_TYPE (N_KEY | N_EQK)
12336
12337 /* Select a "shape" for the current instruction (describing register types or
12338 sizes) from a list of alternatives. Return NS_NULL if the current instruction
12339 doesn't fit. For non-polymorphic shapes, checking is usually done as a
12340 function of operand parsing, so this function doesn't need to be called.
12341 Shapes should be listed in order of decreasing length. */
12342
12343 static enum neon_shape
12344 neon_select_shape (enum neon_shape shape, ...)
12345 {
12346 va_list ap;
12347 enum neon_shape first_shape = shape;
12348
12349 /* Fix missing optional operands. FIXME: we don't know at this point how
12350 many arguments we should have, so this makes the assumption that we have
12351 > 1. This is true of all current Neon opcodes, I think, but may not be
12352 true in the future. */
12353 if (!inst.operands[1].present)
12354 inst.operands[1] = inst.operands[0];
12355
12356 va_start (ap, shape);
12357
12358 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
12359 {
12360 unsigned j;
12361 int matches = 1;
12362
12363 for (j = 0; j < neon_shape_tab[shape].els; j++)
12364 {
12365 if (!inst.operands[j].present)
12366 {
12367 matches = 0;
12368 break;
12369 }
12370
12371 switch (neon_shape_tab[shape].el[j])
12372 {
12373 case SE_F:
12374 if (!(inst.operands[j].isreg
12375 && inst.operands[j].isvec
12376 && inst.operands[j].issingle
12377 && !inst.operands[j].isquad))
12378 matches = 0;
12379 break;
12380
12381 case SE_D:
12382 if (!(inst.operands[j].isreg
12383 && inst.operands[j].isvec
12384 && !inst.operands[j].isquad
12385 && !inst.operands[j].issingle))
12386 matches = 0;
12387 break;
12388
12389 case SE_R:
12390 if (!(inst.operands[j].isreg
12391 && !inst.operands[j].isvec))
12392 matches = 0;
12393 break;
12394
12395 case SE_Q:
12396 if (!(inst.operands[j].isreg
12397 && inst.operands[j].isvec
12398 && inst.operands[j].isquad
12399 && !inst.operands[j].issingle))
12400 matches = 0;
12401 break;
12402
12403 case SE_I:
12404 if (!(!inst.operands[j].isreg
12405 && !inst.operands[j].isscalar))
12406 matches = 0;
12407 break;
12408
12409 case SE_S:
12410 if (!(!inst.operands[j].isreg
12411 && inst.operands[j].isscalar))
12412 matches = 0;
12413 break;
12414
12415 case SE_L:
12416 break;
12417 }
12418 if (!matches)
12419 break;
12420 }
12421 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
12422 /* We've matched all the entries in the shape table, and we don't
12423 have any left over operands which have not been matched. */
12424 break;
12425 }
12426
12427 va_end (ap);
12428
12429 if (shape == NS_NULL && first_shape != NS_NULL)
12430 first_error (_("invalid instruction shape"));
12431
12432 return shape;
12433 }
12434
12435 /* True if SHAPE is predominantly a quadword operation (most of the time, this
12436 means the Q bit should be set). */
12437
12438 static int
12439 neon_quad (enum neon_shape shape)
12440 {
12441 return neon_shape_class[shape] == SC_QUAD;
12442 }
12443
12444 static void
12445 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
12446 unsigned *g_size)
12447 {
12448 /* Allow modification to be made to types which are constrained to be
12449 based on the key element, based on bits set alongside N_EQK. */
12450 if ((typebits & N_EQK) != 0)
12451 {
12452 if ((typebits & N_HLF) != 0)
12453 *g_size /= 2;
12454 else if ((typebits & N_DBL) != 0)
12455 *g_size *= 2;
12456 if ((typebits & N_SGN) != 0)
12457 *g_type = NT_signed;
12458 else if ((typebits & N_UNS) != 0)
12459 *g_type = NT_unsigned;
12460 else if ((typebits & N_INT) != 0)
12461 *g_type = NT_integer;
12462 else if ((typebits & N_FLT) != 0)
12463 *g_type = NT_float;
12464 else if ((typebits & N_SIZ) != 0)
12465 *g_type = NT_untyped;
12466 }
12467 }
12468
12469 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
12470 operand type, i.e. the single type specified in a Neon instruction when it
12471 is the only one given. */
12472
12473 static struct neon_type_el
12474 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
12475 {
12476 struct neon_type_el dest = *key;
12477
12478 gas_assert ((thisarg & N_EQK) != 0);
12479
12480 neon_modify_type_size (thisarg, &dest.type, &dest.size);
12481
12482 return dest;
12483 }
12484
12485 /* Convert Neon type and size into compact bitmask representation. */
12486
12487 static enum neon_type_mask
12488 type_chk_of_el_type (enum neon_el_type type, unsigned size)
12489 {
12490 switch (type)
12491 {
12492 case NT_untyped:
12493 switch (size)
12494 {
12495 case 8: return N_8;
12496 case 16: return N_16;
12497 case 32: return N_32;
12498 case 64: return N_64;
12499 default: ;
12500 }
12501 break;
12502
12503 case NT_integer:
12504 switch (size)
12505 {
12506 case 8: return N_I8;
12507 case 16: return N_I16;
12508 case 32: return N_I32;
12509 case 64: return N_I64;
12510 default: ;
12511 }
12512 break;
12513
12514 case NT_float:
12515 switch (size)
12516 {
12517 case 16: return N_F16;
12518 case 32: return N_F32;
12519 case 64: return N_F64;
12520 default: ;
12521 }
12522 break;
12523
12524 case NT_poly:
12525 switch (size)
12526 {
12527 case 8: return N_P8;
12528 case 16: return N_P16;
12529 default: ;
12530 }
12531 break;
12532
12533 case NT_signed:
12534 switch (size)
12535 {
12536 case 8: return N_S8;
12537 case 16: return N_S16;
12538 case 32: return N_S32;
12539 case 64: return N_S64;
12540 default: ;
12541 }
12542 break;
12543
12544 case NT_unsigned:
12545 switch (size)
12546 {
12547 case 8: return N_U8;
12548 case 16: return N_U16;
12549 case 32: return N_U32;
12550 case 64: return N_U64;
12551 default: ;
12552 }
12553 break;
12554
12555 default: ;
12556 }
12557
12558 return N_UTYP;
12559 }
12560
12561 /* Convert compact Neon bitmask type representation to a type and size. Only
12562 handles the case where a single bit is set in the mask. */
12563
12564 static int
12565 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
12566 enum neon_type_mask mask)
12567 {
12568 if ((mask & N_EQK) != 0)
12569 return FAIL;
12570
12571 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
12572 *size = 8;
12573 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
12574 *size = 16;
12575 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
12576 *size = 32;
12577 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
12578 *size = 64;
12579 else
12580 return FAIL;
12581
12582 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
12583 *type = NT_signed;
12584 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
12585 *type = NT_unsigned;
12586 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
12587 *type = NT_integer;
12588 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
12589 *type = NT_untyped;
12590 else if ((mask & (N_P8 | N_P16)) != 0)
12591 *type = NT_poly;
12592 else if ((mask & (N_F32 | N_F64)) != 0)
12593 *type = NT_float;
12594 else
12595 return FAIL;
12596
12597 return SUCCESS;
12598 }
12599
12600 /* Modify a bitmask of allowed types. This is only needed for type
12601 relaxation. */
12602
12603 static unsigned
12604 modify_types_allowed (unsigned allowed, unsigned mods)
12605 {
12606 unsigned size;
12607 enum neon_el_type type;
12608 unsigned destmask;
12609 int i;
12610
12611 destmask = 0;
12612
12613 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
12614 {
12615 if (el_type_of_type_chk (&type, &size,
12616 (enum neon_type_mask) (allowed & i)) == SUCCESS)
12617 {
12618 neon_modify_type_size (mods, &type, &size);
12619 destmask |= type_chk_of_el_type (type, size);
12620 }
12621 }
12622
12623 return destmask;
12624 }
12625
12626 /* Check type and return type classification.
12627 The manual states (paraphrase): If one datatype is given, it indicates the
12628 type given in:
12629 - the second operand, if there is one
12630 - the operand, if there is no second operand
12631 - the result, if there are no operands.
12632 This isn't quite good enough though, so we use a concept of a "key" datatype
12633 which is set on a per-instruction basis, which is the one which matters when
12634 only one data type is written.
12635 Note: this function has side-effects (e.g. filling in missing operands). All
12636 Neon instructions should call it before performing bit encoding. */
12637
12638 static struct neon_type_el
12639 neon_check_type (unsigned els, enum neon_shape ns, ...)
12640 {
12641 va_list ap;
12642 unsigned i, pass, key_el = 0;
12643 unsigned types[NEON_MAX_TYPE_ELS];
12644 enum neon_el_type k_type = NT_invtype;
12645 unsigned k_size = -1u;
12646 struct neon_type_el badtype = {NT_invtype, -1};
12647 unsigned key_allowed = 0;
12648
12649 /* Optional registers in Neon instructions are always (not) in operand 1.
12650 Fill in the missing operand here, if it was omitted. */
12651 if (els > 1 && !inst.operands[1].present)
12652 inst.operands[1] = inst.operands[0];
12653
12654 /* Suck up all the varargs. */
12655 va_start (ap, ns);
12656 for (i = 0; i < els; i++)
12657 {
12658 unsigned thisarg = va_arg (ap, unsigned);
12659 if (thisarg == N_IGNORE_TYPE)
12660 {
12661 va_end (ap);
12662 return badtype;
12663 }
12664 types[i] = thisarg;
12665 if ((thisarg & N_KEY) != 0)
12666 key_el = i;
12667 }
12668 va_end (ap);
12669
12670 if (inst.vectype.elems > 0)
12671 for (i = 0; i < els; i++)
12672 if (inst.operands[i].vectype.type != NT_invtype)
12673 {
12674 first_error (_("types specified in both the mnemonic and operands"));
12675 return badtype;
12676 }
12677
12678 /* Duplicate inst.vectype elements here as necessary.
12679 FIXME: No idea if this is exactly the same as the ARM assembler,
12680 particularly when an insn takes one register and one non-register
12681 operand. */
12682 if (inst.vectype.elems == 1 && els > 1)
12683 {
12684 unsigned j;
12685 inst.vectype.elems = els;
12686 inst.vectype.el[key_el] = inst.vectype.el[0];
12687 for (j = 0; j < els; j++)
12688 if (j != key_el)
12689 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12690 types[j]);
12691 }
12692 else if (inst.vectype.elems == 0 && els > 0)
12693 {
12694 unsigned j;
12695 /* No types were given after the mnemonic, so look for types specified
12696 after each operand. We allow some flexibility here; as long as the
12697 "key" operand has a type, we can infer the others. */
12698 for (j = 0; j < els; j++)
12699 if (inst.operands[j].vectype.type != NT_invtype)
12700 inst.vectype.el[j] = inst.operands[j].vectype;
12701
12702 if (inst.operands[key_el].vectype.type != NT_invtype)
12703 {
12704 for (j = 0; j < els; j++)
12705 if (inst.operands[j].vectype.type == NT_invtype)
12706 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12707 types[j]);
12708 }
12709 else
12710 {
12711 first_error (_("operand types can't be inferred"));
12712 return badtype;
12713 }
12714 }
12715 else if (inst.vectype.elems != els)
12716 {
12717 first_error (_("type specifier has the wrong number of parts"));
12718 return badtype;
12719 }
12720
12721 for (pass = 0; pass < 2; pass++)
12722 {
12723 for (i = 0; i < els; i++)
12724 {
12725 unsigned thisarg = types[i];
12726 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
12727 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
12728 enum neon_el_type g_type = inst.vectype.el[i].type;
12729 unsigned g_size = inst.vectype.el[i].size;
12730
12731 /* Decay more-specific signed & unsigned types to sign-insensitive
12732 integer types if sign-specific variants are unavailable. */
12733 if ((g_type == NT_signed || g_type == NT_unsigned)
12734 && (types_allowed & N_SU_ALL) == 0)
12735 g_type = NT_integer;
12736
12737 /* If only untyped args are allowed, decay any more specific types to
12738 them. Some instructions only care about signs for some element
12739 sizes, so handle that properly. */
12740 if ((g_size == 8 && (types_allowed & N_8) != 0)
12741 || (g_size == 16 && (types_allowed & N_16) != 0)
12742 || (g_size == 32 && (types_allowed & N_32) != 0)
12743 || (g_size == 64 && (types_allowed & N_64) != 0))
12744 g_type = NT_untyped;
12745
12746 if (pass == 0)
12747 {
12748 if ((thisarg & N_KEY) != 0)
12749 {
12750 k_type = g_type;
12751 k_size = g_size;
12752 key_allowed = thisarg & ~N_KEY;
12753 }
12754 }
12755 else
12756 {
12757 if ((thisarg & N_VFP) != 0)
12758 {
12759 enum neon_shape_el regshape;
12760 unsigned regwidth, match;
12761
12762 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
12763 if (ns == NS_NULL)
12764 {
12765 first_error (_("invalid instruction shape"));
12766 return badtype;
12767 }
12768 regshape = neon_shape_tab[ns].el[i];
12769 regwidth = neon_shape_el_size[regshape];
12770
12771 /* In VFP mode, operands must match register widths. If we
12772 have a key operand, use its width, else use the width of
12773 the current operand. */
12774 if (k_size != -1u)
12775 match = k_size;
12776 else
12777 match = g_size;
12778
12779 if (regwidth != match)
12780 {
12781 first_error (_("operand size must match register width"));
12782 return badtype;
12783 }
12784 }
12785
12786 if ((thisarg & N_EQK) == 0)
12787 {
12788 unsigned given_type = type_chk_of_el_type (g_type, g_size);
12789
12790 if ((given_type & types_allowed) == 0)
12791 {
12792 first_error (_("bad type in Neon instruction"));
12793 return badtype;
12794 }
12795 }
12796 else
12797 {
12798 enum neon_el_type mod_k_type = k_type;
12799 unsigned mod_k_size = k_size;
12800 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
12801 if (g_type != mod_k_type || g_size != mod_k_size)
12802 {
12803 first_error (_("inconsistent types in Neon instruction"));
12804 return badtype;
12805 }
12806 }
12807 }
12808 }
12809 }
12810
12811 return inst.vectype.el[key_el];
12812 }
12813
12814 /* Neon-style VFP instruction forwarding. */
12815
12816 /* Thumb VFP instructions have 0xE in the condition field. */
12817
12818 static void
12819 do_vfp_cond_or_thumb (void)
12820 {
12821 inst.is_neon = 1;
12822
12823 if (thumb_mode)
12824 inst.instruction |= 0xe0000000;
12825 else
12826 inst.instruction |= inst.cond << 28;
12827 }
12828
12829 /* Look up and encode a simple mnemonic, for use as a helper function for the
12830 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
12831 etc. It is assumed that operand parsing has already been done, and that the
12832 operands are in the form expected by the given opcode (this isn't necessarily
12833 the same as the form in which they were parsed, hence some massaging must
12834 take place before this function is called).
12835 Checks current arch version against that in the looked-up opcode. */
12836
12837 static void
12838 do_vfp_nsyn_opcode (const char *opname)
12839 {
12840 const struct asm_opcode *opcode;
12841
12842 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
12843
12844 if (!opcode)
12845 abort ();
12846
12847 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
12848 thumb_mode ? *opcode->tvariant : *opcode->avariant),
12849 _(BAD_FPU));
12850
12851 inst.is_neon = 1;
12852
12853 if (thumb_mode)
12854 {
12855 inst.instruction = opcode->tvalue;
12856 opcode->tencode ();
12857 }
12858 else
12859 {
12860 inst.instruction = (inst.cond << 28) | opcode->avalue;
12861 opcode->aencode ();
12862 }
12863 }
12864
12865 static void
12866 do_vfp_nsyn_add_sub (enum neon_shape rs)
12867 {
12868 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
12869
12870 if (rs == NS_FFF)
12871 {
12872 if (is_add)
12873 do_vfp_nsyn_opcode ("fadds");
12874 else
12875 do_vfp_nsyn_opcode ("fsubs");
12876 }
12877 else
12878 {
12879 if (is_add)
12880 do_vfp_nsyn_opcode ("faddd");
12881 else
12882 do_vfp_nsyn_opcode ("fsubd");
12883 }
12884 }
12885
12886 /* Check operand types to see if this is a VFP instruction, and if so call
12887 PFN (). */
12888
12889 static int
12890 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
12891 {
12892 enum neon_shape rs;
12893 struct neon_type_el et;
12894
12895 switch (args)
12896 {
12897 case 2:
12898 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12899 et = neon_check_type (2, rs,
12900 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12901 break;
12902
12903 case 3:
12904 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12905 et = neon_check_type (3, rs,
12906 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12907 break;
12908
12909 default:
12910 abort ();
12911 }
12912
12913 if (et.type != NT_invtype)
12914 {
12915 pfn (rs);
12916 return SUCCESS;
12917 }
12918
12919 inst.error = NULL;
12920 return FAIL;
12921 }
12922
12923 static void
12924 do_vfp_nsyn_mla_mls (enum neon_shape rs)
12925 {
12926 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
12927
12928 if (rs == NS_FFF)
12929 {
12930 if (is_mla)
12931 do_vfp_nsyn_opcode ("fmacs");
12932 else
12933 do_vfp_nsyn_opcode ("fnmacs");
12934 }
12935 else
12936 {
12937 if (is_mla)
12938 do_vfp_nsyn_opcode ("fmacd");
12939 else
12940 do_vfp_nsyn_opcode ("fnmacd");
12941 }
12942 }
12943
12944 static void
12945 do_vfp_nsyn_fma_fms (enum neon_shape rs)
12946 {
12947 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
12948
12949 if (rs == NS_FFF)
12950 {
12951 if (is_fma)
12952 do_vfp_nsyn_opcode ("ffmas");
12953 else
12954 do_vfp_nsyn_opcode ("ffnmas");
12955 }
12956 else
12957 {
12958 if (is_fma)
12959 do_vfp_nsyn_opcode ("ffmad");
12960 else
12961 do_vfp_nsyn_opcode ("ffnmad");
12962 }
12963 }
12964
12965 static void
12966 do_vfp_nsyn_mul (enum neon_shape rs)
12967 {
12968 if (rs == NS_FFF)
12969 do_vfp_nsyn_opcode ("fmuls");
12970 else
12971 do_vfp_nsyn_opcode ("fmuld");
12972 }
12973
12974 static void
12975 do_vfp_nsyn_abs_neg (enum neon_shape rs)
12976 {
12977 int is_neg = (inst.instruction & 0x80) != 0;
12978 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
12979
12980 if (rs == NS_FF)
12981 {
12982 if (is_neg)
12983 do_vfp_nsyn_opcode ("fnegs");
12984 else
12985 do_vfp_nsyn_opcode ("fabss");
12986 }
12987 else
12988 {
12989 if (is_neg)
12990 do_vfp_nsyn_opcode ("fnegd");
12991 else
12992 do_vfp_nsyn_opcode ("fabsd");
12993 }
12994 }
12995
12996 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
12997 insns belong to Neon, and are handled elsewhere. */
12998
12999 static void
13000 do_vfp_nsyn_ldm_stm (int is_dbmode)
13001 {
13002 int is_ldm = (inst.instruction & (1 << 20)) != 0;
13003 if (is_ldm)
13004 {
13005 if (is_dbmode)
13006 do_vfp_nsyn_opcode ("fldmdbs");
13007 else
13008 do_vfp_nsyn_opcode ("fldmias");
13009 }
13010 else
13011 {
13012 if (is_dbmode)
13013 do_vfp_nsyn_opcode ("fstmdbs");
13014 else
13015 do_vfp_nsyn_opcode ("fstmias");
13016 }
13017 }
13018
13019 static void
13020 do_vfp_nsyn_sqrt (void)
13021 {
13022 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13023 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13024
13025 if (rs == NS_FF)
13026 do_vfp_nsyn_opcode ("fsqrts");
13027 else
13028 do_vfp_nsyn_opcode ("fsqrtd");
13029 }
13030
13031 static void
13032 do_vfp_nsyn_div (void)
13033 {
13034 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13035 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
13036 N_F32 | N_F64 | N_KEY | N_VFP);
13037
13038 if (rs == NS_FFF)
13039 do_vfp_nsyn_opcode ("fdivs");
13040 else
13041 do_vfp_nsyn_opcode ("fdivd");
13042 }
13043
13044 static void
13045 do_vfp_nsyn_nmul (void)
13046 {
13047 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13048 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
13049 N_F32 | N_F64 | N_KEY | N_VFP);
13050
13051 if (rs == NS_FFF)
13052 {
13053 NEON_ENCODE (SINGLE, inst);
13054 do_vfp_sp_dyadic ();
13055 }
13056 else
13057 {
13058 NEON_ENCODE (DOUBLE, inst);
13059 do_vfp_dp_rd_rn_rm ();
13060 }
13061 do_vfp_cond_or_thumb ();
13062 }
13063
13064 static void
13065 do_vfp_nsyn_cmp (void)
13066 {
13067 if (inst.operands[1].isreg)
13068 {
13069 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13070 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13071
13072 if (rs == NS_FF)
13073 {
13074 NEON_ENCODE (SINGLE, inst);
13075 do_vfp_sp_monadic ();
13076 }
13077 else
13078 {
13079 NEON_ENCODE (DOUBLE, inst);
13080 do_vfp_dp_rd_rm ();
13081 }
13082 }
13083 else
13084 {
13085 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
13086 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
13087
13088 switch (inst.instruction & 0x0fffffff)
13089 {
13090 case N_MNEM_vcmp:
13091 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
13092 break;
13093 case N_MNEM_vcmpe:
13094 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
13095 break;
13096 default:
13097 abort ();
13098 }
13099
13100 if (rs == NS_FI)
13101 {
13102 NEON_ENCODE (SINGLE, inst);
13103 do_vfp_sp_compare_z ();
13104 }
13105 else
13106 {
13107 NEON_ENCODE (DOUBLE, inst);
13108 do_vfp_dp_rd ();
13109 }
13110 }
13111 do_vfp_cond_or_thumb ();
13112 }
13113
13114 static void
13115 nsyn_insert_sp (void)
13116 {
13117 inst.operands[1] = inst.operands[0];
13118 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
13119 inst.operands[0].reg = REG_SP;
13120 inst.operands[0].isreg = 1;
13121 inst.operands[0].writeback = 1;
13122 inst.operands[0].present = 1;
13123 }
13124
13125 static void
13126 do_vfp_nsyn_push (void)
13127 {
13128 nsyn_insert_sp ();
13129 if (inst.operands[1].issingle)
13130 do_vfp_nsyn_opcode ("fstmdbs");
13131 else
13132 do_vfp_nsyn_opcode ("fstmdbd");
13133 }
13134
13135 static void
13136 do_vfp_nsyn_pop (void)
13137 {
13138 nsyn_insert_sp ();
13139 if (inst.operands[1].issingle)
13140 do_vfp_nsyn_opcode ("fldmias");
13141 else
13142 do_vfp_nsyn_opcode ("fldmiad");
13143 }
13144
13145 /* Fix up Neon data-processing instructions, ORing in the correct bits for
13146 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
13147
13148 static void
13149 neon_dp_fixup (struct arm_it* insn)
13150 {
13151 unsigned int i = insn->instruction;
13152 insn->is_neon = 1;
13153
13154 if (thumb_mode)
13155 {
13156 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
13157 if (i & (1 << 24))
13158 i |= 1 << 28;
13159
13160 i &= ~(1 << 24);
13161
13162 i |= 0xef000000;
13163 }
13164 else
13165 i |= 0xf2000000;
13166
13167 insn->instruction = i;
13168 }
13169
13170 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
13171 (0, 1, 2, 3). */
13172
13173 static unsigned
13174 neon_logbits (unsigned x)
13175 {
13176 return ffs (x) - 4;
13177 }
13178
13179 #define LOW4(R) ((R) & 0xf)
13180 #define HI1(R) (((R) >> 4) & 1)
13181
13182 /* Encode insns with bit pattern:
13183
13184 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
13185 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
13186
13187 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
13188 different meaning for some instruction. */
13189
13190 static void
13191 neon_three_same (int isquad, int ubit, int size)
13192 {
13193 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13194 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13195 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13196 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13197 inst.instruction |= LOW4 (inst.operands[2].reg);
13198 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13199 inst.instruction |= (isquad != 0) << 6;
13200 inst.instruction |= (ubit != 0) << 24;
13201 if (size != -1)
13202 inst.instruction |= neon_logbits (size) << 20;
13203
13204 neon_dp_fixup (&inst);
13205 }
13206
13207 /* Encode instructions of the form:
13208
13209 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
13210 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
13211
13212 Don't write size if SIZE == -1. */
13213
13214 static void
13215 neon_two_same (int qbit, int ubit, int size)
13216 {
13217 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13218 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13219 inst.instruction |= LOW4 (inst.operands[1].reg);
13220 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13221 inst.instruction |= (qbit != 0) << 6;
13222 inst.instruction |= (ubit != 0) << 24;
13223
13224 if (size != -1)
13225 inst.instruction |= neon_logbits (size) << 18;
13226
13227 neon_dp_fixup (&inst);
13228 }
13229
13230 /* Neon instruction encoders, in approximate order of appearance. */
13231
13232 static void
13233 do_neon_dyadic_i_su (void)
13234 {
13235 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13236 struct neon_type_el et = neon_check_type (3, rs,
13237 N_EQK, N_EQK, N_SU_32 | N_KEY);
13238 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13239 }
13240
13241 static void
13242 do_neon_dyadic_i64_su (void)
13243 {
13244 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13245 struct neon_type_el et = neon_check_type (3, rs,
13246 N_EQK, N_EQK, N_SU_ALL | N_KEY);
13247 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13248 }
13249
13250 static void
13251 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
13252 unsigned immbits)
13253 {
13254 unsigned size = et.size >> 3;
13255 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13256 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13257 inst.instruction |= LOW4 (inst.operands[1].reg);
13258 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13259 inst.instruction |= (isquad != 0) << 6;
13260 inst.instruction |= immbits << 16;
13261 inst.instruction |= (size >> 3) << 7;
13262 inst.instruction |= (size & 0x7) << 19;
13263 if (write_ubit)
13264 inst.instruction |= (uval != 0) << 24;
13265
13266 neon_dp_fixup (&inst);
13267 }
13268
13269 static void
13270 do_neon_shl_imm (void)
13271 {
13272 if (!inst.operands[2].isreg)
13273 {
13274 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13275 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
13276 NEON_ENCODE (IMMED, inst);
13277 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
13278 }
13279 else
13280 {
13281 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13282 struct neon_type_el et = neon_check_type (3, rs,
13283 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
13284 unsigned int tmp;
13285
13286 /* VSHL/VQSHL 3-register variants have syntax such as:
13287 vshl.xx Dd, Dm, Dn
13288 whereas other 3-register operations encoded by neon_three_same have
13289 syntax like:
13290 vadd.xx Dd, Dn, Dm
13291 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
13292 here. */
13293 tmp = inst.operands[2].reg;
13294 inst.operands[2].reg = inst.operands[1].reg;
13295 inst.operands[1].reg = tmp;
13296 NEON_ENCODE (INTEGER, inst);
13297 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13298 }
13299 }
13300
13301 static void
13302 do_neon_qshl_imm (void)
13303 {
13304 if (!inst.operands[2].isreg)
13305 {
13306 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13307 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
13308
13309 NEON_ENCODE (IMMED, inst);
13310 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
13311 inst.operands[2].imm);
13312 }
13313 else
13314 {
13315 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13316 struct neon_type_el et = neon_check_type (3, rs,
13317 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
13318 unsigned int tmp;
13319
13320 /* See note in do_neon_shl_imm. */
13321 tmp = inst.operands[2].reg;
13322 inst.operands[2].reg = inst.operands[1].reg;
13323 inst.operands[1].reg = tmp;
13324 NEON_ENCODE (INTEGER, inst);
13325 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13326 }
13327 }
13328
13329 static void
13330 do_neon_rshl (void)
13331 {
13332 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13333 struct neon_type_el et = neon_check_type (3, rs,
13334 N_EQK, N_EQK, N_SU_ALL | N_KEY);
13335 unsigned int tmp;
13336
13337 tmp = inst.operands[2].reg;
13338 inst.operands[2].reg = inst.operands[1].reg;
13339 inst.operands[1].reg = tmp;
13340 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13341 }
13342
13343 static int
13344 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
13345 {
13346 /* Handle .I8 pseudo-instructions. */
13347 if (size == 8)
13348 {
13349 /* Unfortunately, this will make everything apart from zero out-of-range.
13350 FIXME is this the intended semantics? There doesn't seem much point in
13351 accepting .I8 if so. */
13352 immediate |= immediate << 8;
13353 size = 16;
13354 }
13355
13356 if (size >= 32)
13357 {
13358 if (immediate == (immediate & 0x000000ff))
13359 {
13360 *immbits = immediate;
13361 return 0x1;
13362 }
13363 else if (immediate == (immediate & 0x0000ff00))
13364 {
13365 *immbits = immediate >> 8;
13366 return 0x3;
13367 }
13368 else if (immediate == (immediate & 0x00ff0000))
13369 {
13370 *immbits = immediate >> 16;
13371 return 0x5;
13372 }
13373 else if (immediate == (immediate & 0xff000000))
13374 {
13375 *immbits = immediate >> 24;
13376 return 0x7;
13377 }
13378 if ((immediate & 0xffff) != (immediate >> 16))
13379 goto bad_immediate;
13380 immediate &= 0xffff;
13381 }
13382
13383 if (immediate == (immediate & 0x000000ff))
13384 {
13385 *immbits = immediate;
13386 return 0x9;
13387 }
13388 else if (immediate == (immediate & 0x0000ff00))
13389 {
13390 *immbits = immediate >> 8;
13391 return 0xb;
13392 }
13393
13394 bad_immediate:
13395 first_error (_("immediate value out of range"));
13396 return FAIL;
13397 }
13398
13399 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
13400 A, B, C, D. */
13401
13402 static int
13403 neon_bits_same_in_bytes (unsigned imm)
13404 {
13405 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
13406 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
13407 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
13408 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
13409 }
13410
13411 /* For immediate of above form, return 0bABCD. */
13412
13413 static unsigned
13414 neon_squash_bits (unsigned imm)
13415 {
13416 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
13417 | ((imm & 0x01000000) >> 21);
13418 }
13419
13420 /* Compress quarter-float representation to 0b...000 abcdefgh. */
13421
13422 static unsigned
13423 neon_qfloat_bits (unsigned imm)
13424 {
13425 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
13426 }
13427
13428 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
13429 the instruction. *OP is passed as the initial value of the op field, and
13430 may be set to a different value depending on the constant (i.e.
13431 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
13432 MVN). If the immediate looks like a repeated pattern then also
13433 try smaller element sizes. */
13434
13435 static int
13436 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
13437 unsigned *immbits, int *op, int size,
13438 enum neon_el_type type)
13439 {
13440 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
13441 float. */
13442 if (type == NT_float && !float_p)
13443 return FAIL;
13444
13445 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
13446 {
13447 if (size != 32 || *op == 1)
13448 return FAIL;
13449 *immbits = neon_qfloat_bits (immlo);
13450 return 0xf;
13451 }
13452
13453 if (size == 64)
13454 {
13455 if (neon_bits_same_in_bytes (immhi)
13456 && neon_bits_same_in_bytes (immlo))
13457 {
13458 if (*op == 1)
13459 return FAIL;
13460 *immbits = (neon_squash_bits (immhi) << 4)
13461 | neon_squash_bits (immlo);
13462 *op = 1;
13463 return 0xe;
13464 }
13465
13466 if (immhi != immlo)
13467 return FAIL;
13468 }
13469
13470 if (size >= 32)
13471 {
13472 if (immlo == (immlo & 0x000000ff))
13473 {
13474 *immbits = immlo;
13475 return 0x0;
13476 }
13477 else if (immlo == (immlo & 0x0000ff00))
13478 {
13479 *immbits = immlo >> 8;
13480 return 0x2;
13481 }
13482 else if (immlo == (immlo & 0x00ff0000))
13483 {
13484 *immbits = immlo >> 16;
13485 return 0x4;
13486 }
13487 else if (immlo == (immlo & 0xff000000))
13488 {
13489 *immbits = immlo >> 24;
13490 return 0x6;
13491 }
13492 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
13493 {
13494 *immbits = (immlo >> 8) & 0xff;
13495 return 0xc;
13496 }
13497 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
13498 {
13499 *immbits = (immlo >> 16) & 0xff;
13500 return 0xd;
13501 }
13502
13503 if ((immlo & 0xffff) != (immlo >> 16))
13504 return FAIL;
13505 immlo &= 0xffff;
13506 }
13507
13508 if (size >= 16)
13509 {
13510 if (immlo == (immlo & 0x000000ff))
13511 {
13512 *immbits = immlo;
13513 return 0x8;
13514 }
13515 else if (immlo == (immlo & 0x0000ff00))
13516 {
13517 *immbits = immlo >> 8;
13518 return 0xa;
13519 }
13520
13521 if ((immlo & 0xff) != (immlo >> 8))
13522 return FAIL;
13523 immlo &= 0xff;
13524 }
13525
13526 if (immlo == (immlo & 0x000000ff))
13527 {
13528 /* Don't allow MVN with 8-bit immediate. */
13529 if (*op == 1)
13530 return FAIL;
13531 *immbits = immlo;
13532 return 0xe;
13533 }
13534
13535 return FAIL;
13536 }
13537
13538 /* Write immediate bits [7:0] to the following locations:
13539
13540 |28/24|23 19|18 16|15 4|3 0|
13541 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
13542
13543 This function is used by VMOV/VMVN/VORR/VBIC. */
13544
13545 static void
13546 neon_write_immbits (unsigned immbits)
13547 {
13548 inst.instruction |= immbits & 0xf;
13549 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
13550 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
13551 }
13552
13553 /* Invert low-order SIZE bits of XHI:XLO. */
13554
13555 static void
13556 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
13557 {
13558 unsigned immlo = xlo ? *xlo : 0;
13559 unsigned immhi = xhi ? *xhi : 0;
13560
13561 switch (size)
13562 {
13563 case 8:
13564 immlo = (~immlo) & 0xff;
13565 break;
13566
13567 case 16:
13568 immlo = (~immlo) & 0xffff;
13569 break;
13570
13571 case 64:
13572 immhi = (~immhi) & 0xffffffff;
13573 /* fall through. */
13574
13575 case 32:
13576 immlo = (~immlo) & 0xffffffff;
13577 break;
13578
13579 default:
13580 abort ();
13581 }
13582
13583 if (xlo)
13584 *xlo = immlo;
13585
13586 if (xhi)
13587 *xhi = immhi;
13588 }
13589
13590 static void
13591 do_neon_logic (void)
13592 {
13593 if (inst.operands[2].present && inst.operands[2].isreg)
13594 {
13595 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13596 neon_check_type (3, rs, N_IGNORE_TYPE);
13597 /* U bit and size field were set as part of the bitmask. */
13598 NEON_ENCODE (INTEGER, inst);
13599 neon_three_same (neon_quad (rs), 0, -1);
13600 }
13601 else
13602 {
13603 const int three_ops_form = (inst.operands[2].present
13604 && !inst.operands[2].isreg);
13605 const int immoperand = (three_ops_form ? 2 : 1);
13606 enum neon_shape rs = (three_ops_form
13607 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
13608 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
13609 struct neon_type_el et = neon_check_type (2, rs,
13610 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
13611 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
13612 unsigned immbits;
13613 int cmode;
13614
13615 if (et.type == NT_invtype)
13616 return;
13617
13618 if (three_ops_form)
13619 constraint (inst.operands[0].reg != inst.operands[1].reg,
13620 _("first and second operands shall be the same register"));
13621
13622 NEON_ENCODE (IMMED, inst);
13623
13624 immbits = inst.operands[immoperand].imm;
13625 if (et.size == 64)
13626 {
13627 /* .i64 is a pseudo-op, so the immediate must be a repeating
13628 pattern. */
13629 if (immbits != (inst.operands[immoperand].regisimm ?
13630 inst.operands[immoperand].reg : 0))
13631 {
13632 /* Set immbits to an invalid constant. */
13633 immbits = 0xdeadbeef;
13634 }
13635 }
13636
13637 switch (opcode)
13638 {
13639 case N_MNEM_vbic:
13640 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13641 break;
13642
13643 case N_MNEM_vorr:
13644 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13645 break;
13646
13647 case N_MNEM_vand:
13648 /* Pseudo-instruction for VBIC. */
13649 neon_invert_size (&immbits, 0, et.size);
13650 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13651 break;
13652
13653 case N_MNEM_vorn:
13654 /* Pseudo-instruction for VORR. */
13655 neon_invert_size (&immbits, 0, et.size);
13656 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13657 break;
13658
13659 default:
13660 abort ();
13661 }
13662
13663 if (cmode == FAIL)
13664 return;
13665
13666 inst.instruction |= neon_quad (rs) << 6;
13667 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13668 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13669 inst.instruction |= cmode << 8;
13670 neon_write_immbits (immbits);
13671
13672 neon_dp_fixup (&inst);
13673 }
13674 }
13675
13676 static void
13677 do_neon_bitfield (void)
13678 {
13679 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13680 neon_check_type (3, rs, N_IGNORE_TYPE);
13681 neon_three_same (neon_quad (rs), 0, -1);
13682 }
13683
13684 static void
13685 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
13686 unsigned destbits)
13687 {
13688 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13689 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
13690 types | N_KEY);
13691 if (et.type == NT_float)
13692 {
13693 NEON_ENCODE (FLOAT, inst);
13694 neon_three_same (neon_quad (rs), 0, -1);
13695 }
13696 else
13697 {
13698 NEON_ENCODE (INTEGER, inst);
13699 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
13700 }
13701 }
13702
13703 static void
13704 do_neon_dyadic_if_su (void)
13705 {
13706 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
13707 }
13708
13709 static void
13710 do_neon_dyadic_if_su_d (void)
13711 {
13712 /* This version only allow D registers, but that constraint is enforced during
13713 operand parsing so we don't need to do anything extra here. */
13714 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
13715 }
13716
13717 static void
13718 do_neon_dyadic_if_i_d (void)
13719 {
13720 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13721 affected if we specify unsigned args. */
13722 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13723 }
13724
13725 enum vfp_or_neon_is_neon_bits
13726 {
13727 NEON_CHECK_CC = 1,
13728 NEON_CHECK_ARCH = 2
13729 };
13730
13731 /* Call this function if an instruction which may have belonged to the VFP or
13732 Neon instruction sets, but turned out to be a Neon instruction (due to the
13733 operand types involved, etc.). We have to check and/or fix-up a couple of
13734 things:
13735
13736 - Make sure the user hasn't attempted to make a Neon instruction
13737 conditional.
13738 - Alter the value in the condition code field if necessary.
13739 - Make sure that the arch supports Neon instructions.
13740
13741 Which of these operations take place depends on bits from enum
13742 vfp_or_neon_is_neon_bits.
13743
13744 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
13745 current instruction's condition is COND_ALWAYS, the condition field is
13746 changed to inst.uncond_value. This is necessary because instructions shared
13747 between VFP and Neon may be conditional for the VFP variants only, and the
13748 unconditional Neon version must have, e.g., 0xF in the condition field. */
13749
13750 static int
13751 vfp_or_neon_is_neon (unsigned check)
13752 {
13753 /* Conditions are always legal in Thumb mode (IT blocks). */
13754 if (!thumb_mode && (check & NEON_CHECK_CC))
13755 {
13756 if (inst.cond != COND_ALWAYS)
13757 {
13758 first_error (_(BAD_COND));
13759 return FAIL;
13760 }
13761 if (inst.uncond_value != -1)
13762 inst.instruction |= inst.uncond_value << 28;
13763 }
13764
13765 if ((check & NEON_CHECK_ARCH)
13766 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
13767 {
13768 first_error (_(BAD_FPU));
13769 return FAIL;
13770 }
13771
13772 return SUCCESS;
13773 }
13774
13775 static void
13776 do_neon_addsub_if_i (void)
13777 {
13778 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
13779 return;
13780
13781 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13782 return;
13783
13784 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13785 affected if we specify unsigned args. */
13786 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
13787 }
13788
13789 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
13790 result to be:
13791 V<op> A,B (A is operand 0, B is operand 2)
13792 to mean:
13793 V<op> A,B,A
13794 not:
13795 V<op> A,B,B
13796 so handle that case specially. */
13797
13798 static void
13799 neon_exchange_operands (void)
13800 {
13801 void *scratch = alloca (sizeof (inst.operands[0]));
13802 if (inst.operands[1].present)
13803 {
13804 /* Swap operands[1] and operands[2]. */
13805 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
13806 inst.operands[1] = inst.operands[2];
13807 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
13808 }
13809 else
13810 {
13811 inst.operands[1] = inst.operands[2];
13812 inst.operands[2] = inst.operands[0];
13813 }
13814 }
13815
13816 static void
13817 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
13818 {
13819 if (inst.operands[2].isreg)
13820 {
13821 if (invert)
13822 neon_exchange_operands ();
13823 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
13824 }
13825 else
13826 {
13827 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13828 struct neon_type_el et = neon_check_type (2, rs,
13829 N_EQK | N_SIZ, immtypes | N_KEY);
13830
13831 NEON_ENCODE (IMMED, inst);
13832 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13833 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13834 inst.instruction |= LOW4 (inst.operands[1].reg);
13835 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13836 inst.instruction |= neon_quad (rs) << 6;
13837 inst.instruction |= (et.type == NT_float) << 10;
13838 inst.instruction |= neon_logbits (et.size) << 18;
13839
13840 neon_dp_fixup (&inst);
13841 }
13842 }
13843
13844 static void
13845 do_neon_cmp (void)
13846 {
13847 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
13848 }
13849
13850 static void
13851 do_neon_cmp_inv (void)
13852 {
13853 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
13854 }
13855
13856 static void
13857 do_neon_ceq (void)
13858 {
13859 neon_compare (N_IF_32, N_IF_32, FALSE);
13860 }
13861
13862 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
13863 scalars, which are encoded in 5 bits, M : Rm.
