Update soruces to make alpha, arc and arm targets compile cleanly
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3, or (at your option)
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
27
28 #include "as.h"
29 #include <limits.h>
30 #include <stdarg.h>
31 #define NO_RELOC 0
32 #include "safe-ctype.h"
33 #include "subsegs.h"
34 #include "obstack.h"
35
36 #include "opcode/arm.h"
37
38 #ifdef OBJ_ELF
39 #include "elf/arm.h"
40 #include "dw2gencfi.h"
41 #endif
42
43 #include "dwarf2dbg.h"
44
45 #ifdef OBJ_ELF
46 /* Must be at least the size of the largest unwind opcode (currently two). */
47 #define ARM_OPCODE_CHUNK_SIZE 8
48
49 /* This structure holds the unwinding state. */
50
51 static struct
52 {
53 symbolS * proc_start;
54 symbolS * table_entry;
55 symbolS * personality_routine;
56 int personality_index;
57 /* The segment containing the function. */
58 segT saved_seg;
59 subsegT saved_subseg;
60 /* Opcodes generated from this function. */
61 unsigned char * opcodes;
62 int opcode_count;
63 int opcode_alloc;
64 /* The number of bytes pushed to the stack. */
65 offsetT frame_size;
66 /* We don't add stack adjustment opcodes immediately so that we can merge
67 multiple adjustments. We can also omit the final adjustment
68 when using a frame pointer. */
69 offsetT pending_offset;
70 /* These two fields are set by both unwind_movsp and unwind_setfp. They
71 hold the reg+offset to use when restoring sp from a frame pointer. */
72 offsetT fp_offset;
73 int fp_reg;
74 /* Nonzero if an unwind_setfp directive has been seen. */
75 unsigned fp_used:1;
76 /* Nonzero if the last opcode restores sp from fp_reg. */
77 unsigned sp_restored:1;
78 } unwind;
79
80 #endif /* OBJ_ELF */
81
82 /* Results from operand parsing worker functions. */
83
84 typedef enum
85 {
86 PARSE_OPERAND_SUCCESS,
87 PARSE_OPERAND_FAIL,
88 PARSE_OPERAND_FAIL_NO_BACKTRACK
89 } parse_operand_result;
90
91 enum arm_float_abi
92 {
93 ARM_FLOAT_ABI_HARD,
94 ARM_FLOAT_ABI_SOFTFP,
95 ARM_FLOAT_ABI_SOFT
96 };
97
98 /* Types of processor to assemble for. */
99 #ifndef CPU_DEFAULT
100 #if defined __XSCALE__
101 #define CPU_DEFAULT ARM_ARCH_XSCALE
102 #else
103 #if defined __thumb__
104 #define CPU_DEFAULT ARM_ARCH_V5T
105 #endif
106 #endif
107 #endif
108
109 #ifndef FPU_DEFAULT
110 # ifdef TE_LINUX
111 # define FPU_DEFAULT FPU_ARCH_FPA
112 # elif defined (TE_NetBSD)
113 # ifdef OBJ_ELF
114 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
115 # else
116 /* Legacy a.out format. */
117 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
118 # endif
119 # elif defined (TE_VXWORKS)
120 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
121 # else
122 /* For backwards compatibility, default to FPA. */
123 # define FPU_DEFAULT FPU_ARCH_FPA
124 # endif
125 #endif /* ifndef FPU_DEFAULT */
126
127 #define streq(a, b) (strcmp (a, b) == 0)
128
129 static arm_feature_set cpu_variant;
130 static arm_feature_set arm_arch_used;
131 static arm_feature_set thumb_arch_used;
132
133 /* Flags stored in private area of BFD structure. */
134 static int uses_apcs_26 = FALSE;
135 static int atpcs = FALSE;
136 static int support_interwork = FALSE;
137 static int uses_apcs_float = FALSE;
138 static int pic_code = FALSE;
139 static int fix_v4bx = FALSE;
140 /* Warn on using deprecated features. */
141 static int warn_on_deprecated = TRUE;
142
143
144 /* Variables that we set while parsing command-line options. Once all
145 options have been read we re-process these values to set the real
146 assembly flags. */
147 static const arm_feature_set *legacy_cpu = NULL;
148 static const arm_feature_set *legacy_fpu = NULL;
149
150 static const arm_feature_set *mcpu_cpu_opt = NULL;
151 static const arm_feature_set *mcpu_fpu_opt = NULL;
152 static const arm_feature_set *march_cpu_opt = NULL;
153 static const arm_feature_set *march_fpu_opt = NULL;
154 static const arm_feature_set *mfpu_opt = NULL;
155 static const arm_feature_set *object_arch = NULL;
156
157 /* Constants for known architecture features. */
158 static const arm_feature_set fpu_default = FPU_DEFAULT;
159 static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
160 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
161 static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
162 static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
163 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
164 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
165 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
166 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
167
168 #ifdef CPU_DEFAULT
169 static const arm_feature_set cpu_default = CPU_DEFAULT;
170 #endif
171
172 static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
173 static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
174 static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
175 static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
176 static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
177 static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
178 static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
179 static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
180 static const arm_feature_set arm_ext_v4t_5 =
181 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
182 static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
183 static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
184 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
185 static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
186 static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
187 static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
188 static const arm_feature_set arm_ext_v6z = ARM_FEATURE (ARM_EXT_V6Z, 0);
189 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
190 static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
191 static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
192 static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
193 static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
194 static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
195 static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
196 static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
197 static const arm_feature_set arm_ext_m =
198 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_V7M, 0);
199
200 static const arm_feature_set arm_arch_any = ARM_ANY;
201 static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
202 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
203 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
204
205 static const arm_feature_set arm_cext_iwmmxt2 =
206 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
207 static const arm_feature_set arm_cext_iwmmxt =
208 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
209 static const arm_feature_set arm_cext_xscale =
210 ARM_FEATURE (0, ARM_CEXT_XSCALE);
211 static const arm_feature_set arm_cext_maverick =
212 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
213 static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
214 static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
215 static const arm_feature_set fpu_vfp_ext_v1xd =
216 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
217 static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
218 static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
219 static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
220 static const arm_feature_set fpu_vfp_ext_d32 =
221 ARM_FEATURE (0, FPU_VFP_EXT_D32);
222 static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
223 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
224 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
225 static const arm_feature_set fpu_neon_fp16 = ARM_FEATURE (0, FPU_NEON_FP16);
226
227 static int mfloat_abi_opt = -1;
228 /* Record user cpu selection for object attributes. */
229 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
230 /* Must be long enough to hold any of the names in arm_cpus. */
231 static char selected_cpu_name[16];
232 #ifdef OBJ_ELF
233 # ifdef EABI_DEFAULT
234 static int meabi_flags = EABI_DEFAULT;
235 # else
236 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
237 # endif
238
239 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
240
241 bfd_boolean
242 arm_is_eabi (void)
243 {
244 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
245 }
246 #endif
247
248 #ifdef OBJ_ELF
249 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
250 symbolS * GOT_symbol;
251 #endif
252
253 /* 0: assemble for ARM,
254 1: assemble for Thumb,
255 2: assemble for Thumb even though target CPU does not support thumb
256 instructions. */
257 static int thumb_mode = 0;
258 /* A value distinct from the possible values for thumb_mode that we
259 can use to record whether thumb_mode has been copied into the
260 tc_frag_data field of a frag. */
261 #define MODE_RECORDED (1 << 4)
262
263 /* Specifies the intrinsic IT insn behavior mode. */
264 enum implicit_it_mode
265 {
266 IMPLICIT_IT_MODE_NEVER = 0x00,
267 IMPLICIT_IT_MODE_ARM = 0x01,
268 IMPLICIT_IT_MODE_THUMB = 0x02,
269 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
270 };
271 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
272
273 /* If unified_syntax is true, we are processing the new unified
274 ARM/Thumb syntax. Important differences from the old ARM mode:
275
276 - Immediate operands do not require a # prefix.
277 - Conditional affixes always appear at the end of the
278 instruction. (For backward compatibility, those instructions
279 that formerly had them in the middle, continue to accept them
280 there.)
281 - The IT instruction may appear, and if it does is validated
282 against subsequent conditional affixes. It does not generate
283 machine code.
284
285 Important differences from the old Thumb mode:
286
287 - Immediate operands do not require a # prefix.
288 - Most of the V6T2 instructions are only available in unified mode.
289 - The .N and .W suffixes are recognized and honored (it is an error
290 if they cannot be honored).
291 - All instructions set the flags if and only if they have an 's' affix.
292 - Conditional affixes may be used. They are validated against
293 preceding IT instructions. Unlike ARM mode, you cannot use a
294 conditional affix except in the scope of an IT instruction. */
295
296 static bfd_boolean unified_syntax = FALSE;
297
298 enum neon_el_type
299 {
300 NT_invtype,
301 NT_untyped,
302 NT_integer,
303 NT_float,
304 NT_poly,
305 NT_signed,
306 NT_unsigned
307 };
308
309 struct neon_type_el
310 {
311 enum neon_el_type type;
312 unsigned size;
313 };
314
315 #define NEON_MAX_TYPE_ELS 4
316
317 struct neon_type
318 {
319 struct neon_type_el el[NEON_MAX_TYPE_ELS];
320 unsigned elems;
321 };
322
323 enum it_instruction_type
324 {
325 OUTSIDE_IT_INSN,
326 INSIDE_IT_INSN,
327 INSIDE_IT_LAST_INSN,
328 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
329 if inside, should be the last one. */
330 NEUTRAL_IT_INSN, /* This could be either inside or outside,
331 i.e. BKPT and NOP. */
332 IT_INSN /* The IT insn has been parsed. */
333 };
334
335 struct arm_it
336 {
337 const char * error;
338 unsigned long instruction;
339 int size;
340 int size_req;
341 int cond;
342 /* "uncond_value" is set to the value in place of the conditional field in
343 unconditional versions of the instruction, or -1 if nothing is
344 appropriate. */
345 int uncond_value;
346 struct neon_type vectype;
347 /* Set to the opcode if the instruction needs relaxation.
348 Zero if the instruction is not relaxed. */
349 unsigned long relax;
350 struct
351 {
352 bfd_reloc_code_real_type type;
353 expressionS exp;
354 int pc_rel;
355 } reloc;
356
357 enum it_instruction_type it_insn_type;
358
359 struct
360 {
361 unsigned reg;
362 signed int imm;
363 struct neon_type_el vectype;
364 unsigned present : 1; /* Operand present. */
365 unsigned isreg : 1; /* Operand was a register. */
366 unsigned immisreg : 1; /* .imm field is a second register. */
367 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
368 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
369 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
370 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
371 instructions. This allows us to disambiguate ARM <-> vector insns. */
372 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
373 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
374 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
375 unsigned issingle : 1; /* Operand is VFP single-precision register. */
376 unsigned hasreloc : 1; /* Operand has relocation suffix. */
377 unsigned writeback : 1; /* Operand has trailing ! */
378 unsigned preind : 1; /* Preindexed address. */
379 unsigned postind : 1; /* Postindexed address. */
380 unsigned negative : 1; /* Index register was negated. */
381 unsigned shifted : 1; /* Shift applied to operation. */
382 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
383 } operands[6];
384 };
385
386 static struct arm_it inst;
387
388 #define NUM_FLOAT_VALS 8
389
390 const char * fp_const[] =
391 {
392 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
393 };
394
395 /* Number of littlenums required to hold an extended precision number. */
396 #define MAX_LITTLENUMS 6
397
398 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
399
400 #define FAIL (-1)
401 #define SUCCESS (0)
402
403 #define SUFF_S 1
404 #define SUFF_D 2
405 #define SUFF_E 3
406 #define SUFF_P 4
407
408 #define CP_T_X 0x00008000
409 #define CP_T_Y 0x00400000
410
411 #define CONDS_BIT 0x00100000
412 #define LOAD_BIT 0x00100000
413
414 #define DOUBLE_LOAD_FLAG 0x00000001
415
416 struct asm_cond
417 {
418 const char * template_name;
419 unsigned long value;
420 };
421
422 #define COND_ALWAYS 0xE
423
424 struct asm_psr
425 {
426 const char * template_name;
427 unsigned long field;
428 };
429
430 struct asm_barrier_opt
431 {
432 const char * template_name;
433 unsigned long value;
434 };
435
436 /* The bit that distinguishes CPSR and SPSR. */
437 #define SPSR_BIT (1 << 22)
438
439 /* The individual PSR flag bits. */
440 #define PSR_c (1 << 16)
441 #define PSR_x (1 << 17)
442 #define PSR_s (1 << 18)
443 #define PSR_f (1 << 19)
444
445 struct reloc_entry
446 {
447 char * name;
448 bfd_reloc_code_real_type reloc;
449 };
450
451 enum vfp_reg_pos
452 {
453 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
454 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
455 };
456
457 enum vfp_ldstm_type
458 {
459 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
460 };
461
462 /* Bits for DEFINED field in neon_typed_alias. */
463 #define NTA_HASTYPE 1
464 #define NTA_HASINDEX 2
465
466 struct neon_typed_alias
467 {
468 unsigned char defined;
469 unsigned char index;
470 struct neon_type_el eltype;
471 };
472
473 /* ARM register categories. This includes coprocessor numbers and various
474 architecture extensions' registers. */
475 enum arm_reg_type
476 {
477 REG_TYPE_RN,
478 REG_TYPE_CP,
479 REG_TYPE_CN,
480 REG_TYPE_FN,
481 REG_TYPE_VFS,
482 REG_TYPE_VFD,
483 REG_TYPE_NQ,
484 REG_TYPE_VFSD,
485 REG_TYPE_NDQ,
486 REG_TYPE_NSDQ,
487 REG_TYPE_VFC,
488 REG_TYPE_MVF,
489 REG_TYPE_MVD,
490 REG_TYPE_MVFX,
491 REG_TYPE_MVDX,
492 REG_TYPE_MVAX,
493 REG_TYPE_DSPSC,
494 REG_TYPE_MMXWR,
495 REG_TYPE_MMXWC,
496 REG_TYPE_MMXWCG,
497 REG_TYPE_XSCALE,
498 };
499
500 /* Structure for a hash table entry for a register.
501 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
502 information which states whether a vector type or index is specified (for a
503 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
504 struct reg_entry
505 {
506 const char * name;
507 unsigned char number;
508 unsigned char type;
509 unsigned char builtin;
510 struct neon_typed_alias * neon;
511 };
512
513 /* Diagnostics used when we don't get a register of the expected type. */
514 const char * const reg_expected_msgs[] =
515 {
516 N_("ARM register expected"),
517 N_("bad or missing co-processor number"),
518 N_("co-processor register expected"),
519 N_("FPA register expected"),
520 N_("VFP single precision register expected"),
521 N_("VFP/Neon double precision register expected"),
522 N_("Neon quad precision register expected"),
523 N_("VFP single or double precision register expected"),
524 N_("Neon double or quad precision register expected"),
525 N_("VFP single, double or Neon quad precision register expected"),
526 N_("VFP system register expected"),
527 N_("Maverick MVF register expected"),
528 N_("Maverick MVD register expected"),
529 N_("Maverick MVFX register expected"),
530 N_("Maverick MVDX register expected"),
531 N_("Maverick MVAX register expected"),
532 N_("Maverick DSPSC register expected"),
533 N_("iWMMXt data register expected"),
534 N_("iWMMXt control register expected"),
535 N_("iWMMXt scalar register expected"),
536 N_("XScale accumulator register expected"),
537 };
538
539 /* Some well known registers that we refer to directly elsewhere. */
540 #define REG_SP 13
541 #define REG_LR 14
542 #define REG_PC 15
543
544 /* ARM instructions take 4bytes in the object file, Thumb instructions
545 take 2: */
546 #define INSN_SIZE 4
547
548 struct asm_opcode
549 {
550 /* Basic string to match. */
551 const char * template_name;
552
553 /* Parameters to instruction. */
554 unsigned char operands[8];
555
556 /* Conditional tag - see opcode_lookup. */
557 unsigned int tag : 4;
558
559 /* Basic instruction code. */
560 unsigned int avalue : 28;
561
562 /* Thumb-format instruction code. */
563 unsigned int tvalue;
564
565 /* Which architecture variant provides this instruction. */
566 const arm_feature_set * avariant;
567 const arm_feature_set * tvariant;
568
569 /* Function to call to encode instruction in ARM format. */
570 void (* aencode) (void);
571
572 /* Function to call to encode instruction in Thumb format. */
573 void (* tencode) (void);
574 };
575
576 /* Defines for various bits that we will want to toggle. */
577 #define INST_IMMEDIATE 0x02000000
578 #define OFFSET_REG 0x02000000
579 #define HWOFFSET_IMM 0x00400000
580 #define SHIFT_BY_REG 0x00000010
581 #define PRE_INDEX 0x01000000
582 #define INDEX_UP 0x00800000
583 #define WRITE_BACK 0x00200000
584 #define LDM_TYPE_2_OR_3 0x00400000
585 #define CPSI_MMOD 0x00020000
586
587 #define LITERAL_MASK 0xf000f000
588 #define OPCODE_MASK 0xfe1fffff
589 #define V4_STR_BIT 0x00000020
590
591 #define T2_SUBS_PC_LR 0xf3de8f00
592
593 #define DATA_OP_SHIFT 21
594
595 #define T2_OPCODE_MASK 0xfe1fffff
596 #define T2_DATA_OP_SHIFT 21
597
598 /* Codes to distinguish the arithmetic instructions. */
599 #define OPCODE_AND 0
600 #define OPCODE_EOR 1
601 #define OPCODE_SUB 2
602 #define OPCODE_RSB 3
603 #define OPCODE_ADD 4
604 #define OPCODE_ADC 5
605 #define OPCODE_SBC 6
606 #define OPCODE_RSC 7
607 #define OPCODE_TST 8
608 #define OPCODE_TEQ 9
609 #define OPCODE_CMP 10
610 #define OPCODE_CMN 11
611 #define OPCODE_ORR 12
612 #define OPCODE_MOV 13
613 #define OPCODE_BIC 14
614 #define OPCODE_MVN 15
615
616 #define T2_OPCODE_AND 0
617 #define T2_OPCODE_BIC 1
618 #define T2_OPCODE_ORR 2
619 #define T2_OPCODE_ORN 3
620 #define T2_OPCODE_EOR 4
621 #define T2_OPCODE_ADD 8
622 #define T2_OPCODE_ADC 10
623 #define T2_OPCODE_SBC 11
624 #define T2_OPCODE_SUB 13
625 #define T2_OPCODE_RSB 14
626
627 #define T_OPCODE_MUL 0x4340
628 #define T_OPCODE_TST 0x4200
629 #define T_OPCODE_CMN 0x42c0
630 #define T_OPCODE_NEG 0x4240
631 #define T_OPCODE_MVN 0x43c0
632
633 #define T_OPCODE_ADD_R3 0x1800
634 #define T_OPCODE_SUB_R3 0x1a00
635 #define T_OPCODE_ADD_HI 0x4400
636 #define T_OPCODE_ADD_ST 0xb000
637 #define T_OPCODE_SUB_ST 0xb080
638 #define T_OPCODE_ADD_SP 0xa800
639 #define T_OPCODE_ADD_PC 0xa000
640 #define T_OPCODE_ADD_I8 0x3000
641 #define T_OPCODE_SUB_I8 0x3800
642 #define T_OPCODE_ADD_I3 0x1c00
643 #define T_OPCODE_SUB_I3 0x1e00
644
645 #define T_OPCODE_ASR_R 0x4100
646 #define T_OPCODE_LSL_R 0x4080
647 #define T_OPCODE_LSR_R 0x40c0
648 #define T_OPCODE_ROR_R 0x41c0
649 #define T_OPCODE_ASR_I 0x1000
650 #define T_OPCODE_LSL_I 0x0000
651 #define T_OPCODE_LSR_I 0x0800
652
653 #define T_OPCODE_MOV_I8 0x2000
654 #define T_OPCODE_CMP_I8 0x2800
655 #define T_OPCODE_CMP_LR 0x4280
656 #define T_OPCODE_MOV_HR 0x4600
657 #define T_OPCODE_CMP_HR 0x4500
658
659 #define T_OPCODE_LDR_PC 0x4800
660 #define T_OPCODE_LDR_SP 0x9800
661 #define T_OPCODE_STR_SP 0x9000
662 #define T_OPCODE_LDR_IW 0x6800
663 #define T_OPCODE_STR_IW 0x6000
664 #define T_OPCODE_LDR_IH 0x8800
665 #define T_OPCODE_STR_IH 0x8000
666 #define T_OPCODE_LDR_IB 0x7800
667 #define T_OPCODE_STR_IB 0x7000
668 #define T_OPCODE_LDR_RW 0x5800
669 #define T_OPCODE_STR_RW 0x5000
670 #define T_OPCODE_LDR_RH 0x5a00
671 #define T_OPCODE_STR_RH 0x5200
672 #define T_OPCODE_LDR_RB 0x5c00
673 #define T_OPCODE_STR_RB 0x5400
674
675 #define T_OPCODE_PUSH 0xb400
676 #define T_OPCODE_POP 0xbc00
677
678 #define T_OPCODE_BRANCH 0xe000
679
680 #define THUMB_SIZE 2 /* Size of thumb instruction. */
681 #define THUMB_PP_PC_LR 0x0100
682 #define THUMB_LOAD_BIT 0x0800
683 #define THUMB2_LOAD_BIT 0x00100000
684
685 #define BAD_ARGS _("bad arguments to instruction")
686 #define BAD_SP _("r13 not allowed here")
687 #define BAD_PC _("r15 not allowed here")
688 #define BAD_COND _("instruction cannot be conditional")
689 #define BAD_OVERLAP _("registers may not be the same")
690 #define BAD_HIREG _("lo register required")
691 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
692 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
693 #define BAD_BRANCH _("branch must be last instruction in IT block")
694 #define BAD_NOT_IT _("instruction not allowed in IT block")
695 #define BAD_FPU _("selected FPU does not support instruction")
696 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
697 #define BAD_IT_COND _("incorrect condition in IT block")
698 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
699 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
700
701 static struct hash_control * arm_ops_hsh;
702 static struct hash_control * arm_cond_hsh;
703 static struct hash_control * arm_shift_hsh;
704 static struct hash_control * arm_psr_hsh;
705 static struct hash_control * arm_v7m_psr_hsh;
706 static struct hash_control * arm_reg_hsh;
707 static struct hash_control * arm_reloc_hsh;
708 static struct hash_control * arm_barrier_opt_hsh;
709
710 /* Stuff needed to resolve the label ambiguity
711 As:
712 ...
713 label: <insn>
714 may differ from:
715 ...
716 label:
717 <insn> */
718
719 symbolS * last_label_seen;
720 static int label_is_thumb_function_name = FALSE;
721
722 /* Literal pool structure. Held on a per-section
723 and per-sub-section basis. */
724
725 #define MAX_LITERAL_POOL_SIZE 1024
726 typedef struct literal_pool
727 {
728 expressionS literals [MAX_LITERAL_POOL_SIZE];
729 unsigned int next_free_entry;
730 unsigned int id;
731 symbolS * symbol;
732 segT section;
733 subsegT sub_section;
734 struct literal_pool * next;
735 } literal_pool;
736
737 /* Pointer to a linked list of literal pools. */
738 literal_pool * list_of_pools = NULL;
739
740 #ifdef OBJ_ELF
741 # define now_it seg_info (now_seg)->tc_segment_info_data.current_it
742 #else
743 static struct current_it now_it;
744 #endif
745
746 static inline int
747 now_it_compatible (int cond)
748 {
749 return (cond & ~1) == (now_it.cc & ~1);
750 }
751
752 static inline int
753 conditional_insn (void)
754 {
755 return inst.cond != COND_ALWAYS;
756 }
757
758 static int in_it_block (void);
759
760 static int handle_it_state (void);
761
762 static void force_automatic_it_block_close (void);
763
764 static void it_fsm_post_encode (void);
765
766 #define set_it_insn_type(type) \
767 do \
768 { \
769 inst.it_insn_type = type; \
770 if (handle_it_state () == FAIL) \
771 return; \
772 } \
773 while (0)
774
775 #define set_it_insn_type_nonvoid(type, failret) \
776 do \
777 { \
778 inst.it_insn_type = type; \
779 if (handle_it_state () == FAIL) \
780 return failret; \
781 } \
782 while(0)
783
784 #define set_it_insn_type_last() \
785 do \
786 { \
787 if (inst.cond == COND_ALWAYS) \
788 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
789 else \
790 set_it_insn_type (INSIDE_IT_LAST_INSN); \
791 } \
792 while (0)
793
794 /* Pure syntax. */
795
796 /* This array holds the chars that always start a comment. If the
797 pre-processor is disabled, these aren't very useful. */
798 const char comment_chars[] = "@";
799
800 /* This array holds the chars that only start a comment at the beginning of
801 a line. If the line seems to have the form '# 123 filename'
802 .line and .file directives will appear in the pre-processed output. */
803 /* Note that input_file.c hand checks for '#' at the beginning of the
804 first line of the input file. This is because the compiler outputs
805 #NO_APP at the beginning of its output. */
806 /* Also note that comments like this one will always work. */
807 const char line_comment_chars[] = "#";
808
809 const char line_separator_chars[] = ";";
810
811 /* Chars that can be used to separate mant
812 from exp in floating point numbers. */
813 const char EXP_CHARS[] = "eE";
814
815 /* Chars that mean this number is a floating point constant. */
816 /* As in 0f12.456 */
817 /* or 0d1.2345e12 */
818
819 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
820
821 /* Prefix characters that indicate the start of an immediate
822 value. */
823 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
824
825 /* Separator character handling. */
826
827 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
828
829 static inline int
830 skip_past_char (char ** str, char c)
831 {
832 if (**str == c)
833 {
834 (*str)++;
835 return SUCCESS;
836 }
837 else
838 return FAIL;
839 }
840
841 #define skip_past_comma(str) skip_past_char (str, ',')
842
843 /* Arithmetic expressions (possibly involving symbols). */
844
845 /* Return TRUE if anything in the expression is a bignum. */
846
847 static int
848 walk_no_bignums (symbolS * sp)
849 {
850 if (symbol_get_value_expression (sp)->X_op == O_big)
851 return 1;
852
853 if (symbol_get_value_expression (sp)->X_add_symbol)
854 {
855 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
856 || (symbol_get_value_expression (sp)->X_op_symbol
857 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
858 }
859
860 return 0;
861 }
862
863 static int in_my_get_expression = 0;
864
865 /* Third argument to my_get_expression. */
866 #define GE_NO_PREFIX 0
867 #define GE_IMM_PREFIX 1
868 #define GE_OPT_PREFIX 2
869 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
870 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
871 #define GE_OPT_PREFIX_BIG 3
872
873 static int
874 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
875 {
876 char * save_in;
877 segT seg;
878
879 /* In unified syntax, all prefixes are optional. */
880 if (unified_syntax)
881 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
882 : GE_OPT_PREFIX;
883
884 switch (prefix_mode)
885 {
886 case GE_NO_PREFIX: break;
887 case GE_IMM_PREFIX:
888 if (!is_immediate_prefix (**str))
889 {
890 inst.error = _("immediate expression requires a # prefix");
891 return FAIL;
892 }
893 (*str)++;
894 break;
895 case GE_OPT_PREFIX:
896 case GE_OPT_PREFIX_BIG:
897 if (is_immediate_prefix (**str))
898 (*str)++;
899 break;
900 default: abort ();
901 }
902
903 memset (ep, 0, sizeof (expressionS));
904
905 save_in = input_line_pointer;
906 input_line_pointer = *str;
907 in_my_get_expression = 1;
908 seg = expression (ep);
909 in_my_get_expression = 0;
910
911 if (ep->X_op == O_illegal || ep->X_op == O_absent)
912 {
913 /* We found a bad or missing expression in md_operand(). */
914 *str = input_line_pointer;
915 input_line_pointer = save_in;
916 if (inst.error == NULL)
917 inst.error = (ep->X_op == O_absent
918 ? _("missing expression") :_("bad expression"));
919 return 1;
920 }
921
922 #ifdef OBJ_AOUT
923 if (seg != absolute_section
924 && seg != text_section
925 && seg != data_section
926 && seg != bss_section
927 && seg != undefined_section)
928 {
929 inst.error = _("bad segment");
930 *str = input_line_pointer;
931 input_line_pointer = save_in;
932 return 1;
933 }
934 #endif
935
936 /* Get rid of any bignums now, so that we don't generate an error for which
937 we can't establish a line number later on. Big numbers are never valid
938 in instructions, which is where this routine is always called. */
939 if (prefix_mode != GE_OPT_PREFIX_BIG
940 && (ep->X_op == O_big
941 || (ep->X_add_symbol
942 && (walk_no_bignums (ep->X_add_symbol)
943 || (ep->X_op_symbol
944 && walk_no_bignums (ep->X_op_symbol))))))
945 {
946 inst.error = _("invalid constant");
947 *str = input_line_pointer;
948 input_line_pointer = save_in;
949 return 1;
950 }
951
952 *str = input_line_pointer;
953 input_line_pointer = save_in;
954 return 0;
955 }
956
957 /* Turn a string in input_line_pointer into a floating point constant
958 of type TYPE, and store the appropriate bytes in *LITP. The number
959 of LITTLENUMS emitted is stored in *SIZEP. An error message is
960 returned, or NULL on OK.
961
962 Note that fp constants aren't represent in the normal way on the ARM.
963 In big endian mode, things are as expected. However, in little endian
964 mode fp constants are big-endian word-wise, and little-endian byte-wise
965 within the words. For example, (double) 1.1 in big endian mode is
966 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
967 the byte sequence 99 99 f1 3f 9a 99 99 99.
968
969 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
970
971 char *
972 md_atof (int type, char * litP, int * sizeP)
973 {
974 int prec;
975 LITTLENUM_TYPE words[MAX_LITTLENUMS];
976 char *t;
977 int i;
978
979 switch (type)
980 {
981 case 'f':
982 case 'F':
983 case 's':
984 case 'S':
985 prec = 2;
986 break;
987
988 case 'd':
989 case 'D':
990 case 'r':
991 case 'R':
992 prec = 4;
993 break;
994
995 case 'x':
996 case 'X':
997 prec = 5;
998 break;
999
1000 case 'p':
1001 case 'P':
1002 prec = 5;
1003 break;
1004
1005 default:
1006 *sizeP = 0;
1007 return _("Unrecognized or unsupported floating point constant");
1008 }
1009
1010 t = atof_ieee (input_line_pointer, type, words);
1011 if (t)
1012 input_line_pointer = t;
1013 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1014
1015 if (target_big_endian)
1016 {
1017 for (i = 0; i < prec; i++)
1018 {
1019 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1020 litP += sizeof (LITTLENUM_TYPE);
1021 }
1022 }
1023 else
1024 {
1025 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1026 for (i = prec - 1; i >= 0; i--)
1027 {
1028 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1029 litP += sizeof (LITTLENUM_TYPE);
1030 }
1031 else
1032 /* For a 4 byte float the order of elements in `words' is 1 0.
1033 For an 8 byte float the order is 1 0 3 2. */
1034 for (i = 0; i < prec; i += 2)
1035 {
1036 md_number_to_chars (litP, (valueT) words[i + 1],
1037 sizeof (LITTLENUM_TYPE));
1038 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1039 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1040 litP += 2 * sizeof (LITTLENUM_TYPE);
1041 }
1042 }
1043
1044 return NULL;
1045 }
1046
1047 /* We handle all bad expressions here, so that we can report the faulty
1048 instruction in the error message. */
1049 void
1050 md_operand (expressionS * expr)
1051 {
1052 if (in_my_get_expression)
1053 expr->X_op = O_illegal;
1054 }
1055
1056 /* Immediate values. */
1057
1058 /* Generic immediate-value read function for use in directives.
1059 Accepts anything that 'expression' can fold to a constant.
1060 *val receives the number. */
1061 #ifdef OBJ_ELF
1062 static int
1063 immediate_for_directive (int *val)
1064 {
1065 expressionS exp;
1066 exp.X_op = O_illegal;
1067
1068 if (is_immediate_prefix (*input_line_pointer))
1069 {
1070 input_line_pointer++;
1071 expression (&exp);
1072 }
1073
1074 if (exp.X_op != O_constant)
1075 {
1076 as_bad (_("expected #constant"));
1077 ignore_rest_of_line ();
1078 return FAIL;
1079 }
1080 *val = exp.X_add_number;
1081 return SUCCESS;
1082 }
1083 #endif
1084
1085 /* Register parsing. */
1086
1087 /* Generic register parser. CCP points to what should be the
1088 beginning of a register name. If it is indeed a valid register
1089 name, advance CCP over it and return the reg_entry structure;
1090 otherwise return NULL. Does not issue diagnostics. */
1091
1092 static struct reg_entry *
1093 arm_reg_parse_multi (char **ccp)
1094 {
1095 char *start = *ccp;
1096 char *p;
1097 struct reg_entry *reg;
1098
1099 #ifdef REGISTER_PREFIX
1100 if (*start != REGISTER_PREFIX)
1101 return NULL;
1102 start++;
1103 #endif
1104 #ifdef OPTIONAL_REGISTER_PREFIX
1105 if (*start == OPTIONAL_REGISTER_PREFIX)
1106 start++;
1107 #endif
1108
1109 p = start;
1110 if (!ISALPHA (*p) || !is_name_beginner (*p))
1111 return NULL;
1112
1113 do
1114 p++;
1115 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1116
1117 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1118
1119 if (!reg)
1120 return NULL;
1121
1122 *ccp = p;
1123 return reg;
1124 }
1125
1126 static int
1127 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1128 enum arm_reg_type type)
1129 {
1130 /* Alternative syntaxes are accepted for a few register classes. */
1131 switch (type)
1132 {
1133 case REG_TYPE_MVF:
1134 case REG_TYPE_MVD:
1135 case REG_TYPE_MVFX:
1136 case REG_TYPE_MVDX:
1137 /* Generic coprocessor register names are allowed for these. */
1138 if (reg && reg->type == REG_TYPE_CN)
1139 return reg->number;
1140 break;
1141
1142 case REG_TYPE_CP:
1143 /* For backward compatibility, a bare number is valid here. */
1144 {
1145 unsigned long processor = strtoul (start, ccp, 10);
1146 if (*ccp != start && processor <= 15)
1147 return processor;
1148 }
1149
1150 case REG_TYPE_MMXWC:
1151 /* WC includes WCG. ??? I'm not sure this is true for all
1152 instructions that take WC registers. */
1153 if (reg && reg->type == REG_TYPE_MMXWCG)
1154 return reg->number;
1155 break;
1156
1157 default:
1158 break;
1159 }
1160
1161 return FAIL;
1162 }
1163
1164 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1165 return value is the register number or FAIL. */
1166
1167 static int
1168 arm_reg_parse (char **ccp, enum arm_reg_type type)
1169 {
1170 char *start = *ccp;
1171 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1172 int ret;
1173
1174 /* Do not allow a scalar (reg+index) to parse as a register. */
1175 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1176 return FAIL;
1177
1178 if (reg && reg->type == type)
1179 return reg->number;
1180
1181 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1182 return ret;
1183
1184 *ccp = start;
1185 return FAIL;
1186 }
1187
1188 /* Parse a Neon type specifier. *STR should point at the leading '.'
1189 character. Does no verification at this stage that the type fits the opcode
1190 properly. E.g.,
1191
1192 .i32.i32.s16
1193 .s32.f32
1194 .u16
1195
1196 Can all be legally parsed by this function.
1197
1198 Fills in neon_type struct pointer with parsed information, and updates STR
1199 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1200 type, FAIL if not. */
1201
1202 static int
1203 parse_neon_type (struct neon_type *type, char **str)
1204 {
1205 char *ptr = *str;
1206
1207 if (type)
1208 type->elems = 0;
1209
1210 while (type->elems < NEON_MAX_TYPE_ELS)
1211 {
1212 enum neon_el_type thistype = NT_untyped;
1213 unsigned thissize = -1u;
1214
1215 if (*ptr != '.')
1216 break;
1217
1218 ptr++;
1219
1220 /* Just a size without an explicit type. */
1221 if (ISDIGIT (*ptr))
1222 goto parsesize;
1223
1224 switch (TOLOWER (*ptr))
1225 {
1226 case 'i': thistype = NT_integer; break;
1227 case 'f': thistype = NT_float; break;
1228 case 'p': thistype = NT_poly; break;
1229 case 's': thistype = NT_signed; break;
1230 case 'u': thistype = NT_unsigned; break;
1231 case 'd':
1232 thistype = NT_float;
1233 thissize = 64;
1234 ptr++;
1235 goto done;
1236 default:
1237 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1238 return FAIL;
1239 }
1240
1241 ptr++;
1242
1243 /* .f is an abbreviation for .f32. */
1244 if (thistype == NT_float && !ISDIGIT (*ptr))
1245 thissize = 32;
1246 else
1247 {
1248 parsesize:
1249 thissize = strtoul (ptr, &ptr, 10);
1250
1251 if (thissize != 8 && thissize != 16 && thissize != 32
1252 && thissize != 64)
1253 {
1254 as_bad (_("bad size %d in type specifier"), thissize);
1255 return FAIL;
1256 }
1257 }
1258
1259 done:
1260 if (type)
1261 {
1262 type->el[type->elems].type = thistype;
1263 type->el[type->elems].size = thissize;
1264 type->elems++;
1265 }
1266 }
1267
1268 /* Empty/missing type is not a successful parse. */
1269 if (type->elems == 0)
1270 return FAIL;
1271
1272 *str = ptr;
1273
1274 return SUCCESS;
1275 }
1276
1277 /* Errors may be set multiple times during parsing or bit encoding
1278 (particularly in the Neon bits), but usually the earliest error which is set
1279 will be the most meaningful. Avoid overwriting it with later (cascading)
1280 errors by calling this function. */
1281
1282 static void
1283 first_error (const char *err)
1284 {
1285 if (!inst.error)
1286 inst.error = err;
1287 }
1288
1289 /* Parse a single type, e.g. ".s32", leading period included. */
1290 static int
1291 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1292 {
1293 char *str = *ccp;
1294 struct neon_type optype;
1295
1296 if (*str == '.')
1297 {
1298 if (parse_neon_type (&optype, &str) == SUCCESS)
1299 {
1300 if (optype.elems == 1)
1301 *vectype = optype.el[0];
1302 else
1303 {
1304 first_error (_("only one type should be specified for operand"));
1305 return FAIL;
1306 }
1307 }
1308 else
1309 {
1310 first_error (_("vector type expected"));
1311 return FAIL;
1312 }
1313 }
1314 else
1315 return FAIL;
1316
1317 *ccp = str;
1318
1319 return SUCCESS;
1320 }
1321
1322 /* Special meanings for indices (which have a range of 0-7), which will fit into
1323 a 4-bit integer. */
1324
1325 #define NEON_ALL_LANES 15
1326 #define NEON_INTERLEAVE_LANES 14
1327
1328 /* Parse either a register or a scalar, with an optional type. Return the
1329 register number, and optionally fill in the actual type of the register
1330 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1331 type/index information in *TYPEINFO. */
1332
1333 static int
1334 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1335 enum arm_reg_type *rtype,
1336 struct neon_typed_alias *typeinfo)
1337 {
1338 char *str = *ccp;
1339 struct reg_entry *reg = arm_reg_parse_multi (&str);
1340 struct neon_typed_alias atype;
1341 struct neon_type_el parsetype;
1342
1343 atype.defined = 0;
1344 atype.index = -1;
1345 atype.eltype.type = NT_invtype;
1346 atype.eltype.size = -1;
1347
1348 /* Try alternate syntax for some types of register. Note these are mutually
1349 exclusive with the Neon syntax extensions. */
1350 if (reg == NULL)
1351 {
1352 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1353 if (altreg != FAIL)
1354 *ccp = str;
1355 if (typeinfo)
1356 *typeinfo = atype;
1357 return altreg;
1358 }
1359
1360 /* Undo polymorphism when a set of register types may be accepted. */
1361 if ((type == REG_TYPE_NDQ
1362 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1363 || (type == REG_TYPE_VFSD
1364 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1365 || (type == REG_TYPE_NSDQ
1366 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1367 || reg->type == REG_TYPE_NQ))
1368 || (type == REG_TYPE_MMXWC
1369 && (reg->type == REG_TYPE_MMXWCG)))
1370 type = (enum arm_reg_type) reg->type;
1371
1372 if (type != reg->type)
1373 return FAIL;
1374
1375 if (reg->neon)
1376 atype = *reg->neon;
1377
1378 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1379 {
1380 if ((atype.defined & NTA_HASTYPE) != 0)
1381 {
1382 first_error (_("can't redefine type for operand"));
1383 return FAIL;
1384 }
1385 atype.defined |= NTA_HASTYPE;
1386 atype.eltype = parsetype;
1387 }
1388
1389 if (skip_past_char (&str, '[') == SUCCESS)
1390 {
1391 if (type != REG_TYPE_VFD)
1392 {
1393 first_error (_("only D registers may be indexed"));
1394 return FAIL;
1395 }
1396
1397 if ((atype.defined & NTA_HASINDEX) != 0)
1398 {
1399 first_error (_("can't change index for operand"));
1400 return FAIL;
1401 }
1402
1403 atype.defined |= NTA_HASINDEX;
1404
1405 if (skip_past_char (&str, ']') == SUCCESS)
1406 atype.index = NEON_ALL_LANES;
1407 else
1408 {
1409 expressionS exp;
1410
1411 my_get_expression (&exp, &str, GE_NO_PREFIX);
1412
1413 if (exp.X_op != O_constant)
1414 {
1415 first_error (_("constant expression required"));
1416 return FAIL;
1417 }
1418
1419 if (skip_past_char (&str, ']') == FAIL)
1420 return FAIL;
1421
1422 atype.index = exp.X_add_number;
1423 }
1424 }
1425
1426 if (typeinfo)
1427 *typeinfo = atype;
1428
1429 if (rtype)
1430 *rtype = type;
1431
1432 *ccp = str;
1433
1434 return reg->number;
1435 }
1436
1437 /* Like arm_reg_parse, but allow allow the following extra features:
1438 - If RTYPE is non-zero, return the (possibly restricted) type of the
1439 register (e.g. Neon double or quad reg when either has been requested).
1440 - If this is a Neon vector type with additional type information, fill
1441 in the struct pointed to by VECTYPE (if non-NULL).
1442 This function will fault on encountering a scalar. */
1443
1444 static int
1445 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1446 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1447 {
1448 struct neon_typed_alias atype;
1449 char *str = *ccp;
1450 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1451
1452 if (reg == FAIL)
1453 return FAIL;
1454
1455 /* Do not allow a scalar (reg+index) to parse as a register. */
1456 if ((atype.defined & NTA_HASINDEX) != 0)
1457 {
1458 first_error (_("register operand expected, but got scalar"));
1459 return FAIL;
1460 }
1461
1462 if (vectype)
1463 *vectype = atype.eltype;
1464
1465 *ccp = str;
1466
1467 return reg;
1468 }
1469
1470 #define NEON_SCALAR_REG(X) ((X) >> 4)
1471 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1472
1473 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1474 have enough information to be able to do a good job bounds-checking. So, we
1475 just do easy checks here, and do further checks later. */
1476
1477 static int
1478 parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
1479 {
1480 int reg;
1481 char *str = *ccp;
1482 struct neon_typed_alias atype;
1483
1484 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
1485
1486 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1487 return FAIL;
1488
1489 if (atype.index == NEON_ALL_LANES)
1490 {
1491 first_error (_("scalar must have an index"));
1492 return FAIL;
1493 }
1494 else if (atype.index >= 64 / elsize)
1495 {
1496 first_error (_("scalar index out of range"));
1497 return FAIL;
1498 }
1499
1500 if (type)
1501 *type = atype.eltype;
1502
1503 *ccp = str;
1504
1505 return reg * 16 + atype.index;
1506 }
1507
1508 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1509
1510 static long
1511 parse_reg_list (char ** strp)
1512 {
1513 char * str = * strp;
1514 long range = 0;
1515 int another_range;
1516
1517 /* We come back here if we get ranges concatenated by '+' or '|'. */
1518 do
1519 {
1520 another_range = 0;
1521
1522 if (*str == '{')
1523 {
1524 int in_range = 0;
1525 int cur_reg = -1;
1526
1527 str++;
1528 do
1529 {
1530 int reg;
1531
1532 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
1533 {
1534 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
1535 return FAIL;
1536 }
1537
1538 if (in_range)
1539 {
1540 int i;
1541
1542 if (reg <= cur_reg)
1543 {
1544 first_error (_("bad range in register list"));
1545 return FAIL;
1546 }
1547
1548 for (i = cur_reg + 1; i < reg; i++)
1549 {
1550 if (range & (1 << i))
1551 as_tsktsk
1552 (_("Warning: duplicated register (r%d) in register list"),
1553 i);
1554 else
1555 range |= 1 << i;
1556 }
1557 in_range = 0;
1558 }
1559
1560 if (range & (1 << reg))
1561 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1562 reg);
1563 else if (reg <= cur_reg)
1564 as_tsktsk (_("Warning: register range not in ascending order"));
1565
1566 range |= 1 << reg;
1567 cur_reg = reg;
1568 }
1569 while (skip_past_comma (&str) != FAIL
1570 || (in_range = 1, *str++ == '-'));
1571 str--;
1572
1573 if (*str++ != '}')
1574 {
1575 first_error (_("missing `}'"));
1576 return FAIL;
1577 }
1578 }
1579 else
1580 {
1581 expressionS expr;
1582
1583 if (my_get_expression (&expr, &str, GE_NO_PREFIX))
1584 return FAIL;
1585
1586 if (expr.X_op == O_constant)
1587 {
1588 if (expr.X_add_number
1589 != (expr.X_add_number & 0x0000ffff))
1590 {
1591 inst.error = _("invalid register mask");
1592 return FAIL;
1593 }
1594
1595 if ((range & expr.X_add_number) != 0)
1596 {
1597 int regno = range & expr.X_add_number;
1598
1599 regno &= -regno;
1600 regno = (1 << regno) - 1;
1601 as_tsktsk
1602 (_("Warning: duplicated register (r%d) in register list"),
1603 regno);
1604 }
1605
1606 range |= expr.X_add_number;
1607 }
1608 else
1609 {
1610 if (inst.reloc.type != 0)
1611 {
1612 inst.error = _("expression too complex");
1613 return FAIL;
1614 }
1615
1616 memcpy (&inst.reloc.exp, &expr, sizeof (expressionS));
1617 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1618 inst.reloc.pc_rel = 0;
1619 }
1620 }
1621
1622 if (*str == '|' || *str == '+')
1623 {
1624 str++;
1625 another_range = 1;
1626 }
1627 }
1628 while (another_range);
1629
1630 *strp = str;
1631 return range;
1632 }
1633
1634 /* Types of registers in a list. */
1635
1636 enum reg_list_els
1637 {
1638 REGLIST_VFP_S,
1639 REGLIST_VFP_D,
1640 REGLIST_NEON_D
1641 };
1642
1643 /* Parse a VFP register list. If the string is invalid return FAIL.
1644 Otherwise return the number of registers, and set PBASE to the first
1645 register. Parses registers of type ETYPE.
1646 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1647 - Q registers can be used to specify pairs of D registers
1648 - { } can be omitted from around a singleton register list
1649 FIXME: This is not implemented, as it would require backtracking in
1650 some cases, e.g.:
1651 vtbl.8 d3,d4,d5
1652 This could be done (the meaning isn't really ambiguous), but doesn't
1653 fit in well with the current parsing framework.
1654 - 32 D registers may be used (also true for VFPv3).