13864 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
13865 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
13866 index in M. */
13867
13868 static unsigned
13869 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
13870 {
13871 unsigned regno = NEON_SCALAR_REG (scalar);
13872 unsigned elno = NEON_SCALAR_INDEX (scalar);
13873
13874 switch (elsize)
13875 {
13876 case 16:
13877 if (regno > 7 || elno > 3)
13878 goto bad_scalar;
13879 return regno | (elno << 3);
13880
13881 case 32:
13882 if (regno > 15 || elno > 1)
13883 goto bad_scalar;
13884 return regno | (elno << 4);
13885
13886 default:
13887 bad_scalar:
13888 first_error (_("scalar out of range for multiply instruction"));
13889 }
13890
13891 return 0;
13892 }
13893
13894 /* Encode multiply / multiply-accumulate scalar instructions. */
13895
13896 static void
13897 neon_mul_mac (struct neon_type_el et, int ubit)
13898 {
13899 unsigned scalar;
13900
13901 /* Give a more helpful error message if we have an invalid type. */
13902 if (et.type == NT_invtype)
13903 return;
13904
13905 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
13906 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13907 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13908 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13909 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13910 inst.instruction |= LOW4 (scalar);
13911 inst.instruction |= HI1 (scalar) << 5;
13912 inst.instruction |= (et.type == NT_float) << 8;
13913 inst.instruction |= neon_logbits (et.size) << 20;
13914 inst.instruction |= (ubit != 0) << 24;
13915
13916 neon_dp_fixup (&inst);
13917 }
13918
13919 static void
13920 do_neon_mac_maybe_scalar (void)
13921 {
13922 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
13923 return;
13924
13925 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13926 return;
13927
13928 if (inst.operands[2].isscalar)
13929 {
13930 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
13931 struct neon_type_el et = neon_check_type (3, rs,
13932 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
13933 NEON_ENCODE (SCALAR, inst);
13934 neon_mul_mac (et, neon_quad (rs));
13935 }
13936 else
13937 {
13938 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13939 affected if we specify unsigned args. */
13940 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13941 }
13942 }
13943
13944 static void
13945 do_neon_fmac (void)
13946 {
13947 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
13948 return;
13949
13950 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13951 return;
13952
13953 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13954 }
13955
13956 static void
13957 do_neon_tst (void)
13958 {
13959 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13960 struct neon_type_el et = neon_check_type (3, rs,
13961 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
13962 neon_three_same (neon_quad (rs), 0, et.size);
13963 }
13964
13965 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
13966 same types as the MAC equivalents. The polynomial type for this instruction
13967 is encoded the same as the integer type. */
13968
13969 static void
13970 do_neon_mul (void)
13971 {
13972 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
13973 return;
13974
13975 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13976 return;
13977
13978 if (inst.operands[2].isscalar)
13979 do_neon_mac_maybe_scalar ();
13980 else
13981 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
13982 }
13983
13984 static void
13985 do_neon_qdmulh (void)
13986 {
13987 if (inst.operands[2].isscalar)
13988 {
13989 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
13990 struct neon_type_el et = neon_check_type (3, rs,
13991 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
13992 NEON_ENCODE (SCALAR, inst);
13993 neon_mul_mac (et, neon_quad (rs));
13994 }
13995 else
13996 {
13997 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13998 struct neon_type_el et = neon_check_type (3, rs,
13999 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
14000 NEON_ENCODE (INTEGER, inst);
14001 /* The U bit (rounding) comes from bit mask. */
14002 neon_three_same (neon_quad (rs), 0, et.size);
14003 }
14004 }
14005
14006 static void
14007 do_neon_fcmp_absolute (void)
14008 {
14009 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14010 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
14011 /* Size field comes from bit mask. */
14012 neon_three_same (neon_quad (rs), 1, -1);
14013 }
14014
14015 static void
14016 do_neon_fcmp_absolute_inv (void)
14017 {
14018 neon_exchange_operands ();
14019 do_neon_fcmp_absolute ();
14020 }
14021
14022 static void
14023 do_neon_step (void)
14024 {
14025 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14026 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
14027 neon_three_same (neon_quad (rs), 0, -1);
14028 }
14029
14030 static void
14031 do_neon_abs_neg (void)
14032 {
14033 enum neon_shape rs;
14034 struct neon_type_el et;
14035
14036 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
14037 return;
14038
14039 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14040 return;
14041
14042 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14043 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
14044
14045 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14046 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14047 inst.instruction |= LOW4 (inst.operands[1].reg);
14048 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14049 inst.instruction |= neon_quad (rs) << 6;
14050 inst.instruction |= (et.type == NT_float) << 10;
14051 inst.instruction |= neon_logbits (et.size) << 18;
14052
14053 neon_dp_fixup (&inst);
14054 }
14055
14056 static void
14057 do_neon_sli (void)
14058 {
14059 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14060 struct neon_type_el et = neon_check_type (2, rs,
14061 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14062 int imm = inst.operands[2].imm;
14063 constraint (imm < 0 || (unsigned)imm >= et.size,
14064 _("immediate out of range for insert"));
14065 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
14066 }
14067
14068 static void
14069 do_neon_sri (void)
14070 {
14071 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14072 struct neon_type_el et = neon_check_type (2, rs,
14073 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14074 int imm = inst.operands[2].imm;
14075 constraint (imm < 1 || (unsigned)imm > et.size,
14076 _("immediate out of range for insert"));
14077 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
14078 }
14079
14080 static void
14081 do_neon_qshlu_imm (void)
14082 {
14083 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14084 struct neon_type_el et = neon_check_type (2, rs,
14085 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
14086 int imm = inst.operands[2].imm;
14087 constraint (imm < 0 || (unsigned)imm >= et.size,
14088 _("immediate out of range for shift"));
14089 /* Only encodes the 'U present' variant of the instruction.
14090 In this case, signed types have OP (bit 8) set to 0.
14091 Unsigned types have OP set to 1. */
14092 inst.instruction |= (et.type == NT_unsigned) << 8;
14093 /* The rest of the bits are the same as other immediate shifts. */
14094 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
14095 }
14096
14097 static void
14098 do_neon_qmovn (void)
14099 {
14100 struct neon_type_el et = neon_check_type (2, NS_DQ,
14101 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
14102 /* Saturating move where operands can be signed or unsigned, and the
14103 destination has the same signedness. */
14104 NEON_ENCODE (INTEGER, inst);
14105 if (et.type == NT_unsigned)
14106 inst.instruction |= 0xc0;
14107 else
14108 inst.instruction |= 0x80;
14109 neon_two_same (0, 1, et.size / 2);
14110 }
14111
14112 static void
14113 do_neon_qmovun (void)
14114 {
14115 struct neon_type_el et = neon_check_type (2, NS_DQ,
14116 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
14117 /* Saturating move with unsigned results. Operands must be signed. */
14118 NEON_ENCODE (INTEGER, inst);
14119 neon_two_same (0, 1, et.size / 2);
14120 }
14121
14122 static void
14123 do_neon_rshift_sat_narrow (void)
14124 {
14125 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14126 or unsigned. If operands are unsigned, results must also be unsigned. */
14127 struct neon_type_el et = neon_check_type (2, NS_DQI,
14128 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
14129 int imm = inst.operands[2].imm;
14130 /* This gets the bounds check, size encoding and immediate bits calculation
14131 right. */
14132 et.size /= 2;
14133
14134 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
14135 VQMOVN.I<size> <Dd>, <Qm>. */
14136 if (imm == 0)
14137 {
14138 inst.operands[2].present = 0;
14139 inst.instruction = N_MNEM_vqmovn;
14140 do_neon_qmovn ();
14141 return;
14142 }
14143
14144 constraint (imm < 1 || (unsigned)imm > et.size,
14145 _("immediate out of range"));
14146 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
14147 }
14148
14149 static void
14150 do_neon_rshift_sat_narrow_u (void)
14151 {
14152 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14153 or unsigned. If operands are unsigned, results must also be unsigned. */
14154 struct neon_type_el et = neon_check_type (2, NS_DQI,
14155 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
14156 int imm = inst.operands[2].imm;
14157 /* This gets the bounds check, size encoding and immediate bits calculation
14158 right. */
14159 et.size /= 2;
14160
14161 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
14162 VQMOVUN.I<size> <Dd>, <Qm>. */
14163 if (imm == 0)
14164 {
14165 inst.operands[2].present = 0;
14166 inst.instruction = N_MNEM_vqmovun;
14167 do_neon_qmovun ();
14168 return;
14169 }
14170
14171 constraint (imm < 1 || (unsigned)imm > et.size,
14172 _("immediate out of range"));
14173 /* FIXME: The manual is kind of unclear about what value U should have in
14174 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
14175 must be 1. */
14176 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
14177 }
14178
14179 static void
14180 do_neon_movn (void)
14181 {
14182 struct neon_type_el et = neon_check_type (2, NS_DQ,
14183 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
14184 NEON_ENCODE (INTEGER, inst);
14185 neon_two_same (0, 1, et.size / 2);
14186 }
14187
14188 static void
14189 do_neon_rshift_narrow (void)
14190 {
14191 struct neon_type_el et = neon_check_type (2, NS_DQI,
14192 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
14193 int imm = inst.operands[2].imm;
14194 /* This gets the bounds check, size encoding and immediate bits calculation
14195 right. */
14196 et.size /= 2;
14197
14198 /* If immediate is zero then we are a pseudo-instruction for
14199 VMOVN.I<size> <Dd>, <Qm> */
14200 if (imm == 0)
14201 {
14202 inst.operands[2].present = 0;
14203 inst.instruction = N_MNEM_vmovn;
14204 do_neon_movn ();
14205 return;
14206 }
14207
14208 constraint (imm < 1 || (unsigned)imm > et.size,
14209 _("immediate out of range for narrowing operation"));
14210 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
14211 }
14212
14213 static void
14214 do_neon_shll (void)
14215 {
14216 /* FIXME: Type checking when lengthening. */
14217 struct neon_type_el et = neon_check_type (2, NS_QDI,
14218 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
14219 unsigned imm = inst.operands[2].imm;
14220
14221 if (imm == et.size)
14222 {
14223 /* Maximum shift variant. */
14224 NEON_ENCODE (INTEGER, inst);
14225 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14226 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14227 inst.instruction |= LOW4 (inst.operands[1].reg);
14228 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14229 inst.instruction |= neon_logbits (et.size) << 18;
14230
14231 neon_dp_fixup (&inst);
14232 }
14233 else
14234 {
14235 /* A more-specific type check for non-max versions. */
14236 et = neon_check_type (2, NS_QDI,
14237 N_EQK | N_DBL, N_SU_32 | N_KEY);
14238 NEON_ENCODE (IMMED, inst);
14239 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
14240 }
14241 }
14242
14243 /* Check the various types for the VCVT instruction, and return which version
14244 the current instruction is. */
14245
14246 static int
14247 neon_cvt_flavour (enum neon_shape rs)
14248 {
14249 #define CVT_VAR(C,X,Y) \
14250 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
14251 if (et.type != NT_invtype) \
14252 { \
14253 inst.error = NULL; \
14254 return (C); \
14255 }
14256 struct neon_type_el et;
14257 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
14258 || rs == NS_FF) ? N_VFP : 0;
14259 /* The instruction versions which take an immediate take one register
14260 argument, which is extended to the width of the full register. Thus the
14261 "source" and "destination" registers must have the same width. Hack that
14262 here by making the size equal to the key (wider, in this case) operand. */
14263 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
14264
14265 CVT_VAR (0, N_S32, N_F32);
14266 CVT_VAR (1, N_U32, N_F32);
14267 CVT_VAR (2, N_F32, N_S32);
14268 CVT_VAR (3, N_F32, N_U32);
14269 /* Half-precision conversions. */
14270 CVT_VAR (4, N_F32, N_F16);
14271 CVT_VAR (5, N_F16, N_F32);
14272
14273 whole_reg = N_VFP;
14274
14275 /* VFP instructions. */
14276 CVT_VAR (6, N_F32, N_F64);
14277 CVT_VAR (7, N_F64, N_F32);
14278 CVT_VAR (8, N_S32, N_F64 | key);
14279 CVT_VAR (9, N_U32, N_F64 | key);
14280 CVT_VAR (10, N_F64 | key, N_S32);
14281 CVT_VAR (11, N_F64 | key, N_U32);
14282 /* VFP instructions with bitshift. */
14283 CVT_VAR (12, N_F32 | key, N_S16);
14284 CVT_VAR (13, N_F32 | key, N_U16);
14285 CVT_VAR (14, N_F64 | key, N_S16);
14286 CVT_VAR (15, N_F64 | key, N_U16);
14287 CVT_VAR (16, N_S16, N_F32 | key);
14288 CVT_VAR (17, N_U16, N_F32 | key);
14289 CVT_VAR (18, N_S16, N_F64 | key);
14290 CVT_VAR (19, N_U16, N_F64 | key);
14291
14292 return -1;
14293 #undef CVT_VAR
14294 }
14295
14296 /* Neon-syntax VFP conversions. */
14297
14298 static void
14299 do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
14300 {
14301 const char *opname = 0;
14302
14303 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
14304 {
14305 /* Conversions with immediate bitshift. */
14306 const char *enc[] =
14307 {
14308 "ftosls",
14309 "ftouls",
14310 "fsltos",
14311 "fultos",
14312 NULL,
14313 NULL,
14314 NULL,
14315 NULL,
14316 "ftosld",
14317 "ftould",
14318 "fsltod",
14319 "fultod",
14320 "fshtos",
14321 "fuhtos",
14322 "fshtod",
14323 "fuhtod",
14324 "ftoshs",
14325 "ftouhs",
14326 "ftoshd",
14327 "ftouhd"
14328 };
14329
14330 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
14331 {
14332 opname = enc[flavour];
14333 constraint (inst.operands[0].reg != inst.operands[1].reg,
14334 _("operands 0 and 1 must be the same register"));
14335 inst.operands[1] = inst.operands[2];
14336 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
14337 }
14338 }
14339 else
14340 {
14341 /* Conversions without bitshift. */
14342 const char *enc[] =
14343 {
14344 "ftosis",
14345 "ftouis",
14346 "fsitos",
14347 "fuitos",
14348 "NULL",
14349 "NULL",
14350 "fcvtsd",
14351 "fcvtds",
14352 "ftosid",
14353 "ftouid",
14354 "fsitod",
14355 "fuitod"
14356 };
14357
14358 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
14359 opname = enc[flavour];
14360 }
14361
14362 if (opname)
14363 do_vfp_nsyn_opcode (opname);
14364 }
14365
14366 static void
14367 do_vfp_nsyn_cvtz (void)
14368 {
14369 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
14370 int flavour = neon_cvt_flavour (rs);
14371 const char *enc[] =
14372 {
14373 "ftosizs",
14374 "ftouizs",
14375 NULL,
14376 NULL,
14377 NULL,
14378 NULL,
14379 NULL,
14380 NULL,
14381 "ftosizd",
14382 "ftouizd"
14383 };
14384
14385 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
14386 do_vfp_nsyn_opcode (enc[flavour]);
14387 }
14388
14389 static void
14390 do_neon_cvt_1 (bfd_boolean round_to_zero ATTRIBUTE_UNUSED)
14391 {
14392 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
14393 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
14394 int flavour = neon_cvt_flavour (rs);
14395
14396 /* PR11109: Handle round-to-zero for VCVT conversions. */
14397 if (round_to_zero
14398 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
14399 && (flavour == 0 || flavour == 1 || flavour == 8 || flavour == 9)
14400 && (rs == NS_FD || rs == NS_FF))
14401 {
14402 do_vfp_nsyn_cvtz ();
14403 return;
14404 }
14405
14406 /* VFP rather than Neon conversions. */
14407 if (flavour >= 6)
14408 {
14409 do_vfp_nsyn_cvt (rs, flavour);
14410 return;
14411 }
14412
14413 switch (rs)
14414 {
14415 case NS_DDI:
14416 case NS_QQI:
14417 {
14418 unsigned immbits;
14419 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
14420
14421 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14422 return;
14423
14424 /* Fixed-point conversion with #0 immediate is encoded as an
14425 integer conversion. */
14426 if (inst.operands[2].present && inst.operands[2].imm == 0)
14427 goto int_encode;
14428 immbits = 32 - inst.operands[2].imm;
14429 NEON_ENCODE (IMMED, inst);
14430 if (flavour != -1)
14431 inst.instruction |= enctab[flavour];
14432 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14433 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14434 inst.instruction |= LOW4 (inst.operands[1].reg);
14435 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14436 inst.instruction |= neon_quad (rs) << 6;
14437 inst.instruction |= 1 << 21;
14438 inst.instruction |= immbits << 16;
14439
14440 neon_dp_fixup (&inst);
14441 }
14442 break;
14443
14444 case NS_DD:
14445 case NS_QQ:
14446 int_encode:
14447 {
14448 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
14449
14450 NEON_ENCODE (INTEGER, inst);
14451
14452 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14453 return;
14454
14455 if (flavour != -1)
14456 inst.instruction |= enctab[flavour];
14457
14458 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14459 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14460 inst.instruction |= LOW4 (inst.operands[1].reg);
14461 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14462 inst.instruction |= neon_quad (rs) << 6;
14463 inst.instruction |= 2 << 18;
14464
14465 neon_dp_fixup (&inst);
14466 }
14467 break;
14468
14469 /* Half-precision conversions for Advanced SIMD -- neon. */
14470 case NS_QD:
14471 case NS_DQ:
14472
14473 if ((rs == NS_DQ)
14474 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
14475 {
14476 as_bad (_("operand size must match register width"));
14477 break;
14478 }
14479
14480 if ((rs == NS_QD)
14481 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
14482 {
14483 as_bad (_("operand size must match register width"));
14484 break;
14485 }
14486
14487 if (rs == NS_DQ)
14488 inst.instruction = 0x3b60600;
14489 else
14490 inst.instruction = 0x3b60700;
14491
14492 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14493 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14494 inst.instruction |= LOW4 (inst.operands[1].reg);
14495 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14496 neon_dp_fixup (&inst);
14497 break;
14498
14499 default:
14500 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
14501 do_vfp_nsyn_cvt (rs, flavour);
14502 }
14503 }
14504
14505 static void
14506 do_neon_cvtr (void)
14507 {
14508 do_neon_cvt_1 (FALSE);
14509 }
14510
14511 static void
14512 do_neon_cvt (void)
14513 {
14514 do_neon_cvt_1 (TRUE);
14515 }
14516
14517 static void
14518 do_neon_cvtb (void)
14519 {
14520 inst.instruction = 0xeb20a40;
14521
14522 /* The sizes are attached to the mnemonic. */
14523 if (inst.vectype.el[0].type != NT_invtype
14524 && inst.vectype.el[0].size == 16)
14525 inst.instruction |= 0x00010000;
14526
14527 /* Programmer's syntax: the sizes are attached to the operands. */
14528 else if (inst.operands[0].vectype.type != NT_invtype
14529 && inst.operands[0].vectype.size == 16)
14530 inst.instruction |= 0x00010000;
14531
14532 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
14533 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
14534 do_vfp_cond_or_thumb ();
14535 }
14536
14537
14538 static void
14539 do_neon_cvtt (void)
14540 {
14541 do_neon_cvtb ();
14542 inst.instruction |= 0x80;
14543 }
14544
14545 static void
14546 neon_move_immediate (void)
14547 {
14548 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
14549 struct neon_type_el et = neon_check_type (2, rs,
14550 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
14551 unsigned immlo, immhi = 0, immbits;
14552 int op, cmode, float_p;
14553
14554 constraint (et.type == NT_invtype,
14555 _("operand size must be specified for immediate VMOV"));
14556
14557 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
14558 op = (inst.instruction & (1 << 5)) != 0;
14559
14560 immlo = inst.operands[1].imm;
14561 if (inst.operands[1].regisimm)
14562 immhi = inst.operands[1].reg;
14563
14564 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
14565 _("immediate has bits set outside the operand size"));
14566
14567 float_p = inst.operands[1].immisfloat;
14568
14569 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
14570 et.size, et.type)) == FAIL)
14571 {
14572 /* Invert relevant bits only. */
14573 neon_invert_size (&immlo, &immhi, et.size);
14574 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
14575 with one or the other; those cases are caught by
14576 neon_cmode_for_move_imm. */
14577 op = !op;
14578 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
14579 &op, et.size, et.type)) == FAIL)
14580 {
14581 first_error (_("immediate out of range"));
14582 return;
14583 }
14584 }
14585
14586 inst.instruction &= ~(1 << 5);
14587 inst.instruction |= op << 5;
14588
14589 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14590 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14591 inst.instruction |= neon_quad (rs) << 6;
14592 inst.instruction |= cmode << 8;
14593
14594 neon_write_immbits (immbits);
14595 }
14596
14597 static void
14598 do_neon_mvn (void)
14599 {
14600 if (inst.operands[1].isreg)
14601 {
14602 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14603
14604 NEON_ENCODE (INTEGER, inst);
14605 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14606 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14607 inst.instruction |= LOW4 (inst.operands[1].reg);
14608 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14609 inst.instruction |= neon_quad (rs) << 6;
14610 }
14611 else
14612 {
14613 NEON_ENCODE (IMMED, inst);
14614 neon_move_immediate ();
14615 }
14616
14617 neon_dp_fixup (&inst);
14618 }
14619
14620 /* Encode instructions of form:
14621
14622 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
14623 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
14624
14625 static void
14626 neon_mixed_length (struct neon_type_el et, unsigned size)
14627 {
14628 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14629 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14630 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14631 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14632 inst.instruction |= LOW4 (inst.operands[2].reg);
14633 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14634 inst.instruction |= (et.type == NT_unsigned) << 24;
14635 inst.instruction |= neon_logbits (size) << 20;
14636
14637 neon_dp_fixup (&inst);
14638 }
14639
14640 static void
14641 do_neon_dyadic_long (void)
14642 {
14643 /* FIXME: Type checking for lengthening op. */
14644 struct neon_type_el et = neon_check_type (3, NS_QDD,
14645 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
14646 neon_mixed_length (et, et.size);
14647 }
14648
14649 static void
14650 do_neon_abal (void)
14651 {
14652 struct neon_type_el et = neon_check_type (3, NS_QDD,
14653 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
14654 neon_mixed_length (et, et.size);
14655 }
14656
14657 static void
14658 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
14659 {
14660 if (inst.operands[2].isscalar)
14661 {
14662 struct neon_type_el et = neon_check_type (3, NS_QDS,
14663 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
14664 NEON_ENCODE (SCALAR, inst);
14665 neon_mul_mac (et, et.type == NT_unsigned);
14666 }
14667 else
14668 {
14669 struct neon_type_el et = neon_check_type (3, NS_QDD,
14670 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
14671 NEON_ENCODE (INTEGER, inst);
14672 neon_mixed_length (et, et.size);
14673 }
14674 }
14675
14676 static void
14677 do_neon_mac_maybe_scalar_long (void)
14678 {
14679 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
14680 }
14681
14682 static void
14683 do_neon_dyadic_wide (void)
14684 {
14685 struct neon_type_el et = neon_check_type (3, NS_QQD,
14686 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
14687 neon_mixed_length (et, et.size);
14688 }
14689
14690 static void
14691 do_neon_dyadic_narrow (void)
14692 {
14693 struct neon_type_el et = neon_check_type (3, NS_QDD,
14694 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
14695 /* Operand sign is unimportant, and the U bit is part of the opcode,
14696 so force the operand type to integer. */
14697 et.type = NT_integer;
14698 neon_mixed_length (et, et.size / 2);
14699 }
14700
14701 static void
14702 do_neon_mul_sat_scalar_long (void)
14703 {
14704 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
14705 }
14706
14707 static void
14708 do_neon_vmull (void)
14709 {
14710 if (inst.operands[2].isscalar)
14711 do_neon_mac_maybe_scalar_long ();
14712 else
14713 {
14714 struct neon_type_el et = neon_check_type (3, NS_QDD,
14715 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
14716 if (et.type == NT_poly)
14717 NEON_ENCODE (POLY, inst);
14718 else
14719 NEON_ENCODE (INTEGER, inst);
14720 /* For polynomial encoding, size field must be 0b00 and the U bit must be
14721 zero. Should be OK as-is. */
14722 neon_mixed_length (et, et.size);
14723 }
14724 }
14725
14726 static void
14727 do_neon_ext (void)
14728 {
14729 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
14730 struct neon_type_el et = neon_check_type (3, rs,
14731 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14732 unsigned imm = (inst.operands[3].imm * et.size) / 8;
14733
14734 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
14735 _("shift out of range"));
14736 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14737 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14738 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14739 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14740 inst.instruction |= LOW4 (inst.operands[2].reg);
14741 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14742 inst.instruction |= neon_quad (rs) << 6;
14743 inst.instruction |= imm << 8;
14744
14745 neon_dp_fixup (&inst);
14746 }
14747
14748 static void
14749 do_neon_rev (void)
14750 {
14751 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14752 struct neon_type_el et = neon_check_type (2, rs,
14753 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14754 unsigned op = (inst.instruction >> 7) & 3;
14755 /* N (width of reversed regions) is encoded as part of the bitmask. We
14756 extract it here to check the elements to be reversed are smaller.
14757 Otherwise we'd get a reserved instruction. */
14758 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
14759 gas_assert (elsize != 0);
14760 constraint (et.size >= elsize,
14761 _("elements must be smaller than reversal region"));
14762 neon_two_same (neon_quad (rs), 1, et.size);
14763 }
14764
14765 static void
14766 do_neon_dup (void)
14767 {
14768 if (inst.operands[1].isscalar)
14769 {
14770 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
14771 struct neon_type_el et = neon_check_type (2, rs,
14772 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14773 unsigned sizebits = et.size >> 3;
14774 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
14775 int logsize = neon_logbits (et.size);
14776 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
14777
14778 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
14779 return;
14780
14781 NEON_ENCODE (SCALAR, inst);
14782 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14783 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14784 inst.instruction |= LOW4 (dm);
14785 inst.instruction |= HI1 (dm) << 5;
14786 inst.instruction |= neon_quad (rs) << 6;
14787 inst.instruction |= x << 17;
14788 inst.instruction |= sizebits << 16;
14789
14790 neon_dp_fixup (&inst);
14791 }
14792 else
14793 {
14794 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
14795 struct neon_type_el et = neon_check_type (2, rs,
14796 N_8 | N_16 | N_32 | N_KEY, N_EQK);
14797 /* Duplicate ARM register to lanes of vector. */
14798 NEON_ENCODE (ARMREG, inst);
14799 switch (et.size)
14800 {
14801 case 8: inst.instruction |= 0x400000; break;
14802 case 16: inst.instruction |= 0x000020; break;
14803 case 32: inst.instruction |= 0x000000; break;
14804 default: break;
14805 }
14806 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
14807 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
14808 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
14809 inst.instruction |= neon_quad (rs) << 21;
14810 /* The encoding for this instruction is identical for the ARM and Thumb
14811 variants, except for the condition field. */
14812 do_vfp_cond_or_thumb ();
14813 }
14814 }
14815
14816 /* VMOV has particularly many variations. It can be one of:
14817 0. VMOV<c><q> <Qd>, <Qm>
14818 1. VMOV<c><q> <Dd>, <Dm>
14819 (Register operations, which are VORR with Rm = Rn.)
14820 2. VMOV<c><q>.<dt> <Qd>, #<imm>
14821 3. VMOV<c><q>.<dt> <Dd>, #<imm>
14822 (Immediate loads.)
14823 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
14824 (ARM register to scalar.)
14825 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
14826 (Two ARM registers to vector.)
14827 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
14828 (Scalar to ARM register.)
14829 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
14830 (Vector to two ARM registers.)
14831 8. VMOV.F32 <Sd>, <Sm>
14832 9. VMOV.F64 <Dd>, <Dm>
14833 (VFP register moves.)
14834 10. VMOV.F32 <Sd>, #imm
14835 11. VMOV.F64 <Dd>, #imm
14836 (VFP float immediate load.)
14837 12. VMOV <Rd>, <Sm>
14838 (VFP single to ARM reg.)
14839 13. VMOV <Sd>, <Rm>
14840 (ARM reg to VFP single.)
14841 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
14842 (Two ARM regs to two VFP singles.)
14843 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
14844 (Two VFP singles to two ARM regs.)
14845
14846 These cases can be disambiguated using neon_select_shape, except cases 1/9
14847 and 3/11 which depend on the operand type too.
14848
14849 All the encoded bits are hardcoded by this function.
14850
14851 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
14852 Cases 5, 7 may be used with VFPv2 and above.
14853
14854 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
14855 can specify a type where it doesn't make sense to, and is ignored). */
14856
14857 static void
14858 do_neon_mov (void)
14859 {
14860 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
14861 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
14862 NS_NULL);
14863 struct neon_type_el et;
14864 const char *ldconst = 0;
14865
14866 switch (rs)
14867 {
14868 case NS_DD: /* case 1/9. */
14869 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14870 /* It is not an error here if no type is given. */
14871 inst.error = NULL;
14872 if (et.type == NT_float && et.size == 64)
14873 {
14874 do_vfp_nsyn_opcode ("fcpyd");
14875 break;
14876 }
14877 /* fall through. */
14878
14879 case NS_QQ: /* case 0/1. */
14880 {
14881 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14882 return;
14883 /* The architecture manual I have doesn't explicitly state which
14884 value the U bit should have for register->register moves, but
14885 the equivalent VORR instruction has U = 0, so do that. */
14886 inst.instruction = 0x0200110;
14887 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14888 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14889 inst.instruction |= LOW4 (inst.operands[1].reg);
14890 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14891 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14892 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14893 inst.instruction |= neon_quad (rs) << 6;
14894
14895 neon_dp_fixup (&inst);
14896 }
14897 break;
14898
14899 case NS_DI: /* case 3/11. */
14900 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14901 inst.error = NULL;
14902 if (et.type == NT_float && et.size == 64)
14903 {
14904 /* case 11 (fconstd). */
14905 ldconst = "fconstd";
14906 goto encode_fconstd;
14907 }
14908 /* fall through. */
14909
14910 case NS_QI: /* case 2/3. */
14911 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14912 return;
14913 inst.instruction = 0x0800010;
14914 neon_move_immediate ();
14915 neon_dp_fixup (&inst);
14916 break;
14917
14918 case NS_SR: /* case 4. */
14919 {
14920 unsigned bcdebits = 0;
14921 int logsize;
14922 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
14923 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
14924
14925 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
14926 logsize = neon_logbits (et.size);
14927
14928 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14929 _(BAD_FPU));
14930 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14931 && et.size != 32, _(BAD_FPU));
14932 constraint (et.type == NT_invtype, _("bad type for scalar"));
14933 constraint (x >= 64 / et.size, _("scalar index out of range"));
14934
14935 switch (et.size)
14936 {
14937 case 8: bcdebits = 0x8; break;
14938 case 16: bcdebits = 0x1; break;
14939 case 32: bcdebits = 0x0; break;
14940 default: ;
14941 }
14942
14943 bcdebits |= x << logsize;
14944
14945 inst.instruction = 0xe000b10;
14946 do_vfp_cond_or_thumb ();
14947 inst.instruction |= LOW4 (dn) << 16;
14948 inst.instruction |= HI1 (dn) << 7;
14949 inst.instruction |= inst.operands[1].reg << 12;
14950 inst.instruction |= (bcdebits & 3) << 5;
14951 inst.instruction |= (bcdebits >> 2) << 21;
14952 }
14953 break;
14954
14955 case NS_DRR: /* case 5 (fmdrr). */
14956 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
14957 _(BAD_FPU));
14958
14959 inst.instruction = 0xc400b10;
14960 do_vfp_cond_or_thumb ();
14961 inst.instruction |= LOW4 (inst.operands[0].reg);
14962 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
14963 inst.instruction |= inst.operands[1].reg << 12;
14964 inst.instruction |= inst.operands[2].reg << 16;
14965 break;
14966
14967 case NS_RS: /* case 6. */
14968 {
14969 unsigned logsize;
14970 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
14971 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
14972 unsigned abcdebits = 0;
14973
14974 et = neon_check_type (2, NS_NULL,
14975 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
14976 logsize = neon_logbits (et.size);
14977
14978 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14979 _(BAD_FPU));
14980 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14981 && et.size != 32, _(BAD_FPU));
14982 constraint (et.type == NT_invtype, _("bad type for scalar"));
14983 constraint (x >= 64 / et.size, _("scalar index out of range"));
14984
14985 switch (et.size)
14986 {
14987 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
14988 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
14989 case 32: abcdebits = 0x00; break;
14990 default: ;
14991 }
14992
14993 abcdebits |= x << logsize;
14994 inst.instruction = 0xe100b10;
14995 do_vfp_cond_or_thumb ();
14996 inst.instruction |= LOW4 (dn) << 16;
14997 inst.instruction |= HI1 (dn) << 7;
14998 inst.instruction |= inst.operands[0].reg << 12;
14999 inst.instruction |= (abcdebits & 3) << 5;
15000 inst.instruction |= (abcdebits >> 2) << 21;
15001 }
15002 break;
15003
15004 case NS_RRD: /* case 7 (fmrrd). */
15005 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
15006 _(BAD_FPU));
15007
15008 inst.instruction = 0xc500b10;
15009 do_vfp_cond_or_thumb ();
15010 inst.instruction |= inst.operands[0].reg << 12;
15011 inst.instruction |= inst.operands[1].reg << 16;
15012 inst.instruction |= LOW4 (inst.operands[2].reg);
15013 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15014 break;
15015
15016 case NS_FF: /* case 8 (fcpys). */
15017 do_vfp_nsyn_opcode ("fcpys");
15018 break;
15019
15020 case NS_FI: /* case 10 (fconsts). */
15021 ldconst = "fconsts";
15022 encode_fconstd:
15023 if (is_quarter_float (inst.operands[1].imm))
15024 {
15025 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
15026 do_vfp_nsyn_opcode (ldconst);
15027 }
15028 else
15029 first_error (_("immediate out of range"));
15030 break;
15031
15032 case NS_RF: /* case 12 (fmrs). */
15033 do_vfp_nsyn_opcode ("fmrs");
15034 break;
15035
15036 case NS_FR: /* case 13 (fmsr). */
15037 do_vfp_nsyn_opcode ("fmsr");
15038 break;
15039
15040 /* The encoders for the fmrrs and fmsrr instructions expect three operands
15041 (one of which is a list), but we have parsed four. Do some fiddling to
15042 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
15043 expect. */
15044 case NS_RRFF: /* case 14 (fmrrs). */
15045 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
15046 _("VFP registers must be adjacent"));
15047 inst.operands[2].imm = 2;
15048 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
15049 do_vfp_nsyn_opcode ("fmrrs");
15050 break;
15051
15052 case NS_FFRR: /* case 15 (fmsrr). */
15053 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
15054 _("VFP registers must be adjacent"));
15055 inst.operands[1] = inst.operands[2];
15056 inst.operands[2] = inst.operands[3];
15057 inst.operands[0].imm = 2;
15058 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
15059 do_vfp_nsyn_opcode ("fmsrr");
15060 break;
15061
15062 default:
15063 abort ();
15064 }
15065 }
15066
15067 static void
15068 do_neon_rshift_round_imm (void)
15069 {
15070 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
15071 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
15072 int imm = inst.operands[2].imm;
15073
15074 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
15075 if (imm == 0)
15076 {
15077 inst.operands[2].present = 0;
15078 do_neon_mov ();
15079 return;
15080 }
15081
15082 constraint (imm < 1 || (unsigned)imm > et.size,
15083 _("immediate out of range for shift"));
15084 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
15085 et.size - imm);
15086 }
15087
15088 static void
15089 do_neon_movl (void)
15090 {
15091 struct neon_type_el et = neon_check_type (2, NS_QD,
15092 N_EQK | N_DBL, N_SU_32 | N_KEY);
15093 unsigned sizebits = et.size >> 3;
15094 inst.instruction |= sizebits << 19;
15095 neon_two_same (0, et.type == NT_unsigned, -1);
15096 }
15097
15098 static void
15099 do_neon_trn (void)
15100 {
15101 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15102 struct neon_type_el et = neon_check_type (2, rs,
15103 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15104 NEON_ENCODE (INTEGER, inst);
15105 neon_two_same (neon_quad (rs), 1, et.size);
15106 }
15107
15108 static void
15109 do_neon_zip_uzp (void)
15110 {
15111 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15112 struct neon_type_el et = neon_check_type (2, rs,
15113 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15114 if (rs == NS_DD && et.size == 32)
15115 {
15116 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
15117 inst.instruction = N_MNEM_vtrn;
15118 do_neon_trn ();
15119 return;
15120 }
15121 neon_two_same (neon_quad (rs), 1, et.size);
15122 }
15123
15124 static void
15125 do_neon_sat_abs_neg (void)
15126 {
15127 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15128 struct neon_type_el et = neon_check_type (2, rs,
15129 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
15130 neon_two_same (neon_quad (rs), 1, et.size);
15131 }
15132
15133 static void
15134 do_neon_pair_long (void)
15135 {
15136 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15137 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
15138 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
15139 inst.instruction |= (et.type == NT_unsigned) << 7;
15140 neon_two_same (neon_quad (rs), 1, et.size);
15141 }
15142
15143 static void
15144 do_neon_recip_est (void)
15145 {
15146 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15147 struct neon_type_el et = neon_check_type (2, rs,
15148 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
15149 inst.instruction |= (et.type == NT_float) << 8;
15150 neon_two_same (neon_quad (rs), 1, et.size);
15151 }
15152
15153 static void
15154 do_neon_cls (void)
15155 {
15156 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15157 struct neon_type_el et = neon_check_type (2, rs,
15158 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
15159 neon_two_same (neon_quad (rs), 1, et.size);
15160 }
15161
15162 static void
15163 do_neon_clz (void)
15164 {
15165 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15166 struct neon_type_el et = neon_check_type (2, rs,
15167 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
15168 neon_two_same (neon_quad (rs), 1, et.size);
15169 }
15170
15171 static void
15172 do_neon_cnt (void)
15173 {
15174 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15175 struct neon_type_el et = neon_check_type (2, rs,
15176 N_EQK | N_INT, N_8 | N_KEY);
15177 neon_two_same (neon_quad (rs), 1, et.size);
15178 }
15179
15180 static void
15181 do_neon_swp (void)
15182 {
15183 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15184 neon_two_same (neon_quad (rs), 1, -1);
15185 }
15186
15187 static void
15188 do_neon_tbl_tbx (void)
15189 {
15190 unsigned listlenbits;
15191 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
15192
15193 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
15194 {
15195 first_error (_("bad list length for table lookup"));
15196 return;
15197 }
15198
15199 listlenbits = inst.operands[1].imm - 1;
15200 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15201 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15202 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15203 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15204 inst.instruction |= LOW4 (inst.operands[2].reg);
15205 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15206 inst.instruction |= listlenbits << 8;
15207
15208 neon_dp_fixup (&inst);
15209 }
15210
15211 static void
15212 do_neon_ldm_stm (void)
15213 {
15214 /* P, U and L bits are part of bitmask. */
15215 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
15216 unsigned offsetbits = inst.operands[1].imm * 2;
15217
15218 if (inst.operands[1].issingle)
15219 {
15220 do_vfp_nsyn_ldm_stm (is_dbmode);
15221 return;
15222 }
15223
15224 constraint (is_dbmode && !inst.operands[0].writeback,
15225 _("writeback (!) must be used for VLDMDB and VSTMDB"));
15226
15227 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15228 _("register list must contain at least 1 and at most 16 "
15229 "registers"));
15230
15231 inst.instruction |= inst.operands[0].reg << 16;
15232 inst.instruction |= inst.operands[0].writeback << 21;
15233 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
15234 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
15235
15236 inst.instruction |= offsetbits;
15237
15238 do_vfp_cond_or_thumb ();
15239 }
15240
15241 static void
15242 do_neon_ldr_str (void)
15243 {
15244 int is_ldr = (inst.instruction & (1 << 20)) != 0;
15245
15246 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
15247 And is UNPREDICTABLE in thumb mode. */
15248 if (!is_ldr
15249 && inst.operands[1].reg == REG_PC
15250 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
15251 {
15252 if (!thumb_mode && warn_on_deprecated)
15253 as_warn (_("Use of PC here is deprecated"));
15254 else
15255 inst.error = _("Use of PC here is UNPREDICTABLE");
15256 }
15257
15258 if (inst.operands[0].issingle)
15259 {
15260 if (is_ldr)
15261 do_vfp_nsyn_opcode ("flds");
15262 else
15263 do_vfp_nsyn_opcode ("fsts");
15264 }
15265 else
15266 {
15267 if (is_ldr)
15268 do_vfp_nsyn_opcode ("fldd");
15269 else
15270 do_vfp_nsyn_opcode ("fstd");
15271 }
15272 }
15273
15274 /* "interleave" version also handles non-interleaving register VLD1/VST1
15275 instructions. */
15276
15277 static void
15278 do_neon_ld_st_interleave (void)
15279 {
15280 struct neon_type_el et = neon_check_type (1, NS_NULL,
15281 N_8 | N_16 | N_32 | N_64);
15282 unsigned alignbits = 0;
15283 unsigned idx;
15284 /* The bits in this table go:
15285 0: register stride of one (0) or two (1)
15286 1,2: register list length, minus one (1, 2, 3, 4).
15287 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
15288 We use -1 for invalid entries. */
15289 const int typetable[] =
15290 {
15291 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
15292 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
15293 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
15294 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
15295 };
15296 int typebits;
15297
15298 if (et.type == NT_invtype)
15299 return;
15300
15301 if (inst.operands[1].immisalign)
15302 switch (inst.operands[1].imm >> 8)
15303 {
15304 case 64: alignbits = 1; break;
15305 case 128:
15306 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
15307 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
15308 goto bad_alignment;
15309 alignbits = 2;
15310 break;
15311 case 256:
15312 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
15313 goto bad_alignment;
15314 alignbits = 3;
15315 break;
15316 default:
15317 bad_alignment:
15318 first_error (_("bad alignment"));
15319 return;
15320 }
15321
15322 inst.instruction |= alignbits << 4;
15323 inst.instruction |= neon_logbits (et.size) << 6;
15324
15325 /* Bits [4:6] of the immediate in a list specifier encode register stride
15326 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
15327 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
15328 up the right value for "type" in a table based on this value and the given
15329 list style, then stick it back. */
15330 idx = ((inst.operands[0].imm >> 4) & 7)
15331 | (((inst.instruction >> 8) & 3) << 3);
15332
15333 typebits = typetable[idx];
15334
15335 constraint (typebits == -1, _("bad list type for instruction"));
15336
15337 inst.instruction &= ~0xf00;
15338 inst.instruction |= typebits << 8;
15339 }
15340
15341 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
15342 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
15343 otherwise. The variable arguments are a list of pairs of legal (size, align)
15344 values, terminated with -1. */
15345
15346 static int
15347 neon_alignment_bit (int size, int align, int *do_align, ...)
15348 {
15349 va_list ap;
15350 int result = FAIL, thissize, thisalign;
15351
15352 if (!inst.operands[1].immisalign)
15353 {
15354 *do_align = 0;
15355 return SUCCESS;
15356 }
15357
15358 va_start (ap, do_align);
15359
15360 do
15361 {
15362 thissize = va_arg (ap, int);
15363 if (thissize == -1)
15364 break;
15365 thisalign = va_arg (ap, int);
15366
15367 if (size == thissize && align == thisalign)
15368 result = SUCCESS;
15369 }
15370 while (result != SUCCESS);
15371
15372 va_end (ap);
15373
15374 if (result == SUCCESS)
15375 *do_align = 1;
15376 else
15377 first_error (_("unsupported alignment for instruction"));
15378
15379 return result;
15380 }
15381
15382 static void
15383 do_neon_ld_st_lane (void)
15384 {
15385 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
15386 int align_good, do_align = 0;
15387 int logsize = neon_logbits (et.size);
15388 int align = inst.operands[1].imm >> 8;
15389 int n = (inst.instruction >> 8) & 3;
15390 int max_el = 64 / et.size;
15391
15392 if (et.type == NT_invtype)
15393 return;
15394
15395 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
15396 _("bad list length"));
15397 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
15398 _("scalar index out of range"));
15399 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
15400 && et.size == 8,
15401 _("stride of 2 unavailable when element size is 8"));
15402
15403 switch (n)
15404 {
15405 case 0: /* VLD1 / VST1. */
15406 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
15407 32, 32, -1);
15408 if (align_good == FAIL)
15409 return;
15410 if (do_align)
15411 {
15412 unsigned alignbits = 0;
15413 switch (et.size)
15414 {
15415 case 16: alignbits = 0x1; break;
15416 case 32: alignbits = 0x3; break;
15417 default: ;
15418 }
15419 inst.instruction |= alignbits << 4;
15420 }
15421 break;
15422
15423 case 1: /* VLD2 / VST2. */
15424 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
15425 32, 64, -1);
15426 if (align_good == FAIL)
15427 return;
15428 if (do_align)
15429 inst.instruction |= 1 << 4;
15430 break;
15431
15432 case 2: /* VLD3 / VST3. */
15433 constraint (inst.operands[1].immisalign,
15434 _("can't use alignment with this instruction"));
15435 break;
15436
15437 case 3: /* VLD4 / VST4. */
15438 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15439 16, 64, 32, 64, 32, 128, -1);
15440 if (align_good == FAIL)
15441 return;
15442 if (do_align)
15443 {
15444 unsigned alignbits = 0;
15445 switch (et.size)
15446 {
15447 case 8: alignbits = 0x1; break;
15448 case 16: alignbits = 0x1; break;
15449 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
15450 default: ;
15451 }
15452 inst.instruction |= alignbits << 4;
15453 }
15454 break;
15455
15456 default: ;
15457 }
15458
15459 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
15460 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15461 inst.instruction |= 1 << (4 + logsize);
15462
15463 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
15464 inst.instruction |= logsize << 10;
15465 }
15466
15467 /* Encode single n-element structure to all lanes VLD<n> instructions. */
15468
15469 static void
15470 do_neon_ld_dup (void)
15471 {
15472 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
15473 int align_good, do_align = 0;
15474
15475 if (et.type == NT_invtype)
15476 return;
15477
15478 switch ((inst.instruction >> 8) & 3)
15479 {
15480 case 0: /* VLD1. */
15481 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
15482 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15483 &do_align, 16, 16, 32, 32, -1);
15484 if (align_good == FAIL)
15485 return;
15486 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
15487 {
15488 case 1: break;
15489 case 2: inst.instruction |= 1 << 5; break;
15490 default: first_error (_("bad list length")); return;
15491 }
15492 inst.instruction |= neon_logbits (et.size) << 6;
15493 break;
15494
15495 case 1: /* VLD2. */
15496 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15497 &do_align, 8, 16, 16, 32, 32, 64, -1);
15498 if (align_good == FAIL)
15499 return;
15500 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
15501 _("bad list length"));
15502 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15503 inst.instruction |= 1 << 5;
15504 inst.instruction |= neon_logbits (et.size) << 6;
15505 break;
15506
15507 case 2: /* VLD3. */
15508 constraint (inst.operands[1].immisalign,
15509 _("can't use alignment with this instruction"));
15510 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
15511 _("bad list length"));
15512 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15513 inst.instruction |= 1 << 5;
15514 inst.instruction |= neon_logbits (et.size) << 6;
15515 break;
15516
15517 case 3: /* VLD4. */
15518 {
15519 int align = inst.operands[1].imm >> 8;
15520 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15521 16, 64, 32, 64, 32, 128, -1);
15522 if (align_good == FAIL)
15523 return;
15524 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
15525 _("bad list length"));
15526 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15527 inst.instruction |= 1 << 5;
15528 if (et.size == 32 && align == 128)
15529 inst.instruction |= 0x3 << 6;
15530 else
15531 inst.instruction |= neon_logbits (et.size) << 6;
15532 }
15533 break;
15534
15535 default: ;
15536 }
15537
15538 inst.instruction |= do_align << 4;
15539 }
15540
15541 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
15542 apart from bits [11:4]. */
15543
15544 static void
15545 do_neon_ldx_stx (void)
15546 {
15547 if (inst.operands[1].isreg)
15548 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
15549
15550 switch (NEON_LANE (inst.operands[0].imm))
15551 {
15552 case NEON_INTERLEAVE_LANES:
15553 NEON_ENCODE (INTERLV, inst);
15554 do_neon_ld_st_interleave ();
15555 break;
15556
15557 case NEON_ALL_LANES:
15558 NEON_ENCODE (DUP, inst);
15559 do_neon_ld_dup ();
15560 break;
15561
15562 default:
15563 NEON_ENCODE (LANE, inst);
15564 do_neon_ld_st_lane ();
15565 }
15566
15567 /* L bit comes from bit mask. */
15568 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15569 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15570 inst.instruction |= inst.operands[1].reg << 16;
15571
15572 if (inst.operands[1].postind)
15573 {
15574 int postreg = inst.operands[1].imm & 0xf;
15575 constraint (!inst.operands[1].immisreg,
15576 _("post-index must be a register"));
15577 constraint (postreg == 0xd || postreg == 0xf,
15578 _("bad register for post-index"));
15579 inst.instruction |= postreg;
15580 }
15581 else if (inst.operands[1].writeback)
15582 {
15583 inst.instruction |= 0xd;
15584 }
15585 else
15586 inst.instruction |= 0xf;
15587
15588 if (thumb_mode)
15589 inst.instruction |= 0xf9000000;
15590 else
15591 inst.instruction |= 0xf4000000;
15592 }
15593 \f
15594 /* Overall per-instruction processing. */
15595
15596 /* We need to be able to fix up arbitrary expressions in some statements.
15597 This is so that we can handle symbols that are an arbitrary distance from
15598 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
15599 which returns part of an address in a form which will be valid for
15600 a data instruction. We do this by pushing the expression into a symbol
15601 in the expr_section, and creating a fix for that. */
15602
15603 static void
15604 fix_new_arm (fragS * frag,
15605 int where,
15606 short int size,
15607 expressionS * exp,
15608 int pc_rel,
15609 int reloc)
15610 {
15611 fixS * new_fix;
15612
15613 switch (exp->X_op)
15614 {
15615 case O_constant:
15616 if (pc_rel)
15617 {
15618 /* Create an absolute valued symbol, so we have something to
15619 refer to in the object file. Unfortunately for us, gas's
15620 generic expression parsing will already have folded out
15621 any use of .set foo/.type foo %function that may have
15622 been used to set type information of the target location,
15623 that's being specified symbolically. We have to presume
15624 the user knows what they are doing. */
15625 char name[16 + 8];
15626 symbolS *symbol;
15627
15628 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
15629
15630 symbol = symbol_find_or_make (name);
15631 S_SET_SEGMENT (symbol, absolute_section);
15632 symbol_set_frag (symbol, &zero_address_frag);
15633 S_SET_VALUE (symbol, exp->X_add_number);
15634 exp->X_op = O_symbol;
15635 exp->X_add_symbol = symbol;
15636 exp->X_add_number = 0;
15637 }
15638 /* FALLTHROUGH */
15639 case O_symbol:
15640 case O_add:
15641 case O_subtract:
15642 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
15643 (enum bfd_reloc_code_real) reloc);
15644 break;
15645
15646 default:
15647 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
15648 pc_rel, (enum bfd_reloc_code_real) reloc);
15649 break;
15650 }
15651
15652 /* Mark whether the fix is to a THUMB instruction, or an ARM
15653 instruction. */
15654 new_fix->tc_fix_data = thumb_mode;
15655 }
15656
15657 /* Create a frg for an instruction requiring relaxation. */
15658 static void
15659 output_relax_insn (void)
15660 {
15661 char * to;
15662 symbolS *sym;
15663 int offset;
15664
15665 /* The size of the instruction is unknown, so tie the debug info to the
15666 start of the instruction. */
15667 dwarf2_emit_insn (0);
15668
15669 switch (inst.reloc.exp.X_op)
15670 {
15671 case O_symbol:
15672 sym = inst.reloc.exp.X_add_symbol;
15673 offset = inst.reloc.exp.X_add_number;
15674 break;
15675 case O_constant:
15676 sym = NULL;
15677 offset = inst.reloc.exp.X_add_number;
15678 break;
15679 default:
15680 sym = make_expr_symbol (&inst.reloc.exp);
15681 offset = 0;
15682 break;
15683 }
15684 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
15685 inst.relax, sym, offset, NULL/*offset, opcode*/);
15686 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
15687 }
15688
15689 /* Write a 32-bit thumb instruction to buf. */
15690 static void
15691 put_thumb32_insn (char * buf, unsigned long insn)
15692 {
15693 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
15694 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
15695 }
15696
15697 static void
15698 output_inst (const char * str)
15699 {
15700 char * to = NULL;
15701
15702 if (inst.error)
15703 {
15704 as_bad ("%s -- `%s'", inst.error, str);
15705 return;
15706 }
15707 if (inst.relax)
15708 {
15709 output_relax_insn ();
15710 return;
15711 }
15712 if (inst.size == 0)
15713 return;
15714
15715 to = frag_more (inst.size);
15716 /* PR 9814: Record the thumb mode into the current frag so that we know
15717 what type of NOP padding to use, if necessary. We override any previous
15718 setting so that if the mode has changed then the NOPS that we use will
15719 match the encoding of the last instruction in the frag. */
15720 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
15721
15722 if (thumb_mode && (inst.size > THUMB_SIZE))
15723 {
15724 gas_assert (inst.size == (2 * THUMB_SIZE));
15725 put_thumb32_insn (to, inst.instruction);
15726 }
15727 else if (inst.size > INSN_SIZE)
15728 {
15729 gas_assert (inst.size == (2 * INSN_SIZE));
15730 md_number_to_chars (to, inst.instruction, INSN_SIZE);
15731 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
15732 }
15733 else
15734 md_number_to_chars (to, inst.instruction, inst.size);
15735
15736 if (inst.reloc.type != BFD_RELOC_UNUSED)
15737 fix_new_arm (frag_now, to - frag_now->fr_literal,
15738 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
15739 inst.reloc.type);
15740
15741 dwarf2_emit_insn (inst.size);
15742 }
15743
15744 static char *
15745 output_it_inst (int cond, int mask, char * to)
15746 {
15747 unsigned long instruction = 0xbf00;
15748
15749 mask &= 0xf;
15750 instruction |= mask;
15751 instruction |= cond << 4;
15752
15753 if (to == NULL)
15754 {
15755 to = frag_more (2);
15756 #ifdef OBJ_ELF
15757 dwarf2_emit_insn (2);
15758 #endif
15759 }
15760
15761 md_number_to_chars (to, instruction, 2);
15762
15763 return to;
15764 }
15765
15766 /* Tag values used in struct asm_opcode's tag field. */
15767 enum opcode_tag
15768 {
15769 OT_unconditional, /* Instruction cannot be conditionalized.
15770 The ARM condition field is still 0xE. */
15771 OT_unconditionalF, /* Instruction cannot be conditionalized
15772 and carries 0xF in its ARM condition field. */
15773 OT_csuffix, /* Instruction takes a conditional suffix. */
15774 OT_csuffixF, /* Some forms of the instruction take a conditional
15775 suffix, others place 0xF where the condition field
15776 would be. */
15777 OT_cinfix3, /* Instruction takes a conditional infix,
15778 beginning at character index 3. (In
15779 unified mode, it becomes a suffix.) */
15780 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
15781 tsts, cmps, cmns, and teqs. */
15782 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
15783 character index 3, even in unified mode. Used for
15784 legacy instructions where suffix and infix forms
15785 may be ambiguous. */
15786 OT_csuf_or_in3, /* Instruction takes either a conditional
15787 suffix or an infix at character index 3. */
15788 OT_odd_infix_unc, /* This is the unconditional variant of an
15789 instruction that takes a conditional infix
15790 at an unusual position. In unified mode,
15791 this variant will accept a suffix. */
15792 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
15793 are the conditional variants of instructions that
15794 take conditional infixes in unusual positions.
15795 The infix appears at character index
15796 (tag - OT_odd_infix_0). These are not accepted
15797 in unified mode. */
15798 };
15799
15800 /* Subroutine of md_assemble, responsible for looking up the primary
15801 opcode from the mnemonic the user wrote. STR points to the
15802 beginning of the mnemonic.
15803
15804 This is not simply a hash table lookup, because of conditional
15805 variants. Most instructions have conditional variants, which are
15806 expressed with a _conditional affix_ to the mnemonic. If we were
15807 to encode each conditional variant as a literal string in the opcode
15808 table, it would have approximately 20,000 entries.
15809
15810 Most mnemonics take this affix as a suffix, and in unified syntax,
15811 'most' is upgraded to 'all'. However, in the divided syntax, some
15812 instructions take the affix as an infix, notably the s-variants of
15813 the arithmetic instructions. Of those instructions, all but six
15814 have the infix appear after the third character of the mnemonic.
15815
15816 Accordingly, the algorithm for looking up primary opcodes given
15817 an identifier is:
15818
15819 1. Look up the identifier in the opcode table.
15820 If we find a match, go to step U.
15821
15822 2. Look up the last two characters of the identifier in the
15823 conditions table. If we find a match, look up the first N-2
15824 characters of the identifier in the opcode table. If we
15825 find a match, go to step CE.
15826
15827 3. Look up the fourth and fifth characters of the identifier in
15828 the conditions table. If we find a match, extract those
15829 characters from the identifier, and look up the remaining
15830 characters in the opcode table. If we find a match, go
15831 to step CM.
15832
15833 4. Fail.
15834
15835 U. Examine the tag field of the opcode structure, in case this is
15836 one of the six instructions with its conditional infix in an
15837 unusual place. If it is, the tag tells us where to find the
15838 infix; look it up in the conditions table and set inst.cond
15839 accordingly. Otherwise, this is an unconditional instruction.
15840 Again set inst.cond accordingly. Return the opcode structure.
15841
15842 CE. Examine the tag field to make sure this is an instruction that
15843 should receive a conditional suffix. If it is not, fail.
15844 Otherwise, set inst.cond from the suffix we already looked up,
15845 and return the opcode structure.
15846
15847 CM. Examine the tag field to make sure this is an instruction that
15848 should receive a conditional infix after the third character.
15849 If it is not, fail. Otherwise, undo the edits to the current
15850 line of input and proceed as for case CE. */
15851
15852 static const struct asm_opcode *
15853 opcode_lookup (char **str)
15854 {
15855 char *end, *base;
15856 char *affix;
15857 const struct asm_opcode *opcode;
15858 const struct asm_cond *cond;
15859 char save[2];
15860
15861 /* Scan up to the end of the mnemonic, which must end in white space,
15862 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
15863 for (base = end = *str; *end != '\0'; end++)
15864 if (*end == ' ' || *end == '.')
15865 break;
15866
15867 if (end == base)
15868 return NULL;
15869
15870 /* Handle a possible width suffix and/or Neon type suffix. */
15871 if (end[0] == '.')
15872 {
15873 int offset = 2;
15874
15875 /* The .w and .n suffixes are only valid if the unified syntax is in
15876 use. */
15877 if (unified_syntax && end[1] == 'w')
15878 inst.size_req = 4;
15879 else if (unified_syntax && end[1] == 'n')
15880 inst.size_req = 2;
15881 else
15882 offset = 0;
15883
15884 inst.vectype.elems = 0;
15885
15886 *str = end + offset;
15887
15888 if (end[offset] == '.')
15889 {
15890 /* See if we have a Neon type suffix (possible in either unified or
15891 non-unified ARM syntax mode). */
15892 if (parse_neon_type (&inst.vectype, str) == FAIL)
15893 return NULL;
15894 }
15895 else if (end[offset] != '\0' && end[offset] != ' ')
15896 return NULL;
15897 }
15898 else
15899 *str = end;
15900
15901 /* Look for unaffixed or special-case affixed mnemonic. */
15902 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15903 end - base);
15904 if (opcode)
15905 {
15906 /* step U */
15907 if (opcode->tag < OT_odd_infix_0)
15908 {
15909 inst.cond = COND_ALWAYS;
15910 return opcode;
15911 }
15912
15913 if (warn_on_deprecated && unified_syntax)
15914 as_warn (_("conditional infixes are deprecated in unified syntax"));
15915 affix = base + (opcode->tag - OT_odd_infix_0);
15916 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15917 gas_assert (cond);
15918
15919 inst.cond = cond->value;
15920 return opcode;
15921 }
15922
15923 /* Cannot have a conditional suffix on a mnemonic of less than two
15924 characters. */
15925 if (end - base < 3)
15926 return NULL;
15927
15928 /* Look for suffixed mnemonic. */
15929 affix = end - 2;
15930 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15931 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15932 affix - base);
15933 if (opcode && cond)
15934 {
15935 /* step CE */
15936 switch (opcode->tag)
15937 {
15938 case OT_cinfix3_legacy:
15939 /* Ignore conditional suffixes matched on infix only mnemonics. */
15940 break;
15941
15942 case OT_cinfix3:
15943 case OT_cinfix3_deprecated:
15944 case OT_odd_infix_unc:
15945 if (!unified_syntax)
15946 return 0;
15947 /* else fall through */
15948
15949 case OT_csuffix:
15950 case OT_csuffixF:
15951 case OT_csuf_or_in3:
15952 inst.cond = cond->value;
15953 return opcode;
15954
15955 case OT_unconditional:
15956 case OT_unconditionalF:
15957 if (thumb_mode)
15958 inst.cond = cond->value;
15959 else
15960 {
15961 /* Delayed diagnostic. */
15962 inst.error = BAD_COND;
15963 inst.cond = COND_ALWAYS;
15964 }
15965 return opcode;
15966
15967 default:
15968 return NULL;
15969 }
15970 }
15971
15972 /* Cannot have a usual-position infix on a mnemonic of less than
15973 six characters (five would be a suffix). */
15974 if (end - base < 6)
15975 return NULL;
15976
15977 /* Look for infixed mnemonic in the usual position. */
15978 affix = base + 3;
15979 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15980 if (!cond)
15981 return NULL;
15982
15983 memcpy (save, affix, 2);
15984 memmove (affix, affix + 2, (end - affix) - 2);
15985 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15986 (end - base) - 2);
15987 memmove (affix + 2, affix, (end - affix) - 2);
15988 memcpy (affix, save, 2);
15989
15990 if (opcode
15991 && (opcode->tag == OT_cinfix3
15992 || opcode->tag == OT_cinfix3_deprecated
15993 || opcode->tag == OT_csuf_or_in3
15994 || opcode->tag == OT_cinfix3_legacy))
15995 {
15996 /* Step CM. */
15997 if (warn_on_deprecated && unified_syntax
15998 && (opcode->tag == OT_cinfix3
15999 || opcode->tag == OT_cinfix3_deprecated))
16000 as_warn (_("conditional infixes are deprecated in unified syntax"));
16001
16002 inst.cond = cond->value;
16003 return opcode;
16004 }
16005
16006 return NULL;
16007 }
16008
16009 /* This function generates an initial IT instruction, leaving its block
16010 virtually open for the new instructions. Eventually,
16011 the mask will be updated by now_it_add_mask () each time
16012 a new instruction needs to be included in the IT block.
16013 Finally, the block is closed with close_automatic_it_block ().
16014 The block closure can be requested either from md_assemble (),
16015 a tencode (), or due to a label hook. */
16016
16017 static void
16018 new_automatic_it_block (int cond)
16019 {
16020 now_it.state = AUTOMATIC_IT_BLOCK;
16021 now_it.mask = 0x18;
16022 now_it.cc = cond;
16023 now_it.block_length = 1;
16024 mapping_state (MAP_THUMB);
16025 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
16026 }
16027
16028 /* Close an automatic IT block.
16029 See comments in new_automatic_it_block (). */
16030
16031 static void
16032 close_automatic_it_block (void)
16033 {
16034 now_it.mask = 0x10;
16035 now_it.block_length = 0;
16036 }
16037
16038 /* Update the mask of the current automatically-generated IT
16039 instruction. See comments in new_automatic_it_block (). */
16040
16041 static void
16042 now_it_add_mask (int cond)
16043 {
16044 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
16045 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
16046 | ((bitvalue) << (nbit)))
16047 const int resulting_bit = (cond & 1);
16048
16049 now_it.mask &= 0xf;
16050 now_it.mask = SET_BIT_VALUE (now_it.mask,
16051 resulting_bit,
16052 (5 - now_it.block_length));
16053 now_it.mask = SET_BIT_VALUE (now_it.mask,
16054 1,
16055 ((5 - now_it.block_length) - 1) );
16056 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
16057
16058 #undef CLEAR_BIT
16059 #undef SET_BIT_VALUE
16060 }
16061
16062 /* The IT blocks handling machinery is accessed through the these functions:
16063 it_fsm_pre_encode () from md_assemble ()
16064 set_it_insn_type () optional, from the tencode functions
16065 set_it_insn_type_last () ditto
16066 in_it_block () ditto
16067 it_fsm_post_encode () from md_assemble ()
16068 force_automatic_it_block_close () from label habdling functions
16069
16070 Rationale:
16071 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
16072 initializing the IT insn type with a generic initial value depending
16073 on the inst.condition.
16074 2) During the tencode function, two things may happen:
16075 a) The tencode function overrides the IT insn type by
16076 calling either set_it_insn_type (type) or set_it_insn_type_last ().
16077 b) The tencode function queries the IT block state by
16078 calling in_it_block () (i.e. to determine narrow/not narrow mode).
16079
16080 Both set_it_insn_type and in_it_block run the internal FSM state
16081 handling function (handle_it_state), because: a) setting the IT insn
16082 type may incur in an invalid state (exiting the function),
16083 and b) querying the state requires the FSM to be updated.
16084 Specifically we want to avoid creating an IT block for conditional
16085 branches, so it_fsm_pre_encode is actually a guess and we can't
16086 determine whether an IT block is required until the tencode () routine
16087 has decided what type of instruction this actually it.
16088 Because of this, if set_it_insn_type and in_it_block have to be used,
16089 set_it_insn_type has to be called first.
16090
16091 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
16092 determines the insn IT type depending on the inst.cond code.
16093 When a tencode () routine encodes an instruction that can be
16094 either outside an IT block, or, in the case of being inside, has to be
16095 the last one, set_it_insn_type_last () will determine the proper
16096 IT instruction type based on the inst.cond code. Otherwise,
16097 set_it_insn_type can be called for overriding that logic or
16098 for covering other cases.
16099
16100 Calling handle_it_state () may not transition the IT block state to
16101 OUTSIDE_IT_BLOCK immediatelly, since the (current) state could be
16102 still queried. Instead, if the FSM determines that the state should
16103 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
16104 after the tencode () function: that's what it_fsm_post_encode () does.
16105
16106 Since in_it_block () calls the state handling function to get an
16107 updated state, an error may occur (due to invalid insns combination).
16108 In that case, inst.error is set.
16109 Therefore, inst.error has to be checked after the execution of
16110 the tencode () routine.
16111
16112 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
16113 any pending state change (if any) that didn't take place in
16114 handle_it_state () as explained above. */
16115
16116 static void
16117 it_fsm_pre_encode (void)
16118 {
16119 if (inst.cond != COND_ALWAYS)
16120 inst.it_insn_type = INSIDE_IT_INSN;
16121 else
16122 inst.it_insn_type = OUTSIDE_IT_INSN;
16123
16124 now_it.state_handled = 0;
16125 }
16126
16127 /* IT state FSM handling function. */
16128
16129 static int
16130 handle_it_state (void)
16131 {
16132 now_it.state_handled = 1;
16133
16134 switch (now_it.state)
16135 {
16136 case OUTSIDE_IT_BLOCK:
16137 switch (inst.it_insn_type)
16138 {
16139 case OUTSIDE_IT_INSN:
16140 break;
16141
16142 case INSIDE_IT_INSN:
16143 case INSIDE_IT_LAST_INSN:
16144 if (thumb_mode == 0)
16145 {
16146 if (unified_syntax
16147 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
16148 as_tsktsk (_("Warning: conditional outside an IT block"\
16149 " for Thumb."));
16150 }
16151 else
16152 {
16153 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
16154 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
16155 {
16156 /* Automatically generate the IT instruction. */
16157 new_automatic_it_block (inst.cond);
16158 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
16159 close_automatic_it_block ();
16160 }
16161 else
16162 {
16163 inst.error = BAD_OUT_IT;
16164 return FAIL;
16165 }
16166 }
16167 break;
16168
16169 case IF_INSIDE_IT_LAST_INSN:
16170 case NEUTRAL_IT_INSN:
16171 break;
16172
16173 case IT_INSN:
16174 now_it.state = MANUAL_IT_BLOCK;
16175 now_it.block_length = 0;
16176 break;
16177 }
16178 break;
16179
16180 case AUTOMATIC_IT_BLOCK:
16181 /* Three things may happen now:
16182 a) We should increment current it block size;
16183 b) We should close current it block (closing insn or 4 insns);
16184 c) We should close current it block and start a new one (due
16185 to incompatible conditions or
16186 4 insns-length block reached). */
16187
16188 switch (inst.it_insn_type)
16189 {
16190 case OUTSIDE_IT_INSN:
16191 /* The closure of the block shall happen immediatelly,
16192 so any in_it_block () call reports the block as closed. */
16193 force_automatic_it_block_close ();
16194 break;
16195
16196 case INSIDE_IT_INSN:
16197 case INSIDE_IT_LAST_INSN:
16198 case IF_INSIDE_IT_LAST_INSN:
16199 now_it.block_length++;
16200
16201 if (now_it.block_length > 4
16202 || !now_it_compatible (inst.cond))
16203 {
16204 force_automatic_it_block_close ();
16205 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
16206 new_automatic_it_block (inst.cond);
16207 }
16208 else
16209 {
16210 now_it_add_mask (inst.cond);
16211 }
16212
16213 if (now_it.state == AUTOMATIC_IT_BLOCK
16214 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
16215 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
16216 close_automatic_it_block ();
16217 break;
16218
16219 case NEUTRAL_IT_INSN:
16220 now_it.block_length++;
16221
16222 if (now_it.block_length > 4)
16223 force_automatic_it_block_close ();
16224 else
16225 now_it_add_mask (now_it.cc & 1);
16226 break;
16227
16228 case IT_INSN:
16229 close_automatic_it_block ();
16230 now_it.state = MANUAL_IT_BLOCK;
16231 break;
16232 }
16233 break;
16234
16235 case MANUAL_IT_BLOCK:
16236 {
16237 /* Check conditional suffixes. */
16238 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
16239 int is_last;
16240 now_it.mask <<= 1;
16241 now_it.mask &= 0x1f;
16242 is_last = (now_it.mask == 0x10);
16243
16244 switch (inst.it_insn_type)
16245 {
16246 case OUTSIDE_IT_INSN:
16247 inst.error = BAD_NOT_IT;
16248 return FAIL;
16249
16250 case INSIDE_IT_INSN:
16251 if (cond != inst.cond)
16252 {
16253 inst.error = BAD_IT_COND;
16254 return FAIL;
16255 }
16256 break;
16257
16258 case INSIDE_IT_LAST_INSN:
16259 case IF_INSIDE_IT_LAST_INSN:
16260 if (cond != inst.cond)
16261 {
16262 inst.error = BAD_IT_COND;
16263 return FAIL;
16264 }
16265 if (!is_last)
16266 {
16267 inst.error = BAD_BRANCH;
16268 return FAIL;
16269 }
16270 break;
16271
16272 case NEUTRAL_IT_INSN:
16273 /* The BKPT instruction is unconditional even in an IT block. */
16274 break;
16275
16276 case IT_INSN:
16277 inst.error = BAD_IT_IT;
16278 return FAIL;
16279 }
16280 }
16281 break;
16282 }
16283
16284 return SUCCESS;
16285 }
16286
16287 static void
16288 it_fsm_post_encode (void)
16289 {
16290 int is_last;
16291
16292 if (!now_it.state_handled)
16293 handle_it_state ();
16294
16295 is_last = (now_it.mask == 0x10);
16296 if (is_last)
16297 {
16298 now_it.state = OUTSIDE_IT_BLOCK;
16299 now_it.mask = 0;
16300 }
16301 }
16302
16303 static void
16304 force_automatic_it_block_close (void)
16305 {
16306 if (now_it.state == AUTOMATIC_IT_BLOCK)
16307 {
16308 close_automatic_it_block ();
16309 now_it.state = OUTSIDE_IT_BLOCK;
16310 now_it.mask = 0;
16311 }
16312 }
16313
16314 static int
16315 in_it_block (void)
16316 {
16317 if (!now_it.state_handled)
16318 handle_it_state ();
16319
16320 return now_it.state != OUTSIDE_IT_BLOCK;
16321 }
16322
16323 void
16324 md_assemble (char *str)
16325 {
16326 char *p = str;
16327 const struct asm_opcode * opcode;
16328
16329 /* Align the previous label if needed. */
16330 if (last_label_seen != NULL)
16331 {
16332 symbol_set_frag (last_label_seen, frag_now);
16333 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
16334 S_SET_SEGMENT (last_label_seen, now_seg);
16335 }
16336
16337 memset (&inst, '\0', sizeof (inst));
16338 inst.reloc.type = BFD_RELOC_UNUSED;
16339
16340 opcode = opcode_lookup (&p);
16341 if (!opcode)
16342 {
16343 /* It wasn't an instruction, but it might be a register alias of
16344 the form alias .req reg, or a Neon .dn/.qn directive. */
16345 if (! create_register_alias (str, p)
16346 && ! create_neon_reg_alias (str, p))
16347 as_bad (_("bad instruction `%s'"), str);
16348
16349 return;
16350 }
16351
16352 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
16353 as_warn (_("s suffix on comparison instruction is deprecated"));
16354
16355 /* The value which unconditional instructions should have in place of the
16356 condition field. */
16357 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
16358
16359 if (thumb_mode)
16360 {
16361 arm_feature_set variant;
16362
16363 variant = cpu_variant;
16364 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
16365 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
16366 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
16367 /* Check that this instruction is supported for this CPU. */
16368 if (!opcode->tvariant
16369 || (thumb_mode == 1
16370 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
16371 {
16372 as_bad (_("selected processor does not support Thumb mode `%s'"), str);
16373 return;
16374 }
16375 if (inst.cond != COND_ALWAYS && !unified_syntax
16376 && opcode->tencode != do_t_branch)
16377 {
16378 as_bad (_("Thumb does not support conditional execution"));
16379 return;
16380 }
16381
16382 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2))
16383 {
16384 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
16385 && !(ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr)
16386 || ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_barrier)))
16387 {
16388 /* Two things are addressed here.
16389 1) Implicit require narrow instructions on Thumb-1.
16390 This avoids relaxation accidentally introducing Thumb-2
16391 instructions.
16392 2) Reject wide instructions in non Thumb-2 cores. */
16393 if (inst.size_req == 0)
16394 inst.size_req = 2;
16395 else if (inst.size_req == 4)
16396 {
16397 as_bad (_("selected processor does not support Thumb-2 mode `%s'"), str);
16398 return;
16399 }
16400 }
16401 }
16402
16403 inst.instruction = opcode->tvalue;
16404
16405 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
16406 {
16407 /* Prepare the it_insn_type for those encodings that don't set
16408 it. */
16409 it_fsm_pre_encode ();
16410
16411 opcode->tencode ();
16412
16413 it_fsm_post_encode ();
16414 }
16415
16416 if (!(inst.error || inst.relax))
16417 {
16418 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
16419 inst.size = (inst.instruction > 0xffff ? 4 : 2);
16420 if (inst.size_req && inst.size_req != inst.size)
16421 {
16422 as_bad (_("cannot honor width suffix -- `%s'"), str);
16423 return;
16424 }
16425 }
16426
16427 /* Something has gone badly wrong if we try to relax a fixed size
16428 instruction. */
16429 gas_assert (inst.size_req == 0 || !inst.relax);
16430
16431 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16432 *opcode->tvariant);
16433 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
16434 set those bits when Thumb-2 32-bit instructions are seen. ie.
16435 anything other than bl/blx and v6-M instructions.
16436 This is overly pessimistic for relaxable instructions. */
16437 if (((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
16438 || inst.relax)
16439 && !(ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
16440 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier)))
16441 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16442 arm_ext_v6t2);
16443
16444 check_neon_suffixes;
16445
16446 if (!inst.error)
16447 {
16448 mapping_state (MAP_THUMB);
16449 }
16450 }
16451 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
16452 {
16453 bfd_boolean is_bx;
16454
16455 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
16456 is_bx = (opcode->aencode == do_bx);
16457
16458 /* Check that this instruction is supported for this CPU. */
16459 if (!(is_bx && fix_v4bx)
16460 && !(opcode->avariant &&
16461 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
16462 {
16463 as_bad (_("selected processor does not support ARM mode `%s'"), str);
16464 return;
16465 }
16466 if (inst.size_req)
16467 {
16468 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
16469 return;
16470 }
16471
16472 inst.instruction = opcode->avalue;
16473 if (opcode->tag == OT_unconditionalF)
16474 inst.instruction |= 0xF << 28;
16475 else
16476 inst.instruction |= inst.cond << 28;
16477 inst.size = INSN_SIZE;
16478 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
16479 {
16480 it_fsm_pre_encode ();
16481 opcode->aencode ();
16482 it_fsm_post_encode ();
16483 }
16484 /* Arm mode bx is marked as both v4T and v5 because it's still required
16485 on a hypothetical non-thumb v5 core. */
16486 if (is_bx)
16487 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
16488 else
16489 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
16490 *opcode->avariant);
16491
16492 check_neon_suffixes;
16493
16494 if (!inst.error)
16495 {
16496 mapping_state (MAP_ARM);
16497 }
16498 }
16499 else
16500 {
16501 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
16502 "-- `%s'"), str);
16503 return;
16504 }
16505 output_inst (str);
16506 }
16507
16508 static void
16509 check_it_blocks_finished (void)
16510 {
16511 #ifdef OBJ_ELF
16512 asection *sect;
16513
16514 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
16515 if (seg_info (sect)->tc_segment_info_data.current_it.state
16516 == MANUAL_IT_BLOCK)
16517 {
16518 as_warn (_("section '%s' finished with an open IT block."),
16519 sect->name);
16520 }
16521 #else
16522 if (now_it.state == MANUAL_IT_BLOCK)
16523 as_warn (_("file finished with an open IT block."));
16524 #endif
16525 }
16526
16527 /* Various frobbings of labels and their addresses. */
16528
16529 void
16530 arm_start_line_hook (void)
16531 {
16532 last_label_seen = NULL;
16533 }
16534
16535 void
16536 arm_frob_label (symbolS * sym)
16537 {
16538 last_label_seen = sym;
16539
16540 ARM_SET_THUMB (sym, thumb_mode);
16541
16542 #if defined OBJ_COFF || defined OBJ_ELF
16543 ARM_SET_INTERWORK (sym, support_interwork);
16544 #endif
16545
16546 force_automatic_it_block_close ();
16547
16548 /* Note - do not allow local symbols (.Lxxx) to be labelled
16549 as Thumb functions. This is because these labels, whilst
16550 they exist inside Thumb code, are not the entry points for
16551 possible ARM->Thumb calls. Also, these labels can be used
16552 as part of a computed goto or switch statement. eg gcc
16553 can generate code that looks like this:
16554
16555 ldr r2, [pc, .Laaa]
16556 lsl r3, r3, #2
16557 ldr r2, [r3, r2]
16558 mov pc, r2
16559
16560 .Lbbb: .word .Lxxx
16561 .Lccc: .word .Lyyy
16562 ..etc...