1655 FIXME: Types are ignored in these register lists, which is probably a
1656 bug. */
1657
1658 static int
1659 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
1660 {
1661 char *str = *ccp;
1662 int base_reg;
1663 int new_base;
1664 enum arm_reg_type regtype = (enum arm_reg_type) 0;
1665 int max_regs = 0;
1666 int count = 0;
1667 int warned = 0;
1668 unsigned long mask = 0;
1669 int i;
1670
1671 if (*str != '{')
1672 {
1673 inst.error = _("expecting {");
1674 return FAIL;
1675 }
1676
1677 str++;
1678
1679 switch (etype)
1680 {
1681 case REGLIST_VFP_S:
1682 regtype = REG_TYPE_VFS;
1683 max_regs = 32;
1684 break;
1685
1686 case REGLIST_VFP_D:
1687 regtype = REG_TYPE_VFD;
1688 break;
1689
1690 case REGLIST_NEON_D:
1691 regtype = REG_TYPE_NDQ;
1692 break;
1693 }
1694
1695 if (etype != REGLIST_VFP_S)
1696 {
1697 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1698 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
1699 {
1700 max_regs = 32;
1701 if (thumb_mode)
1702 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1703 fpu_vfp_ext_d32);
1704 else
1705 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1706 fpu_vfp_ext_d32);
1707 }
1708 else
1709 max_regs = 16;
1710 }
1711
1712 base_reg = max_regs;
1713
1714 do
1715 {
1716 int setmask = 1, addregs = 1;
1717
1718 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
1719
1720 if (new_base == FAIL)
1721 {
1722 first_error (_(reg_expected_msgs[regtype]));
1723 return FAIL;
1724 }
1725
1726 if (new_base >= max_regs)
1727 {
1728 first_error (_("register out of range in list"));
1729 return FAIL;
1730 }
1731
1732 /* Note: a value of 2 * n is returned for the register Q<n>. */
1733 if (regtype == REG_TYPE_NQ)
1734 {
1735 setmask = 3;
1736 addregs = 2;
1737 }
1738
1739 if (new_base < base_reg)
1740 base_reg = new_base;
1741
1742 if (mask & (setmask << new_base))
1743 {
1744 first_error (_("invalid register list"));
1745 return FAIL;
1746 }
1747
1748 if ((mask >> new_base) != 0 && ! warned)
1749 {
1750 as_tsktsk (_("register list not in ascending order"));
1751 warned = 1;
1752 }
1753
1754 mask |= setmask << new_base;
1755 count += addregs;
1756
1757 if (*str == '-') /* We have the start of a range expression */
1758 {
1759 int high_range;
1760
1761 str++;
1762
1763 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
1764 == FAIL)
1765 {
1766 inst.error = gettext (reg_expected_msgs[regtype]);
1767 return FAIL;
1768 }
1769
1770 if (high_range >= max_regs)
1771 {
1772 first_error (_("register out of range in list"));
1773 return FAIL;
1774 }
1775
1776 if (regtype == REG_TYPE_NQ)
1777 high_range = high_range + 1;
1778
1779 if (high_range <= new_base)
1780 {
1781 inst.error = _("register range not in ascending order");
1782 return FAIL;
1783 }
1784
1785 for (new_base += addregs; new_base <= high_range; new_base += addregs)
1786 {
1787 if (mask & (setmask << new_base))
1788 {
1789 inst.error = _("invalid register list");
1790 return FAIL;
1791 }
1792
1793 mask |= setmask << new_base;
1794 count += addregs;
1795 }
1796 }
1797 }
1798 while (skip_past_comma (&str) != FAIL);
1799
1800 str++;
1801
1802 /* Sanity check -- should have raised a parse error above. */
1803 if (count == 0 || count > max_regs)
1804 abort ();
1805
1806 *pbase = base_reg;
1807
1808 /* Final test -- the registers must be consecutive. */
1809 mask >>= base_reg;
1810 for (i = 0; i < count; i++)
1811 {
1812 if ((mask & (1u << i)) == 0)
1813 {
1814 inst.error = _("non-contiguous register range");
1815 return FAIL;
1816 }
1817 }
1818
1819 *ccp = str;
1820
1821 return count;
1822 }
1823
1824 /* True if two alias types are the same. */
1825
1826 static bfd_boolean
1827 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1828 {
1829 if (!a && !b)
1830 return TRUE;
1831
1832 if (!a || !b)
1833 return FALSE;
1834
1835 if (a->defined != b->defined)
1836 return FALSE;
1837
1838 if ((a->defined & NTA_HASTYPE) != 0
1839 && (a->eltype.type != b->eltype.type
1840 || a->eltype.size != b->eltype.size))
1841 return FALSE;
1842
1843 if ((a->defined & NTA_HASINDEX) != 0
1844 && (a->index != b->index))
1845 return FALSE;
1846
1847 return TRUE;
1848 }
1849
1850 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1851 The base register is put in *PBASE.
1852 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
1853 the return value.
1854 The register stride (minus one) is put in bit 4 of the return value.
1855 Bits [6:5] encode the list length (minus one).
1856 The type of the list elements is put in *ELTYPE, if non-NULL. */
1857
1858 #define NEON_LANE(X) ((X) & 0xf)
1859 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
1860 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1861
1862 static int
1863 parse_neon_el_struct_list (char **str, unsigned *pbase,
1864 struct neon_type_el *eltype)
1865 {
1866 char *ptr = *str;
1867 int base_reg = -1;
1868 int reg_incr = -1;
1869 int count = 0;
1870 int lane = -1;
1871 int leading_brace = 0;
1872 enum arm_reg_type rtype = REG_TYPE_NDQ;
1873 int addregs = 1;
1874 const char *const incr_error = _("register stride must be 1 or 2");
1875 const char *const type_error = _("mismatched element/structure types in list");
1876 struct neon_typed_alias firsttype;
1877
1878 if (skip_past_char (&ptr, '{') == SUCCESS)
1879 leading_brace = 1;
1880
1881 do
1882 {
1883 struct neon_typed_alias atype;
1884 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1885
1886 if (getreg == FAIL)
1887 {
1888 first_error (_(reg_expected_msgs[rtype]));
1889 return FAIL;
1890 }
1891
1892 if (base_reg == -1)
1893 {
1894 base_reg = getreg;
1895 if (rtype == REG_TYPE_NQ)
1896 {
1897 reg_incr = 1;
1898 addregs = 2;
1899 }
1900 firsttype = atype;
1901 }
1902 else if (reg_incr == -1)
1903 {
1904 reg_incr = getreg - base_reg;
1905 if (reg_incr < 1 || reg_incr > 2)
1906 {
1907 first_error (_(incr_error));
1908 return FAIL;
1909 }
1910 }
1911 else if (getreg != base_reg + reg_incr * count)
1912 {
1913 first_error (_(incr_error));
1914 return FAIL;
1915 }
1916
1917 if (! neon_alias_types_same (&atype, &firsttype))
1918 {
1919 first_error (_(type_error));
1920 return FAIL;
1921 }
1922
1923 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1924 modes. */
1925 if (ptr[0] == '-')
1926 {
1927 struct neon_typed_alias htype;
1928 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1929 if (lane == -1)
1930 lane = NEON_INTERLEAVE_LANES;
1931 else if (lane != NEON_INTERLEAVE_LANES)
1932 {
1933 first_error (_(type_error));
1934 return FAIL;
1935 }
1936 if (reg_incr == -1)
1937 reg_incr = 1;
1938 else if (reg_incr != 1)
1939 {
1940 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
1941 return FAIL;
1942 }
1943 ptr++;
1944 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
1945 if (hireg == FAIL)
1946 {
1947 first_error (_(reg_expected_msgs[rtype]));
1948 return FAIL;
1949 }
1950 if (! neon_alias_types_same (&htype, &firsttype))
1951 {
1952 first_error (_(type_error));
1953 return FAIL;
1954 }
1955 count += hireg + dregs - getreg;
1956 continue;
1957 }
1958
1959 /* If we're using Q registers, we can't use [] or [n] syntax. */
1960 if (rtype == REG_TYPE_NQ)
1961 {
1962 count += 2;
1963 continue;
1964 }
1965
1966 if ((atype.defined & NTA_HASINDEX) != 0)
1967 {
1968 if (lane == -1)
1969 lane = atype.index;
1970 else if (lane != atype.index)
1971 {
1972 first_error (_(type_error));
1973 return FAIL;
1974 }
1975 }
1976 else if (lane == -1)
1977 lane = NEON_INTERLEAVE_LANES;
1978 else if (lane != NEON_INTERLEAVE_LANES)
1979 {
1980 first_error (_(type_error));
1981 return FAIL;
1982 }
1983 count++;
1984 }
1985 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
1986
1987 /* No lane set by [x]. We must be interleaving structures. */
1988 if (lane == -1)
1989 lane = NEON_INTERLEAVE_LANES;
1990
1991 /* Sanity check. */
1992 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
1993 || (count > 1 && reg_incr == -1))
1994 {
1995 first_error (_("error parsing element/structure list"));
1996 return FAIL;
1997 }
1998
1999 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2000 {
2001 first_error (_("expected }"));
2002 return FAIL;
2003 }
2004
2005 if (reg_incr == -1)
2006 reg_incr = 1;
2007
2008 if (eltype)
2009 *eltype = firsttype.eltype;
2010
2011 *pbase = base_reg;
2012 *str = ptr;
2013
2014 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2015 }
2016
2017 /* Parse an explicit relocation suffix on an expression. This is
2018 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2019 arm_reloc_hsh contains no entries, so this function can only
2020 succeed if there is no () after the word. Returns -1 on error,
2021 BFD_RELOC_UNUSED if there wasn't any suffix. */
2022 static int
2023 parse_reloc (char **str)
2024 {
2025 struct reloc_entry *r;
2026 char *p, *q;
2027
2028 if (**str != '(')
2029 return BFD_RELOC_UNUSED;
2030
2031 p = *str + 1;
2032 q = p;
2033
2034 while (*q && *q != ')' && *q != ',')
2035 q++;
2036 if (*q != ')')
2037 return -1;
2038
2039 if ((r = (struct reloc_entry *)
2040 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2041 return -1;
2042
2043 *str = q + 1;
2044 return r->reloc;
2045 }
2046
2047 /* Directives: register aliases. */
2048
2049 static struct reg_entry *
2050 insert_reg_alias (char *str, int number, int type)
2051 {
2052 struct reg_entry *new_reg;
2053 const char *name;
2054
2055 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2056 {
2057 if (new_reg->builtin)
2058 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2059
2060 /* Only warn about a redefinition if it's not defined as the
2061 same register. */
2062 else if (new_reg->number != number || new_reg->type != type)
2063 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2064
2065 return NULL;
2066 }
2067
2068 name = xstrdup (str);
2069 new_reg = (struct reg_entry *) xmalloc (sizeof (struct reg_entry));
2070
2071 new_reg->name = name;
2072 new_reg->number = number;
2073 new_reg->type = type;
2074 new_reg->builtin = FALSE;
2075 new_reg->neon = NULL;
2076
2077 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2078 abort ();
2079
2080 return new_reg;
2081 }
2082
2083 static void
2084 insert_neon_reg_alias (char *str, int number, int type,
2085 struct neon_typed_alias *atype)
2086 {
2087 struct reg_entry *reg = insert_reg_alias (str, number, type);
2088
2089 if (!reg)
2090 {
2091 first_error (_("attempt to redefine typed alias"));
2092 return;
2093 }
2094
2095 if (atype)
2096 {
2097 reg->neon = (struct neon_typed_alias *)
2098 xmalloc (sizeof (struct neon_typed_alias));
2099 *reg->neon = *atype;
2100 }
2101 }
2102
2103 /* Look for the .req directive. This is of the form:
2104
2105 new_register_name .req existing_register_name
2106
2107 If we find one, or if it looks sufficiently like one that we want to
2108 handle any error here, return TRUE. Otherwise return FALSE. */
2109
2110 static bfd_boolean
2111 create_register_alias (char * newname, char *p)
2112 {
2113 struct reg_entry *old;
2114 char *oldname, *nbuf;
2115 size_t nlen;
2116
2117 /* The input scrubber ensures that whitespace after the mnemonic is
2118 collapsed to single spaces. */
2119 oldname = p;
2120 if (strncmp (oldname, " .req ", 6) != 0)
2121 return FALSE;
2122
2123 oldname += 6;
2124 if (*oldname == '\0')
2125 return FALSE;
2126
2127 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2128 if (!old)
2129 {
2130 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2131 return TRUE;
2132 }
2133
2134 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2135 the desired alias name, and p points to its end. If not, then
2136 the desired alias name is in the global original_case_string. */
2137 #ifdef TC_CASE_SENSITIVE
2138 nlen = p - newname;
2139 #else
2140 newname = original_case_string;
2141 nlen = strlen (newname);
2142 #endif
2143
2144 nbuf = (char *) alloca (nlen + 1);
2145 memcpy (nbuf, newname, nlen);
2146 nbuf[nlen] = '\0';
2147
2148 /* Create aliases under the new name as stated; an all-lowercase
2149 version of the new name; and an all-uppercase version of the new
2150 name. */
2151 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2152 {
2153 for (p = nbuf; *p; p++)
2154 *p = TOUPPER (*p);
2155
2156 if (strncmp (nbuf, newname, nlen))
2157 {
2158 /* If this attempt to create an additional alias fails, do not bother
2159 trying to create the all-lower case alias. We will fail and issue
2160 a second, duplicate error message. This situation arises when the
2161 programmer does something like:
2162 foo .req r0
2163 Foo .req r1
2164 The second .req creates the "Foo" alias but then fails to create
2165 the artificial FOO alias because it has already been created by the
2166 first .req. */
2167 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2168 return TRUE;
2169 }
2170
2171 for (p = nbuf; *p; p++)
2172 *p = TOLOWER (*p);
2173
2174 if (strncmp (nbuf, newname, nlen))
2175 insert_reg_alias (nbuf, old->number, old->type);
2176 }
2177
2178 return TRUE;
2179 }
2180
2181 /* Create a Neon typed/indexed register alias using directives, e.g.:
2182 X .dn d5.s32[1]
2183 Y .qn 6.s16
2184 Z .dn d7
2185 T .dn Z[0]
2186 These typed registers can be used instead of the types specified after the
2187 Neon mnemonic, so long as all operands given have types. Types can also be
2188 specified directly, e.g.:
2189 vadd d0.s32, d1.s32, d2.s32 */
2190
2191 static bfd_boolean
2192 create_neon_reg_alias (char *newname, char *p)
2193 {
2194 enum arm_reg_type basetype;
2195 struct reg_entry *basereg;
2196 struct reg_entry mybasereg;
2197 struct neon_type ntype;
2198 struct neon_typed_alias typeinfo;
2199 char *namebuf, *nameend;
2200 int namelen;
2201
2202 typeinfo.defined = 0;
2203 typeinfo.eltype.type = NT_invtype;
2204 typeinfo.eltype.size = -1;
2205 typeinfo.index = -1;
2206
2207 nameend = p;
2208
2209 if (strncmp (p, " .dn ", 5) == 0)
2210 basetype = REG_TYPE_VFD;
2211 else if (strncmp (p, " .qn ", 5) == 0)
2212 basetype = REG_TYPE_NQ;
2213 else
2214 return FALSE;
2215
2216 p += 5;
2217
2218 if (*p == '\0')
2219 return FALSE;
2220
2221 basereg = arm_reg_parse_multi (&p);
2222
2223 if (basereg && basereg->type != basetype)
2224 {
2225 as_bad (_("bad type for register"));
2226 return FALSE;
2227 }
2228
2229 if (basereg == NULL)
2230 {
2231 expressionS exp;
2232 /* Try parsing as an integer. */
2233 my_get_expression (&exp, &p, GE_NO_PREFIX);
2234 if (exp.X_op != O_constant)
2235 {
2236 as_bad (_("expression must be constant"));
2237 return FALSE;
2238 }
2239 basereg = &mybasereg;
2240 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2241 : exp.X_add_number;
2242 basereg->neon = 0;
2243 }
2244
2245 if (basereg->neon)
2246 typeinfo = *basereg->neon;
2247
2248 if (parse_neon_type (&ntype, &p) == SUCCESS)
2249 {
2250 /* We got a type. */
2251 if (typeinfo.defined & NTA_HASTYPE)
2252 {
2253 as_bad (_("can't redefine the type of a register alias"));
2254 return FALSE;
2255 }
2256
2257 typeinfo.defined |= NTA_HASTYPE;
2258 if (ntype.elems != 1)
2259 {
2260 as_bad (_("you must specify a single type only"));
2261 return FALSE;
2262 }
2263 typeinfo.eltype = ntype.el[0];
2264 }
2265
2266 if (skip_past_char (&p, '[') == SUCCESS)
2267 {
2268 expressionS exp;
2269 /* We got a scalar index. */
2270
2271 if (typeinfo.defined & NTA_HASINDEX)
2272 {
2273 as_bad (_("can't redefine the index of a scalar alias"));
2274 return FALSE;
2275 }
2276
2277 my_get_expression (&exp, &p, GE_NO_PREFIX);
2278
2279 if (exp.X_op != O_constant)
2280 {
2281 as_bad (_("scalar index must be constant"));
2282 return FALSE;
2283 }
2284
2285 typeinfo.defined |= NTA_HASINDEX;
2286 typeinfo.index = exp.X_add_number;
2287
2288 if (skip_past_char (&p, ']') == FAIL)
2289 {
2290 as_bad (_("expecting ]"));
2291 return FALSE;
2292 }
2293 }
2294
2295 namelen = nameend - newname;
2296 namebuf = (char *) alloca (namelen + 1);
2297 strncpy (namebuf, newname, namelen);
2298 namebuf[namelen] = '\0';
2299
2300 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2301 typeinfo.defined != 0 ? &typeinfo : NULL);
2302
2303 /* Insert name in all uppercase. */
2304 for (p = namebuf; *p; p++)
2305 *p = TOUPPER (*p);
2306
2307 if (strncmp (namebuf, newname, namelen))
2308 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2309 typeinfo.defined != 0 ? &typeinfo : NULL);
2310
2311 /* Insert name in all lowercase. */
2312 for (p = namebuf; *p; p++)
2313 *p = TOLOWER (*p);
2314
2315 if (strncmp (namebuf, newname, namelen))
2316 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2317 typeinfo.defined != 0 ? &typeinfo : NULL);
2318
2319 return TRUE;
2320 }
2321
2322 /* Should never be called, as .req goes between the alias and the
2323 register name, not at the beginning of the line. */
2324
2325 static void
2326 s_req (int a ATTRIBUTE_UNUSED)
2327 {
2328 as_bad (_("invalid syntax for .req directive"));
2329 }
2330
2331 static void
2332 s_dn (int a ATTRIBUTE_UNUSED)
2333 {
2334 as_bad (_("invalid syntax for .dn directive"));
2335 }
2336
2337 static void
2338 s_qn (int a ATTRIBUTE_UNUSED)
2339 {
2340 as_bad (_("invalid syntax for .qn directive"));
2341 }
2342
2343 /* The .unreq directive deletes an alias which was previously defined
2344 by .req. For example:
2345
2346 my_alias .req r11
2347 .unreq my_alias */
2348
2349 static void
2350 s_unreq (int a ATTRIBUTE_UNUSED)
2351 {
2352 char * name;
2353 char saved_char;
2354
2355 name = input_line_pointer;
2356
2357 while (*input_line_pointer != 0
2358 && *input_line_pointer != ' '
2359 && *input_line_pointer != '\n')
2360 ++input_line_pointer;
2361
2362 saved_char = *input_line_pointer;
2363 *input_line_pointer = 0;
2364
2365 if (!*name)
2366 as_bad (_("invalid syntax for .unreq directive"));
2367 else
2368 {
2369 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2370 name);
2371
2372 if (!reg)
2373 as_bad (_("unknown register alias '%s'"), name);
2374 else if (reg->builtin)
2375 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
2376 name);
2377 else
2378 {
2379 char * p;
2380 char * nbuf;
2381
2382 hash_delete (arm_reg_hsh, name, FALSE);
2383 free ((char *) reg->name);
2384 if (reg->neon)
2385 free (reg->neon);
2386 free (reg);
2387
2388 /* Also locate the all upper case and all lower case versions.
2389 Do not complain if we cannot find one or the other as it
2390 was probably deleted above. */
2391
2392 nbuf = strdup (name);
2393 for (p = nbuf; *p; p++)
2394 *p = TOUPPER (*p);
2395 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2396 if (reg)
2397 {
2398 hash_delete (arm_reg_hsh, nbuf, FALSE);
2399 free ((char *) reg->name);
2400 if (reg->neon)
2401 free (reg->neon);
2402 free (reg);
2403 }
2404
2405 for (p = nbuf; *p; p++)
2406 *p = TOLOWER (*p);
2407 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2408 if (reg)
2409 {
2410 hash_delete (arm_reg_hsh, nbuf, FALSE);
2411 free ((char *) reg->name);
2412 if (reg->neon)
2413 free (reg->neon);
2414 free (reg);
2415 }
2416
2417 free (nbuf);
2418 }
2419 }
2420
2421 *input_line_pointer = saved_char;
2422 demand_empty_rest_of_line ();
2423 }
2424
2425 /* Directives: Instruction set selection. */
2426
2427 #ifdef OBJ_ELF
2428 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2429 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2430 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2431 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2432
2433 /* Create a new mapping symbol for the transition to STATE. */
2434
2435 static void
2436 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2437 {
2438 symbolS * symbolP;
2439 const char * symname;
2440 int type;
2441
2442 switch (state)
2443 {
2444 case MAP_DATA:
2445 symname = "$d";
2446 type = BSF_NO_FLAGS;
2447 break;
2448 case MAP_ARM:
2449 symname = "$a";
2450 type = BSF_NO_FLAGS;
2451 break;
2452 case MAP_THUMB:
2453 symname = "$t";
2454 type = BSF_NO_FLAGS;
2455 break;
2456 default:
2457 abort ();
2458 }
2459
2460 symbolP = symbol_new (symname, now_seg, value, frag);
2461 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2462
2463 switch (state)
2464 {
2465 case MAP_ARM:
2466 THUMB_SET_FUNC (symbolP, 0);
2467 ARM_SET_THUMB (symbolP, 0);
2468 ARM_SET_INTERWORK (symbolP, support_interwork);
2469 break;
2470
2471 case MAP_THUMB:
2472 THUMB_SET_FUNC (symbolP, 1);
2473 ARM_SET_THUMB (symbolP, 1);
2474 ARM_SET_INTERWORK (symbolP, support_interwork);
2475 break;
2476
2477 case MAP_DATA:
2478 default:
2479 break;
2480 }
2481
2482 /* Save the mapping symbols for future reference. Also check that
2483 we do not place two mapping symbols at the same offset within a
2484 frag. We'll handle overlap between frags in
2485 check_mapping_symbols. */
2486 if (value == 0)
2487 {
2488 know (frag->tc_frag_data.first_map == NULL);
2489 frag->tc_frag_data.first_map = symbolP;
2490 }
2491 if (frag->tc_frag_data.last_map != NULL)
2492 know (S_GET_VALUE (frag->tc_frag_data.last_map) < S_GET_VALUE (symbolP));
2493 frag->tc_frag_data.last_map = symbolP;
2494 }
2495
2496 /* We must sometimes convert a region marked as code to data during
2497 code alignment, if an odd number of bytes have to be padded. The
2498 code mapping symbol is pushed to an aligned address. */
2499
2500 static void
2501 insert_data_mapping_symbol (enum mstate state,
2502 valueT value, fragS *frag, offsetT bytes)
2503 {
2504 /* If there was already a mapping symbol, remove it. */
2505 if (frag->tc_frag_data.last_map != NULL
2506 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2507 {
2508 symbolS *symp = frag->tc_frag_data.last_map;
2509
2510 if (value == 0)
2511 {
2512 know (frag->tc_frag_data.first_map == symp);
2513 frag->tc_frag_data.first_map = NULL;
2514 }
2515 frag->tc_frag_data.last_map = NULL;
2516 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
2517 }
2518
2519 make_mapping_symbol (MAP_DATA, value, frag);
2520 make_mapping_symbol (state, value + bytes, frag);
2521 }
2522
2523 static void mapping_state_2 (enum mstate state, int max_chars);
2524
2525 /* Set the mapping state to STATE. Only call this when about to
2526 emit some STATE bytes to the file. */
2527
2528 void
2529 mapping_state (enum mstate state)
2530 {
2531 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2532
2533 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2534
2535 if (mapstate == state)
2536 /* The mapping symbol has already been emitted.
2537 There is nothing else to do. */
2538 return;
2539 else if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2540 /* This case will be evaluated later in the next else. */
2541 return;
2542 else if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2543 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2544 {
2545 /* Only add the symbol if the offset is > 0:
2546 if we're at the first frag, check it's size > 0;
2547 if we're not at the first frag, then for sure
2548 the offset is > 0. */
2549 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2550 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2551
2552 if (add_symbol)
2553 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2554 }
2555
2556 mapping_state_2 (state, 0);
2557 #undef TRANSITION
2558 }
2559
2560 /* Same as mapping_state, but MAX_CHARS bytes have already been
2561 allocated. Put the mapping symbol that far back. */
2562
2563 static void
2564 mapping_state_2 (enum mstate state, int max_chars)
2565 {
2566 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2567
2568 if (!SEG_NORMAL (now_seg))
2569 return;
2570
2571 if (mapstate == state)
2572 /* The mapping symbol has already been emitted.
2573 There is nothing else to do. */
2574 return;
2575
2576 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2577 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
2578 }
2579 #else
2580 #define mapping_state(x) /* nothing */
2581 #define mapping_state_2(x, y) /* nothing */
2582 #endif
2583
2584 /* Find the real, Thumb encoded start of a Thumb function. */
2585
2586 #ifdef OBJ_COFF
2587 static symbolS *
2588 find_real_start (symbolS * symbolP)
2589 {
2590 char * real_start;
2591 const char * name = S_GET_NAME (symbolP);
2592 symbolS * new_target;
2593
2594 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2595 #define STUB_NAME ".real_start_of"
2596
2597 if (name == NULL)
2598 abort ();
2599
2600 /* The compiler may generate BL instructions to local labels because
2601 it needs to perform a branch to a far away location. These labels
2602 do not have a corresponding ".real_start_of" label. We check
2603 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2604 the ".real_start_of" convention for nonlocal branches. */
2605 if (S_IS_LOCAL (symbolP) || name[0] == '.')
2606 return symbolP;
2607
2608 real_start = ACONCAT ((STUB_NAME, name, NULL));
2609 new_target = symbol_find (real_start);
2610
2611 if (new_target == NULL)
2612 {
2613 as_warn (_("Failed to find real start of function: %s\n"), name);
2614 new_target = symbolP;
2615 }
2616
2617 return new_target;
2618 }
2619 #endif
2620
2621 static void
2622 opcode_select (int width)
2623 {
2624 switch (width)
2625 {
2626 case 16:
2627 if (! thumb_mode)
2628 {
2629 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
2630 as_bad (_("selected processor does not support THUMB opcodes"));
2631
2632 thumb_mode = 1;
2633 /* No need to force the alignment, since we will have been
2634 coming from ARM mode, which is word-aligned. */
2635 record_alignment (now_seg, 1);
2636 }
2637 break;
2638
2639 case 32:
2640 if (thumb_mode)
2641 {
2642 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
2643 as_bad (_("selected processor does not support ARM opcodes"));
2644
2645 thumb_mode = 0;
2646
2647 if (!need_pass_2)
2648 frag_align (2, 0, 0);
2649
2650 record_alignment (now_seg, 1);
2651 }
2652 break;
2653
2654 default:
2655 as_bad (_("invalid instruction size selected (%d)"), width);
2656 }
2657 }
2658
2659 static void
2660 s_arm (int ignore ATTRIBUTE_UNUSED)
2661 {
2662 opcode_select (32);
2663 demand_empty_rest_of_line ();
2664 }
2665
2666 static void
2667 s_thumb (int ignore ATTRIBUTE_UNUSED)
2668 {
2669 opcode_select (16);
2670 demand_empty_rest_of_line ();
2671 }
2672
2673 static void
2674 s_code (int unused ATTRIBUTE_UNUSED)
2675 {
2676 int temp;
2677
2678 temp = get_absolute_expression ();
2679 switch (temp)
2680 {
2681 case 16:
2682 case 32:
2683 opcode_select (temp);
2684 break;
2685
2686 default:
2687 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2688 }
2689 }
2690
2691 static void
2692 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2693 {
2694 /* If we are not already in thumb mode go into it, EVEN if
2695 the target processor does not support thumb instructions.
2696 This is used by gcc/config/arm/lib1funcs.asm for example
2697 to compile interworking support functions even if the
2698 target processor should not support interworking. */
2699 if (! thumb_mode)
2700 {
2701 thumb_mode = 2;
2702 record_alignment (now_seg, 1);
2703 }
2704
2705 demand_empty_rest_of_line ();
2706 }
2707
2708 static void
2709 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2710 {
2711 s_thumb (0);
2712
2713 /* The following label is the name/address of the start of a Thumb function.
2714 We need to know this for the interworking support. */
2715 label_is_thumb_function_name = TRUE;
2716 }
2717
2718 /* Perform a .set directive, but also mark the alias as
2719 being a thumb function. */
2720
2721 static void
2722 s_thumb_set (int equiv)
2723 {
2724 /* XXX the following is a duplicate of the code for s_set() in read.c
2725 We cannot just call that code as we need to get at the symbol that
2726 is created. */
2727 char * name;
2728 char delim;
2729 char * end_name;
2730 symbolS * symbolP;
2731
2732 /* Especial apologies for the random logic:
2733 This just grew, and could be parsed much more simply!
2734 Dean - in haste. */
2735 name = input_line_pointer;
2736 delim = get_symbol_end ();
2737 end_name = input_line_pointer;
2738 *end_name = delim;
2739
2740 if (*input_line_pointer != ',')
2741 {
2742 *end_name = 0;
2743 as_bad (_("expected comma after name \"%s\""), name);
2744 *end_name = delim;
2745 ignore_rest_of_line ();
2746 return;
2747 }
2748
2749 input_line_pointer++;
2750 *end_name = 0;
2751
2752 if (name[0] == '.' && name[1] == '\0')
2753 {
2754 /* XXX - this should not happen to .thumb_set. */
2755 abort ();
2756 }
2757
2758 if ((symbolP = symbol_find (name)) == NULL
2759 && (symbolP = md_undefined_symbol (name)) == NULL)
2760 {
2761 #ifndef NO_LISTING
2762 /* When doing symbol listings, play games with dummy fragments living
2763 outside the normal fragment chain to record the file and line info
2764 for this symbol. */
2765 if (listing & LISTING_SYMBOLS)
2766 {
2767 extern struct list_info_struct * listing_tail;
2768 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
2769
2770 memset (dummy_frag, 0, sizeof (fragS));
2771 dummy_frag->fr_type = rs_fill;
2772 dummy_frag->line = listing_tail;
2773 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2774 dummy_frag->fr_symbol = symbolP;
2775 }
2776 else
2777 #endif
2778 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2779
2780 #ifdef OBJ_COFF
2781 /* "set" symbols are local unless otherwise specified. */
2782 SF_SET_LOCAL (symbolP);
2783 #endif /* OBJ_COFF */
2784 } /* Make a new symbol. */
2785
2786 symbol_table_insert (symbolP);
2787
2788 * end_name = delim;
2789
2790 if (equiv
2791 && S_IS_DEFINED (symbolP)
2792 && S_GET_SEGMENT (symbolP) != reg_section)
2793 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2794
2795 pseudo_set (symbolP);
2796
2797 demand_empty_rest_of_line ();
2798
2799 /* XXX Now we come to the Thumb specific bit of code. */
2800
2801 THUMB_SET_FUNC (symbolP, 1);
2802 ARM_SET_THUMB (symbolP, 1);
2803 #if defined OBJ_ELF || defined OBJ_COFF
2804 ARM_SET_INTERWORK (symbolP, support_interwork);
2805 #endif
2806 }
2807
2808 /* Directives: Mode selection. */
2809
2810 /* .syntax [unified|divided] - choose the new unified syntax
2811 (same for Arm and Thumb encoding, modulo slight differences in what
2812 can be represented) or the old divergent syntax for each mode. */
2813 static void
2814 s_syntax (int unused ATTRIBUTE_UNUSED)
2815 {
2816 char *name, delim;
2817
2818 name = input_line_pointer;
2819 delim = get_symbol_end ();
2820
2821 if (!strcasecmp (name, "unified"))
2822 unified_syntax = TRUE;
2823 else if (!strcasecmp (name, "divided"))
2824 unified_syntax = FALSE;
2825 else
2826 {
2827 as_bad (_("unrecognized syntax mode \"%s\""), name);
2828 return;
2829 }
2830 *input_line_pointer = delim;
2831 demand_empty_rest_of_line ();
2832 }
2833
2834 /* Directives: sectioning and alignment. */
2835
2836 /* Same as s_align_ptwo but align 0 => align 2. */
2837
2838 static void
2839 s_align (int unused ATTRIBUTE_UNUSED)
2840 {
2841 int temp;
2842 bfd_boolean fill_p;
2843 long temp_fill;
2844 long max_alignment = 15;
2845
2846 temp = get_absolute_expression ();
2847 if (temp > max_alignment)
2848 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2849 else if (temp < 0)
2850 {
2851 as_bad (_("alignment negative. 0 assumed."));
2852 temp = 0;
2853 }
2854
2855 if (*input_line_pointer == ',')
2856 {
2857 input_line_pointer++;
2858 temp_fill = get_absolute_expression ();
2859 fill_p = TRUE;
2860 }
2861 else
2862 {
2863 fill_p = FALSE;
2864 temp_fill = 0;
2865 }
2866
2867 if (!temp)
2868 temp = 2;
2869
2870 /* Only make a frag if we HAVE to. */
2871 if (temp && !need_pass_2)
2872 {
2873 if (!fill_p && subseg_text_p (now_seg))
2874 frag_align_code (temp, 0);
2875 else
2876 frag_align (temp, (int) temp_fill, 0);
2877 }
2878 demand_empty_rest_of_line ();
2879
2880 record_alignment (now_seg, temp);
2881 }
2882
2883 static void
2884 s_bss (int ignore ATTRIBUTE_UNUSED)
2885 {
2886 /* We don't support putting frags in the BSS segment, we fake it by
2887 marking in_bss, then looking at s_skip for clues. */
2888 subseg_set (bss_section, 0);
2889 demand_empty_rest_of_line ();
2890
2891 #ifdef md_elf_section_change_hook
2892 md_elf_section_change_hook ();
2893 #endif
2894 }
2895
2896 static void
2897 s_even (int ignore ATTRIBUTE_UNUSED)
2898 {
2899 /* Never make frag if expect extra pass. */
2900 if (!need_pass_2)
2901 frag_align (1, 0, 0);
2902
2903 record_alignment (now_seg, 1);
2904
2905 demand_empty_rest_of_line ();
2906 }
2907
2908 /* Directives: Literal pools. */
2909
2910 static literal_pool *
2911 find_literal_pool (void)
2912 {
2913 literal_pool * pool;
2914
2915 for (pool = list_of_pools; pool != NULL; pool = pool->next)
2916 {
2917 if (pool->section == now_seg
2918 && pool->sub_section == now_subseg)
2919 break;
2920 }
2921
2922 return pool;
2923 }
2924
2925 static literal_pool *
2926 find_or_make_literal_pool (void)
2927 {
2928 /* Next literal pool ID number. */
2929 static unsigned int latest_pool_num = 1;
2930 literal_pool * pool;
2931
2932 pool = find_literal_pool ();
2933
2934 if (pool == NULL)
2935 {
2936 /* Create a new pool. */
2937 pool = (literal_pool *) xmalloc (sizeof (* pool));
2938 if (! pool)
2939 return NULL;
2940
2941 pool->next_free_entry = 0;
2942 pool->section = now_seg;
2943 pool->sub_section = now_subseg;
2944 pool->next = list_of_pools;
2945 pool->symbol = NULL;
2946
2947 /* Add it to the list. */
2948 list_of_pools = pool;
2949 }
2950
2951 /* New pools, and emptied pools, will have a NULL symbol. */
2952 if (pool->symbol == NULL)
2953 {
2954 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
2955 (valueT) 0, &zero_address_frag);
2956 pool->id = latest_pool_num ++;
2957 }
2958
2959 /* Done. */
2960 return pool;
2961 }
2962
2963 /* Add the literal in the global 'inst'
2964 structure to the relevant literal pool. */
2965
2966 static int
2967 add_to_lit_pool (void)
2968 {
2969 literal_pool * pool;
2970 unsigned int entry;
2971
2972 pool = find_or_make_literal_pool ();
2973
2974 /* Check if this literal value is already in the pool. */
2975 for (entry = 0; entry < pool->next_free_entry; entry ++)
2976 {
2977 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2978 && (inst.reloc.exp.X_op == O_constant)
2979 && (pool->literals[entry].X_add_number
2980 == inst.reloc.exp.X_add_number)
2981 && (pool->literals[entry].X_unsigned
2982 == inst.reloc.exp.X_unsigned))
2983 break;
2984
2985 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2986 && (inst.reloc.exp.X_op == O_symbol)
2987 && (pool->literals[entry].X_add_number
2988 == inst.reloc.exp.X_add_number)
2989 && (pool->literals[entry].X_add_symbol
2990 == inst.reloc.exp.X_add_symbol)
2991 && (pool->literals[entry].X_op_symbol
2992 == inst.reloc.exp.X_op_symbol))
2993 break;
2994 }
2995
2996 /* Do we need to create a new entry? */
2997 if (entry == pool->next_free_entry)
2998 {
2999 if (entry >= MAX_LITERAL_POOL_SIZE)
3000 {
3001 inst.error = _("literal pool overflow");
3002 return FAIL;
3003 }
3004
3005 pool->literals[entry] = inst.reloc.exp;
3006 pool->next_free_entry += 1;
3007 }
3008
3009 inst.reloc.exp.X_op = O_symbol;
3010 inst.reloc.exp.X_add_number = ((int) entry) * 4;
3011 inst.reloc.exp.X_add_symbol = pool->symbol;
3012
3013 return SUCCESS;
3014 }
3015
3016 /* Can't use symbol_new here, so have to create a symbol and then at
3017 a later date assign it a value. Thats what these functions do. */
3018
3019 static void
3020 symbol_locate (symbolS * symbolP,
3021 const char * name, /* It is copied, the caller can modify. */
3022 segT segment, /* Segment identifier (SEG_<something>). */
3023 valueT valu, /* Symbol value. */
3024 fragS * frag) /* Associated fragment. */
3025 {
3026 unsigned int name_length;
3027 char * preserved_copy_of_name;
3028
3029 name_length = strlen (name) + 1; /* +1 for \0. */
3030 obstack_grow (&notes, name, name_length);
3031 preserved_copy_of_name = (char *) obstack_finish (&notes);
3032
3033 #ifdef tc_canonicalize_symbol_name
3034 preserved_copy_of_name =
3035 tc_canonicalize_symbol_name (preserved_copy_of_name);
3036 #endif
3037
3038 S_SET_NAME (symbolP, preserved_copy_of_name);
3039
3040 S_SET_SEGMENT (symbolP, segment);
3041 S_SET_VALUE (symbolP, valu);
3042 symbol_clear_list_pointers (symbolP);
3043
3044 symbol_set_frag (symbolP, frag);
3045
3046 /* Link to end of symbol chain. */
3047 {
3048 extern int symbol_table_frozen;
3049
3050 if (symbol_table_frozen)
3051 abort ();
3052 }
3053
3054 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3055
3056 obj_symbol_new_hook (symbolP);
3057
3058 #ifdef tc_symbol_new_hook
3059 tc_symbol_new_hook (symbolP);
3060 #endif
3061
3062 #ifdef DEBUG_SYMS
3063 verify_symbol_chain (symbol_rootP, symbol_lastP);
3064 #endif /* DEBUG_SYMS */
3065 }
3066
3067
3068 static void
3069 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3070 {
3071 unsigned int entry;
3072 literal_pool * pool;
3073 char sym_name[20];
3074
3075 pool = find_literal_pool ();
3076 if (pool == NULL
3077 || pool->symbol == NULL
3078 || pool->next_free_entry == 0)
3079 return;
3080
3081 mapping_state (MAP_DATA);
3082
3083 /* Align pool as you have word accesses.
3084 Only make a frag if we have to. */
3085 if (!need_pass_2)
3086 frag_align (2, 0, 0);
3087
3088 record_alignment (now_seg, 2);
3089
3090 sprintf (sym_name, "$$lit_\002%x", pool->id);
3091
3092 symbol_locate (pool->symbol, sym_name, now_seg,
3093 (valueT) frag_now_fix (), frag_now);
3094 symbol_table_insert (pool->symbol);
3095
3096 ARM_SET_THUMB (pool->symbol, thumb_mode);
3097
3098 #if defined OBJ_COFF || defined OBJ_ELF
3099 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3100 #endif
3101
3102 for (entry = 0; entry < pool->next_free_entry; entry ++)
3103 /* First output the expression in the instruction to the pool. */
3104 emit_expr (&(pool->literals[entry]), 4); /* .word */
3105
3106 /* Mark the pool as empty. */
3107 pool->next_free_entry = 0;
3108 pool->symbol = NULL;
3109 }
3110
3111 #ifdef OBJ_ELF
3112 /* Forward declarations for functions below, in the MD interface
3113 section. */
3114 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3115 static valueT create_unwind_entry (int);
3116 static void start_unwind_section (const segT, int);
3117 static void add_unwind_opcode (valueT, int);
3118 static void flush_pending_unwind (void);
3119
3120 /* Directives: Data. */
3121
3122 static void
3123 s_arm_elf_cons (int nbytes)
3124 {
3125 expressionS exp;
3126
3127 #ifdef md_flush_pending_output
3128 md_flush_pending_output ();
3129 #endif
3130
3131 if (is_it_end_of_statement ())
3132 {
3133 demand_empty_rest_of_line ();
3134 return;
3135 }
3136
3137 #ifdef md_cons_align
3138 md_cons_align (nbytes);
3139 #endif
3140
3141 mapping_state (MAP_DATA);
3142 do
3143 {
3144 int reloc;
3145 char *base = input_line_pointer;
3146
3147 expression (& exp);
3148
3149 if (exp.X_op != O_symbol)
3150 emit_expr (&exp, (unsigned int) nbytes);
3151 else
3152 {
3153 char *before_reloc = input_line_pointer;
3154 reloc = parse_reloc (&input_line_pointer);
3155 if (reloc == -1)
3156 {
3157 as_bad (_("unrecognized relocation suffix"));
3158 ignore_rest_of_line ();
3159 return;
3160 }
3161 else if (reloc == BFD_RELOC_UNUSED)
3162 emit_expr (&exp, (unsigned int) nbytes);
3163 else
3164 {
3165 reloc_howto_type *howto = (reloc_howto_type *)
3166 bfd_reloc_type_lookup (stdoutput,
3167 (bfd_reloc_code_real_type) reloc);
3168 int size = bfd_get_reloc_size (howto);
3169
3170 if (reloc == BFD_RELOC_ARM_PLT32)
3171 {
3172 as_bad (_("(plt) is only valid on branch targets"));
3173 reloc = BFD_RELOC_UNUSED;
3174 size = 0;
3175 }
3176
3177 if (size > nbytes)
3178 as_bad (_("%s relocations do not fit in %d bytes"),
3179 howto->name, nbytes);
3180 else
3181 {
3182 /* We've parsed an expression stopping at O_symbol.
3183 But there may be more expression left now that we
3184 have parsed the relocation marker. Parse it again.
3185 XXX Surely there is a cleaner way to do this. */
3186 char *p = input_line_pointer;
3187 int offset;
3188 char *save_buf = (char *) alloca (input_line_pointer - base);
3189 memcpy (save_buf, base, input_line_pointer - base);
3190 memmove (base + (input_line_pointer - before_reloc),
3191 base, before_reloc - base);
3192
3193 input_line_pointer = base + (input_line_pointer-before_reloc);
3194 expression (&exp);
3195 memcpy (base, save_buf, p - base);
3196
3197 offset = nbytes - size;
3198 p = frag_more ((int) nbytes);
3199 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3200 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3201 }
3202 }
3203 }
3204 }
3205 while (*input_line_pointer++ == ',');
3206
3207 /* Put terminator back into stream. */
3208 input_line_pointer --;
3209 demand_empty_rest_of_line ();
3210 }
3211
3212 /* Emit an expression containing a 32-bit thumb instruction.