16563 .Laaa: .word Lbbb
16564
16565 The first instruction loads the address of the jump table.
16566 The second instruction converts a table index into a byte offset.
16567 The third instruction gets the jump address out of the table.
16568 The fourth instruction performs the jump.
16569
16570 If the address stored at .Laaa is that of a symbol which has the
16571 Thumb_Func bit set, then the linker will arrange for this address
16572 to have the bottom bit set, which in turn would mean that the
16573 address computation performed by the third instruction would end
16574 up with the bottom bit set. Since the ARM is capable of unaligned
16575 word loads, the instruction would then load the incorrect address
16576 out of the jump table, and chaos would ensue. */
16577 if (label_is_thumb_function_name
16578 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
16579 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
16580 {
16581 /* When the address of a Thumb function is taken the bottom
16582 bit of that address should be set. This will allow
16583 interworking between Arm and Thumb functions to work
16584 correctly. */
16585
16586 THUMB_SET_FUNC (sym, 1);
16587
16588 label_is_thumb_function_name = FALSE;
16589 }
16590
16591 dwarf2_emit_label (sym);
16592 }
16593
16594 bfd_boolean
16595 arm_data_in_code (void)
16596 {
16597 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
16598 {
16599 *input_line_pointer = '/';
16600 input_line_pointer += 5;
16601 *input_line_pointer = 0;
16602 return TRUE;
16603 }
16604
16605 return FALSE;
16606 }
16607
16608 char *
16609 arm_canonicalize_symbol_name (char * name)
16610 {
16611 int len;
16612
16613 if (thumb_mode && (len = strlen (name)) > 5
16614 && streq (name + len - 5, "/data"))
16615 *(name + len - 5) = 0;
16616
16617 return name;
16618 }
16619 \f
16620 /* Table of all register names defined by default. The user can
16621 define additional names with .req. Note that all register names
16622 should appear in both upper and lowercase variants. Some registers
16623 also have mixed-case names. */
16624
16625 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
16626 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
16627 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
16628 #define REGSET(p,t) \
16629 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
16630 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
16631 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
16632 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
16633 #define REGSETH(p,t) \
16634 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
16635 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
16636 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
16637 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
16638 #define REGSET2(p,t) \
16639 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
16640 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
16641 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
16642 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
16643 #define SPLRBANK(base,bank,t) \
16644 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
16645 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
16646 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
16647 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
16648 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
16649 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
16650
16651 static const struct reg_entry reg_names[] =
16652 {
16653 /* ARM integer registers. */
16654 REGSET(r, RN), REGSET(R, RN),
16655
16656 /* ATPCS synonyms. */
16657 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
16658 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
16659 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
16660
16661 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
16662 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
16663 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
16664
16665 /* Well-known aliases. */
16666 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
16667 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
16668
16669 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
16670 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
16671
16672 /* Coprocessor numbers. */
16673 REGSET(p, CP), REGSET(P, CP),
16674
16675 /* Coprocessor register numbers. The "cr" variants are for backward
16676 compatibility. */
16677 REGSET(c, CN), REGSET(C, CN),
16678 REGSET(cr, CN), REGSET(CR, CN),
16679
16680 /* ARM banked registers. */
16681 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
16682 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
16683 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
16684 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
16685 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
16686 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
16687 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
16688
16689 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
16690 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
16691 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
16692 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
16693 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
16694 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(SP_fiq,512|(13<<16),RNB),
16695 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
16696 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
16697
16698 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
16699 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
16700 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
16701 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
16702 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
16703 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
16704 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
16705 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
16706 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
16707
16708 /* FPA registers. */
16709 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
16710 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
16711
16712 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
16713 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
16714
16715 /* VFP SP registers. */
16716 REGSET(s,VFS), REGSET(S,VFS),
16717 REGSETH(s,VFS), REGSETH(S,VFS),
16718
16719 /* VFP DP Registers. */
16720 REGSET(d,VFD), REGSET(D,VFD),
16721 /* Extra Neon DP registers. */
16722 REGSETH(d,VFD), REGSETH(D,VFD),
16723
16724 /* Neon QP registers. */
16725 REGSET2(q,NQ), REGSET2(Q,NQ),
16726
16727 /* VFP control registers. */
16728 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
16729 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
16730 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
16731 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
16732 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
16733 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
16734
16735 /* Maverick DSP coprocessor registers. */
16736 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
16737 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
16738
16739 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
16740 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
16741 REGDEF(dspsc,0,DSPSC),
16742
16743 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
16744 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
16745 REGDEF(DSPSC,0,DSPSC),
16746
16747 /* iWMMXt data registers - p0, c0-15. */
16748 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
16749
16750 /* iWMMXt control registers - p1, c0-3. */
16751 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
16752 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
16753 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
16754 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
16755
16756 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
16757 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
16758 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
16759 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
16760 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
16761
16762 /* XScale accumulator registers. */
16763 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
16764 };
16765 #undef REGDEF
16766 #undef REGNUM
16767 #undef REGSET
16768
16769 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
16770 within psr_required_here. */
16771 static const struct asm_psr psrs[] =
16772 {
16773 /* Backward compatibility notation. Note that "all" is no longer
16774 truly all possible PSR bits. */
16775 {"all", PSR_c | PSR_f},
16776 {"flg", PSR_f},
16777 {"ctl", PSR_c},
16778
16779 /* Individual flags. */
16780 {"f", PSR_f},
16781 {"c", PSR_c},
16782 {"x", PSR_x},
16783 {"s", PSR_s},
16784
16785 /* Combinations of flags. */
16786 {"fs", PSR_f | PSR_s},
16787 {"fx", PSR_f | PSR_x},
16788 {"fc", PSR_f | PSR_c},
16789 {"sf", PSR_s | PSR_f},
16790 {"sx", PSR_s | PSR_x},
16791 {"sc", PSR_s | PSR_c},
16792 {"xf", PSR_x | PSR_f},
16793 {"xs", PSR_x | PSR_s},
16794 {"xc", PSR_x | PSR_c},
16795 {"cf", PSR_c | PSR_f},
16796 {"cs", PSR_c | PSR_s},
16797 {"cx", PSR_c | PSR_x},
16798 {"fsx", PSR_f | PSR_s | PSR_x},
16799 {"fsc", PSR_f | PSR_s | PSR_c},
16800 {"fxs", PSR_f | PSR_x | PSR_s},
16801 {"fxc", PSR_f | PSR_x | PSR_c},
16802 {"fcs", PSR_f | PSR_c | PSR_s},
16803 {"fcx", PSR_f | PSR_c | PSR_x},
16804 {"sfx", PSR_s | PSR_f | PSR_x},
16805 {"sfc", PSR_s | PSR_f | PSR_c},
16806 {"sxf", PSR_s | PSR_x | PSR_f},
16807 {"sxc", PSR_s | PSR_x | PSR_c},
16808 {"scf", PSR_s | PSR_c | PSR_f},
16809 {"scx", PSR_s | PSR_c | PSR_x},
16810 {"xfs", PSR_x | PSR_f | PSR_s},
16811 {"xfc", PSR_x | PSR_f | PSR_c},
16812 {"xsf", PSR_x | PSR_s | PSR_f},
16813 {"xsc", PSR_x | PSR_s | PSR_c},
16814 {"xcf", PSR_x | PSR_c | PSR_f},
16815 {"xcs", PSR_x | PSR_c | PSR_s},
16816 {"cfs", PSR_c | PSR_f | PSR_s},
16817 {"cfx", PSR_c | PSR_f | PSR_x},
16818 {"csf", PSR_c | PSR_s | PSR_f},
16819 {"csx", PSR_c | PSR_s | PSR_x},
16820 {"cxf", PSR_c | PSR_x | PSR_f},
16821 {"cxs", PSR_c | PSR_x | PSR_s},
16822 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
16823 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
16824 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
16825 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
16826 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
16827 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
16828 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
16829 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
16830 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
16831 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
16832 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
16833 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
16834 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
16835 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
16836 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
16837 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
16838 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
16839 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
16840 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
16841 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
16842 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
16843 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
16844 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
16845 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
16846 };
16847
16848 /* Table of V7M psr names. */
16849 static const struct asm_psr v7m_psrs[] =
16850 {
16851 {"apsr", 0 }, {"APSR", 0 },
16852 {"iapsr", 1 }, {"IAPSR", 1 },
16853 {"eapsr", 2 }, {"EAPSR", 2 },
16854 {"psr", 3 }, {"PSR", 3 },
16855 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
16856 {"ipsr", 5 }, {"IPSR", 5 },
16857 {"epsr", 6 }, {"EPSR", 6 },
16858 {"iepsr", 7 }, {"IEPSR", 7 },
16859 {"msp", 8 }, {"MSP", 8 },
16860 {"psp", 9 }, {"PSP", 9 },
16861 {"primask", 16}, {"PRIMASK", 16},
16862 {"basepri", 17}, {"BASEPRI", 17},
16863 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
16864 {"basepri_max", 18}, {"BASEPRI_MASK", 18}, /* Typo, preserved for backwards compatibility. */
16865 {"faultmask", 19}, {"FAULTMASK", 19},
16866 {"control", 20}, {"CONTROL", 20}
16867 };
16868
16869 /* Table of all shift-in-operand names. */
16870 static const struct asm_shift_name shift_names [] =
16871 {
16872 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
16873 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
16874 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
16875 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
16876 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
16877 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
16878 };
16879
16880 /* Table of all explicit relocation names. */
16881 #ifdef OBJ_ELF
16882 static struct reloc_entry reloc_names[] =
16883 {
16884 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
16885 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
16886 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
16887 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
16888 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
16889 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
16890 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
16891 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
16892 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
16893 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
16894 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
16895 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
16896 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
16897 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
16898 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
16899 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
16900 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
16901 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ}
16902 };
16903 #endif
16904
16905 /* Table of all conditional affixes. 0xF is not defined as a condition code. */
16906 static const struct asm_cond conds[] =
16907 {
16908 {"eq", 0x0},
16909 {"ne", 0x1},
16910 {"cs", 0x2}, {"hs", 0x2},
16911 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
16912 {"mi", 0x4},
16913 {"pl", 0x5},
16914 {"vs", 0x6},
16915 {"vc", 0x7},
16916 {"hi", 0x8},
16917 {"ls", 0x9},
16918 {"ge", 0xa},
16919 {"lt", 0xb},
16920 {"gt", 0xc},
16921 {"le", 0xd},
16922 {"al", 0xe}
16923 };
16924
16925 static struct asm_barrier_opt barrier_opt_names[] =
16926 {
16927 { "sy", 0xf }, { "SY", 0xf },
16928 { "un", 0x7 }, { "UN", 0x7 },
16929 { "st", 0xe }, { "ST", 0xe },
16930 { "unst", 0x6 }, { "UNST", 0x6 },
16931 { "ish", 0xb }, { "ISH", 0xb },
16932 { "sh", 0xb }, { "SH", 0xb },
16933 { "ishst", 0xa }, { "ISHST", 0xa },
16934 { "shst", 0xa }, { "SHST", 0xa },
16935 { "nsh", 0x7 }, { "NSH", 0x7 },
16936 { "nshst", 0x6 }, { "NSHST", 0x6 },
16937 { "osh", 0x3 }, { "OSH", 0x3 },
16938 { "oshst", 0x2 }, { "OSHST", 0x2 }
16939 };
16940
16941 /* Table of ARM-format instructions. */
16942
16943 /* Macros for gluing together operand strings. N.B. In all cases
16944 other than OPS0, the trailing OP_stop comes from default
16945 zero-initialization of the unspecified elements of the array. */
16946 #define OPS0() { OP_stop, }
16947 #define OPS1(a) { OP_##a, }
16948 #define OPS2(a,b) { OP_##a,OP_##b, }
16949 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
16950 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
16951 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
16952 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
16953
16954 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
16955 This is useful when mixing operands for ARM and THUMB, i.e. using the
16956 MIX_ARM_THUMB_OPERANDS macro.
16957 In order to use these macros, prefix the number of operands with _
16958 e.g. _3. */
16959 #define OPS_1(a) { a, }
16960 #define OPS_2(a,b) { a,b, }
16961 #define OPS_3(a,b,c) { a,b,c, }
16962 #define OPS_4(a,b,c,d) { a,b,c,d, }
16963 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
16964 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
16965
16966 /* These macros abstract out the exact format of the mnemonic table and
16967 save some repeated characters. */
16968
16969 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
16970 #define TxCE(mnem, op, top, nops, ops, ae, te) \
16971 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
16972 THUMB_VARIANT, do_##ae, do_##te }
16973
16974 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
16975 a T_MNEM_xyz enumerator. */
16976 #define TCE(mnem, aop, top, nops, ops, ae, te) \
16977 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
16978 #define tCE(mnem, aop, top, nops, ops, ae, te) \
16979 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16980
16981 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
16982 infix after the third character. */
16983 #define TxC3(mnem, op, top, nops, ops, ae, te) \
16984 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
16985 THUMB_VARIANT, do_##ae, do_##te }
16986 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
16987 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
16988 THUMB_VARIANT, do_##ae, do_##te }
16989 #define TC3(mnem, aop, top, nops, ops, ae, te) \
16990 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
16991 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
16992 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
16993 #define tC3(mnem, aop, top, nops, ops, ae, te) \
16994 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16995 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
16996 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16997
16998 /* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
16999 appear in the condition table. */
17000 #define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
17001 { m1 #m2 m3, OPS##nops ops, sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
17002 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
17003
17004 #define TxCM(m1, m2, op, top, nops, ops, ae, te) \
17005 TxCM_ (m1, , m2, op, top, nops, ops, ae, te), \
17006 TxCM_ (m1, eq, m2, op, top, nops, ops, ae, te), \
17007 TxCM_ (m1, ne, m2, op, top, nops, ops, ae, te), \
17008 TxCM_ (m1, cs, m2, op, top, nops, ops, ae, te), \
17009 TxCM_ (m1, hs, m2, op, top, nops, ops, ae, te), \
17010 TxCM_ (m1, cc, m2, op, top, nops, ops, ae, te), \
17011 TxCM_ (m1, ul, m2, op, top, nops, ops, ae, te), \
17012 TxCM_ (m1, lo, m2, op, top, nops, ops, ae, te), \
17013 TxCM_ (m1, mi, m2, op, top, nops, ops, ae, te), \
17014 TxCM_ (m1, pl, m2, op, top, nops, ops, ae, te), \
17015 TxCM_ (m1, vs, m2, op, top, nops, ops, ae, te), \
17016 TxCM_ (m1, vc, m2, op, top, nops, ops, ae, te), \
17017 TxCM_ (m1, hi, m2, op, top, nops, ops, ae, te), \
17018 TxCM_ (m1, ls, m2, op, top, nops, ops, ae, te), \
17019 TxCM_ (m1, ge, m2, op, top, nops, ops, ae, te), \
17020 TxCM_ (m1, lt, m2, op, top, nops, ops, ae, te), \
17021 TxCM_ (m1, gt, m2, op, top, nops, ops, ae, te), \
17022 TxCM_ (m1, le, m2, op, top, nops, ops, ae, te), \
17023 TxCM_ (m1, al, m2, op, top, nops, ops, ae, te)
17024
17025 #define TCM(m1,m2, aop, top, nops, ops, ae, te) \
17026 TxCM (m1,m2, aop, 0x##top, nops, ops, ae, te)
17027 #define tCM(m1,m2, aop, top, nops, ops, ae, te) \
17028 TxCM (m1,m2, aop, T_MNEM##top, nops, ops, ae, te)
17029
17030 /* Mnemonic that cannot be conditionalized. The ARM condition-code
17031 field is still 0xE. Many of the Thumb variants can be executed
17032 conditionally, so this is checked separately. */
17033 #define TUE(mnem, op, top, nops, ops, ae, te) \
17034 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
17035 THUMB_VARIANT, do_##ae, do_##te }
17036
17037 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
17038 condition code field. */
17039 #define TUF(mnem, op, top, nops, ops, ae, te) \
17040 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
17041 THUMB_VARIANT, do_##ae, do_##te }
17042
17043 /* ARM-only variants of all the above. */
17044 #define CE(mnem, op, nops, ops, ae) \
17045 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17046
17047 #define C3(mnem, op, nops, ops, ae) \
17048 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17049
17050 /* Legacy mnemonics that always have conditional infix after the third
17051 character. */
17052 #define CL(mnem, op, nops, ops, ae) \
17053 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
17054 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17055
17056 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
17057 #define cCE(mnem, op, nops, ops, ae) \
17058 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
17059
17060 /* Legacy coprocessor instructions where conditional infix and conditional
17061 suffix are ambiguous. For consistency this includes all FPA instructions,
17062 not just the potentially ambiguous ones. */
17063 #define cCL(mnem, op, nops, ops, ae) \
17064 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
17065 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
17066
17067 /* Coprocessor, takes either a suffix or a position-3 infix
17068 (for an FPA corner case). */
17069 #define C3E(mnem, op, nops, ops, ae) \
17070 { mnem, OPS##nops ops, OT_csuf_or_in3, \
17071 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
17072
17073 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
17074 { m1 #m2 m3, OPS##nops ops, \
17075 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
17076 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17077
17078 #define CM(m1, m2, op, nops, ops, ae) \
17079 xCM_ (m1, , m2, op, nops, ops, ae), \
17080 xCM_ (m1, eq, m2, op, nops, ops, ae), \
17081 xCM_ (m1, ne, m2, op, nops, ops, ae), \
17082 xCM_ (m1, cs, m2, op, nops, ops, ae), \
17083 xCM_ (m1, hs, m2, op, nops, ops, ae), \
17084 xCM_ (m1, cc, m2, op, nops, ops, ae), \
17085 xCM_ (m1, ul, m2, op, nops, ops, ae), \
17086 xCM_ (m1, lo, m2, op, nops, ops, ae), \
17087 xCM_ (m1, mi, m2, op, nops, ops, ae), \
17088 xCM_ (m1, pl, m2, op, nops, ops, ae), \
17089 xCM_ (m1, vs, m2, op, nops, ops, ae), \
17090 xCM_ (m1, vc, m2, op, nops, ops, ae), \
17091 xCM_ (m1, hi, m2, op, nops, ops, ae), \
17092 xCM_ (m1, ls, m2, op, nops, ops, ae), \
17093 xCM_ (m1, ge, m2, op, nops, ops, ae), \
17094 xCM_ (m1, lt, m2, op, nops, ops, ae), \
17095 xCM_ (m1, gt, m2, op, nops, ops, ae), \
17096 xCM_ (m1, le, m2, op, nops, ops, ae), \
17097 xCM_ (m1, al, m2, op, nops, ops, ae)
17098
17099 #define UE(mnem, op, nops, ops, ae) \
17100 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
17101
17102 #define UF(mnem, op, nops, ops, ae) \
17103 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
17104
17105 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
17106 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
17107 use the same encoding function for each. */
17108 #define NUF(mnem, op, nops, ops, enc) \
17109 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
17110 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17111
17112 /* Neon data processing, version which indirects through neon_enc_tab for
17113 the various overloaded versions of opcodes. */
17114 #define nUF(mnem, op, nops, ops, enc) \
17115 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
17116 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17117
17118 /* Neon insn with conditional suffix for the ARM version, non-overloaded
17119 version. */
17120 #define NCE_tag(mnem, op, nops, ops, enc, tag) \
17121 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
17122 THUMB_VARIANT, do_##enc, do_##enc }
17123
17124 #define NCE(mnem, op, nops, ops, enc) \
17125 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
17126
17127 #define NCEF(mnem, op, nops, ops, enc) \
17128 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
17129
17130 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
17131 #define nCE_tag(mnem, op, nops, ops, enc, tag) \
17132 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
17133 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17134
17135 #define nCE(mnem, op, nops, ops, enc) \
17136 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
17137
17138 #define nCEF(mnem, op, nops, ops, enc) \
17139 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
17140
17141 #define do_0 0
17142
17143 static const struct asm_opcode insns[] =
17144 {
17145 #define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
17146 #define THUMB_VARIANT &arm_ext_v4t
17147 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
17148 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
17149 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
17150 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
17151 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
17152 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
17153 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
17154 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
17155 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
17156 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
17157 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
17158 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
17159 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
17160 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
17161 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
17162 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
17163
17164 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
17165 for setting PSR flag bits. They are obsolete in V6 and do not
17166 have Thumb equivalents. */
17167 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
17168 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
17169 CL("tstp", 110f000, 2, (RR, SH), cmp),
17170 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
17171 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
17172 CL("cmpp", 150f000, 2, (RR, SH), cmp),
17173 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
17174 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
17175 CL("cmnp", 170f000, 2, (RR, SH), cmp),
17176
17177 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
17178 tC3("movs", 1b00000, _movs, 2, (RR, SH), mov, t_mov_cmp),
17179 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
17180 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
17181
17182 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
17183 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
17184 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
17185 OP_RRnpc),
17186 OP_ADDRGLDR),ldst, t_ldst),
17187 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
17188
17189 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17190 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17191 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17192 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17193 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17194 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17195
17196 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
17197 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
17198 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
17199 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
17200
17201 /* Pseudo ops. */
17202 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
17203 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
17204 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
17205
17206 /* Thumb-compatibility pseudo ops. */
17207 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
17208 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
17209 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
17210 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
17211 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
17212 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
17213 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
17214 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
17215 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
17216 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
17217 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
17218 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
17219
17220 /* These may simplify to neg. */
17221 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
17222 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
17223
17224 #undef THUMB_VARIANT
17225 #define THUMB_VARIANT & arm_ext_v6
17226
17227 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
17228
17229 /* V1 instructions with no Thumb analogue prior to V6T2. */
17230 #undef THUMB_VARIANT
17231 #define THUMB_VARIANT & arm_ext_v6t2
17232
17233 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
17234 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
17235 CL("teqp", 130f000, 2, (RR, SH), cmp),
17236
17237 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17238 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17239 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
17240 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17241
17242 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17243 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17244
17245 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17246 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17247
17248 /* V1 instructions with no Thumb analogue at all. */
17249 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
17250 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
17251
17252 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
17253 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
17254 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
17255 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
17256 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
17257 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
17258 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
17259 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
17260
17261 #undef ARM_VARIANT
17262 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
17263 #undef THUMB_VARIANT
17264 #define THUMB_VARIANT & arm_ext_v4t
17265
17266 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
17267 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
17268
17269 #undef THUMB_VARIANT
17270 #define THUMB_VARIANT & arm_ext_v6t2
17271
17272 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
17273 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
17274
17275 /* Generic coprocessor instructions. */
17276 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
17277 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17278 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17279 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17280 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17281 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17282 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
17283
17284 #undef ARM_VARIANT
17285 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
17286
17287 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
17288 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
17289
17290 #undef ARM_VARIANT
17291 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
17292 #undef THUMB_VARIANT
17293 #define THUMB_VARIANT & arm_ext_msr
17294
17295 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
17296 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
17297
17298 #undef ARM_VARIANT
17299 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
17300 #undef THUMB_VARIANT
17301 #define THUMB_VARIANT & arm_ext_v6t2
17302
17303 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17304 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17305 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17306 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17307 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17308 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17309 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17310 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17311
17312 #undef ARM_VARIANT
17313 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
17314 #undef THUMB_VARIANT
17315 #define THUMB_VARIANT & arm_ext_v4t
17316
17317 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17318 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17319 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17320 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17321 tCM("ld","sh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17322 tCM("ld","sb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17323
17324 #undef ARM_VARIANT
17325 #define ARM_VARIANT & arm_ext_v4t_5
17326
17327 /* ARM Architecture 4T. */
17328 /* Note: bx (and blx) are required on V5, even if the processor does
17329 not support Thumb. */
17330 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
17331
17332 #undef ARM_VARIANT
17333 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
17334 #undef THUMB_VARIANT
17335 #define THUMB_VARIANT & arm_ext_v5t
17336
17337 /* Note: blx has 2 variants; the .value coded here is for
17338 BLX(2). Only this variant has conditional execution. */
17339 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
17340 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
17341
17342 #undef THUMB_VARIANT
17343 #define THUMB_VARIANT & arm_ext_v6t2
17344
17345 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
17346 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17347 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17348 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17349 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17350 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
17351 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17352 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17353
17354 #undef ARM_VARIANT
17355 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
17356 #undef THUMB_VARIANT
17357 #define THUMB_VARIANT &arm_ext_v5exp
17358
17359 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17360 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17361 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17362 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17363
17364 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17365 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17366
17367 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17368 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17369 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17370 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17371
17372 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17373 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17374 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17375 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17376
17377 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17378 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17379
17380 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17381 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17382 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17383 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17384
17385 #undef ARM_VARIANT
17386 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
17387 #undef THUMB_VARIANT
17388 #define THUMB_VARIANT &arm_ext_v6t2
17389
17390 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
17391 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
17392 ldrd, t_ldstd),
17393 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
17394 ADDRGLDRS), ldrd, t_ldstd),
17395
17396 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17397 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17398
17399 #undef ARM_VARIANT
17400 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
17401
17402 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
17403
17404 #undef ARM_VARIANT
17405 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
17406 #undef THUMB_VARIANT
17407 #define THUMB_VARIANT & arm_ext_v6
17408
17409 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
17410 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
17411 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17412 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17413 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17414 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17415 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17416 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17417 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17418 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
17419
17420 #undef THUMB_VARIANT
17421 #define THUMB_VARIANT & arm_ext_v6t2
17422
17423 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
17424 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17425 strex, t_strex),
17426 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17427 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17428
17429 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
17430 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
17431
17432 /* ARM V6 not included in V7M. */
17433 #undef THUMB_VARIANT
17434 #define THUMB_VARIANT & arm_ext_v6_notm
17435 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17436 UF(rfeib, 9900a00, 1, (RRw), rfe),
17437 UF(rfeda, 8100a00, 1, (RRw), rfe),
17438 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17439 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17440 UF(rfefa, 9900a00, 1, (RRw), rfe),
17441 UF(rfeea, 8100a00, 1, (RRw), rfe),
17442 TUF("rfeed", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17443 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
17444 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
17445 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
17446 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
17447
17448 /* ARM V6 not included in V7M (eg. integer SIMD). */
17449 #undef THUMB_VARIANT
17450 #define THUMB_VARIANT & arm_ext_v6_dsp
17451 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
17452 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
17453 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
17454 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17455 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17456 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17457 /* Old name for QASX. */
17458 TCE("qaddsubx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17459 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17460 /* Old name for QSAX. */
17461 TCE("qsubaddx", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17462 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17463 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17464 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17465 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17466 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17467 /* Old name for SASX. */
17468 TCE("saddsubx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17469 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17470 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17471 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17472 /* Old name for SHASX. */
17473 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17474 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17475 /* Old name for SHSAX. */
17476 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17477 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17478 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17479 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17480 /* Old name for SSAX. */
17481 TCE("ssubaddx", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17482 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17483 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17484 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17485 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17486 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17487 /* Old name for UASX. */
17488 TCE("uaddsubx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17489 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17490 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17491 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17492 /* Old name for UHASX. */
17493 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17494 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17495 /* Old name for UHSAX. */
17496 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17497 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17498 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17499 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17500 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17501 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17502 /* Old name for UQASX. */
17503 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17504 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17505 /* Old name for UQSAX. */
17506 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17507 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17508 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17509 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17510 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17511 /* Old name for USAX. */
17512 TCE("usubaddx", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17513 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17514 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17515 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17516 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17517 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17518 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17519 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17520 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17521 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17522 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17523 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17524 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17525 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17526 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17527 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17528 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17529 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17530 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17531 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17532 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17533 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17534 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17535 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17536 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17537 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17538 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17539 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17540 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17541 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
17542 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
17543 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17544 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17545 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
17546
17547 #undef ARM_VARIANT
17548 #define ARM_VARIANT & arm_ext_v6k
17549 #undef THUMB_VARIANT
17550 #define THUMB_VARIANT & arm_ext_v6k
17551
17552 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
17553 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
17554 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
17555 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
17556
17557 #undef THUMB_VARIANT
17558 #define THUMB_VARIANT & arm_ext_v6_notm
17559 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
17560 ldrexd, t_ldrexd),
17561 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
17562 RRnpcb), strexd, t_strexd),
17563
17564 #undef THUMB_VARIANT
17565 #define THUMB_VARIANT & arm_ext_v6t2
17566 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
17567 rd_rn, rd_rn),
17568 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
17569 rd_rn, rd_rn),
17570 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17571 strex, t_strexbh),
17572 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17573 strex, t_strexbh),
17574 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
17575
17576 #undef ARM_VARIANT
17577 #define ARM_VARIANT & arm_ext_sec
17578 #undef THUMB_VARIANT
17579 #define THUMB_VARIANT & arm_ext_sec
17580
17581 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
17582
17583 #undef ARM_VARIANT
17584 #define ARM_VARIANT & arm_ext_virt
17585 #undef THUMB_VARIANT
17586 #define THUMB_VARIANT & arm_ext_virt
17587
17588 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
17589 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
17590
17591 #undef ARM_VARIANT
17592 #define ARM_VARIANT & arm_ext_v6t2
17593 #undef THUMB_VARIANT
17594 #define THUMB_VARIANT & arm_ext_v6t2
17595
17596 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
17597 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
17598 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
17599 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
17600
17601 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
17602 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
17603 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
17604 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
17605
17606 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17607 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17608 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17609 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17610
17611 /* Thumb-only instructions. */
17612 #undef ARM_VARIANT
17613 #define ARM_VARIANT NULL
17614 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
17615 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
17616
17617 /* ARM does not really have an IT instruction, so always allow it.
17618 The opcode is copied from Thumb in order to allow warnings in
17619 -mimplicit-it=[never | arm] modes. */
17620 #undef ARM_VARIANT
17621 #define ARM_VARIANT & arm_ext_v1
17622
17623 TUE("it", bf08, bf08, 1, (COND), it, t_it),
17624 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
17625 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
17626 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
17627 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
17628 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
17629 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
17630 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
17631 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
17632 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
17633 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
17634 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
17635 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
17636 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
17637 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
17638 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
17639 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
17640 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
17641
17642 /* Thumb2 only instructions. */
17643 #undef ARM_VARIANT
17644 #define ARM_VARIANT NULL
17645
17646 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
17647 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
17648 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
17649 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
17650 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
17651 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
17652
17653 /* Hardware division instructions. */
17654 #undef ARM_VARIANT
17655 #define ARM_VARIANT & arm_ext_adiv
17656 #undef THUMB_VARIANT
17657 #define THUMB_VARIANT & arm_ext_div
17658
17659 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
17660 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
17661
17662 /* ARM V6M/V7 instructions. */
17663 #undef ARM_VARIANT
17664 #define ARM_VARIANT & arm_ext_barrier
17665 #undef THUMB_VARIANT
17666 #define THUMB_VARIANT & arm_ext_barrier
17667
17668 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, t_barrier),
17669 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, t_barrier),
17670 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, t_barrier),
17671
17672 /* ARM V7 instructions. */
17673 #undef ARM_VARIANT
17674 #define ARM_VARIANT & arm_ext_v7
17675 #undef THUMB_VARIANT
17676 #define THUMB_VARIANT & arm_ext_v7
17677
17678 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
17679 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
17680
17681 #undef ARM_VARIANT
17682 #define ARM_VARIANT & arm_ext_mp
17683 #undef THUMB_VARIANT
17684 #define THUMB_VARIANT & arm_ext_mp
17685
17686 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
17687
17688 #undef ARM_VARIANT
17689 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
17690
17691 cCE("wfs", e200110, 1, (RR), rd),
17692 cCE("rfs", e300110, 1, (RR), rd),
17693 cCE("wfc", e400110, 1, (RR), rd),
17694 cCE("rfc", e500110, 1, (RR), rd),
17695
17696 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
17697 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
17698 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
17699 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
17700
17701 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
17702 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
17703 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
17704 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
17705
17706 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
17707 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
17708 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
17709 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
17710 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
17711 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
17712 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
17713 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
17714 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
17715 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
17716 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
17717 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
17718
17719 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
17720 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
17721 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
17722 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
17723 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
17724 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
17725 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
17726 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
17727 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
17728 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
17729 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
17730 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
17731
17732 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
17733 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
17734 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
17735 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
17736 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
17737 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
17738 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
17739 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
17740 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
17741 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
17742 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
17743 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
17744
17745 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
17746 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
17747 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
17748 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
17749 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
17750 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
17751 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
17752 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
17753 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
17754 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
17755 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
17756 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
17757
17758 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
17759 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
17760 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
17761 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
17762 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
17763 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
17764 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
17765 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
17766 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
17767 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
17768 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
17769 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
17770
17771 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
17772 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
17773 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
17774 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
17775 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
17776 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
17777 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
17778 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
17779 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
17780 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
17781 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
17782 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
17783
17784 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
17785 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
17786 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
17787 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
17788 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
17789 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
17790 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
17791 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
17792 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
17793 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
17794 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
17795 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
17796
17797 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
17798 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
17799 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
17800 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
17801 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
17802 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
17803 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
17804 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
17805 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
17806 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
17807 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
17808 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
17809
17810 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
17811 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
17812 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
17813 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
17814 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
17815 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
17816 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
17817 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
17818 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
17819 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
17820 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
17821 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
17822
17823 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
17824 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
17825 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
17826 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
17827 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
17828 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
17829 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
17830 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
17831 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
17832 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
17833 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
17834 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
17835
17836 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
17837 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
17838 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
17839 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
17840 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
17841 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
17842 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
17843 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
17844 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
17845 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
17846 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
17847 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
17848
17849 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
17850 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
17851 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
17852 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
17853 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
17854 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
17855 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
17856 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
17857 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
17858 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
17859 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
17860 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
17861
17862 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
17863 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
17864 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
17865 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
17866 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
17867 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
17868 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
17869 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
17870 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
17871 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
17872 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
17873 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
17874
17875 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
17876 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
17877 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
17878 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
17879 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
17880 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
17881 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
17882 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
17883 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
17884 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
17885 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
17886 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
17887
17888 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
17889 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
17890 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
17891 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
17892 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
17893 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
17894 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
17895 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
17896 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
17897 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
17898 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
17899 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
17900
17901 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
17902 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
17903 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
17904 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
17905 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
17906 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
17907 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
17908 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
17909 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
17910 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
17911 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
17912 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
17913
17914 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
17915 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
17916 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
17917 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
17918 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
17919 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17920 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17921 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17922 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
17923 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
17924 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
17925 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
17926
17927 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
17928 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
17929 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
17930 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
17931 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
17932 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17933 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17934 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17935 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
17936 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
17937 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
17938 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
17939
17940 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
17941 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
17942 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
17943 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
17944 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
17945 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17946 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17947 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17948 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
17949 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
17950 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
17951 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
17952
17953 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
17954 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
17955 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
17956 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
17957 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
17958 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17959 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17960 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17961 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
17962 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
17963 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
17964 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
17965
17966 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
17967 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
17968 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
17969 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
17970 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
17971 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17972 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17973 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17974 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
17975 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
17976 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
17977 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
17978
17979 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
17980 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
17981 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
17982 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
17983 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
17984 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17985 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17986 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17987 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
17988 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
17989 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
17990 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
17991
17992 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
17993 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
17994 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
17995 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
17996 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
17997 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17998 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17999 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18000 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
18001 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
18002 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
18003 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
18004
18005 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
18006 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
18007 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
18008 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
18009 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
18010 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18011 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18012 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18013 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
18014 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
18015 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
18016 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
18017
18018 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
18019 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
18020 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
18021 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
18022 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
18023 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18024 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18025 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18026 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
18027 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
18028 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
18029 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
18030
18031 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
18032 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
18033 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
18034 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
18035 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
18036 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18037 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18038 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18039 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
18040 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
18041 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
18042 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
18043
18044 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18045 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18046 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18047 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18048 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18049 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18050 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18051 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18052 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18053 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18054 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18055 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18056
18057 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18058 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18059 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18060 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18061 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18062 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18063 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18064 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18065 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18066 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18067 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18068 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18069
18070 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18071 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18072 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18073 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18074 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18075 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18076 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18077 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18078 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18079 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18080 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18081 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18082
18083 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
18084 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
18085 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
18086 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
18087
18088 cCL("flts", e000110, 2, (RF, RR), rn_rd),
18089 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
18090 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
18091 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
18092 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
18093 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
18094 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
18095 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
18096 cCL("flte", e080110, 2, (RF, RR), rn_rd),
18097 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
18098 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
18099 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
18100
18101 /* The implementation of the FIX instruction is broken on some
18102 assemblers, in that it accepts a precision specifier as well as a
18103 rounding specifier, despite the fact that this is meaningless.
18104 To be more compatible, we accept it as well, though of course it
18105 does not set any bits. */
18106 cCE("fix", e100110, 2, (RR, RF), rd_rm),
18107 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
18108 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
18109 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
18110 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
18111 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
18112 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
18113 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
18114 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
18115 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
18116 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
18117 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
18118 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
18119
18120 /* Instructions that were new with the real FPA, call them V2. */
18121 #undef ARM_VARIANT
18122 #define ARM_VARIANT & fpu_fpa_ext_v2
18123
18124 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18125 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18126 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18127 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18128 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18129 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18130
18131 #undef ARM_VARIANT
18132 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
18133
18134 /* Moves and type conversions. */
18135 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
18136 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
18137 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
18138 cCE("fmstat", ef1fa10, 0, (), noargs),
18139 cCE("vmrs", ef10a10, 2, (APSR_RR, RVC), vmrs),
18140 cCE("vmsr", ee10a10, 2, (RVC, RR), vmsr),
18141 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
18142 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
18143 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
18144 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
18145 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
18146 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
18147 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
18148 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
18149
18150 /* Memory operations. */
18151 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
18152 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
18153 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18154 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18155 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18156 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18157 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18158 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18159 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18160 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18161 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18162 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18163 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18164 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18165 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18166 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18167 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18168 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18169
18170 /* Monadic operations. */
18171 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
18172 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
18173 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
18174
18175 /* Dyadic operations. */
18176 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18177 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18178 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18179 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18180 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18181 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18182 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18183 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18184 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18185
18186 /* Comparisons. */
18187 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
18188 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
18189 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
18190 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
18191
18192 /* Double precision load/store are still present on single precision
18193 implementations. */
18194 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
18195 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
18196 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18197 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18198 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18199 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18200 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18201 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18202 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18203 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18204
18205 #undef ARM_VARIANT
18206 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
18207
18208 /* Moves and type conversions. */
18209 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18210 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
18211 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18212 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
18213 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
18214 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
18215 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
18216 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
18217 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
18218 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
18219 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18220 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
18221 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18222
18223 /* Monadic operations. */
18224 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18225 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18226 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18227
18228 /* Dyadic operations. */
18229 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18230 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18231 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18232 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18233 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18234 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18235 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18236 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18237 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18238
18239 /* Comparisons. */
18240 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18241 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
18242 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18243 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
18244
18245 #undef ARM_VARIANT
18246 #define ARM_VARIANT & fpu_vfp_ext_v2
18247
18248 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
18249 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
18250 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
18251 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
18252
18253 /* Instructions which may belong to either the Neon or VFP instruction sets.
18254 Individual encoder functions perform additional architecture checks. */
18255 #undef ARM_VARIANT
18256 #define ARM_VARIANT & fpu_vfp_ext_v1xd
18257 #undef THUMB_VARIANT
18258 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
18259
18260 /* These mnemonics are unique to VFP. */
18261 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
18262 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
18263 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18264 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18265 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18266 nCE(vcmp, _vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
18267 nCE(vcmpe, _vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
18268 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
18269 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
18270 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
18271
18272 /* Mnemonics shared by Neon and VFP. */
18273 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
18274 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
18275 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
18276
18277 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
18278 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
18279
18280 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
18281 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
18282
18283 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18284 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18285 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18286 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18287 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18288 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18289 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
18290 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
18291
18292 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32z), neon_cvt),
18293 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
18294 nCEF(vcvtb, _vcvt, 2, (RVS, RVS), neon_cvtb),
18295 nCEF(vcvtt, _vcvt, 2, (RVS, RVS), neon_cvtt),
18296
18297
18298 /* NOTE: All VMOV encoding is special-cased! */
18299 NCE(vmov, 0, 1, (VMOV), neon_mov),
18300 NCE(vmovq, 0, 1, (VMOV), neon_mov),
18301
18302 #undef THUMB_VARIANT
18303 #define THUMB_VARIANT & fpu_neon_ext_v1
18304 #undef ARM_VARIANT
18305 #define ARM_VARIANT & fpu_neon_ext_v1
18306
18307 /* Data processing with three registers of the same length. */
18308 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
18309 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
18310 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
18311 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18312 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18313 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18314 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18315 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18316 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18317 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
18318 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
18319 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
18320 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
18321 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
18322 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
18323 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
18324 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
18325 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
18326 /* If not immediate, fall back to neon_dyadic_i64_su.
18327 shl_imm should accept I8 I16 I32 I64,
18328 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
18329 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
18330 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
18331 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
18332 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
18333 /* Logic ops, types optional & ignored. */
18334 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18335 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18336 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18337 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18338 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18339 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18340 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18341 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18342 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
18343 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
18344 /* Bitfield ops, untyped. */
18345 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18346 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18347 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18348 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18349 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18350 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18351 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
18352 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18353 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18354 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18355 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18356 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18357 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18358 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
18359 back to neon_dyadic_if_su. */
18360 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
18361 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
18362 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
18363 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
18364 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
18365 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
18366 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
18367 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
18368 /* Comparison. Type I8 I16 I32 F32. */
18369 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
18370 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
18371 /* As above, D registers only. */
18372 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
18373 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
18374 /* Int and float variants, signedness unimportant. */
18375 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
18376 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
18377 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
18378 /* Add/sub take types I8 I16 I32 I64 F32. */
18379 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
18380 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
18381 /* vtst takes sizes 8, 16, 32. */
18382 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
18383 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
18384 /* VMUL takes I8 I16 I32 F32 P8. */
18385 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
18386 /* VQD{R}MULH takes S16 S32. */
18387 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18388 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
18389 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18390 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
18391 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18392 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
18393 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18394 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
18395 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18396 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
18397 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18398 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
18399 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18400 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18401 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18402 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18403
18404 /* Two address, int/float. Types S8 S16 S32 F32. */
18405 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
18406 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
18407
18408 /* Data processing with two registers and a shift amount. */
18409 /* Right shifts, and variants with rounding.
18410 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
18411 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18412 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18413 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18414 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18415 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18416 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18417 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18418 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18419 /* Shift and insert. Sizes accepted 8 16 32 64. */
18420 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
18421 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
18422 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
18423 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
18424 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
18425 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
18426 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
18427 /* Right shift immediate, saturating & narrowing, with rounding variants.
18428 Types accepted S16 S32 S64 U16 U32 U64. */
18429 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18430 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18431 /* As above, unsigned. Types accepted S16 S32 S64. */
18432 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18433 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18434 /* Right shift narrowing. Types accepted I16 I32 I64. */
18435 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18436 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18437 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
18438 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
18439 /* CVT with optional immediate for fixed-point variant. */
18440 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
18441
18442 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
18443 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
18444
18445 /* Data processing, three registers of different lengths. */
18446 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
18447 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
18448 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
18449 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
18450 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
18451 /* If not scalar, fall back to neon_dyadic_long.
18452 Vector types as above, scalar types S16 S32 U16 U32. */
18453 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
18454 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
18455 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
18456 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18457 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18458 /* Dyadic, narrowing insns. Types I16 I32 I64. */
18459 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18460 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18461 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18462 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18463 /* Saturating doubling multiplies. Types S16 S32. */
18464 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18465 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18466 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18467 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
18468 S16 S32 U16 U32. */
18469 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
18470
18471 /* Extract. Size 8. */
18472 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
18473 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
18474
18475 /* Two registers, miscellaneous. */
18476 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
18477 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
18478 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
18479 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
18480 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
18481 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
18482 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
18483 /* Vector replicate. Sizes 8 16 32. */
18484 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
18485 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
18486 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
18487 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
18488 /* VMOVN. Types I16 I32 I64. */
18489 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
18490 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
18491 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
18492 /* VQMOVUN. Types S16 S32 S64. */
18493 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
18494 /* VZIP / VUZP. Sizes 8 16 32. */
18495 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
18496 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
18497 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
18498 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
18499 /* VQABS / VQNEG. Types S8 S16 S32. */
18500 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
18501 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
18502 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
18503 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
18504 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
18505 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
18506 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
18507 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
18508 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
18509 /* Reciprocal estimates. Types U32 F32. */
18510 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
18511 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
18512 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
18513 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
18514 /* VCLS. Types S8 S16 S32. */
18515 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
18516 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
18517 /* VCLZ. Types I8 I16 I32. */
18518 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
18519 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
18520 /* VCNT. Size 8. */
18521 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
18522 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
18523 /* Two address, untyped. */
18524 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
18525 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
18526 /* VTRN. Sizes 8 16 32. */
18527 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
18528 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
18529
18530 /* Table lookup. Size 8. */
18531 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
18532 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
18533
18534 #undef THUMB_VARIANT
18535 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
18536 #undef ARM_VARIANT
18537 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
18538
18539 /* Neon element/structure load/store. */
18540 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
18541 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
18542 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
18543 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
18544 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
18545 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
18546 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
18547 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
18548
18549 #undef THUMB_VARIANT
18550 #define THUMB_VARIANT &fpu_vfp_ext_v3xd
18551 #undef ARM_VARIANT
18552 #define ARM_VARIANT &fpu_vfp_ext_v3xd
18553 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
18554 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18555 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18556 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18557 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18558 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18559 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18560 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18561 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18562
18563 #undef THUMB_VARIANT
18564 #define THUMB_VARIANT & fpu_vfp_ext_v3
18565 #undef ARM_VARIANT
18566 #define ARM_VARIANT & fpu_vfp_ext_v3
18567
18568 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
18569 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18570 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18571 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18572 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18573 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18574 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18575 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18576 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18577
18578 #undef ARM_VARIANT
18579 #define ARM_VARIANT &fpu_vfp_ext_fma
18580 #undef THUMB_VARIANT
18581 #define THUMB_VARIANT &fpu_vfp_ext_fma
18582 /* Mnemonics shared by Neon and VFP. These are included in the
18583 VFP FMA variant; NEON and VFP FMA always includes the NEON
18584 FMA instructions. */
18585 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
18586 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
18587 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
18588 the v form should always be used. */
18589 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18590 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18591 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18592 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18593 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18594 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18595
18596 #undef THUMB_VARIANT
18597 #undef ARM_VARIANT
18598 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
18599
18600 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18601 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18602 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18603 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18604 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18605 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18606 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
18607 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
18608
18609 #undef ARM_VARIANT
18610 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
18611
18612 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
18613 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
18614 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
18615 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
18616 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
18617 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
18618 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
18619 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
18620 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
18621 cCE("textrmub", e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18622 cCE("textrmuh", e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18623 cCE("textrmuw", e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18624 cCE("textrmsb", e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18625 cCE("textrmsh", e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18626 cCE("textrmsw", e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18627 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18628 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18629 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18630 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
18631 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
18632 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18633 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18634 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18635 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18636 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18637 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18638 cCE("tmovmskb", e100030, 2, (RR, RIWR), rd_rn),
18639 cCE("tmovmskh", e500030, 2, (RR, RIWR), rd_rn),
18640 cCE("tmovmskw", e900030, 2, (RR, RIWR), rd_rn),
18641 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
18642 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
18643 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
18644 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
18645 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
18646 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
18647 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
18648 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
18649 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18650 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18651 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18652 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18653 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18654 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18655 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18656 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18657 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18658 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
18659 cCE("walignr0", e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18660 cCE("walignr1", e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18661 cCE("walignr2", ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18662 cCE("walignr3", eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18663 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18664 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18665 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18666 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18667 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18668 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18669 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18670 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18671 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18672 cCE("wcmpgtub", e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18673 cCE("wcmpgtuh", e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18674 cCE("wcmpgtuw", e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18675 cCE("wcmpgtsb", e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18676 cCE("wcmpgtsh", e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18677 cCE("wcmpgtsw", eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18678 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18679 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18680 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
18681 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
18682 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18683 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18684 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18685 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18686 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18687 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18688 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18689 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18690 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18691 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18692 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18693 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18694 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18695 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18696 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18697 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18698 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18699 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18700 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
18701 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18702 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18703 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18704 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18705 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18706 cCE("wpackhss", e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18707 cCE("wpackhus", e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18708 cCE("wpackwss", eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18709 cCE("wpackwus", e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18710 cCE("wpackdss", ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18711 cCE("wpackdus", ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18712 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18713 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18714 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18715 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18716 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18717 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18718 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18719 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18720 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18721 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18722 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
18723 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18724 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18725 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18726 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18727 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18728 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18729 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18730 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18731 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18732 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18733 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18734 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18735 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18736 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18737 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18738 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18739 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18740 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18741 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18742 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18743 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
18744 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
18745 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18746 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18747 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18748 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18749 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18750 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18751 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18752 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18753 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18754 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
18755 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
18756 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
18757 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
18758 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
18759 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
18760 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18761 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18762 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18763 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
18764 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
18765 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
18766 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
18767 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
18768 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
18769 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18770 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18771 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18772 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18773 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
18774
18775 #undef ARM_VARIANT
18776 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
18777
18778 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
18779 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
18780 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
18781 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
18782 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
18783 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
18784 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18785 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18786 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18787 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18788 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18789 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18790 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18791 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18792 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18793 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18794 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18795 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18796 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18797 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18798 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
18799 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18800 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18801 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18802 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18803 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18804 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18805 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18806 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18807 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18808 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18809 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18810 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18811 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18812 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18813 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18814 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18815 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18816 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18817 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18818 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18819 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18820 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18821 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18822 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18823 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18824 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18825 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18826 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18827 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18828 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18829 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18830 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18831 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18832 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18833 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18834 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18835
18836 #undef ARM_VARIANT
18837 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
18838
18839 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
18840 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
18841 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
18842 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
18843 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
18844 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
18845 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
18846 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
18847 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
18848 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
18849 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
18850 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
18851 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
18852 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
18853 cCE("cfmv64lr", e000510, 2, (RMDX, RR), rn_rd),
18854 cCE("cfmvr64l", e100510, 2, (RR, RMDX), rd_rn),
18855 cCE("cfmv64hr", e000530, 2, (RMDX, RR), rn_rd),
18856 cCE("cfmvr64h", e100530, 2, (RR, RMDX), rd_rn),
18857 cCE("cfmval32", e200440, 2, (RMAX, RMFX), rd_rn),
18858 cCE("cfmv32al", e100440, 2, (RMFX, RMAX), rd_rn),
18859 cCE("cfmvam32", e200460, 2, (RMAX, RMFX), rd_rn),
18860 cCE("cfmv32am", e100460, 2, (RMFX, RMAX), rd_rn),
18861 cCE("cfmvah32", e200480, 2, (RMAX, RMFX), rd_rn),
18862 cCE("cfmv32ah", e100480, 2, (RMFX, RMAX), rd_rn),
18863 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
18864 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
18865 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
18866 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
18867 cCE("cfmvsc32", e2004e0, 2, (RMDS, RMDX), mav_dspsc),
18868 cCE("cfmv32sc", e1004e0, 2, (RMDX, RMDS), rd),
18869 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
18870 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
18871 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
18872 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
18873 cCE("cfcvt32s", e000480, 2, (RMF, RMFX), rd_rn),
18874 cCE("cfcvt32d", e0004a0, 2, (RMD, RMFX), rd_rn),
18875 cCE("cfcvt64s", e0004c0, 2, (RMF, RMDX), rd_rn),
18876 cCE("cfcvt64d", e0004e0, 2, (RMD, RMDX), rd_rn),
18877 cCE("cfcvts32", e100580, 2, (RMFX, RMF), rd_rn),
18878 cCE("cfcvtd32", e1005a0, 2, (RMFX, RMD), rd_rn),
18879 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
18880 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
18881 cCE("cfrshl32", e000550, 3, (RMFX, RMFX, RR), mav_triple),
18882 cCE("cfrshl64", e000570, 3, (RMDX, RMDX, RR), mav_triple),
18883 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
18884 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
18885 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
18886 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
18887 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
18888 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
18889 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
18890 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
18891 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
18892 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
18893 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
18894 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
18895 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
18896 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
18897 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
18898 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
18899 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
18900 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
18901 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
18902 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
18903 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18904 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18905 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18906 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18907 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18908 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18909 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18910 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18911 cCE("cfmadd32", e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18912 cCE("cfmsub32", e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18913 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
18914 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
18915 };
18916 #undef ARM_VARIANT
18917 #undef THUMB_VARIANT
18918 #undef TCE
18919 #undef TCM
18920 #undef TUE
18921 #undef TUF
18922 #undef TCC
18923 #undef cCE
18924 #undef cCL
18925 #undef C3E
18926 #undef CE
18927 #undef CM
18928 #undef UE
18929 #undef UF
18930 #undef UT
18931 #undef NUF
18932 #undef nUF
18933 #undef NCE
18934 #undef nCE
18935 #undef OPS0
18936 #undef OPS1
18937 #undef OPS2
18938 #undef OPS3
18939 #undef OPS4
18940 #undef OPS5
18941 #undef OPS6
18942 #undef do_0
18943 \f
18944 /* MD interface: bits in the object file. */
18945
18946 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
18947 for use in the a.out file, and stores them in the array pointed to by buf.
18948 This knows about the endian-ness of the target machine and does
18949 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
18950 2 (short) and 4 (long) Floating numbers are put out as a series of
18951 LITTLENUMS (shorts, here at least). */
18952
18953 void
18954 md_number_to_chars (char * buf, valueT val, int n)
18955 {
18956 if (target_big_endian)
18957 number_to_chars_bigendian (buf, val, n);
18958 else
18959 number_to_chars_littleendian (buf, val, n);
18960 }
18961
18962 static valueT
18963 md_chars_to_number (char * buf, int n)
18964 {
18965 valueT result = 0;
18966 unsigned char * where = (unsigned char *) buf;
18967
18968 if (target_big_endian)
18969 {
18970 while (n--)
18971 {
18972 result <<= 8;
18973 result |= (*where++ & 255);
18974 }
18975 }
18976 else
18977 {
18978 while (n--)
18979 {
18980 result <<= 8;
18981 result |= (where[n] & 255);
18982 }
18983 }
18984
18985 return result;
18986 }
18987
18988 /* MD interface: Sections. */
18989
18990 /* Estimate the size of a frag before relaxing. Assume everything fits in
18991 2 bytes. */
18992
18993 int
18994 md_estimate_size_before_relax (fragS * fragp,
18995 segT segtype ATTRIBUTE_UNUSED)
18996 {
18997 fragp->fr_var = 2;
18998 return 2;
18999 }
19000
19001 /* Convert a machine dependent frag. */
19002
19003 void
19004 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
19005 {
19006 unsigned long insn;
19007 unsigned long old_op;
19008 char *buf;
19009 expressionS exp;
19010 fixS *fixp;
19011 int reloc_type;
19012 int pc_rel;
19013 int opcode;
19014
19015 buf = fragp->fr_literal + fragp->fr_fix;
19016
19017 old_op = bfd_get_16(abfd, buf);
19018 if (fragp->fr_symbol)
19019 {
19020 exp.X_op = O_symbol;
19021 exp.X_add_symbol = fragp->fr_symbol;
19022 }
19023 else
19024 {
19025 exp.X_op = O_constant;
19026 }
19027 exp.X_add_number = fragp->fr_offset;
19028 opcode = fragp->fr_subtype;
19029 switch (opcode)
19030 {
19031 case T_MNEM_ldr_pc:
19032 case T_MNEM_ldr_pc2:
19033 case T_MNEM_ldr_sp:
19034 case T_MNEM_str_sp:
19035 case T_MNEM_ldr:
19036 case T_MNEM_ldrb:
19037 case T_MNEM_ldrh:
19038 case T_MNEM_str:
19039 case T_MNEM_strb:
19040 case T_MNEM_strh:
19041 if (fragp->fr_var == 4)
19042 {
19043 insn = THUMB_OP32 (opcode);
19044 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
19045 {
19046 insn |= (old_op & 0x700) << 4;
19047 }
19048 else
19049 {
19050 insn |= (old_op & 7) << 12;
19051 insn |= (old_op & 0x38) << 13;
19052 }
19053 insn |= 0x00000c00;
19054 put_thumb32_insn (buf, insn);
19055 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
19056 }
19057 else
19058 {
19059 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
19060 }
19061 pc_rel = (opcode == T_MNEM_ldr_pc2);
19062 break;
19063 case T_MNEM_adr:
19064 if (fragp->fr_var == 4)
19065 {
19066 insn = THUMB_OP32 (opcode);
19067 insn |= (old_op & 0xf0) << 4;
19068 put_thumb32_insn (buf, insn);
19069 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
19070 }
19071 else
19072 {
19073 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19074 exp.X_add_number -= 4;
19075 }
19076 pc_rel = 1;
19077 break;
19078 case T_MNEM_mov:
19079 case T_MNEM_movs:
19080 case T_MNEM_cmp:
19081 case T_MNEM_cmn:
19082 if (fragp->fr_var == 4)
19083 {
19084 int r0off = (opcode == T_MNEM_mov
19085 || opcode == T_MNEM_movs) ? 0 : 8;
19086 insn = THUMB_OP32 (opcode);
19087 insn = (insn & 0xe1ffffff) | 0x10000000;
19088 insn |= (old_op & 0x700) << r0off;
19089 put_thumb32_insn (buf, insn);
19090 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
19091 }
19092 else
19093 {
19094 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
19095 }
19096 pc_rel = 0;
19097 break;
19098 case T_MNEM_b:
19099 if (fragp->fr_var == 4)
19100 {
19101 insn = THUMB_OP32(opcode);
19102 put_thumb32_insn (buf, insn);
19103 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
19104 }
19105 else
19106 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
19107 pc_rel = 1;
19108 break;
19109 case T_MNEM_bcond:
19110 if (fragp->fr_var == 4)
19111 {
19112 insn = THUMB_OP32(opcode);
19113 insn |= (old_op & 0xf00) << 14;
19114 put_thumb32_insn (buf, insn);
19115 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
19116 }
19117 else
19118 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
19119 pc_rel = 1;
19120 break;
19121 case T_MNEM_add_sp:
19122 case T_MNEM_add_pc:
19123 case T_MNEM_inc_sp:
19124 case T_MNEM_dec_sp:
19125 if (fragp->fr_var == 4)
19126 {
19127 /* ??? Choose between add and addw. */
19128 insn = THUMB_OP32 (opcode);
19129 insn |= (old_op & 0xf0) << 4;
19130 put_thumb32_insn (buf, insn);
19131 if (opcode == T_MNEM_add_pc)
19132 reloc_type = BFD_RELOC_ARM_T32_IMM12;
19133 else
19134 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
19135 }
19136 else
19137 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19138 pc_rel = 0;
19139 break;
19140
19141 case T_MNEM_addi:
19142 case T_MNEM_addis:
19143 case T_MNEM_subi:
19144 case T_MNEM_subis:
19145 if (fragp->fr_var == 4)
19146 {
19147 insn = THUMB_OP32 (opcode);
19148 insn |= (old_op & 0xf0) << 4;
19149 insn |= (old_op & 0xf) << 16;
19150 put_thumb32_insn (buf, insn);
19151 if (insn & (1 << 20))
19152 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
19153 else
19154 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
19155 }
19156 else
19157 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19158 pc_rel = 0;
19159 break;
19160 default:
19161 abort ();
19162 }
19163 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
19164 (enum bfd_reloc_code_real) reloc_type);
19165 fixp->fx_file = fragp->fr_file;
19166 fixp->fx_line = fragp->fr_line;
19167 fragp->fr_fix += fragp->fr_var;
19168 }
19169
19170 /* Return the size of a relaxable immediate operand instruction.
19171 SHIFT and SIZE specify the form of the allowable immediate. */
19172 static int
19173 relax_immediate (fragS *fragp, int size, int shift)
19174 {
19175 offsetT offset;
19176 offsetT mask;
19177 offsetT low;
19178
19179 /* ??? Should be able to do better than this. */
19180 if (fragp->fr_symbol)
19181 return 4;
19182
19183 low = (1 << shift) - 1;
19184 mask = (1 << (shift + size)) - (1 << shift);
19185 offset = fragp->fr_offset;
19186 /* Force misaligned offsets to 32-bit variant. */
19187 if (offset & low)
19188 return 4;
19189 if (offset & ~mask)
19190 return 4;
19191 return 2;
19192 }
19193
19194 /* Get the address of a symbol during relaxation. */
19195 static addressT
19196 relaxed_symbol_addr (fragS *fragp, long stretch)
19197 {
19198 fragS *sym_frag;
19199 addressT addr;
19200 symbolS *sym;
19201
19202 sym = fragp->fr_symbol;
19203 sym_frag = symbol_get_frag (sym);
19204 know (S_GET_SEGMENT (sym) != absolute_section
19205 || sym_frag == &zero_address_frag);
19206 addr = S_GET_VALUE (sym) + fragp->fr_offset;
19207
19208 /* If frag has yet to be reached on this pass, assume it will
19209 move by STRETCH just as we did. If this is not so, it will
19210 be because some frag between grows, and that will force
19211 another pass. */
19212
19213 if (stretch != 0
19214 && sym_frag->relax_marker != fragp->relax_marker)
19215 {
19216 fragS *f;
19217
19218 /* Adjust stretch for any alignment frag. Note that if have
19219 been expanding the earlier code, the symbol may be
19220 defined in what appears to be an earlier frag. FIXME:
19221 This doesn't handle the fr_subtype field, which specifies
19222 a maximum number of bytes to skip when doing an
19223 alignment. */
19224 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
19225 {
19226 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
19227 {
19228 if (stretch < 0)
19229 stretch = - ((- stretch)
19230 & ~ ((1 << (int) f->fr_offset) - 1));
19231 else
19232 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
19233 if (stretch == 0)
19234 break;
19235 }
19236 }
19237 if (f != NULL)
19238 addr += stretch;
19239 }
19240
19241 return addr;
19242 }
19243
19244 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
19245 load. */
19246 static int
19247 relax_adr (fragS *fragp, asection *sec, long stretch)
19248 {
19249 addressT addr;
19250 offsetT val;
19251
19252 /* Assume worst case for symbols not known to be in the same section. */
19253 if (fragp->fr_symbol == NULL
19254 || !S_IS_DEFINED (fragp->fr_symbol)
19255 || sec != S_GET_SEGMENT (fragp->fr_symbol)
19256 || S_IS_WEAK (fragp->fr_symbol))
19257 return 4;
19258
19259 val = relaxed_symbol_addr (fragp, stretch);
19260 addr = fragp->fr_address + fragp->fr_fix;
19261 addr = (addr + 4) & ~3;
19262 /* Force misaligned targets to 32-bit variant. */
19263 if (val & 3)
19264 return 4;
19265 val -= addr;
19266 if (val < 0 || val > 1020)
19267 return 4;
19268 return 2;
19269 }
19270
19271 /* Return the size of a relaxable add/sub immediate instruction. */
19272 static int
19273 relax_addsub (fragS *fragp, asection *sec)
19274 {
19275 char *buf;
19276 int op;
19277
19278 buf = fragp->fr_literal + fragp->fr_fix;
19279 op = bfd_get_16(sec->owner, buf);
19280 if ((op & 0xf) == ((op >> 4) & 0xf))
19281 return relax_immediate (fragp, 8, 0);
19282 else
19283 return relax_immediate (fragp, 3, 0);
19284 }
19285
19286
19287 /* Return the size of a relaxable branch instruction. BITS is the
19288 size of the offset field in the narrow instruction. */
19289
19290 static int
19291 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
19292 {
19293 addressT addr;
19294 offsetT val;
19295 offsetT limit;
19296
19297 /* Assume worst case for symbols not known to be in the same section. */
19298 if (!S_IS_DEFINED (fragp->fr_symbol)
19299 || sec != S_GET_SEGMENT (fragp->fr_symbol)
19300 || S_IS_WEAK (fragp->fr_symbol))
19301 return 4;
19302
19303 #ifdef OBJ_ELF
19304 if (S_IS_DEFINED (fragp->fr_symbol)
19305 && ARM_IS_FUNC (fragp->fr_symbol))
19306 return 4;
19307
19308 /* PR 12532. Global symbols with default visibility might
19309 be preempted, so do not relax relocations to them. */
19310 if ((ELF_ST_VISIBILITY (S_GET_OTHER (fragp->fr_symbol)) == STV_DEFAULT)
19311 && (! S_IS_LOCAL (fragp->fr_symbol)))
19312 return 4;
19313 #endif
19314
19315 val = relaxed_symbol_addr (fragp, stretch);
19316 addr = fragp->fr_address + fragp->fr_fix + 4;
19317 val -= addr;
19318
19319 /* Offset is a signed value *2 */
19320 limit = 1 << bits;
19321 if (val >= limit || val < -limit)
19322 return 4;
19323 return 2;
19324 }
19325
19326
19327 /* Relax a machine dependent frag. This returns the amount by which
19328 the current size of the frag should change. */
19329
19330 int
19331 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
19332 {
19333 int oldsize;
19334 int newsize;
19335
19336 oldsize = fragp->fr_var;
19337 switch (fragp->fr_subtype)
19338 {
19339 case T_MNEM_ldr_pc2:
19340 newsize = relax_adr (fragp, sec, stretch);
19341 break;
19342 case T_MNEM_ldr_pc:
19343 case T_MNEM_ldr_sp:
19344 case T_MNEM_str_sp:
19345 newsize = relax_immediate (fragp, 8, 2);
19346 break;
19347 case T_MNEM_ldr:
19348 case T_MNEM_str:
19349 newsize = relax_immediate (fragp, 5, 2);
19350 break;
19351 case T_MNEM_ldrh:
19352 case T_MNEM_strh:
19353 newsize = relax_immediate (fragp, 5, 1);
19354 break;
19355 case T_MNEM_ldrb:
19356 case T_MNEM_strb:
19357 newsize = relax_immediate (fragp, 5, 0);
19358 break;
19359 case T_MNEM_adr:
19360 newsize = relax_adr (fragp, sec, stretch);
19361 break;
19362 case T_MNEM_mov:
19363 case T_MNEM_movs:
19364 case T_MNEM_cmp:
19365 case T_MNEM_cmn:
19366 newsize = relax_immediate (fragp, 8, 0);
19367 break;
19368 case T_MNEM_b:
19369 newsize = relax_branch (fragp, sec, 11, stretch);
19370 break;
19371 case T_MNEM_bcond:
19372 newsize = relax_branch (fragp, sec, 8, stretch);
19373 break;
19374 case T_MNEM_add_sp:
19375 case T_MNEM_add_pc:
19376 newsize = relax_immediate (fragp, 8, 2);
19377 break;
19378 case T_MNEM_inc_sp:
19379 case T_MNEM_dec_sp:
19380 newsize = relax_immediate (fragp, 7, 2);
19381 break;
19382 case T_MNEM_addi:
19383 case T_MNEM_addis:
19384 case T_MNEM_subi:
19385 case T_MNEM_subis:
19386 newsize = relax_addsub (fragp, sec);
19387 break;
19388 default:
19389 abort ();
19390 }
19391
19392 fragp->fr_var = newsize;
19393 /* Freeze wide instructions that are at or before the same location as
19394 in the previous pass. This avoids infinite loops.
19395 Don't freeze them unconditionally because targets may be artificially
19396 misaligned by the expansion of preceding frags. */
19397 if (stretch <= 0 && newsize > 2)
19398 {
19399 md_convert_frag (sec->owner, sec, fragp);
19400 frag_wane (fragp);
19401 }
19402
19403 return newsize - oldsize;
19404 }
19405
19406 /* Round up a section size to the appropriate boundary. */
19407
19408 valueT
19409 md_section_align (segT segment ATTRIBUTE_UNUSED,
19410 valueT size)
19411 {
19412 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
19413 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
19414 {
19415 /* For a.out, force the section size to be aligned. If we don't do
19416 this, BFD will align it for us, but it will not write out the
19417 final bytes of the section. This may be a bug in BFD, but it is
19418 easier to fix it here since that is how the other a.out targets
19419 work. */
19420 int align;
19421
19422 align = bfd_get_section_alignment (stdoutput, segment);
19423 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
19424 }
19425 #endif
19426
19427 return size;
19428 }
19429
19430 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
19431 of an rs_align_code fragment. */
19432
19433 void
19434 arm_handle_align (fragS * fragP)
19435 {
19436 static char const arm_noop[2][2][4] =
19437 {
19438 { /* ARMv1 */
19439 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
19440 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
19441 },
19442 { /* ARMv6k */
19443 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
19444 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
19445 },
19446 };
19447 static char const thumb_noop[2][2][2] =
19448 {
19449 { /* Thumb-1 */
19450 {0xc0, 0x46}, /* LE */
19451 {0x46, 0xc0}, /* BE */
19452 },
19453 { /* Thumb-2 */
19454 {0x00, 0xbf}, /* LE */
19455 {0xbf, 0x00} /* BE */
19456 }
19457 };
19458 static char const wide_thumb_noop[2][4] =
19459 { /* Wide Thumb-2 */
19460 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
19461 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
19462 };
19463
19464 unsigned bytes, fix, noop_size;
19465 char * p;
19466 const char * noop;
19467 const char *narrow_noop = NULL;
19468 #ifdef OBJ_ELF
19469 enum mstate state;
19470 #endif
19471
19472 if (fragP->fr_type != rs_align_code)
19473 return;
19474
19475 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
19476 p = fragP->fr_literal + fragP->fr_fix;
19477 fix = 0;
19478
19479 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
19480 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
19481
19482 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
19483
19484 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
19485 {
19486 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
19487 {
19488 narrow_noop = thumb_noop[1][target_big_endian];
19489 noop = wide_thumb_noop[target_big_endian];
19490 }
19491 else
19492 noop = thumb_noop[0][target_big_endian];
19493 noop_size = 2;
19494 #ifdef OBJ_ELF
19495 state = MAP_THUMB;
19496 #endif
19497 }
19498 else
19499 {
19500 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k) != 0]
19501 [target_big_endian];
19502 noop_size = 4;
19503 #ifdef OBJ_ELF
19504 state = MAP_ARM;
19505 #endif
19506 }
19507
19508 fragP->fr_var = noop_size;
19509
19510 if (bytes & (noop_size - 1))
19511 {
19512 fix = bytes & (noop_size - 1);
19513 #ifdef OBJ_ELF
19514 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
19515 #endif
19516 memset (p, 0, fix);
19517 p += fix;
19518 bytes -= fix;
19519 }
19520
19521 if (narrow_noop)
19522 {
19523 if (bytes & noop_size)
19524 {
19525 /* Insert a narrow noop. */
19526 memcpy (p, narrow_noop, noop_size);
19527 p += noop_size;
19528 bytes -= noop_size;
19529 fix += noop_size;
19530 }
19531
19532 /* Use wide noops for the remainder */
19533 noop_size = 4;
19534 }
19535
19536 while (bytes >= noop_size)
19537 {
19538 memcpy (p, noop, noop_size);
19539 p += noop_size;
19540 bytes -= noop_size;
19541 fix += noop_size;
19542 }
19543
19544 fragP->fr_fix += fix;
19545 }
19546
19547 /* Called from md_do_align. Used to create an alignment
19548 frag in a code section. */
19549
19550 void
19551 arm_frag_align_code (int n, int max)
19552 {
19553 char * p;
19554
19555 /* We assume that there will never be a requirement
19556 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
19557 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
19558 {
19559 char err_msg[128];
19560
19561 sprintf (err_msg,
19562 _("alignments greater than %d bytes not supported in .text sections."),
19563 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
19564 as_fatal ("%s", err_msg);
19565 }
19566
19567 p = frag_var (rs_align_code,
19568 MAX_MEM_FOR_RS_ALIGN_CODE,
19569 1,
19570 (relax_substateT) max,
19571 (symbolS *) NULL,
19572 (offsetT) n,
19573 (char *) NULL);
19574 *p = 0;
19575 }
19576
19577 /* Perform target specific initialisation of a frag.
19578 Note - despite the name this initialisation is not done when the frag
19579 is created, but only when its type is assigned. A frag can be created
19580 and used a long time before its type is set, so beware of assuming that
19581 this initialisationis performed first. */
19582
19583 #ifndef OBJ_ELF
19584 void
19585 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
19586 {
19587 /* Record whether this frag is in an ARM or a THUMB area. */
19588 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
19589 }
19590
19591 #else /* OBJ_ELF is defined. */
19592 void
19593 arm_init_frag (fragS * fragP, int max_chars)
19594 {
19595 /* If the current ARM vs THUMB mode has not already
19596 been recorded into this frag then do so now. */
19597 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
19598 {
19599 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
19600
19601 /* Record a mapping symbol for alignment frags. We will delete this
19602 later if the alignment ends up empty. */
19603 switch (fragP->fr_type)
19604 {
19605 case rs_align:
19606 case rs_align_test:
19607 case rs_fill:
19608 mapping_state_2 (MAP_DATA, max_chars);
19609 break;
19610 case rs_align_code:
19611 mapping_state_2 (thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
19612 break;
19613 default:
19614 break;
19615 }
19616 }
19617 }
19618
19619 /* When we change sections we need to issue a new mapping symbol. */
19620
19621 void
19622 arm_elf_change_section (void)
19623 {
19624 /* Link an unlinked unwind index table section to the .text section. */
19625 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
19626 && elf_linked_to_section (now_seg) == NULL)
19627 elf_linked_to_section (now_seg) = text_section;
19628 }
19629
19630 int
19631 arm_elf_section_type (const char * str, size_t len)
19632 {
19633 if (len == 5 && strncmp (str, "exidx", 5) == 0)
19634 return SHT_ARM_EXIDX;
19635
19636 return -1;
19637 }
19638 \f
19639 /* Code to deal with unwinding tables. */
19640
19641 static void add_unwind_adjustsp (offsetT);
19642
19643 /* Generate any deferred unwind frame offset. */
19644
19645 static void
19646 flush_pending_unwind (void)
19647 {
19648 offsetT offset;
19649
19650 offset = unwind.pending_offset;
19651 unwind.pending_offset = 0;
19652 if (offset != 0)
19653 add_unwind_adjustsp (offset);
19654 }
19655
19656 /* Add an opcode to this list for this function. Two-byte opcodes should
19657 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
19658 order. */
19659
19660 static void
19661 add_unwind_opcode (valueT op, int length)
19662 {
19663 /* Add any deferred stack adjustment. */
19664 if (unwind.pending_offset)
19665 flush_pending_unwind ();
19666
19667 unwind.sp_restored = 0;
19668
19669 if (unwind.opcode_count + length > unwind.opcode_alloc)
19670 {
19671 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
19672 if (unwind.opcodes)
19673 unwind.opcodes = (unsigned char *) xrealloc (unwind.opcodes,
19674 unwind.opcode_alloc);
19675 else
19676 unwind.opcodes = (unsigned char *) xmalloc (unwind.opcode_alloc);
19677 }
19678 while (length > 0)
19679 {
19680 length--;
19681 unwind.opcodes[unwind.opcode_count] = op & 0xff;
19682 op >>= 8;
19683 unwind.opcode_count++;
19684 }
19685 }
19686
19687 /* Add unwind opcodes to adjust the stack pointer. */
19688
19689 static void
19690 add_unwind_adjustsp (offsetT offset)
19691 {
19692 valueT op;
19693
19694 if (offset > 0x200)
19695 {
19696 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
19697 char bytes[5];
19698 int n;
19699 valueT o;
19700
19701 /* Long form: 0xb2, uleb128. */
19702 /* This might not fit in a word so add the individual bytes,
19703 remembering the list is built in reverse order. */
19704 o = (valueT) ((offset - 0x204) >> 2);
19705 if (o == 0)
19706 add_unwind_opcode (0, 1);
19707
19708 /* Calculate the uleb128 encoding of the offset. */
19709 n = 0;
19710 while (o)
19711 {
19712 bytes[n] = o & 0x7f;
19713 o >>= 7;
19714 if (o)
19715 bytes[n] |= 0x80;
19716 n++;
19717 }
19718 /* Add the insn. */
19719 for (; n; n--)
19720 add_unwind_opcode (bytes[n - 1], 1);
19721 add_unwind_opcode (0xb2, 1);
19722 }
19723 else if (offset > 0x100)
19724 {
19725 /* Two short opcodes. */
19726 add_unwind_opcode (0x3f, 1);
19727 op = (offset - 0x104) >> 2;
19728 add_unwind_opcode (op, 1);
19729 }
19730 else if (offset > 0)
19731 {
19732 /* Short opcode. */
19733 op = (offset - 4) >> 2;
19734 add_unwind_opcode (op, 1);
19735 }
19736 else if (offset < 0)
19737 {
19738 offset = -offset;
19739 while (offset > 0x100)
19740 {
19741 add_unwind_opcode (0x7f, 1);
19742 offset -= 0x100;
19743 }
19744 op = ((offset - 4) >> 2) | 0x40;
19745 add_unwind_opcode (op, 1);
19746 }
19747 }
19748
19749 /* Finish the list of unwind opcodes for this function. */
19750 static void
19751 finish_unwind_opcodes (void)
19752 {
19753 valueT op;
19754
19755 if (unwind.fp_used)
19756 {
19757 /* Adjust sp as necessary. */
19758 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
19759 flush_pending_unwind ();
19760
19761 /* After restoring sp from the frame pointer. */
19762 op = 0x90 | unwind.fp_reg;
19763 add_unwind_opcode (op, 1);
19764 }
19765 else
19766 flush_pending_unwind ();
19767 }
19768
19769
19770 /* Start an exception table entry. If idx is nonzero this is an index table
19771 entry. */
19772
19773 static void
19774 start_unwind_section (const segT text_seg, int idx)
19775 {
19776 const char * text_name;
19777 const char * prefix;
19778 const char * prefix_once;
19779 const char * group_name;
19780 size_t prefix_len;
19781 size_t text_len;
19782 char * sec_name;
19783 size_t sec_name_len;
19784 int type;
19785 int flags;
19786 int linkonce;
19787
19788 if (idx)
19789 {
19790 prefix = ELF_STRING_ARM_unwind;
19791 prefix_once = ELF_STRING_ARM_unwind_once;
19792 type = SHT_ARM_EXIDX;
19793 }
19794 else
19795 {
19796 prefix = ELF_STRING_ARM_unwind_info;
19797 prefix_once = ELF_STRING_ARM_unwind_info_once;
19798 type = SHT_PROGBITS;
19799 }
19800
19801 text_name = segment_name (text_seg);
19802 if (streq (text_name, ".text"))
19803 text_name = "";
19804
19805 if (strncmp (text_name, ".gnu.linkonce.t.",
19806 strlen (".gnu.linkonce.t.")) == 0)
19807 {
19808 prefix = prefix_once;
19809 text_name += strlen (".gnu.linkonce.t.");
19810 }
19811
19812 prefix_len = strlen (prefix);
19813 text_len = strlen (text_name);
19814 sec_name_len = prefix_len + text_len;
19815 sec_name = (char *) xmalloc (sec_name_len + 1);
19816 memcpy (sec_name, prefix, prefix_len);
19817 memcpy (sec_name + prefix_len, text_name, text_len);
19818 sec_name[prefix_len + text_len] = '\0';
19819
19820 flags = SHF_ALLOC;
19821 linkonce = 0;
19822 group_name = 0;
19823
19824 /* Handle COMDAT group. */
19825 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
19826 {
19827 group_name = elf_group_name (text_seg);
19828 if (group_name == NULL)
19829 {
19830 as_bad (_("Group section `%s' has no group signature"),
19831 segment_name (text_seg));
19832 ignore_rest_of_line ();
19833 return;
19834 }
19835 flags |= SHF_GROUP;
19836 linkonce = 1;
19837 }
19838
19839 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
19840
19841 /* Set the section link for index tables. */
19842 if (idx)
19843 elf_linked_to_section (now_seg) = text_seg;
19844 }
19845
19846
19847 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
19848 personality routine data. Returns zero, or the index table value for
19849 and inline entry. */
19850
19851 static valueT
19852 create_unwind_entry (int have_data)
19853 {
19854 int size;
19855 addressT where;
19856 char *ptr;
19857 /* The current word of data. */
19858 valueT data;
19859 /* The number of bytes left in this word. */
19860 int n;
19861
19862 finish_unwind_opcodes ();
19863
19864 /* Remember the current text section. */
19865 unwind.saved_seg = now_seg;
19866 unwind.saved_subseg = now_subseg;
19867
19868 start_unwind_section (now_seg, 0);
19869
19870 if (unwind.personality_routine == NULL)
19871 {
19872 if (unwind.personality_index == -2)
19873 {
19874 if (have_data)
19875 as_bad (_("handlerdata in cantunwind frame"));
19876 return 1; /* EXIDX_CANTUNWIND. */
19877 }
19878
19879 /* Use a default personality routine if none is specified. */
19880 if (unwind.personality_index == -1)
19881 {
19882 if (unwind.opcode_count > 3)
19883 unwind.personality_index = 1;
19884 else
19885 unwind.personality_index = 0;
19886 }
19887
19888 /* Space for the personality routine entry. */
19889 if (unwind.personality_index == 0)
19890 {
19891 if (unwind.opcode_count > 3)
19892 as_bad (_("too many unwind opcodes for personality routine 0"));
19893
19894 if (!have_data)
19895 {
19896 /* All the data is inline in the index table. */
19897 data = 0x80;
19898 n = 3;
19899 while (unwind.opcode_count > 0)
19900 {
19901 unwind.opcode_count--;
19902 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19903 n--;
19904 }
19905
19906 /* Pad with "finish" opcodes. */
19907 while (n--)
19908 data = (data << 8) | 0xb0;
19909
19910 return data;
19911 }
19912 size = 0;
19913 }
19914 else
19915 /* We get two opcodes "free" in the first word. */
19916 size = unwind.opcode_count - 2;
19917 }
19918 else
19919 /* An extra byte is required for the opcode count. */
19920 size = unwind.opcode_count + 1;
19921
19922 size = (size + 3) >> 2;
19923 if (size > 0xff)
19924 as_bad (_("too many unwind opcodes"));
19925
19926 frag_align (2, 0, 0);
19927 record_alignment (now_seg, 2);
19928 unwind.table_entry = expr_build_dot ();
19929
19930 /* Allocate the table entry. */
19931 ptr = frag_more ((size << 2) + 4);
19932 where = frag_now_fix () - ((size << 2) + 4);
19933
19934 switch (unwind.personality_index)
19935 {
19936 case -1:
19937 /* ??? Should this be a PLT generating relocation? */
19938 /* Custom personality routine. */
19939 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
19940 BFD_RELOC_ARM_PREL31);
19941
19942 where += 4;
19943 ptr += 4;
19944
19945 /* Set the first byte to the number of additional words. */
19946 data = size - 1;
19947 n = 3;
19948 break;
19949
19950 /* ABI defined personality routines. */
19951 case 0:
19952 /* Three opcodes bytes are packed into the first word. */
19953 data = 0x80;
19954 n = 3;
19955 break;
19956
19957 case 1:
19958 case 2:
19959 /* The size and first two opcode bytes go in the first word. */
19960 data = ((0x80 + unwind.personality_index) << 8) | size;
19961 n = 2;
19962 break;
19963
19964 default:
19965 /* Should never happen. */
19966 abort ();
19967 }
19968
19969 /* Pack the opcodes into words (MSB first), reversing the list at the same
19970 time. */
19971 while (unwind.opcode_count > 0)
19972 {
19973 if (n == 0)
19974 {
19975 md_number_to_chars (ptr, data, 4);
19976 ptr += 4;
19977 n = 4;
19978 data = 0;
19979 }
19980 unwind.opcode_count--;
19981 n--;
19982 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19983 }
19984
19985 /* Finish off the last word. */
19986 if (n < 4)
19987 {
19988 /* Pad with "finish" opcodes. */
19989 while (n--)
19990 data = (data << 8) | 0xb0;
19991
19992 md_number_to_chars (ptr, data, 4);
19993 }
19994
19995 if (!have_data)
19996 {
19997 /* Add an empty descriptor if there is no user-specified data. */
19998 ptr = frag_more (4);
19999 md_number_to_chars (ptr, 0, 4);
20000 }
20001
20002 return 0;
20003 }
20004
20005
20006 /* Initialize the DWARF-2 unwind information for this procedure. */
20007
20008 void
20009 tc_arm_frame_initial_instructions (void)
20010 {
20011 cfi_add_CFA_def_cfa (REG_SP, 0);
20012 }
20013 #endif /* OBJ_ELF */
20014
20015 /* Convert REGNAME to a DWARF-2 register number. */
20016
20017 int
20018 tc_arm_regname_to_dw2regnum (char *regname)
20019 {
20020 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
20021
20022 if (reg == FAIL)
20023 return -1;
20024
20025 return reg;
20026 }
20027
20028 #ifdef TE_PE
20029 void
20030 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
20031 {
20032 expressionS exp;
20033
20034 exp.X_op = O_secrel;
20035 exp.X_add_symbol = symbol;
20036 exp.X_add_number = 0;
20037 emit_expr (&exp, size);
20038 }
20039 #endif
20040
20041 /* MD interface: Symbol and relocation handling. */
20042
20043 /* Return the address within the segment that a PC-relative fixup is
20044 relative to. For ARM, PC-relative fixups applied to instructions
20045 are generally relative to the location of the fixup plus 8 bytes.
20046 Thumb branches are offset by 4, and Thumb loads relative to PC
20047 require special handling. */
20048
20049 long
20050 md_pcrel_from_section (fixS * fixP, segT seg)
20051 {
20052 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
20053
20054 /* If this is pc-relative and we are going to emit a relocation
20055 then we just want to put out any pipeline compensation that the linker
20056 will need. Otherwise we want to use the calculated base.
20057 For WinCE we skip the bias for externals as well, since this
20058 is how the MS ARM-CE assembler behaves and we want to be compatible. */
20059 if (fixP->fx_pcrel
20060 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
20061 || (arm_force_relocation (fixP)
20062 #ifdef TE_WINCE
20063 && !S_IS_EXTERNAL (fixP->fx_addsy)
20064 #endif
20065 )))
20066 base = 0;
20067
20068
20069 switch (fixP->fx_r_type)
20070 {
20071 /* PC relative addressing on the Thumb is slightly odd as the
20072 bottom two bits of the PC are forced to zero for the
20073 calculation. This happens *after* application of the
20074 pipeline offset. However, Thumb adrl already adjusts for
20075 this, so we need not do it again. */
20076 case BFD_RELOC_ARM_THUMB_ADD:
20077 return base & ~3;
20078
20079 case BFD_RELOC_ARM_THUMB_OFFSET:
20080 case BFD_RELOC_ARM_T32_OFFSET_IMM:
20081 case BFD_RELOC_ARM_T32_ADD_PC12:
20082 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
20083 return (base + 4) & ~3;
20084
20085 /* Thumb branches are simply offset by +4. */
20086 case BFD_RELOC_THUMB_PCREL_BRANCH7:
20087 case BFD_RELOC_THUMB_PCREL_BRANCH9:
20088 case BFD_RELOC_THUMB_PCREL_BRANCH12:
20089 case BFD_RELOC_THUMB_PCREL_BRANCH20:
20090 case BFD_RELOC_THUMB_PCREL_BRANCH25:
20091 return base + 4;
20092
20093 case BFD_RELOC_THUMB_PCREL_BRANCH23:
20094 if (fixP->fx_addsy
20095 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20096 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20097 && ARM_IS_FUNC (fixP->fx_addsy)
20098 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20099 base = fixP->fx_where + fixP->fx_frag->fr_address;
20100 return base + 4;
20101
20102 /* BLX is like branches above, but forces the low two bits of PC to
20103 zero. */
20104 case BFD_RELOC_THUMB_PCREL_BLX:
20105 if (fixP->fx_addsy
20106 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20107 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20108 && THUMB_IS_FUNC (fixP->fx_addsy)
20109 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20110 base = fixP->fx_where + fixP->fx_frag->fr_address;
20111 return (base + 4) & ~3;
20112
20113 /* ARM mode branches are offset by +8. However, the Windows CE
20114 loader expects the relocation not to take this into account. */
20115 case BFD_RELOC_ARM_PCREL_BLX:
20116 if (fixP->fx_addsy
20117 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20118 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20119 && ARM_IS_FUNC (fixP->fx_addsy)
20120 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20121 base = fixP->fx_where + fixP->fx_frag->fr_address;
20122 return base + 8;
20123
20124 case BFD_RELOC_ARM_PCREL_CALL:
20125 if (fixP->fx_addsy
20126 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20127 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20128 && THUMB_IS_FUNC (fixP->fx_addsy)
20129 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20130 base = fixP->fx_where + fixP->fx_frag->fr_address;
20131 return base + 8;
20132
20133 case BFD_RELOC_ARM_PCREL_BRANCH:
20134 case BFD_RELOC_ARM_PCREL_JUMP:
20135 case BFD_RELOC_ARM_PLT32:
20136 #ifdef TE_WINCE
20137 /* When handling fixups immediately, because we have already
20138 discovered the value of a symbol, or the address of the frag involved
20139 we must account for the offset by +8, as the OS loader will never see the reloc.