3213 Implementation based on put_thumb32_insn. */
3214
3215 static void
3216 emit_thumb32_expr (expressionS * exp)
3217 {
3218 expressionS exp_high = *exp;
3219
3220 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3221 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3222 exp->X_add_number &= 0xffff;
3223 emit_expr (exp, (unsigned int) THUMB_SIZE);
3224 }
3225
3226 /* Guess the instruction size based on the opcode. */
3227
3228 static int
3229 thumb_insn_size (int opcode)
3230 {
3231 if ((unsigned int) opcode < 0xe800u)
3232 return 2;
3233 else if ((unsigned int) opcode >= 0xe8000000u)
3234 return 4;
3235 else
3236 return 0;
3237 }
3238
3239 static bfd_boolean
3240 emit_insn (expressionS *exp, int nbytes)
3241 {
3242 int size = 0;
3243
3244 if (exp->X_op == O_constant)
3245 {
3246 size = nbytes;
3247
3248 if (size == 0)
3249 size = thumb_insn_size (exp->X_add_number);
3250
3251 if (size != 0)
3252 {
3253 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3254 {
3255 as_bad (_(".inst.n operand too big. "\
3256 "Use .inst.w instead"));
3257 size = 0;
3258 }
3259 else
3260 {
3261 if (now_it.state == AUTOMATIC_IT_BLOCK)
3262 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3263 else
3264 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3265
3266 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3267 emit_thumb32_expr (exp);
3268 else
3269 emit_expr (exp, (unsigned int) size);
3270
3271 it_fsm_post_encode ();
3272 }
3273 }
3274 else
3275 as_bad (_("cannot determine Thumb instruction size. " \
3276 "Use .inst.n/.inst.w instead"));
3277 }
3278 else
3279 as_bad (_("constant expression required"));
3280
3281 return (size != 0);
3282 }
3283
3284 /* Like s_arm_elf_cons but do not use md_cons_align and
3285 set the mapping state to MAP_ARM/MAP_THUMB. */
3286
3287 static void
3288 s_arm_elf_inst (int nbytes)
3289 {
3290 if (is_it_end_of_statement ())
3291 {
3292 demand_empty_rest_of_line ();
3293 return;
3294 }
3295
3296 /* Calling mapping_state () here will not change ARM/THUMB,
3297 but will ensure not to be in DATA state. */
3298
3299 if (thumb_mode)
3300 mapping_state (MAP_THUMB);
3301 else
3302 {
3303 if (nbytes != 0)
3304 {
3305 as_bad (_("width suffixes are invalid in ARM mode"));
3306 ignore_rest_of_line ();
3307 return;
3308 }
3309
3310 nbytes = 4;
3311
3312 mapping_state (MAP_ARM);
3313 }
3314
3315 do
3316 {
3317 expressionS exp;
3318
3319 expression (& exp);
3320
3321 if (! emit_insn (& exp, nbytes))
3322 {
3323 ignore_rest_of_line ();
3324 return;
3325 }
3326 }
3327 while (*input_line_pointer++ == ',');
3328
3329 /* Put terminator back into stream. */
3330 input_line_pointer --;
3331 demand_empty_rest_of_line ();
3332 }
3333
3334 /* Parse a .rel31 directive. */
3335
3336 static void
3337 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3338 {
3339 expressionS exp;
3340 char *p;
3341 valueT highbit;
3342
3343 highbit = 0;
3344 if (*input_line_pointer == '1')
3345 highbit = 0x80000000;
3346 else if (*input_line_pointer != '0')
3347 as_bad (_("expected 0 or 1"));
3348
3349 input_line_pointer++;
3350 if (*input_line_pointer != ',')
3351 as_bad (_("missing comma"));
3352 input_line_pointer++;
3353
3354 #ifdef md_flush_pending_output
3355 md_flush_pending_output ();
3356 #endif
3357
3358 #ifdef md_cons_align
3359 md_cons_align (4);
3360 #endif
3361
3362 mapping_state (MAP_DATA);
3363
3364 expression (&exp);
3365
3366 p = frag_more (4);
3367 md_number_to_chars (p, highbit, 4);
3368 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3369 BFD_RELOC_ARM_PREL31);
3370
3371 demand_empty_rest_of_line ();
3372 }
3373
3374 /* Directives: AEABI stack-unwind tables. */
3375
3376 /* Parse an unwind_fnstart directive. Simply records the current location. */
3377
3378 static void
3379 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3380 {
3381 demand_empty_rest_of_line ();
3382 if (unwind.proc_start)
3383 {
3384 as_bad (_("duplicate .fnstart directive"));
3385 return;
3386 }
3387
3388 /* Mark the start of the function. */
3389 unwind.proc_start = expr_build_dot ();
3390
3391 /* Reset the rest of the unwind info. */
3392 unwind.opcode_count = 0;
3393 unwind.table_entry = NULL;
3394 unwind.personality_routine = NULL;
3395 unwind.personality_index = -1;
3396 unwind.frame_size = 0;
3397 unwind.fp_offset = 0;
3398 unwind.fp_reg = REG_SP;
3399 unwind.fp_used = 0;
3400 unwind.sp_restored = 0;
3401 }
3402
3403
3404 /* Parse a handlerdata directive. Creates the exception handling table entry
3405 for the function. */
3406
3407 static void
3408 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3409 {
3410 demand_empty_rest_of_line ();
3411 if (!unwind.proc_start)
3412 as_bad (MISSING_FNSTART);
3413
3414 if (unwind.table_entry)
3415 as_bad (_("duplicate .handlerdata directive"));
3416
3417 create_unwind_entry (1);
3418 }
3419
3420 /* Parse an unwind_fnend directive. Generates the index table entry. */
3421
3422 static void
3423 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3424 {
3425 long where;
3426 char *ptr;
3427 valueT val;
3428 unsigned int marked_pr_dependency;
3429
3430 demand_empty_rest_of_line ();
3431
3432 if (!unwind.proc_start)
3433 {
3434 as_bad (_(".fnend directive without .fnstart"));
3435 return;
3436 }
3437
3438 /* Add eh table entry. */
3439 if (unwind.table_entry == NULL)
3440 val = create_unwind_entry (0);
3441 else
3442 val = 0;
3443
3444 /* Add index table entry. This is two words. */
3445 start_unwind_section (unwind.saved_seg, 1);
3446 frag_align (2, 0, 0);
3447 record_alignment (now_seg, 2);
3448
3449 ptr = frag_more (8);
3450 where = frag_now_fix () - 8;
3451
3452 /* Self relative offset of the function start. */
3453 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3454 BFD_RELOC_ARM_PREL31);
3455
3456 /* Indicate dependency on EHABI-defined personality routines to the
3457 linker, if it hasn't been done already. */
3458 marked_pr_dependency
3459 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
3460 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3461 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3462 {
3463 static const char *const name[] =
3464 {
3465 "__aeabi_unwind_cpp_pr0",
3466 "__aeabi_unwind_cpp_pr1",
3467 "__aeabi_unwind_cpp_pr2"
3468 };
3469 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3470 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3471 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3472 |= 1 << unwind.personality_index;
3473 }
3474
3475 if (val)
3476 /* Inline exception table entry. */
3477 md_number_to_chars (ptr + 4, val, 4);
3478 else
3479 /* Self relative offset of the table entry. */
3480 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3481 BFD_RELOC_ARM_PREL31);
3482
3483 /* Restore the original section. */
3484 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3485
3486 unwind.proc_start = NULL;
3487 }
3488
3489
3490 /* Parse an unwind_cantunwind directive. */
3491
3492 static void
3493 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3494 {
3495 demand_empty_rest_of_line ();
3496 if (!unwind.proc_start)
3497 as_bad (MISSING_FNSTART);
3498
3499 if (unwind.personality_routine || unwind.personality_index != -1)
3500 as_bad (_("personality routine specified for cantunwind frame"));
3501
3502 unwind.personality_index = -2;
3503 }
3504
3505
3506 /* Parse a personalityindex directive. */
3507
3508 static void
3509 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3510 {
3511 expressionS exp;
3512
3513 if (!unwind.proc_start)
3514 as_bad (MISSING_FNSTART);
3515
3516 if (unwind.personality_routine || unwind.personality_index != -1)
3517 as_bad (_("duplicate .personalityindex directive"));
3518
3519 expression (&exp);
3520
3521 if (exp.X_op != O_constant
3522 || exp.X_add_number < 0 || exp.X_add_number > 15)
3523 {
3524 as_bad (_("bad personality routine number"));
3525 ignore_rest_of_line ();
3526 return;
3527 }
3528
3529 unwind.personality_index = exp.X_add_number;
3530
3531 demand_empty_rest_of_line ();
3532 }
3533
3534
3535 /* Parse a personality directive. */
3536
3537 static void
3538 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3539 {
3540 char *name, *p, c;
3541
3542 if (!unwind.proc_start)
3543 as_bad (MISSING_FNSTART);
3544
3545 if (unwind.personality_routine || unwind.personality_index != -1)
3546 as_bad (_("duplicate .personality directive"));
3547
3548 name = input_line_pointer;
3549 c = get_symbol_end ();
3550 p = input_line_pointer;
3551 unwind.personality_routine = symbol_find_or_make (name);
3552 *p = c;
3553 demand_empty_rest_of_line ();
3554 }
3555
3556
3557 /* Parse a directive saving core registers. */
3558
3559 static void
3560 s_arm_unwind_save_core (void)
3561 {
3562 valueT op;
3563 long range;
3564 int n;
3565
3566 range = parse_reg_list (&input_line_pointer);
3567 if (range == FAIL)
3568 {
3569 as_bad (_("expected register list"));
3570 ignore_rest_of_line ();
3571 return;
3572 }
3573
3574 demand_empty_rest_of_line ();
3575
3576 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3577 into .unwind_save {..., sp...}. We aren't bothered about the value of
3578 ip because it is clobbered by calls. */
3579 if (unwind.sp_restored && unwind.fp_reg == 12
3580 && (range & 0x3000) == 0x1000)
3581 {
3582 unwind.opcode_count--;
3583 unwind.sp_restored = 0;
3584 range = (range | 0x2000) & ~0x1000;
3585 unwind.pending_offset = 0;
3586 }
3587
3588 /* Pop r4-r15. */
3589 if (range & 0xfff0)
3590 {
3591 /* See if we can use the short opcodes. These pop a block of up to 8
3592 registers starting with r4, plus maybe r14. */
3593 for (n = 0; n < 8; n++)
3594 {
3595 /* Break at the first non-saved register. */
3596 if ((range & (1 << (n + 4))) == 0)
3597 break;
3598 }
3599 /* See if there are any other bits set. */
3600 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3601 {
3602 /* Use the long form. */
3603 op = 0x8000 | ((range >> 4) & 0xfff);
3604 add_unwind_opcode (op, 2);
3605 }
3606 else
3607 {
3608 /* Use the short form. */
3609 if (range & 0x4000)
3610 op = 0xa8; /* Pop r14. */
3611 else
3612 op = 0xa0; /* Do not pop r14. */
3613 op |= (n - 1);
3614 add_unwind_opcode (op, 1);
3615 }
3616 }
3617
3618 /* Pop r0-r3. */
3619 if (range & 0xf)
3620 {
3621 op = 0xb100 | (range & 0xf);
3622 add_unwind_opcode (op, 2);
3623 }
3624
3625 /* Record the number of bytes pushed. */
3626 for (n = 0; n < 16; n++)
3627 {
3628 if (range & (1 << n))
3629 unwind.frame_size += 4;
3630 }
3631 }
3632
3633
3634 /* Parse a directive saving FPA registers. */
3635
3636 static void
3637 s_arm_unwind_save_fpa (int reg)
3638 {
3639 expressionS exp;
3640 int num_regs;
3641 valueT op;
3642
3643 /* Get Number of registers to transfer. */
3644 if (skip_past_comma (&input_line_pointer) != FAIL)
3645 expression (&exp);
3646 else
3647 exp.X_op = O_illegal;
3648
3649 if (exp.X_op != O_constant)
3650 {
3651 as_bad (_("expected , <constant>"));
3652 ignore_rest_of_line ();
3653 return;
3654 }
3655
3656 num_regs = exp.X_add_number;
3657
3658 if (num_regs < 1 || num_regs > 4)
3659 {
3660 as_bad (_("number of registers must be in the range [1:4]"));
3661 ignore_rest_of_line ();
3662 return;
3663 }
3664
3665 demand_empty_rest_of_line ();
3666
3667 if (reg == 4)
3668 {
3669 /* Short form. */
3670 op = 0xb4 | (num_regs - 1);
3671 add_unwind_opcode (op, 1);
3672 }
3673 else
3674 {
3675 /* Long form. */
3676 op = 0xc800 | (reg << 4) | (num_regs - 1);
3677 add_unwind_opcode (op, 2);
3678 }
3679 unwind.frame_size += num_regs * 12;
3680 }
3681
3682
3683 /* Parse a directive saving VFP registers for ARMv6 and above. */
3684
3685 static void
3686 s_arm_unwind_save_vfp_armv6 (void)
3687 {
3688 int count;
3689 unsigned int start;
3690 valueT op;
3691 int num_vfpv3_regs = 0;
3692 int num_regs_below_16;
3693
3694 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3695 if (count == FAIL)
3696 {
3697 as_bad (_("expected register list"));
3698 ignore_rest_of_line ();
3699 return;
3700 }
3701
3702 demand_empty_rest_of_line ();
3703
3704 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3705 than FSTMX/FLDMX-style ones). */
3706
3707 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3708 if (start >= 16)
3709 num_vfpv3_regs = count;
3710 else if (start + count > 16)
3711 num_vfpv3_regs = start + count - 16;
3712
3713 if (num_vfpv3_regs > 0)
3714 {
3715 int start_offset = start > 16 ? start - 16 : 0;
3716 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3717 add_unwind_opcode (op, 2);
3718 }
3719
3720 /* Generate opcode for registers numbered in the range 0 .. 15. */
3721 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
3722 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
3723 if (num_regs_below_16 > 0)
3724 {
3725 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3726 add_unwind_opcode (op, 2);
3727 }
3728
3729 unwind.frame_size += count * 8;
3730 }
3731
3732
3733 /* Parse a directive saving VFP registers for pre-ARMv6. */
3734
3735 static void
3736 s_arm_unwind_save_vfp (void)
3737 {
3738 int count;
3739 unsigned int reg;
3740 valueT op;
3741
3742 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
3743 if (count == FAIL)
3744 {
3745 as_bad (_("expected register list"));
3746 ignore_rest_of_line ();
3747 return;
3748 }
3749
3750 demand_empty_rest_of_line ();
3751
3752 if (reg == 8)
3753 {
3754 /* Short form. */
3755 op = 0xb8 | (count - 1);
3756 add_unwind_opcode (op, 1);
3757 }
3758 else
3759 {
3760 /* Long form. */
3761 op = 0xb300 | (reg << 4) | (count - 1);
3762 add_unwind_opcode (op, 2);
3763 }
3764 unwind.frame_size += count * 8 + 4;
3765 }
3766
3767
3768 /* Parse a directive saving iWMMXt data registers. */
3769
3770 static void
3771 s_arm_unwind_save_mmxwr (void)
3772 {
3773 int reg;
3774 int hi_reg;
3775 int i;
3776 unsigned mask = 0;
3777 valueT op;
3778
3779 if (*input_line_pointer == '{')
3780 input_line_pointer++;
3781
3782 do
3783 {
3784 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3785
3786 if (reg == FAIL)
3787 {
3788 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3789 goto error;
3790 }
3791
3792 if (mask >> reg)
3793 as_tsktsk (_("register list not in ascending order"));
3794 mask |= 1 << reg;
3795
3796 if (*input_line_pointer == '-')
3797 {
3798 input_line_pointer++;
3799 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3800 if (hi_reg == FAIL)
3801 {
3802 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3803 goto error;
3804 }
3805 else if (reg >= hi_reg)
3806 {
3807 as_bad (_("bad register range"));
3808 goto error;
3809 }
3810 for (; reg < hi_reg; reg++)
3811 mask |= 1 << reg;
3812 }
3813 }
3814 while (skip_past_comma (&input_line_pointer) != FAIL);
3815
3816 if (*input_line_pointer == '}')
3817 input_line_pointer++;
3818
3819 demand_empty_rest_of_line ();
3820
3821 /* Generate any deferred opcodes because we're going to be looking at
3822 the list. */
3823 flush_pending_unwind ();
3824
3825 for (i = 0; i < 16; i++)
3826 {
3827 if (mask & (1 << i))
3828 unwind.frame_size += 8;
3829 }
3830
3831 /* Attempt to combine with a previous opcode. We do this because gcc
3832 likes to output separate unwind directives for a single block of
3833 registers. */
3834 if (unwind.opcode_count > 0)
3835 {
3836 i = unwind.opcodes[unwind.opcode_count - 1];
3837 if ((i & 0xf8) == 0xc0)
3838 {
3839 i &= 7;
3840 /* Only merge if the blocks are contiguous. */
3841 if (i < 6)
3842 {
3843 if ((mask & 0xfe00) == (1 << 9))
3844 {
3845 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3846 unwind.opcode_count--;
3847 }
3848 }
3849 else if (i == 6 && unwind.opcode_count >= 2)
3850 {
3851 i = unwind.opcodes[unwind.opcode_count - 2];
3852 reg = i >> 4;
3853 i &= 0xf;
3854
3855 op = 0xffff << (reg - 1);
3856 if (reg > 0
3857 && ((mask & op) == (1u << (reg - 1))))
3858 {
3859 op = (1 << (reg + i + 1)) - 1;
3860 op &= ~((1 << reg) - 1);
3861 mask |= op;
3862 unwind.opcode_count -= 2;
3863 }
3864 }
3865 }
3866 }
3867
3868 hi_reg = 15;
3869 /* We want to generate opcodes in the order the registers have been
3870 saved, ie. descending order. */
3871 for (reg = 15; reg >= -1; reg--)
3872 {
3873 /* Save registers in blocks. */
3874 if (reg < 0
3875 || !(mask & (1 << reg)))
3876 {
3877 /* We found an unsaved reg. Generate opcodes to save the
3878 preceding block. */
3879 if (reg != hi_reg)
3880 {
3881 if (reg == 9)
3882 {
3883 /* Short form. */
3884 op = 0xc0 | (hi_reg - 10);
3885 add_unwind_opcode (op, 1);
3886 }
3887 else
3888 {
3889 /* Long form. */
3890 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
3891 add_unwind_opcode (op, 2);
3892 }
3893 }
3894 hi_reg = reg - 1;
3895 }
3896 }
3897
3898 return;
3899 error:
3900 ignore_rest_of_line ();
3901 }
3902
3903 static void
3904 s_arm_unwind_save_mmxwcg (void)
3905 {
3906 int reg;
3907 int hi_reg;
3908 unsigned mask = 0;
3909 valueT op;
3910
3911 if (*input_line_pointer == '{')
3912 input_line_pointer++;
3913
3914 do
3915 {
3916 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
3917
3918 if (reg == FAIL)
3919 {
3920 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
3921 goto error;
3922 }
3923
3924 reg -= 8;
3925 if (mask >> reg)
3926 as_tsktsk (_("register list not in ascending order"));
3927 mask |= 1 << reg;
3928
3929 if (*input_line_pointer == '-')
3930 {
3931 input_line_pointer++;
3932 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
3933 if (hi_reg == FAIL)
3934 {
3935 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
3936 goto error;
3937 }
3938 else if (reg >= hi_reg)
3939 {
3940 as_bad (_("bad register range"));
3941 goto error;
3942 }
3943 for (; reg < hi_reg; reg++)
3944 mask |= 1 << reg;
3945 }
3946 }
3947 while (skip_past_comma (&input_line_pointer) != FAIL);
3948
3949 if (*input_line_pointer == '}')
3950 input_line_pointer++;
3951
3952 demand_empty_rest_of_line ();
3953
3954 /* Generate any deferred opcodes because we're going to be looking at
3955 the list. */
3956 flush_pending_unwind ();
3957
3958 for (reg = 0; reg < 16; reg++)
3959 {
3960 if (mask & (1 << reg))
3961 unwind.frame_size += 4;
3962 }
3963 op = 0xc700 | mask;
3964 add_unwind_opcode (op, 2);
3965 return;
3966 error:
3967 ignore_rest_of_line ();
3968 }
3969
3970
3971 /* Parse an unwind_save directive.
3972 If the argument is non-zero, this is a .vsave directive. */
3973
3974 static void
3975 s_arm_unwind_save (int arch_v6)
3976 {
3977 char *peek;
3978 struct reg_entry *reg;
3979 bfd_boolean had_brace = FALSE;
3980
3981 if (!unwind.proc_start)
3982 as_bad (MISSING_FNSTART);
3983
3984 /* Figure out what sort of save we have. */
3985 peek = input_line_pointer;
3986
3987 if (*peek == '{')
3988 {
3989 had_brace = TRUE;
3990 peek++;
3991 }
3992
3993 reg = arm_reg_parse_multi (&peek);
3994
3995 if (!reg)
3996 {
3997 as_bad (_("register expected"));
3998 ignore_rest_of_line ();
3999 return;
4000 }
4001
4002 switch (reg->type)
4003 {
4004 case REG_TYPE_FN:
4005 if (had_brace)
4006 {
4007 as_bad (_("FPA .unwind_save does not take a register list"));
4008 ignore_rest_of_line ();
4009 return;
4010 }
4011 input_line_pointer = peek;
4012 s_arm_unwind_save_fpa (reg->number);
4013 return;
4014
4015 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
4016 case REG_TYPE_VFD:
4017 if (arch_v6)
4018 s_arm_unwind_save_vfp_armv6 ();
4019 else
4020 s_arm_unwind_save_vfp ();
4021 return;
4022 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
4023 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
4024
4025 default:
4026 as_bad (_(".unwind_save does not support this kind of register"));
4027 ignore_rest_of_line ();
4028 }
4029 }
4030
4031
4032 /* Parse an unwind_movsp directive. */
4033
4034 static void
4035 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4036 {
4037 int reg;
4038 valueT op;
4039 int offset;
4040
4041 if (!unwind.proc_start)
4042 as_bad (MISSING_FNSTART);
4043
4044 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4045 if (reg == FAIL)
4046 {
4047 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4048 ignore_rest_of_line ();
4049 return;
4050 }
4051
4052 /* Optional constant. */
4053 if (skip_past_comma (&input_line_pointer) != FAIL)
4054 {
4055 if (immediate_for_directive (&offset) == FAIL)
4056 return;
4057 }
4058 else
4059 offset = 0;
4060
4061 demand_empty_rest_of_line ();
4062
4063 if (reg == REG_SP || reg == REG_PC)
4064 {
4065 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4066 return;
4067 }
4068
4069 if (unwind.fp_reg != REG_SP)
4070 as_bad (_("unexpected .unwind_movsp directive"));
4071
4072 /* Generate opcode to restore the value. */
4073 op = 0x90 | reg;
4074 add_unwind_opcode (op, 1);
4075
4076 /* Record the information for later. */
4077 unwind.fp_reg = reg;
4078 unwind.fp_offset = unwind.frame_size - offset;
4079 unwind.sp_restored = 1;
4080 }
4081
4082 /* Parse an unwind_pad directive. */
4083
4084 static void
4085 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4086 {
4087 int offset;
4088
4089 if (!unwind.proc_start)
4090 as_bad (MISSING_FNSTART);
4091
4092 if (immediate_for_directive (&offset) == FAIL)
4093 return;
4094
4095 if (offset & 3)
4096 {
4097 as_bad (_("stack increment must be multiple of 4"));
4098 ignore_rest_of_line ();
4099 return;
4100 }
4101
4102 /* Don't generate any opcodes, just record the details for later. */
4103 unwind.frame_size += offset;
4104 unwind.pending_offset += offset;
4105
4106 demand_empty_rest_of_line ();
4107 }
4108
4109 /* Parse an unwind_setfp directive. */
4110
4111 static void
4112 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4113 {
4114 int sp_reg;
4115 int fp_reg;
4116 int offset;
4117
4118 if (!unwind.proc_start)
4119 as_bad (MISSING_FNSTART);
4120
4121 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4122 if (skip_past_comma (&input_line_pointer) == FAIL)
4123 sp_reg = FAIL;
4124 else
4125 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4126
4127 if (fp_reg == FAIL || sp_reg == FAIL)
4128 {
4129 as_bad (_("expected <reg>, <reg>"));
4130 ignore_rest_of_line ();
4131 return;
4132 }
4133
4134 /* Optional constant. */
4135 if (skip_past_comma (&input_line_pointer) != FAIL)
4136 {
4137 if (immediate_for_directive (&offset) == FAIL)
4138 return;
4139 }
4140 else
4141 offset = 0;
4142
4143 demand_empty_rest_of_line ();
4144
4145 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4146 {
4147 as_bad (_("register must be either sp or set by a previous"
4148 "unwind_movsp directive"));
4149 return;
4150 }
4151
4152 /* Don't generate any opcodes, just record the information for later. */
4153 unwind.fp_reg = fp_reg;
4154 unwind.fp_used = 1;
4155 if (sp_reg == REG_SP)
4156 unwind.fp_offset = unwind.frame_size - offset;
4157 else
4158 unwind.fp_offset -= offset;
4159 }
4160
4161 /* Parse an unwind_raw directive. */
4162
4163 static void
4164 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4165 {
4166 expressionS exp;
4167 /* This is an arbitrary limit. */
4168 unsigned char op[16];
4169 int count;
4170
4171 if (!unwind.proc_start)
4172 as_bad (MISSING_FNSTART);
4173
4174 expression (&exp);
4175 if (exp.X_op == O_constant
4176 && skip_past_comma (&input_line_pointer) != FAIL)
4177 {
4178 unwind.frame_size += exp.X_add_number;
4179 expression (&exp);
4180 }
4181 else
4182 exp.X_op = O_illegal;
4183
4184 if (exp.X_op != O_constant)
4185 {
4186 as_bad (_("expected <offset>, <opcode>"));
4187 ignore_rest_of_line ();
4188 return;
4189 }
4190
4191 count = 0;
4192
4193 /* Parse the opcode. */
4194 for (;;)
4195 {
4196 if (count >= 16)
4197 {
4198 as_bad (_("unwind opcode too long"));
4199 ignore_rest_of_line ();
4200 }
4201 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4202 {
4203 as_bad (_("invalid unwind opcode"));
4204 ignore_rest_of_line ();
4205 return;
4206 }
4207 op[count++] = exp.X_add_number;
4208
4209 /* Parse the next byte. */
4210 if (skip_past_comma (&input_line_pointer) == FAIL)
4211 break;
4212
4213 expression (&exp);
4214 }
4215
4216 /* Add the opcode bytes in reverse order. */
4217 while (count--)
4218 add_unwind_opcode (op[count], 1);
4219
4220 demand_empty_rest_of_line ();
4221 }
4222
4223
4224 /* Parse a .eabi_attribute directive. */
4225
4226 static void
4227 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4228 {
4229 int tag = s_vendor_attribute (OBJ_ATTR_PROC);
4230
4231 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4232 attributes_set_explicitly[tag] = 1;
4233 }
4234 #endif /* OBJ_ELF */
4235
4236 static void s_arm_arch (int);
4237 static void s_arm_object_arch (int);
4238 static void s_arm_cpu (int);
4239 static void s_arm_fpu (int);
4240
4241 #ifdef TE_PE
4242
4243 static void
4244 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
4245 {
4246 expressionS exp;
4247
4248 do
4249 {
4250 expression (&exp);
4251 if (exp.X_op == O_symbol)
4252 exp.X_op = O_secrel;
4253
4254 emit_expr (&exp, 4);
4255 }
4256 while (*input_line_pointer++ == ',');
4257
4258 input_line_pointer--;
4259 demand_empty_rest_of_line ();
4260 }
4261 #endif /* TE_PE */
4262
4263 /* This table describes all the machine specific pseudo-ops the assembler
4264 has to support. The fields are:
4265 pseudo-op name without dot
4266 function to call to execute this pseudo-op
4267 Integer arg to pass to the function. */
4268
4269 const pseudo_typeS md_pseudo_table[] =
4270 {
4271 /* Never called because '.req' does not start a line. */
4272 { "req", s_req, 0 },
4273 /* Following two are likewise never called. */
4274 { "dn", s_dn, 0 },
4275 { "qn", s_qn, 0 },
4276 { "unreq", s_unreq, 0 },
4277 { "bss", s_bss, 0 },
4278 { "align", s_align, 0 },
4279 { "arm", s_arm, 0 },
4280 { "thumb", s_thumb, 0 },
4281 { "code", s_code, 0 },
4282 { "force_thumb", s_force_thumb, 0 },
4283 { "thumb_func", s_thumb_func, 0 },
4284 { "thumb_set", s_thumb_set, 0 },
4285 { "even", s_even, 0 },
4286 { "ltorg", s_ltorg, 0 },
4287 { "pool", s_ltorg, 0 },
4288 { "syntax", s_syntax, 0 },
4289 { "cpu", s_arm_cpu, 0 },
4290 { "arch", s_arm_arch, 0 },
4291 { "object_arch", s_arm_object_arch, 0 },
4292 { "fpu", s_arm_fpu, 0 },
4293 #ifdef OBJ_ELF
4294 { "word", s_arm_elf_cons, 4 },
4295 { "long", s_arm_elf_cons, 4 },
4296 { "inst.n", s_arm_elf_inst, 2 },
4297 { "inst.w", s_arm_elf_inst, 4 },
4298 { "inst", s_arm_elf_inst, 0 },
4299 { "rel31", s_arm_rel31, 0 },
4300 { "fnstart", s_arm_unwind_fnstart, 0 },
4301 { "fnend", s_arm_unwind_fnend, 0 },
4302 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4303 { "personality", s_arm_unwind_personality, 0 },
4304 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4305 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4306 { "save", s_arm_unwind_save, 0 },
4307 { "vsave", s_arm_unwind_save, 1 },
4308 { "movsp", s_arm_unwind_movsp, 0 },
4309 { "pad", s_arm_unwind_pad, 0 },
4310 { "setfp", s_arm_unwind_setfp, 0 },
4311 { "unwind_raw", s_arm_unwind_raw, 0 },
4312 { "eabi_attribute", s_arm_eabi_attribute, 0 },
4313 #else
4314 { "word", cons, 4},
4315
4316 /* These are used for dwarf. */
4317 {"2byte", cons, 2},
4318 {"4byte", cons, 4},
4319 {"8byte", cons, 8},
4320 /* These are used for dwarf2. */
4321 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4322 { "loc", dwarf2_directive_loc, 0 },
4323 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
4324 #endif
4325 { "extend", float_cons, 'x' },
4326 { "ldouble", float_cons, 'x' },
4327 { "packed", float_cons, 'p' },
4328 #ifdef TE_PE
4329 {"secrel32", pe_directive_secrel, 0},
4330 #endif
4331 { 0, 0, 0 }
4332 };
4333 \f
4334 /* Parser functions used exclusively in instruction operands. */
4335
4336 /* Generic immediate-value read function for use in insn parsing.
4337 STR points to the beginning of the immediate (the leading #);
4338 VAL receives the value; if the value is outside [MIN, MAX]
4339 issue an error. PREFIX_OPT is true if the immediate prefix is
4340 optional. */
4341
4342 static int
4343 parse_immediate (char **str, int *val, int min, int max,
4344 bfd_boolean prefix_opt)
4345 {
4346 expressionS exp;
4347 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4348 if (exp.X_op != O_constant)
4349 {
4350 inst.error = _("constant expression required");
4351 return FAIL;
4352 }
4353
4354 if (exp.X_add_number < min || exp.X_add_number > max)
4355 {
4356 inst.error = _("immediate value out of range");
4357 return FAIL;
4358 }
4359
4360 *val = exp.X_add_number;
4361 return SUCCESS;
4362 }
4363
4364 /* Less-generic immediate-value read function with the possibility of loading a
4365 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
4366 instructions. Puts the result directly in inst.operands[i]. */
4367
4368 static int
4369 parse_big_immediate (char **str, int i)
4370 {
4371 expressionS exp;
4372 char *ptr = *str;
4373
4374 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4375
4376 if (exp.X_op == O_constant)
4377 {
4378 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4379 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4380 O_constant. We have to be careful not to break compilation for
4381 32-bit X_add_number, though. */
4382 if ((exp.X_add_number & ~0xffffffffl) != 0)
4383 {
4384 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4385 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4386 inst.operands[i].regisimm = 1;
4387 }
4388 }
4389 else if (exp.X_op == O_big
4390 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32
4391 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number <= 64)
4392 {
4393 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4394 /* Bignums have their least significant bits in
4395 generic_bignum[0]. Make sure we put 32 bits in imm and
4396 32 bits in reg, in a (hopefully) portable way. */
4397 gas_assert (parts != 0);
4398 inst.operands[i].imm = 0;
4399 for (j = 0; j < parts; j++, idx++)
4400 inst.operands[i].imm |= generic_bignum[idx]
4401 << (LITTLENUM_NUMBER_OF_BITS * j);
4402 inst.operands[i].reg = 0;
4403 for (j = 0; j < parts; j++, idx++)
4404 inst.operands[i].reg |= generic_bignum[idx]
4405 << (LITTLENUM_NUMBER_OF_BITS * j);
4406 inst.operands[i].regisimm = 1;
4407 }
4408 else
4409 return FAIL;
4410
4411 *str = ptr;
4412
4413 return SUCCESS;
4414 }
4415
4416 /* Returns the pseudo-register number of an FPA immediate constant,
4417 or FAIL if there isn't a valid constant here. */
4418
4419 static int
4420 parse_fpa_immediate (char ** str)
4421 {
4422 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4423 char * save_in;
4424 expressionS exp;
4425 int i;
4426 int j;
4427
4428 /* First try and match exact strings, this is to guarantee
4429 that some formats will work even for cross assembly. */
4430
4431 for (i = 0; fp_const[i]; i++)
4432 {
4433 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
4434 {
4435 char *start = *str;
4436
4437 *str += strlen (fp_const[i]);
4438 if (is_end_of_line[(unsigned char) **str])
4439 return i + 8;
4440 *str = start;
4441 }
4442 }
4443
4444 /* Just because we didn't get a match doesn't mean that the constant
4445 isn't valid, just that it is in a format that we don't
4446 automatically recognize. Try parsing it with the standard
4447 expression routines. */
4448
4449 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
4450
4451 /* Look for a raw floating point number. */
4452 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4453 && is_end_of_line[(unsigned char) *save_in])
4454 {
4455 for (i = 0; i < NUM_FLOAT_VALS; i++)
4456 {
4457 for (j = 0; j < MAX_LITTLENUMS; j++)
4458 {
4459 if (words[j] != fp_values[i][j])
4460 break;
4461 }
4462
4463 if (j == MAX_LITTLENUMS)
4464 {
4465 *str = save_in;
4466 return i + 8;
4467 }
4468 }
4469 }
4470
4471 /* Try and parse a more complex expression, this will probably fail
4472 unless the code uses a floating point prefix (eg "0f"). */
4473 save_in = input_line_pointer;
4474 input_line_pointer = *str;
4475 if (expression (&exp) == absolute_section
4476 && exp.X_op == O_big
4477 && exp.X_add_number < 0)
4478 {
4479 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4480 Ditto for 15. */
4481 if (gen_to_words (words, 5, (long) 15) == 0)
4482 {
4483 for (i = 0; i < NUM_FLOAT_VALS; i++)
4484 {
4485 for (j = 0; j < MAX_LITTLENUMS; j++)
4486 {
4487 if (words[j] != fp_values[i][j])
4488 break;
4489 }
4490
4491 if (j == MAX_LITTLENUMS)
4492 {
4493 *str = input_line_pointer;
4494 input_line_pointer = save_in;
4495 return i + 8;
4496 }
4497 }
4498 }
4499 }
4500
4501 *str = input_line_pointer;
4502 input_line_pointer = save_in;
4503 inst.error = _("invalid FPA immediate expression");
4504 return FAIL;
4505 }
4506
4507 /* Returns 1 if a number has "quarter-precision" float format
4508 0baBbbbbbc defgh000 00000000 00000000. */
4509
4510 static int
4511 is_quarter_float (unsigned imm)
4512 {
4513 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4514 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4515 }
4516
4517 /* Parse an 8-bit "quarter-precision" floating point number of the form:
4518 0baBbbbbbc defgh000 00000000 00000000.
4519 The zero and minus-zero cases need special handling, since they can't be
4520 encoded in the "quarter-precision" float format, but can nonetheless be
4521 loaded as integer constants. */
4522
4523 static unsigned
4524 parse_qfloat_immediate (char **ccp, int *immed)
4525 {
4526 char *str = *ccp;
4527 char *fpnum;
4528 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4529 int found_fpchar = 0;
4530
4531 skip_past_char (&str, '#');
4532
4533 /* We must not accidentally parse an integer as a floating-point number. Make
4534 sure that the value we parse is not an integer by checking for special
4535 characters '.' or 'e'.
4536 FIXME: This is a horrible hack, but doing better is tricky because type
4537 information isn't in a very usable state at parse time. */
4538 fpnum = str;
4539 skip_whitespace (fpnum);
4540
4541 if (strncmp (fpnum, "0x", 2) == 0)
4542 return FAIL;
4543 else
4544 {
4545 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4546 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4547 {
4548 found_fpchar = 1;
4549 break;
4550 }
4551
4552 if (!found_fpchar)
4553 return FAIL;
4554 }
4555
4556 if ((str = atof_ieee (str, 's', words)) != NULL)
4557 {
4558 unsigned fpword = 0;
4559 int i;
4560
4561 /* Our FP word must be 32 bits (single-precision FP). */
4562 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4563 {
4564 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4565 fpword |= words[i];
4566 }
4567
4568 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
4569 *immed = fpword;
4570 else
4571 return FAIL;
4572
4573 *ccp = str;
4574
4575 return SUCCESS;
4576 }
4577
4578 return FAIL;
4579 }
4580
4581 /* Shift operands. */
4582 enum shift_kind
4583 {
4584 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4585 };
4586
4587 struct asm_shift_name
4588 {
4589 const char *name;
4590 enum shift_kind kind;
4591 };
4592
4593 /* Third argument to parse_shift. */
4594 enum parse_shift_mode
4595 {
4596 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4597 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4598 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4599 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4600 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4601 };
4602
4603 /* Parse a <shift> specifier on an ARM data processing instruction.
4604 This has three forms:
4605
4606 (LSL|LSR|ASL|ASR|ROR) Rs
4607 (LSL|LSR|ASL|ASR|ROR) #imm
4608 RRX
4609
4610 Note that ASL is assimilated to LSL in the instruction encoding, and
4611 RRX to ROR #0 (which cannot be written as such). */
4612
4613 static int
4614 parse_shift (char **str, int i, enum parse_shift_mode mode)
4615 {
4616 const struct asm_shift_name *shift_name;
4617 enum shift_kind shift;
4618 char *s = *str;
4619 char *p = s;
4620 int reg;
4621
4622 for (p = *str; ISALPHA (*p); p++)
4623 ;
4624
4625 if (p == *str)
4626 {
4627 inst.error = _("shift expression expected");
4628 return FAIL;
4629 }
4630
4631 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
4632 p - *str);
4633
4634 if (shift_name == NULL)
4635 {
4636 inst.error = _("shift expression expected");
4637 return FAIL;
4638 }
4639
4640 shift = shift_name->kind;
4641
4642 switch (mode)
4643 {
4644 case NO_SHIFT_RESTRICT:
4645 case SHIFT_IMMEDIATE: break;
4646
4647 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4648 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4649 {
4650 inst.error = _("'LSL' or 'ASR' required");
4651 return FAIL;
4652 }
4653 break;
4654
4655 case SHIFT_LSL_IMMEDIATE:
4656 if (shift != SHIFT_LSL)
4657 {
4658 inst.error = _("'LSL' required");
4659 return FAIL;
4660 }
4661 break;
4662
4663 case SHIFT_ASR_IMMEDIATE:
4664 if (shift != SHIFT_ASR)
4665 {
4666 inst.error = _("'ASR' required");
4667 return FAIL;
4668 }
4669 break;
4670
4671 default: abort ();
4672 }
4673
4674 if (shift != SHIFT_RRX)
4675 {
4676 /* Whitespace can appear here if the next thing is a bare digit. */
4677 skip_whitespace (p);
4678
4679 if (mode == NO_SHIFT_RESTRICT
4680 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4681 {
4682 inst.operands[i].imm = reg;
4683 inst.operands[i].immisreg = 1;
4684 }
4685 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4686 return FAIL;
4687 }
4688 inst.operands[i].shift_kind = shift;
4689 inst.operands[i].shifted = 1;
4690 *str = p;
4691 return SUCCESS;
4692 }
4693
4694 /* Parse a <shifter_operand> for an ARM data processing instruction:
4695
4696 #<immediate>
4697 #<immediate>, <rotate>
4698 <Rm>
4699 <Rm>, <shift>
4700
4701 where <shift> is defined by parse_shift above, and <rotate> is a
4702 multiple of 2 between 0 and 30. Validation of immediate operands
4703 is deferred to md_apply_fix. */
4704
4705 static int
4706 parse_shifter_operand (char **str, int i)
4707 {
4708 int value;
4709 expressionS expr;
4710
4711 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
4712 {
4713 inst.operands[i].reg = value;
4714 inst.operands[i].isreg = 1;
4715
4716 /* parse_shift will override this if appropriate */
4717 inst.reloc.exp.X_op = O_constant;
4718 inst.reloc.exp.X_add_number = 0;
4719
4720 if (skip_past_comma (str) == FAIL)
4721 return SUCCESS;
4722
4723 /* Shift operation on register. */
4724 return parse_shift (str, i, NO_SHIFT_RESTRICT);
4725 }
4726
4727 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4728 return FAIL;
4729
4730 if (skip_past_comma (str) == SUCCESS)
4731 {
4732 /* #x, y -- ie explicit rotation by Y. */
4733 if (my_get_expression (&expr, str, GE_NO_PREFIX))
4734 return FAIL;
4735
4736 if (expr.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
4737 {
4738 inst.error = _("constant expression expected");
4739 return FAIL;
4740 }
4741
4742 value = expr.X_add_number;
4743 if (value < 0 || value > 30 || value % 2 != 0)
4744 {
4745 inst.error = _("invalid rotation");
4746 return FAIL;
4747 }
4748 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4749 {
4750 inst.error = _("invalid constant");
4751 return FAIL;
4752 }
4753
4754 /* Convert to decoded value. md_apply_fix will put it back. */
4755 inst.reloc.exp.X_add_number
4756 = (((inst.reloc.exp.X_add_number << (32 - value))
4757 | (inst.reloc.exp.X_add_number >> value)) & 0xffffffff);
4758 }
4759
4760 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4761 inst.reloc.pc_rel = 0;
4762 return SUCCESS;
4763 }
4764
4765 /* Group relocation information. Each entry in the table contains the
4766 textual name of the relocation as may appear in assembler source
4767 and must end with a colon.
4768 Along with this textual name are the relocation codes to be used if
4769 the corresponding instruction is an ALU instruction (ADD or SUB only),
4770 an LDR, an LDRS, or an LDC. */
4771
4772 struct group_reloc_table_entry
4773 {
4774 const char *name;
4775 int alu_code;
4776 int ldr_code;
4777 int ldrs_code;
4778 int ldc_code;
4779 };
4780
4781 typedef enum
4782 {
4783 /* Varieties of non-ALU group relocation. */
4784
4785 GROUP_LDR,
4786 GROUP_LDRS,
4787 GROUP_LDC
4788 } group_reloc_type;
4789
4790 static struct group_reloc_table_entry group_reloc_table[] =
4791 { /* Program counter relative: */
4792 { "pc_g0_nc",
4793 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4794 0, /* LDR */
4795 0, /* LDRS */
4796 0 }, /* LDC */
4797 { "pc_g0",
4798 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4799 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4800 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4801 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4802 { "pc_g1_nc",
4803 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4804 0, /* LDR */
4805 0, /* LDRS */
4806 0 }, /* LDC */
4807 { "pc_g1",
4808 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4809 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4810 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4811 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4812 { "pc_g2",
4813 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4814 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4815 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4816 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4817 /* Section base relative */
4818 { "sb_g0_nc",
4819 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4820 0, /* LDR */
4821 0, /* LDRS */
4822 0 }, /* LDC */
4823 { "sb_g0",
4824 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4825 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4826 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4827 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4828 { "sb_g1_nc",
4829 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4830 0, /* LDR */
4831 0, /* LDRS */
4832 0 }, /* LDC */
4833 { "sb_g1",
4834 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4835 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4836 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4837 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4838 { "sb_g2",
4839 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4840 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4841 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4842 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4843
4844 /* Given the address of a pointer pointing to the textual name of a group
4845 relocation as may appear in assembler source, attempt to find its details
4846 in group_reloc_table. The pointer will be updated to the character after
4847 the trailing colon. On failure, FAIL will be returned; SUCCESS
4848 otherwise. On success, *entry will be updated to point at the relevant
4849 group_reloc_table entry. */
4850
4851 static int
4852 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
4853 {
4854 unsigned int i;
4855 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
4856 {
4857 int length = strlen (group_reloc_table[i].name);
4858
4859 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
4860 && (*str)[length] == ':')
4861 {
4862 *out = &group_reloc_table[i];
4863 *str += (length + 1);
4864 return SUCCESS;
4865 }
4866 }
4867
4868 return FAIL;
4869 }
4870
4871 /* Parse a <shifter_operand> for an ARM data processing instruction
4872 (as for parse_shifter_operand) where group relocations are allowed:
4873
4874 #<immediate>
4875 #<immediate>, <rotate>
4876 #:<group_reloc>:<expression>
4877 <Rm>
4878 <Rm>, <shift>
4879
4880 where <group_reloc> is one of the strings defined in group_reloc_table.
4881 The hashes are optional.
4882
4883 Everything else is as for parse_shifter_operand. */
4884
4885 static parse_operand_result
4886 parse_shifter_operand_group_reloc (char **str, int i)
4887 {
4888 /* Determine if we have the sequence of characters #: or just :
4889 coming next. If we do, then we check for a group relocation.
4890 If we don't, punt the whole lot to parse_shifter_operand. */
4891
4892 if (((*str)[0] == '#' && (*str)[1] == ':')
4893 || (*str)[0] == ':')
4894 {
4895 struct group_reloc_table_entry *entry;
4896
4897 if ((*str)[0] == '#')
4898 (*str) += 2;
4899 else
4900 (*str)++;
4901
4902 /* Try to parse a group relocation. Anything else is an error. */
4903 if (find_group_reloc_table_entry (str, &entry) == FAIL)
4904 {
4905 inst.error = _("unknown group relocation");
4906 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4907 }
4908
4909 /* We now have the group relocation table entry corresponding to
4910 the name in the assembler source. Next, we parse the expression. */
4911 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
4912 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4913
4914 /* Record the relocation type (always the ALU variant here). */
4915 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
4916 gas_assert (inst.reloc.type != 0);
4917
4918 return PARSE_OPERAND_SUCCESS;
4919 }
4920 else
4921 return parse_shifter_operand (str, i) == SUCCESS
4922 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
4923
4924 /* Never reached. */
4925 }
4926
4927 /* Parse all forms of an ARM address expression. Information is written
4928 to inst.operands[i] and/or inst.reloc.
4929
4930 Preindexed addressing (.preind=1):
4931
4932 [Rn, #offset] .reg=Rn .reloc.exp=offset
4933 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4934 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4935 .shift_kind=shift .reloc.exp=shift_imm
4936
4937 These three may have a trailing ! which causes .writeback to be set also.
4938
4939 Postindexed addressing (.postind=1, .writeback=1):
4940
4941 [Rn], #offset .reg=Rn .reloc.exp=offset
4942 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4943 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4944 .shift_kind=shift .reloc.exp=shift_imm
4945
4946 Unindexed addressing (.preind=0, .postind=0):
4947
4948 [Rn], {option} .reg=Rn .imm=option .immisreg=0
4949
4950 Other:
4951
4952 [Rn]{!} shorthand for [Rn,#0]{!}
4953 =immediate .isreg=0 .reloc.exp=immediate
4954 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
4955
4956 It is the caller's responsibility to check for addressing modes not
4957 supported by the instruction, and to set inst.reloc.type. */
4958
4959 static parse_operand_result
4960 parse_address_main (char **str, int i, int group_relocations,
4961 group_reloc_type group_type)
4962 {
4963 char *p = *str;
4964 int reg;
4965
4966 if (skip_past_char (&p, '[') == FAIL)
4967 {
4968 if (skip_past_char (&p, '=') == FAIL)
4969 {
4970 /* bare address - translate to PC-relative offset */
4971 inst.reloc.pc_rel = 1;
4972 inst.operands[i].reg = REG_PC;
4973 inst.operands[i].isreg = 1;
4974 inst.operands[i].preind = 1;
4975 }
4976 /* else a load-constant pseudo op, no special treatment needed here */
4977
4978 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4979 return PARSE_OPERAND_FAIL;
4980
4981 *str = p;
4982 return PARSE_OPERAND_SUCCESS;
4983 }
4984
4985 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
4986 {
4987 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4988 return PARSE_OPERAND_FAIL;
4989 }
4990 inst.operands[i].reg = reg;
4991 inst.operands[i].isreg = 1;
4992
4993 if (skip_past_comma (&p) == SUCCESS)
4994 {
4995 inst.operands[i].preind = 1;
4996
4997 if (*p == '+') p++;
4998 else if (*p == '-') p++, inst.operands[i].negative = 1;
4999
5000 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5001 {
5002 inst.operands[i].imm = reg;
5003 inst.operands[i].immisreg = 1;
5004
5005 if (skip_past_comma (&p) == SUCCESS)
5006 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5007 return PARSE_OPERAND_FAIL;
5008 }
5009 else if (skip_past_char (&p, ':') == SUCCESS)
5010 {
5011 /* FIXME: '@' should be used here, but it's filtered out by generic
5012 code before we get to see it here. This may be subject to
5013 change. */
5014 expressionS exp;
5015 my_get_expression (&exp, &p, GE_NO_PREFIX);
5016 if (exp.X_op != O_constant)
5017 {
5018 inst.error = _("alignment must be constant");
5019 return PARSE_OPERAND_FAIL;
5020 }
5021 inst.operands[i].imm = exp.X_add_number << 8;
5022 inst.operands[i].immisalign = 1;
5023 /* Alignments are not pre-indexes. */
5024 inst.operands[i].preind = 0;
5025 }
5026 else
5027 {
5028 if (inst.operands[i].negative)
5029 {
5030 inst.operands[i].negative = 0;
5031 p--;
5032 }
5033
5034 if (group_relocations
5035 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
5036 {
5037 struct group_reloc_table_entry *entry;
5038
5039 /* Skip over the #: or : sequence. */
5040 if (*p == '#')
5041 p += 2;
5042 else
5043 p++;
5044
5045 /* Try to parse a group relocation. Anything else is an
5046 error. */
5047 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5048 {
5049 inst.error = _("unknown group relocation");
5050 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5051 }
5052
5053 /* We now have the group relocation table entry corresponding to
5054 the name in the assembler source. Next, we parse the
5055 expression. */
5056 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5057 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5058
5059 /* Record the relocation type. */
5060 switch (group_type)
5061 {
5062 case GROUP_LDR:
5063 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
5064 break;
5065
5066 case GROUP_LDRS:
5067 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
5068 break;
5069
5070 case GROUP_LDC:
5071 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
5072 break;
5073
5074 default:
5075 gas_assert (0);
5076 }
5077
5078 if (inst.reloc.type == 0)
5079 {
5080 inst.error = _("this group relocation is not allowed on this instruction");
5081 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5082 }
5083 }
5084 else
5085 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5086 return PARSE_OPERAND_FAIL;
5087 }
5088 }
5089
5090 if (skip_past_char (&p, ']') == FAIL)
5091 {
5092 inst.error = _("']' expected");
5093 return PARSE_OPERAND_FAIL;
5094 }
5095
5096 if (skip_past_char (&p, '!') == SUCCESS)
5097 inst.operands[i].writeback = 1;
5098
5099 else if (skip_past_comma (&p) == SUCCESS)
5100 {
5101 if (skip_past_char (&p, '{') == SUCCESS)
5102 {
5103 /* [Rn], {expr} - unindexed, with option */
5104 if (parse_immediate (&p, &inst.operands[i].imm,
5105 0, 255, TRUE) == FAIL)
5106 return PARSE_OPERAND_FAIL;
5107
5108 if (skip_past_char (&p, '}') == FAIL)
5109 {
5110 inst.error = _("'}' expected at end of 'option' field");
5111 return PARSE_OPERAND_FAIL;
5112 }
5113 if (inst.operands[i].preind)
5114 {
5115 inst.error = _("cannot combine index with option");
5116 return PARSE_OPERAND_FAIL;
5117 }
5118 *str = p;
5119 return PARSE_OPERAND_SUCCESS;
5120 }
5121 else
5122 {
5123 inst.operands[i].postind = 1;
5124 inst.operands[i].writeback = 1;
5125
5126 if (inst.operands[i].preind)
5127 {
5128 inst.error = _("cannot combine pre- and post-indexing");
5129 return PARSE_OPERAND_FAIL;
5130 }
5131
5132 if (*p == '+') p++;
5133 else if (*p == '-') p++, inst.operands[i].negative = 1;
5134
5135 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5136 {
5137 /* We might be using the immediate for alignment already. If we
5138 are, OR the register number into the low-order bits. */
5139 if (inst.operands[i].immisalign)
5140 inst.operands[i].imm |= reg;
5141 else
5142 inst.operands[i].imm = reg;
5143 inst.operands[i].immisreg = 1;
5144
5145 if (skip_past_comma (&p) == SUCCESS)
5146 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5147 return PARSE_OPERAND_FAIL;
5148 }
5149 else
5150 {
5151 if (inst.operands[i].negative)
5152 {
5153 inst.operands[i].negative = 0;
5154 p--;
5155 }
5156 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5157 return PARSE_OPERAND_FAIL;
5158 }
5159 }
5160 }
5161
5162 /* If at this point neither .preind nor .postind is set, we have a
5163 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5164 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5165 {
5166 inst.operands[i].preind = 1;
5167 inst.reloc.exp.X_op = O_constant;
5168 inst.reloc.exp.X_add_number = 0;
5169 }
5170 *str = p;
5171 return PARSE_OPERAND_SUCCESS;
5172 }
5173
5174 static int
5175 parse_address (char **str, int i)
5176 {
5177 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
5178 ? SUCCESS : FAIL;
5179 }
5180
5181 static parse_operand_result
5182 parse_address_group_reloc (char **str, int i, group_reloc_type type)
5183 {
5184 return parse_address_main (str, i, 1, type);
5185 }
5186
5187 /* Parse an operand for a MOVW or MOVT instruction. */
5188 static int
5189 parse_half (char **str)
5190 {
5191 char * p;
5192
5193 p = *str;
5194 skip_past_char (&p, '#');
5195 if (strncasecmp (p, ":lower16:", 9) == 0)
5196 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5197 else if (strncasecmp (p, ":upper16:", 9) == 0)
5198 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5199
5200 if (inst.reloc.type != BFD_RELOC_UNUSED)
5201 {
5202 p += 9;
5203 skip_whitespace (p);
5204 }
5205
5206 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5207 return FAIL;
5208
5209 if (inst.reloc.type == BFD_RELOC_UNUSED)
5210 {
5211 if (inst.reloc.exp.X_op != O_constant)
5212 {
5213 inst.error = _("constant expression expected");
5214 return FAIL;
5215 }
5216 if (inst.reloc.exp.X_add_number < 0
5217 || inst.reloc.exp.X_add_number > 0xffff)
5218 {
5219 inst.error = _("immediate value out of range");
5220 return FAIL;
5221 }
5222 }
5223 *str = p;
5224 return SUCCESS;
5225 }
5226
5227 /* Miscellaneous. */
5228
5229 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5230 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5231 static int
5232 parse_psr (char **str)
5233 {
5234 char *p;
5235 unsigned long psr_field;
5236 const struct asm_psr *psr;
5237 char *start;
5238
5239 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5240 feature for ease of use and backwards compatibility. */
5241 p = *str;
5242 if (strncasecmp (p, "SPSR", 4) == 0)
5243 psr_field = SPSR_BIT;
5244 else if (strncasecmp (p, "CPSR", 4) == 0)
5245 psr_field = 0;
5246 else
5247 {
5248 start = p;
5249 do
5250 p++;
5251 while (ISALNUM (*p) || *p == '_');
5252
5253 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5254 p - start);
5255 if (!psr)
5256 return FAIL;
5257
5258 *str = p;
5259 return psr->field;
5260 }
5261
5262 p += 4;
5263 if (*p == '_')
5264 {
5265 /* A suffix follows. */
5266 p++;
5267 start = p;
5268
5269 do
5270 p++;
5271 while (ISALNUM (*p) || *p == '_');
5272
5273 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
5274 p - start);
5275 if (!psr)
5276 goto error;
5277
5278 psr_field |= psr->field;
5279 }
5280 else
5281 {
5282 if (ISALNUM (*p))
5283 goto error; /* Garbage after "[CS]PSR". */
5284
5285 psr_field |= (PSR_c | PSR_f);
5286 }
5287 *str = p;
5288 return psr_field;
5289
5290 error:
5291 inst.error = _("flag for {c}psr instruction expected");
5292 return FAIL;
5293 }
5294
5295 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5296 value suitable for splatting into the AIF field of the instruction. */
5297
5298 static int
5299 parse_cps_flags (char **str)
5300 {
5301 int val = 0;
5302 int saw_a_flag = 0;
5303 char *s = *str;
5304
5305 for (;;)
5306 switch (*s++)
5307 {
5308 case '\0': case ',':
5309 goto done;
5310
5311 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
5312 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
5313 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
5314
5315 default:
5316 inst.error = _("unrecognized CPS flag");
5317 return FAIL;
5318 }
5319
5320 done:
5321 if (saw_a_flag == 0)
5322 {
5323 inst.error = _("missing CPS flags");
5324 return FAIL;
5325 }
5326
5327 *str = s - 1;
5328 return val;
5329 }
5330
5331 /* Parse an endian specifier ("BE" or "LE", case insensitive);
5332 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
5333
5334 static int
5335 parse_endian_specifier (char **str)
5336 {
5337 int little_endian;
5338 char *s = *str;
5339
5340 if (strncasecmp (s, "BE", 2))
5341 little_endian = 0;
5342 else if (strncasecmp (s, "LE", 2))
5343 little_endian = 1;
5344 else
5345 {
5346 inst.error = _("valid endian specifiers are be or le");
5347 return FAIL;
5348 }
5349
5350 if (ISALNUM (s[2]) || s[2] == '_')
5351 {
5352 inst.error = _("valid endian specifiers are be or le");
5353 return FAIL;
5354 }
5355
5356 *str = s + 2;
5357 return little_endian;
5358 }
5359
5360 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5361 value suitable for poking into the rotate field of an sxt or sxta
5362 instruction, or FAIL on error. */
5363
5364 static int
5365 parse_ror (char **str)
5366 {
5367 int rot;
5368 char *s = *str;
5369
5370 if (strncasecmp (s, "ROR", 3) == 0)
5371 s += 3;
5372 else
5373 {
5374 inst.error = _("missing rotation field after comma");
5375 return FAIL;
5376 }
5377
5378 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5379 return FAIL;
5380
5381 switch (rot)
5382 {
5383 case 0: *str = s; return 0x0;
5384 case 8: *str = s; return 0x1;
5385 case 16: *str = s; return 0x2;
5386 case 24: *str = s; return 0x3;
5387
5388 default:
5389 inst.error = _("rotation can only be 0, 8, 16, or 24");
5390 return FAIL;
5391 }
5392 }
5393
5394 /* Parse a conditional code (from conds[] below). The value returned is in the
5395 range 0 .. 14, or FAIL. */
5396 static int
5397 parse_cond (char **str)
5398 {
5399 char *q;
5400 const struct asm_cond *c;
5401 int n;
5402 /* Condition codes are always 2 characters, so matching up to
5403 3 characters is sufficient. */
5404 char cond[3];
5405
5406 q = *str;
5407 n = 0;
5408 while (ISALPHA (*q) && n < 3)
5409 {
5410 cond[n] = TOLOWER (*q);
5411 q++;
5412 n++;
5413 }
5414
5415 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
5416 if (!c)
5417 {
5418 inst.error = _("condition required");
5419 return FAIL;
5420 }
5421
5422 *str = q;
5423 return c->value;
5424 }
5425
5426 /* Parse an option for a barrier instruction. Returns the encoding for the
5427 option, or FAIL. */
5428 static int
5429 parse_barrier (char **str)
5430 {
5431 char *p, *q;
5432 const struct asm_barrier_opt *o;
5433
5434 p = q = *str;
5435 while (ISALPHA (*q))
5436 q++;
5437
5438 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
5439 q - p);
5440 if (!o)
5441 return FAIL;
5442
5443 *str = q;
5444 return o->value;
5445 }
5446
5447 /* Parse the operands of a table branch instruction. Similar to a memory
5448 operand. */
5449 static int
5450 parse_tb (char **str)
5451 {
5452 char * p = *str;
5453 int reg;
5454
5455 if (skip_past_char (&p, '[') == FAIL)
5456 {
5457 inst.error = _("'[' expected");
5458 return FAIL;
5459 }
5460
5461 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5462 {
5463 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5464 return FAIL;
5465 }
5466 inst.operands[0].reg = reg;
5467
5468 if (skip_past_comma (&p) == FAIL)
5469 {
5470 inst.error = _("',' expected");
5471 return FAIL;
5472 }
5473
5474 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5475 {
5476 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5477 return FAIL;
5478 }
5479 inst.operands[0].imm = reg;
5480
5481 if (skip_past_comma (&p) == SUCCESS)
5482 {
5483 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5484 return FAIL;
5485 if (inst.reloc.exp.X_add_number != 1)
5486 {
5487 inst.error = _("invalid shift");
5488 return FAIL;
5489 }
5490 inst.operands[0].shifted = 1;
5491 }
5492
5493 if (skip_past_char (&p, ']') == FAIL)
5494 {
5495 inst.error = _("']' expected");
5496 return FAIL;
5497 }
5498 *str = p;
5499 return SUCCESS;
5500 }
5501
5502 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5503 information on the types the operands can take and how they are encoded.
5504 Up to four operands may be read; this function handles setting the
5505 ".present" field for each read operand itself.
5506 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5507 else returns FAIL. */
5508
5509 static int
5510 parse_neon_mov (char **str, int *which_operand)
5511 {
5512 int i = *which_operand, val;
5513 enum arm_reg_type rtype;
5514 char *ptr = *str;
5515 struct neon_type_el optype;
5516
5517 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5518 {
5519 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5520 inst.operands[i].reg = val;
5521 inst.operands[i].isscalar = 1;
5522 inst.operands[i].vectype = optype;
5523 inst.operands[i++].present = 1;
5524
5525 if (skip_past_comma (&ptr) == FAIL)
5526 goto wanted_comma;
5527
5528 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5529 goto wanted_arm;
5530
5531 inst.operands[i].reg = val;
5532 inst.operands[i].isreg = 1;
5533 inst.operands[i].present = 1;
5534 }
5535 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
5536 != FAIL)
5537 {
5538 /* Cases 0, 1, 2, 3, 5 (D only). */
5539 if (skip_past_comma (&ptr) == FAIL)
5540 goto wanted_comma;
5541
5542 inst.operands[i].reg = val;
5543 inst.operands[i].isreg = 1;
5544 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5545 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5546 inst.operands[i].isvec = 1;
5547 inst.operands[i].vectype = optype;
5548 inst.operands[i++].present = 1;
5549
5550 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5551 {
5552 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5553 Case 13: VMOV <Sd>, <Rm> */
5554 inst.operands[i].reg = val;
5555 inst.operands[i].isreg = 1;
5556 inst.operands[i].present = 1;
5557
5558 if (rtype == REG_TYPE_NQ)
5559 {
5560 first_error (_("can't use Neon quad register here"));
5561 return FAIL;
5562 }
5563 else if (rtype != REG_TYPE_VFS)
5564 {
5565 i++;
5566 if (skip_past_comma (&ptr) == FAIL)
5567 goto wanted_comma;
5568 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5569 goto wanted_arm;
5570 inst.operands[i].reg = val;
5571 inst.operands[i].isreg = 1;
5572 inst.operands[i].present = 1;
5573 }
5574 }
5575 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5576 &optype)) != FAIL)
5577 {
5578 /* Case 0: VMOV<c><q> <Qd>, <Qm>
5579 Case 1: VMOV<c><q> <Dd>, <Dm>
5580 Case 8: VMOV.F32 <Sd>, <Sm>
5581 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5582
5583 inst.operands[i].reg = val;
5584 inst.operands[i].isreg = 1;
5585 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5586 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5587 inst.operands[i].isvec = 1;
5588 inst.operands[i].vectype = optype;
5589 inst.operands[i].present = 1;
5590
5591 if (skip_past_comma (&ptr) == SUCCESS)
5592 {
5593 /* Case 15. */
5594 i++;
5595
5596 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5597 goto wanted_arm;
5598
5599 inst.operands[i].reg = val;
5600 inst.operands[i].isreg = 1;
5601 inst.operands[i++].present = 1;
5602
5603 if (skip_past_comma (&ptr) == FAIL)
5604 goto wanted_comma;
5605
5606 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5607 goto wanted_arm;
5608
5609 inst.operands[i].reg = val;
5610 inst.operands[i].isreg = 1;
5611 inst.operands[i++].present = 1;
5612 }
5613 }
5614 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5615 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5616 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5617 Case 10: VMOV.F32 <Sd>, #<imm>
5618 Case 11: VMOV.F64 <Dd>, #<imm> */
5619 inst.operands[i].immisfloat = 1;
5620 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5621 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5622 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5623 ;
5624 else
5625 {
5626 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5627 return FAIL;
5628 }
5629 }
5630 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5631 {
5632 /* Cases 6, 7. */
5633 inst.operands[i].reg = val;
5634 inst.operands[i].isreg = 1;
5635 inst.operands[i++].present = 1;
5636
5637 if (skip_past_comma (&ptr) == FAIL)
5638 goto wanted_comma;
5639
5640 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5641 {
5642 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
5643 inst.operands[i].reg = val;
5644 inst.operands[i].isscalar = 1;
5645 inst.operands[i].present = 1;
5646 inst.operands[i].vectype = optype;
5647 }
5648 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5649 {
5650 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
5651 inst.operands[i].reg = val;
5652 inst.operands[i].isreg = 1;
5653 inst.operands[i++].present = 1;
5654
5655 if (skip_past_comma (&ptr) == FAIL)
5656 goto wanted_comma;
5657
5658 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
5659 == FAIL)
5660 {
5661 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5662 return FAIL;
5663 }
5664
5665 inst.operands[i].reg = val;
5666 inst.operands[i].isreg = 1;
5667 inst.operands[i].isvec = 1;
5668 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5669 inst.operands[i].vectype = optype;
5670 inst.operands[i].present = 1;
5671
5672 if (rtype == REG_TYPE_VFS)
5673 {
5674 /* Case 14. */
5675 i++;
5676 if (skip_past_comma (&ptr) == FAIL)
5677 goto wanted_comma;
5678 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
5679 &optype)) == FAIL)
5680 {
5681 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
5682 return FAIL;
5683 }
5684 inst.operands[i].reg = val;
5685 inst.operands[i].isreg = 1;
5686 inst.operands[i].isvec = 1;
5687 inst.operands[i].issingle = 1;
5688 inst.operands[i].vectype = optype;
5689 inst.operands[i].present = 1;
5690 }
5691 }
5692 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
5693 != FAIL)
5694 {
5695 /* Case 13. */
5696 inst.operands[i].reg = val;
5697 inst.operands[i].isreg = 1;
5698 inst.operands[i].isvec = 1;
5699 inst.operands[i].issingle = 1;
5700 inst.operands[i].vectype = optype;
5701 inst.operands[i++].present = 1;
5702 }
5703 }
5704 else
5705 {
5706 first_error (_("parse error"));
5707 return FAIL;
5708 }
5709
5710 /* Successfully parsed the operands. Update args. */
5711 *which_operand = i;
5712 *str = ptr;
5713 return SUCCESS;
5714
5715 wanted_comma:
5716 first_error (_("expected comma"));
5717 return FAIL;
5718
5719 wanted_arm:
5720 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5721 return FAIL;
5722 }
5723
5724 /* Matcher codes for parse_operands. */
5725 enum operand_parse_code
5726 {
5727 OP_stop, /* end of line */
5728
5729 OP_RR, /* ARM register */
5730 OP_RRnpc, /* ARM register, not r15 */
5731 OP_RRnpcb, /* ARM register, not r15, in square brackets */
5732 OP_RRw, /* ARM register, not r15, optional trailing ! */
5733 OP_RCP, /* Coprocessor number */
5734 OP_RCN, /* Coprocessor register */
5735 OP_RF, /* FPA register */
5736 OP_RVS, /* VFP single precision register */
5737 OP_RVD, /* VFP double precision register (0..15) */
5738 OP_RND, /* Neon double precision register (0..31) */
5739 OP_RNQ, /* Neon quad precision register */
5740 OP_RVSD, /* VFP single or double precision register */
5741 OP_RNDQ, /* Neon double or quad precision register */
5742 OP_RNSDQ, /* Neon single, double or quad precision register */
5743 OP_RNSC, /* Neon scalar D[X] */
5744 OP_RVC, /* VFP control register */
5745 OP_RMF, /* Maverick F register */
5746 OP_RMD, /* Maverick D register */
5747 OP_RMFX, /* Maverick FX register */
5748 OP_RMDX, /* Maverick DX register */
5749 OP_RMAX, /* Maverick AX register */
5750 OP_RMDS, /* Maverick DSPSC register */
5751 OP_RIWR, /* iWMMXt wR register */
5752 OP_RIWC, /* iWMMXt wC register */
5753 OP_RIWG, /* iWMMXt wCG register */
5754 OP_RXA, /* XScale accumulator register */
5755
5756 OP_REGLST, /* ARM register list */
5757 OP_VRSLST, /* VFP single-precision register list */
5758 OP_VRDLST, /* VFP double-precision register list */
5759 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5760 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
5761 OP_NSTRLST, /* Neon element/structure list */
5762
5763 OP_NILO, /* Neon immediate/logic operands 2 or 2+3. (VBIC, VORR...) */
5764 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
5765 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
5766 OP_RR_RNSC, /* ARM reg or Neon scalar. */
5767 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
5768 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
5769 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
5770 OP_VMOV, /* Neon VMOV operands. */
5771 OP_RNDQ_IMVNb,/* Neon D or Q reg, or immediate good for VMVN. */
5772 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
5773 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
5774
5775 OP_I0, /* immediate zero */
5776 OP_I7, /* immediate value 0 .. 7 */
5777 OP_I15, /* 0 .. 15 */
5778 OP_I16, /* 1 .. 16 */
5779 OP_I16z, /* 0 .. 16 */
5780 OP_I31, /* 0 .. 31 */
5781 OP_I31w, /* 0 .. 31, optional trailing ! */
5782 OP_I32, /* 1 .. 32 */
5783 OP_I32z, /* 0 .. 32 */
5784 OP_I63, /* 0 .. 63 */
5785 OP_I63s, /* -64 .. 63 */
5786 OP_I64, /* 1 .. 64 */
5787 OP_I64z, /* 0 .. 64 */
5788 OP_I255, /* 0 .. 255 */
5789
5790 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
5791 OP_I7b, /* 0 .. 7 */
5792 OP_I15b, /* 0 .. 15 */
5793 OP_I31b, /* 0 .. 31 */
5794
5795 OP_SH, /* shifter operand */
5796 OP_SHG, /* shifter operand with possible group relocation */
5797 OP_ADDR, /* Memory address expression (any mode) */
5798 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
5799 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
5800 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
5801 OP_EXP, /* arbitrary expression */
5802 OP_EXPi, /* same, with optional immediate prefix */
5803 OP_EXPr, /* same, with optional relocation suffix */
5804 OP_HALF, /* 0 .. 65535 or low/high reloc. */
5805
5806 OP_CPSF, /* CPS flags */
5807 OP_ENDI, /* Endianness specifier */
5808 OP_PSR, /* CPSR/SPSR mask for msr */
5809 OP_COND, /* conditional code */
5810 OP_TB, /* Table branch. */
5811
5812 OP_RVC_PSR, /* CPSR/SPSR mask for msr, or VFP control register. */
5813 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
5814
5815 OP_RRnpc_I0, /* ARM register or literal 0 */
5816 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
5817 OP_RR_EXi, /* ARM register or expression with imm prefix */
5818 OP_RF_IF, /* FPA register or immediate */
5819 OP_RIWR_RIWC, /* iWMMXt R or C reg */
5820 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
5821
5822 /* Optional operands. */
5823 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
5824 OP_oI31b, /* 0 .. 31 */
5825 OP_oI32b, /* 1 .. 32 */
5826 OP_oIffffb, /* 0 .. 65535 */
5827 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
5828
5829 OP_oRR, /* ARM register */
5830 OP_oRRnpc, /* ARM register, not the PC */
5831 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5832 OP_oRND, /* Optional Neon double precision register */
5833 OP_oRNQ, /* Optional Neon quad precision register */
5834 OP_oRNDQ, /* Optional Neon double or quad precision register */
5835 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
5836 OP_oSHll, /* LSL immediate */
5837 OP_oSHar, /* ASR immediate */
5838 OP_oSHllar, /* LSL or ASR immediate */
5839 OP_oROR, /* ROR 0/8/16/24 */
5840 OP_oBARRIER, /* Option argument for a barrier instruction. */
5841
5842 OP_FIRST_OPTIONAL = OP_oI7b
5843 };
5844
5845 /* Generic instruction operand parser. This does no encoding and no
5846 semantic validation; it merely squirrels values away in the inst
5847 structure. Returns SUCCESS or FAIL depending on whether the
5848 specified grammar matched. */
5849 static int
5850 parse_operands (char *str, const unsigned char *pattern)
5851 {
5852 unsigned const char *upat = pattern;
5853 char *backtrack_pos = 0;
5854 const char *backtrack_error = 0;
5855 int i, val, backtrack_index = 0;
5856 enum arm_reg_type rtype;
5857 parse_operand_result result;
5858
5859 #define po_char_or_fail(chr) \
5860 do \
5861 { \
5862 if (skip_past_char (&str, chr) == FAIL) \
5863 goto bad_args; \
5864 } \
5865 while (0)
5866
5867 #define po_reg_or_fail(regtype) \
5868 do \
5869 { \
5870 val = arm_typed_reg_parse (& str, regtype, & rtype, \
5871 & inst.operands[i].vectype); \
5872 if (val == FAIL) \
5873 { \
5874 first_error (_(reg_expected_msgs[regtype])); \
5875 goto failure; \
5876 } \
5877 inst.operands[i].reg = val; \
5878 inst.operands[i].isreg = 1; \
5879 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5880 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5881 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5882 || rtype == REG_TYPE_VFD \
5883 || rtype == REG_TYPE_NQ); \
5884 } \
5885 while (0)
5886
5887 #define po_reg_or_goto(regtype, label) \
5888 do \
5889 { \
5890 val = arm_typed_reg_parse (& str, regtype, & rtype, \
5891 & inst.operands[i].vectype); \
5892 if (val == FAIL) \
5893 goto label; \
5894 \
5895 inst.operands[i].reg = val; \
5896 inst.operands[i].isreg = 1; \
5897 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5898 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5899 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5900 || rtype == REG_TYPE_VFD \
5901 || rtype == REG_TYPE_NQ); \
5902 } \
5903 while (0)
5904
5905 #define po_imm_or_fail(min, max, popt) \
5906 do \
5907 { \
5908 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
5909 goto failure; \
5910 inst.operands[i].imm = val; \
5911 } \
5912 while (0)
5913
5914 #define po_scalar_or_goto(elsz, label) \
5915 do \
5916 { \
5917 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
5918 if (val == FAIL) \
5919 goto label; \
5920 inst.operands[i].reg = val; \
5921 inst.operands[i].isscalar = 1; \
5922 } \
5923 while (0)
5924
5925 #define po_misc_or_fail(expr) \
5926 do \
5927 { \
5928 if (expr) \
5929 goto failure; \
5930 } \
5931 while (0)
5932
5933 #define po_misc_or_fail_no_backtrack(expr) \
5934 do \
5935 { \
5936 result = expr; \
5937 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
5938 backtrack_pos = 0; \
5939 if (result != PARSE_OPERAND_SUCCESS) \
5940 goto failure; \
5941 } \
5942 while (0)
5943
5944 skip_whitespace (str);
5945
5946 for (i = 0; upat[i] != OP_stop; i++)
5947 {
5948 if (upat[i] >= OP_FIRST_OPTIONAL)
5949 {
5950 /* Remember where we are in case we need to backtrack. */
5951 gas_assert (!backtrack_pos);
5952 backtrack_pos = str;
5953 backtrack_error = inst.error;
5954 backtrack_index = i;
5955 }
5956
5957 if (i > 0 && (i > 1 || inst.operands[0].present))
5958 po_char_or_fail (',');
5959
5960 switch (upat[i])
5961 {
5962 /* Registers */
5963 case OP_oRRnpc:
5964 case OP_RRnpc:
5965 case OP_oRR:
5966 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
5967 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
5968 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
5969 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
5970 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
5971 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
5972 case OP_oRND:
5973 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
5974 case OP_RVC:
5975 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
5976 break;
5977 /* Also accept generic coprocessor regs for unknown registers. */
5978 coproc_reg:
5979 po_reg_or_fail (REG_TYPE_CN);
5980 break;
5981 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
5982 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
5983 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
5984 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
5985 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
5986 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
5987 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
5988 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
5989 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
5990 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
5991 case OP_oRNQ:
5992 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
5993 case OP_oRNDQ:
5994 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
5995 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
5996 case OP_oRNSDQ:
5997 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
5998
5999 /* Neon scalar. Using an element size of 8 means that some invalid
6000 scalars are accepted here, so deal with those in later code. */
6001 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6002
6003 /* WARNING: We can expand to two operands here. This has the potential
6004 to totally confuse the backtracking mechanism! It will be OK at
6005 least as long as we don't try to use optional args as well,
6006 though. */
6007 case OP_NILO:
6008 {
6009 po_reg_or_goto (REG_TYPE_NDQ, try_imm);
6010 inst.operands[i].present = 1;
6011 i++;
6012 skip_past_comma (&str);
6013 po_reg_or_goto (REG_TYPE_NDQ, one_reg_only);
6014 break;
6015 one_reg_only:
6016 /* Optional register operand was omitted. Unfortunately, it's in
6017 operands[i-1] and we need it to be in inst.operands[i]. Fix that
6018 here (this is a bit grotty). */
6019 inst.operands[i] = inst.operands[i-1];
6020 inst.operands[i-1].present = 0;
6021 break;
6022 try_imm:
6023 /* There's a possibility of getting a 64-bit immediate here, so
6024 we need special handling. */
6025 if (parse_big_immediate (&str, i) == FAIL)
6026 {
6027 inst.error = _("immediate value is out of range");
6028 goto failure;
6029 }
6030 }
6031 break;
6032
6033 case OP_RNDQ_I0:
6034 {
6035 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6036 break;
6037 try_imm0:
6038 po_imm_or_fail (0, 0, TRUE);
6039 }
6040 break;
6041
6042 case OP_RVSD_I0:
6043 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6044 break;
6045
6046 case OP_RR_RNSC:
6047 {
6048 po_scalar_or_goto (8, try_rr);
6049 break;
6050 try_rr:
6051 po_reg_or_fail (REG_TYPE_RN);
6052 }
6053 break;
6054
6055 case OP_RNSDQ_RNSC:
6056 {
6057 po_scalar_or_goto (8, try_nsdq);
6058 break;
6059 try_nsdq:
6060 po_reg_or_fail (REG_TYPE_NSDQ);
6061 }
6062 break;
6063
6064 case OP_RNDQ_RNSC:
6065 {
6066 po_scalar_or_goto (8, try_ndq);
6067 break;
6068 try_ndq:
6069 po_reg_or_fail (REG_TYPE_NDQ);
6070 }
6071 break;
6072
6073 case OP_RND_RNSC:
6074 {
6075 po_scalar_or_goto (8, try_vfd);
6076 break;
6077 try_vfd:
6078 po_reg_or_fail (REG_TYPE_VFD);
6079 }
6080 break;
6081
6082 case OP_VMOV:
6083 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6084 not careful then bad things might happen. */
6085 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6086 break;
6087
6088 case OP_RNDQ_IMVNb:
6089 {
6090 po_reg_or_goto (REG_TYPE_NDQ, try_mvnimm);
6091 break;
6092 try_mvnimm:
6093 /* There's a possibility of getting a 64-bit immediate here, so
6094 we need special handling. */
6095 if (parse_big_immediate (&str, i) == FAIL)
6096 {
6097 inst.error = _("immediate value is out of range");
6098 goto failure;
6099 }
6100 }
6101 break;
6102
6103 case OP_RNDQ_I63b:
6104 {
6105 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6106 break;
6107 try_shimm:
6108 po_imm_or_fail (0, 63, TRUE);
6109 }
6110 break;
6111
6112 case OP_RRnpcb:
6113 po_char_or_fail ('[');
6114 po_reg_or_fail (REG_TYPE_RN);
6115 po_char_or_fail (']');
6116 break;
6117
6118 case OP_RRw:
6119 case OP_oRRw:
6120 po_reg_or_fail (REG_TYPE_RN);
6121 if (skip_past_char (&str, '!') == SUCCESS)
6122 inst.operands[i].writeback = 1;
6123 break;
6124
6125 /* Immediates */
6126 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6127 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6128 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
6129 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
6130 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6131 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
6132 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
6133 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
6134 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6135 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6136 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
6137 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
6138
6139 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6140 case OP_oI7b:
6141 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6142 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6143 case OP_oI31b:
6144 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
6145 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
6146 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6147
6148 /* Immediate variants */
6149 case OP_oI255c:
6150 po_char_or_fail ('{');
6151 po_imm_or_fail (0, 255, TRUE);
6152 po_char_or_fail ('}');
6153 break;
6154
6155 case OP_I31w:
6156 /* The expression parser chokes on a trailing !, so we have
6157 to find it first and zap it. */
6158 {
6159 char *s = str;
6160 while (*s && *s != ',')
6161 s++;
6162 if (s[-1] == '!')
6163 {
6164 s[-1] = '\0';
6165 inst.operands[i].writeback = 1;
6166 }
6167 po_imm_or_fail (0, 31, TRUE);
6168 if (str == s - 1)
6169 str = s;
6170 }
6171 break;
6172
6173 /* Expressions */
6174 case OP_EXPi: EXPi:
6175 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6176 GE_OPT_PREFIX));
6177 break;
6178
6179 case OP_EXP:
6180 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6181 GE_NO_PREFIX));
6182 break;
6183
6184 case OP_EXPr: EXPr:
6185 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6186 GE_NO_PREFIX));
6187 if (inst.reloc.exp.X_op == O_symbol)
6188 {
6189 val = parse_reloc (&str);
6190 if (val == -1)
6191 {
6192 inst.error = _("unrecognized relocation suffix");
6193 goto failure;
6194 }
6195 else if (val != BFD_RELOC_UNUSED)
6196 {
6197 inst.operands[i].imm = val;
6198 inst.operands[i].hasreloc = 1;
6199 }
6200 }
6201 break;
6202
6203 /* Operand for MOVW or MOVT. */
6204 case OP_HALF:
6205 po_misc_or_fail (parse_half (&str));
6206 break;
6207
6208 /* Register or expression. */
6209 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
6210 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
6211
6212 /* Register or immediate. */
6213 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
6214 I0: po_imm_or_fail (0, 0, FALSE); break;
6215
6216 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
6217 IF:
6218 if (!is_immediate_prefix (*str))
6219 goto bad_args;
6220 str++;
6221 val = parse_fpa_immediate (&str);
6222 if (val == FAIL)
6223 goto failure;
6224 /* FPA immediates are encoded as registers 8-15.
6225 parse_fpa_immediate has already applied the offset. */
6226 inst.operands[i].reg = val;
6227 inst.operands[i].isreg = 1;
6228 break;
6229
6230 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
6231 I32z: po_imm_or_fail (0, 32, FALSE); break;
6232
6233 /* Two kinds of register. */
6234 case OP_RIWR_RIWC:
6235 {
6236 struct reg_entry *rege = arm_reg_parse_multi (&str);
6237 if (!rege
6238 || (rege->type != REG_TYPE_MMXWR
6239 && rege->type != REG_TYPE_MMXWC
6240 && rege->type != REG_TYPE_MMXWCG))
6241 {
6242 inst.error = _("iWMMXt data or control register expected");
6243 goto failure;
6244 }
6245 inst.operands[i].reg = rege->number;
6246 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
6247 }
6248 break;
6249
6250 case OP_RIWC_RIWG:
6251 {
6252 struct reg_entry *rege = arm_reg_parse_multi (&str);
6253 if (!rege
6254 || (rege->type != REG_TYPE_MMXWC
6255 && rege->type != REG_TYPE_MMXWCG))
6256 {
6257 inst.error = _("iWMMXt control register expected");
6258 goto failure;
6259 }
6260 inst.operands[i].reg = rege->number;
6261 inst.operands[i].isreg = 1;
6262 }
6263 break;
6264
6265 /* Misc */
6266 case OP_CPSF: val = parse_cps_flags (&str); break;
6267 case OP_ENDI: val = parse_endian_specifier (&str); break;
6268 case OP_oROR: val = parse_ror (&str); break;
6269 case OP_PSR: val = parse_psr (&str); break;
6270 case OP_COND: val = parse_cond (&str); break;
6271 case OP_oBARRIER:val = parse_barrier (&str); break;
6272
6273 case OP_RVC_PSR:
6274 po_reg_or_goto (REG_TYPE_VFC, try_psr);
6275 inst.operands[i].isvec = 1; /* Mark VFP control reg as vector. */
6276 break;
6277 try_psr:
6278 val = parse_psr (&str);
6279 break;
6280
6281 case OP_APSR_RR:
6282 po_reg_or_goto (REG_TYPE_RN, try_apsr);
6283 break;
6284 try_apsr:
6285 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
6286 instruction). */
6287 if (strncasecmp (str, "APSR_", 5) == 0)
6288 {
6289 unsigned found = 0;
6290 str += 5;
6291 while (found < 15)
6292 switch (*str++)
6293 {
6294 case 'c': found = (found & 1) ? 16 : found | 1; break;
6295 case 'n': found = (found & 2) ? 16 : found | 2; break;
6296 case 'z': found = (found & 4) ? 16 : found | 4; break;
6297 case 'v': found = (found & 8) ? 16 : found | 8; break;
6298 default: found = 16;
6299 }
6300 if (found != 15)
6301 goto failure;
6302 inst.operands[i].isvec = 1;
6303 }
6304 else
6305 goto failure;
6306 break;
6307
6308 case OP_TB:
6309 po_misc_or_fail (parse_tb (&str));
6310 break;
6311
6312 /* Register lists. */
6313 case OP_REGLST:
6314 val = parse_reg_list (&str);
6315 if (*str == '^')
6316 {
6317 inst.operands[1].writeback = 1;
6318 str++;
6319 }
6320 break;
6321
6322 case OP_VRSLST:
6323 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
6324 break;
6325
6326 case OP_VRDLST:
6327 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
6328 break;
6329
6330 case OP_VRSDLST:
6331 /* Allow Q registers too. */
6332 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6333 REGLIST_NEON_D);
6334 if (val == FAIL)
6335 {
6336 inst.error = NULL;
6337 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6338 REGLIST_VFP_S);
6339 inst.operands[i].issingle = 1;
6340 }
6341 break;
6342
6343 case OP_NRDLST:
6344 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6345 REGLIST_NEON_D);
6346 break;
6347
6348 case OP_NSTRLST:
6349 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
6350 &inst.operands[i].vectype);
6351 break;
6352
6353 /* Addressing modes */
6354 case OP_ADDR:
6355 po_misc_or_fail (parse_address (&str, i));
6356 break;
6357
6358 case OP_ADDRGLDR:
6359 po_misc_or_fail_no_backtrack (
6360 parse_address_group_reloc (&str, i, GROUP_LDR));
6361 break;
6362
6363 case OP_ADDRGLDRS:
6364 po_misc_or_fail_no_backtrack (
6365 parse_address_group_reloc (&str, i, GROUP_LDRS));
6366 break;
6367
6368 case OP_ADDRGLDC:
6369 po_misc_or_fail_no_backtrack (
6370 parse_address_group_reloc (&str, i, GROUP_LDC));
6371 break;
6372
6373 case OP_SH:
6374 po_misc_or_fail (parse_shifter_operand (&str, i));
6375 break;
6376
6377 case OP_SHG:
6378 po_misc_or_fail_no_backtrack (
6379 parse_shifter_operand_group_reloc (&str, i));
6380 break;
6381
6382 case OP_oSHll:
6383 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6384 break;
6385
6386 case OP_oSHar:
6387 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6388 break;
6389
6390 case OP_oSHllar:
6391 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6392 break;
6393
6394 default:
6395 as_fatal (_("unhandled operand code %d"), upat[i]);
6396 }
6397
6398 /* Various value-based sanity checks and shared operations. We
6399 do not signal immediate failures for the register constraints;
6400 this allows a syntax error to take precedence. */
6401 switch (upat[i])
6402 {
6403 case OP_oRRnpc:
6404 case OP_RRnpc:
6405 case OP_RRnpcb:
6406 case OP_RRw:
6407 case OP_oRRw:
6408 case OP_RRnpc_I0:
6409 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6410 inst.error = BAD_PC;
6411 break;
6412
6413 case OP_CPSF:
6414 case OP_ENDI:
6415 case OP_oROR:
6416 case OP_PSR:
6417 case OP_RVC_PSR:
6418 case OP_COND:
6419 case OP_oBARRIER:
6420 case OP_REGLST:
6421 case OP_VRSLST:
6422 case OP_VRDLST:
6423 case OP_VRSDLST:
6424 case OP_NRDLST:
6425 case OP_NSTRLST:
6426 if (val == FAIL)
6427 goto failure;
6428 inst.operands[i].imm = val;
6429 break;
6430
6431 default:
6432 break;
6433 }
6434
6435 /* If we get here, this operand was successfully parsed. */
6436 inst.operands[i].present = 1;
6437 continue;
6438
6439 bad_args:
6440 inst.error = BAD_ARGS;
6441
6442 failure:
6443 if (!backtrack_pos)
6444 {
6445 /* The parse routine should already have set inst.error, but set a
6446 default here just in case. */
6447 if (!inst.error)
6448 inst.error = _("syntax error");
6449 return FAIL;
6450 }
6451
6452 /* Do not backtrack over a trailing optional argument that
6453 absorbed some text. We will only fail again, with the
6454 'garbage following instruction' error message, which is
6455 probably less helpful than the current one. */
6456 if (backtrack_index == i && backtrack_pos != str
6457 && upat[i+1] == OP_stop)
6458 {
6459 if (!inst.error)
6460 inst.error = _("syntax error");
6461 return FAIL;
6462 }
6463
6464 /* Try again, skipping the optional argument at backtrack_pos. */
6465 str = backtrack_pos;
6466 inst.error = backtrack_error;
6467 inst.operands[backtrack_index].present = 0;
6468 i = backtrack_index;
6469 backtrack_pos = 0;
6470 }
6471
6472 /* Check that we have parsed all the arguments. */
6473 if (*str != '\0' && !inst.error)
6474 inst.error = _("garbage following instruction");
6475
6476 return inst.error ? FAIL : SUCCESS;
6477 }
6478
6479 #undef po_char_or_fail
6480 #undef po_reg_or_fail
6481 #undef po_reg_or_goto
6482 #undef po_imm_or_fail
6483 #undef po_scalar_or_fail
6484
6485 /* Shorthand macro for instruction encoding functions issuing errors. */
6486 #define constraint(expr, err) \
6487 do \
6488 { \
6489 if (expr) \
6490 { \
6491 inst.error = err; \
6492 return; \
6493 } \
6494 } \
6495 while (0)
6496
6497 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
6498 instructions are unpredictable if these registers are used. This
6499 is the BadReg predicate in ARM's Thumb-2 documentation. */
6500 #define reject_bad_reg(reg) \
6501 do \
6502 if (reg == REG_SP || reg == REG_PC) \
6503 { \
6504 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
6505 return; \
6506 } \
6507 while (0)
6508
6509 /* If REG is R13 (the stack pointer), warn that its use is
6510 deprecated. */
6511 #define warn_deprecated_sp(reg) \
6512 do \
6513 if (warn_on_deprecated && reg == REG_SP) \
6514 as_warn (_("use of r13 is deprecated")); \
6515 while (0)
6516
6517 /* Functions for operand encoding. ARM, then Thumb. */
6518
6519 #define rotate_left(v, n) (v << n | v >> (32 - n))
6520
6521 /* If VAL can be encoded in the immediate field of an ARM instruction,
6522 return the encoded form. Otherwise, return FAIL. */
6523
6524 static unsigned int
6525 encode_arm_immediate (unsigned int val)
6526 {
6527 unsigned int a, i;
6528
6529 for (i = 0; i < 32; i += 2)
6530 if ((a = rotate_left (val, i)) <= 0xff)
6531 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6532
6533 return FAIL;
6534 }
6535
6536 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6537 return the encoded form. Otherwise, return FAIL. */
6538 static unsigned int
6539 encode_thumb32_immediate (unsigned int val)
6540 {
6541 unsigned int a, i;
6542
6543 if (val <= 0xff)
6544 return val;
6545
6546 for (i = 1; i <= 24; i++)
6547 {
6548 a = val >> i;
6549 if ((val & ~(0xff << i)) == 0)
6550 return ((val >> i) & 0x7f) | ((32 - i) << 7);
6551 }
6552
6553 a = val & 0xff;
6554 if (val == ((a << 16) | a))
6555 return 0x100 | a;
6556 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6557 return 0x300 | a;
6558
6559 a = val & 0xff00;
6560 if (val == ((a << 16) | a))
6561 return 0x200 | (a >> 8);
6562
6563 return FAIL;
6564 }
6565 /* Encode a VFP SP or DP register number into inst.instruction. */
6566
6567 static void
6568 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6569 {
6570 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6571 && reg > 15)
6572 {
6573 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
6574 {
6575 if (thumb_mode)
6576 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
6577 fpu_vfp_ext_d32);
6578 else
6579 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
6580 fpu_vfp_ext_d32);
6581 }
6582 else
6583 {
6584 first_error (_("D register out of range for selected VFP version"));
6585 return;
6586 }
6587 }
6588
6589 switch (pos)
6590 {
6591 case VFP_REG_Sd:
6592 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
6593 break;
6594
6595 case VFP_REG_Sn:
6596 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
6597 break;
6598
6599 case VFP_REG_Sm:
6600 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
6601 break;
6602
6603 case VFP_REG_Dd:
6604 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
6605 break;
6606
6607 case VFP_REG_Dn:
6608 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
6609 break;
6610
6611 case VFP_REG_Dm:
6612 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
6613 break;
6614
6615 default:
6616 abort ();
6617 }
6618 }
6619
6620 /* Encode a <shift> in an ARM-format instruction. The immediate,
6621 if any, is handled by md_apply_fix. */
6622 static void
6623 encode_arm_shift (int i)
6624 {
6625 if (inst.operands[i].shift_kind == SHIFT_RRX)
6626 inst.instruction |= SHIFT_ROR << 5;
6627 else
6628 {
6629 inst.instruction |= inst.operands[i].shift_kind << 5;
6630 if (inst.operands[i].immisreg)
6631 {
6632 inst.instruction |= SHIFT_BY_REG;
6633 inst.instruction |= inst.operands[i].imm << 8;
6634 }
6635 else
6636 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6637 }
6638 }
6639
6640 static void
6641 encode_arm_shifter_operand (int i)
6642 {
6643 if (inst.operands[i].isreg)
6644 {
6645 inst.instruction |= inst.operands[i].reg;
6646 encode_arm_shift (i);
6647 }
6648 else
6649 inst.instruction |= INST_IMMEDIATE;
6650 }
6651
6652 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
6653 static void
6654 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
6655 {
6656 gas_assert (inst.operands[i].isreg);
6657 inst.instruction |= inst.operands[i].reg << 16;
6658
6659 if (inst.operands[i].preind)
6660 {
6661 if (is_t)
6662 {
6663 inst.error = _("instruction does not accept preindexed addressing");
6664 return;
6665 }
6666 inst.instruction |= PRE_INDEX;
6667 if (inst.operands[i].writeback)
6668 inst.instruction |= WRITE_BACK;
6669
6670 }
6671 else if (inst.operands[i].postind)
6672 {
6673 gas_assert (inst.operands[i].writeback);
6674 if (is_t)
6675 inst.instruction |= WRITE_BACK;
6676 }
6677 else /* unindexed - only for coprocessor */
6678 {
6679 inst.error = _("instruction does not accept unindexed addressing");
6680 return;
6681 }
6682
6683 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
6684 && (((inst.instruction & 0x000f0000) >> 16)
6685 == ((inst.instruction & 0x0000f000) >> 12)))
6686 as_warn ((inst.instruction & LOAD_BIT)
6687 ? _("destination register same as write-back base")
6688 : _("source register same as write-back base"));
6689 }
6690
6691 /* inst.operands[i] was set up by parse_address. Encode it into an
6692 ARM-format mode 2 load or store instruction. If is_t is true,
6693 reject forms that cannot be used with a T instruction (i.e. not
6694 post-indexed). */
6695 static void
6696 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
6697 {
6698 encode_arm_addr_mode_common (i, is_t);
6699
6700 if (inst.operands[i].immisreg)
6701 {
6702 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
6703 inst.instruction |= inst.operands[i].imm;
6704 if (!inst.operands[i].negative)
6705 inst.instruction |= INDEX_UP;
6706 if (inst.operands[i].shifted)
6707 {
6708 if (inst.operands[i].shift_kind == SHIFT_RRX)
6709 inst.instruction |= SHIFT_ROR << 5;
6710 else
6711 {
6712 inst.instruction |= inst.operands[i].shift_kind << 5;
6713 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6714 }
6715 }
6716 }
6717 else /* immediate offset in inst.reloc */
6718 {
6719 if (inst.reloc.type == BFD_RELOC_UNUSED)
6720 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
6721 }
6722 }
6723
6724 /* inst.operands[i] was set up by parse_address. Encode it into an
6725 ARM-format mode 3 load or store instruction. Reject forms that
6726 cannot be used with such instructions. If is_t is true, reject
6727 forms that cannot be used with a T instruction (i.e. not
6728 post-indexed). */
6729 static void
6730 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
6731 {
6732 if (inst.operands[i].immisreg && inst.operands[i].shifted)
6733 {
6734 inst.error = _("instruction does not accept scaled register index");
6735 return;
6736 }
6737
6738 encode_arm_addr_mode_common (i, is_t);
6739
6740 if (inst.operands[i].immisreg)
6741 {
6742 inst.instruction |= inst.operands[i].imm;
6743 if (!inst.operands[i].negative)
6744 inst.instruction |= INDEX_UP;
6745 }
6746 else /* immediate offset in inst.reloc */
6747 {
6748 inst.instruction |= HWOFFSET_IMM;
6749 if (inst.reloc.type == BFD_RELOC_UNUSED)
6750 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
6751 }
6752 }
6753
6754 /* inst.operands[i] was set up by parse_address. Encode it into an
6755 ARM-format instruction. Reject all forms which cannot be encoded
6756 into a coprocessor load/store instruction. If wb_ok is false,
6757 reject use of writeback; if unind_ok is false, reject use of
6758 unindexed addressing. If reloc_override is not 0, use it instead
6759 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
6760 (in which case it is preserved). */
6761
6762 static int
6763 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
6764 {
6765 inst.instruction |= inst.operands[i].reg << 16;
6766
6767 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
6768
6769 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
6770 {
6771 gas_assert (!inst.operands[i].writeback);
6772 if (!unind_ok)
6773 {
6774 inst.error = _("instruction does not support unindexed addressing");
6775 return FAIL;
6776 }
6777 inst.instruction |= inst.operands[i].imm;
6778 inst.instruction |= INDEX_UP;
6779 return SUCCESS;
6780 }
6781
6782 if (inst.operands[i].preind)
6783 inst.instruction |= PRE_INDEX;
6784
6785 if (inst.operands[i].writeback)
6786 {
6787 if (inst.operands[i].reg == REG_PC)
6788 {
6789 inst.error = _("pc may not be used with write-back");
6790 return FAIL;
6791 }
6792 if (!wb_ok)
6793 {
6794 inst.error = _("instruction does not support writeback");
6795 return FAIL;
6796 }
6797 inst.instruction |= WRITE_BACK;
6798 }
6799
6800 if (reloc_override)
6801 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
6802 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
6803 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
6804 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
6805 {
6806 if (thumb_mode)
6807 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
6808 else
6809 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
6810 }
6811
6812 return SUCCESS;
6813 }
6814
6815 /* inst.reloc.exp describes an "=expr" load pseudo-operation.
6816 Determine whether it can be performed with a move instruction; if
6817 it can, convert inst.instruction to that move instruction and
6818 return TRUE; if it can't, convert inst.instruction to a literal-pool
6819 load and return FALSE. If this is not a valid thing to do in the
6820 current context, set inst.error and return TRUE.
6821
6822 inst.operands[i] describes the destination register. */
6823
6824 static bfd_boolean
6825 move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
6826 {
6827 unsigned long tbit;
6828
6829 if (thumb_p)
6830 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
6831 else
6832 tbit = LOAD_BIT;
6833
6834 if ((inst.instruction & tbit) == 0)
6835 {
6836 inst.error = _("invalid pseudo operation");
6837 return TRUE;
6838 }
6839 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
6840 {
6841 inst.error = _("constant expression expected");
6842 return TRUE;
6843 }
6844 if (inst.reloc.exp.X_op == O_constant)
6845 {
6846 if (thumb_p)
6847 {
6848 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
6849 {
6850 /* This can be done with a mov(1) instruction. */
6851 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
6852 inst.instruction |= inst.reloc.exp.X_add_number;
6853 return TRUE;
6854 }
6855 }
6856 else
6857 {
6858 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
6859 if (value != FAIL)
6860 {
6861 /* This can be done with a mov instruction. */
6862 inst.instruction &= LITERAL_MASK;
6863 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
6864 inst.instruction |= value & 0xfff;
6865 return TRUE;
6866 }
6867
6868 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
6869 if (value != FAIL)
6870 {
6871 /* This can be done with a mvn instruction. */
6872 inst.instruction &= LITERAL_MASK;
6873 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
6874 inst.instruction |= value & 0xfff;
6875 return TRUE;
6876 }
6877 }
6878 }
6879
6880 if (add_to_lit_pool () == FAIL)
6881 {
6882 inst.error = _("literal pool insertion failed");
6883 return TRUE;
6884 }
6885 inst.operands[1].reg = REG_PC;
6886 inst.operands[1].isreg = 1;
6887 inst.operands[1].preind = 1;
6888 inst.reloc.pc_rel = 1;
6889 inst.reloc.type = (thumb_p
6890 ? BFD_RELOC_ARM_THUMB_OFFSET
6891 : (mode_3
6892 ? BFD_RELOC_ARM_HWLITERAL
6893 : BFD_RELOC_ARM_LITERAL));
6894 return FALSE;
6895 }
6896
6897 /* Functions for instruction encoding, sorted by sub-architecture.