20140 see fixup_segment() in write.c
20141 The S_IS_EXTERNAL test handles the case of global symbols.
20142 Those need the calculated base, not just the pipe compensation the linker will need. */
20143 if (fixP->fx_pcrel
20144 && fixP->fx_addsy != NULL
20145 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20146 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
20147 return base + 8;
20148 return base;
20149 #else
20150 return base + 8;
20151 #endif
20152
20153
20154 /* ARM mode loads relative to PC are also offset by +8. Unlike
20155 branches, the Windows CE loader *does* expect the relocation
20156 to take this into account. */
20157 case BFD_RELOC_ARM_OFFSET_IMM:
20158 case BFD_RELOC_ARM_OFFSET_IMM8:
20159 case BFD_RELOC_ARM_HWLITERAL:
20160 case BFD_RELOC_ARM_LITERAL:
20161 case BFD_RELOC_ARM_CP_OFF_IMM:
20162 return base + 8;
20163
20164
20165 /* Other PC-relative relocations are un-offset. */
20166 default:
20167 return base;
20168 }
20169 }
20170
20171 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
20172 Otherwise we have no need to default values of symbols. */
20173
20174 symbolS *
20175 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
20176 {
20177 #ifdef OBJ_ELF
20178 if (name[0] == '_' && name[1] == 'G'
20179 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
20180 {
20181 if (!GOT_symbol)
20182 {
20183 if (symbol_find (name))
20184 as_bad (_("GOT already in the symbol table"));
20185
20186 GOT_symbol = symbol_new (name, undefined_section,
20187 (valueT) 0, & zero_address_frag);
20188 }
20189
20190 return GOT_symbol;
20191 }
20192 #endif
20193
20194 return NULL;
20195 }
20196
20197 /* Subroutine of md_apply_fix. Check to see if an immediate can be
20198 computed as two separate immediate values, added together. We
20199 already know that this value cannot be computed by just one ARM
20200 instruction. */
20201
20202 static unsigned int
20203 validate_immediate_twopart (unsigned int val,
20204 unsigned int * highpart)
20205 {
20206 unsigned int a;
20207 unsigned int i;
20208
20209 for (i = 0; i < 32; i += 2)
20210 if (((a = rotate_left (val, i)) & 0xff) != 0)
20211 {
20212 if (a & 0xff00)
20213 {
20214 if (a & ~ 0xffff)
20215 continue;
20216 * highpart = (a >> 8) | ((i + 24) << 7);
20217 }
20218 else if (a & 0xff0000)
20219 {
20220 if (a & 0xff000000)
20221 continue;
20222 * highpart = (a >> 16) | ((i + 16) << 7);
20223 }
20224 else
20225 {
20226 gas_assert (a & 0xff000000);
20227 * highpart = (a >> 24) | ((i + 8) << 7);
20228 }
20229
20230 return (a & 0xff) | (i << 7);
20231 }
20232
20233 return FAIL;
20234 }
20235
20236 static int
20237 validate_offset_imm (unsigned int val, int hwse)
20238 {
20239 if ((hwse && val > 255) || val > 4095)
20240 return FAIL;
20241 return val;
20242 }
20243
20244 /* Subroutine of md_apply_fix. Do those data_ops which can take a
20245 negative immediate constant by altering the instruction. A bit of
20246 a hack really.
20247 MOV <-> MVN
20248 AND <-> BIC
20249 ADC <-> SBC
20250 by inverting the second operand, and
20251 ADD <-> SUB
20252 CMP <-> CMN
20253 by negating the second operand. */
20254
20255 static int
20256 negate_data_op (unsigned long * instruction,
20257 unsigned long value)
20258 {
20259 int op, new_inst;
20260 unsigned long negated, inverted;
20261
20262 negated = encode_arm_immediate (-value);
20263 inverted = encode_arm_immediate (~value);
20264
20265 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
20266 switch (op)
20267 {
20268 /* First negates. */
20269 case OPCODE_SUB: /* ADD <-> SUB */
20270 new_inst = OPCODE_ADD;
20271 value = negated;
20272 break;
20273
20274 case OPCODE_ADD:
20275 new_inst = OPCODE_SUB;
20276 value = negated;
20277 break;
20278
20279 case OPCODE_CMP: /* CMP <-> CMN */
20280 new_inst = OPCODE_CMN;
20281 value = negated;
20282 break;
20283
20284 case OPCODE_CMN:
20285 new_inst = OPCODE_CMP;
20286 value = negated;
20287 break;
20288
20289 /* Now Inverted ops. */
20290 case OPCODE_MOV: /* MOV <-> MVN */
20291 new_inst = OPCODE_MVN;
20292 value = inverted;
20293 break;
20294
20295 case OPCODE_MVN:
20296 new_inst = OPCODE_MOV;
20297 value = inverted;
20298 break;
20299
20300 case OPCODE_AND: /* AND <-> BIC */
20301 new_inst = OPCODE_BIC;
20302 value = inverted;
20303 break;
20304
20305 case OPCODE_BIC:
20306 new_inst = OPCODE_AND;
20307 value = inverted;
20308 break;
20309
20310 case OPCODE_ADC: /* ADC <-> SBC */
20311 new_inst = OPCODE_SBC;
20312 value = inverted;
20313 break;
20314
20315 case OPCODE_SBC:
20316 new_inst = OPCODE_ADC;
20317 value = inverted;
20318 break;
20319
20320 /* We cannot do anything. */
20321 default:
20322 return FAIL;
20323 }
20324
20325 if (value == (unsigned) FAIL)
20326 return FAIL;
20327
20328 *instruction &= OPCODE_MASK;
20329 *instruction |= new_inst << DATA_OP_SHIFT;
20330 return value;
20331 }
20332
20333 /* Like negate_data_op, but for Thumb-2. */
20334
20335 static unsigned int
20336 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
20337 {
20338 int op, new_inst;
20339 int rd;
20340 unsigned int negated, inverted;
20341
20342 negated = encode_thumb32_immediate (-value);
20343 inverted = encode_thumb32_immediate (~value);
20344
20345 rd = (*instruction >> 8) & 0xf;
20346 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
20347 switch (op)
20348 {
20349 /* ADD <-> SUB. Includes CMP <-> CMN. */
20350 case T2_OPCODE_SUB:
20351 new_inst = T2_OPCODE_ADD;
20352 value = negated;
20353 break;
20354
20355 case T2_OPCODE_ADD:
20356 new_inst = T2_OPCODE_SUB;
20357 value = negated;
20358 break;
20359
20360 /* ORR <-> ORN. Includes MOV <-> MVN. */
20361 case T2_OPCODE_ORR:
20362 new_inst = T2_OPCODE_ORN;
20363 value = inverted;
20364 break;
20365
20366 case T2_OPCODE_ORN:
20367 new_inst = T2_OPCODE_ORR;
20368 value = inverted;
20369 break;
20370
20371 /* AND <-> BIC. TST has no inverted equivalent. */
20372 case T2_OPCODE_AND:
20373 new_inst = T2_OPCODE_BIC;
20374 if (rd == 15)
20375 value = FAIL;
20376 else
20377 value = inverted;
20378 break;
20379
20380 case T2_OPCODE_BIC:
20381 new_inst = T2_OPCODE_AND;
20382 value = inverted;
20383 break;
20384
20385 /* ADC <-> SBC */
20386 case T2_OPCODE_ADC:
20387 new_inst = T2_OPCODE_SBC;
20388 value = inverted;
20389 break;
20390
20391 case T2_OPCODE_SBC:
20392 new_inst = T2_OPCODE_ADC;
20393 value = inverted;
20394 break;
20395
20396 /* We cannot do anything. */
20397 default:
20398 return FAIL;
20399 }
20400
20401 if (value == (unsigned int)FAIL)
20402 return FAIL;
20403
20404 *instruction &= T2_OPCODE_MASK;
20405 *instruction |= new_inst << T2_DATA_OP_SHIFT;
20406 return value;
20407 }
20408
20409 /* Read a 32-bit thumb instruction from buf. */
20410 static unsigned long
20411 get_thumb32_insn (char * buf)
20412 {
20413 unsigned long insn;
20414 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
20415 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20416
20417 return insn;
20418 }
20419
20420
20421 /* We usually want to set the low bit on the address of thumb function
20422 symbols. In particular .word foo - . should have the low bit set.
20423 Generic code tries to fold the difference of two symbols to
20424 a constant. Prevent this and force a relocation when the first symbols
20425 is a thumb function. */
20426
20427 bfd_boolean
20428 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
20429 {
20430 if (op == O_subtract
20431 && l->X_op == O_symbol
20432 && r->X_op == O_symbol
20433 && THUMB_IS_FUNC (l->X_add_symbol))
20434 {
20435 l->X_op = O_subtract;
20436 l->X_op_symbol = r->X_add_symbol;
20437 l->X_add_number -= r->X_add_number;
20438 return TRUE;
20439 }
20440
20441 /* Process as normal. */
20442 return FALSE;
20443 }
20444
20445 /* Encode Thumb2 unconditional branches and calls. The encoding
20446 for the 2 are identical for the immediate values. */
20447
20448 static void
20449 encode_thumb2_b_bl_offset (char * buf, offsetT value)
20450 {
20451 #define T2I1I2MASK ((1 << 13) | (1 << 11))
20452 offsetT newval;
20453 offsetT newval2;
20454 addressT S, I1, I2, lo, hi;
20455
20456 S = (value >> 24) & 0x01;
20457 I1 = (value >> 23) & 0x01;
20458 I2 = (value >> 22) & 0x01;
20459 hi = (value >> 12) & 0x3ff;
20460 lo = (value >> 1) & 0x7ff;
20461 newval = md_chars_to_number (buf, THUMB_SIZE);
20462 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20463 newval |= (S << 10) | hi;
20464 newval2 &= ~T2I1I2MASK;
20465 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
20466 md_number_to_chars (buf, newval, THUMB_SIZE);
20467 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20468 }
20469
20470 void
20471 md_apply_fix (fixS * fixP,
20472 valueT * valP,
20473 segT seg)
20474 {
20475 offsetT value = * valP;
20476 offsetT newval;
20477 unsigned int newimm;
20478 unsigned long temp;
20479 int sign;
20480 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
20481
20482 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
20483
20484 /* Note whether this will delete the relocation. */
20485
20486 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
20487 fixP->fx_done = 1;
20488
20489 /* On a 64-bit host, silently truncate 'value' to 32 bits for
20490 consistency with the behaviour on 32-bit hosts. Remember value
20491 for emit_reloc. */
20492 value &= 0xffffffff;
20493 value ^= 0x80000000;
20494 value -= 0x80000000;
20495
20496 *valP = value;
20497 fixP->fx_addnumber = value;
20498
20499 /* Same treatment for fixP->fx_offset. */
20500 fixP->fx_offset &= 0xffffffff;
20501 fixP->fx_offset ^= 0x80000000;
20502 fixP->fx_offset -= 0x80000000;
20503
20504 switch (fixP->fx_r_type)
20505 {
20506 case BFD_RELOC_NONE:
20507 /* This will need to go in the object file. */
20508 fixP->fx_done = 0;
20509 break;
20510
20511 case BFD_RELOC_ARM_IMMEDIATE:
20512 /* We claim that this fixup has been processed here,
20513 even if in fact we generate an error because we do
20514 not have a reloc for it, so tc_gen_reloc will reject it. */
20515 fixP->fx_done = 1;
20516
20517 if (fixP->fx_addsy)
20518 {
20519 const char *msg = 0;
20520
20521 if (! S_IS_DEFINED (fixP->fx_addsy))
20522 msg = _("undefined symbol %s used as an immediate value");
20523 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
20524 msg = _("symbol %s is in a different section");
20525 else if (S_IS_WEAK (fixP->fx_addsy))
20526 msg = _("symbol %s is weak and may be overridden later");
20527
20528 if (msg)
20529 {
20530 as_bad_where (fixP->fx_file, fixP->fx_line,
20531 msg, S_GET_NAME (fixP->fx_addsy));
20532 break;
20533 }
20534 }
20535
20536 newimm = encode_arm_immediate (value);
20537 temp = md_chars_to_number (buf, INSN_SIZE);
20538
20539 /* If the instruction will fail, see if we can fix things up by
20540 changing the opcode. */
20541 if (newimm == (unsigned int) FAIL
20542 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
20543 {
20544 as_bad_where (fixP->fx_file, fixP->fx_line,
20545 _("invalid constant (%lx) after fixup"),
20546 (unsigned long) value);
20547 break;
20548 }
20549
20550 newimm |= (temp & 0xfffff000);
20551 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
20552 break;
20553
20554 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
20555 {
20556 unsigned int highpart = 0;
20557 unsigned int newinsn = 0xe1a00000; /* nop. */
20558
20559 if (fixP->fx_addsy)
20560 {
20561 const char *msg = 0;
20562
20563 if (! S_IS_DEFINED (fixP->fx_addsy))
20564 msg = _("undefined symbol %s used as an immediate value");
20565 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
20566 msg = _("symbol %s is in a different section");
20567 else if (S_IS_WEAK (fixP->fx_addsy))
20568 msg = _("symbol %s is weak and may be overridden later");
20569
20570 if (msg)
20571 {
20572 as_bad_where (fixP->fx_file, fixP->fx_line,
20573 msg, S_GET_NAME (fixP->fx_addsy));
20574 break;
20575 }
20576 }
20577
20578 newimm = encode_arm_immediate (value);
20579 temp = md_chars_to_number (buf, INSN_SIZE);
20580
20581 /* If the instruction will fail, see if we can fix things up by
20582 changing the opcode. */
20583 if (newimm == (unsigned int) FAIL
20584 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
20585 {
20586 /* No ? OK - try using two ADD instructions to generate
20587 the value. */
20588 newimm = validate_immediate_twopart (value, & highpart);
20589
20590 /* Yes - then make sure that the second instruction is
20591 also an add. */
20592 if (newimm != (unsigned int) FAIL)
20593 newinsn = temp;
20594 /* Still No ? Try using a negated value. */
20595 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
20596 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
20597 /* Otherwise - give up. */
20598 else
20599 {
20600 as_bad_where (fixP->fx_file, fixP->fx_line,
20601 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
20602 (long) value);
20603 break;
20604 }
20605
20606 /* Replace the first operand in the 2nd instruction (which
20607 is the PC) with the destination register. We have
20608 already added in the PC in the first instruction and we
20609 do not want to do it again. */
20610 newinsn &= ~ 0xf0000;
20611 newinsn |= ((newinsn & 0x0f000) << 4);
20612 }
20613
20614 newimm |= (temp & 0xfffff000);
20615 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
20616
20617 highpart |= (newinsn & 0xfffff000);
20618 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
20619 }
20620 break;
20621
20622 case BFD_RELOC_ARM_OFFSET_IMM:
20623 if (!fixP->fx_done && seg->use_rela_p)
20624 value = 0;
20625
20626 case BFD_RELOC_ARM_LITERAL:
20627 sign = value > 0;
20628
20629 if (value < 0)
20630 value = - value;
20631
20632 if (validate_offset_imm (value, 0) == FAIL)
20633 {
20634 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
20635 as_bad_where (fixP->fx_file, fixP->fx_line,
20636 _("invalid literal constant: pool needs to be closer"));
20637 else
20638 as_bad_where (fixP->fx_file, fixP->fx_line,
20639 _("bad immediate value for offset (%ld)"),
20640 (long) value);
20641 break;
20642 }
20643
20644 newval = md_chars_to_number (buf, INSN_SIZE);
20645 if (value == 0)
20646 newval &= 0xfffff000;
20647 else
20648 {
20649 newval &= 0xff7ff000;
20650 newval |= value | (sign ? INDEX_UP : 0);
20651 }
20652 md_number_to_chars (buf, newval, INSN_SIZE);
20653 break;
20654
20655 case BFD_RELOC_ARM_OFFSET_IMM8:
20656 case BFD_RELOC_ARM_HWLITERAL:
20657 sign = value > 0;
20658
20659 if (value < 0)
20660 value = - value;
20661
20662 if (validate_offset_imm (value, 1) == FAIL)
20663 {
20664 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
20665 as_bad_where (fixP->fx_file, fixP->fx_line,
20666 _("invalid literal constant: pool needs to be closer"));
20667 else
20668 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
20669 (long) value);
20670 break;
20671 }
20672
20673 newval = md_chars_to_number (buf, INSN_SIZE);
20674 if (value == 0)
20675 newval &= 0xfffff0f0;
20676 else
20677 {
20678 newval &= 0xff7ff0f0;
20679 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
20680 }
20681 md_number_to_chars (buf, newval, INSN_SIZE);
20682 break;
20683
20684 case BFD_RELOC_ARM_T32_OFFSET_U8:
20685 if (value < 0 || value > 1020 || value % 4 != 0)
20686 as_bad_where (fixP->fx_file, fixP->fx_line,
20687 _("bad immediate value for offset (%ld)"), (long) value);
20688 value /= 4;
20689
20690 newval = md_chars_to_number (buf+2, THUMB_SIZE);
20691 newval |= value;
20692 md_number_to_chars (buf+2, newval, THUMB_SIZE);
20693 break;
20694
20695 case BFD_RELOC_ARM_T32_OFFSET_IMM:
20696 /* This is a complicated relocation used for all varieties of Thumb32
20697 load/store instruction with immediate offset:
20698
20699 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
20700 *4, optional writeback(W)
20701 (doubleword load/store)
20702
20703 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
20704 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
20705 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
20706 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
20707 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
20708
20709 Uppercase letters indicate bits that are already encoded at
20710 this point. Lowercase letters are our problem. For the
20711 second block of instructions, the secondary opcode nybble
20712 (bits 8..11) is present, and bit 23 is zero, even if this is
20713 a PC-relative operation. */
20714 newval = md_chars_to_number (buf, THUMB_SIZE);
20715 newval <<= 16;
20716 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
20717
20718 if ((newval & 0xf0000000) == 0xe0000000)
20719 {
20720 /* Doubleword load/store: 8-bit offset, scaled by 4. */
20721 if (value >= 0)
20722 newval |= (1 << 23);
20723 else
20724 value = -value;
20725 if (value % 4 != 0)
20726 {
20727 as_bad_where (fixP->fx_file, fixP->fx_line,
20728 _("offset not a multiple of 4"));
20729 break;
20730 }
20731 value /= 4;
20732 if (value > 0xff)
20733 {
20734 as_bad_where (fixP->fx_file, fixP->fx_line,
20735 _("offset out of range"));
20736 break;
20737 }
20738 newval &= ~0xff;
20739 }
20740 else if ((newval & 0x000f0000) == 0x000f0000)
20741 {
20742 /* PC-relative, 12-bit offset. */
20743 if (value >= 0)
20744 newval |= (1 << 23);
20745 else
20746 value = -value;
20747 if (value > 0xfff)
20748 {
20749 as_bad_where (fixP->fx_file, fixP->fx_line,
20750 _("offset out of range"));
20751 break;
20752 }
20753 newval &= ~0xfff;
20754 }
20755 else if ((newval & 0x00000100) == 0x00000100)
20756 {
20757 /* Writeback: 8-bit, +/- offset. */
20758 if (value >= 0)
20759 newval |= (1 << 9);
20760 else
20761 value = -value;
20762 if (value > 0xff)
20763 {
20764 as_bad_where (fixP->fx_file, fixP->fx_line,
20765 _("offset out of range"));
20766 break;
20767 }
20768 newval &= ~0xff;
20769 }
20770 else if ((newval & 0x00000f00) == 0x00000e00)
20771 {
20772 /* T-instruction: positive 8-bit offset. */
20773 if (value < 0 || value > 0xff)
20774 {
20775 as_bad_where (fixP->fx_file, fixP->fx_line,
20776 _("offset out of range"));
20777 break;
20778 }
20779 newval &= ~0xff;
20780 newval |= value;
20781 }
20782 else
20783 {
20784 /* Positive 12-bit or negative 8-bit offset. */
20785 int limit;
20786 if (value >= 0)
20787 {
20788 newval |= (1 << 23);
20789 limit = 0xfff;
20790 }
20791 else
20792 {
20793 value = -value;
20794 limit = 0xff;
20795 }
20796 if (value > limit)
20797 {
20798 as_bad_where (fixP->fx_file, fixP->fx_line,
20799 _("offset out of range"));
20800 break;
20801 }
20802 newval &= ~limit;
20803 }
20804
20805 newval |= value;
20806 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
20807 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
20808 break;
20809
20810 case BFD_RELOC_ARM_SHIFT_IMM:
20811 newval = md_chars_to_number (buf, INSN_SIZE);
20812 if (((unsigned long) value) > 32
20813 || (value == 32
20814 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
20815 {
20816 as_bad_where (fixP->fx_file, fixP->fx_line,
20817 _("shift expression is too large"));
20818 break;
20819 }
20820
20821 if (value == 0)
20822 /* Shifts of zero must be done as lsl. */
20823 newval &= ~0x60;
20824 else if (value == 32)
20825 value = 0;
20826 newval &= 0xfffff07f;
20827 newval |= (value & 0x1f) << 7;
20828 md_number_to_chars (buf, newval, INSN_SIZE);
20829 break;
20830
20831 case BFD_RELOC_ARM_T32_IMMEDIATE:
20832 case BFD_RELOC_ARM_T32_ADD_IMM:
20833 case BFD_RELOC_ARM_T32_IMM12:
20834 case BFD_RELOC_ARM_T32_ADD_PC12:
20835 /* We claim that this fixup has been processed here,
20836 even if in fact we generate an error because we do
20837 not have a reloc for it, so tc_gen_reloc will reject it. */
20838 fixP->fx_done = 1;
20839
20840 if (fixP->fx_addsy
20841 && ! S_IS_DEFINED (fixP->fx_addsy))
20842 {
20843 as_bad_where (fixP->fx_file, fixP->fx_line,
20844 _("undefined symbol %s used as an immediate value"),
20845 S_GET_NAME (fixP->fx_addsy));
20846 break;
20847 }
20848
20849 newval = md_chars_to_number (buf, THUMB_SIZE);
20850 newval <<= 16;
20851 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
20852
20853 newimm = FAIL;
20854 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
20855 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
20856 {
20857 newimm = encode_thumb32_immediate (value);
20858 if (newimm == (unsigned int) FAIL)
20859 newimm = thumb32_negate_data_op (&newval, value);
20860 }
20861 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
20862 && newimm == (unsigned int) FAIL)
20863 {
20864 /* Turn add/sum into addw/subw. */
20865 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
20866 newval = (newval & 0xfeffffff) | 0x02000000;
20867 /* No flat 12-bit imm encoding for addsw/subsw. */
20868 if ((newval & 0x00100000) == 0)
20869 {
20870 /* 12 bit immediate for addw/subw. */
20871 if (value < 0)
20872 {
20873 value = -value;
20874 newval ^= 0x00a00000;
20875 }
20876 if (value > 0xfff)
20877 newimm = (unsigned int) FAIL;
20878 else
20879 newimm = value;
20880 }
20881 }
20882
20883 if (newimm == (unsigned int)FAIL)
20884 {
20885 as_bad_where (fixP->fx_file, fixP->fx_line,
20886 _("invalid constant (%lx) after fixup"),
20887 (unsigned long) value);
20888 break;
20889 }
20890
20891 newval |= (newimm & 0x800) << 15;
20892 newval |= (newimm & 0x700) << 4;
20893 newval |= (newimm & 0x0ff);
20894
20895 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
20896 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
20897 break;
20898
20899 case BFD_RELOC_ARM_SMC:
20900 if (((unsigned long) value) > 0xffff)
20901 as_bad_where (fixP->fx_file, fixP->fx_line,
20902 _("invalid smc expression"));
20903 newval = md_chars_to_number (buf, INSN_SIZE);
20904 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
20905 md_number_to_chars (buf, newval, INSN_SIZE);
20906 break;
20907
20908 case BFD_RELOC_ARM_HVC:
20909 if (((unsigned long) value) > 0xffff)
20910 as_bad_where (fixP->fx_file, fixP->fx_line,
20911 _("invalid hvc expression"));
20912 newval = md_chars_to_number (buf, INSN_SIZE);
20913 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
20914 md_number_to_chars (buf, newval, INSN_SIZE);
20915 break;
20916
20917 case BFD_RELOC_ARM_SWI:
20918 if (fixP->tc_fix_data != 0)
20919 {
20920 if (((unsigned long) value) > 0xff)
20921 as_bad_where (fixP->fx_file, fixP->fx_line,
20922 _("invalid swi expression"));
20923 newval = md_chars_to_number (buf, THUMB_SIZE);
20924 newval |= value;
20925 md_number_to_chars (buf, newval, THUMB_SIZE);
20926 }
20927 else
20928 {
20929 if (((unsigned long) value) > 0x00ffffff)
20930 as_bad_where (fixP->fx_file, fixP->fx_line,
20931 _("invalid swi expression"));
20932 newval = md_chars_to_number (buf, INSN_SIZE);
20933 newval |= value;
20934 md_number_to_chars (buf, newval, INSN_SIZE);
20935 }
20936 break;
20937
20938 case BFD_RELOC_ARM_MULTI:
20939 if (((unsigned long) value) > 0xffff)
20940 as_bad_where (fixP->fx_file, fixP->fx_line,
20941 _("invalid expression in load/store multiple"));
20942 newval = value | md_chars_to_number (buf, INSN_SIZE);
20943 md_number_to_chars (buf, newval, INSN_SIZE);
20944 break;
20945
20946 #ifdef OBJ_ELF
20947 case BFD_RELOC_ARM_PCREL_CALL:
20948
20949 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20950 && fixP->fx_addsy
20951 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20952 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20953 && THUMB_IS_FUNC (fixP->fx_addsy))
20954 /* Flip the bl to blx. This is a simple flip
20955 bit here because we generate PCREL_CALL for
20956 unconditional bls. */
20957 {
20958 newval = md_chars_to_number (buf, INSN_SIZE);
20959 newval = newval | 0x10000000;
20960 md_number_to_chars (buf, newval, INSN_SIZE);
20961 temp = 1;
20962 fixP->fx_done = 1;
20963 }
20964 else
20965 temp = 3;
20966 goto arm_branch_common;
20967
20968 case BFD_RELOC_ARM_PCREL_JUMP:
20969 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20970 && fixP->fx_addsy
20971 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20972 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20973 && THUMB_IS_FUNC (fixP->fx_addsy))
20974 {
20975 /* This would map to a bl<cond>, b<cond>,
20976 b<always> to a Thumb function. We
20977 need to force a relocation for this particular
20978 case. */
20979 newval = md_chars_to_number (buf, INSN_SIZE);
20980 fixP->fx_done = 0;
20981 }
20982
20983 case BFD_RELOC_ARM_PLT32:
20984 #endif
20985 case BFD_RELOC_ARM_PCREL_BRANCH:
20986 temp = 3;
20987 goto arm_branch_common;
20988
20989 case BFD_RELOC_ARM_PCREL_BLX:
20990
20991 temp = 1;
20992 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20993 && fixP->fx_addsy
20994 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20995 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20996 && ARM_IS_FUNC (fixP->fx_addsy))
20997 {
20998 /* Flip the blx to a bl and warn. */
20999 const char *name = S_GET_NAME (fixP->fx_addsy);
21000 newval = 0xeb000000;
21001 as_warn_where (fixP->fx_file, fixP->fx_line,
21002 _("blx to '%s' an ARM ISA state function changed to bl"),
21003 name);
21004 md_number_to_chars (buf, newval, INSN_SIZE);
21005 temp = 3;
21006 fixP->fx_done = 1;
21007 }
21008
21009 #ifdef OBJ_ELF
21010 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
21011 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
21012 #endif
21013
21014 arm_branch_common:
21015 /* We are going to store value (shifted right by two) in the
21016 instruction, in a 24 bit, signed field. Bits 26 through 32 either
21017 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
21018 also be be clear. */
21019 if (value & temp)
21020 as_bad_where (fixP->fx_file, fixP->fx_line,
21021 _("misaligned branch destination"));
21022 if ((value & (offsetT)0xfe000000) != (offsetT)0
21023 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
21024 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21025
21026 if (fixP->fx_done || !seg->use_rela_p)
21027 {
21028 newval = md_chars_to_number (buf, INSN_SIZE);
21029 newval |= (value >> 2) & 0x00ffffff;
21030 /* Set the H bit on BLX instructions. */
21031 if (temp == 1)
21032 {
21033 if (value & 2)
21034 newval |= 0x01000000;
21035 else
21036 newval &= ~0x01000000;
21037 }
21038 md_number_to_chars (buf, newval, INSN_SIZE);
21039 }
21040 break;
21041
21042 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
21043 /* CBZ can only branch forward. */
21044
21045 /* Attempts to use CBZ to branch to the next instruction
21046 (which, strictly speaking, are prohibited) will be turned into
21047 no-ops.
21048
21049 FIXME: It may be better to remove the instruction completely and
21050 perform relaxation. */
21051 if (value == -2)
21052 {
21053 newval = md_chars_to_number (buf, THUMB_SIZE);
21054 newval = 0xbf00; /* NOP encoding T1 */
21055 md_number_to_chars (buf, newval, THUMB_SIZE);
21056 }
21057 else
21058 {
21059 if (value & ~0x7e)
21060 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21061
21062 if (fixP->fx_done || !seg->use_rela_p)
21063 {
21064 newval = md_chars_to_number (buf, THUMB_SIZE);
21065 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
21066 md_number_to_chars (buf, newval, THUMB_SIZE);
21067 }
21068 }
21069 break;
21070
21071 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
21072 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
21073 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21074
21075 if (fixP->fx_done || !seg->use_rela_p)
21076 {
21077 newval = md_chars_to_number (buf, THUMB_SIZE);
21078 newval |= (value & 0x1ff) >> 1;
21079 md_number_to_chars (buf, newval, THUMB_SIZE);
21080 }
21081 break;
21082
21083 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
21084 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
21085 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21086
21087 if (fixP->fx_done || !seg->use_rela_p)
21088 {
21089 newval = md_chars_to_number (buf, THUMB_SIZE);
21090 newval |= (value & 0xfff) >> 1;
21091 md_number_to_chars (buf, newval, THUMB_SIZE);
21092 }
21093 break;
21094
21095 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21096 if (fixP->fx_addsy
21097 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21098 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21099 && ARM_IS_FUNC (fixP->fx_addsy)
21100 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21101 {
21102 /* Force a relocation for a branch 20 bits wide. */
21103 fixP->fx_done = 0;
21104 }
21105 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
21106 as_bad_where (fixP->fx_file, fixP->fx_line,
21107 _("conditional branch out of range"));
21108
21109 if (fixP->fx_done || !seg->use_rela_p)
21110 {
21111 offsetT newval2;
21112 addressT S, J1, J2, lo, hi;
21113
21114 S = (value & 0x00100000) >> 20;
21115 J2 = (value & 0x00080000) >> 19;
21116 J1 = (value & 0x00040000) >> 18;
21117 hi = (value & 0x0003f000) >> 12;
21118 lo = (value & 0x00000ffe) >> 1;
21119
21120 newval = md_chars_to_number (buf, THUMB_SIZE);
21121 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21122 newval |= (S << 10) | hi;
21123 newval2 |= (J1 << 13) | (J2 << 11) | lo;
21124 md_number_to_chars (buf, newval, THUMB_SIZE);
21125 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
21126 }
21127 break;
21128
21129 case BFD_RELOC_THUMB_PCREL_BLX:
21130 /* If there is a blx from a thumb state function to
21131 another thumb function flip this to a bl and warn
21132 about it. */
21133
21134 if (fixP->fx_addsy
21135 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21136 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21137 && THUMB_IS_FUNC (fixP->fx_addsy))
21138 {
21139 const char *name = S_GET_NAME (fixP->fx_addsy);
21140 as_warn_where (fixP->fx_file, fixP->fx_line,
21141 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
21142 name);
21143 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21144 newval = newval | 0x1000;
21145 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
21146 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
21147 fixP->fx_done = 1;
21148 }
21149
21150
21151 goto thumb_bl_common;
21152
21153 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21154 /* A bl from Thumb state ISA to an internal ARM state function
21155 is converted to a blx. */
21156 if (fixP->fx_addsy
21157 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21158 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21159 && ARM_IS_FUNC (fixP->fx_addsy)
21160 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21161 {
21162 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21163 newval = newval & ~0x1000;
21164 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
21165 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
21166 fixP->fx_done = 1;
21167 }
21168
21169 thumb_bl_common:
21170
21171 #ifdef OBJ_ELF
21172 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4 &&
21173 fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
21174 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
21175 #endif
21176
21177 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
21178 /* For a BLX instruction, make sure that the relocation is rounded up
21179 to a word boundary. This follows the semantics of the instruction
21180 which specifies that bit 1 of the target address will come from bit
21181 1 of the base address. */
21182 value = (value + 1) & ~ 1;
21183
21184 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
21185 {
21186 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2)))
21187 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21188 else if ((value & ~0x1ffffff)
21189 && ((value & ~0x1ffffff) != ~0x1ffffff))
21190 as_bad_where (fixP->fx_file, fixP->fx_line,
21191 _("Thumb2 branch out of range"));
21192 }
21193
21194 if (fixP->fx_done || !seg->use_rela_p)
21195 encode_thumb2_b_bl_offset (buf, value);
21196
21197 break;
21198
21199 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21200 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
21201 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21202
21203 if (fixP->fx_done || !seg->use_rela_p)
21204 encode_thumb2_b_bl_offset (buf, value);
21205
21206 break;
21207
21208 case BFD_RELOC_8:
21209 if (fixP->fx_done || !seg->use_rela_p)
21210 md_number_to_chars (buf, value, 1);
21211 break;
21212
21213 case BFD_RELOC_16:
21214 if (fixP->fx_done || !seg->use_rela_p)
21215 md_number_to_chars (buf, value, 2);
21216 break;
21217
21218 #ifdef OBJ_ELF
21219 case BFD_RELOC_ARM_TLS_CALL:
21220 case BFD_RELOC_ARM_THM_TLS_CALL:
21221 case BFD_RELOC_ARM_TLS_DESCSEQ:
21222 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
21223 S_SET_THREAD_LOCAL (fixP->fx_addsy);
21224 break;
21225
21226 case BFD_RELOC_ARM_TLS_GOTDESC:
21227 case BFD_RELOC_ARM_TLS_GD32:
21228 case BFD_RELOC_ARM_TLS_LE32:
21229 case BFD_RELOC_ARM_TLS_IE32:
21230 case BFD_RELOC_ARM_TLS_LDM32:
21231 case BFD_RELOC_ARM_TLS_LDO32:
21232 S_SET_THREAD_LOCAL (fixP->fx_addsy);
21233 /* fall through */
21234
21235 case BFD_RELOC_ARM_GOT32:
21236 case BFD_RELOC_ARM_GOTOFF:
21237 if (fixP->fx_done || !seg->use_rela_p)
21238 md_number_to_chars (buf, 0, 4);
21239 break;
21240
21241 case BFD_RELOC_ARM_GOT_PREL:
21242 if (fixP->fx_done || !seg->use_rela_p)
21243 md_number_to_chars (buf, value, 4);
21244 break;
21245
21246 case BFD_RELOC_ARM_TARGET2:
21247 /* TARGET2 is not partial-inplace, so we need to write the
21248 addend here for REL targets, because it won't be written out
21249 during reloc processing later. */
21250 if (fixP->fx_done || !seg->use_rela_p)
21251 md_number_to_chars (buf, fixP->fx_offset, 4);
21252 break;
21253 #endif
21254
21255 case BFD_RELOC_RVA:
21256 case BFD_RELOC_32:
21257 case BFD_RELOC_ARM_TARGET1:
21258 case BFD_RELOC_ARM_ROSEGREL32:
21259 case BFD_RELOC_ARM_SBREL32:
21260 case BFD_RELOC_32_PCREL:
21261 #ifdef TE_PE
21262 case BFD_RELOC_32_SECREL:
21263 #endif
21264 if (fixP->fx_done || !seg->use_rela_p)
21265 #ifdef TE_WINCE
21266 /* For WinCE we only do this for pcrel fixups. */
21267 if (fixP->fx_done || fixP->fx_pcrel)
21268 #endif
21269 md_number_to_chars (buf, value, 4);
21270 break;
21271
21272 #ifdef OBJ_ELF
21273 case BFD_RELOC_ARM_PREL31:
21274 if (fixP->fx_done || !seg->use_rela_p)
21275 {
21276 newval = md_chars_to_number (buf, 4) & 0x80000000;
21277 if ((value ^ (value >> 1)) & 0x40000000)
21278 {
21279 as_bad_where (fixP->fx_file, fixP->fx_line,
21280 _("rel31 relocation overflow"));
21281 }
21282 newval |= value & 0x7fffffff;
21283 md_number_to_chars (buf, newval, 4);
21284 }
21285 break;
21286 #endif
21287
21288 case BFD_RELOC_ARM_CP_OFF_IMM:
21289 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
21290 if (value < -1023 || value > 1023 || (value & 3))
21291 as_bad_where (fixP->fx_file, fixP->fx_line,
21292 _("co-processor offset out of range"));
21293 cp_off_common:
21294 sign = value > 0;
21295 if (value < 0)
21296 value = -value;
21297 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
21298 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
21299 newval = md_chars_to_number (buf, INSN_SIZE);
21300 else
21301 newval = get_thumb32_insn (buf);
21302 if (value == 0)
21303 newval &= 0xffffff00;
21304 else
21305 {
21306 newval &= 0xff7fff00;
21307 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
21308 }
21309 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
21310 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
21311 md_number_to_chars (buf, newval, INSN_SIZE);
21312 else
21313 put_thumb32_insn (buf, newval);
21314 break;
21315
21316 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
21317 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
21318 if (value < -255 || value > 255)
21319 as_bad_where (fixP->fx_file, fixP->fx_line,
21320 _("co-processor offset out of range"));
21321 value *= 4;
21322 goto cp_off_common;
21323
21324 case BFD_RELOC_ARM_THUMB_OFFSET:
21325 newval = md_chars_to_number (buf, THUMB_SIZE);
21326 /* Exactly what ranges, and where the offset is inserted depends
21327 on the type of instruction, we can establish this from the
21328 top 4 bits. */
21329 switch (newval >> 12)
21330 {
21331 case 4: /* PC load. */
21332 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
21333 forced to zero for these loads; md_pcrel_from has already
21334 compensated for this. */
21335 if (value & 3)
21336 as_bad_where (fixP->fx_file, fixP->fx_line,
21337 _("invalid offset, target not word aligned (0x%08lX)"),
21338 (((unsigned long) fixP->fx_frag->fr_address
21339 + (unsigned long) fixP->fx_where) & ~3)
21340 + (unsigned long) value);
21341
21342 if (value & ~0x3fc)
21343 as_bad_where (fixP->fx_file, fixP->fx_line,
21344 _("invalid offset, value too big (0x%08lX)"),
21345 (long) value);
21346
21347 newval |= value >> 2;
21348 break;
21349
21350 case 9: /* SP load/store. */
21351 if (value & ~0x3fc)
21352 as_bad_where (fixP->fx_file, fixP->fx_line,
21353 _("invalid offset, value too big (0x%08lX)"),
21354 (long) value);
21355 newval |= value >> 2;
21356 break;
21357
21358 case 6: /* Word load/store. */
21359 if (value & ~0x7c)
21360 as_bad_where (fixP->fx_file, fixP->fx_line,
21361 _("invalid offset, value too big (0x%08lX)"),
21362 (long) value);
21363 newval |= value << 4; /* 6 - 2. */
21364 break;
21365
21366 case 7: /* Byte load/store. */
21367 if (value & ~0x1f)
21368 as_bad_where (fixP->fx_file, fixP->fx_line,
21369 _("invalid offset, value too big (0x%08lX)"),
21370 (long) value);
21371 newval |= value << 6;
21372 break;
21373
21374 case 8: /* Halfword load/store. */
21375 if (value & ~0x3e)
21376 as_bad_where (fixP->fx_file, fixP->fx_line,
21377 _("invalid offset, value too big (0x%08lX)"),
21378 (long) value);
21379 newval |= value << 5; /* 6 - 1. */
21380 break;
21381
21382 default:
21383 as_bad_where (fixP->fx_file, fixP->fx_line,
21384 "Unable to process relocation for thumb opcode: %lx",
21385 (unsigned long) newval);
21386 break;
21387 }
21388 md_number_to_chars (buf, newval, THUMB_SIZE);
21389 break;
21390
21391 case BFD_RELOC_ARM_THUMB_ADD:
21392 /* This is a complicated relocation, since we use it for all of
21393 the following immediate relocations:
21394
21395 3bit ADD/SUB
21396 8bit ADD/SUB
21397 9bit ADD/SUB SP word-aligned
21398 10bit ADD PC/SP word-aligned
21399
21400 The type of instruction being processed is encoded in the
21401 instruction field:
21402
21403 0x8000 SUB
21404 0x00F0 Rd
21405 0x000F Rs
21406 */
21407 newval = md_chars_to_number (buf, THUMB_SIZE);
21408 {
21409 int rd = (newval >> 4) & 0xf;
21410 int rs = newval & 0xf;
21411 int subtract = !!(newval & 0x8000);
21412
21413 /* Check for HI regs, only very restricted cases allowed:
21414 Adjusting SP, and using PC or SP to get an address. */
21415 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
21416 || (rs > 7 && rs != REG_SP && rs != REG_PC))
21417 as_bad_where (fixP->fx_file, fixP->fx_line,
21418 _("invalid Hi register with immediate"));
21419
21420 /* If value is negative, choose the opposite instruction. */
21421 if (value < 0)
21422 {
21423 value = -value;
21424 subtract = !subtract;
21425 if (value < 0)
21426 as_bad_where (fixP->fx_file, fixP->fx_line,
21427 _("immediate value out of range"));
21428 }
21429
21430 if (rd == REG_SP)
21431 {
21432 if (value & ~0x1fc)
21433 as_bad_where (fixP->fx_file, fixP->fx_line,
21434 _("invalid immediate for stack address calculation"));
21435 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
21436 newval |= value >> 2;
21437 }
21438 else if (rs == REG_PC || rs == REG_SP)
21439 {
21440 if (subtract || value & ~0x3fc)
21441 as_bad_where (fixP->fx_file, fixP->fx_line,
21442 _("invalid immediate for address calculation (value = 0x%08lX)"),
21443 (unsigned long) value);
21444 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
21445 newval |= rd << 8;
21446 newval |= value >> 2;
21447 }
21448 else if (rs == rd)
21449 {
21450 if (value & ~0xff)
21451 as_bad_where (fixP->fx_file, fixP->fx_line,
21452 _("immediate value out of range"));
21453 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
21454 newval |= (rd << 8) | value;
21455 }
21456 else
21457 {
21458 if (value & ~0x7)
21459 as_bad_where (fixP->fx_file, fixP->fx_line,
21460 _("immediate value out of range"));
21461 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
21462 newval |= rd | (rs << 3) | (value << 6);
21463 }
21464 }
21465 md_number_to_chars (buf, newval, THUMB_SIZE);
21466 break;
21467
21468 case BFD_RELOC_ARM_THUMB_IMM:
21469 newval = md_chars_to_number (buf, THUMB_SIZE);
21470 if (value < 0 || value > 255)
21471 as_bad_where (fixP->fx_file, fixP->fx_line,
21472 _("invalid immediate: %ld is out of range"),
21473 (long) value);
21474 newval |= value;
21475 md_number_to_chars (buf, newval, THUMB_SIZE);
21476 break;
21477
21478 case BFD_RELOC_ARM_THUMB_SHIFT:
21479 /* 5bit shift value (0..32). LSL cannot take 32. */
21480 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
21481 temp = newval & 0xf800;
21482 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
21483 as_bad_where (fixP->fx_file, fixP->fx_line,
21484 _("invalid shift value: %ld"), (long) value);
21485 /* Shifts of zero must be encoded as LSL. */
21486 if (value == 0)
21487 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
21488 /* Shifts of 32 are encoded as zero. */
21489 else if (value == 32)
21490 value = 0;
21491 newval |= value << 6;
21492 md_number_to_chars (buf, newval, THUMB_SIZE);
21493 break;
21494
21495 case BFD_RELOC_VTABLE_INHERIT:
21496 case BFD_RELOC_VTABLE_ENTRY:
21497 fixP->fx_done = 0;
21498 return;
21499
21500 case BFD_RELOC_ARM_MOVW:
21501 case BFD_RELOC_ARM_MOVT:
21502 case BFD_RELOC_ARM_THUMB_MOVW:
21503 case BFD_RELOC_ARM_THUMB_MOVT:
21504 if (fixP->fx_done || !seg->use_rela_p)
21505 {
21506 /* REL format relocations are limited to a 16-bit addend. */
21507 if (!fixP->fx_done)
21508 {
21509 if (value < -0x8000 || value > 0x7fff)
21510 as_bad_where (fixP->fx_file, fixP->fx_line,
21511 _("offset out of range"));
21512 }
21513 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
21514 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
21515 {
21516 value >>= 16;
21517 }
21518
21519 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
21520 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
21521 {
21522 newval = get_thumb32_insn (buf);
21523 newval &= 0xfbf08f00;
21524 newval |= (value & 0xf000) << 4;
21525 newval |= (value & 0x0800) << 15;
21526 newval |= (value & 0x0700) << 4;
21527 newval |= (value & 0x00ff);
21528 put_thumb32_insn (buf, newval);
21529 }
21530 else
21531 {
21532 newval = md_chars_to_number (buf, 4);
21533 newval &= 0xfff0f000;
21534 newval |= value & 0x0fff;
21535 newval |= (value & 0xf000) << 4;
21536 md_number_to_chars (buf, newval, 4);
21537 }
21538 }
21539 return;
21540
21541 case BFD_RELOC_ARM_ALU_PC_G0_NC:
21542 case BFD_RELOC_ARM_ALU_PC_G0:
21543 case BFD_RELOC_ARM_ALU_PC_G1_NC:
21544 case BFD_RELOC_ARM_ALU_PC_G1:
21545 case BFD_RELOC_ARM_ALU_PC_G2:
21546 case BFD_RELOC_ARM_ALU_SB_G0_NC:
21547 case BFD_RELOC_ARM_ALU_SB_G0:
21548 case BFD_RELOC_ARM_ALU_SB_G1_NC:
21549 case BFD_RELOC_ARM_ALU_SB_G1:
21550 case BFD_RELOC_ARM_ALU_SB_G2:
21551 gas_assert (!fixP->fx_done);
21552 if (!seg->use_rela_p)
21553 {
21554 bfd_vma insn;
21555 bfd_vma encoded_addend;
21556 bfd_vma addend_abs = abs (value);
21557
21558 /* Check that the absolute value of the addend can be
21559 expressed as an 8-bit constant plus a rotation. */
21560 encoded_addend = encode_arm_immediate (addend_abs);
21561 if (encoded_addend == (unsigned int) FAIL)
21562 as_bad_where (fixP->fx_file, fixP->fx_line,
21563 _("the offset 0x%08lX is not representable"),
21564 (unsigned long) addend_abs);
21565
21566 /* Extract the instruction. */
21567 insn = md_chars_to_number (buf, INSN_SIZE);
21568
21569 /* If the addend is positive, use an ADD instruction.