6898 First some generics; their names are taken from the conventional
6899 bit positions for register arguments in ARM format instructions. */
6900
6901 static void
6902 do_noargs (void)
6903 {
6904 }
6905
6906 static void
6907 do_rd (void)
6908 {
6909 inst.instruction |= inst.operands[0].reg << 12;
6910 }
6911
6912 static void
6913 do_rd_rm (void)
6914 {
6915 inst.instruction |= inst.operands[0].reg << 12;
6916 inst.instruction |= inst.operands[1].reg;
6917 }
6918
6919 static void
6920 do_rd_rn (void)
6921 {
6922 inst.instruction |= inst.operands[0].reg << 12;
6923 inst.instruction |= inst.operands[1].reg << 16;
6924 }
6925
6926 static void
6927 do_rn_rd (void)
6928 {
6929 inst.instruction |= inst.operands[0].reg << 16;
6930 inst.instruction |= inst.operands[1].reg << 12;
6931 }
6932
6933 static void
6934 do_rd_rm_rn (void)
6935 {
6936 unsigned Rn = inst.operands[2].reg;
6937 /* Enforce restrictions on SWP instruction. */
6938 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
6939 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
6940 _("Rn must not overlap other operands"));
6941 inst.instruction |= inst.operands[0].reg << 12;
6942 inst.instruction |= inst.operands[1].reg;
6943 inst.instruction |= Rn << 16;
6944 }
6945
6946 static void
6947 do_rd_rn_rm (void)
6948 {
6949 inst.instruction |= inst.operands[0].reg << 12;
6950 inst.instruction |= inst.operands[1].reg << 16;
6951 inst.instruction |= inst.operands[2].reg;
6952 }
6953
6954 static void
6955 do_rm_rd_rn (void)
6956 {
6957 inst.instruction |= inst.operands[0].reg;
6958 inst.instruction |= inst.operands[1].reg << 12;
6959 inst.instruction |= inst.operands[2].reg << 16;
6960 }
6961
6962 static void
6963 do_imm0 (void)
6964 {
6965 inst.instruction |= inst.operands[0].imm;
6966 }
6967
6968 static void
6969 do_rd_cpaddr (void)
6970 {
6971 inst.instruction |= inst.operands[0].reg << 12;
6972 encode_arm_cp_address (1, TRUE, TRUE, 0);
6973 }
6974
6975 /* ARM instructions, in alphabetical order by function name (except
6976 that wrapper functions appear immediately after the function they
6977 wrap). */
6978
6979 /* This is a pseudo-op of the form "adr rd, label" to be converted
6980 into a relative address of the form "add rd, pc, #label-.-8". */
6981
6982 static void
6983 do_adr (void)
6984 {
6985 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
6986
6987 /* Frag hacking will turn this into a sub instruction if the offset turns
6988 out to be negative. */
6989 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
6990 inst.reloc.pc_rel = 1;
6991 inst.reloc.exp.X_add_number -= 8;
6992 }
6993
6994 /* This is a pseudo-op of the form "adrl rd, label" to be converted
6995 into a relative address of the form:
6996 add rd, pc, #low(label-.-8)"
6997 add rd, rd, #high(label-.-8)" */
6998
6999 static void
7000 do_adrl (void)
7001 {
7002 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
7003
7004 /* Frag hacking will turn this into a sub instruction if the offset turns
7005 out to be negative. */
7006 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
7007 inst.reloc.pc_rel = 1;
7008 inst.size = INSN_SIZE * 2;
7009 inst.reloc.exp.X_add_number -= 8;
7010 }
7011
7012 static void
7013 do_arit (void)
7014 {
7015 if (!inst.operands[1].present)
7016 inst.operands[1].reg = inst.operands[0].reg;
7017 inst.instruction |= inst.operands[0].reg << 12;
7018 inst.instruction |= inst.operands[1].reg << 16;
7019 encode_arm_shifter_operand (2);
7020 }
7021
7022 static void
7023 do_barrier (void)
7024 {
7025 if (inst.operands[0].present)
7026 {
7027 constraint ((inst.instruction & 0xf0) != 0x40
7028 && inst.operands[0].imm != 0xf,
7029 _("bad barrier type"));
7030 inst.instruction |= inst.operands[0].imm;
7031 }
7032 else
7033 inst.instruction |= 0xf;
7034 }
7035
7036 static void
7037 do_bfc (void)
7038 {
7039 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
7040 constraint (msb > 32, _("bit-field extends past end of register"));
7041 /* The instruction encoding stores the LSB and MSB,
7042 not the LSB and width. */
7043 inst.instruction |= inst.operands[0].reg << 12;
7044 inst.instruction |= inst.operands[1].imm << 7;
7045 inst.instruction |= (msb - 1) << 16;
7046 }
7047
7048 static void
7049 do_bfi (void)
7050 {
7051 unsigned int msb;
7052
7053 /* #0 in second position is alternative syntax for bfc, which is
7054 the same instruction but with REG_PC in the Rm field. */
7055 if (!inst.operands[1].isreg)
7056 inst.operands[1].reg = REG_PC;
7057
7058 msb = inst.operands[2].imm + inst.operands[3].imm;
7059 constraint (msb > 32, _("bit-field extends past end of register"));
7060 /* The instruction encoding stores the LSB and MSB,
7061 not the LSB and width. */
7062 inst.instruction |= inst.operands[0].reg << 12;
7063 inst.instruction |= inst.operands[1].reg;
7064 inst.instruction |= inst.operands[2].imm << 7;
7065 inst.instruction |= (msb - 1) << 16;
7066 }
7067
7068 static void
7069 do_bfx (void)
7070 {
7071 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
7072 _("bit-field extends past end of register"));
7073 inst.instruction |= inst.operands[0].reg << 12;
7074 inst.instruction |= inst.operands[1].reg;
7075 inst.instruction |= inst.operands[2].imm << 7;
7076 inst.instruction |= (inst.operands[3].imm - 1) << 16;
7077 }
7078
7079 /* ARM V5 breakpoint instruction (argument parse)
7080 BKPT <16 bit unsigned immediate>
7081 Instruction is not conditional.
7082 The bit pattern given in insns[] has the COND_ALWAYS condition,
7083 and it is an error if the caller tried to override that. */
7084
7085 static void
7086 do_bkpt (void)
7087 {
7088 /* Top 12 of 16 bits to bits 19:8. */
7089 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
7090
7091 /* Bottom 4 of 16 bits to bits 3:0. */
7092 inst.instruction |= inst.operands[0].imm & 0xf;
7093 }
7094
7095 static void
7096 encode_branch (int default_reloc)
7097 {
7098 if (inst.operands[0].hasreloc)
7099 {
7100 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32,
7101 _("the only suffix valid here is '(plt)'"));
7102 inst.reloc.type = BFD_RELOC_ARM_PLT32;
7103 }
7104 else
7105 {
7106 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
7107 }
7108 inst.reloc.pc_rel = 1;
7109 }
7110
7111 static void
7112 do_branch (void)
7113 {
7114 #ifdef OBJ_ELF
7115 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7116 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7117 else
7118 #endif
7119 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7120 }
7121
7122 static void
7123 do_bl (void)
7124 {
7125 #ifdef OBJ_ELF
7126 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7127 {
7128 if (inst.cond == COND_ALWAYS)
7129 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
7130 else
7131 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7132 }
7133 else
7134 #endif
7135 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7136 }
7137
7138 /* ARM V5 branch-link-exchange instruction (argument parse)
7139 BLX <target_addr> ie BLX(1)
7140 BLX{<condition>} <Rm> ie BLX(2)
7141 Unfortunately, there are two different opcodes for this mnemonic.
7142 So, the insns[].value is not used, and the code here zaps values
7143 into inst.instruction.
7144 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
7145
7146 static void
7147 do_blx (void)
7148 {
7149 if (inst.operands[0].isreg)
7150 {
7151 /* Arg is a register; the opcode provided by insns[] is correct.
7152 It is not illegal to do "blx pc", just useless. */
7153 if (inst.operands[0].reg == REG_PC)
7154 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
7155
7156 inst.instruction |= inst.operands[0].reg;
7157 }
7158 else
7159 {
7160 /* Arg is an address; this instruction cannot be executed
7161 conditionally, and the opcode must be adjusted.
7162 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
7163 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
7164 constraint (inst.cond != COND_ALWAYS, BAD_COND);
7165 inst.instruction = 0xfa000000;
7166 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
7167 }
7168 }
7169
7170 static void
7171 do_bx (void)
7172 {
7173 bfd_boolean want_reloc;
7174
7175 if (inst.operands[0].reg == REG_PC)
7176 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
7177
7178 inst.instruction |= inst.operands[0].reg;
7179 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
7180 it is for ARMv4t or earlier. */
7181 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
7182 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
7183 want_reloc = TRUE;
7184
7185 #ifdef OBJ_ELF
7186 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
7187 #endif
7188 want_reloc = FALSE;
7189
7190 if (want_reloc)
7191 inst.reloc.type = BFD_RELOC_ARM_V4BX;
7192 }
7193
7194
7195 /* ARM v5TEJ. Jump to Jazelle code. */
7196
7197 static void
7198 do_bxj (void)
7199 {
7200 if (inst.operands[0].reg == REG_PC)
7201 as_tsktsk (_("use of r15 in bxj is not really useful"));
7202
7203 inst.instruction |= inst.operands[0].reg;
7204 }
7205
7206 /* Co-processor data operation:
7207 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
7208 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
7209 static void
7210 do_cdp (void)
7211 {
7212 inst.instruction |= inst.operands[0].reg << 8;
7213 inst.instruction |= inst.operands[1].imm << 20;
7214 inst.instruction |= inst.operands[2].reg << 12;
7215 inst.instruction |= inst.operands[3].reg << 16;
7216 inst.instruction |= inst.operands[4].reg;
7217 inst.instruction |= inst.operands[5].imm << 5;
7218 }
7219
7220 static void
7221 do_cmp (void)
7222 {
7223 inst.instruction |= inst.operands[0].reg << 16;
7224 encode_arm_shifter_operand (1);
7225 }
7226
7227 /* Transfer between coprocessor and ARM registers.
7228 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
7229 MRC2
7230 MCR{cond}
7231 MCR2
7232
7233 No special properties. */
7234
7235 static void
7236 do_co_reg (void)
7237 {
7238 unsigned Rd;
7239
7240 Rd = inst.operands[2].reg;
7241 if (thumb_mode)
7242 {
7243 if (inst.instruction == 0xee000010
7244 || inst.instruction == 0xfe000010)
7245 /* MCR, MCR2 */
7246 reject_bad_reg (Rd);
7247 else
7248 /* MRC, MRC2 */
7249 constraint (Rd == REG_SP, BAD_SP);
7250 }
7251 else
7252 {
7253 /* MCR */
7254 if (inst.instruction == 0xe000010)
7255 constraint (Rd == REG_PC, BAD_PC);
7256 }
7257
7258
7259 inst.instruction |= inst.operands[0].reg << 8;
7260 inst.instruction |= inst.operands[1].imm << 21;
7261 inst.instruction |= Rd << 12;
7262 inst.instruction |= inst.operands[3].reg << 16;
7263 inst.instruction |= inst.operands[4].reg;
7264 inst.instruction |= inst.operands[5].imm << 5;
7265 }
7266
7267 /* Transfer between coprocessor register and pair of ARM registers.
7268 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
7269 MCRR2
7270 MRRC{cond}
7271 MRRC2
7272
7273 Two XScale instructions are special cases of these:
7274
7275 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
7276 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
7277
7278 Result unpredictable if Rd or Rn is R15. */
7279
7280 static void
7281 do_co_reg2c (void)
7282 {
7283 unsigned Rd, Rn;
7284
7285 Rd = inst.operands[2].reg;
7286 Rn = inst.operands[3].reg;
7287
7288 if (thumb_mode)
7289 {
7290 reject_bad_reg (Rd);
7291 reject_bad_reg (Rn);
7292 }
7293 else
7294 {
7295 constraint (Rd == REG_PC, BAD_PC);
7296 constraint (Rn == REG_PC, BAD_PC);
7297 }
7298
7299 inst.instruction |= inst.operands[0].reg << 8;
7300 inst.instruction |= inst.operands[1].imm << 4;
7301 inst.instruction |= Rd << 12;
7302 inst.instruction |= Rn << 16;
7303 inst.instruction |= inst.operands[4].reg;
7304 }
7305
7306 static void
7307 do_cpsi (void)
7308 {
7309 inst.instruction |= inst.operands[0].imm << 6;
7310 if (inst.operands[1].present)
7311 {
7312 inst.instruction |= CPSI_MMOD;
7313 inst.instruction |= inst.operands[1].imm;
7314 }
7315 }
7316
7317 static void
7318 do_dbg (void)
7319 {
7320 inst.instruction |= inst.operands[0].imm;
7321 }
7322
7323 static void
7324 do_it (void)
7325 {
7326 /* There is no IT instruction in ARM mode. We
7327 process it to do the validation as if in
7328 thumb mode, just in case the code gets
7329 assembled for thumb using the unified syntax. */
7330
7331 inst.size = 0;
7332 if (unified_syntax)
7333 {
7334 set_it_insn_type (IT_INSN);
7335 now_it.mask = (inst.instruction & 0xf) | 0x10;
7336 now_it.cc = inst.operands[0].imm;
7337 }
7338 }
7339
7340 static void
7341 do_ldmstm (void)
7342 {
7343 int base_reg = inst.operands[0].reg;
7344 int range = inst.operands[1].imm;
7345
7346 inst.instruction |= base_reg << 16;
7347 inst.instruction |= range;
7348
7349 if (inst.operands[1].writeback)
7350 inst.instruction |= LDM_TYPE_2_OR_3;
7351
7352 if (inst.operands[0].writeback)
7353 {
7354 inst.instruction |= WRITE_BACK;
7355 /* Check for unpredictable uses of writeback. */
7356 if (inst.instruction & LOAD_BIT)
7357 {
7358 /* Not allowed in LDM type 2. */
7359 if ((inst.instruction & LDM_TYPE_2_OR_3)
7360 && ((range & (1 << REG_PC)) == 0))
7361 as_warn (_("writeback of base register is UNPREDICTABLE"));
7362 /* Only allowed if base reg not in list for other types. */
7363 else if (range & (1 << base_reg))
7364 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
7365 }
7366 else /* STM. */
7367 {
7368 /* Not allowed for type 2. */
7369 if (inst.instruction & LDM_TYPE_2_OR_3)
7370 as_warn (_("writeback of base register is UNPREDICTABLE"));
7371 /* Only allowed if base reg not in list, or first in list. */
7372 else if ((range & (1 << base_reg))
7373 && (range & ((1 << base_reg) - 1)))
7374 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
7375 }
7376 }
7377 }
7378
7379 /* ARMv5TE load-consecutive (argument parse)
7380 Mode is like LDRH.
7381
7382 LDRccD R, mode
7383 STRccD R, mode. */
7384
7385 static void
7386 do_ldrd (void)
7387 {
7388 constraint (inst.operands[0].reg % 2 != 0,
7389 _("first destination register must be even"));
7390 constraint (inst.operands[1].present
7391 && inst.operands[1].reg != inst.operands[0].reg + 1,
7392 _("can only load two consecutive registers"));
7393 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7394 constraint (!inst.operands[2].isreg, _("'[' expected"));
7395
7396 if (!inst.operands[1].present)
7397 inst.operands[1].reg = inst.operands[0].reg + 1;
7398
7399 if (inst.instruction & LOAD_BIT)
7400 {
7401 /* encode_arm_addr_mode_3 will diagnose overlap between the base
7402 register and the first register written; we have to diagnose
7403 overlap between the base and the second register written here. */
7404
7405 if (inst.operands[2].reg == inst.operands[1].reg
7406 && (inst.operands[2].writeback || inst.operands[2].postind))
7407 as_warn (_("base register written back, and overlaps "
7408 "second destination register"));
7409
7410 /* For an index-register load, the index register must not overlap the
7411 destination (even if not write-back). */
7412 else if (inst.operands[2].immisreg
7413 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
7414 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
7415 as_warn (_("index register overlaps destination register"));
7416 }
7417
7418 inst.instruction |= inst.operands[0].reg << 12;
7419 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
7420 }
7421
7422 static void
7423 do_ldrex (void)
7424 {
7425 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
7426 || inst.operands[1].postind || inst.operands[1].writeback
7427 || inst.operands[1].immisreg || inst.operands[1].shifted
7428 || inst.operands[1].negative
7429 /* This can arise if the programmer has written
7430 strex rN, rM, foo
7431 or if they have mistakenly used a register name as the last
7432 operand, eg:
7433 strex rN, rM, rX
7434 It is very difficult to distinguish between these two cases
7435 because "rX" might actually be a label. ie the register
7436 name has been occluded by a symbol of the same name. So we
7437 just generate a general 'bad addressing mode' type error
7438 message and leave it up to the programmer to discover the
7439 true cause and fix their mistake. */
7440 || (inst.operands[1].reg == REG_PC),
7441 BAD_ADDR_MODE);
7442
7443 constraint (inst.reloc.exp.X_op != O_constant
7444 || inst.reloc.exp.X_add_number != 0,
7445 _("offset must be zero in ARM encoding"));
7446
7447 inst.instruction |= inst.operands[0].reg << 12;
7448 inst.instruction |= inst.operands[1].reg << 16;
7449 inst.reloc.type = BFD_RELOC_UNUSED;
7450 }
7451
7452 static void
7453 do_ldrexd (void)
7454 {
7455 constraint (inst.operands[0].reg % 2 != 0,
7456 _("even register required"));
7457 constraint (inst.operands[1].present
7458 && inst.operands[1].reg != inst.operands[0].reg + 1,
7459 _("can only load two consecutive registers"));
7460 /* If op 1 were present and equal to PC, this function wouldn't
7461 have been called in the first place. */
7462 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7463
7464 inst.instruction |= inst.operands[0].reg << 12;
7465 inst.instruction |= inst.operands[2].reg << 16;
7466 }
7467
7468 static void
7469 do_ldst (void)
7470 {
7471 inst.instruction |= inst.operands[0].reg << 12;
7472 if (!inst.operands[1].isreg)
7473 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
7474 return;
7475 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
7476 }
7477
7478 static void
7479 do_ldstt (void)
7480 {
7481 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7482 reject [Rn,...]. */
7483 if (inst.operands[1].preind)
7484 {
7485 constraint (inst.reloc.exp.X_op != O_constant
7486 || inst.reloc.exp.X_add_number != 0,
7487 _("this instruction requires a post-indexed address"));
7488
7489 inst.operands[1].preind = 0;
7490 inst.operands[1].postind = 1;
7491 inst.operands[1].writeback = 1;
7492 }
7493 inst.instruction |= inst.operands[0].reg << 12;
7494 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
7495 }
7496
7497 /* Halfword and signed-byte load/store operations. */
7498
7499 static void
7500 do_ldstv4 (void)
7501 {
7502 inst.instruction |= inst.operands[0].reg << 12;
7503 if (!inst.operands[1].isreg)
7504 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
7505 return;
7506 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
7507 }
7508
7509 static void
7510 do_ldsttv4 (void)
7511 {
7512 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7513 reject [Rn,...]. */
7514 if (inst.operands[1].preind)
7515 {
7516 constraint (inst.reloc.exp.X_op != O_constant
7517 || inst.reloc.exp.X_add_number != 0,
7518 _("this instruction requires a post-indexed address"));
7519
7520 inst.operands[1].preind = 0;
7521 inst.operands[1].postind = 1;
7522 inst.operands[1].writeback = 1;
7523 }
7524 inst.instruction |= inst.operands[0].reg << 12;
7525 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
7526 }
7527
7528 /* Co-processor register load/store.
7529 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
7530 static void
7531 do_lstc (void)
7532 {
7533 inst.instruction |= inst.operands[0].reg << 8;
7534 inst.instruction |= inst.operands[1].reg << 12;
7535 encode_arm_cp_address (2, TRUE, TRUE, 0);
7536 }
7537
7538 static void
7539 do_mlas (void)
7540 {
7541 /* This restriction does not apply to mls (nor to mla in v6 or later). */
7542 if (inst.operands[0].reg == inst.operands[1].reg
7543 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
7544 && !(inst.instruction & 0x00400000))
7545 as_tsktsk (_("Rd and Rm should be different in mla"));
7546
7547 inst.instruction |= inst.operands[0].reg << 16;
7548 inst.instruction |= inst.operands[1].reg;
7549 inst.instruction |= inst.operands[2].reg << 8;
7550 inst.instruction |= inst.operands[3].reg << 12;
7551 }
7552
7553 static void
7554 do_mov (void)
7555 {
7556 inst.instruction |= inst.operands[0].reg << 12;
7557 encode_arm_shifter_operand (1);
7558 }
7559
7560 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
7561 static void
7562 do_mov16 (void)
7563 {
7564 bfd_vma imm;
7565 bfd_boolean top;
7566
7567 top = (inst.instruction & 0x00400000) != 0;
7568 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
7569 _(":lower16: not allowed this instruction"));
7570 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
7571 _(":upper16: not allowed instruction"));
7572 inst.instruction |= inst.operands[0].reg << 12;
7573 if (inst.reloc.type == BFD_RELOC_UNUSED)
7574 {
7575 imm = inst.reloc.exp.X_add_number;
7576 /* The value is in two pieces: 0:11, 16:19. */
7577 inst.instruction |= (imm & 0x00000fff);
7578 inst.instruction |= (imm & 0x0000f000) << 4;
7579 }
7580 }
7581
7582 static void do_vfp_nsyn_opcode (const char *);
7583
7584 static int
7585 do_vfp_nsyn_mrs (void)
7586 {
7587 if (inst.operands[0].isvec)
7588 {
7589 if (inst.operands[1].reg != 1)
7590 first_error (_("operand 1 must be FPSCR"));
7591 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
7592 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
7593 do_vfp_nsyn_opcode ("fmstat");
7594 }
7595 else if (inst.operands[1].isvec)
7596 do_vfp_nsyn_opcode ("fmrx");
7597 else
7598 return FAIL;
7599
7600 return SUCCESS;
7601 }
7602
7603 static int
7604 do_vfp_nsyn_msr (void)
7605 {
7606 if (inst.operands[0].isvec)
7607 do_vfp_nsyn_opcode ("fmxr");
7608 else
7609 return FAIL;
7610
7611 return SUCCESS;
7612 }
7613
7614 static void
7615 do_mrs (void)
7616 {
7617 if (do_vfp_nsyn_mrs () == SUCCESS)
7618 return;
7619
7620 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
7621 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
7622 != (PSR_c|PSR_f),
7623 _("'CPSR' or 'SPSR' expected"));
7624 inst.instruction |= inst.operands[0].reg << 12;
7625 inst.instruction |= (inst.operands[1].imm & SPSR_BIT);
7626 }
7627
7628 /* Two possible forms:
7629 "{C|S}PSR_<field>, Rm",
7630 "{C|S}PSR_f, #expression". */
7631
7632 static void
7633 do_msr (void)
7634 {
7635 if (do_vfp_nsyn_msr () == SUCCESS)
7636 return;
7637
7638 inst.instruction |= inst.operands[0].imm;
7639 if (inst.operands[1].isreg)
7640 inst.instruction |= inst.operands[1].reg;
7641 else
7642 {
7643 inst.instruction |= INST_IMMEDIATE;
7644 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7645 inst.reloc.pc_rel = 0;
7646 }
7647 }
7648
7649 static void
7650 do_mul (void)
7651 {
7652 if (!inst.operands[2].present)
7653 inst.operands[2].reg = inst.operands[0].reg;
7654 inst.instruction |= inst.operands[0].reg << 16;
7655 inst.instruction |= inst.operands[1].reg;
7656 inst.instruction |= inst.operands[2].reg << 8;
7657
7658 if (inst.operands[0].reg == inst.operands[1].reg
7659 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7660 as_tsktsk (_("Rd and Rm should be different in mul"));
7661 }
7662
7663 /* Long Multiply Parser
7664 UMULL RdLo, RdHi, Rm, Rs
7665 SMULL RdLo, RdHi, Rm, Rs
7666 UMLAL RdLo, RdHi, Rm, Rs
7667 SMLAL RdLo, RdHi, Rm, Rs. */
7668
7669 static void
7670 do_mull (void)
7671 {
7672 inst.instruction |= inst.operands[0].reg << 12;
7673 inst.instruction |= inst.operands[1].reg << 16;
7674 inst.instruction |= inst.operands[2].reg;
7675 inst.instruction |= inst.operands[3].reg << 8;
7676
7677 /* rdhi and rdlo must be different. */
7678 if (inst.operands[0].reg == inst.operands[1].reg)
7679 as_tsktsk (_("rdhi and rdlo must be different"));
7680
7681 /* rdhi, rdlo and rm must all be different before armv6. */
7682 if ((inst.operands[0].reg == inst.operands[2].reg
7683 || inst.operands[1].reg == inst.operands[2].reg)
7684 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7685 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
7686 }
7687
7688 static void
7689 do_nop (void)
7690 {
7691 if (inst.operands[0].present
7692 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
7693 {
7694 /* Architectural NOP hints are CPSR sets with no bits selected. */
7695 inst.instruction &= 0xf0000000;
7696 inst.instruction |= 0x0320f000;
7697 if (inst.operands[0].present)
7698 inst.instruction |= inst.operands[0].imm;
7699 }
7700 }
7701
7702 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
7703 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
7704 Condition defaults to COND_ALWAYS.
7705 Error if Rd, Rn or Rm are R15. */
7706
7707 static void
7708 do_pkhbt (void)
7709 {
7710 inst.instruction |= inst.operands[0].reg << 12;
7711 inst.instruction |= inst.operands[1].reg << 16;
7712 inst.instruction |= inst.operands[2].reg;
7713 if (inst.operands[3].present)
7714 encode_arm_shift (3);
7715 }
7716
7717 /* ARM V6 PKHTB (Argument Parse). */
7718
7719 static void
7720 do_pkhtb (void)
7721 {
7722 if (!inst.operands[3].present)
7723 {
7724 /* If the shift specifier is omitted, turn the instruction
7725 into pkhbt rd, rm, rn. */
7726 inst.instruction &= 0xfff00010;
7727 inst.instruction |= inst.operands[0].reg << 12;
7728 inst.instruction |= inst.operands[1].reg;
7729 inst.instruction |= inst.operands[2].reg << 16;
7730 }
7731 else
7732 {
7733 inst.instruction |= inst.operands[0].reg << 12;
7734 inst.instruction |= inst.operands[1].reg << 16;
7735 inst.instruction |= inst.operands[2].reg;
7736 encode_arm_shift (3);
7737 }
7738 }
7739
7740 /* ARMv5TE: Preload-Cache
7741
7742 PLD <addr_mode>
7743
7744 Syntactically, like LDR with B=1, W=0, L=1. */
7745
7746 static void
7747 do_pld (void)
7748 {
7749 constraint (!inst.operands[0].isreg,
7750 _("'[' expected after PLD mnemonic"));
7751 constraint (inst.operands[0].postind,
7752 _("post-indexed expression used in preload instruction"));
7753 constraint (inst.operands[0].writeback,
7754 _("writeback used in preload instruction"));
7755 constraint (!inst.operands[0].preind,
7756 _("unindexed addressing used in preload instruction"));
7757 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7758 }
7759
7760 /* ARMv7: PLI <addr_mode> */
7761 static void
7762 do_pli (void)
7763 {
7764 constraint (!inst.operands[0].isreg,
7765 _("'[' expected after PLI mnemonic"));
7766 constraint (inst.operands[0].postind,
7767 _("post-indexed expression used in preload instruction"));
7768 constraint (inst.operands[0].writeback,
7769 _("writeback used in preload instruction"));
7770 constraint (!inst.operands[0].preind,
7771 _("unindexed addressing used in preload instruction"));
7772 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7773 inst.instruction &= ~PRE_INDEX;
7774 }
7775
7776 static void
7777 do_push_pop (void)
7778 {
7779 inst.operands[1] = inst.operands[0];
7780 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
7781 inst.operands[0].isreg = 1;
7782 inst.operands[0].writeback = 1;
7783 inst.operands[0].reg = REG_SP;
7784 do_ldmstm ();
7785 }
7786
7787 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
7788 word at the specified address and the following word
7789 respectively.
7790 Unconditionally executed.
7791 Error if Rn is R15. */
7792
7793 static void
7794 do_rfe (void)
7795 {
7796 inst.instruction |= inst.operands[0].reg << 16;
7797 if (inst.operands[0].writeback)
7798 inst.instruction |= WRITE_BACK;
7799 }
7800
7801 /* ARM V6 ssat (argument parse). */
7802
7803 static void
7804 do_ssat (void)
7805 {
7806 inst.instruction |= inst.operands[0].reg << 12;
7807 inst.instruction |= (inst.operands[1].imm - 1) << 16;
7808 inst.instruction |= inst.operands[2].reg;
7809
7810 if (inst.operands[3].present)
7811 encode_arm_shift (3);
7812 }
7813
7814 /* ARM V6 usat (argument parse). */
7815
7816 static void
7817 do_usat (void)
7818 {
7819 inst.instruction |= inst.operands[0].reg << 12;
7820 inst.instruction |= inst.operands[1].imm << 16;
7821 inst.instruction |= inst.operands[2].reg;
7822
7823 if (inst.operands[3].present)
7824 encode_arm_shift (3);
7825 }
7826
7827 /* ARM V6 ssat16 (argument parse). */
7828
7829 static void
7830 do_ssat16 (void)
7831 {
7832 inst.instruction |= inst.operands[0].reg << 12;
7833 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
7834 inst.instruction |= inst.operands[2].reg;
7835 }
7836
7837 static void
7838 do_usat16 (void)
7839 {
7840 inst.instruction |= inst.operands[0].reg << 12;
7841 inst.instruction |= inst.operands[1].imm << 16;
7842 inst.instruction |= inst.operands[2].reg;
7843 }
7844
7845 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
7846 preserving the other bits.
7847
7848 setend <endian_specifier>, where <endian_specifier> is either
7849 BE or LE. */
7850
7851 static void
7852 do_setend (void)
7853 {
7854 if (inst.operands[0].imm)
7855 inst.instruction |= 0x200;
7856 }
7857
7858 static void
7859 do_shift (void)
7860 {
7861 unsigned int Rm = (inst.operands[1].present
7862 ? inst.operands[1].reg
7863 : inst.operands[0].reg);
7864
7865 inst.instruction |= inst.operands[0].reg << 12;
7866 inst.instruction |= Rm;
7867 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
7868 {
7869 inst.instruction |= inst.operands[2].reg << 8;
7870 inst.instruction |= SHIFT_BY_REG;
7871 }
7872 else
7873 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7874 }
7875
7876 static void
7877 do_smc (void)
7878 {
7879 inst.reloc.type = BFD_RELOC_ARM_SMC;
7880 inst.reloc.pc_rel = 0;
7881 }
7882
7883 static void
7884 do_swi (void)
7885 {
7886 inst.reloc.type = BFD_RELOC_ARM_SWI;
7887 inst.reloc.pc_rel = 0;
7888 }
7889
7890 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
7891 SMLAxy{cond} Rd,Rm,Rs,Rn
7892 SMLAWy{cond} Rd,Rm,Rs,Rn
7893 Error if any register is R15. */
7894
7895 static void
7896 do_smla (void)
7897 {
7898 inst.instruction |= inst.operands[0].reg << 16;
7899 inst.instruction |= inst.operands[1].reg;
7900 inst.instruction |= inst.operands[2].reg << 8;
7901 inst.instruction |= inst.operands[3].reg << 12;
7902 }
7903
7904 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
7905 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
7906 Error if any register is R15.
7907 Warning if Rdlo == Rdhi. */
7908
7909 static void
7910 do_smlal (void)
7911 {
7912 inst.instruction |= inst.operands[0].reg << 12;
7913 inst.instruction |= inst.operands[1].reg << 16;
7914 inst.instruction |= inst.operands[2].reg;
7915 inst.instruction |= inst.operands[3].reg << 8;
7916
7917 if (inst.operands[0].reg == inst.operands[1].reg)
7918 as_tsktsk (_("rdhi and rdlo must be different"));
7919 }
7920
7921 /* ARM V5E (El Segundo) signed-multiply (argument parse)
7922 SMULxy{cond} Rd,Rm,Rs
7923 Error if any register is R15. */
7924
7925 static void
7926 do_smul (void)
7927 {
7928 inst.instruction |= inst.operands[0].reg << 16;
7929 inst.instruction |= inst.operands[1].reg;
7930 inst.instruction |= inst.operands[2].reg << 8;
7931 }
7932
7933 /* ARM V6 srs (argument parse). The variable fields in the encoding are
7934 the same for both ARM and Thumb-2. */
7935
7936 static void
7937 do_srs (void)
7938 {
7939 int reg;
7940
7941 if (inst.operands[0].present)
7942 {
7943 reg = inst.operands[0].reg;
7944 constraint (reg != REG_SP, _("SRS base register must be r13"));
7945 }
7946 else
7947 reg = REG_SP;
7948
7949 inst.instruction |= reg << 16;
7950 inst.instruction |= inst.operands[1].imm;
7951 if (inst.operands[0].writeback || inst.operands[1].writeback)
7952 inst.instruction |= WRITE_BACK;
7953 }
7954
7955 /* ARM V6 strex (argument parse). */
7956
7957 static void
7958 do_strex (void)
7959 {
7960 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
7961 || inst.operands[2].postind || inst.operands[2].writeback
7962 || inst.operands[2].immisreg || inst.operands[2].shifted
7963 || inst.operands[2].negative
7964 /* See comment in do_ldrex(). */
7965 || (inst.operands[2].reg == REG_PC),
7966 BAD_ADDR_MODE);
7967
7968 constraint (inst.operands[0].reg == inst.operands[1].reg
7969 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
7970
7971 constraint (inst.reloc.exp.X_op != O_constant
7972 || inst.reloc.exp.X_add_number != 0,
7973 _("offset must be zero in ARM encoding"));
7974
7975 inst.instruction |= inst.operands[0].reg << 12;
7976 inst.instruction |= inst.operands[1].reg;
7977 inst.instruction |= inst.operands[2].reg << 16;
7978 inst.reloc.type = BFD_RELOC_UNUSED;
7979 }
7980
7981 static void
7982 do_strexd (void)
7983 {
7984 constraint (inst.operands[1].reg % 2 != 0,
7985 _("even register required"));
7986 constraint (inst.operands[2].present
7987 && inst.operands[2].reg != inst.operands[1].reg + 1,
7988 _("can only store two consecutive registers"));
7989 /* If op 2 were present and equal to PC, this function wouldn't
7990 have been called in the first place. */
7991 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
7992
7993 constraint (inst.operands[0].reg == inst.operands[1].reg
7994 || inst.operands[0].reg == inst.operands[1].reg + 1
7995 || inst.operands[0].reg == inst.operands[3].reg,
7996 BAD_OVERLAP);
7997
7998 inst.instruction |= inst.operands[0].reg << 12;
7999 inst.instruction |= inst.operands[1].reg;
8000 inst.instruction |= inst.operands[3].reg << 16;
8001 }
8002
8003 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
8004 extends it to 32-bits, and adds the result to a value in another
8005 register. You can specify a rotation by 0, 8, 16, or 24 bits
8006 before extracting the 16-bit value.
8007 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
8008 Condition defaults to COND_ALWAYS.
8009 Error if any register uses R15. */
8010
8011 static void
8012 do_sxtah (void)
8013 {
8014 inst.instruction |= inst.operands[0].reg << 12;
8015 inst.instruction |= inst.operands[1].reg << 16;
8016 inst.instruction |= inst.operands[2].reg;
8017 inst.instruction |= inst.operands[3].imm << 10;
8018 }
8019
8020 /* ARM V6 SXTH.
8021
8022 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
8023 Condition defaults to COND_ALWAYS.
8024 Error if any register uses R15. */
8025
8026 static void
8027 do_sxth (void)
8028 {
8029 inst.instruction |= inst.operands[0].reg << 12;
8030 inst.instruction |= inst.operands[1].reg;
8031 inst.instruction |= inst.operands[2].imm << 10;
8032 }
8033 \f
8034 /* VFP instructions. In a logical order: SP variant first, monad
8035 before dyad, arithmetic then move then load/store. */
8036
8037 static void
8038 do_vfp_sp_monadic (void)
8039 {
8040 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8041 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8042 }
8043
8044 static void
8045 do_vfp_sp_dyadic (void)
8046 {
8047 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8048 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8049 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8050 }
8051
8052 static void
8053 do_vfp_sp_compare_z (void)
8054 {
8055 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8056 }
8057
8058 static void
8059 do_vfp_dp_sp_cvt (void)
8060 {
8061 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8062 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8063 }
8064
8065 static void
8066 do_vfp_sp_dp_cvt (void)
8067 {
8068 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8069 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8070 }
8071
8072 static void
8073 do_vfp_reg_from_sp (void)
8074 {
8075 inst.instruction |= inst.operands[0].reg << 12;
8076 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8077 }
8078
8079 static void
8080 do_vfp_reg2_from_sp2 (void)
8081 {
8082 constraint (inst.operands[2].imm != 2,
8083 _("only two consecutive VFP SP registers allowed here"));
8084 inst.instruction |= inst.operands[0].reg << 12;
8085 inst.instruction |= inst.operands[1].reg << 16;
8086 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8087 }
8088
8089 static void
8090 do_vfp_sp_from_reg (void)
8091 {
8092 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
8093 inst.instruction |= inst.operands[1].reg << 12;
8094 }
8095
8096 static void
8097 do_vfp_sp2_from_reg2 (void)
8098 {
8099 constraint (inst.operands[0].imm != 2,
8100 _("only two consecutive VFP SP registers allowed here"));
8101 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
8102 inst.instruction |= inst.operands[1].reg << 12;
8103 inst.instruction |= inst.operands[2].reg << 16;
8104 }
8105
8106 static void
8107 do_vfp_sp_ldst (void)
8108 {
8109 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8110 encode_arm_cp_address (1, FALSE, TRUE, 0);
8111 }
8112
8113 static void
8114 do_vfp_dp_ldst (void)
8115 {
8116 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8117 encode_arm_cp_address (1, FALSE, TRUE, 0);
8118 }
8119
8120
8121 static void
8122 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
8123 {
8124 if (inst.operands[0].writeback)
8125 inst.instruction |= WRITE_BACK;
8126 else
8127 constraint (ldstm_type != VFP_LDSTMIA,
8128 _("this addressing mode requires base-register writeback"));
8129 inst.instruction |= inst.operands[0].reg << 16;
8130 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
8131 inst.instruction |= inst.operands[1].imm;
8132 }
8133
8134 static void
8135 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
8136 {
8137 int count;
8138
8139 if (inst.operands[0].writeback)
8140 inst.instruction |= WRITE_BACK;
8141 else
8142 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
8143 _("this addressing mode requires base-register writeback"));
8144
8145 inst.instruction |= inst.operands[0].reg << 16;
8146 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8147
8148 count = inst.operands[1].imm << 1;
8149 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
8150 count += 1;
8151
8152 inst.instruction |= count;
8153 }
8154
8155 static void
8156 do_vfp_sp_ldstmia (void)
8157 {
8158 vfp_sp_ldstm (VFP_LDSTMIA);
8159 }
8160
8161 static void
8162 do_vfp_sp_ldstmdb (void)
8163 {
8164 vfp_sp_ldstm (VFP_LDSTMDB);
8165 }
8166
8167 static void
8168 do_vfp_dp_ldstmia (void)
8169 {
8170 vfp_dp_ldstm (VFP_LDSTMIA);
8171 }
8172
8173 static void
8174 do_vfp_dp_ldstmdb (void)
8175 {
8176 vfp_dp_ldstm (VFP_LDSTMDB);
8177 }
8178
8179 static void
8180 do_vfp_xp_ldstmia (void)
8181 {
8182 vfp_dp_ldstm (VFP_LDSTMIAX);
8183 }
8184
8185 static void
8186 do_vfp_xp_ldstmdb (void)
8187 {
8188 vfp_dp_ldstm (VFP_LDSTMDBX);
8189 }
8190
8191 static void
8192 do_vfp_dp_rd_rm (void)
8193 {
8194 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8195 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8196 }
8197
8198 static void
8199 do_vfp_dp_rn_rd (void)
8200 {
8201 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
8202 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8203 }
8204
8205 static void
8206 do_vfp_dp_rd_rn (void)
8207 {
8208 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8209 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8210 }
8211
8212 static void
8213 do_vfp_dp_rd_rn_rm (void)
8214 {
8215 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8216 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8217 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
8218 }
8219
8220 static void
8221 do_vfp_dp_rd (void)
8222 {
8223 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8224 }
8225
8226 static void
8227 do_vfp_dp_rm_rd_rn (void)
8228 {
8229 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
8230 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8231 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
8232 }
8233
8234 /* VFPv3 instructions. */
8235 static void
8236 do_vfp_sp_const (void)
8237 {
8238 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8239 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8240 inst.instruction |= (inst.operands[1].imm & 0x0f);
8241 }
8242
8243 static void
8244 do_vfp_dp_const (void)
8245 {
8246 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8247 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8248 inst.instruction |= (inst.operands[1].imm & 0x0f);
8249 }
8250
8251 static void
8252 vfp_conv (int srcsize)
8253 {
8254 unsigned immbits = srcsize - inst.operands[1].imm;
8255 inst.instruction |= (immbits & 1) << 5;
8256 inst.instruction |= (immbits >> 1);
8257 }
8258
8259 static void
8260 do_vfp_sp_conv_16 (void)
8261 {
8262 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8263 vfp_conv (16);
8264 }
8265
8266 static void
8267 do_vfp_dp_conv_16 (void)
8268 {
8269 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8270 vfp_conv (16);
8271 }
8272
8273 static void
8274 do_vfp_sp_conv_32 (void)
8275 {
8276 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8277 vfp_conv (32);
8278 }
8279
8280 static void
8281 do_vfp_dp_conv_32 (void)
8282 {
8283 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8284 vfp_conv (32);
8285 }
8286 \f
8287 /* FPA instructions. Also in a logical order. */
8288
8289 static void
8290 do_fpa_cmp (void)
8291 {
8292 inst.instruction |= inst.operands[0].reg << 16;
8293 inst.instruction |= inst.operands[1].reg;
8294 }
8295
8296 static void
8297 do_fpa_ldmstm (void)
8298 {
8299 inst.instruction |= inst.operands[0].reg << 12;
8300 switch (inst.operands[1].imm)
8301 {
8302 case 1: inst.instruction |= CP_T_X; break;
8303 case 2: inst.instruction |= CP_T_Y; break;
8304 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
8305 case 4: break;
8306 default: abort ();
8307 }
8308
8309 if (inst.instruction & (PRE_INDEX | INDEX_UP))
8310 {
8311 /* The instruction specified "ea" or "fd", so we can only accept
8312 [Rn]{!}. The instruction does not really support stacking or
8313 unstacking, so we have to emulate these by setting appropriate
8314 bits and offsets. */
8315 constraint (inst.reloc.exp.X_op != O_constant
8316 || inst.reloc.exp.X_add_number != 0,
8317 _("this instruction does not support indexing"));
8318
8319 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
8320 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
8321
8322 if (!(inst.instruction & INDEX_UP))
8323 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
8324
8325 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
8326 {
8327 inst.operands[2].preind = 0;
8328 inst.operands[2].postind = 1;
8329 }
8330 }
8331
8332 encode_arm_cp_address (2, TRUE, TRUE, 0);
8333 }
8334 \f
8335 /* iWMMXt instructions: strictly in alphabetical order. */
8336
8337 static void
8338 do_iwmmxt_tandorc (void)
8339 {
8340 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
8341 }
8342
8343 static void
8344 do_iwmmxt_textrc (void)
8345 {
8346 inst.instruction |= inst.operands[0].reg << 12;
8347 inst.instruction |= inst.operands[1].imm;
8348 }
8349
8350 static void
8351 do_iwmmxt_textrm (void)
8352 {
8353 inst.instruction |= inst.operands[0].reg << 12;
8354 inst.instruction |= inst.operands[1].reg << 16;
8355 inst.instruction |= inst.operands[2].imm;
8356 }
8357
8358 static void
8359 do_iwmmxt_tinsr (void)
8360 {
8361 inst.instruction |= inst.operands[0].reg << 16;
8362 inst.instruction |= inst.operands[1].reg << 12;
8363 inst.instruction |= inst.operands[2].imm;
8364 }
8365
8366 static void
8367 do_iwmmxt_tmia (void)
8368 {
8369 inst.instruction |= inst.operands[0].reg << 5;
8370 inst.instruction |= inst.operands[1].reg;
8371 inst.instruction |= inst.operands[2].reg << 12;
8372 }
8373
8374 static void
8375 do_iwmmxt_waligni (void)
8376 {
8377 inst.instruction |= inst.operands[0].reg << 12;
8378 inst.instruction |= inst.operands[1].reg << 16;
8379 inst.instruction |= inst.operands[2].reg;
8380 inst.instruction |= inst.operands[3].imm << 20;
8381 }
8382
8383 static void
8384 do_iwmmxt_wmerge (void)
8385 {
8386 inst.instruction |= inst.operands[0].reg << 12;
8387 inst.instruction |= inst.operands[1].reg << 16;
8388 inst.instruction |= inst.operands[2].reg;
8389 inst.instruction |= inst.operands[3].imm << 21;
8390 }
8391
8392 static void
8393 do_iwmmxt_wmov (void)
8394 {
8395 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
8396 inst.instruction |= inst.operands[0].reg << 12;
8397 inst.instruction |= inst.operands[1].reg << 16;
8398 inst.instruction |= inst.operands[1].reg;
8399 }
8400
8401 static void
8402 do_iwmmxt_wldstbh (void)
8403 {
8404 int reloc;
8405 inst.instruction |= inst.operands[0].reg << 12;
8406 if (thumb_mode)
8407 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
8408 else
8409 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
8410 encode_arm_cp_address (1, TRUE, FALSE, reloc);
8411 }
8412
8413 static void
8414 do_iwmmxt_wldstw (void)
8415 {
8416 /* RIWR_RIWC clears .isreg for a control register. */
8417 if (!inst.operands[0].isreg)
8418 {
8419 constraint (inst.cond != COND_ALWAYS, BAD_COND);
8420 inst.instruction |= 0xf0000000;
8421 }
8422
8423 inst.instruction |= inst.operands[0].reg << 12;
8424 encode_arm_cp_address (1, TRUE, TRUE, 0);
8425 }
8426
8427 static void
8428 do_iwmmxt_wldstd (void)
8429 {
8430 inst.instruction |= inst.operands[0].reg << 12;
8431 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
8432 && inst.operands[1].immisreg)
8433 {
8434 inst.instruction &= ~0x1a000ff;
8435 inst.instruction |= (0xf << 28);
8436 if (inst.operands[1].preind)
8437 inst.instruction |= PRE_INDEX;
8438 if (!inst.operands[1].negative)
8439 inst.instruction |= INDEX_UP;
8440 if (inst.operands[1].writeback)
8441 inst.instruction |= WRITE_BACK;
8442 inst.instruction |= inst.operands[1].reg << 16;
8443 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8444 inst.instruction |= inst.operands[1].imm;
8445 }
8446 else
8447 encode_arm_cp_address (1, TRUE, FALSE, 0);
8448 }
8449
8450 static void
8451 do_iwmmxt_wshufh (void)
8452 {
8453 inst.instruction |= inst.operands[0].reg << 12;
8454 inst.instruction |= inst.operands[1].reg << 16;
8455 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
8456 inst.instruction |= (inst.operands[2].imm & 0x0f);
8457 }
8458
8459 static void
8460 do_iwmmxt_wzero (void)
8461 {
8462 /* WZERO reg is an alias for WANDN reg, reg, reg. */
8463 inst.instruction |= inst.operands[0].reg;
8464 inst.instruction |= inst.operands[0].reg << 12;
8465 inst.instruction |= inst.operands[0].reg << 16;
8466 }
8467
8468 static void
8469 do_iwmmxt_wrwrwr_or_imm5 (void)
8470 {
8471 if (inst.operands[2].isreg)
8472 do_rd_rn_rm ();
8473 else {
8474 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
8475 _("immediate operand requires iWMMXt2"));
8476 do_rd_rn ();
8477 if (inst.operands[2].imm == 0)
8478 {
8479 switch ((inst.instruction >> 20) & 0xf)
8480 {
8481 case 4:
8482 case 5:
8483 case 6:
8484 case 7:
8485 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
8486 inst.operands[2].imm = 16;
8487 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
8488 break;
8489 case 8:
8490 case 9:
8491 case 10:
8492 case 11:
8493 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
8494 inst.operands[2].imm = 32;
8495 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
8496 break;
8497 case 12:
8498 case 13:
8499 case 14:
8500 case 15:
8501 {
8502 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
8503 unsigned long wrn;
8504 wrn = (inst.instruction >> 16) & 0xf;
8505 inst.instruction &= 0xff0fff0f;
8506 inst.instruction |= wrn;
8507 /* Bail out here; the instruction is now assembled. */
8508 return;
8509 }
8510 }
8511 }
8512 /* Map 32 -> 0, etc. */
8513 inst.operands[2].imm &= 0x1f;
8514 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
8515 }
8516 }
8517 \f
8518 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
8519 operations first, then control, shift, and load/store. */
8520
8521 /* Insns like "foo X,Y,Z". */
8522
8523 static void
8524 do_mav_triple (void)
8525 {
8526 inst.instruction |= inst.operands[0].reg << 16;
8527 inst.instruction |= inst.operands[1].reg;
8528 inst.instruction |= inst.operands[2].reg << 12;
8529 }
8530
8531 /* Insns like "foo W,X,Y,Z".
8532 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
8533
8534 static void
8535 do_mav_quad (void)
8536 {
8537 inst.instruction |= inst.operands[0].reg << 5;
8538 inst.instruction |= inst.operands[1].reg << 12;
8539 inst.instruction |= inst.operands[2].reg << 16;
8540 inst.instruction |= inst.operands[3].reg;
8541 }
8542
8543 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
8544 static void
8545 do_mav_dspsc (void)
8546 {
8547 inst.instruction |= inst.operands[1].reg << 12;
8548 }
8549
8550 /* Maverick shift immediate instructions.
8551 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
8552 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
8553
8554 static void
8555 do_mav_shift (void)
8556 {
8557 int imm = inst.operands[2].imm;
8558
8559 inst.instruction |= inst.operands[0].reg << 12;
8560 inst.instruction |= inst.operands[1].reg << 16;
8561
8562 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
8563 Bits 5-7 of the insn should have bits 4-6 of the immediate.
8564 Bit 4 should be 0. */
8565 imm = (imm & 0xf) | ((imm & 0x70) << 1);
8566
8567 inst.instruction |= imm;
8568 }
8569 \f
8570 /* XScale instructions. Also sorted arithmetic before move. */
8571
8572 /* Xscale multiply-accumulate (argument parse)
8573 MIAcc acc0,Rm,Rs
8574 MIAPHcc acc0,Rm,Rs
8575 MIAxycc acc0,Rm,Rs. */
8576
8577 static void
8578 do_xsc_mia (void)
8579 {
8580 inst.instruction |= inst.operands[1].reg;
8581 inst.instruction |= inst.operands[2].reg << 12;
8582 }
8583
8584 /* Xscale move-accumulator-register (argument parse)
8585
8586 MARcc acc0,RdLo,RdHi. */
8587
8588 static void
8589 do_xsc_mar (void)
8590 {
8591 inst.instruction |= inst.operands[1].reg << 12;
8592 inst.instruction |= inst.operands[2].reg << 16;
8593 }
8594
8595 /* Xscale move-register-accumulator (argument parse)
8596
8597 MRAcc RdLo,RdHi,acc0. */
8598
8599 static void
8600 do_xsc_mra (void)
8601 {
8602 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
8603 inst.instruction |= inst.operands[0].reg << 12;
8604 inst.instruction |= inst.operands[1].reg << 16;
8605 }
8606 \f
8607 /* Encoding functions relevant only to Thumb. */
8608
8609 /* inst.operands[i] is a shifted-register operand; encode
8610 it into inst.instruction in the format used by Thumb32. */
8611
8612 static void
8613 encode_thumb32_shifted_operand (int i)
8614 {
8615 unsigned int value = inst.reloc.exp.X_add_number;
8616 unsigned int shift = inst.operands[i].shift_kind;
8617
8618 constraint (inst.operands[i].immisreg,
8619 _("shift by register not allowed in thumb mode"));
8620 inst.instruction |= inst.operands[i].reg;
8621 if (shift == SHIFT_RRX)
8622 inst.instruction |= SHIFT_ROR << 4;
8623 else
8624 {
8625 constraint (inst.reloc.exp.X_op != O_constant,
8626 _("expression too complex"));
8627
8628 constraint (value > 32
8629 || (value == 32 && (shift == SHIFT_LSL
8630 || shift == SHIFT_ROR)),
8631 _("shift expression is too large"));
8632
8633 if (value == 0)
8634 shift = SHIFT_LSL;
8635 else if (value == 32)
8636 value = 0;
8637
8638 inst.instruction |= shift << 4;
8639 inst.instruction |= (value & 0x1c) << 10;
8640 inst.instruction |= (value & 0x03) << 6;
8641 }
8642 }
8643
8644
8645 /* inst.operands[i] was set up by parse_address. Encode it into a
8646 Thumb32 format load or store instruction. Reject forms that cannot
8647 be used with such instructions. If is_t is true, reject forms that
8648 cannot be used with a T instruction; if is_d is true, reject forms
8649 that cannot be used with a D instruction. */
8650
8651 static void
8652 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
8653 {
8654 bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8655
8656 constraint (!inst.operands[i].isreg,
8657 _("Instruction does not support =N addresses"));
8658
8659 inst.instruction |= inst.operands[i].reg << 16;
8660 if (inst.operands[i].immisreg)
8661 {
8662 constraint (is_pc, _("cannot use register index with PC-relative addressing"));
8663 constraint (is_t || is_d, _("cannot use register index with this instruction"));
8664 constraint (inst.operands[i].negative,
8665 _("Thumb does not support negative register indexing"));
8666 constraint (inst.operands[i].postind,
8667 _("Thumb does not support register post-indexing"));
8668 constraint (inst.operands[i].writeback,
8669 _("Thumb does not support register indexing with writeback"));
8670 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
8671 _("Thumb supports only LSL in shifted register indexing"));
8672
8673 inst.instruction |= inst.operands[i].imm;
8674 if (inst.operands[i].shifted)
8675 {
8676 constraint (inst.reloc.exp.X_op != O_constant,
8677 _("expression too complex"));
8678 constraint (inst.reloc.exp.X_add_number < 0
8679 || inst.reloc.exp.X_add_number > 3,
8680 _("shift out of range"));
8681 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8682 }
8683 inst.reloc.type = BFD_RELOC_UNUSED;
8684 }
8685 else if (inst.operands[i].preind)
8686 {
8687 constraint (is_pc && inst.operands[i].writeback,
8688 _("cannot use writeback with PC-relative addressing"));
8689 constraint (is_t && inst.operands[i].writeback,
8690 _("cannot use writeback with this instruction"));
8691
8692 if (is_d)
8693 {
8694 inst.instruction |= 0x01000000;
8695 if (inst.operands[i].writeback)
8696 inst.instruction |= 0x00200000;
8697 }
8698 else
8699 {
8700 inst.instruction |= 0x00000c00;
8701 if (inst.operands[i].writeback)
8702 inst.instruction |= 0x00000100;
8703 }
8704 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8705 }
8706 else if (inst.operands[i].postind)
8707 {
8708 gas_assert (inst.operands[i].writeback);
8709 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
8710 constraint (is_t, _("cannot use post-indexing with this instruction"));
8711
8712 if (is_d)
8713 inst.instruction |= 0x00200000;
8714 else
8715 inst.instruction |= 0x00000900;
8716 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8717 }
8718 else /* unindexed - only for coprocessor */
8719 inst.error = _("instruction does not accept unindexed addressing");
8720 }
8721
8722 /* Table of Thumb instructions which exist in both 16- and 32-bit
8723 encodings (the latter only in post-V6T2 cores). The index is the
8724 value used in the insns table below. When there is more than one
8725 possible 16-bit encoding for the instruction, this table always
8726 holds variant (1).
8727 Also contains several pseudo-instructions used during relaxation. */
8728 #define T16_32_TAB \
8729 X(_adc, 4140, eb400000), \
8730 X(_adcs, 4140, eb500000), \
8731 X(_add, 1c00, eb000000), \
8732 X(_adds, 1c00, eb100000), \
8733 X(_addi, 0000, f1000000), \
8734 X(_addis, 0000, f1100000), \
8735 X(_add_pc,000f, f20f0000), \
8736 X(_add_sp,000d, f10d0000), \
8737 X(_adr, 000f, f20f0000), \
8738 X(_and, 4000, ea000000), \
8739 X(_ands, 4000, ea100000), \
8740 X(_asr, 1000, fa40f000), \
8741 X(_asrs, 1000, fa50f000), \
8742 X(_b, e000, f000b000), \
8743 X(_bcond, d000, f0008000), \
8744 X(_bic, 4380, ea200000), \
8745 X(_bics, 4380, ea300000), \
8746 X(_cmn, 42c0, eb100f00), \
8747 X(_cmp, 2800, ebb00f00), \
8748 X(_cpsie, b660, f3af8400), \
8749 X(_cpsid, b670, f3af8600), \
8750 X(_cpy, 4600, ea4f0000), \
8751 X(_dec_sp,80dd, f1ad0d00), \
8752 X(_eor, 4040, ea800000), \
8753 X(_eors, 4040, ea900000), \
8754 X(_inc_sp,00dd, f10d0d00), \
8755 X(_ldmia, c800, e8900000), \
8756 X(_ldr, 6800, f8500000), \
8757 X(_ldrb, 7800, f8100000), \
8758 X(_ldrh, 8800, f8300000), \
8759 X(_ldrsb, 5600, f9100000), \
8760 X(_ldrsh, 5e00, f9300000), \
8761 X(_ldr_pc,4800, f85f0000), \
8762 X(_ldr_pc2,4800, f85f0000), \
8763 X(_ldr_sp,9800, f85d0000), \
8764 X(_lsl, 0000, fa00f000), \
8765 X(_lsls, 0000, fa10f000), \
8766 X(_lsr, 0800, fa20f000), \
8767 X(_lsrs, 0800, fa30f000), \
8768 X(_mov, 2000, ea4f0000), \
8769 X(_movs, 2000, ea5f0000), \
8770 X(_mul, 4340, fb00f000), \
8771 X(_muls, 4340, ffffffff), /* no 32b muls */ \
8772 X(_mvn, 43c0, ea6f0000), \
8773 X(_mvns, 43c0, ea7f0000), \
8774 X(_neg, 4240, f1c00000), /* rsb #0 */ \
8775 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
8776 X(_orr, 4300, ea400000), \
8777 X(_orrs, 4300, ea500000), \
8778 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
8779 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
8780 X(_rev, ba00, fa90f080), \
8781 X(_rev16, ba40, fa90f090), \
8782 X(_revsh, bac0, fa90f0b0), \
8783 X(_ror, 41c0, fa60f000), \
8784 X(_rors, 41c0, fa70f000), \
8785 X(_sbc, 4180, eb600000), \
8786 X(_sbcs, 4180, eb700000), \
8787 X(_stmia, c000, e8800000), \
8788 X(_str, 6000, f8400000), \
8789 X(_strb, 7000, f8000000), \
8790 X(_strh, 8000, f8200000), \
8791 X(_str_sp,9000, f84d0000), \
8792 X(_sub, 1e00, eba00000), \
8793 X(_subs, 1e00, ebb00000), \
8794 X(_subi, 8000, f1a00000), \
8795 X(_subis, 8000, f1b00000), \
8796 X(_sxtb, b240, fa4ff080), \
8797 X(_sxth, b200, fa0ff080), \
8798 X(_tst, 4200, ea100f00), \
8799 X(_uxtb, b2c0, fa5ff080), \
8800 X(_uxth, b280, fa1ff080), \
8801 X(_nop, bf00, f3af8000), \
8802 X(_yield, bf10, f3af8001), \
8803 X(_wfe, bf20, f3af8002), \
8804 X(_wfi, bf30, f3af8003), \
8805 X(_sev, bf40, f3af8004),
8806
8807 /* To catch errors in encoding functions, the codes are all offset by
8808 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
8809 as 16-bit instructions. */
8810 #define X(a,b,c) T_MNEM##a
8811 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
8812 #undef X
8813
8814 #define X(a,b,c) 0x##b
8815 static const unsigned short thumb_op16[] = { T16_32_TAB };
8816 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
8817 #undef X
8818
8819 #define X(a,b,c) 0x##c
8820 static const unsigned int thumb_op32[] = { T16_32_TAB };
8821 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
8822 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
8823 #undef X
8824 #undef T16_32_TAB
8825
8826 /* Thumb instruction encoders, in alphabetical order. */
8827
8828 /* ADDW or SUBW. */
8829
8830 static void
8831 do_t_add_sub_w (void)
8832 {
8833 int Rd, Rn;
8834
8835 Rd = inst.operands[0].reg;
8836 Rn = inst.operands[1].reg;
8837
8838 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
8839 is the SP-{plus,minus}-immediate form of the instruction. */
8840 if (Rn == REG_SP)
8841 constraint (Rd == REG_PC, BAD_PC);
8842 else
8843 reject_bad_reg (Rd);
8844
8845 inst.instruction |= (Rn << 16) | (Rd << 8);
8846 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8847 }
8848
8849 /* Parse an add or subtract instruction. We get here with inst.instruction
8850 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
8851
8852 static void
8853 do_t_add_sub (void)
8854 {
8855 int Rd, Rs, Rn;
8856
8857 Rd = inst.operands[0].reg;
8858 Rs = (inst.operands[1].present
8859 ? inst.operands[1].reg /* Rd, Rs, foo */
8860 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8861
8862 if (Rd == REG_PC)
8863 set_it_insn_type_last ();
8864
8865 if (unified_syntax)
8866 {
8867 bfd_boolean flags;
8868 bfd_boolean narrow;
8869 int opcode;
8870
8871 flags = (inst.instruction == T_MNEM_adds
8872 || inst.instruction == T_MNEM_subs);
8873 if (flags)
8874 narrow = !in_it_block ();
8875 else
8876 narrow = in_it_block ();
8877 if (!inst.operands[2].isreg)
8878 {
8879 int add;
8880
8881 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
8882
8883 add = (inst.instruction == T_MNEM_add
8884 || inst.instruction == T_MNEM_adds);
8885 opcode = 0;
8886 if (inst.size_req != 4)
8887 {
8888 /* Attempt to use a narrow opcode, with relaxation if
8889 appropriate. */
8890 if (Rd == REG_SP && Rs == REG_SP && !flags)
8891 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
8892 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
8893 opcode = T_MNEM_add_sp;
8894 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
8895 opcode = T_MNEM_add_pc;
8896 else if (Rd <= 7 && Rs <= 7 && narrow)
8897 {
8898 if (flags)
8899 opcode = add ? T_MNEM_addis : T_MNEM_subis;
8900 else
8901 opcode = add ? T_MNEM_addi : T_MNEM_subi;
8902 }
8903 if (opcode)
8904 {
8905 inst.instruction = THUMB_OP16(opcode);
8906 inst.instruction |= (Rd << 4) | Rs;
8907 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8908 if (inst.size_req != 2)
8909 inst.relax = opcode;
8910 }
8911 else
8912 constraint (inst.size_req == 2, BAD_HIREG);
8913 }
8914 if (inst.size_req == 4
8915 || (inst.size_req != 2 && !opcode))
8916 {
8917 if (Rd == REG_PC)
8918 {
8919 constraint (add, BAD_PC);
8920 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
8921 _("only SUBS PC, LR, #const allowed"));
8922 constraint (inst.reloc.exp.X_op != O_constant,
8923 _("expression too complex"));
8924 constraint (inst.reloc.exp.X_add_number < 0
8925 || inst.reloc.exp.X_add_number > 0xff,
8926 _("immediate value out of range"));
8927 inst.instruction = T2_SUBS_PC_LR
8928 | inst.reloc.exp.X_add_number;
8929 inst.reloc.type = BFD_RELOC_UNUSED;
8930 return;
8931 }
8932 else if (Rs == REG_PC)
8933 {
8934 /* Always use addw/subw. */
8935 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
8936 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8937 }
8938 else
8939 {
8940 inst.instruction = THUMB_OP32 (inst.instruction);
8941 inst.instruction = (inst.instruction & 0xe1ffffff)
8942 | 0x10000000;
8943 if (flags)
8944 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8945 else
8946 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
8947 }
8948 inst.instruction |= Rd << 8;
8949 inst.instruction |= Rs << 16;
8950 }
8951 }
8952 else
8953 {
8954 Rn = inst.operands[2].reg;
8955 /* See if we can do this with a 16-bit instruction. */
8956 if (!inst.operands[2].shifted && inst.size_req != 4)
8957 {
8958 if (Rd > 7 || Rs > 7 || Rn > 7)
8959 narrow = FALSE;
8960
8961 if (narrow)
8962 {
8963 inst.instruction = ((inst.instruction == T_MNEM_adds
8964 || inst.instruction == T_MNEM_add)
8965 ? T_OPCODE_ADD_R3
8966 : T_OPCODE_SUB_R3);
8967 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
8968 return;
8969 }
8970
8971 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
8972 {
8973 /* Thumb-1 cores (except v6-M) require at least one high
8974 register in a narrow non flag setting add. */
8975 if (Rd > 7 || Rn > 7
8976 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
8977 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
8978 {
8979 if (Rd == Rn)
8980 {
8981 Rn = Rs;
8982 Rs = Rd;
8983 }
8984 inst.instruction = T_OPCODE_ADD_HI;
8985 inst.instruction |= (Rd & 8) << 4;
8986 inst.instruction |= (Rd & 7);
8987 inst.instruction |= Rn << 3;
8988 return;
8989 }
8990 }
8991 }
8992
8993 constraint (Rd == REG_PC, BAD_PC);
8994 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
8995 constraint (Rs == REG_PC, BAD_PC);
8996 reject_bad_reg (Rn);
8997
8998 /* If we get here, it can't be done in 16 bits. */
8999 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
9000 _("shift must be constant"));
9001 inst.instruction = THUMB_OP32 (inst.instruction);
9002 inst.instruction |= Rd << 8;
9003 inst.instruction |= Rs << 16;
9004 encode_thumb32_shifted_operand (2);
9005 }
9006 }
9007 else
9008 {
9009 constraint (inst.instruction == T_MNEM_adds
9010 || inst.instruction == T_MNEM_subs,
9011 BAD_THUMB32);
9012
9013 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
9014 {
9015 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
9016 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
9017 BAD_HIREG);
9018
9019 inst.instruction = (inst.instruction == T_MNEM_add
9020 ? 0x0000 : 0x8000);
9021 inst.instruction |= (Rd << 4) | Rs;
9022 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9023 return;
9024 }
9025
9026 Rn = inst.operands[2].reg;
9027 constraint (inst.operands[2].shifted, _("unshifted register required"));
9028
9029 /* We now have Rd, Rs, and Rn set to registers. */
9030 if (Rd > 7 || Rs > 7 || Rn > 7)
9031 {
9032 /* Can't do this for SUB. */
9033 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
9034 inst.instruction = T_OPCODE_ADD_HI;
9035 inst.instruction |= (Rd & 8) << 4;
9036 inst.instruction |= (Rd & 7);
9037 if (Rs == Rd)
9038 inst.instruction |= Rn << 3;
9039 else if (Rn == Rd)
9040 inst.instruction |= Rs << 3;
9041 else
9042 constraint (1, _("dest must overlap one source register"));
9043 }
9044 else
9045 {
9046 inst.instruction = (inst.instruction == T_MNEM_add
9047 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
9048 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9049 }
9050 }
9051 }
9052
9053 static void
9054 do_t_adr (void)
9055 {
9056 unsigned Rd;
9057
9058 Rd = inst.operands[0].reg;
9059 reject_bad_reg (Rd);
9060
9061 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
9062 {
9063 /* Defer to section relaxation. */
9064 inst.relax = inst.instruction;
9065 inst.instruction = THUMB_OP16 (inst.instruction);
9066 inst.instruction |= Rd << 4;
9067 }
9068 else if (unified_syntax && inst.size_req != 2)
9069 {
9070 /* Generate a 32-bit opcode. */
9071 inst.instruction = THUMB_OP32 (inst.instruction);
9072 inst.instruction |= Rd << 8;
9073 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
9074 inst.reloc.pc_rel = 1;
9075 }
9076 else
9077 {
9078 /* Generate a 16-bit opcode. */
9079 inst.instruction = THUMB_OP16 (inst.instruction);
9080 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9081 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
9082 inst.reloc.pc_rel = 1;
9083
9084 inst.instruction |= Rd << 4;
9085 }
9086 }
9087
9088 /* Arithmetic instructions for which there is just one 16-bit
9089 instruction encoding, and it allows only two low registers.
9090 For maximal compatibility with ARM syntax, we allow three register
9091 operands even when Thumb-32 instructions are not available, as long
9092 as the first two are identical. For instance, both "sbc r0,r1" and
9093 "sbc r0,r0,r1" are allowed. */
9094 static void
9095 do_t_arit3 (void)
9096 {
9097 int Rd, Rs, Rn;
9098
9099 Rd = inst.operands[0].reg;
9100 Rs = (inst.operands[1].present
9101 ? inst.operands[1].reg /* Rd, Rs, foo */
9102 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9103 Rn = inst.operands[2].reg;
9104
9105 reject_bad_reg (Rd);
9106 reject_bad_reg (Rs);
9107 if (inst.operands[2].isreg)
9108 reject_bad_reg (Rn);
9109
9110 if (unified_syntax)
9111 {
9112 if (!inst.operands[2].isreg)
9113 {
9114 /* For an immediate, we always generate a 32-bit opcode;
9115 section relaxation will shrink it later if possible. */
9116 inst.instruction = THUMB_OP32 (inst.instruction);
9117 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9118 inst.instruction |= Rd << 8;
9119 inst.instruction |= Rs << 16;
9120 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9121 }
9122 else
9123 {
9124 bfd_boolean narrow;
9125
9126 /* See if we can do this with a 16-bit instruction. */
9127 if (THUMB_SETS_FLAGS (inst.instruction))
9128 narrow = !in_it_block ();
9129 else
9130 narrow = in_it_block ();
9131
9132 if (Rd > 7 || Rn > 7 || Rs > 7)
9133 narrow = FALSE;
9134 if (inst.operands[2].shifted)
9135 narrow = FALSE;
9136 if (inst.size_req == 4)
9137 narrow = FALSE;
9138
9139 if (narrow
9140 && Rd == Rs)
9141 {
9142 inst.instruction = THUMB_OP16 (inst.instruction);
9143 inst.instruction |= Rd;
9144 inst.instruction |= Rn << 3;
9145 return;
9146 }
9147
9148 /* If we get here, it can't be done in 16 bits. */
9149 constraint (inst.operands[2].shifted
9150 && inst.operands[2].immisreg,
9151 _("shift must be constant"));
9152 inst.instruction = THUMB_OP32 (inst.instruction);
9153 inst.instruction |= Rd << 8;
9154 inst.instruction |= Rs << 16;
9155 encode_thumb32_shifted_operand (2);
9156 }
9157 }
9158 else
9159 {
9160 /* On its face this is a lie - the instruction does set the
9161 flags. However, the only supported mnemonic in this mode
9162 says it doesn't. */
9163 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9164
9165 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9166 _("unshifted register required"));
9167 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9168 constraint (Rd != Rs,
9169 _("dest and source1 must be the same register"));
9170
9171 inst.instruction = THUMB_OP16 (inst.instruction);
9172 inst.instruction |= Rd;
9173 inst.instruction |= Rn << 3;
9174 }
9175 }
9176
9177 /* Similarly, but for instructions where the arithmetic operation is
9178 commutative, so we can allow either of them to be different from
9179 the destination operand in a 16-bit instruction. For instance, all
9180 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
9181 accepted. */
9182 static void
9183 do_t_arit3c (void)
9184 {
9185 int Rd, Rs, Rn;
9186
9187 Rd = inst.operands[0].reg;
9188 Rs = (inst.operands[1].present
9189 ? inst.operands[1].reg /* Rd, Rs, foo */
9190 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9191 Rn = inst.operands[2].reg;
9192
9193 reject_bad_reg (Rd);
9194 reject_bad_reg (Rs);
9195 if (inst.operands[2].isreg)
9196 reject_bad_reg (Rn);
9197
9198 if (unified_syntax)
9199 {
9200 if (!inst.operands[2].isreg)
9201 {
9202 /* For an immediate, we always generate a 32-bit opcode;
9203 section relaxation will shrink it later if possible. */
9204 inst.instruction = THUMB_OP32 (inst.instruction);
9205 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9206 inst.instruction |= Rd << 8;
9207 inst.instruction |= Rs << 16;
9208 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9209 }
9210 else
9211 {
9212 bfd_boolean narrow;
9213
9214 /* See if we can do this with a 16-bit instruction. */
9215 if (THUMB_SETS_FLAGS (inst.instruction))
9216 narrow = !in_it_block ();
9217 else
9218 narrow = in_it_block ();
9219
9220 if (Rd > 7 || Rn > 7 || Rs > 7)
9221 narrow = FALSE;
9222 if (inst.operands[2].shifted)
9223 narrow = FALSE;
9224 if (inst.size_req == 4)
9225 narrow = FALSE;
9226
9227 if (narrow)
9228 {
9229 if (Rd == Rs)
9230 {
9231 inst.instruction = THUMB_OP16 (inst.instruction);
9232 inst.instruction |= Rd;
9233 inst.instruction |= Rn << 3;
9234 return;
9235 }
9236 if (Rd == Rn)
9237 {
9238 inst.instruction = THUMB_OP16 (inst.instruction);
9239 inst.instruction |= Rd;
9240 inst.instruction |= Rs << 3;
9241 return;
9242 }
9243 }
9244
9245 /* If we get here, it can't be done in 16 bits. */
9246 constraint (inst.operands[2].shifted
9247 && inst.operands[2].immisreg,
9248 _("shift must be constant"));
9249 inst.instruction = THUMB_OP32 (inst.instruction);
9250 inst.instruction |= Rd << 8;
9251 inst.instruction |= Rs << 16;
9252 encode_thumb32_shifted_operand (2);
9253 }
9254 }
9255 else
9256 {
9257 /* On its face this is a lie - the instruction does set the
9258 flags. However, the only supported mnemonic in this mode
9259 says it doesn't. */
9260 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9261
9262 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9263 _("unshifted register required"));
9264 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9265
9266 inst.instruction = THUMB_OP16 (inst.instruction);
9267 inst.instruction |= Rd;
9268
9269 if (Rd == Rs)
9270 inst.instruction |= Rn << 3;
9271 else if (Rd == Rn)
9272 inst.instruction |= Rs << 3;
9273 else
9274 constraint (1, _("dest must overlap one source register"));
9275 }
9276 }
9277
9278 static void
9279 do_t_barrier (void)
9280 {
9281 if (inst.operands[0].present)
9282 {
9283 constraint ((inst.instruction & 0xf0) != 0x40
9284 && inst.operands[0].imm != 0xf,
9285 _("bad barrier type"));
9286 inst.instruction |= inst.operands[0].imm;
9287 }
9288 else
9289 inst.instruction |= 0xf;
9290 }
9291
9292 static void
9293 do_t_bfc (void)
9294 {
9295 unsigned Rd;
9296 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9297 constraint (msb > 32, _("bit-field extends past end of register"));
9298 /* The instruction encoding stores the LSB and MSB,
9299 not the LSB and width. */
9300 Rd = inst.operands[0].reg;
9301 reject_bad_reg (Rd);
9302 inst.instruction |= Rd << 8;
9303 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
9304 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
9305 inst.instruction |= msb - 1;
9306 }
9307
9308 static void
9309 do_t_bfi (void)
9310 {
9311 int Rd, Rn;
9312 unsigned int msb;
9313
9314 Rd = inst.operands[0].reg;
9315 reject_bad_reg (Rd);
9316
9317 /* #0 in second position is alternative syntax for bfc, which is
9318 the same instruction but with REG_PC in the Rm field. */
9319 if (!inst.operands[1].isreg)
9320 Rn = REG_PC;
9321 else
9322 {
9323 Rn = inst.operands[1].reg;
9324 reject_bad_reg (Rn);
9325 }
9326
9327 msb = inst.operands[2].imm + inst.operands[3].imm;
9328 constraint (msb > 32, _("bit-field extends past end of register"));
9329 /* The instruction encoding stores the LSB and MSB,
9330 not the LSB and width. */
9331 inst.instruction |= Rd << 8;
9332 inst.instruction |= Rn << 16;
9333 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9334 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9335 inst.instruction |= msb - 1;
9336 }
9337
9338 static void
9339 do_t_bfx (void)
9340 {
9341 unsigned Rd, Rn;
9342
9343 Rd = inst.operands[0].reg;
9344 Rn = inst.operands[1].reg;
9345
9346 reject_bad_reg (Rd);
9347 reject_bad_reg (Rn);
9348
9349 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9350 _("bit-field extends past end of register"));
9351 inst.instruction |= Rd << 8;
9352 inst.instruction |= Rn << 16;
9353 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9354 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9355 inst.instruction |= inst.operands[3].imm - 1;
9356 }
9357
9358 /* ARM V5 Thumb BLX (argument parse)
9359 BLX <target_addr> which is BLX(1)
9360 BLX <Rm> which is BLX(2)
9361 Unfortunately, there are two different opcodes for this mnemonic.
9362 So, the insns[].value is not used, and the code here zaps values
9363 into inst.instruction.
9364
9365 ??? How to take advantage of the additional two bits of displacement
9366 available in Thumb32 mode? Need new relocation? */
9367
9368 static void
9369 do_t_blx (void)
9370 {
9371 set_it_insn_type_last ();
9372
9373 if (inst.operands[0].isreg)
9374 {
9375 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9376 /* We have a register, so this is BLX(2). */
9377 inst.instruction |= inst.operands[0].reg << 3;
9378 }
9379 else
9380 {
9381 /* No register. This must be BLX(1). */
9382 inst.instruction = 0xf000e800;
9383 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BLX;
9384 inst.reloc.pc_rel = 1;
9385 }
9386 }
9387
9388 static void
9389 do_t_branch (void)
9390 {
9391 int opcode;
9392 int cond;
9393
9394 cond = inst.cond;
9395 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
9396
9397 if (in_it_block ())
9398 {
9399 /* Conditional branches inside IT blocks are encoded as unconditional
9400 branches. */
9401 cond = COND_ALWAYS;
9402 }
9403 else
9404 cond = inst.cond;
9405
9406 if (cond != COND_ALWAYS)
9407 opcode = T_MNEM_bcond;
9408 else
9409 opcode = inst.instruction;
9410
9411 if (unified_syntax && inst.size_req == 4)
9412 {
9413 inst.instruction = THUMB_OP32(opcode);
9414 if (cond == COND_ALWAYS)
9415 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH25;
9416 else
9417 {
9418 gas_assert (cond != 0xF);
9419 inst.instruction |= cond << 22;
9420 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH20;
9421 }
9422 }
9423 else
9424 {
9425 inst.instruction = THUMB_OP16(opcode);
9426 if (cond == COND_ALWAYS)
9427 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH12;
9428 else
9429 {
9430 inst.instruction |= cond << 8;
9431 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH9;
9432 }
9433 /* Allow section relaxation. */
9434 if (unified_syntax && inst.size_req != 2)
9435 inst.relax = opcode;
9436 }
9437
9438 inst.reloc.pc_rel = 1;
9439 }
9440
9441 static void
9442 do_t_bkpt (void)
9443 {
9444 constraint (inst.cond != COND_ALWAYS,
9445 _("instruction is always unconditional"));
9446 if (inst.operands[0].present)
9447 {
9448 constraint (inst.operands[0].imm > 255,
9449 _("immediate value out of range"));
9450 inst.instruction |= inst.operands[0].imm;
9451 set_it_insn_type (NEUTRAL_IT_INSN);
9452 }
9453 }
9454
9455 static void
9456 do_t_branch23 (void)
9457 {
9458 set_it_insn_type_last ();
9459 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
9460 inst.reloc.pc_rel = 1;
9461
9462 #if defined(OBJ_COFF)
9463 /* If the destination of the branch is a defined symbol which does not have
9464 the THUMB_FUNC attribute, then we must be calling a function which has
9465 the (interfacearm) attribute. We look for the Thumb entry point to that
9466 function and change the branch to refer to that function instead. */
9467 if ( inst.reloc.exp.X_op == O_symbol
9468 && inst.reloc.exp.X_add_symbol != NULL
9469 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
9470 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
9471 inst.reloc.exp.X_add_symbol =
9472 find_real_start (inst.reloc.exp.X_add_symbol);
9473 #endif
9474 }
9475
9476 static void
9477 do_t_bx (void)
9478 {
9479 set_it_insn_type_last ();
9480 inst.instruction |= inst.operands[0].reg << 3;
9481 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
9482 should cause the alignment to be checked once it is known. This is
9483 because BX PC only works if the instruction is word aligned. */
9484 }
9485
9486 static void
9487 do_t_bxj (void)
9488 {
9489 int Rm;
9490
9491 set_it_insn_type_last ();
9492 Rm = inst.operands[0].reg;
9493 reject_bad_reg (Rm);
9494 inst.instruction |= Rm << 16;
9495 }
9496
9497 static void
9498 do_t_clz (void)
9499 {
9500 unsigned Rd;
9501 unsigned Rm;
9502
9503 Rd = inst.operands[0].reg;
9504 Rm = inst.operands[1].reg;
9505
9506 reject_bad_reg (Rd);
9507 reject_bad_reg (Rm);
9508
9509 inst.instruction |= Rd << 8;
9510 inst.instruction |= Rm << 16;
9511 inst.instruction |= Rm;
9512 }
9513
9514 static void
9515 do_t_cps (void)
9516 {
9517 set_it_insn_type (OUTSIDE_IT_INSN);
9518 inst.instruction |= inst.operands[0].imm;
9519 }
9520
9521 static void
9522 do_t_cpsi (void)
9523 {
9524 set_it_insn_type (OUTSIDE_IT_INSN);
9525 if (unified_syntax
9526 && (inst.operands[1].present || inst.size_req == 4)
9527 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
9528 {
9529 unsigned int imod = (inst.instruction & 0x0030) >> 4;
9530 inst.instruction = 0xf3af8000;
9531 inst.instruction |= imod << 9;
9532 inst.instruction |= inst.operands[0].imm << 5;
9533 if (inst.operands[1].present)
9534 inst.instruction |= 0x100 | inst.operands[1].imm;
9535 }
9536 else
9537 {
9538 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
9539 && (inst.operands[0].imm & 4),
9540 _("selected processor does not support 'A' form "
9541 "of this instruction"));
9542 constraint (inst.operands[1].present || inst.size_req == 4,
9543 _("Thumb does not support the 2-argument "
9544 "form of this instruction"));
9545 inst.instruction |= inst.operands[0].imm;
9546 }
9547 }
9548
9549 /* THUMB CPY instruction (argument parse). */
9550
9551 static void
9552 do_t_cpy (void)
9553 {
9554 if (inst.size_req == 4)
9555 {
9556 inst.instruction = THUMB_OP32 (T_MNEM_mov);
9557 inst.instruction |= inst.operands[0].reg << 8;
9558 inst.instruction |= inst.operands[1].reg;
9559 }
9560 else
9561 {
9562 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9563 inst.instruction |= (inst.operands[0].reg & 0x7);
9564 inst.instruction |= inst.operands[1].reg << 3;
9565 }
9566 }
9567
9568 static void
9569 do_t_cbz (void)
9570 {
9571 set_it_insn_type (OUTSIDE_IT_INSN);
9572 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9573 inst.instruction |= inst.operands[0].reg;
9574 inst.reloc.pc_rel = 1;
9575 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
9576 }
9577
9578 static void
9579 do_t_dbg (void)
9580 {
9581 inst.instruction |= inst.operands[0].imm;
9582 }
9583
9584 static void
9585 do_t_div (void)
9586 {
9587 unsigned Rd, Rn, Rm;
9588
9589 Rd = inst.operands[0].reg;
9590 Rn = (inst.operands[1].present
9591 ? inst.operands[1].reg : Rd);
9592 Rm = inst.operands[2].reg;
9593
9594 reject_bad_reg (Rd);
9595 reject_bad_reg (Rn);
9596 reject_bad_reg (Rm);
9597
9598 inst.instruction |= Rd << 8;
9599 inst.instruction |= Rn << 16;
9600 inst.instruction |= Rm;
9601 }
9602
9603 static void
9604 do_t_hint (void)
9605 {
9606 if (unified_syntax && inst.size_req == 4)
9607 inst.instruction = THUMB_OP32 (inst.instruction);
9608 else
9609 inst.instruction = THUMB_OP16 (inst.instruction);
9610 }
9611
9612 static void
9613 do_t_it (void)
9614 {
9615 unsigned int cond = inst.operands[0].imm;
9616
9617 set_it_insn_type (IT_INSN);
9618 now_it.mask = (inst.instruction & 0xf) | 0x10;
9619 now_it.cc = cond;
9620
9621 /* If the condition is a negative condition, invert the mask. */
9622 if ((cond & 0x1) == 0x0)
9623 {
9624 unsigned int mask = inst.instruction & 0x000f;
9625
9626 if ((mask & 0x7) == 0)
9627 /* no conversion needed */;
9628 else if ((mask & 0x3) == 0)
9629 mask ^= 0x8;
9630 else if ((mask & 0x1) == 0)
9631 mask ^= 0xC;
9632 else
9633 mask ^= 0xE;
9634
9635 inst.instruction &= 0xfff0;
9636 inst.instruction |= mask;
9637 }
9638
9639 inst.instruction |= cond << 4;
9640 }
9641
9642 /* Helper function used for both push/pop and ldm/stm. */
9643 static void
9644 encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
9645 {
9646 bfd_boolean load;
9647
9648 load = (inst.instruction & (1 << 20)) != 0;
9649
9650 if (mask & (1 << 13))
9651 inst.error = _("SP not allowed in register list");
9652 if (load)
9653 {
9654 if (mask & (1 << 15))
9655 {
9656 if (mask & (1 << 14))
9657 inst.error = _("LR and PC should not both be in register list");
9658 else
9659 set_it_insn_type_last ();
9660 }
9661
9662 if ((mask & (1 << base)) != 0
9663 && writeback)
9664 as_warn (_("base register should not be in register list "
9665 "when written back"));
9666 }
9667 else
9668 {
9669 if (mask & (1 << 15))
9670 inst.error = _("PC not allowed in register list");
9671
9672 if (mask & (1 << base))
9673 as_warn (_("value stored for r%d is UNPREDICTABLE"), base);
9674 }
9675
9676 if ((mask & (mask - 1)) == 0)
9677 {
9678 /* Single register transfers implemented as str/ldr. */
9679 if (writeback)
9680 {
9681 if (inst.instruction & (1 << 23))
9682 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
9683 else
9684 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
9685 }
9686 else
9687 {
9688 if (inst.instruction & (1 << 23))
9689 inst.instruction = 0x00800000; /* ia -> [base] */
9690 else
9691 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
9692 }
9693
9694 inst.instruction |= 0xf8400000;
9695 if (load)
9696 inst.instruction |= 0x00100000;
9697
9698 mask = ffs (mask) - 1;
9699 mask <<= 12;
9700 }
9701 else if (writeback)
9702 inst.instruction |= WRITE_BACK;
9703
9704 inst.instruction |= mask;
9705 inst.instruction |= base << 16;
9706 }
9707
9708 static void
9709 do_t_ldmstm (void)
9710 {
9711 /* This really doesn't seem worth it. */
9712 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
9713 _("expression too complex"));
9714 constraint (inst.operands[1].writeback,
9715 _("Thumb load/store multiple does not support {reglist}^"));
9716
9717 if (unified_syntax)
9718 {
9719 bfd_boolean narrow;
9720 unsigned mask;
9721
9722 narrow = FALSE;
9723 /* See if we can use a 16-bit instruction. */
9724 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
9725 && inst.size_req != 4
9726 && !(inst.operands[1].imm & ~0xff))
9727 {
9728 mask = 1 << inst.operands[0].reg;
9729
9730 if (inst.operands[0].reg <= 7
9731 && (inst.instruction == T_MNEM_stmia
9732 ? inst.operands[0].writeback
9733 : (inst.operands[0].writeback
9734 == !(inst.operands[1].imm & mask))))
9735 {
9736 if (inst.instruction == T_MNEM_stmia
9737 && (inst.operands[1].imm & mask)
9738 && (inst.operands[1].imm & (mask - 1)))
9739 as_warn (_("value stored for r%d is UNPREDICTABLE"),
9740 inst.operands[0].reg);
9741
9742 inst.instruction = THUMB_OP16 (inst.instruction);
9743 inst.instruction |= inst.operands[0].reg << 8;
9744 inst.instruction |= inst.operands[1].imm;
9745 narrow = TRUE;
9746 }
9747 else if (inst.operands[0] .reg == REG_SP
9748 && inst.operands[0].writeback)
9749 {
9750 inst.instruction = THUMB_OP16 (inst.instruction == T_MNEM_stmia
9751 ? T_MNEM_push : T_MNEM_pop);
9752 inst.instruction |= inst.operands[1].imm;
9753 narrow = TRUE;
9754 }
9755 }
9756
9757 if (!narrow)
9758 {
9759 if (inst.instruction < 0xffff)
9760 inst.instruction = THUMB_OP32 (inst.instruction);
9761
9762 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
9763 inst.operands[0].writeback);
9764 }
9765 }
9766 else
9767 {
9768 constraint (inst.operands[0].reg > 7
9769 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
9770 constraint (inst.instruction != T_MNEM_ldmia
9771 && inst.instruction != T_MNEM_stmia,
9772 _("Thumb-2 instruction only valid in unified syntax"));
9773 if (inst.instruction == T_MNEM_stmia)
9774 {
9775 if (!inst.operands[0].writeback)
9776 as_warn (_("this instruction will write back the base register"));
9777 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
9778 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
9779 as_warn (_("value stored for r%d is UNPREDICTABLE"),
9780 inst.operands[0].reg);
9781 }
9782 else
9783 {
9784 if (!inst.operands[0].writeback
9785 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
9786 as_warn (_("this instruction will write back the base register"));
9787 else if (inst.operands[0].writeback
9788 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
9789 as_warn (_("this instruction will not write back the base register"));
9790 }
9791
9792 inst.instruction = THUMB_OP16 (inst.instruction);
9793 inst.instruction |= inst.operands[0].reg << 8;
9794 inst.instruction |= inst.operands[1].imm;
9795 }
9796 }
9797
9798 static void
9799 do_t_ldrex (void)
9800 {
9801 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9802 || inst.operands[1].postind || inst.operands[1].writeback
9803 || inst.operands[1].immisreg || inst.operands[1].shifted
9804 || inst.operands[1].negative,
9805 BAD_ADDR_MODE);
9806
9807 inst.instruction |= inst.operands[0].reg << 12;
9808 inst.instruction |= inst.operands[1].reg << 16;
9809 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
9810 }
9811
9812 static void
9813 do_t_ldrexd (void)
9814 {
9815 if (!inst.operands[1].present)
9816 {
9817 constraint (inst.operands[0].reg == REG_LR,
9818 _("r14 not allowed as first register "
9819 "when second register is omitted"));
9820 inst.operands[1].reg = inst.operands[0].reg + 1;
9821 }
9822 constraint (inst.operands[0].reg == inst.operands[1].reg,
9823 BAD_OVERLAP);
9824
9825 inst.instruction |= inst.operands[0].reg << 12;
9826 inst.instruction |= inst.operands[1].reg << 8;
9827 inst.instruction |= inst.operands[2].reg << 16;
9828 }
9829
9830 static void
9831 do_t_ldst (void)
9832 {
9833 unsigned long opcode;
9834 int Rn;
9835
9836 if (inst.operands[0].isreg
9837 && !inst.operands[0].preind
9838 && inst.operands[0].reg == REG_PC)
9839 set_it_insn_type_last ();
9840
9841 opcode = inst.instruction;
9842 if (unified_syntax)
9843 {
9844 if (!inst.operands[1].isreg)
9845 {
9846 if (opcode <= 0xffff)
9847 inst.instruction = THUMB_OP32 (opcode);
9848 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9849 return;
9850 }
9851 if (inst.operands[1].isreg
9852 && !inst.operands[1].writeback
9853 && !inst.operands[1].shifted && !inst.operands[1].postind
9854 && !inst.operands[1].negative && inst.operands[0].reg <= 7
9855 && opcode <= 0xffff
9856 && inst.size_req != 4)
9857 {
9858 /* Insn may have a 16-bit form. */
9859 Rn = inst.operands[1].reg;
9860 if (inst.operands[1].immisreg)
9861 {
9862 inst.instruction = THUMB_OP16 (opcode);
9863 /* [Rn, Rik] */
9864 if (Rn <= 7 && inst.operands[1].imm <= 7)
9865 goto op16;
9866 }
9867 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
9868 && opcode != T_MNEM_ldrsb)
9869 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
9870 || (Rn == REG_SP && opcode == T_MNEM_str))
9871 {
9872 /* [Rn, #const] */
9873 if (Rn > 7)
9874 {
9875 if (Rn == REG_PC)
9876 {
9877 if (inst.reloc.pc_rel)
9878 opcode = T_MNEM_ldr_pc2;
9879 else
9880 opcode = T_MNEM_ldr_pc;
9881 }
9882 else
9883 {
9884 if (opcode == T_MNEM_ldr)
9885 opcode = T_MNEM_ldr_sp;
9886 else
9887 opcode = T_MNEM_str_sp;
9888 }
9889 inst.instruction = inst.operands[0].reg << 8;
9890 }
9891 else
9892 {
9893 inst.instruction = inst.operands[0].reg;
9894 inst.instruction |= inst.operands[1].reg << 3;
9895 }
9896 inst.instruction |= THUMB_OP16 (opcode);
9897 if (inst.size_req == 2)
9898 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9899 else
9900 inst.relax = opcode;
9901 return;
9902 }
9903 }
9904 /* Definitely a 32-bit variant. */
9905 inst.instruction = THUMB_OP32 (opcode);
9906 inst.instruction |= inst.operands[0].reg << 12;
9907 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
9908 return;
9909 }
9910
9911 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9912
9913 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
9914 {
9915 /* Only [Rn,Rm] is acceptable. */
9916 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
9917 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
9918 || inst.operands[1].postind || inst.operands[1].shifted
9919 || inst.operands[1].negative,
9920 _("Thumb does not support this addressing mode"));
9921 inst.instruction = THUMB_OP16 (inst.instruction);
9922 goto op16;
9923 }
9924
9925 inst.instruction = THUMB_OP16 (inst.instruction);
9926 if (!inst.operands[1].isreg)
9927 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9928 return;
9929
9930 constraint (!inst.operands[1].preind
9931 || inst.operands[1].shifted
9932 || inst.operands[1].writeback,
9933 _("Thumb does not support this addressing mode"));
9934 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
9935 {
9936 constraint (inst.instruction & 0x0600,
9937 _("byte or halfword not valid for base register"));
9938 constraint (inst.operands[1].reg == REG_PC
9939 && !(inst.instruction & THUMB_LOAD_BIT),
9940 _("r15 based store not allowed"));
9941 constraint (inst.operands[1].immisreg,
9942 _("invalid base register for register offset"));
9943
9944 if (inst.operands[1].reg == REG_PC)
9945 inst.instruction = T_OPCODE_LDR_PC;
9946 else if (inst.instruction & THUMB_LOAD_BIT)
9947 inst.instruction = T_OPCODE_LDR_SP;
9948 else
9949 inst.instruction = T_OPCODE_STR_SP;
9950
9951 inst.instruction |= inst.operands[0].reg << 8;
9952 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9953 return;
9954 }
9955
9956 constraint (inst.operands[1].reg > 7, BAD_HIREG);
9957 if (!inst.operands[1].immisreg)
9958 {
9959 /* Immediate offset. */
9960 inst.instruction |= inst.operands[0].reg;
9961 inst.instruction |= inst.operands[1].reg << 3;
9962 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9963 return;
9964 }
9965
9966 /* Register offset. */
9967 constraint (inst.operands[1].imm > 7, BAD_HIREG);
9968 constraint (inst.operands[1].negative,
9969 _("Thumb does not support this addressing mode"));
9970
9971 op16:
9972 switch (inst.instruction)
9973 {
9974 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
9975 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
9976 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
9977 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
9978 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
9979 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
9980 case 0x5600 /* ldrsb */:
9981 case 0x5e00 /* ldrsh */: break;
9982 default: abort ();
9983 }
9984
9985 inst.instruction |= inst.operands[0].reg;
9986 inst.instruction |= inst.operands[1].reg << 3;
9987 inst.instruction |= inst.operands[1].imm << 6;
9988 }
9989
9990 static void
9991 do_t_ldstd (void)
9992 {
9993 if (!inst.operands[1].present)
9994 {
9995 inst.operands[1].reg = inst.operands[0].reg + 1;
9996 constraint (inst.operands[0].reg == REG_LR,
9997 _("r14 not allowed here"));
9998 }
9999 inst.instruction |= inst.operands[0].reg << 12;
10000 inst.instruction |= inst.operands[1].reg << 8;
10001 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
10002 }
10003
10004 static void
10005 do_t_ldstt (void)
10006 {
10007 inst.instruction |= inst.operands[0].reg << 12;
10008 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
10009 }
10010
10011 static void
10012 do_t_mla (void)
10013 {
10014 unsigned Rd, Rn, Rm, Ra;
10015
10016 Rd = inst.operands[0].reg;
10017 Rn = inst.operands[1].reg;
10018 Rm = inst.operands[2].reg;
10019 Ra = inst.operands[3].reg;
10020
10021 reject_bad_reg (Rd);
10022 reject_bad_reg (Rn);
10023 reject_bad_reg (Rm);
10024 reject_bad_reg (Ra);
10025
10026 inst.instruction |= Rd << 8;
10027 inst.instruction |= Rn << 16;
10028 inst.instruction |= Rm;
10029 inst.instruction |= Ra << 12;
10030 }
10031
10032 static void
10033 do_t_mlal (void)
10034 {
10035 unsigned RdLo, RdHi, Rn, Rm;
10036
10037 RdLo = inst.operands[0].reg;
10038 RdHi = inst.operands[1].reg;
10039 Rn = inst.operands[2].reg;
10040 Rm = inst.operands[3].reg;
10041
10042 reject_bad_reg (RdLo);
10043 reject_bad_reg (RdHi);
10044 reject_bad_reg (Rn);
10045 reject_bad_reg (Rm);
10046
10047 inst.instruction |= RdLo << 12;
10048 inst.instruction |= RdHi << 8;
10049 inst.instruction |= Rn << 16;
10050 inst.instruction |= Rm;
10051 }
10052
10053 static void
10054 do_t_mov_cmp (void)
10055 {
10056 unsigned Rn, Rm;
10057
10058 Rn = inst.operands[0].reg;
10059 Rm = inst.operands[1].reg;
10060
10061 if (Rn == REG_PC)
10062 set_it_insn_type_last ();
10063
10064 if (unified_syntax)
10065 {
10066 int r0off = (inst.instruction == T_MNEM_mov
10067 || inst.instruction == T_MNEM_movs) ? 8 : 16;
10068 unsigned long opcode;
10069 bfd_boolean narrow;
10070 bfd_boolean low_regs;
10071
10072 low_regs = (Rn <= 7 && Rm <= 7);
10073 opcode = inst.instruction;
10074 if (in_it_block ())
10075 narrow = opcode != T_MNEM_movs;
10076 else
10077 narrow = opcode != T_MNEM_movs || low_regs;
10078 if (inst.size_req == 4
10079 || inst.operands[1].shifted)
10080 narrow = FALSE;
10081
10082 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
10083 if (opcode == T_MNEM_movs && inst.operands[1].isreg
10084 && !inst.operands[1].shifted
10085 && Rn == REG_PC
10086 && Rm == REG_LR)
10087 {
10088 inst.instruction = T2_SUBS_PC_LR;
10089 return;
10090 }
10091
10092 if (opcode == T_MNEM_cmp)
10093 {
10094 constraint (Rn == REG_PC, BAD_PC);
10095 if (narrow)
10096 {
10097 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
10098 but valid. */
10099 warn_deprecated_sp (Rm);
10100 /* R15 was documented as a valid choice for Rm in ARMv6,
10101 but as UNPREDICTABLE in ARMv7. ARM's proprietary
10102 tools reject R15, so we do too. */
10103 constraint (Rm == REG_PC, BAD_PC);
10104 }
10105 else
10106 reject_bad_reg (Rm);
10107 }
10108 else if (opcode == T_MNEM_mov
10109 || opcode == T_MNEM_movs)
10110 {
10111 if (inst.operands[1].isreg)
10112 {
10113 if (opcode == T_MNEM_movs)
10114 {
10115 reject_bad_reg (Rn);
10116 reject_bad_reg (Rm);
10117 }
10118 else if ((Rn == REG_SP || Rn == REG_PC)
10119 && (Rm == REG_SP || Rm == REG_PC))
10120 reject_bad_reg (Rm);
10121 }
10122 else
10123 reject_bad_reg (Rn);
10124 }
10125
10126 if (!inst.operands[1].isreg)
10127 {
10128 /* Immediate operand. */
10129 if (!in_it_block () && opcode == T_MNEM_mov)
10130 narrow = 0;
10131 if (low_regs && narrow)
10132 {
10133 inst.instruction = THUMB_OP16 (opcode);
10134 inst.instruction |= Rn << 8;
10135 if (inst.size_req == 2)
10136 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10137 else
10138 inst.relax = opcode;
10139 }
10140 else
10141 {
10142 inst.instruction = THUMB_OP32 (inst.instruction);
10143 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10144 inst.instruction |= Rn << r0off;
10145 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10146 }
10147 }
10148 else if (inst.operands[1].shifted && inst.operands[1].immisreg
10149 && (inst.instruction == T_MNEM_mov
10150 || inst.instruction == T_MNEM_movs))
10151 {
10152 /* Register shifts are encoded as separate shift instructions. */
10153 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
10154
10155 if (in_it_block ())
10156 narrow = !flags;
10157 else
10158 narrow = flags;
10159
10160 if (inst.size_req == 4)
10161 narrow = FALSE;
10162
10163 if (!low_regs || inst.operands[1].imm > 7)
10164 narrow = FALSE;
10165
10166 if (Rn != Rm)
10167 narrow = FALSE;
10168
10169 switch (inst.operands[1].shift_kind)
10170 {
10171 case SHIFT_LSL:
10172 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
10173 break;
10174 case SHIFT_ASR:
10175 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
10176 break;
10177 case SHIFT_LSR:
10178 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
10179 break;
10180 case SHIFT_ROR:
10181 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
10182 break;
10183 default:
10184 abort ();
10185 }
10186
10187 inst.instruction = opcode;
10188 if (narrow)
10189 {
10190 inst.instruction |= Rn;
10191 inst.instruction |= inst.operands[1].imm << 3;
10192 }
10193 else
10194 {
10195 if (flags)
10196 inst.instruction |= CONDS_BIT;
10197
10198 inst.instruction |= Rn << 8;
10199 inst.instruction |= Rm << 16;
10200 inst.instruction |= inst.operands[1].imm;
10201 }
10202 }
10203 else if (!narrow)
10204 {
10205 /* Some mov with immediate shift have narrow variants.