21570 Otherwise use a SUB. Take care not to destroy the S bit. */
21571 insn &= 0xff1fffff;
21572 if (value < 0)
21573 insn |= 1 << 22;
21574 else
21575 insn |= 1 << 23;
21576
21577 /* Place the encoded addend into the first 12 bits of the
21578 instruction. */
21579 insn &= 0xfffff000;
21580 insn |= encoded_addend;
21581
21582 /* Update the instruction. */
21583 md_number_to_chars (buf, insn, INSN_SIZE);
21584 }
21585 break;
21586
21587 case BFD_RELOC_ARM_LDR_PC_G0:
21588 case BFD_RELOC_ARM_LDR_PC_G1:
21589 case BFD_RELOC_ARM_LDR_PC_G2:
21590 case BFD_RELOC_ARM_LDR_SB_G0:
21591 case BFD_RELOC_ARM_LDR_SB_G1:
21592 case BFD_RELOC_ARM_LDR_SB_G2:
21593 gas_assert (!fixP->fx_done);
21594 if (!seg->use_rela_p)
21595 {
21596 bfd_vma insn;
21597 bfd_vma addend_abs = abs (value);
21598
21599 /* Check that the absolute value of the addend can be
21600 encoded in 12 bits. */
21601 if (addend_abs >= 0x1000)
21602 as_bad_where (fixP->fx_file, fixP->fx_line,
21603 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
21604 (unsigned long) addend_abs);
21605
21606 /* Extract the instruction. */
21607 insn = md_chars_to_number (buf, INSN_SIZE);
21608
21609 /* If the addend is negative, clear bit 23 of the instruction.
21610 Otherwise set it. */
21611 if (value < 0)
21612 insn &= ~(1 << 23);
21613 else
21614 insn |= 1 << 23;
21615
21616 /* Place the absolute value of the addend into the first 12 bits
21617 of the instruction. */
21618 insn &= 0xfffff000;
21619 insn |= addend_abs;
21620
21621 /* Update the instruction. */
21622 md_number_to_chars (buf, insn, INSN_SIZE);
21623 }
21624 break;
21625
21626 case BFD_RELOC_ARM_LDRS_PC_G0:
21627 case BFD_RELOC_ARM_LDRS_PC_G1:
21628 case BFD_RELOC_ARM_LDRS_PC_G2:
21629 case BFD_RELOC_ARM_LDRS_SB_G0:
21630 case BFD_RELOC_ARM_LDRS_SB_G1:
21631 case BFD_RELOC_ARM_LDRS_SB_G2:
21632 gas_assert (!fixP->fx_done);
21633 if (!seg->use_rela_p)
21634 {
21635 bfd_vma insn;
21636 bfd_vma addend_abs = abs (value);
21637
21638 /* Check that the absolute value of the addend can be
21639 encoded in 8 bits. */
21640 if (addend_abs >= 0x100)
21641 as_bad_where (fixP->fx_file, fixP->fx_line,
21642 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
21643 (unsigned long) addend_abs);
21644
21645 /* Extract the instruction. */
21646 insn = md_chars_to_number (buf, INSN_SIZE);
21647
21648 /* If the addend is negative, clear bit 23 of the instruction.
21649 Otherwise set it. */
21650 if (value < 0)
21651 insn &= ~(1 << 23);
21652 else
21653 insn |= 1 << 23;
21654
21655 /* Place the first four bits of the absolute value of the addend
21656 into the first 4 bits of the instruction, and the remaining
21657 four into bits 8 .. 11. */
21658 insn &= 0xfffff0f0;
21659 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
21660
21661 /* Update the instruction. */
21662 md_number_to_chars (buf, insn, INSN_SIZE);
21663 }
21664 break;
21665
21666 case BFD_RELOC_ARM_LDC_PC_G0:
21667 case BFD_RELOC_ARM_LDC_PC_G1:
21668 case BFD_RELOC_ARM_LDC_PC_G2:
21669 case BFD_RELOC_ARM_LDC_SB_G0:
21670 case BFD_RELOC_ARM_LDC_SB_G1:
21671 case BFD_RELOC_ARM_LDC_SB_G2:
21672 gas_assert (!fixP->fx_done);
21673 if (!seg->use_rela_p)
21674 {
21675 bfd_vma insn;
21676 bfd_vma addend_abs = abs (value);
21677
21678 /* Check that the absolute value of the addend is a multiple of
21679 four and, when divided by four, fits in 8 bits. */
21680 if (addend_abs & 0x3)
21681 as_bad_where (fixP->fx_file, fixP->fx_line,
21682 _("bad offset 0x%08lX (must be word-aligned)"),
21683 (unsigned long) addend_abs);
21684
21685 if ((addend_abs >> 2) > 0xff)
21686 as_bad_where (fixP->fx_file, fixP->fx_line,
21687 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
21688 (unsigned long) addend_abs);
21689
21690 /* Extract the instruction. */
21691 insn = md_chars_to_number (buf, INSN_SIZE);
21692
21693 /* If the addend is negative, clear bit 23 of the instruction.
21694 Otherwise set it. */
21695 if (value < 0)
21696 insn &= ~(1 << 23);
21697 else
21698 insn |= 1 << 23;
21699
21700 /* Place the addend (divided by four) into the first eight
21701 bits of the instruction. */
21702 insn &= 0xfffffff0;
21703 insn |= addend_abs >> 2;
21704
21705 /* Update the instruction. */
21706 md_number_to_chars (buf, insn, INSN_SIZE);
21707 }
21708 break;
21709
21710 case BFD_RELOC_ARM_V4BX:
21711 /* This will need to go in the object file. */
21712 fixP->fx_done = 0;
21713 break;
21714
21715 case BFD_RELOC_UNUSED:
21716 default:
21717 as_bad_where (fixP->fx_file, fixP->fx_line,
21718 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
21719 }
21720 }
21721
21722 /* Translate internal representation of relocation info to BFD target
21723 format. */
21724
21725 arelent *
21726 tc_gen_reloc (asection *section, fixS *fixp)
21727 {
21728 arelent * reloc;
21729 bfd_reloc_code_real_type code;
21730
21731 reloc = (arelent *) xmalloc (sizeof (arelent));
21732
21733 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
21734 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
21735 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
21736
21737 if (fixp->fx_pcrel)
21738 {
21739 if (section->use_rela_p)
21740 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
21741 else
21742 fixp->fx_offset = reloc->address;
21743 }
21744 reloc->addend = fixp->fx_offset;
21745
21746 switch (fixp->fx_r_type)
21747 {
21748 case BFD_RELOC_8:
21749 if (fixp->fx_pcrel)
21750 {
21751 code = BFD_RELOC_8_PCREL;
21752 break;
21753 }
21754
21755 case BFD_RELOC_16:
21756 if (fixp->fx_pcrel)
21757 {
21758 code = BFD_RELOC_16_PCREL;
21759 break;
21760 }
21761
21762 case BFD_RELOC_32:
21763 if (fixp->fx_pcrel)
21764 {
21765 code = BFD_RELOC_32_PCREL;
21766 break;
21767 }
21768
21769 case BFD_RELOC_ARM_MOVW:
21770 if (fixp->fx_pcrel)
21771 {
21772 code = BFD_RELOC_ARM_MOVW_PCREL;
21773 break;
21774 }
21775
21776 case BFD_RELOC_ARM_MOVT:
21777 if (fixp->fx_pcrel)
21778 {
21779 code = BFD_RELOC_ARM_MOVT_PCREL;
21780 break;
21781 }
21782
21783 case BFD_RELOC_ARM_THUMB_MOVW:
21784 if (fixp->fx_pcrel)
21785 {
21786 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
21787 break;
21788 }
21789
21790 case BFD_RELOC_ARM_THUMB_MOVT:
21791 if (fixp->fx_pcrel)
21792 {
21793 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
21794 break;
21795 }
21796
21797 case BFD_RELOC_NONE:
21798 case BFD_RELOC_ARM_PCREL_BRANCH:
21799 case BFD_RELOC_ARM_PCREL_BLX:
21800 case BFD_RELOC_RVA:
21801 case BFD_RELOC_THUMB_PCREL_BRANCH7:
21802 case BFD_RELOC_THUMB_PCREL_BRANCH9:
21803 case BFD_RELOC_THUMB_PCREL_BRANCH12:
21804 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21805 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21806 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21807 case BFD_RELOC_VTABLE_ENTRY:
21808 case BFD_RELOC_VTABLE_INHERIT:
21809 #ifdef TE_PE
21810 case BFD_RELOC_32_SECREL:
21811 #endif
21812 code = fixp->fx_r_type;
21813 break;
21814
21815 case BFD_RELOC_THUMB_PCREL_BLX:
21816 #ifdef OBJ_ELF
21817 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
21818 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
21819 else
21820 #endif
21821 code = BFD_RELOC_THUMB_PCREL_BLX;
21822 break;
21823
21824 case BFD_RELOC_ARM_LITERAL:
21825 case BFD_RELOC_ARM_HWLITERAL:
21826 /* If this is called then the a literal has
21827 been referenced across a section boundary. */
21828 as_bad_where (fixp->fx_file, fixp->fx_line,
21829 _("literal referenced across section boundary"));
21830 return NULL;
21831
21832 #ifdef OBJ_ELF
21833 case BFD_RELOC_ARM_TLS_CALL:
21834 case BFD_RELOC_ARM_THM_TLS_CALL:
21835 case BFD_RELOC_ARM_TLS_DESCSEQ:
21836 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
21837 case BFD_RELOC_ARM_GOT32:
21838 case BFD_RELOC_ARM_GOTOFF:
21839 case BFD_RELOC_ARM_GOT_PREL:
21840 case BFD_RELOC_ARM_PLT32:
21841 case BFD_RELOC_ARM_TARGET1:
21842 case BFD_RELOC_ARM_ROSEGREL32:
21843 case BFD_RELOC_ARM_SBREL32:
21844 case BFD_RELOC_ARM_PREL31:
21845 case BFD_RELOC_ARM_TARGET2:
21846 case BFD_RELOC_ARM_TLS_LE32:
21847 case BFD_RELOC_ARM_TLS_LDO32:
21848 case BFD_RELOC_ARM_PCREL_CALL:
21849 case BFD_RELOC_ARM_PCREL_JUMP:
21850 case BFD_RELOC_ARM_ALU_PC_G0_NC:
21851 case BFD_RELOC_ARM_ALU_PC_G0:
21852 case BFD_RELOC_ARM_ALU_PC_G1_NC:
21853 case BFD_RELOC_ARM_ALU_PC_G1:
21854 case BFD_RELOC_ARM_ALU_PC_G2:
21855 case BFD_RELOC_ARM_LDR_PC_G0:
21856 case BFD_RELOC_ARM_LDR_PC_G1:
21857 case BFD_RELOC_ARM_LDR_PC_G2:
21858 case BFD_RELOC_ARM_LDRS_PC_G0:
21859 case BFD_RELOC_ARM_LDRS_PC_G1:
21860 case BFD_RELOC_ARM_LDRS_PC_G2:
21861 case BFD_RELOC_ARM_LDC_PC_G0:
21862 case BFD_RELOC_ARM_LDC_PC_G1:
21863 case BFD_RELOC_ARM_LDC_PC_G2:
21864 case BFD_RELOC_ARM_ALU_SB_G0_NC:
21865 case BFD_RELOC_ARM_ALU_SB_G0:
21866 case BFD_RELOC_ARM_ALU_SB_G1_NC:
21867 case BFD_RELOC_ARM_ALU_SB_G1:
21868 case BFD_RELOC_ARM_ALU_SB_G2:
21869 case BFD_RELOC_ARM_LDR_SB_G0:
21870 case BFD_RELOC_ARM_LDR_SB_G1:
21871 case BFD_RELOC_ARM_LDR_SB_G2:
21872 case BFD_RELOC_ARM_LDRS_SB_G0:
21873 case BFD_RELOC_ARM_LDRS_SB_G1:
21874 case BFD_RELOC_ARM_LDRS_SB_G2:
21875 case BFD_RELOC_ARM_LDC_SB_G0:
21876 case BFD_RELOC_ARM_LDC_SB_G1:
21877 case BFD_RELOC_ARM_LDC_SB_G2:
21878 case BFD_RELOC_ARM_V4BX:
21879 code = fixp->fx_r_type;
21880 break;
21881
21882 case BFD_RELOC_ARM_TLS_GOTDESC:
21883 case BFD_RELOC_ARM_TLS_GD32:
21884 case BFD_RELOC_ARM_TLS_IE32:
21885 case BFD_RELOC_ARM_TLS_LDM32:
21886 /* BFD will include the symbol's address in the addend.
21887 But we don't want that, so subtract it out again here. */
21888 if (!S_IS_COMMON (fixp->fx_addsy))
21889 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
21890 code = fixp->fx_r_type;
21891 break;
21892 #endif
21893
21894 case BFD_RELOC_ARM_IMMEDIATE:
21895 as_bad_where (fixp->fx_file, fixp->fx_line,
21896 _("internal relocation (type: IMMEDIATE) not fixed up"));
21897 return NULL;
21898
21899 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
21900 as_bad_where (fixp->fx_file, fixp->fx_line,
21901 _("ADRL used for a symbol not defined in the same file"));
21902 return NULL;
21903
21904 case BFD_RELOC_ARM_OFFSET_IMM:
21905 if (section->use_rela_p)
21906 {
21907 code = fixp->fx_r_type;
21908 break;
21909 }
21910
21911 if (fixp->fx_addsy != NULL
21912 && !S_IS_DEFINED (fixp->fx_addsy)
21913 && S_IS_LOCAL (fixp->fx_addsy))
21914 {
21915 as_bad_where (fixp->fx_file, fixp->fx_line,
21916 _("undefined local label `%s'"),
21917 S_GET_NAME (fixp->fx_addsy));
21918 return NULL;
21919 }
21920
21921 as_bad_where (fixp->fx_file, fixp->fx_line,
21922 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
21923 return NULL;
21924
21925 default:
21926 {
21927 char * type;
21928
21929 switch (fixp->fx_r_type)
21930 {
21931 case BFD_RELOC_NONE: type = "NONE"; break;
21932 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
21933 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
21934 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
21935 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
21936 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
21937 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
21938 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
21939 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
21940 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
21941 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
21942 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
21943 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
21944 default: type = _("<unknown>"); break;
21945 }
21946 as_bad_where (fixp->fx_file, fixp->fx_line,
21947 _("cannot represent %s relocation in this object file format"),
21948 type);
21949 return NULL;
21950 }
21951 }
21952
21953 #ifdef OBJ_ELF
21954 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
21955 && GOT_symbol
21956 && fixp->fx_addsy == GOT_symbol)
21957 {
21958 code = BFD_RELOC_ARM_GOTPC;
21959 reloc->addend = fixp->fx_offset = reloc->address;
21960 }
21961 #endif
21962
21963 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
21964
21965 if (reloc->howto == NULL)
21966 {
21967 as_bad_where (fixp->fx_file, fixp->fx_line,
21968 _("cannot represent %s relocation in this object file format"),
21969 bfd_get_reloc_code_name (code));
21970 return NULL;
21971 }
21972
21973 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
21974 vtable entry to be used in the relocation's section offset. */
21975 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
21976 reloc->address = fixp->fx_offset;
21977
21978 return reloc;
21979 }
21980
21981 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
21982
21983 void
21984 cons_fix_new_arm (fragS * frag,
21985 int where,
21986 int size,
21987 expressionS * exp)
21988 {
21989 bfd_reloc_code_real_type type;
21990 int pcrel = 0;
21991
21992 /* Pick a reloc.
21993 FIXME: @@ Should look at CPU word size. */
21994 switch (size)
21995 {
21996 case 1:
21997 type = BFD_RELOC_8;
21998 break;
21999 case 2:
22000 type = BFD_RELOC_16;
22001 break;
22002 case 4:
22003 default:
22004 type = BFD_RELOC_32;
22005 break;
22006 case 8:
22007 type = BFD_RELOC_64;
22008 break;
22009 }
22010
22011 #ifdef TE_PE
22012 if (exp->X_op == O_secrel)
22013 {
22014 exp->X_op = O_symbol;
22015 type = BFD_RELOC_32_SECREL;
22016 }
22017 #endif
22018
22019 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
22020 }
22021
22022 #if defined (OBJ_COFF)
22023 void
22024 arm_validate_fix (fixS * fixP)
22025 {
22026 /* If the destination of the branch is a defined symbol which does not have
22027 the THUMB_FUNC attribute, then we must be calling a function which has
22028 the (interfacearm) attribute. We look for the Thumb entry point to that
22029 function and change the branch to refer to that function instead. */
22030 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
22031 && fixP->fx_addsy != NULL
22032 && S_IS_DEFINED (fixP->fx_addsy)
22033 && ! THUMB_IS_FUNC (fixP->fx_addsy))
22034 {
22035 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
22036 }
22037 }
22038 #endif
22039
22040
22041 int
22042 arm_force_relocation (struct fix * fixp)
22043 {
22044 #if defined (OBJ_COFF) && defined (TE_PE)
22045 if (fixp->fx_r_type == BFD_RELOC_RVA)
22046 return 1;
22047 #endif
22048
22049 /* In case we have a call or a branch to a function in ARM ISA mode from
22050 a thumb function or vice-versa force the relocation. These relocations
22051 are cleared off for some cores that might have blx and simple transformations
22052 are possible. */
22053
22054 #ifdef OBJ_ELF
22055 switch (fixp->fx_r_type)
22056 {
22057 case BFD_RELOC_ARM_PCREL_JUMP:
22058 case BFD_RELOC_ARM_PCREL_CALL:
22059 case BFD_RELOC_THUMB_PCREL_BLX:
22060 if (THUMB_IS_FUNC (fixp->fx_addsy))
22061 return 1;
22062 break;
22063
22064 case BFD_RELOC_ARM_PCREL_BLX:
22065 case BFD_RELOC_THUMB_PCREL_BRANCH25:
22066 case BFD_RELOC_THUMB_PCREL_BRANCH20:
22067 case BFD_RELOC_THUMB_PCREL_BRANCH23:
22068 if (ARM_IS_FUNC (fixp->fx_addsy))
22069 return 1;
22070 break;
22071
22072 default:
22073 break;
22074 }
22075 #endif
22076
22077 /* Resolve these relocations even if the symbol is extern or weak.
22078 Technically this is probably wrong due to symbol preemption.
22079 In practice these relocations do not have enough range to be useful
22080 at dynamic link time, and some code (e.g. in the Linux kernel)
22081 expects these references to be resolved. */
22082 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
22083 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
22084 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
22085 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
22086 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
22087 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
22088 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
22089 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
22090 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
22091 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
22092 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
22093 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
22094 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
22095 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
22096 return 0;
22097
22098 /* Always leave these relocations for the linker. */
22099 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
22100 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
22101 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
22102 return 1;
22103
22104 /* Always generate relocations against function symbols. */
22105 if (fixp->fx_r_type == BFD_RELOC_32
22106 && fixp->fx_addsy
22107 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
22108 return 1;
22109
22110 return generic_force_reloc (fixp);
22111 }
22112
22113 #if defined (OBJ_ELF) || defined (OBJ_COFF)
22114 /* Relocations against function names must be left unadjusted,
22115 so that the linker can use this information to generate interworking
22116 stubs. The MIPS version of this function
22117 also prevents relocations that are mips-16 specific, but I do not
22118 know why it does this.
22119
22120 FIXME:
22121 There is one other problem that ought to be addressed here, but
22122 which currently is not: Taking the address of a label (rather
22123 than a function) and then later jumping to that address. Such
22124 addresses also ought to have their bottom bit set (assuming that
22125 they reside in Thumb code), but at the moment they will not. */
22126
22127 bfd_boolean
22128 arm_fix_adjustable (fixS * fixP)
22129 {
22130 if (fixP->fx_addsy == NULL)
22131 return 1;
22132
22133 /* Preserve relocations against symbols with function type. */
22134 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
22135 return FALSE;
22136
22137 if (THUMB_IS_FUNC (fixP->fx_addsy)
22138 && fixP->fx_subsy == NULL)
22139 return FALSE;
22140
22141 /* We need the symbol name for the VTABLE entries. */
22142 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
22143 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
22144 return FALSE;
22145
22146 /* Don't allow symbols to be discarded on GOT related relocs. */
22147 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
22148 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
22149 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
22150 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
22151 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
22152 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
22153 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
22154 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
22155 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
22156 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
22157 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
22158 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
22159 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
22160 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
22161 return FALSE;
22162
22163 /* Similarly for group relocations. */
22164 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
22165 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
22166 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
22167 return FALSE;
22168
22169 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
22170 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
22171 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
22172 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
22173 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
22174 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
22175 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
22176 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
22177 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
22178 return FALSE;
22179
22180 return TRUE;
22181 }
22182 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
22183
22184 #ifdef OBJ_ELF
22185
22186 const char *
22187 elf32_arm_target_format (void)
22188 {
22189 #ifdef TE_SYMBIAN
22190 return (target_big_endian
22191 ? "elf32-bigarm-symbian"
22192 : "elf32-littlearm-symbian");
22193 #elif defined (TE_VXWORKS)
22194 return (target_big_endian
22195 ? "elf32-bigarm-vxworks"
22196 : "elf32-littlearm-vxworks");
22197 #else
22198 if (target_big_endian)
22199 return "elf32-bigarm";
22200 else
22201 return "elf32-littlearm";
22202 #endif
22203 }
22204
22205 void
22206 armelf_frob_symbol (symbolS * symp,
22207 int * puntp)
22208 {
22209 elf_frob_symbol (symp, puntp);
22210 }
22211 #endif
22212
22213 /* MD interface: Finalization. */
22214
22215 void
22216 arm_cleanup (void)
22217 {
22218 literal_pool * pool;
22219
22220 /* Ensure that all the IT blocks are properly closed. */
22221 check_it_blocks_finished ();
22222
22223 for (pool = list_of_pools; pool; pool = pool->next)
22224 {
22225 /* Put it at the end of the relevant section. */
22226 subseg_set (pool->section, pool->sub_section);
22227 #ifdef OBJ_ELF
22228 arm_elf_change_section ();
22229 #endif
22230 s_ltorg (0);
22231 }
22232 }
22233
22234 #ifdef OBJ_ELF
22235 /* Remove any excess mapping symbols generated for alignment frags in
22236 SEC. We may have created a mapping symbol before a zero byte
22237 alignment; remove it if there's a mapping symbol after the
22238 alignment. */
22239 static void
22240 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
22241 void *dummy ATTRIBUTE_UNUSED)
22242 {
22243 segment_info_type *seginfo = seg_info (sec);
22244 fragS *fragp;
22245
22246 if (seginfo == NULL || seginfo->frchainP == NULL)
22247 return;
22248
22249 for (fragp = seginfo->frchainP->frch_root;
22250 fragp != NULL;
22251 fragp = fragp->fr_next)
22252 {
22253 symbolS *sym = fragp->tc_frag_data.last_map;
22254 fragS *next = fragp->fr_next;
22255
22256 /* Variable-sized frags have been converted to fixed size by
22257 this point. But if this was variable-sized to start with,
22258 there will be a fixed-size frag after it. So don't handle
22259 next == NULL. */
22260 if (sym == NULL || next == NULL)
22261 continue;
22262
22263 if (S_GET_VALUE (sym) < next->fr_address)
22264 /* Not at the end of this frag. */
22265 continue;
22266 know (S_GET_VALUE (sym) == next->fr_address);
22267
22268 do
22269 {
22270 if (next->tc_frag_data.first_map != NULL)
22271 {
22272 /* Next frag starts with a mapping symbol. Discard this
22273 one. */
22274 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
22275 break;
22276 }
22277
22278 if (next->fr_next == NULL)
22279 {
22280 /* This mapping symbol is at the end of the section. Discard
22281 it. */
22282 know (next->fr_fix == 0 && next->fr_var == 0);
22283 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
22284 break;
22285 }
22286
22287 /* As long as we have empty frags without any mapping symbols,
22288 keep looking. */
22289 /* If the next frag is non-empty and does not start with a
22290 mapping symbol, then this mapping symbol is required. */
22291 if (next->fr_address != next->fr_next->fr_address)
22292 break;
22293
22294 next = next->fr_next;
22295 }
22296 while (next != NULL);
22297 }
22298 }
22299 #endif
22300
22301 /* Adjust the symbol table. This marks Thumb symbols as distinct from
22302 ARM ones. */
22303
22304 void
22305 arm_adjust_symtab (void)
22306 {
22307 #ifdef OBJ_COFF
22308 symbolS * sym;
22309
22310 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
22311 {
22312 if (ARM_IS_THUMB (sym))
22313 {
22314 if (THUMB_IS_FUNC (sym))
22315 {
22316 /* Mark the symbol as a Thumb function. */
22317 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
22318 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
22319 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
22320
22321 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
22322 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
22323 else
22324 as_bad (_("%s: unexpected function type: %d"),
22325 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
22326 }
22327 else switch (S_GET_STORAGE_CLASS (sym))
22328 {
22329 case C_EXT:
22330 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
22331 break;
22332 case C_STAT:
22333 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
22334 break;
22335 case C_LABEL:
22336 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
22337 break;
22338 default:
22339 /* Do nothing. */
22340 break;
22341 }
22342 }
22343
22344 if (ARM_IS_INTERWORK (sym))
22345 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
22346 }
22347 #endif
22348 #ifdef OBJ_ELF
22349 symbolS * sym;
22350 char bind;
22351
22352 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
22353 {
22354 if (ARM_IS_THUMB (sym))
22355 {
22356 elf_symbol_type * elf_sym;
22357
22358 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
22359 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
22360
22361 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
22362 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
22363 {
22364 /* If it's a .thumb_func, declare it as so,
22365 otherwise tag label as .code 16. */
22366 if (THUMB_IS_FUNC (sym))
22367 elf_sym->internal_elf_sym.st_target_internal
22368 = ST_BRANCH_TO_THUMB;
22369 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
22370 elf_sym->internal_elf_sym.st_info =
22371 ELF_ST_INFO (bind, STT_ARM_16BIT);
22372 }
22373 }
22374 }
22375
22376 /* Remove any overlapping mapping symbols generated by alignment frags. */
22377 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
22378 /* Now do generic ELF adjustments. */
22379 elf_adjust_symtab ();
22380 #endif
22381 }
22382
22383 /* MD interface: Initialization. */
22384
22385 static void
22386 set_constant_flonums (void)
22387 {
22388 int i;
22389
22390 for (i = 0; i < NUM_FLOAT_VALS; i++)
22391 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
22392 abort ();
22393 }
22394
22395 /* Auto-select Thumb mode if it's the only available instruction set for the
22396 given architecture. */
22397
22398 static void
22399 autoselect_thumb_from_cpu_variant (void)
22400 {
22401 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
22402 opcode_select (16);
22403 }
22404
22405 void
22406 md_begin (void)
22407 {
22408 unsigned mach;
22409 unsigned int i;
22410
22411 if ( (arm_ops_hsh = hash_new ()) == NULL
22412 || (arm_cond_hsh = hash_new ()) == NULL
22413 || (arm_shift_hsh = hash_new ()) == NULL
22414 || (arm_psr_hsh = hash_new ()) == NULL
22415 || (arm_v7m_psr_hsh = hash_new ()) == NULL
22416 || (arm_reg_hsh = hash_new ()) == NULL
22417 || (arm_reloc_hsh = hash_new ()) == NULL
22418 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
22419 as_fatal (_("virtual memory exhausted"));
22420
22421 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
22422 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
22423 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
22424 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
22425 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
22426 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
22427 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
22428 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
22429 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
22430 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
22431 (void *) (v7m_psrs + i));
22432 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
22433 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
22434 for (i = 0;
22435 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
22436 i++)
22437 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
22438 (void *) (barrier_opt_names + i));
22439 #ifdef OBJ_ELF
22440 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
22441 {
22442 struct reloc_entry * entry = reloc_names + i;
22443
22444 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
22445 /* This makes encode_branch() use the EABI versions of this relocation. */
22446 entry->reloc = BFD_RELOC_UNUSED;
22447
22448 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
22449 }
22450 #endif
22451
22452 set_constant_flonums ();
22453
22454 /* Set the cpu variant based on the command-line options. We prefer
22455 -mcpu= over -march= if both are set (as for GCC); and we prefer
22456 -mfpu= over any other way of setting the floating point unit.
22457 Use of legacy options with new options are faulted. */
22458 if (legacy_cpu)
22459 {
22460 if (mcpu_cpu_opt || march_cpu_opt)
22461 as_bad (_("use of old and new-style options to set CPU type"));
22462
22463 mcpu_cpu_opt = legacy_cpu;
22464 }
22465 else if (!mcpu_cpu_opt)
22466 mcpu_cpu_opt = march_cpu_opt;
22467
22468 if (legacy_fpu)
22469 {
22470 if (mfpu_opt)
22471 as_bad (_("use of old and new-style options to set FPU type"));
22472
22473 mfpu_opt = legacy_fpu;
22474 }
22475 else if (!mfpu_opt)
22476 {
22477 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
22478 || defined (TE_NetBSD) || defined (TE_VXWORKS))
22479 /* Some environments specify a default FPU. If they don't, infer it
22480 from the processor. */
22481 if (mcpu_fpu_opt)
22482 mfpu_opt = mcpu_fpu_opt;
22483 else
22484 mfpu_opt = march_fpu_opt;
22485 #else
22486 mfpu_opt = &fpu_default;
22487 #endif
22488 }
22489
22490 if (!mfpu_opt)
22491 {
22492 if (mcpu_cpu_opt != NULL)
22493 mfpu_opt = &fpu_default;
22494 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
22495 mfpu_opt = &fpu_arch_vfp_v2;
22496 else
22497 mfpu_opt = &fpu_arch_fpa;
22498 }
22499
22500 #ifdef CPU_DEFAULT
22501 if (!mcpu_cpu_opt)
22502 {
22503 mcpu_cpu_opt = &cpu_default;
22504 selected_cpu = cpu_default;
22505 }
22506 #else
22507 if (mcpu_cpu_opt)
22508 selected_cpu = *mcpu_cpu_opt;
22509 else
22510 mcpu_cpu_opt = &arm_arch_any;
22511 #endif
22512
22513 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
22514
22515 autoselect_thumb_from_cpu_variant ();
22516
22517 arm_arch_used = thumb_arch_used = arm_arch_none;
22518
22519 #if defined OBJ_COFF || defined OBJ_ELF
22520 {
22521 unsigned int flags = 0;
22522
22523 #if defined OBJ_ELF
22524 flags = meabi_flags;
22525
22526 switch (meabi_flags)
22527 {
22528 case EF_ARM_EABI_UNKNOWN:
22529 #endif
22530 /* Set the flags in the private structure. */
22531 if (uses_apcs_26) flags |= F_APCS26;
22532 if (support_interwork) flags |= F_INTERWORK;
22533 if (uses_apcs_float) flags |= F_APCS_FLOAT;
22534 if (pic_code) flags |= F_PIC;
22535 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
22536 flags |= F_SOFT_FLOAT;
22537
22538 switch (mfloat_abi_opt)
22539 {
22540 case ARM_FLOAT_ABI_SOFT:
22541 case ARM_FLOAT_ABI_SOFTFP:
22542 flags |= F_SOFT_FLOAT;
22543 break;
22544
22545 case ARM_FLOAT_ABI_HARD:
22546 if (flags & F_SOFT_FLOAT)
22547 as_bad (_("hard-float conflicts with specified fpu"));
22548 break;
22549 }
22550
22551 /* Using pure-endian doubles (even if soft-float). */
22552 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
22553 flags |= F_VFP_FLOAT;
22554
22555 #if defined OBJ_ELF
22556 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
22557 flags |= EF_ARM_MAVERICK_FLOAT;
22558 break;
22559
22560 case EF_ARM_EABI_VER4:
22561 case EF_ARM_EABI_VER5:
22562 /* No additional flags to set. */
22563 break;
22564
22565 default:
22566 abort ();
22567 }
22568 #endif
22569 bfd_set_private_flags (stdoutput, flags);
22570
22571 /* We have run out flags in the COFF header to encode the
22572 status of ATPCS support, so instead we create a dummy,
22573 empty, debug section called .arm.atpcs. */
22574 if (atpcs)
22575 {
22576 asection * sec;
22577
22578 sec = bfd_make_section (stdoutput, ".arm.atpcs");
22579
22580 if (sec != NULL)
22581 {
22582 bfd_set_section_flags
22583 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
22584 bfd_set_section_size (stdoutput, sec, 0);
22585 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
22586 }
22587 }
22588 }
22589 #endif
22590
22591 /* Record the CPU type as well. */
22592 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
22593 mach = bfd_mach_arm_iWMMXt2;
22594 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
22595 mach = bfd_mach_arm_iWMMXt;
22596 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
22597 mach = bfd_mach_arm_XScale;
22598 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
22599 mach = bfd_mach_arm_ep9312;
22600 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
22601 mach = bfd_mach_arm_5TE;
22602 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
22603 {
22604 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
22605 mach = bfd_mach_arm_5T;
22606 else
22607 mach = bfd_mach_arm_5;
22608 }
22609 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
22610 {
22611 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
22612 mach = bfd_mach_arm_4T;
22613 else
22614 mach = bfd_mach_arm_4;
22615 }
22616 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
22617 mach = bfd_mach_arm_3M;
22618 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
22619 mach = bfd_mach_arm_3;
22620 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
22621 mach = bfd_mach_arm_2a;
22622 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
22623 mach = bfd_mach_arm_2;
22624 else
22625 mach = bfd_mach_arm_unknown;
22626
22627 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
22628 }
22629
22630 /* Command line processing. */
22631
22632 /* md_parse_option
22633 Invocation line includes a switch not recognized by the base assembler.
22634 See if it's a processor-specific option.
22635
22636 This routine is somewhat complicated by the need for backwards
22637 compatibility (since older releases of gcc can't be changed).
22638 The new options try to make the interface as compatible as
22639 possible with GCC.
22640
22641 New options (supported) are:
22642
22643 -mcpu=<cpu name> Assemble for selected processor
22644 -march=<architecture name> Assemble for selected architecture
22645 -mfpu=<fpu architecture> Assemble for selected FPU.
22646 -EB/-mbig-endian Big-endian
22647 -EL/-mlittle-endian Little-endian
22648 -k Generate PIC code
22649 -mthumb Start in Thumb mode
22650 -mthumb-interwork Code supports ARM/Thumb interworking
22651
22652 -m[no-]warn-deprecated Warn about deprecated features
22653
22654 For now we will also provide support for:
22655
22656 -mapcs-32 32-bit Program counter
22657 -mapcs-26 26-bit Program counter
22658 -macps-float Floats passed in FP registers
22659 -mapcs-reentrant Reentrant code
22660 -matpcs
22661 (sometime these will probably be replaced with -mapcs=<list of options>
22662 and -matpcs=<list of options>)
22663
22664 The remaining options are only supported for back-wards compatibility.
22665 Cpu variants, the arm part is optional:
22666 -m[arm]1 Currently not supported.