10206 Register shifts are handled above. */
10207 if (low_regs && inst.operands[1].shifted
10208 && (inst.instruction == T_MNEM_mov
10209 || inst.instruction == T_MNEM_movs))
10210 {
10211 if (in_it_block ())
10212 narrow = (inst.instruction == T_MNEM_mov);
10213 else
10214 narrow = (inst.instruction == T_MNEM_movs);
10215 }
10216
10217 if (narrow)
10218 {
10219 switch (inst.operands[1].shift_kind)
10220 {
10221 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
10222 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
10223 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
10224 default: narrow = FALSE; break;
10225 }
10226 }
10227
10228 if (narrow)
10229 {
10230 inst.instruction |= Rn;
10231 inst.instruction |= Rm << 3;
10232 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10233 }
10234 else
10235 {
10236 inst.instruction = THUMB_OP32 (inst.instruction);
10237 inst.instruction |= Rn << r0off;
10238 encode_thumb32_shifted_operand (1);
10239 }
10240 }
10241 else
10242 switch (inst.instruction)
10243 {
10244 case T_MNEM_mov:
10245 inst.instruction = T_OPCODE_MOV_HR;
10246 inst.instruction |= (Rn & 0x8) << 4;
10247 inst.instruction |= (Rn & 0x7);
10248 inst.instruction |= Rm << 3;
10249 break;
10250
10251 case T_MNEM_movs:
10252 /* We know we have low registers at this point.
10253 Generate ADD Rd, Rs, #0. */
10254 inst.instruction = T_OPCODE_ADD_I3;
10255 inst.instruction |= Rn;
10256 inst.instruction |= Rm << 3;
10257 break;
10258
10259 case T_MNEM_cmp:
10260 if (low_regs)
10261 {
10262 inst.instruction = T_OPCODE_CMP_LR;
10263 inst.instruction |= Rn;
10264 inst.instruction |= Rm << 3;
10265 }
10266 else
10267 {
10268 inst.instruction = T_OPCODE_CMP_HR;
10269 inst.instruction |= (Rn & 0x8) << 4;
10270 inst.instruction |= (Rn & 0x7);
10271 inst.instruction |= Rm << 3;
10272 }
10273 break;
10274 }
10275 return;
10276 }
10277
10278 inst.instruction = THUMB_OP16 (inst.instruction);
10279
10280 /* PR 10443: Do not silently ignore shifted operands. */
10281 constraint (inst.operands[1].shifted,
10282 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
10283
10284 if (inst.operands[1].isreg)
10285 {
10286 if (Rn < 8 && Rm < 8)
10287 {
10288 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
10289 since a MOV instruction produces unpredictable results. */
10290 if (inst.instruction == T_OPCODE_MOV_I8)
10291 inst.instruction = T_OPCODE_ADD_I3;
10292 else
10293 inst.instruction = T_OPCODE_CMP_LR;
10294
10295 inst.instruction |= Rn;
10296 inst.instruction |= Rm << 3;
10297 }
10298 else
10299 {
10300 if (inst.instruction == T_OPCODE_MOV_I8)
10301 inst.instruction = T_OPCODE_MOV_HR;
10302 else
10303 inst.instruction = T_OPCODE_CMP_HR;
10304 do_t_cpy ();
10305 }
10306 }
10307 else
10308 {
10309 constraint (Rn > 7,
10310 _("only lo regs allowed with immediate"));
10311 inst.instruction |= Rn << 8;
10312 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10313 }
10314 }
10315
10316 static void
10317 do_t_mov16 (void)
10318 {
10319 unsigned Rd;
10320 bfd_vma imm;
10321 bfd_boolean top;
10322
10323 top = (inst.instruction & 0x00800000) != 0;
10324 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
10325 {
10326 constraint (top, _(":lower16: not allowed this instruction"));
10327 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
10328 }
10329 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
10330 {
10331 constraint (!top, _(":upper16: not allowed this instruction"));
10332 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
10333 }
10334
10335 Rd = inst.operands[0].reg;
10336 reject_bad_reg (Rd);
10337
10338 inst.instruction |= Rd << 8;
10339 if (inst.reloc.type == BFD_RELOC_UNUSED)
10340 {
10341 imm = inst.reloc.exp.X_add_number;
10342 inst.instruction |= (imm & 0xf000) << 4;
10343 inst.instruction |= (imm & 0x0800) << 15;
10344 inst.instruction |= (imm & 0x0700) << 4;
10345 inst.instruction |= (imm & 0x00ff);
10346 }
10347 }
10348
10349 static void
10350 do_t_mvn_tst (void)
10351 {
10352 unsigned Rn, Rm;
10353
10354 Rn = inst.operands[0].reg;
10355 Rm = inst.operands[1].reg;
10356
10357 if (inst.instruction == T_MNEM_cmp
10358 || inst.instruction == T_MNEM_cmn)
10359 constraint (Rn == REG_PC, BAD_PC);
10360 else
10361 reject_bad_reg (Rn);
10362 reject_bad_reg (Rm);
10363
10364 if (unified_syntax)
10365 {
10366 int r0off = (inst.instruction == T_MNEM_mvn
10367 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
10368 bfd_boolean narrow;
10369
10370 if (inst.size_req == 4
10371 || inst.instruction > 0xffff
10372 || inst.operands[1].shifted
10373 || Rn > 7 || Rm > 7)
10374 narrow = FALSE;
10375 else if (inst.instruction == T_MNEM_cmn)
10376 narrow = TRUE;
10377 else if (THUMB_SETS_FLAGS (inst.instruction))
10378 narrow = !in_it_block ();
10379 else
10380 narrow = in_it_block ();
10381
10382 if (!inst.operands[1].isreg)
10383 {
10384 /* For an immediate, we always generate a 32-bit opcode;
10385 section relaxation will shrink it later if possible. */
10386 if (inst.instruction < 0xffff)
10387 inst.instruction = THUMB_OP32 (inst.instruction);
10388 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10389 inst.instruction |= Rn << r0off;
10390 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10391 }
10392 else
10393 {
10394 /* See if we can do this with a 16-bit instruction. */
10395 if (narrow)
10396 {
10397 inst.instruction = THUMB_OP16 (inst.instruction);
10398 inst.instruction |= Rn;
10399 inst.instruction |= Rm << 3;
10400 }
10401 else
10402 {
10403 constraint (inst.operands[1].shifted
10404 && inst.operands[1].immisreg,
10405 _("shift must be constant"));
10406 if (inst.instruction < 0xffff)
10407 inst.instruction = THUMB_OP32 (inst.instruction);
10408 inst.instruction |= Rn << r0off;
10409 encode_thumb32_shifted_operand (1);
10410 }
10411 }
10412 }
10413 else
10414 {
10415 constraint (inst.instruction > 0xffff
10416 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
10417 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
10418 _("unshifted register required"));
10419 constraint (Rn > 7 || Rm > 7,
10420 BAD_HIREG);
10421
10422 inst.instruction = THUMB_OP16 (inst.instruction);
10423 inst.instruction |= Rn;
10424 inst.instruction |= Rm << 3;
10425 }
10426 }
10427
10428 static void
10429 do_t_mrs (void)
10430 {
10431 unsigned Rd;
10432 int flags;
10433
10434 if (do_vfp_nsyn_mrs () == SUCCESS)
10435 return;
10436
10437 flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
10438 if (flags == 0)
10439 {
10440 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m),
10441 _("selected processor does not support "
10442 "requested special purpose register"));
10443 }
10444 else
10445 {
10446 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
10447 _("selected processor does not support "
10448 "requested special purpose register"));
10449 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
10450 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
10451 _("'CPSR' or 'SPSR' expected"));
10452 }
10453
10454 Rd = inst.operands[0].reg;
10455 reject_bad_reg (Rd);
10456
10457 inst.instruction |= Rd << 8;
10458 inst.instruction |= (flags & SPSR_BIT) >> 2;
10459 inst.instruction |= inst.operands[1].imm & 0xff;
10460 }
10461
10462 static void
10463 do_t_msr (void)
10464 {
10465 int flags;
10466 unsigned Rn;
10467
10468 if (do_vfp_nsyn_msr () == SUCCESS)
10469 return;
10470
10471 constraint (!inst.operands[1].isreg,
10472 _("Thumb encoding does not support an immediate here"));
10473 flags = inst.operands[0].imm;
10474 if (flags & ~0xff)
10475 {
10476 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
10477 _("selected processor does not support "
10478 "requested special purpose register"));
10479 }
10480 else
10481 {
10482 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m),
10483 _("selected processor does not support "
10484 "requested special purpose register"));
10485 flags |= PSR_f;
10486 }
10487
10488 Rn = inst.operands[1].reg;
10489 reject_bad_reg (Rn);
10490
10491 inst.instruction |= (flags & SPSR_BIT) >> 2;
10492 inst.instruction |= (flags & ~SPSR_BIT) >> 8;
10493 inst.instruction |= (flags & 0xff);
10494 inst.instruction |= Rn << 16;
10495 }
10496
10497 static void
10498 do_t_mul (void)
10499 {
10500 bfd_boolean narrow;
10501 unsigned Rd, Rn, Rm;
10502
10503 if (!inst.operands[2].present)
10504 inst.operands[2].reg = inst.operands[0].reg;
10505
10506 Rd = inst.operands[0].reg;
10507 Rn = inst.operands[1].reg;
10508 Rm = inst.operands[2].reg;
10509
10510 if (unified_syntax)
10511 {
10512 if (inst.size_req == 4
10513 || (Rd != Rn
10514 && Rd != Rm)
10515 || Rn > 7
10516 || Rm > 7)
10517 narrow = FALSE;
10518 else if (inst.instruction == T_MNEM_muls)
10519 narrow = !in_it_block ();
10520 else
10521 narrow = in_it_block ();
10522 }
10523 else
10524 {
10525 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
10526 constraint (Rn > 7 || Rm > 7,
10527 BAD_HIREG);
10528 narrow = TRUE;
10529 }
10530
10531 if (narrow)
10532 {
10533 /* 16-bit MULS/Conditional MUL. */
10534 inst.instruction = THUMB_OP16 (inst.instruction);
10535 inst.instruction |= Rd;
10536
10537 if (Rd == Rn)
10538 inst.instruction |= Rm << 3;
10539 else if (Rd == Rm)
10540 inst.instruction |= Rn << 3;
10541 else
10542 constraint (1, _("dest must overlap one source register"));
10543 }
10544 else
10545 {
10546 constraint (inst.instruction != T_MNEM_mul,
10547 _("Thumb-2 MUL must not set flags"));
10548 /* 32-bit MUL. */
10549 inst.instruction = THUMB_OP32 (inst.instruction);
10550 inst.instruction |= Rd << 8;
10551 inst.instruction |= Rn << 16;
10552 inst.instruction |= Rm << 0;
10553
10554 reject_bad_reg (Rd);
10555 reject_bad_reg (Rn);
10556 reject_bad_reg (Rm);
10557 }
10558 }
10559
10560 static void
10561 do_t_mull (void)
10562 {
10563 unsigned RdLo, RdHi, Rn, Rm;
10564
10565 RdLo = inst.operands[0].reg;
10566 RdHi = inst.operands[1].reg;
10567 Rn = inst.operands[2].reg;
10568 Rm = inst.operands[3].reg;
10569
10570 reject_bad_reg (RdLo);
10571 reject_bad_reg (RdHi);
10572 reject_bad_reg (Rn);
10573 reject_bad_reg (Rm);
10574
10575 inst.instruction |= RdLo << 12;
10576 inst.instruction |= RdHi << 8;
10577 inst.instruction |= Rn << 16;
10578 inst.instruction |= Rm;
10579
10580 if (RdLo == RdHi)
10581 as_tsktsk (_("rdhi and rdlo must be different"));
10582 }
10583
10584 static void
10585 do_t_nop (void)
10586 {
10587 set_it_insn_type (NEUTRAL_IT_INSN);
10588
10589 if (unified_syntax)
10590 {
10591 if (inst.size_req == 4 || inst.operands[0].imm > 15)
10592 {
10593 inst.instruction = THUMB_OP32 (inst.instruction);
10594 inst.instruction |= inst.operands[0].imm;
10595 }
10596 else
10597 {
10598 /* PR9722: Check for Thumb2 availability before
10599 generating a thumb2 nop instruction. */
10600 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
10601 {
10602 inst.instruction = THUMB_OP16 (inst.instruction);
10603 inst.instruction |= inst.operands[0].imm << 4;
10604 }
10605 else
10606 inst.instruction = 0x46c0;
10607 }
10608 }
10609 else
10610 {
10611 constraint (inst.operands[0].present,
10612 _("Thumb does not support NOP with hints"));
10613 inst.instruction = 0x46c0;
10614 }
10615 }
10616
10617 static void
10618 do_t_neg (void)
10619 {
10620 if (unified_syntax)
10621 {
10622 bfd_boolean narrow;
10623
10624 if (THUMB_SETS_FLAGS (inst.instruction))
10625 narrow = !in_it_block ();
10626 else
10627 narrow = in_it_block ();
10628 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
10629 narrow = FALSE;
10630 if (inst.size_req == 4)
10631 narrow = FALSE;
10632
10633 if (!narrow)
10634 {
10635 inst.instruction = THUMB_OP32 (inst.instruction);
10636 inst.instruction |= inst.operands[0].reg << 8;
10637 inst.instruction |= inst.operands[1].reg << 16;
10638 }
10639 else
10640 {
10641 inst.instruction = THUMB_OP16 (inst.instruction);
10642 inst.instruction |= inst.operands[0].reg;
10643 inst.instruction |= inst.operands[1].reg << 3;
10644 }
10645 }
10646 else
10647 {
10648 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
10649 BAD_HIREG);
10650 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
10651
10652 inst.instruction = THUMB_OP16 (inst.instruction);
10653 inst.instruction |= inst.operands[0].reg;
10654 inst.instruction |= inst.operands[1].reg << 3;
10655 }
10656 }
10657
10658 static void
10659 do_t_orn (void)
10660 {
10661 unsigned Rd, Rn;
10662
10663 Rd = inst.operands[0].reg;
10664 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
10665
10666 reject_bad_reg (Rd);
10667 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
10668 reject_bad_reg (Rn);
10669
10670 inst.instruction |= Rd << 8;
10671 inst.instruction |= Rn << 16;
10672
10673 if (!inst.operands[2].isreg)
10674 {
10675 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10676 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10677 }
10678 else
10679 {
10680 unsigned Rm;
10681
10682 Rm = inst.operands[2].reg;
10683 reject_bad_reg (Rm);
10684
10685 constraint (inst.operands[2].shifted
10686 && inst.operands[2].immisreg,
10687 _("shift must be constant"));
10688 encode_thumb32_shifted_operand (2);
10689 }
10690 }
10691
10692 static void
10693 do_t_pkhbt (void)
10694 {
10695 unsigned Rd, Rn, Rm;
10696
10697 Rd = inst.operands[0].reg;
10698 Rn = inst.operands[1].reg;
10699 Rm = inst.operands[2].reg;
10700
10701 reject_bad_reg (Rd);
10702 reject_bad_reg (Rn);
10703 reject_bad_reg (Rm);
10704
10705 inst.instruction |= Rd << 8;
10706 inst.instruction |= Rn << 16;
10707 inst.instruction |= Rm;
10708 if (inst.operands[3].present)
10709 {
10710 unsigned int val = inst.reloc.exp.X_add_number;
10711 constraint (inst.reloc.exp.X_op != O_constant,
10712 _("expression too complex"));
10713 inst.instruction |= (val & 0x1c) << 10;
10714 inst.instruction |= (val & 0x03) << 6;
10715 }
10716 }
10717
10718 static void
10719 do_t_pkhtb (void)
10720 {
10721 if (!inst.operands[3].present)
10722 {
10723 unsigned Rtmp;
10724
10725 inst.instruction &= ~0x00000020;
10726
10727 /* PR 10168. Swap the Rm and Rn registers. */
10728 Rtmp = inst.operands[1].reg;
10729 inst.operands[1].reg = inst.operands[2].reg;
10730 inst.operands[2].reg = Rtmp;
10731 }
10732 do_t_pkhbt ();
10733 }
10734
10735 static void
10736 do_t_pld (void)
10737 {
10738 if (inst.operands[0].immisreg)
10739 reject_bad_reg (inst.operands[0].imm);
10740
10741 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
10742 }
10743
10744 static void
10745 do_t_push_pop (void)
10746 {
10747 unsigned mask;
10748
10749 constraint (inst.operands[0].writeback,
10750 _("push/pop do not support {reglist}^"));
10751 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
10752 _("expression too complex"));
10753
10754 mask = inst.operands[0].imm;
10755 if ((mask & ~0xff) == 0)
10756 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
10757 else if ((inst.instruction == T_MNEM_push
10758 && (mask & ~0xff) == 1 << REG_LR)
10759 || (inst.instruction == T_MNEM_pop
10760 && (mask & ~0xff) == 1 << REG_PC))
10761 {
10762 inst.instruction = THUMB_OP16 (inst.instruction);
10763 inst.instruction |= THUMB_PP_PC_LR;
10764 inst.instruction |= mask & 0xff;
10765 }
10766 else if (unified_syntax)
10767 {
10768 inst.instruction = THUMB_OP32 (inst.instruction);
10769 encode_thumb2_ldmstm (13, mask, TRUE);
10770 }
10771 else
10772 {
10773 inst.error = _("invalid register list to push/pop instruction");
10774 return;
10775 }
10776 }
10777
10778 static void
10779 do_t_rbit (void)
10780 {
10781 unsigned Rd, Rm;
10782
10783 Rd = inst.operands[0].reg;
10784 Rm = inst.operands[1].reg;
10785
10786 reject_bad_reg (Rd);
10787 reject_bad_reg (Rm);
10788
10789 inst.instruction |= Rd << 8;
10790 inst.instruction |= Rm << 16;
10791 inst.instruction |= Rm;
10792 }
10793
10794 static void
10795 do_t_rev (void)
10796 {
10797 unsigned Rd, Rm;
10798
10799 Rd = inst.operands[0].reg;
10800 Rm = inst.operands[1].reg;
10801
10802 reject_bad_reg (Rd);
10803 reject_bad_reg (Rm);
10804
10805 if (Rd <= 7 && Rm <= 7
10806 && inst.size_req != 4)
10807 {
10808 inst.instruction = THUMB_OP16 (inst.instruction);
10809 inst.instruction |= Rd;
10810 inst.instruction |= Rm << 3;
10811 }
10812 else if (unified_syntax)
10813 {
10814 inst.instruction = THUMB_OP32 (inst.instruction);
10815 inst.instruction |= Rd << 8;
10816 inst.instruction |= Rm << 16;
10817 inst.instruction |= Rm;
10818 }
10819 else
10820 inst.error = BAD_HIREG;
10821 }
10822
10823 static void
10824 do_t_rrx (void)
10825 {
10826 unsigned Rd, Rm;
10827
10828 Rd = inst.operands[0].reg;
10829 Rm = inst.operands[1].reg;
10830
10831 reject_bad_reg (Rd);
10832 reject_bad_reg (Rm);
10833
10834 inst.instruction |= Rd << 8;
10835 inst.instruction |= Rm;
10836 }
10837
10838 static void
10839 do_t_rsb (void)
10840 {
10841 unsigned Rd, Rs;
10842
10843 Rd = inst.operands[0].reg;
10844 Rs = (inst.operands[1].present
10845 ? inst.operands[1].reg /* Rd, Rs, foo */
10846 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10847
10848 reject_bad_reg (Rd);
10849 reject_bad_reg (Rs);
10850 if (inst.operands[2].isreg)
10851 reject_bad_reg (inst.operands[2].reg);
10852
10853 inst.instruction |= Rd << 8;
10854 inst.instruction |= Rs << 16;
10855 if (!inst.operands[2].isreg)
10856 {
10857 bfd_boolean narrow;
10858
10859 if ((inst.instruction & 0x00100000) != 0)
10860 narrow = !in_it_block ();
10861 else
10862 narrow = in_it_block ();
10863
10864 if (Rd > 7 || Rs > 7)
10865 narrow = FALSE;
10866
10867 if (inst.size_req == 4 || !unified_syntax)
10868 narrow = FALSE;
10869
10870 if (inst.reloc.exp.X_op != O_constant
10871 || inst.reloc.exp.X_add_number != 0)
10872 narrow = FALSE;
10873
10874 /* Turn rsb #0 into 16-bit neg. We should probably do this via
10875 relaxation, but it doesn't seem worth the hassle. */
10876 if (narrow)
10877 {
10878 inst.reloc.type = BFD_RELOC_UNUSED;
10879 inst.instruction = THUMB_OP16 (T_MNEM_negs);
10880 inst.instruction |= Rs << 3;
10881 inst.instruction |= Rd;
10882 }
10883 else
10884 {
10885 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10886 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10887 }
10888 }
10889 else
10890 encode_thumb32_shifted_operand (2);
10891 }
10892
10893 static void
10894 do_t_setend (void)
10895 {
10896 set_it_insn_type (OUTSIDE_IT_INSN);
10897 if (inst.operands[0].imm)
10898 inst.instruction |= 0x8;
10899 }
10900
10901 static void
10902 do_t_shift (void)
10903 {
10904 if (!inst.operands[1].present)
10905 inst.operands[1].reg = inst.operands[0].reg;
10906
10907 if (unified_syntax)
10908 {
10909 bfd_boolean narrow;
10910 int shift_kind;
10911
10912 switch (inst.instruction)
10913 {
10914 case T_MNEM_asr:
10915 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
10916 case T_MNEM_lsl:
10917 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
10918 case T_MNEM_lsr:
10919 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
10920 case T_MNEM_ror:
10921 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
10922 default: abort ();
10923 }
10924
10925 if (THUMB_SETS_FLAGS (inst.instruction))
10926 narrow = !in_it_block ();
10927 else
10928 narrow = in_it_block ();
10929 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
10930 narrow = FALSE;
10931 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
10932 narrow = FALSE;
10933 if (inst.operands[2].isreg
10934 && (inst.operands[1].reg != inst.operands[0].reg
10935 || inst.operands[2].reg > 7))
10936 narrow = FALSE;
10937 if (inst.size_req == 4)
10938 narrow = FALSE;
10939
10940 reject_bad_reg (inst.operands[0].reg);
10941 reject_bad_reg (inst.operands[1].reg);
10942
10943 if (!narrow)
10944 {
10945 if (inst.operands[2].isreg)
10946 {
10947 reject_bad_reg (inst.operands[2].reg);
10948 inst.instruction = THUMB_OP32 (inst.instruction);
10949 inst.instruction |= inst.operands[0].reg << 8;
10950 inst.instruction |= inst.operands[1].reg << 16;
10951 inst.instruction |= inst.operands[2].reg;
10952 }
10953 else
10954 {
10955 inst.operands[1].shifted = 1;
10956 inst.operands[1].shift_kind = shift_kind;
10957 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
10958 ? T_MNEM_movs : T_MNEM_mov);
10959 inst.instruction |= inst.operands[0].reg << 8;
10960 encode_thumb32_shifted_operand (1);
10961 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
10962 inst.reloc.type = BFD_RELOC_UNUSED;
10963 }
10964 }
10965 else
10966 {
10967 if (inst.operands[2].isreg)
10968 {
10969 switch (shift_kind)
10970 {
10971 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
10972 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
10973 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
10974 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
10975 default: abort ();
10976 }
10977
10978 inst.instruction |= inst.operands[0].reg;
10979 inst.instruction |= inst.operands[2].reg << 3;
10980 }
10981 else
10982 {
10983 switch (shift_kind)
10984 {
10985 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
10986 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
10987 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
10988 default: abort ();
10989 }
10990 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10991 inst.instruction |= inst.operands[0].reg;
10992 inst.instruction |= inst.operands[1].reg << 3;
10993 }
10994 }
10995 }
10996 else
10997 {
10998 constraint (inst.operands[0].reg > 7
10999 || inst.operands[1].reg > 7, BAD_HIREG);
11000 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11001
11002 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
11003 {
11004 constraint (inst.operands[2].reg > 7, BAD_HIREG);
11005 constraint (inst.operands[0].reg != inst.operands[1].reg,
11006 _("source1 and dest must be same register"));
11007
11008 switch (inst.instruction)
11009 {
11010 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
11011 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
11012 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
11013 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
11014 default: abort ();
11015 }
11016
11017 inst.instruction |= inst.operands[0].reg;
11018 inst.instruction |= inst.operands[2].reg << 3;
11019 }
11020 else
11021 {
11022 switch (inst.instruction)
11023 {
11024 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
11025 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
11026 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
11027 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
11028 default: abort ();
11029 }
11030 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11031 inst.instruction |= inst.operands[0].reg;
11032 inst.instruction |= inst.operands[1].reg << 3;
11033 }
11034 }
11035 }
11036
11037 static void
11038 do_t_simd (void)
11039 {
11040 unsigned Rd, Rn, Rm;
11041
11042 Rd = inst.operands[0].reg;
11043 Rn = inst.operands[1].reg;
11044 Rm = inst.operands[2].reg;
11045
11046 reject_bad_reg (Rd);
11047 reject_bad_reg (Rn);
11048 reject_bad_reg (Rm);
11049
11050 inst.instruction |= Rd << 8;
11051 inst.instruction |= Rn << 16;
11052 inst.instruction |= Rm;
11053 }
11054
11055 static void
11056 do_t_smc (void)
11057 {
11058 unsigned int value = inst.reloc.exp.X_add_number;
11059 constraint (inst.reloc.exp.X_op != O_constant,
11060 _("expression too complex"));
11061 inst.reloc.type = BFD_RELOC_UNUSED;
11062 inst.instruction |= (value & 0xf000) >> 12;
11063 inst.instruction |= (value & 0x0ff0);
11064 inst.instruction |= (value & 0x000f) << 16;
11065 }
11066
11067 static void
11068 do_t_ssat_usat (int bias)
11069 {
11070 unsigned Rd, Rn;
11071
11072 Rd = inst.operands[0].reg;
11073 Rn = inst.operands[2].reg;
11074
11075 reject_bad_reg (Rd);
11076 reject_bad_reg (Rn);
11077
11078 inst.instruction |= Rd << 8;
11079 inst.instruction |= inst.operands[1].imm - bias;
11080 inst.instruction |= Rn << 16;
11081
11082 if (inst.operands[3].present)
11083 {
11084 offsetT shift_amount = inst.reloc.exp.X_add_number;
11085
11086 inst.reloc.type = BFD_RELOC_UNUSED;
11087
11088 constraint (inst.reloc.exp.X_op != O_constant,
11089 _("expression too complex"));
11090
11091 if (shift_amount != 0)
11092 {
11093 constraint (shift_amount > 31,
11094 _("shift expression is too large"));
11095
11096 if (inst.operands[3].shift_kind == SHIFT_ASR)
11097 inst.instruction |= 0x00200000; /* sh bit. */
11098
11099 inst.instruction |= (shift_amount & 0x1c) << 10;
11100 inst.instruction |= (shift_amount & 0x03) << 6;
11101 }
11102 }
11103 }
11104
11105 static void
11106 do_t_ssat (void)
11107 {
11108 do_t_ssat_usat (1);
11109 }
11110
11111 static void
11112 do_t_ssat16 (void)
11113 {
11114 unsigned Rd, Rn;
11115
11116 Rd = inst.operands[0].reg;
11117 Rn = inst.operands[2].reg;
11118
11119 reject_bad_reg (Rd);
11120 reject_bad_reg (Rn);
11121
11122 inst.instruction |= Rd << 8;
11123 inst.instruction |= inst.operands[1].imm - 1;
11124 inst.instruction |= Rn << 16;
11125 }
11126
11127 static void
11128 do_t_strex (void)
11129 {
11130 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
11131 || inst.operands[2].postind || inst.operands[2].writeback
11132 || inst.operands[2].immisreg || inst.operands[2].shifted
11133 || inst.operands[2].negative,
11134 BAD_ADDR_MODE);
11135
11136 inst.instruction |= inst.operands[0].reg << 8;
11137 inst.instruction |= inst.operands[1].reg << 12;
11138 inst.instruction |= inst.operands[2].reg << 16;
11139 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
11140 }
11141
11142 static void
11143 do_t_strexd (void)
11144 {
11145 if (!inst.operands[2].present)
11146 inst.operands[2].reg = inst.operands[1].reg + 1;
11147
11148 constraint (inst.operands[0].reg == inst.operands[1].reg
11149 || inst.operands[0].reg == inst.operands[2].reg
11150 || inst.operands[0].reg == inst.operands[3].reg
11151 || inst.operands[1].reg == inst.operands[2].reg,
11152 BAD_OVERLAP);
11153
11154 inst.instruction |= inst.operands[0].reg;
11155 inst.instruction |= inst.operands[1].reg << 12;
11156 inst.instruction |= inst.operands[2].reg << 8;
11157 inst.instruction |= inst.operands[3].reg << 16;
11158 }
11159
11160 static void
11161 do_t_sxtah (void)
11162 {
11163 unsigned Rd, Rn, Rm;
11164
11165 Rd = inst.operands[0].reg;
11166 Rn = inst.operands[1].reg;
11167 Rm = inst.operands[2].reg;
11168
11169 reject_bad_reg (Rd);
11170 reject_bad_reg (Rn);
11171 reject_bad_reg (Rm);
11172
11173 inst.instruction |= Rd << 8;
11174 inst.instruction |= Rn << 16;
11175 inst.instruction |= Rm;
11176 inst.instruction |= inst.operands[3].imm << 4;
11177 }
11178
11179 static void
11180 do_t_sxth (void)
11181 {
11182 unsigned Rd, Rm;
11183
11184 Rd = inst.operands[0].reg;
11185 Rm = inst.operands[1].reg;
11186
11187 reject_bad_reg (Rd);
11188 reject_bad_reg (Rm);
11189
11190 if (inst.instruction <= 0xffff
11191 && inst.size_req != 4
11192 && Rd <= 7 && Rm <= 7
11193 && (!inst.operands[2].present || inst.operands[2].imm == 0))
11194 {
11195 inst.instruction = THUMB_OP16 (inst.instruction);
11196 inst.instruction |= Rd;
11197 inst.instruction |= Rm << 3;
11198 }
11199 else if (unified_syntax)
11200 {
11201 if (inst.instruction <= 0xffff)
11202 inst.instruction = THUMB_OP32 (inst.instruction);
11203 inst.instruction |= Rd << 8;
11204 inst.instruction |= Rm;
11205 inst.instruction |= inst.operands[2].imm << 4;
11206 }
11207 else
11208 {
11209 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
11210 _("Thumb encoding does not support rotation"));
11211 constraint (1, BAD_HIREG);
11212 }
11213 }
11214
11215 static void
11216 do_t_swi (void)
11217 {
11218 inst.reloc.type = BFD_RELOC_ARM_SWI;
11219 }
11220
11221 static void
11222 do_t_tb (void)
11223 {
11224 unsigned Rn, Rm;
11225 int half;
11226
11227 half = (inst.instruction & 0x10) != 0;
11228 set_it_insn_type_last ();
11229 constraint (inst.operands[0].immisreg,
11230 _("instruction requires register index"));
11231
11232 Rn = inst.operands[0].reg;
11233 Rm = inst.operands[0].imm;
11234
11235 constraint (Rn == REG_SP, BAD_SP);
11236 reject_bad_reg (Rm);
11237
11238 constraint (!half && inst.operands[0].shifted,
11239 _("instruction does not allow shifted index"));
11240 inst.instruction |= (Rn << 16) | Rm;
11241 }
11242
11243 static void
11244 do_t_usat (void)
11245 {
11246 do_t_ssat_usat (0);
11247 }
11248
11249 static void
11250 do_t_usat16 (void)
11251 {
11252 unsigned Rd, Rn;
11253
11254 Rd = inst.operands[0].reg;
11255 Rn = inst.operands[2].reg;
11256
11257 reject_bad_reg (Rd);
11258 reject_bad_reg (Rn);
11259
11260 inst.instruction |= Rd << 8;
11261 inst.instruction |= inst.operands[1].imm;
11262 inst.instruction |= Rn << 16;
11263 }
11264
11265 /* Neon instruction encoder helpers. */
11266
11267 /* Encodings for the different types for various Neon opcodes. */
11268
11269 /* An "invalid" code for the following tables. */
11270 #define N_INV -1u
11271
11272 struct neon_tab_entry
11273 {
11274 unsigned integer;
11275 unsigned float_or_poly;
11276 unsigned scalar_or_imm;
11277 };
11278
11279 /* Map overloaded Neon opcodes to their respective encodings. */
11280 #define NEON_ENC_TAB \
11281 X(vabd, 0x0000700, 0x1200d00, N_INV), \
11282 X(vmax, 0x0000600, 0x0000f00, N_INV), \
11283 X(vmin, 0x0000610, 0x0200f00, N_INV), \
11284 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
11285 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
11286 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
11287 X(vadd, 0x0000800, 0x0000d00, N_INV), \
11288 X(vsub, 0x1000800, 0x0200d00, N_INV), \
11289 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
11290 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
11291 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
11292 /* Register variants of the following two instructions are encoded as
11293 vcge / vcgt with the operands reversed. */ \
11294 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
11295 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
11296 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
11297 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
11298 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
11299 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
11300 X(vmlal, 0x0800800, N_INV, 0x0800240), \
11301 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
11302 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
11303 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
11304 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
11305 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
11306 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
11307 X(vshl, 0x0000400, N_INV, 0x0800510), \
11308 X(vqshl, 0x0000410, N_INV, 0x0800710), \
11309 X(vand, 0x0000110, N_INV, 0x0800030), \
11310 X(vbic, 0x0100110, N_INV, 0x0800030), \
11311 X(veor, 0x1000110, N_INV, N_INV), \
11312 X(vorn, 0x0300110, N_INV, 0x0800010), \
11313 X(vorr, 0x0200110, N_INV, 0x0800010), \
11314 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
11315 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
11316 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
11317 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
11318 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
11319 X(vst1, 0x0000000, 0x0800000, N_INV), \
11320 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
11321 X(vst2, 0x0000100, 0x0800100, N_INV), \
11322 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
11323 X(vst3, 0x0000200, 0x0800200, N_INV), \
11324 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
11325 X(vst4, 0x0000300, 0x0800300, N_INV), \
11326 X(vmovn, 0x1b20200, N_INV, N_INV), \
11327 X(vtrn, 0x1b20080, N_INV, N_INV), \
11328 X(vqmovn, 0x1b20200, N_INV, N_INV), \
11329 X(vqmovun, 0x1b20240, N_INV, N_INV), \
11330 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
11331 X(vnmla, 0xe000a40, 0xe000b40, N_INV), \
11332 X(vnmls, 0xe100a40, 0xe100b40, N_INV), \
11333 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
11334 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
11335 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
11336 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
11337
11338 enum neon_opc
11339 {
11340 #define X(OPC,I,F,S) N_MNEM_##OPC
11341 NEON_ENC_TAB
11342 #undef X
11343 };
11344
11345 static const struct neon_tab_entry neon_enc_tab[] =
11346 {
11347 #define X(OPC,I,F,S) { (I), (F), (S) }
11348 NEON_ENC_TAB
11349 #undef X
11350 };
11351
11352 #define NEON_ENC_INTEGER(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11353 #define NEON_ENC_ARMREG(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11354 #define NEON_ENC_POLY(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11355 #define NEON_ENC_FLOAT(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11356 #define NEON_ENC_SCALAR(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11357 #define NEON_ENC_IMMED(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11358 #define NEON_ENC_INTERLV(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11359 #define NEON_ENC_LANE(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11360 #define NEON_ENC_DUP(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11361 #define NEON_ENC_SINGLE(X) \
11362 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
11363 #define NEON_ENC_DOUBLE(X) \
11364 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
11365
11366 /* Define shapes for instruction operands. The following mnemonic characters
11367 are used in this table:
11368
11369 F - VFP S<n> register
11370 D - Neon D<n> register
11371 Q - Neon Q<n> register
11372 I - Immediate
11373 S - Scalar
11374 R - ARM register
11375 L - D<n> register list
11376
11377 This table is used to generate various data:
11378 - enumerations of the form NS_DDR to be used as arguments to
11379 neon_select_shape.
11380 - a table classifying shapes into single, double, quad, mixed.
11381 - a table used to drive neon_select_shape. */
11382
11383 #define NEON_SHAPE_DEF \
11384 X(3, (D, D, D), DOUBLE), \
11385 X(3, (Q, Q, Q), QUAD), \
11386 X(3, (D, D, I), DOUBLE), \
11387 X(3, (Q, Q, I), QUAD), \
11388 X(3, (D, D, S), DOUBLE), \
11389 X(3, (Q, Q, S), QUAD), \
11390 X(2, (D, D), DOUBLE), \
11391 X(2, (Q, Q), QUAD), \
11392 X(2, (D, S), DOUBLE), \
11393 X(2, (Q, S), QUAD), \
11394 X(2, (D, R), DOUBLE), \
11395 X(2, (Q, R), QUAD), \
11396 X(2, (D, I), DOUBLE), \
11397 X(2, (Q, I), QUAD), \
11398 X(3, (D, L, D), DOUBLE), \
11399 X(2, (D, Q), MIXED), \
11400 X(2, (Q, D), MIXED), \
11401 X(3, (D, Q, I), MIXED), \
11402 X(3, (Q, D, I), MIXED), \
11403 X(3, (Q, D, D), MIXED), \
11404 X(3, (D, Q, Q), MIXED), \
11405 X(3, (Q, Q, D), MIXED), \
11406 X(3, (Q, D, S), MIXED), \
11407 X(3, (D, Q, S), MIXED), \
11408 X(4, (D, D, D, I), DOUBLE), \
11409 X(4, (Q, Q, Q, I), QUAD), \
11410 X(2, (F, F), SINGLE), \
11411 X(3, (F, F, F), SINGLE), \
11412 X(2, (F, I), SINGLE), \
11413 X(2, (F, D), MIXED), \
11414 X(2, (D, F), MIXED), \
11415 X(3, (F, F, I), MIXED), \
11416 X(4, (R, R, F, F), SINGLE), \
11417 X(4, (F, F, R, R), SINGLE), \
11418 X(3, (D, R, R), DOUBLE), \
11419 X(3, (R, R, D), DOUBLE), \
11420 X(2, (S, R), SINGLE), \
11421 X(2, (R, S), SINGLE), \
11422 X(2, (F, R), SINGLE), \
11423 X(2, (R, F), SINGLE)
11424
11425 #define S2(A,B) NS_##A##B
11426 #define S3(A,B,C) NS_##A##B##C
11427 #define S4(A,B,C,D) NS_##A##B##C##D
11428
11429 #define X(N, L, C) S##N L
11430
11431 enum neon_shape
11432 {
11433 NEON_SHAPE_DEF,
11434 NS_NULL
11435 };
11436
11437 #undef X
11438 #undef S2
11439 #undef S3
11440 #undef S4
11441
11442 enum neon_shape_class
11443 {
11444 SC_SINGLE,
11445 SC_DOUBLE,
11446 SC_QUAD,
11447 SC_MIXED
11448 };
11449
11450 #define X(N, L, C) SC_##C
11451
11452 static enum neon_shape_class neon_shape_class[] =
11453 {
11454 NEON_SHAPE_DEF
11455 };
11456
11457 #undef X
11458
11459 enum neon_shape_el
11460 {
11461 SE_F,
11462 SE_D,
11463 SE_Q,
11464 SE_I,
11465 SE_S,
11466 SE_R,
11467 SE_L
11468 };
11469
11470 /* Register widths of above. */
11471 static unsigned neon_shape_el_size[] =
11472 {
11473 32,
11474 64,
11475 128,
11476 0,
11477 32,
11478 32,
11479 0
11480 };
11481
11482 struct neon_shape_info
11483 {
11484 unsigned els;
11485 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
11486 };
11487
11488 #define S2(A,B) { SE_##A, SE_##B }
11489 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
11490 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
11491
11492 #define X(N, L, C) { N, S##N L }
11493
11494 static struct neon_shape_info neon_shape_tab[] =
11495 {
11496 NEON_SHAPE_DEF
11497 };
11498
11499 #undef X
11500 #undef S2
11501 #undef S3
11502 #undef S4
11503
11504 /* Bit masks used in type checking given instructions.
11505 'N_EQK' means the type must be the same as (or based on in some way) the key
11506 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
11507 set, various other bits can be set as well in order to modify the meaning of
11508 the type constraint. */
11509
11510 enum neon_type_mask
11511 {
11512 N_S8 = 0x0000001,
11513 N_S16 = 0x0000002,
11514 N_S32 = 0x0000004,
11515 N_S64 = 0x0000008,
11516 N_U8 = 0x0000010,
11517 N_U16 = 0x0000020,
11518 N_U32 = 0x0000040,
11519 N_U64 = 0x0000080,
11520 N_I8 = 0x0000100,
11521 N_I16 = 0x0000200,
11522 N_I32 = 0x0000400,
11523 N_I64 = 0x0000800,
11524 N_8 = 0x0001000,
11525 N_16 = 0x0002000,
11526 N_32 = 0x0004000,
11527 N_64 = 0x0008000,
11528 N_P8 = 0x0010000,
11529 N_P16 = 0x0020000,
11530 N_F16 = 0x0040000,
11531 N_F32 = 0x0080000,
11532 N_F64 = 0x0100000,
11533 N_KEY = 0x1000000, /* Key element (main type specifier). */
11534 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
11535 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
11536 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
11537 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
11538 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
11539 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
11540 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
11541 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
11542 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
11543 N_UTYP = 0,
11544 N_MAX_NONSPECIAL = N_F64
11545 };
11546
11547 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
11548
11549 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
11550 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
11551 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
11552 #define N_SUF_32 (N_SU_32 | N_F32)
11553 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
11554 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
11555
11556 /* Pass this as the first type argument to neon_check_type to ignore types
11557 altogether. */
11558 #define N_IGNORE_TYPE (N_KEY | N_EQK)
11559
11560 /* Select a "shape" for the current instruction (describing register types or
11561 sizes) from a list of alternatives. Return NS_NULL if the current instruction
11562 doesn't fit. For non-polymorphic shapes, checking is usually done as a
11563 function of operand parsing, so this function doesn't need to be called.