22667 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
22668 -m[arm]3 Arm 3 processor
22669 -m[arm]6[xx], Arm 6 processors
22670 -m[arm]7[xx][t][[d]m] Arm 7 processors
22671 -m[arm]8[10] Arm 8 processors
22672 -m[arm]9[20][tdmi] Arm 9 processors
22673 -mstrongarm[110[0]] StrongARM processors
22674 -mxscale XScale processors
22675 -m[arm]v[2345[t[e]]] Arm architectures
22676 -mall All (except the ARM1)
22677 FP variants:
22678 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
22679 -mfpe-old (No float load/store multiples)
22680 -mvfpxd VFP Single precision
22681 -mvfp All VFP
22682 -mno-fpu Disable all floating point instructions
22683
22684 The following CPU names are recognized:
22685 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
22686 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
22687 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
22688 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
22689 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
22690 arm10t arm10e, arm1020t, arm1020e, arm10200e,
22691 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
22692
22693 */
22694
22695 const char * md_shortopts = "m:k";
22696
22697 #ifdef ARM_BI_ENDIAN
22698 #define OPTION_EB (OPTION_MD_BASE + 0)
22699 #define OPTION_EL (OPTION_MD_BASE + 1)
22700 #else
22701 #if TARGET_BYTES_BIG_ENDIAN
22702 #define OPTION_EB (OPTION_MD_BASE + 0)
22703 #else
22704 #define OPTION_EL (OPTION_MD_BASE + 1)
22705 #endif
22706 #endif
22707 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
22708
22709 struct option md_longopts[] =
22710 {
22711 #ifdef OPTION_EB
22712 {"EB", no_argument, NULL, OPTION_EB},
22713 #endif
22714 #ifdef OPTION_EL
22715 {"EL", no_argument, NULL, OPTION_EL},
22716 #endif
22717 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
22718 {NULL, no_argument, NULL, 0}
22719 };
22720
22721 size_t md_longopts_size = sizeof (md_longopts);
22722
22723 struct arm_option_table
22724 {
22725 char *option; /* Option name to match. */
22726 char *help; /* Help information. */
22727 int *var; /* Variable to change. */
22728 int value; /* What to change it to. */
22729 char *deprecated; /* If non-null, print this message. */
22730 };
22731
22732 struct arm_option_table arm_opts[] =
22733 {
22734 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
22735 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
22736 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
22737 &support_interwork, 1, NULL},
22738 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
22739 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
22740 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
22741 1, NULL},
22742 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
22743 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
22744 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
22745 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
22746 NULL},
22747
22748 /* These are recognized by the assembler, but have no affect on code. */
22749 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
22750 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
22751
22752 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
22753 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
22754 &warn_on_deprecated, 0, NULL},
22755 {NULL, NULL, NULL, 0, NULL}
22756 };
22757
22758 struct arm_legacy_option_table
22759 {
22760 char *option; /* Option name to match. */
22761 const arm_feature_set **var; /* Variable to change. */
22762 const arm_feature_set value; /* What to change it to. */
22763 char *deprecated; /* If non-null, print this message. */
22764 };
22765
22766 const struct arm_legacy_option_table arm_legacy_opts[] =
22767 {
22768 /* DON'T add any new processors to this list -- we want the whole list
22769 to go away... Add them to the processors table instead. */
22770 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
22771 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
22772 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
22773 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
22774 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
22775 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
22776 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
22777 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
22778 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
22779 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
22780 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
22781 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
22782 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
22783 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
22784 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
22785 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
22786 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
22787 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
22788 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
22789 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
22790 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
22791 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
22792 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
22793 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
22794 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
22795 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
22796 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
22797 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
22798 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
22799 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
22800 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
22801 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
22802 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
22803 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
22804 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
22805 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
22806 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
22807 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
22808 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
22809 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
22810 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
22811 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
22812 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
22813 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
22814 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
22815 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
22816 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22817 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22818 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22819 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22820 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
22821 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
22822 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
22823 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
22824 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
22825 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
22826 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
22827 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
22828 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
22829 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
22830 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
22831 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
22832 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
22833 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
22834 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
22835 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
22836 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
22837 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
22838 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
22839 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
22840 N_("use -mcpu=strongarm110")},
22841 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
22842 N_("use -mcpu=strongarm1100")},
22843 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
22844 N_("use -mcpu=strongarm1110")},
22845 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
22846 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
22847 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
22848
22849 /* Architecture variants -- don't add any more to this list either. */
22850 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
22851 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
22852 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
22853 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
22854 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
22855 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
22856 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
22857 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
22858 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
22859 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
22860 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
22861 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
22862 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
22863 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
22864 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
22865 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
22866 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
22867 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
22868
22869 /* Floating point variants -- don't add any more to this list either. */
22870 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
22871 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
22872 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
22873 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
22874 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
22875
22876 {NULL, NULL, ARM_ARCH_NONE, NULL}
22877 };
22878
22879 struct arm_cpu_option_table
22880 {
22881 char *name;
22882 size_t name_len;
22883 const arm_feature_set value;
22884 /* For some CPUs we assume an FPU unless the user explicitly sets
22885 -mfpu=... */
22886 const arm_feature_set default_fpu;
22887 /* The canonical name of the CPU, or NULL to use NAME converted to upper
22888 case. */
22889 const char *canonical_name;
22890 };
22891
22892 /* This list should, at a minimum, contain all the cpu names
22893 recognized by GCC. */
22894 #define ARM_CPU_OPT(N, V, DF, CN) { N, sizeof (N) - 1, V, DF, CN }
22895 static const struct arm_cpu_option_table arm_cpus[] =
22896 {
22897 ARM_CPU_OPT ("all", ARM_ANY, FPU_ARCH_FPA, NULL),
22898 ARM_CPU_OPT ("arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL),
22899 ARM_CPU_OPT ("arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL),
22900 ARM_CPU_OPT ("arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL),
22901 ARM_CPU_OPT ("arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL),
22902 ARM_CPU_OPT ("arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
22903 ARM_CPU_OPT ("arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
22904 ARM_CPU_OPT ("arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
22905 ARM_CPU_OPT ("arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
22906 ARM_CPU_OPT ("arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
22907 ARM_CPU_OPT ("arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
22908 ARM_CPU_OPT ("arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
22909 ARM_CPU_OPT ("arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
22910 ARM_CPU_OPT ("arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
22911 ARM_CPU_OPT ("arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
22912 ARM_CPU_OPT ("arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
22913 ARM_CPU_OPT ("arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
22914 ARM_CPU_OPT ("arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
22915 ARM_CPU_OPT ("arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
22916 ARM_CPU_OPT ("arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
22917 ARM_CPU_OPT ("arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
22918 ARM_CPU_OPT ("arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
22919 ARM_CPU_OPT ("arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
22920 ARM_CPU_OPT ("arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
22921 ARM_CPU_OPT ("arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
22922 ARM_CPU_OPT ("arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
22923 ARM_CPU_OPT ("arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
22924 ARM_CPU_OPT ("arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
22925 ARM_CPU_OPT ("arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
22926 ARM_CPU_OPT ("arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
22927 ARM_CPU_OPT ("arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
22928 ARM_CPU_OPT ("arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
22929 ARM_CPU_OPT ("arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
22930 ARM_CPU_OPT ("strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
22931 ARM_CPU_OPT ("strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
22932 ARM_CPU_OPT ("strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
22933 ARM_CPU_OPT ("strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
22934 ARM_CPU_OPT ("strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
22935 ARM_CPU_OPT ("arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
22936 ARM_CPU_OPT ("arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"),
22937 ARM_CPU_OPT ("arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
22938 ARM_CPU_OPT ("arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
22939 ARM_CPU_OPT ("arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
22940 ARM_CPU_OPT ("arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
22941 ARM_CPU_OPT ("fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
22942 ARM_CPU_OPT ("fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
22943 /* For V5 or later processors we default to using VFP; but the user
22944 should really set the FPU type explicitly. */
22945 ARM_CPU_OPT ("arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
22946 ARM_CPU_OPT ("arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
22947 ARM_CPU_OPT ("arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"),
22948 ARM_CPU_OPT ("arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"),
22949 ARM_CPU_OPT ("arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL),
22950 ARM_CPU_OPT ("arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
22951 ARM_CPU_OPT ("arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"),
22952 ARM_CPU_OPT ("arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
22953 ARM_CPU_OPT ("arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
22954 ARM_CPU_OPT ("arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"),
22955 ARM_CPU_OPT ("arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
22956 ARM_CPU_OPT ("arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
22957 ARM_CPU_OPT ("arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
22958 ARM_CPU_OPT ("arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
22959 ARM_CPU_OPT ("arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
22960 ARM_CPU_OPT ("arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"),
22961 ARM_CPU_OPT ("arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
22962 ARM_CPU_OPT ("arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
22963 ARM_CPU_OPT ("arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
22964 ARM_CPU_OPT ("arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2,
22965 "ARM1026EJ-S"),
22966 ARM_CPU_OPT ("arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL),
22967 ARM_CPU_OPT ("fa606te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
22968 ARM_CPU_OPT ("fa616te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
22969 ARM_CPU_OPT ("fa626te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
22970 ARM_CPU_OPT ("fmp626", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
22971 ARM_CPU_OPT ("fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
22972 ARM_CPU_OPT ("arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"),
22973 ARM_CPU_OPT ("arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL),
22974 ARM_CPU_OPT ("arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2,
22975 "ARM1136JF-S"),
22976 ARM_CPU_OPT ("arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL),
22977 ARM_CPU_OPT ("mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, "MPCore"),
22978 ARM_CPU_OPT ("mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, "MPCore"),
22979 ARM_CPU_OPT ("arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL),
22980 ARM_CPU_OPT ("arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL),
22981 ARM_CPU_OPT ("arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL),
22982 ARM_CPU_OPT ("arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL),
22983 ARM_CPU_OPT ("cortex-a5", ARM_ARCH_V7A_MP_SEC,
22984 FPU_NONE, "Cortex-A5"),
22985 ARM_CPU_OPT ("cortex-a7", ARM_ARCH_V7A_IDIV_MP_SEC_VIRT,
22986 FPU_ARCH_NEON_VFP_V4,
22987 "Cortex-A7"),
22988 ARM_CPU_OPT ("cortex-a8", ARM_ARCH_V7A_SEC,
22989 ARM_FEATURE (0, FPU_VFP_V3
22990 | FPU_NEON_EXT_V1),
22991 "Cortex-A8"),
22992 ARM_CPU_OPT ("cortex-a9", ARM_ARCH_V7A_MP_SEC,
22993 ARM_FEATURE (0, FPU_VFP_V3
22994 | FPU_NEON_EXT_V1),
22995 "Cortex-A9"),
22996 ARM_CPU_OPT ("cortex-a15", ARM_ARCH_V7A_IDIV_MP_SEC_VIRT,
22997 FPU_ARCH_NEON_VFP_V4,
22998 "Cortex-A15"),
22999 ARM_CPU_OPT ("cortex-r4", ARM_ARCH_V7R, FPU_NONE, "Cortex-R4"),
23000 ARM_CPU_OPT ("cortex-r4f", ARM_ARCH_V7R, FPU_ARCH_VFP_V3D16,
23001 "Cortex-R4F"),
23002 ARM_CPU_OPT ("cortex-r5", ARM_ARCH_V7R_IDIV,
23003 FPU_NONE, "Cortex-R5"),
23004 ARM_CPU_OPT ("cortex-m4", ARM_ARCH_V7EM, FPU_NONE, "Cortex-M4"),
23005 ARM_CPU_OPT ("cortex-m3", ARM_ARCH_V7M, FPU_NONE, "Cortex-M3"),
23006 ARM_CPU_OPT ("cortex-m1", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M1"),
23007 ARM_CPU_OPT ("cortex-m0", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0"),
23008 /* ??? XSCALE is really an architecture. */
23009 ARM_CPU_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL),
23010 /* ??? iwmmxt is not a processor. */
23011 ARM_CPU_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL),
23012 ARM_CPU_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL),
23013 ARM_CPU_OPT ("i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL),
23014 /* Maverick */
23015 ARM_CPU_OPT ("ep9312", ARM_FEATURE (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
23016 FPU_ARCH_MAVERICK,
23017 "ARM920T"),
23018 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
23019 };
23020 #undef ARM_CPU_OPT
23021
23022 struct arm_arch_option_table
23023 {
23024 char *name;
23025 size_t name_len;
23026 const arm_feature_set value;
23027 const arm_feature_set default_fpu;
23028 };
23029
23030 /* This list should, at a minimum, contain all the architecture names
23031 recognized by GCC. */
23032 #define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF }
23033 static const struct arm_arch_option_table arm_archs[] =
23034 {
23035 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
23036 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
23037 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
23038 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
23039 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
23040 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
23041 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
23042 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
23043 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
23044 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
23045 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
23046 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
23047 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
23048 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
23049 ARM_ARCH_OPT ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP),
23050 ARM_ARCH_OPT ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP),
23051 ARM_ARCH_OPT ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP),
23052 ARM_ARCH_OPT ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP),
23053 ARM_ARCH_OPT ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP),
23054 ARM_ARCH_OPT ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP),
23055 ARM_ARCH_OPT ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP),
23056 ARM_ARCH_OPT ("armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP),
23057 ARM_ARCH_OPT ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP),
23058 ARM_ARCH_OPT ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP),
23059 ARM_ARCH_OPT ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP),
23060 ARM_ARCH_OPT ("armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP),
23061 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
23062 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
23063 ARM_ARCH_OPT ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP),
23064 /* The official spelling of the ARMv7 profile variants is the dashed form.
23065 Accept the non-dashed form for compatibility with old toolchains. */
23066 ARM_ARCH_OPT ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP),
23067 ARM_ARCH_OPT ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP),
23068 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
23069 ARM_ARCH_OPT ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP),
23070 ARM_ARCH_OPT ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP),
23071 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
23072 ARM_ARCH_OPT ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP),
23073 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
23074 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
23075 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP),
23076 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
23077 };
23078 #undef ARM_ARCH_OPT
23079
23080 /* ISA extensions in the co-processor and main instruction set space. */
23081 struct arm_option_extension_value_table
23082 {
23083 char *name;
23084 size_t name_len;
23085 const arm_feature_set value;
23086 const arm_feature_set allowed_archs;
23087 };
23088
23089 /* The following table must be in alphabetical order with a NULL last entry.
23090 */
23091 #define ARM_EXT_OPT(N, V, AA) { N, sizeof (N) - 1, V, AA }
23092 static const struct arm_option_extension_value_table arm_extensions[] =
23093 {
23094 ARM_EXT_OPT ("idiv", ARM_FEATURE (ARM_EXT_ADIV | ARM_EXT_DIV, 0),
23095 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)),
23096 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE (0, ARM_CEXT_IWMMXT), ARM_ANY),
23097 ARM_EXT_OPT ("iwmmxt2",
23098 ARM_FEATURE (0, ARM_CEXT_IWMMXT2), ARM_ANY),
23099 ARM_EXT_OPT ("maverick",
23100 ARM_FEATURE (0, ARM_CEXT_MAVERICK), ARM_ANY),
23101 ARM_EXT_OPT ("mp", ARM_FEATURE (ARM_EXT_MP, 0),
23102 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)),
23103 ARM_EXT_OPT ("os", ARM_FEATURE (ARM_EXT_OS, 0),
23104 ARM_FEATURE (ARM_EXT_V6M, 0)),
23105 ARM_EXT_OPT ("sec", ARM_FEATURE (ARM_EXT_SEC, 0),
23106 ARM_FEATURE (ARM_EXT_V6K | ARM_EXT_V7A, 0)),
23107 ARM_EXT_OPT ("virt", ARM_FEATURE (ARM_EXT_VIRT | ARM_EXT_ADIV
23108 | ARM_EXT_DIV, 0),
23109 ARM_FEATURE (ARM_EXT_V7A, 0)),
23110 ARM_EXT_OPT ("xscale",ARM_FEATURE (0, ARM_CEXT_XSCALE), ARM_ANY),
23111 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
23112 };
23113 #undef ARM_EXT_OPT
23114
23115 /* ISA floating-point and Advanced SIMD extensions. */
23116 struct arm_option_fpu_value_table
23117 {
23118 char *name;
23119 const arm_feature_set value;
23120 };
23121
23122 /* This list should, at a minimum, contain all the fpu names
23123 recognized by GCC. */
23124 static const struct arm_option_fpu_value_table arm_fpus[] =
23125 {
23126 {"softfpa", FPU_NONE},
23127 {"fpe", FPU_ARCH_FPE},
23128 {"fpe2", FPU_ARCH_FPE},
23129 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
23130 {"fpa", FPU_ARCH_FPA},
23131 {"fpa10", FPU_ARCH_FPA},
23132 {"fpa11", FPU_ARCH_FPA},
23133 {"arm7500fe", FPU_ARCH_FPA},
23134 {"softvfp", FPU_ARCH_VFP},
23135 {"softvfp+vfp", FPU_ARCH_VFP_V2},
23136 {"vfp", FPU_ARCH_VFP_V2},
23137 {"vfp9", FPU_ARCH_VFP_V2},
23138 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
23139 {"vfp10", FPU_ARCH_VFP_V2},
23140 {"vfp10-r0", FPU_ARCH_VFP_V1},
23141 {"vfpxd", FPU_ARCH_VFP_V1xD},
23142 {"vfpv2", FPU_ARCH_VFP_V2},
23143 {"vfpv3", FPU_ARCH_VFP_V3},
23144 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
23145 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
23146 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
23147 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
23148 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
23149 {"arm1020t", FPU_ARCH_VFP_V1},
23150 {"arm1020e", FPU_ARCH_VFP_V2},
23151 {"arm1136jfs", FPU_ARCH_VFP_V2},
23152 {"arm1136jf-s", FPU_ARCH_VFP_V2},
23153 {"maverick", FPU_ARCH_MAVERICK},
23154 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
23155 {"neon-fp16", FPU_ARCH_NEON_FP16},
23156 {"vfpv4", FPU_ARCH_VFP_V4},
23157 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
23158 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
23159 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
23160 {NULL, ARM_ARCH_NONE}
23161 };
23162
23163 struct arm_option_value_table
23164 {
23165 char *name;
23166 long value;
23167 };
23168
23169 static const struct arm_option_value_table arm_float_abis[] =
23170 {
23171 {"hard", ARM_FLOAT_ABI_HARD},
23172 {"softfp", ARM_FLOAT_ABI_SOFTFP},
23173 {"soft", ARM_FLOAT_ABI_SOFT},
23174 {NULL, 0}
23175 };
23176
23177 #ifdef OBJ_ELF
23178 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
23179 static const struct arm_option_value_table arm_eabis[] =
23180 {
23181 {"gnu", EF_ARM_EABI_UNKNOWN},
23182 {"4", EF_ARM_EABI_VER4},
23183 {"5", EF_ARM_EABI_VER5},
23184 {NULL, 0}
23185 };
23186 #endif
23187
23188 struct arm_long_option_table
23189 {
23190 char * option; /* Substring to match. */
23191 char * help; /* Help information. */
23192 int (* func) (char * subopt); /* Function to decode sub-option. */
23193 char * deprecated; /* If non-null, print this message. */
23194 };
23195
23196 static bfd_boolean
23197 arm_parse_extension (char *str, const arm_feature_set **opt_p)
23198 {
23199 arm_feature_set *ext_set = (arm_feature_set *)
23200 xmalloc (sizeof (arm_feature_set));
23201
23202 /* We insist on extensions being specified in alphabetical order, and with
23203 extensions being added before being removed. We achieve this by having
23204 the global ARM_EXTENSIONS table in alphabetical order, and using the
23205 ADDING_VALUE variable to indicate whether we are adding an extension (1)
23206 or removing it (0) and only allowing it to change in the order
23207 -1 -> 1 -> 0. */
23208 const struct arm_option_extension_value_table * opt = NULL;
23209 int adding_value = -1;
23210
23211 /* Copy the feature set, so that we can modify it. */
23212 *ext_set = **opt_p;
23213 *opt_p = ext_set;
23214
23215 while (str != NULL && *str != 0)
23216 {
23217 char *ext;
23218 size_t len;
23219
23220 if (*str != '+')
23221 {
23222 as_bad (_("invalid architectural extension"));
23223 return FALSE;
23224 }
23225
23226 str++;
23227 ext = strchr (str, '+');
23228
23229 if (ext != NULL)
23230 len = ext - str;
23231 else
23232 len = strlen (str);
23233
23234 if (len >= 2 && strncmp (str, "no", 2) == 0)
23235 {
23236 if (adding_value != 0)
23237 {
23238 adding_value = 0;
23239 opt = arm_extensions;
23240 }
23241
23242 len -= 2;
23243 str += 2;
23244 }
23245 else if (len > 0)
23246 {
23247 if (adding_value == -1)
23248 {
23249 adding_value = 1;
23250 opt = arm_extensions;
23251 }
23252 else if (adding_value != 1)
23253 {
23254 as_bad (_("must specify extensions to add before specifying "
23255 "those to remove"));
23256 return FALSE;
23257 }
23258 }
23259
23260 if (len == 0)
23261 {
23262 as_bad (_("missing architectural extension"));
23263 return FALSE;
23264 }
23265
23266 gas_assert (adding_value != -1);
23267 gas_assert (opt != NULL);
23268
23269 /* Scan over the options table trying to find an exact match. */
23270 for (; opt->name != NULL; opt++)
23271 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
23272 {
23273 /* Check we can apply the extension to this architecture. */
23274 if (!ARM_CPU_HAS_FEATURE (*ext_set, opt->allowed_archs))
23275 {
23276 as_bad (_("extension does not apply to the base architecture"));
23277 return FALSE;
23278 }
23279
23280 /* Add or remove the extension. */
23281 if (adding_value)
23282 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
23283 else
23284 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->value);
23285
23286 break;
23287 }
23288
23289 if (opt->name == NULL)
23290 {
23291 /* Did we fail to find an extension because it wasn't specified in
23292 alphabetical order, or because it does not exist? */
23293
23294 for (opt = arm_extensions; opt->name != NULL; opt++)
23295 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
23296 break;
23297
23298 if (opt->name == NULL)
23299 as_bad (_("unknown architectural extension `%s'"), str);
23300 else
23301 as_bad (_("architectural extensions must be specified in "
23302 "alphabetical order"));
23303
23304 return FALSE;
23305 }
23306 else
23307 {
23308 /* We should skip the extension we've just matched the next time
23309 round. */
23310 opt++;
23311 }
23312
23313 str = ext;
23314 };
23315
23316 return TRUE;
23317 }
23318
23319 static bfd_boolean
23320 arm_parse_cpu (char *str)
23321 {
23322 const struct arm_cpu_option_table *opt;
23323 char *ext = strchr (str, '+');
23324 size_t len;
23325
23326 if (ext != NULL)
23327 len = ext - str;
23328 else
23329 len = strlen (str);
23330
23331 if (len == 0)
23332 {
23333 as_bad (_("missing cpu name `%s'"), str);
23334 return FALSE;
23335 }
23336
23337 for (opt = arm_cpus; opt->name != NULL; opt++)
23338 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
23339 {
23340 mcpu_cpu_opt = &opt->value;
23341 mcpu_fpu_opt = &opt->default_fpu;
23342 if (opt->canonical_name)
23343 strcpy (selected_cpu_name, opt->canonical_name);
23344 else
23345 {
23346 size_t i;
23347
23348 for (i = 0; i < len; i++)
23349 selected_cpu_name[i] = TOUPPER (opt->name[i]);
23350 selected_cpu_name[i] = 0;
23351 }
23352
23353 if (ext != NULL)
23354 return arm_parse_extension (ext, &mcpu_cpu_opt);
23355
23356 return TRUE;
23357 }
23358
23359 as_bad (_("unknown cpu `%s'"), str);
23360 return FALSE;
23361 }
23362
23363 static bfd_boolean
23364 arm_parse_arch (char *str)
23365 {
23366 const struct arm_arch_option_table *opt;
23367 char *ext = strchr (str, '+');
23368 size_t len;
23369
23370 if (ext != NULL)
23371 len = ext - str;
23372 else
23373 len = strlen (str);
23374
23375 if (len == 0)
23376 {
23377 as_bad (_("missing architecture name `%s'"), str);
23378 return FALSE;
23379 }
23380
23381 for (opt = arm_archs; opt->name != NULL; opt++)
23382 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
23383 {
23384 march_cpu_opt = &opt->value;
23385 march_fpu_opt = &opt->default_fpu;
23386 strcpy (selected_cpu_name, opt->name);
23387
23388 if (ext != NULL)
23389 return arm_parse_extension (ext, &march_cpu_opt);
23390
23391 return TRUE;
23392 }
23393
23394 as_bad (_("unknown architecture `%s'\n"), str);
23395 return FALSE;
23396 }
23397
23398 static bfd_boolean
23399 arm_parse_fpu (char * str)
23400 {
23401 const struct arm_option_fpu_value_table * opt;
23402
23403 for (opt = arm_fpus; opt->name != NULL; opt++)
23404 if (streq (opt->name, str))
23405 {
23406 mfpu_opt = &opt->value;
23407 return TRUE;
23408 }
23409
23410 as_bad (_("unknown floating point format `%s'\n"), str);
23411 return FALSE;
23412 }
23413
23414 static bfd_boolean
23415 arm_parse_float_abi (char * str)
23416 {
23417 const struct arm_option_value_table * opt;
23418
23419 for (opt = arm_float_abis; opt->name != NULL; opt++)
23420 if (streq (opt->name, str))
23421 {
23422 mfloat_abi_opt = opt->value;
23423 return TRUE;
23424 }
23425
23426 as_bad (_("unknown floating point abi `%s'\n"), str);
23427 return FALSE;
23428 }
23429
23430 #ifdef OBJ_ELF
23431 static bfd_boolean
23432 arm_parse_eabi (char * str)
23433 {
23434 const struct arm_option_value_table *opt;
23435
23436 for (opt = arm_eabis; opt->name != NULL; opt++)
23437 if (streq (opt->name, str))
23438 {
23439 meabi_flags = opt->value;
23440 return TRUE;
23441 }
23442 as_bad (_("unknown EABI `%s'\n"), str);
23443 return FALSE;
23444 }
23445 #endif
23446
23447 static bfd_boolean
23448 arm_parse_it_mode (char * str)
23449 {
23450 bfd_boolean ret = TRUE;
23451
23452 if (streq ("arm", str))
23453 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
23454 else if (streq ("thumb", str))
23455 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
23456 else if (streq ("always", str))
23457 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
23458 else if (streq ("never", str))
23459 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
23460 else
23461 {
23462 as_bad (_("unknown implicit IT mode `%s', should be "\
23463 "arm, thumb, always, or never."), str);
23464 ret = FALSE;
23465 }
23466
23467 return ret;
23468 }
23469
23470 struct arm_long_option_table arm_long_opts[] =
23471 {
23472 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
23473 arm_parse_cpu, NULL},
23474 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
23475 arm_parse_arch, NULL},
23476 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
23477 arm_parse_fpu, NULL},
23478 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
23479 arm_parse_float_abi, NULL},
23480 #ifdef OBJ_ELF
23481 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
23482 arm_parse_eabi, NULL},
23483 #endif
23484 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
23485 arm_parse_it_mode, NULL},
23486 {NULL, NULL, 0, NULL}
23487 };
23488
23489 int
23490 md_parse_option (int c, char * arg)
23491 {
23492 struct arm_option_table *opt;
23493 const struct arm_legacy_option_table *fopt;
23494 struct arm_long_option_table *lopt;
23495
23496 switch (c)
23497 {
23498 #ifdef OPTION_EB
23499 case OPTION_EB:
23500 target_big_endian = 1;
23501 break;
23502 #endif
23503
23504 #ifdef OPTION_EL
23505 case OPTION_EL:
23506 target_big_endian = 0;
23507 break;
23508 #endif
23509
23510 case OPTION_FIX_V4BX:
23511 fix_v4bx = TRUE;
23512 break;
23513
23514 case 'a':
23515 /* Listing option. Just ignore these, we don't support additional
23516 ones. */
23517 return 0;
23518
23519 default:
23520 for (opt = arm_opts; opt->option != NULL; opt++)
23521 {
23522 if (c == opt->option[0]
23523 && ((arg == NULL && opt->option[1] == 0)
23524 || streq (arg, opt->option + 1)))
23525 {
23526 /* If the option is deprecated, tell the user. */
23527 if (warn_on_deprecated && opt->deprecated != NULL)
23528 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
23529 arg ? arg : "", _(opt->deprecated));
23530
23531 if (opt->var != NULL)
23532 *opt->var = opt->value;
23533
23534 return 1;
23535 }
23536 }
23537
23538 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
23539 {
23540 if (c == fopt->option[0]
23541 && ((arg == NULL && fopt->option[1] == 0)
23542 || streq (arg, fopt->option + 1)))
23543 {
23544 /* If the option is deprecated, tell the user. */
23545 if (warn_on_deprecated && fopt->deprecated != NULL)
23546 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
23547 arg ? arg : "", _(fopt->deprecated));
23548
23549 if (fopt->var != NULL)
23550 *fopt->var = &fopt->value;
23551
23552 return 1;
23553 }
23554 }
23555
23556 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
23557 {
23558 /* These options are expected to have an argument. */
23559 if (c == lopt->option[0]
23560 && arg != NULL
23561 && strncmp (arg, lopt->option + 1,
23562 strlen (lopt->option + 1)) == 0)
23563 {
23564 /* If the option is deprecated, tell the user. */
23565 if (warn_on_deprecated && lopt->deprecated != NULL)
23566 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
23567 _(lopt->deprecated));
23568
23569 /* Call the sup-option parser. */
23570 return lopt->func (arg + strlen (lopt->option) - 1);
23571 }
23572 }
23573
23574 return 0;
23575 }
23576
23577 return 1;
23578 }
23579
23580 void
23581 md_show_usage (FILE * fp)
23582 {
23583 struct arm_option_table *opt;
23584 struct arm_long_option_table *lopt;
23585
23586 fprintf (fp, _(" ARM-specific assembler options:\n"));
23587
23588 for (opt = arm_opts; opt->option != NULL; opt++)
23589 if (opt->help != NULL)
23590 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
23591
23592 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
23593 if (lopt->help != NULL)
23594 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
23595
23596 #ifdef OPTION_EB
23597 fprintf (fp, _("\
23598 -EB assemble code for a big-endian cpu\n"));
23599 #endif
23600
23601 #ifdef OPTION_EL
23602 fprintf (fp, _("\
23603 -EL assemble code for a little-endian cpu\n"));
23604 #endif
23605
23606 fprintf (fp, _("\
23607 --fix-v4bx Allow BX in ARMv4 code\n"));
23608 }
23609
23610
23611 #ifdef OBJ_ELF
23612 typedef struct
23613 {
23614 int val;
23615 arm_feature_set flags;
23616 } cpu_arch_ver_table;
23617
23618 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
23619 least features first. */
23620 static const cpu_arch_ver_table cpu_arch_ver[] =
23621 {
23622 {1, ARM_ARCH_V4},
23623 {2, ARM_ARCH_V4T},
23624 {3, ARM_ARCH_V5},
23625 {3, ARM_ARCH_V5T},
23626 {4, ARM_ARCH_V5TE},
23627 {5, ARM_ARCH_V5TEJ},
23628 {6, ARM_ARCH_V6},
23629 {9, ARM_ARCH_V6K},
23630 {7, ARM_ARCH_V6Z},
23631 {11, ARM_ARCH_V6M},
23632 {12, ARM_ARCH_V6SM},
23633 {8, ARM_ARCH_V6T2},
23634 {10, ARM_ARCH_V7A},
23635 {10, ARM_ARCH_V7R},
23636 {10, ARM_ARCH_V7M},
23637 {0, ARM_ARCH_NONE}
23638 };
23639
23640 /* Set an attribute if it has not already been set by the user. */
23641 static void
23642 aeabi_set_attribute_int (int tag, int value)
23643 {
23644 if (tag < 1
23645 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
23646 || !attributes_set_explicitly[tag])
23647 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
23648 }
23649
23650 static void
23651 aeabi_set_attribute_string (int tag, const char *value)
23652 {
23653 if (tag < 1
23654 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
23655 || !attributes_set_explicitly[tag])
23656 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
23657 }
23658
23659 /* Set the public EABI object attributes. */
23660 static void
23661 aeabi_set_public_attributes (void)
23662 {
23663 int arch;
23664 int virt_sec = 0;
23665 arm_feature_set flags;
23666 arm_feature_set tmp;
23667 const cpu_arch_ver_table *p;
23668
23669 /* Choose the architecture based on the capabilities of the requested cpu
23670 (if any) and/or the instructions actually used. */
23671 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
23672 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
23673 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
23674
23675 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
23676 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
23677
23678 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
23679 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
23680
23681 /* Allow the user to override the reported architecture. */
23682 if (object_arch)
23683 {
23684 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
23685 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
23686 }
23687
23688 /* We need to make sure that the attributes do not identify us as v6S-M
23689 when the only v6S-M feature in use is the Operating System Extensions. */
23690 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_os))
23691 if (!ARM_CPU_HAS_FEATURE (flags, arm_arch_v6m_only))
23692 ARM_CLEAR_FEATURE (flags, flags, arm_ext_os);
23693
23694 tmp = flags;
23695 arch = 0;
23696 for (p = cpu_arch_ver; p->val; p++)
23697 {
23698 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
23699 {
23700 arch = p->val;
23701 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
23702 }
23703 }
23704
23705 /* The table lookup above finds the last architecture to contribute
23706 a new feature. Unfortunately, Tag13 is a subset of the union of
23707 v6T2 and v7-M, so it is never seen as contributing a new feature.
23708 We can not search for the last entry which is entirely used,
23709 because if no CPU is specified we build up only those flags
23710 actually used. Perhaps we should separate out the specified
23711 and implicit cases. Avoid taking this path for -march=all by
23712 checking for contradictory v7-A / v7-M features. */
23713 if (arch == 10
23714 && !ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a)
23715 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m)
23716 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v6_dsp))
23717 arch = 13;
23718
23719 /* Tag_CPU_name. */
23720 if (selected_cpu_name[0])
23721 {
23722 char *q;
23723
23724 q = selected_cpu_name;
23725 if (strncmp (q, "armv", 4) == 0)
23726 {
23727 int i;
23728
23729 q += 4;
23730 for (i = 0; q[i]; i++)
23731 q[i] = TOUPPER (q[i]);
23732 }
23733 aeabi_set_attribute_string (Tag_CPU_name, q);
23734 }
23735
23736 /* Tag_CPU_arch. */
23737 aeabi_set_attribute_int (Tag_CPU_arch, arch);
23738
23739 /* Tag_CPU_arch_profile. */
23740 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
23741 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'A');
23742 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
23743 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'R');
23744 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
23745 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'M');
23746
23747 /* Tag_ARM_ISA_use. */
23748 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
23749 || arch == 0)
23750 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
23751
23752 /* Tag_THUMB_ISA_use. */
23753 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
23754 || arch == 0)
23755 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
23756 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
23757
23758 /* Tag_VFP_arch. */
23759 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
23760 aeabi_set_attribute_int (Tag_VFP_arch,
23761 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
23762 ? 5 : 6);
23763 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
23764 aeabi_set_attribute_int (Tag_VFP_arch, 3);
23765 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
23766 aeabi_set_attribute_int (Tag_VFP_arch, 4);
23767 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
23768 aeabi_set_attribute_int (Tag_VFP_arch, 2);
23769 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
23770 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
23771 aeabi_set_attribute_int (Tag_VFP_arch, 1);
23772
23773 /* Tag_ABI_HardFP_use. */
23774 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
23775 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
23776 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
23777
23778 /* Tag_WMMX_arch. */
23779 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
23780 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
23781 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
23782 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
23783
23784 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
23785 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
23786 aeabi_set_attribute_int
23787 (Tag_Advanced_SIMD_arch, (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma)
23788 ? 2 : 1));
23789
23790 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
23791 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16))
23792 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
23793
23794 /* Tag_DIV_use. */
23795 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv))
23796 aeabi_set_attribute_int (Tag_DIV_use, 2);
23797 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_div))
23798 aeabi_set_attribute_int (Tag_DIV_use, 0);
23799 else
23800 aeabi_set_attribute_int (Tag_DIV_use, 1);
23801
23802 /* Tag_MP_extension_use. */
23803 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
23804 aeabi_set_attribute_int (Tag_MPextension_use, 1);
23805
23806 /* Tag Virtualization_use. */
23807 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
23808 virt_sec |= 1;
23809 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
23810 virt_sec |= 2;
23811 if (virt_sec != 0)
23812 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
23813 }
23814
23815 /* Add the default contents for the .ARM.attributes section. */
23816 void
23817 arm_md_end (void)
23818 {
23819 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
23820 return;
23821
23822 aeabi_set_public_attributes ();
23823 }
23824 #endif /* OBJ_ELF */
23825
23826
23827 /* Parse a .cpu directive. */
23828
23829 static void
23830 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
23831 {
23832 const struct arm_cpu_option_table *opt;
23833 char *name;
23834 char saved_char;
23835
23836 name = input_line_pointer;
23837 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23838 input_line_pointer++;
23839 saved_char = *input_line_pointer;
23840 *input_line_pointer = 0;
23841
23842 /* Skip the first "all" entry. */
23843 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
23844 if (streq (opt->name, name))
23845 {
23846 mcpu_cpu_opt = &opt->value;
23847 selected_cpu = opt->value;
23848 if (opt->canonical_name)
23849 strcpy (selected_cpu_name, opt->canonical_name);
23850 else
23851 {
23852 int i;
23853 for (i = 0; opt->name[i]; i++)
23854 selected_cpu_name[i] = TOUPPER (opt->name[i]);
23855
23856 selected_cpu_name[i] = 0;
23857 }
23858 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23859 *input_line_pointer = saved_char;
23860 demand_empty_rest_of_line ();
23861 return;
23862 }
23863 as_bad (_("unknown cpu `%s'"), name);
23864 *input_line_pointer = saved_char;
23865 ignore_rest_of_line ();
23866 }
23867
23868
23869 /* Parse a .arch directive. */
23870
23871 static void
23872 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
23873 {
23874 const struct arm_arch_option_table *opt;
23875 char saved_char;
23876 char *name;
23877
23878 name = input_line_pointer;
23879 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23880 input_line_pointer++;
23881 saved_char = *input_line_pointer;
23882 *input_line_pointer = 0;
23883
23884 /* Skip the first "all" entry. */
23885 for (opt = arm_archs + 1; opt->name != NULL; opt++)
23886 if (streq (opt->name, name))
23887 {
23888 mcpu_cpu_opt = &opt->value;
23889 selected_cpu = opt->value;
23890 strcpy (selected_cpu_name, opt->name);
23891 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23892 *input_line_pointer = saved_char;
23893 demand_empty_rest_of_line ();
23894 return;
23895 }
23896
23897 as_bad (_("unknown architecture `%s'\n"), name);
23898 *input_line_pointer = saved_char;
23899 ignore_rest_of_line ();
23900 }
23901
23902
23903 /* Parse a .object_arch directive. */
23904
23905 static void
23906 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
23907 {
23908 const struct arm_arch_option_table *opt;
23909 char saved_char;
23910 char *name;
23911
23912 name = input_line_pointer;
23913 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23914 input_line_pointer++;
23915 saved_char = *input_line_pointer;
23916 *input_line_pointer = 0;
23917
23918 /* Skip the first "all" entry. */
23919 for (opt = arm_archs + 1; opt->name != NULL; opt++)
23920 if (streq (opt->name, name))
23921 {
23922 object_arch = &opt->value;
23923 *input_line_pointer = saved_char;
23924 demand_empty_rest_of_line ();
23925 return;
23926 }
23927
23928 as_bad (_("unknown architecture `%s'\n"), name);
23929 *input_line_pointer = saved_char;
23930 ignore_rest_of_line ();
23931 }
23932
23933 /* Parse a .arch_extension directive. */
23934
23935 static void
23936 s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
23937 {
23938 const struct arm_option_extension_value_table *opt;
23939 char saved_char;
23940 char *name;
23941 int adding_value = 1;
23942
23943 name = input_line_pointer;
23944 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23945 input_line_pointer++;
23946 saved_char = *input_line_pointer;
23947 *input_line_pointer = 0;
23948
23949 if (strlen (name) >= 2
23950 && strncmp (name, "no", 2) == 0)
23951 {
23952 adding_value = 0;
23953 name += 2;
23954 }
23955
23956 for (opt = arm_extensions; opt->name != NULL; opt++)
23957 if (streq (opt->name, name))
23958 {
23959 if (!ARM_CPU_HAS_FEATURE (*mcpu_cpu_opt, opt->allowed_archs))
23960 {
23961 as_bad (_("architectural extension `%s' is not allowed for the "
23962 "current base architecture"), name);
23963 break;
23964 }
23965
23966 if (adding_value)
23967 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_cpu, opt->value);
23968 else
23969 ARM_CLEAR_FEATURE (selected_cpu, selected_cpu, opt->value);
23970
23971 mcpu_cpu_opt = &selected_cpu;
23972 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23973 *input_line_pointer = saved_char;
23974 demand_empty_rest_of_line ();
23975 return;
23976 }
23977
23978 if (opt->name == NULL)
23979 as_bad (_("unknown architecture `%s'\n"), name);
23980
23981 *input_line_pointer = saved_char;
23982 ignore_rest_of_line ();
23983 }
23984
23985 /* Parse a .fpu directive. */
23986
23987 static void
23988 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
23989 {
23990 const struct arm_option_fpu_value_table *opt;
23991 char saved_char;
23992 char *name;
23993
23994 name = input_line_pointer;
23995 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23996 input_line_pointer++;
23997 saved_char = *input_line_pointer;
23998 *input_line_pointer = 0;
23999
24000 for (opt = arm_fpus; opt->name != NULL; opt++)
24001 if (streq (opt->name, name))
24002 {
24003 mfpu_opt = &opt->value;
24004 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
24005 *input_line_pointer = saved_char;
24006 demand_empty_rest_of_line ();
24007 return;
24008 }
24009
24010 as_bad (_("unknown floating point format `%s'\n"), name);
24011 *input_line_pointer = saved_char;
24012 ignore_rest_of_line ();
24013 }
24014
24015 /* Copy symbol information. */
24016
24017 void
24018 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
24019 {
24020 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
24021 }
24022
24023 #ifdef OBJ_ELF
24024 /* Given a symbolic attribute NAME, return the proper integer value.
24025 Returns -1 if the attribute is not known. */
24026
24027 int
24028 arm_convert_symbolic_attribute (const char *name)
24029 {
24030 static const struct
24031 {
24032 const char * name;
24033 const int tag;
24034 }
24035 attribute_table[] =
24036 {
24037 /* When you modify this table you should
24038 also modify the list in doc/c-arm.texi. */
24039 #define T(tag) {#tag, tag}
24040 T (Tag_CPU_raw_name),
24041 T (Tag_CPU_name),
24042 T (Tag_CPU_arch),
24043 T (Tag_CPU_arch_profile),
24044 T (Tag_ARM_ISA_use),
24045 T (Tag_THUMB_ISA_use),
24046 T (Tag_FP_arch),
24047 T (Tag_VFP_arch),
24048 T (Tag_WMMX_arch),
24049 T (Tag_Advanced_SIMD_arch),
24050 T (Tag_PCS_config),
24051 T (Tag_ABI_PCS_R9_use),
24052 T (Tag_ABI_PCS_RW_data),
24053 T (Tag_ABI_PCS_RO_data),
24054 T (Tag_ABI_PCS_GOT_use),
24055 T (Tag_ABI_PCS_wchar_t),
24056 T (Tag_ABI_FP_rounding),
24057 T (Tag_ABI_FP_denormal),
24058 T (Tag_ABI_FP_exceptions),
24059 T (Tag_ABI_FP_user_exceptions),
24060 T (Tag_ABI_FP_number_model),
24061 T (Tag_ABI_align_needed),
24062 T (Tag_ABI_align8_needed),
24063 T (Tag_ABI_align_preserved),
24064 T (Tag_ABI_align8_preserved),
24065 T (Tag_ABI_enum_size),
24066 T (Tag_ABI_HardFP_use),
24067 T (Tag_ABI_VFP_args),
24068 T (Tag_ABI_WMMX_args),
24069 T (Tag_ABI_optimization_goals),
24070 T (Tag_ABI_FP_optimization_goals),
24071 T (Tag_compatibility),
24072 T (Tag_CPU_unaligned_access),
24073 T (Tag_FP_HP_extension),
24074 T (Tag_VFP_HP_extension),
24075 T (Tag_ABI_FP_16bit_format),
24076 T (Tag_MPextension_use),
24077 T (Tag_DIV_use),
24078 T (Tag_nodefaults),
24079 T (Tag_also_compatible_with),
24080 T (Tag_conformance),
24081 T (Tag_T2EE_use),
24082 T (Tag_Virtualization_use),
24083 /* We deliberately do not include Tag_MPextension_use_legacy. */
24084 #undef T
24085 };
24086 unsigned int i;
24087
24088 if (name == NULL)
24089 return -1;
24090
24091 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
24092 if (streq (name, attribute_table[i].name))
24093 return attribute_table[i].tag;
24094
24095 return -1;
24096 }
24097
24098
24099 /* Apply sym value for relocations only in the case that
24100 they are for local symbols and you have the respective
24101 architectural feature for blx and simple switches. */
24102 int
24103 arm_apply_sym_value (struct fix * fixP)
24104 {
24105 if (fixP->fx_addsy
24106 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
24107 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
24108 {
24109 switch (fixP->fx_r_type)
24110 {
24111 case BFD_RELOC_ARM_PCREL_BLX:
24112 case BFD_RELOC_THUMB_PCREL_BRANCH23:
24113 if (ARM_IS_FUNC (fixP->fx_addsy))
24114 return 1;
24115 break;
24116
24117 case BFD_RELOC_ARM_PCREL_CALL:
24118 case BFD_RELOC_THUMB_PCREL_BLX:
24119 if (THUMB_IS_FUNC (fixP->fx_addsy))
24120 return 1;
24121 break;
24122
24123 default:
24124 break;
24125 }
24126
24127 }
24128 return 0;
24129 }
24130 #endif /* OBJ_ELF */
This page took 0.584571 seconds and 4 git commands to generate.