11564 Shapes should be listed in order of decreasing length. */
11565
11566 static enum neon_shape
11567 neon_select_shape (enum neon_shape shape, ...)
11568 {
11569 va_list ap;
11570 enum neon_shape first_shape = shape;
11571
11572 /* Fix missing optional operands. FIXME: we don't know at this point how
11573 many arguments we should have, so this makes the assumption that we have
11574 > 1. This is true of all current Neon opcodes, I think, but may not be
11575 true in the future. */
11576 if (!inst.operands[1].present)
11577 inst.operands[1] = inst.operands[0];
11578
11579 va_start (ap, shape);
11580
11581 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
11582 {
11583 unsigned j;
11584 int matches = 1;
11585
11586 for (j = 0; j < neon_shape_tab[shape].els; j++)
11587 {
11588 if (!inst.operands[j].present)
11589 {
11590 matches = 0;
11591 break;
11592 }
11593
11594 switch (neon_shape_tab[shape].el[j])
11595 {
11596 case SE_F:
11597 if (!(inst.operands[j].isreg
11598 && inst.operands[j].isvec
11599 && inst.operands[j].issingle
11600 && !inst.operands[j].isquad))
11601 matches = 0;
11602 break;
11603
11604 case SE_D:
11605 if (!(inst.operands[j].isreg
11606 && inst.operands[j].isvec
11607 && !inst.operands[j].isquad
11608 && !inst.operands[j].issingle))
11609 matches = 0;
11610 break;
11611
11612 case SE_R:
11613 if (!(inst.operands[j].isreg
11614 && !inst.operands[j].isvec))
11615 matches = 0;
11616 break;
11617
11618 case SE_Q:
11619 if (!(inst.operands[j].isreg
11620 && inst.operands[j].isvec
11621 && inst.operands[j].isquad
11622 && !inst.operands[j].issingle))
11623 matches = 0;
11624 break;
11625
11626 case SE_I:
11627 if (!(!inst.operands[j].isreg
11628 && !inst.operands[j].isscalar))
11629 matches = 0;
11630 break;
11631
11632 case SE_S:
11633 if (!(!inst.operands[j].isreg
11634 && inst.operands[j].isscalar))
11635 matches = 0;
11636 break;
11637
11638 case SE_L:
11639 break;
11640 }
11641 }
11642 if (matches)
11643 break;
11644 }
11645
11646 va_end (ap);
11647
11648 if (shape == NS_NULL && first_shape != NS_NULL)
11649 first_error (_("invalid instruction shape"));
11650
11651 return shape;
11652 }
11653
11654 /* True if SHAPE is predominantly a quadword operation (most of the time, this
11655 means the Q bit should be set). */
11656
11657 static int
11658 neon_quad (enum neon_shape shape)
11659 {
11660 return neon_shape_class[shape] == SC_QUAD;
11661 }
11662
11663 static void
11664 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
11665 unsigned *g_size)
11666 {
11667 /* Allow modification to be made to types which are constrained to be
11668 based on the key element, based on bits set alongside N_EQK. */
11669 if ((typebits & N_EQK) != 0)
11670 {
11671 if ((typebits & N_HLF) != 0)
11672 *g_size /= 2;
11673 else if ((typebits & N_DBL) != 0)
11674 *g_size *= 2;
11675 if ((typebits & N_SGN) != 0)
11676 *g_type = NT_signed;
11677 else if ((typebits & N_UNS) != 0)
11678 *g_type = NT_unsigned;
11679 else if ((typebits & N_INT) != 0)
11680 *g_type = NT_integer;
11681 else if ((typebits & N_FLT) != 0)
11682 *g_type = NT_float;
11683 else if ((typebits & N_SIZ) != 0)
11684 *g_type = NT_untyped;
11685 }
11686 }
11687
11688 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
11689 operand type, i.e. the single type specified in a Neon instruction when it
11690 is the only one given. */
11691
11692 static struct neon_type_el
11693 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
11694 {
11695 struct neon_type_el dest = *key;
11696
11697 gas_assert ((thisarg & N_EQK) != 0);
11698
11699 neon_modify_type_size (thisarg, &dest.type, &dest.size);
11700
11701 return dest;
11702 }
11703
11704 /* Convert Neon type and size into compact bitmask representation. */
11705
11706 static enum neon_type_mask
11707 type_chk_of_el_type (enum neon_el_type type, unsigned size)
11708 {
11709 switch (type)
11710 {
11711 case NT_untyped:
11712 switch (size)
11713 {
11714 case 8: return N_8;
11715 case 16: return N_16;
11716 case 32: return N_32;
11717 case 64: return N_64;
11718 default: ;
11719 }
11720 break;
11721
11722 case NT_integer:
11723 switch (size)
11724 {
11725 case 8: return N_I8;
11726 case 16: return N_I16;
11727 case 32: return N_I32;
11728 case 64: return N_I64;
11729 default: ;
11730 }
11731 break;
11732
11733 case NT_float:
11734 switch (size)
11735 {
11736 case 16: return N_F16;
11737 case 32: return N_F32;
11738 case 64: return N_F64;
11739 default: ;
11740 }
11741 break;
11742
11743 case NT_poly:
11744 switch (size)
11745 {
11746 case 8: return N_P8;
11747 case 16: return N_P16;
11748 default: ;
11749 }
11750 break;
11751
11752 case NT_signed:
11753 switch (size)
11754 {
11755 case 8: return N_S8;
11756 case 16: return N_S16;
11757 case 32: return N_S32;
11758 case 64: return N_S64;
11759 default: ;
11760 }
11761 break;
11762
11763 case NT_unsigned:
11764 switch (size)
11765 {
11766 case 8: return N_U8;
11767 case 16: return N_U16;
11768 case 32: return N_U32;
11769 case 64: return N_U64;
11770 default: ;
11771 }
11772 break;
11773
11774 default: ;
11775 }
11776
11777 return N_UTYP;
11778 }
11779
11780 /* Convert compact Neon bitmask type representation to a type and size. Only
11781 handles the case where a single bit is set in the mask. */
11782
11783 static int
11784 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
11785 enum neon_type_mask mask)
11786 {
11787 if ((mask & N_EQK) != 0)
11788 return FAIL;
11789
11790 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
11791 *size = 8;
11792 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
11793 *size = 16;
11794 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
11795 *size = 32;
11796 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
11797 *size = 64;
11798 else
11799 return FAIL;
11800
11801 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
11802 *type = NT_signed;
11803 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
11804 *type = NT_unsigned;
11805 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
11806 *type = NT_integer;
11807 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
11808 *type = NT_untyped;
11809 else if ((mask & (N_P8 | N_P16)) != 0)
11810 *type = NT_poly;
11811 else if ((mask & (N_F32 | N_F64)) != 0)
11812 *type = NT_float;
11813 else
11814 return FAIL;
11815
11816 return SUCCESS;
11817 }
11818
11819 /* Modify a bitmask of allowed types. This is only needed for type
11820 relaxation. */
11821
11822 static unsigned
11823 modify_types_allowed (unsigned allowed, unsigned mods)
11824 {
11825 unsigned size;
11826 enum neon_el_type type;
11827 unsigned destmask;
11828 int i;
11829
11830 destmask = 0;
11831
11832 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
11833 {
11834 if (el_type_of_type_chk (&type, &size,
11835 (enum neon_type_mask) (allowed & i)) == SUCCESS)
11836 {
11837 neon_modify_type_size (mods, &type, &size);
11838 destmask |= type_chk_of_el_type (type, size);
11839 }
11840 }
11841
11842 return destmask;
11843 }
11844
11845 /* Check type and return type classification.
11846 The manual states (paraphrase): If one datatype is given, it indicates the
11847 type given in:
11848 - the second operand, if there is one
11849 - the operand, if there is no second operand
11850 - the result, if there are no operands.
11851 This isn't quite good enough though, so we use a concept of a "key" datatype
11852 which is set on a per-instruction basis, which is the one which matters when
11853 only one data type is written.
11854 Note: this function has side-effects (e.g. filling in missing operands). All
11855 Neon instructions should call it before performing bit encoding. */
11856
11857 static struct neon_type_el
11858 neon_check_type (unsigned els, enum neon_shape ns, ...)
11859 {
11860 va_list ap;
11861 unsigned i, pass, key_el = 0;
11862 unsigned types[NEON_MAX_TYPE_ELS];
11863 enum neon_el_type k_type = NT_invtype;
11864 unsigned k_size = -1u;
11865 struct neon_type_el badtype = {NT_invtype, -1};
11866 unsigned key_allowed = 0;
11867
11868 /* Optional registers in Neon instructions are always (not) in operand 1.
11869 Fill in the missing operand here, if it was omitted. */
11870 if (els > 1 && !inst.operands[1].present)
11871 inst.operands[1] = inst.operands[0];
11872
11873 /* Suck up all the varargs. */
11874 va_start (ap, ns);
11875 for (i = 0; i < els; i++)
11876 {
11877 unsigned thisarg = va_arg (ap, unsigned);
11878 if (thisarg == N_IGNORE_TYPE)
11879 {
11880 va_end (ap);
11881 return badtype;
11882 }
11883 types[i] = thisarg;
11884 if ((thisarg & N_KEY) != 0)
11885 key_el = i;
11886 }
11887 va_end (ap);
11888
11889 if (inst.vectype.elems > 0)
11890 for (i = 0; i < els; i++)
11891 if (inst.operands[i].vectype.type != NT_invtype)
11892 {
11893 first_error (_("types specified in both the mnemonic and operands"));
11894 return badtype;
11895 }
11896
11897 /* Duplicate inst.vectype elements here as necessary.
11898 FIXME: No idea if this is exactly the same as the ARM assembler,
11899 particularly when an insn takes one register and one non-register
11900 operand. */
11901 if (inst.vectype.elems == 1 && els > 1)
11902 {
11903 unsigned j;
11904 inst.vectype.elems = els;
11905 inst.vectype.el[key_el] = inst.vectype.el[0];
11906 for (j = 0; j < els; j++)
11907 if (j != key_el)
11908 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
11909 types[j]);
11910 }
11911 else if (inst.vectype.elems == 0 && els > 0)
11912 {
11913 unsigned j;
11914 /* No types were given after the mnemonic, so look for types specified
11915 after each operand. We allow some flexibility here; as long as the
11916 "key" operand has a type, we can infer the others. */
11917 for (j = 0; j < els; j++)
11918 if (inst.operands[j].vectype.type != NT_invtype)
11919 inst.vectype.el[j] = inst.operands[j].vectype;
11920
11921 if (inst.operands[key_el].vectype.type != NT_invtype)
11922 {
11923 for (j = 0; j < els; j++)
11924 if (inst.operands[j].vectype.type == NT_invtype)
11925 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
11926 types[j]);
11927 }
11928 else
11929 {
11930 first_error (_("operand types can't be inferred"));
11931 return badtype;
11932 }
11933 }
11934 else if (inst.vectype.elems != els)
11935 {
11936 first_error (_("type specifier has the wrong number of parts"));
11937 return badtype;
11938 }
11939
11940 for (pass = 0; pass < 2; pass++)
11941 {
11942 for (i = 0; i < els; i++)
11943 {
11944 unsigned thisarg = types[i];
11945 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
11946 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
11947 enum neon_el_type g_type = inst.vectype.el[i].type;
11948 unsigned g_size = inst.vectype.el[i].size;
11949
11950 /* Decay more-specific signed & unsigned types to sign-insensitive
11951 integer types if sign-specific variants are unavailable. */
11952 if ((g_type == NT_signed || g_type == NT_unsigned)
11953 && (types_allowed & N_SU_ALL) == 0)
11954 g_type = NT_integer;
11955
11956 /* If only untyped args are allowed, decay any more specific types to
11957 them. Some instructions only care about signs for some element
11958 sizes, so handle that properly. */
11959 if ((g_size == 8 && (types_allowed & N_8) != 0)
11960 || (g_size == 16 && (types_allowed & N_16) != 0)
11961 || (g_size == 32 && (types_allowed & N_32) != 0)
11962 || (g_size == 64 && (types_allowed & N_64) != 0))
11963 g_type = NT_untyped;
11964
11965 if (pass == 0)
11966 {
11967 if ((thisarg & N_KEY) != 0)
11968 {
11969 k_type = g_type;
11970 k_size = g_size;
11971 key_allowed = thisarg & ~N_KEY;
11972 }
11973 }
11974 else
11975 {
11976 if ((thisarg & N_VFP) != 0)
11977 {
11978 enum neon_shape_el regshape = neon_shape_tab[ns].el[i];
11979 unsigned regwidth = neon_shape_el_size[regshape], match;
11980
11981 /* In VFP mode, operands must match register widths. If we
11982 have a key operand, use its width, else use the width of
11983 the current operand. */
11984 if (k_size != -1u)
11985 match = k_size;
11986 else
11987 match = g_size;
11988
11989 if (regwidth != match)
11990 {
11991 first_error (_("operand size must match register width"));
11992 return badtype;
11993 }
11994 }
11995
11996 if ((thisarg & N_EQK) == 0)
11997 {
11998 unsigned given_type = type_chk_of_el_type (g_type, g_size);
11999
12000 if ((given_type & types_allowed) == 0)
12001 {
12002 first_error (_("bad type in Neon instruction"));
12003 return badtype;
12004 }
12005 }
12006 else
12007 {
12008 enum neon_el_type mod_k_type = k_type;
12009 unsigned mod_k_size = k_size;
12010 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
12011 if (g_type != mod_k_type || g_size != mod_k_size)
12012 {
12013 first_error (_("inconsistent types in Neon instruction"));
12014 return badtype;
12015 }
12016 }
12017 }
12018 }
12019 }
12020
12021 return inst.vectype.el[key_el];
12022 }
12023
12024 /* Neon-style VFP instruction forwarding. */
12025
12026 /* Thumb VFP instructions have 0xE in the condition field. */
12027
12028 static void
12029 do_vfp_cond_or_thumb (void)
12030 {
12031 if (thumb_mode)
12032 inst.instruction |= 0xe0000000;
12033 else
12034 inst.instruction |= inst.cond << 28;
12035 }
12036
12037 /* Look up and encode a simple mnemonic, for use as a helper function for the
12038 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
12039 etc. It is assumed that operand parsing has already been done, and that the
12040 operands are in the form expected by the given opcode (this isn't necessarily
12041 the same as the form in which they were parsed, hence some massaging must
12042 take place before this function is called).
12043 Checks current arch version against that in the looked-up opcode. */
12044
12045 static void
12046 do_vfp_nsyn_opcode (const char *opname)
12047 {
12048 const struct asm_opcode *opcode;
12049
12050 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
12051
12052 if (!opcode)
12053 abort ();
12054
12055 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
12056 thumb_mode ? *opcode->tvariant : *opcode->avariant),
12057 _(BAD_FPU));
12058
12059 if (thumb_mode)
12060 {
12061 inst.instruction = opcode->tvalue;
12062 opcode->tencode ();
12063 }
12064 else
12065 {
12066 inst.instruction = (inst.cond << 28) | opcode->avalue;
12067 opcode->aencode ();
12068 }
12069 }
12070
12071 static void
12072 do_vfp_nsyn_add_sub (enum neon_shape rs)
12073 {
12074 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
12075
12076 if (rs == NS_FFF)
12077 {
12078 if (is_add)
12079 do_vfp_nsyn_opcode ("fadds");
12080 else
12081 do_vfp_nsyn_opcode ("fsubs");
12082 }
12083 else
12084 {
12085 if (is_add)
12086 do_vfp_nsyn_opcode ("faddd");
12087 else
12088 do_vfp_nsyn_opcode ("fsubd");
12089 }
12090 }
12091
12092 /* Check operand types to see if this is a VFP instruction, and if so call
12093 PFN (). */
12094
12095 static int
12096 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
12097 {
12098 enum neon_shape rs;
12099 struct neon_type_el et;
12100
12101 switch (args)
12102 {
12103 case 2:
12104 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12105 et = neon_check_type (2, rs,
12106 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12107 break;
12108
12109 case 3:
12110 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12111 et = neon_check_type (3, rs,
12112 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12113 break;
12114
12115 default:
12116 abort ();
12117 }
12118
12119 if (et.type != NT_invtype)
12120 {
12121 pfn (rs);
12122 return SUCCESS;
12123 }
12124 else
12125 inst.error = NULL;
12126
12127 return FAIL;
12128 }
12129
12130 static void
12131 do_vfp_nsyn_mla_mls (enum neon_shape rs)
12132 {
12133 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
12134
12135 if (rs == NS_FFF)
12136 {
12137 if (is_mla)
12138 do_vfp_nsyn_opcode ("fmacs");
12139 else
12140 do_vfp_nsyn_opcode ("fmscs");
12141 }
12142 else
12143 {
12144 if (is_mla)
12145 do_vfp_nsyn_opcode ("fmacd");
12146 else
12147 do_vfp_nsyn_opcode ("fmscd");
12148 }
12149 }
12150
12151 static void
12152 do_vfp_nsyn_mul (enum neon_shape rs)
12153 {
12154 if (rs == NS_FFF)
12155 do_vfp_nsyn_opcode ("fmuls");
12156 else
12157 do_vfp_nsyn_opcode ("fmuld");
12158 }
12159
12160 static void
12161 do_vfp_nsyn_abs_neg (enum neon_shape rs)
12162 {
12163 int is_neg = (inst.instruction & 0x80) != 0;
12164 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
12165
12166 if (rs == NS_FF)
12167 {
12168 if (is_neg)
12169 do_vfp_nsyn_opcode ("fnegs");
12170 else
12171 do_vfp_nsyn_opcode ("fabss");
12172 }
12173 else
12174 {
12175 if (is_neg)
12176 do_vfp_nsyn_opcode ("fnegd");
12177 else
12178 do_vfp_nsyn_opcode ("fabsd");
12179 }
12180 }
12181
12182 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
12183 insns belong to Neon, and are handled elsewhere. */
12184
12185 static void
12186 do_vfp_nsyn_ldm_stm (int is_dbmode)
12187 {
12188 int is_ldm = (inst.instruction & (1 << 20)) != 0;
12189 if (is_ldm)
12190 {
12191 if (is_dbmode)
12192 do_vfp_nsyn_opcode ("fldmdbs");
12193 else
12194 do_vfp_nsyn_opcode ("fldmias");
12195 }
12196 else
12197 {
12198 if (is_dbmode)
12199 do_vfp_nsyn_opcode ("fstmdbs");
12200 else
12201 do_vfp_nsyn_opcode ("fstmias");
12202 }
12203 }
12204
12205 static void
12206 do_vfp_nsyn_sqrt (void)
12207 {
12208 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12209 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12210
12211 if (rs == NS_FF)
12212 do_vfp_nsyn_opcode ("fsqrts");
12213 else
12214 do_vfp_nsyn_opcode ("fsqrtd");
12215 }
12216
12217 static void
12218 do_vfp_nsyn_div (void)
12219 {
12220 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12221 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
12222 N_F32 | N_F64 | N_KEY | N_VFP);
12223
12224 if (rs == NS_FFF)
12225 do_vfp_nsyn_opcode ("fdivs");
12226 else
12227 do_vfp_nsyn_opcode ("fdivd");
12228 }
12229
12230 static void
12231 do_vfp_nsyn_nmul (void)
12232 {
12233 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12234 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
12235 N_F32 | N_F64 | N_KEY | N_VFP);
12236
12237 if (rs == NS_FFF)
12238 {
12239 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
12240 do_vfp_sp_dyadic ();
12241 }
12242 else
12243 {
12244 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
12245 do_vfp_dp_rd_rn_rm ();
12246 }
12247 do_vfp_cond_or_thumb ();
12248 }
12249
12250 static void
12251 do_vfp_nsyn_cmp (void)
12252 {
12253 if (inst.operands[1].isreg)
12254 {
12255 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12256 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12257
12258 if (rs == NS_FF)
12259 {
12260 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
12261 do_vfp_sp_monadic ();
12262 }
12263 else
12264 {
12265 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
12266 do_vfp_dp_rd_rm ();
12267 }
12268 }
12269 else
12270 {
12271 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
12272 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
12273
12274 switch (inst.instruction & 0x0fffffff)
12275 {
12276 case N_MNEM_vcmp:
12277 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
12278 break;
12279 case N_MNEM_vcmpe:
12280 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
12281 break;
12282 default:
12283 abort ();
12284 }
12285
12286 if (rs == NS_FI)
12287 {
12288 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
12289 do_vfp_sp_compare_z ();
12290 }
12291 else
12292 {
12293 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
12294 do_vfp_dp_rd ();
12295 }
12296 }
12297 do_vfp_cond_or_thumb ();
12298 }
12299
12300 static void
12301 nsyn_insert_sp (void)
12302 {
12303 inst.operands[1] = inst.operands[0];
12304 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
12305 inst.operands[0].reg = REG_SP;
12306 inst.operands[0].isreg = 1;
12307 inst.operands[0].writeback = 1;
12308 inst.operands[0].present = 1;
12309 }
12310
12311 static void
12312 do_vfp_nsyn_push (void)
12313 {
12314 nsyn_insert_sp ();
12315 if (inst.operands[1].issingle)
12316 do_vfp_nsyn_opcode ("fstmdbs");
12317 else
12318 do_vfp_nsyn_opcode ("fstmdbd");
12319 }
12320
12321 static void
12322 do_vfp_nsyn_pop (void)
12323 {
12324 nsyn_insert_sp ();
12325 if (inst.operands[1].issingle)
12326 do_vfp_nsyn_opcode ("fldmias");
12327 else
12328 do_vfp_nsyn_opcode ("fldmiad");
12329 }
12330
12331 /* Fix up Neon data-processing instructions, ORing in the correct bits for
12332 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
12333
12334 static unsigned
12335 neon_dp_fixup (unsigned i)
12336 {
12337 if (thumb_mode)
12338 {
12339 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
12340 if (i & (1 << 24))
12341 i |= 1 << 28;
12342
12343 i &= ~(1 << 24);
12344
12345 i |= 0xef000000;
12346 }
12347 else
12348 i |= 0xf2000000;
12349
12350 return i;
12351 }
12352
12353 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
12354 (0, 1, 2, 3). */
12355
12356 static unsigned
12357 neon_logbits (unsigned x)
12358 {
12359 return ffs (x) - 4;
12360 }
12361
12362 #define LOW4(R) ((R) & 0xf)
12363 #define HI1(R) (((R) >> 4) & 1)
12364
12365 /* Encode insns with bit pattern:
12366
12367 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
12368 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
12369
12370 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
12371 different meaning for some instruction. */
12372
12373 static void
12374 neon_three_same (int isquad, int ubit, int size)
12375 {
12376 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12377 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12378 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12379 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12380 inst.instruction |= LOW4 (inst.operands[2].reg);
12381 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
12382 inst.instruction |= (isquad != 0) << 6;
12383 inst.instruction |= (ubit != 0) << 24;
12384 if (size != -1)
12385 inst.instruction |= neon_logbits (size) << 20;
12386
12387 inst.instruction = neon_dp_fixup (inst.instruction);
12388 }
12389
12390 /* Encode instructions of the form:
12391
12392 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
12393 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
12394
12395 Don't write size if SIZE == -1. */
12396
12397 static void
12398 neon_two_same (int qbit, int ubit, int size)
12399 {
12400 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12401 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12402 inst.instruction |= LOW4 (inst.operands[1].reg);
12403 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12404 inst.instruction |= (qbit != 0) << 6;
12405 inst.instruction |= (ubit != 0) << 24;
12406
12407 if (size != -1)
12408 inst.instruction |= neon_logbits (size) << 18;
12409
12410 inst.instruction = neon_dp_fixup (inst.instruction);
12411 }
12412
12413 /* Neon instruction encoders, in approximate order of appearance. */
12414
12415 static void
12416 do_neon_dyadic_i_su (void)
12417 {
12418 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12419 struct neon_type_el et = neon_check_type (3, rs,
12420 N_EQK, N_EQK, N_SU_32 | N_KEY);
12421 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12422 }
12423
12424 static void
12425 do_neon_dyadic_i64_su (void)
12426 {
12427 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12428 struct neon_type_el et = neon_check_type (3, rs,
12429 N_EQK, N_EQK, N_SU_ALL | N_KEY);
12430 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12431 }
12432
12433 static void
12434 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
12435 unsigned immbits)
12436 {
12437 unsigned size = et.size >> 3;
12438 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12439 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12440 inst.instruction |= LOW4 (inst.operands[1].reg);
12441 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12442 inst.instruction |= (isquad != 0) << 6;
12443 inst.instruction |= immbits << 16;
12444 inst.instruction |= (size >> 3) << 7;
12445 inst.instruction |= (size & 0x7) << 19;
12446 if (write_ubit)
12447 inst.instruction |= (uval != 0) << 24;
12448
12449 inst.instruction = neon_dp_fixup (inst.instruction);
12450 }
12451
12452 static void
12453 do_neon_shl_imm (void)
12454 {
12455 if (!inst.operands[2].isreg)
12456 {
12457 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12458 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
12459 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12460 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
12461 }
12462 else
12463 {
12464 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12465 struct neon_type_el et = neon_check_type (3, rs,
12466 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
12467 unsigned int tmp;
12468
12469 /* VSHL/VQSHL 3-register variants have syntax such as:
12470 vshl.xx Dd, Dm, Dn
12471 whereas other 3-register operations encoded by neon_three_same have
12472 syntax like:
12473 vadd.xx Dd, Dn, Dm
12474 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
12475 here. */
12476 tmp = inst.operands[2].reg;
12477 inst.operands[2].reg = inst.operands[1].reg;
12478 inst.operands[1].reg = tmp;
12479 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12480 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12481 }
12482 }
12483
12484 static void
12485 do_neon_qshl_imm (void)
12486 {
12487 if (!inst.operands[2].isreg)
12488 {
12489 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12490 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
12491
12492 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12493 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
12494 inst.operands[2].imm);
12495 }
12496 else
12497 {
12498 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12499 struct neon_type_el et = neon_check_type (3, rs,
12500 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
12501 unsigned int tmp;
12502
12503 /* See note in do_neon_shl_imm. */
12504 tmp = inst.operands[2].reg;
12505 inst.operands[2].reg = inst.operands[1].reg;
12506 inst.operands[1].reg = tmp;
12507 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12508 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12509 }
12510 }
12511
12512 static void
12513 do_neon_rshl (void)
12514 {
12515 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12516 struct neon_type_el et = neon_check_type (3, rs,
12517 N_EQK, N_EQK, N_SU_ALL | N_KEY);
12518 unsigned int tmp;
12519
12520 tmp = inst.operands[2].reg;
12521 inst.operands[2].reg = inst.operands[1].reg;
12522 inst.operands[1].reg = tmp;
12523 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12524 }
12525
12526 static int
12527 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
12528 {
12529 /* Handle .I8 pseudo-instructions. */
12530 if (size == 8)
12531 {
12532 /* Unfortunately, this will make everything apart from zero out-of-range.
12533 FIXME is this the intended semantics? There doesn't seem much point in
12534 accepting .I8 if so. */
12535 immediate |= immediate << 8;
12536 size = 16;
12537 }
12538
12539 if (size >= 32)
12540 {
12541 if (immediate == (immediate & 0x000000ff))
12542 {
12543 *immbits = immediate;
12544 return 0x1;
12545 }
12546 else if (immediate == (immediate & 0x0000ff00))
12547 {
12548 *immbits = immediate >> 8;
12549 return 0x3;
12550 }
12551 else if (immediate == (immediate & 0x00ff0000))
12552 {
12553 *immbits = immediate >> 16;
12554 return 0x5;
12555 }
12556 else if (immediate == (immediate & 0xff000000))
12557 {
12558 *immbits = immediate >> 24;
12559 return 0x7;
12560 }
12561 if ((immediate & 0xffff) != (immediate >> 16))
12562 goto bad_immediate;
12563 immediate &= 0xffff;
12564 }
12565
12566 if (immediate == (immediate & 0x000000ff))
12567 {
12568 *immbits = immediate;
12569 return 0x9;
12570 }
12571 else if (immediate == (immediate & 0x0000ff00))
12572 {
12573 *immbits = immediate >> 8;
12574 return 0xb;
12575 }
12576
12577 bad_immediate:
12578 first_error (_("immediate value out of range"));
12579 return FAIL;
12580 }
12581
12582 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
12583 A, B, C, D. */
12584
12585 static int
12586 neon_bits_same_in_bytes (unsigned imm)
12587 {
12588 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
12589 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
12590 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
12591 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
12592 }
12593
12594 /* For immediate of above form, return 0bABCD. */
12595
12596 static unsigned
12597 neon_squash_bits (unsigned imm)
12598 {
12599 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
12600 | ((imm & 0x01000000) >> 21);
12601 }
12602
12603 /* Compress quarter-float representation to 0b...000 abcdefgh. */
12604
12605 static unsigned
12606 neon_qfloat_bits (unsigned imm)
12607 {
12608 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
12609 }
12610
12611 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
12612 the instruction. *OP is passed as the initial value of the op field, and
12613 may be set to a different value depending on the constant (i.e.
12614 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
12615 MVN). If the immediate looks like a repeated pattern then also
12616 try smaller element sizes. */
12617
12618 static int
12619 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
12620 unsigned *immbits, int *op, int size,
12621 enum neon_el_type type)
12622 {
12623 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
12624 float. */
12625 if (type == NT_float && !float_p)
12626 return FAIL;
12627
12628 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
12629 {
12630 if (size != 32 || *op == 1)
12631 return FAIL;
12632 *immbits = neon_qfloat_bits (immlo);
12633 return 0xf;
12634 }
12635
12636 if (size == 64)
12637 {
12638 if (neon_bits_same_in_bytes (immhi)
12639 && neon_bits_same_in_bytes (immlo))
12640 {
12641 if (*op == 1)
12642 return FAIL;
12643 *immbits = (neon_squash_bits (immhi) << 4)
12644 | neon_squash_bits (immlo);
12645 *op = 1;
12646 return 0xe;
12647 }
12648
12649 if (immhi != immlo)
12650 return FAIL;
12651 }
12652
12653 if (size >= 32)
12654 {
12655 if (immlo == (immlo & 0x000000ff))
12656 {
12657 *immbits = immlo;
12658 return 0x0;
12659 }
12660 else if (immlo == (immlo & 0x0000ff00))
12661 {
12662 *immbits = immlo >> 8;
12663 return 0x2;
12664 }
12665 else if (immlo == (immlo & 0x00ff0000))
12666 {
12667 *immbits = immlo >> 16;
12668 return 0x4;
12669 }
12670 else if (immlo == (immlo & 0xff000000))
12671 {
12672 *immbits = immlo >> 24;
12673 return 0x6;
12674 }
12675 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
12676 {
12677 *immbits = (immlo >> 8) & 0xff;
12678 return 0xc;
12679 }
12680 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
12681 {
12682 *immbits = (immlo >> 16) & 0xff;
12683 return 0xd;
12684 }
12685
12686 if ((immlo & 0xffff) != (immlo >> 16))
12687 return FAIL;
12688 immlo &= 0xffff;
12689 }
12690
12691 if (size >= 16)
12692 {
12693 if (immlo == (immlo & 0x000000ff))
12694 {
12695 *immbits = immlo;
12696 return 0x8;
12697 }
12698 else if (immlo == (immlo & 0x0000ff00))
12699 {
12700 *immbits = immlo >> 8;
12701 return 0xa;
12702 }
12703
12704 if ((immlo & 0xff) != (immlo >> 8))
12705 return FAIL;
12706 immlo &= 0xff;
12707 }
12708
12709 if (immlo == (immlo & 0x000000ff))
12710 {
12711 /* Don't allow MVN with 8-bit immediate. */
12712 if (*op == 1)
12713 return FAIL;
12714 *immbits = immlo;
12715 return 0xe;
12716 }
12717
12718 return FAIL;
12719 }
12720
12721 /* Write immediate bits [7:0] to the following locations:
12722
12723 |28/24|23 19|18 16|15 4|3 0|
12724 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
12725
12726 This function is used by VMOV/VMVN/VORR/VBIC. */
12727
12728 static void
12729 neon_write_immbits (unsigned immbits)
12730 {
12731 inst.instruction |= immbits & 0xf;
12732 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
12733 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
12734 }
12735
12736 /* Invert low-order SIZE bits of XHI:XLO. */
12737
12738 static void
12739 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
12740 {
12741 unsigned immlo = xlo ? *xlo : 0;
12742 unsigned immhi = xhi ? *xhi : 0;
12743
12744 switch (size)
12745 {
12746 case 8:
12747 immlo = (~immlo) & 0xff;
12748 break;
12749
12750 case 16:
12751 immlo = (~immlo) & 0xffff;
12752 break;
12753
12754 case 64:
12755 immhi = (~immhi) & 0xffffffff;
12756 /* fall through. */
12757
12758 case 32:
12759 immlo = (~immlo) & 0xffffffff;
12760 break;
12761
12762 default:
12763 abort ();
12764 }
12765
12766 if (xlo)
12767 *xlo = immlo;
12768
12769 if (xhi)
12770 *xhi = immhi;
12771 }
12772
12773 static void
12774 do_neon_logic (void)
12775 {
12776 if (inst.operands[2].present && inst.operands[2].isreg)
12777 {
12778 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12779 neon_check_type (3, rs, N_IGNORE_TYPE);
12780 /* U bit and size field were set as part of the bitmask. */
12781 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12782 neon_three_same (neon_quad (rs), 0, -1);
12783 }
12784 else
12785 {
12786 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
12787 struct neon_type_el et = neon_check_type (2, rs,
12788 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
12789 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
12790 unsigned immbits;
12791 int cmode;
12792
12793 if (et.type == NT_invtype)
12794 return;
12795
12796 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12797
12798 immbits = inst.operands[1].imm;
12799 if (et.size == 64)
12800 {
12801 /* .i64 is a pseudo-op, so the immediate must be a repeating
12802 pattern. */
12803 if (immbits != (inst.operands[1].regisimm ?
12804 inst.operands[1].reg : 0))
12805 {
12806 /* Set immbits to an invalid constant. */
12807 immbits = 0xdeadbeef;
12808 }
12809 }
12810
12811 switch (opcode)
12812 {
12813 case N_MNEM_vbic:
12814 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
12815 break;
12816
12817 case N_MNEM_vorr:
12818 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
12819 break;
12820
12821 case N_MNEM_vand:
12822 /* Pseudo-instruction for VBIC. */
12823 neon_invert_size (&immbits, 0, et.size);
12824 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
12825 break;
12826
12827 case N_MNEM_vorn:
12828 /* Pseudo-instruction for VORR. */
12829 neon_invert_size (&immbits, 0, et.size);
12830 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
12831 break;
12832
12833 default:
12834 abort ();
12835 }
12836
12837 if (cmode == FAIL)
12838 return;
12839
12840 inst.instruction |= neon_quad (rs) << 6;
12841 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12842 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12843 inst.instruction |= cmode << 8;
12844 neon_write_immbits (immbits);
12845
12846 inst.instruction = neon_dp_fixup (inst.instruction);
12847 }
12848 }
12849
12850 static void
12851 do_neon_bitfield (void)
12852 {
12853 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12854 neon_check_type (3, rs, N_IGNORE_TYPE);
12855 neon_three_same (neon_quad (rs), 0, -1);
12856 }
12857
12858 static void
12859 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
12860 unsigned destbits)
12861 {
12862 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12863 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
12864 types | N_KEY);
12865 if (et.type == NT_float)
12866 {
12867 inst.instruction = NEON_ENC_FLOAT (inst.instruction);
12868 neon_three_same (neon_quad (rs), 0, -1);
12869 }
12870 else
12871 {
12872 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12873 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
12874 }
12875 }
12876
12877 static void
12878 do_neon_dyadic_if_su (void)
12879 {
12880 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
12881 }
12882
12883 static void
12884 do_neon_dyadic_if_su_d (void)
12885 {
12886 /* This version only allow D registers, but that constraint is enforced during
12887 operand parsing so we don't need to do anything extra here. */
12888 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
12889 }
12890
12891 static void
12892 do_neon_dyadic_if_i_d (void)
12893 {
12894 /* The "untyped" case can't happen. Do this to stop the "U" bit being
12895 affected if we specify unsigned args. */
12896 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
12897 }
12898
12899 enum vfp_or_neon_is_neon_bits
12900 {
12901 NEON_CHECK_CC = 1,
12902 NEON_CHECK_ARCH = 2
12903 };
12904
12905 /* Call this function if an instruction which may have belonged to the VFP or
12906 Neon instruction sets, but turned out to be a Neon instruction (due to the
12907 operand types involved, etc.). We have to check and/or fix-up a couple of
12908 things:
12909
12910 - Make sure the user hasn't attempted to make a Neon instruction
12911 conditional.
12912 - Alter the value in the condition code field if necessary.
12913 - Make sure that the arch supports Neon instructions.
12914
12915 Which of these operations take place depends on bits from enum
12916 vfp_or_neon_is_neon_bits.
12917
12918 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
12919 current instruction's condition is COND_ALWAYS, the condition field is
12920 changed to inst.uncond_value. This is necessary because instructions shared
12921 between VFP and Neon may be conditional for the VFP variants only, and the
12922 unconditional Neon version must have, e.g., 0xF in the condition field. */
12923
12924 static int
12925 vfp_or_neon_is_neon (unsigned check)
12926 {
12927 /* Conditions are always legal in Thumb mode (IT blocks). */
12928 if (!thumb_mode && (check & NEON_CHECK_CC))
12929 {
12930 if (inst.cond != COND_ALWAYS)
12931 {
12932 first_error (_(BAD_COND));
12933 return FAIL;
12934 }
12935 if (inst.uncond_value != -1)
12936 inst.instruction |= inst.uncond_value << 28;
12937 }
12938
12939 if ((check & NEON_CHECK_ARCH)
12940 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
12941 {
12942 first_error (_(BAD_FPU));
12943 return FAIL;
12944 }
12945
12946 return SUCCESS;
12947 }
12948
12949 static void
12950 do_neon_addsub_if_i (void)
12951 {
12952 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
12953 return;
12954
12955 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12956 return;
12957
12958 /* The "untyped" case can't happen. Do this to stop the "U" bit being
12959 affected if we specify unsigned args. */
12960 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
12961 }
12962
12963 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
12964 result to be:
12965 V<op> A,B (A is operand 0, B is operand 2)
12966 to mean:
12967 V<op> A,B,A
12968 not:
12969 V<op> A,B,B
12970 so handle that case specially. */
12971
12972 static void
12973 neon_exchange_operands (void)
12974 {
12975 void *scratch = alloca (sizeof (inst.operands[0]));
12976 if (inst.operands[1].present)
12977 {
12978 /* Swap operands[1] and operands[2]. */
12979 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
12980 inst.operands[1] = inst.operands[2];
12981 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
12982 }
12983 else
12984 {
12985 inst.operands[1] = inst.operands[2];
12986 inst.operands[2] = inst.operands[0];
12987 }
12988 }
12989
12990 static void
12991 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
12992 {
12993 if (inst.operands[2].isreg)
12994 {
12995 if (invert)
12996 neon_exchange_operands ();
12997 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
12998 }
12999 else
13000 {
13001 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13002 struct neon_type_el et = neon_check_type (2, rs,
13003 N_EQK | N_SIZ, immtypes | N_KEY);
13004
13005 inst.instruction = NEON_ENC_IMMED (inst.instruction);
13006 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13007 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13008 inst.instruction |= LOW4 (inst.operands[1].reg);
13009 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13010 inst.instruction |= neon_quad (rs) << 6;
13011 inst.instruction |= (et.type == NT_float) << 10;
13012 inst.instruction |= neon_logbits (et.size) << 18;
13013
13014 inst.instruction = neon_dp_fixup (inst.instruction);
13015 }
13016 }
13017
13018 static void
13019 do_neon_cmp (void)
13020 {
13021 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
13022 }
13023
13024 static void
13025 do_neon_cmp_inv (void)
13026 {
13027 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
13028 }
13029
13030 static void
13031 do_neon_ceq (void)
13032 {
13033 neon_compare (N_IF_32, N_IF_32, FALSE);
13034 }
13035
13036 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
13037 scalars, which are encoded in 5 bits, M : Rm.
13038 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
13039 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
13040 index in M. */
13041
13042 static unsigned
13043 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
13044 {
13045 unsigned regno = NEON_SCALAR_REG (scalar);
13046 unsigned elno = NEON_SCALAR_INDEX (scalar);
13047
13048 switch (elsize)
13049 {
13050 case 16:
13051 if (regno > 7 || elno > 3)
13052 goto bad_scalar;
13053 return regno | (elno << 3);
13054
13055 case 32:
13056 if (regno > 15 || elno > 1)
13057 goto bad_scalar;
13058 return regno | (elno << 4);
13059
13060 default:
13061 bad_scalar:
13062 first_error (_("scalar out of range for multiply instruction"));
13063 }
13064
13065 return 0;
13066 }
13067
13068 /* Encode multiply / multiply-accumulate scalar instructions. */
13069
13070 static void
13071 neon_mul_mac (struct neon_type_el et, int ubit)
13072 {
13073 unsigned scalar;
13074
13075 /* Give a more helpful error message if we have an invalid type. */
13076 if (et.type == NT_invtype)
13077 return;
13078
13079 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
13080 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13081 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13082 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13083 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13084 inst.instruction |= LOW4 (scalar);
13085 inst.instruction |= HI1 (scalar) << 5;
13086 inst.instruction |= (et.type == NT_float) << 8;
13087 inst.instruction |= neon_logbits (et.size) << 20;
13088 inst.instruction |= (ubit != 0) << 24;
13089
13090 inst.instruction = neon_dp_fixup (inst.instruction);
13091 }
13092
13093 static void
13094 do_neon_mac_maybe_scalar (void)
13095 {
13096 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
13097 return;
13098
13099 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13100 return;
13101
13102 if (inst.operands[2].isscalar)
13103 {
13104 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
13105 struct neon_type_el et = neon_check_type (3, rs,
13106 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
13107 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
13108 neon_mul_mac (et, neon_quad (rs));
13109 }
13110 else
13111 {
13112 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13113 affected if we specify unsigned args. */
13114 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13115 }
13116 }
13117
13118 static void
13119 do_neon_tst (void)
13120 {
13121 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13122 struct neon_type_el et = neon_check_type (3, rs,
13123 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
13124 neon_three_same (neon_quad (rs), 0, et.size);
13125 }
13126
13127 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
13128 same types as the MAC equivalents. The polynomial type for this instruction
13129 is encoded the same as the integer type. */
13130
13131 static void
13132 do_neon_mul (void)
13133 {
13134 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
13135 return;
13136
13137 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13138 return;
13139
13140 if (inst.operands[2].isscalar)
13141 do_neon_mac_maybe_scalar ();
13142 else
13143 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
13144 }
13145
13146 static void
13147 do_neon_qdmulh (void)
13148 {
13149 if (inst.operands[2].isscalar)
13150 {
13151 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
13152 struct neon_type_el et = neon_check_type (3, rs,
13153 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
13154 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
13155 neon_mul_mac (et, neon_quad (rs));
13156 }
13157 else
13158 {
13159 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13160 struct neon_type_el et = neon_check_type (3, rs,
13161 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
13162 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13163 /* The U bit (rounding) comes from bit mask. */
13164 neon_three_same (neon_quad (rs), 0, et.size);
13165 }
13166 }
13167
13168 static void
13169 do_neon_fcmp_absolute (void)
13170 {
13171 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13172 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
13173 /* Size field comes from bit mask. */
13174 neon_three_same (neon_quad (rs), 1, -1);
13175 }
13176
13177 static void
13178 do_neon_fcmp_absolute_inv (void)
13179 {
13180 neon_exchange_operands ();
13181 do_neon_fcmp_absolute ();
13182 }
13183
13184 static void
13185 do_neon_step (void)
13186 {
13187 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13188 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
13189 neon_three_same (neon_quad (rs), 0, -1);
13190 }
13191
13192 static void
13193 do_neon_abs_neg (void)
13194 {
13195 enum neon_shape rs;
13196 struct neon_type_el et;
13197
13198 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
13199 return;
13200
13201 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13202 return;
13203
13204 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13205 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
13206
13207 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13208 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13209 inst.instruction |= LOW4 (inst.operands[1].reg);
13210 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13211 inst.instruction |= neon_quad (rs) << 6;
13212 inst.instruction |= (et.type == NT_float) << 10;
13213 inst.instruction |= neon_logbits (et.size) << 18;
13214
13215 inst.instruction = neon_dp_fixup (inst.instruction);
13216 }
13217
13218 static void
13219 do_neon_sli (void)
13220 {
13221 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13222 struct neon_type_el et = neon_check_type (2, rs,
13223 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13224 int imm = inst.operands[2].imm;
13225 constraint (imm < 0 || (unsigned)imm >= et.size,
13226 _("immediate out of range for insert"));
13227 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
13228 }
13229
13230 static void
13231 do_neon_sri (void)
13232 {
13233 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13234 struct neon_type_el et = neon_check_type (2, rs,
13235 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13236 int imm = inst.operands[2].imm;
13237 constraint (imm < 1 || (unsigned)imm > et.size,
13238 _("immediate out of range for insert"));
13239 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
13240 }
13241
13242 static void
13243 do_neon_qshlu_imm (void)
13244 {
13245 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13246 struct neon_type_el et = neon_check_type (2, rs,
13247 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
13248 int imm = inst.operands[2].imm;
13249 constraint (imm < 0 || (unsigned)imm >= et.size,
13250 _("immediate out of range for shift"));
13251 /* Only encodes the 'U present' variant of the instruction.
13252 In this case, signed types have OP (bit 8) set to 0.
13253 Unsigned types have OP set to 1. */
13254 inst.instruction |= (et.type == NT_unsigned) << 8;
13255 /* The rest of the bits are the same as other immediate shifts. */
13256 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
13257 }
13258
13259 static void
13260 do_neon_qmovn (void)
13261 {
13262 struct neon_type_el et = neon_check_type (2, NS_DQ,
13263 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
13264 /* Saturating move where operands can be signed or unsigned, and the
13265 destination has the same signedness. */
13266 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13267 if (et.type == NT_unsigned)
13268 inst.instruction |= 0xc0;
13269 else
13270 inst.instruction |= 0x80;
13271 neon_two_same (0, 1, et.size / 2);
13272 }
13273
13274 static void
13275 do_neon_qmovun (void)
13276 {
13277 struct neon_type_el et = neon_check_type (2, NS_DQ,
13278 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
13279 /* Saturating move with unsigned results. Operands must be signed. */
13280 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13281 neon_two_same (0, 1, et.size / 2);
13282 }
13283
13284 static void
13285 do_neon_rshift_sat_narrow (void)
13286 {
13287 /* FIXME: Types for narrowing. If operands are signed, results can be signed
13288 or unsigned. If operands are unsigned, results must also be unsigned. */
13289 struct neon_type_el et = neon_check_type (2, NS_DQI,
13290 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
13291 int imm = inst.operands[2].imm;
13292 /* This gets the bounds check, size encoding and immediate bits calculation
13293 right. */
13294 et.size /= 2;
13295
13296 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
13297 VQMOVN.I<size> <Dd>, <Qm>. */
13298 if (imm == 0)
13299 {
13300 inst.operands[2].present = 0;
13301 inst.instruction = N_MNEM_vqmovn;
13302 do_neon_qmovn ();
13303 return;
13304 }
13305
13306 constraint (imm < 1 || (unsigned)imm > et.size,
13307 _("immediate out of range"));
13308 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
13309 }
13310
13311 static void
13312 do_neon_rshift_sat_narrow_u (void)
13313 {
13314 /* FIXME: Types for narrowing. If operands are signed, results can be signed
13315 or unsigned. If operands are unsigned, results must also be unsigned. */
13316 struct neon_type_el et = neon_check_type (2, NS_DQI,
13317 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
13318 int imm = inst.operands[2].imm;
13319 /* This gets the bounds check, size encoding and immediate bits calculation
13320 right. */
13321 et.size /= 2;
13322
13323 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
13324 VQMOVUN.I<size> <Dd>, <Qm>. */
13325 if (imm == 0)
13326 {
13327 inst.operands[2].present = 0;
13328 inst.instruction = N_MNEM_vqmovun;
13329 do_neon_qmovun ();
13330 return;
13331 }
13332
13333 constraint (imm < 1 || (unsigned)imm > et.size,
13334 _("immediate out of range"));
13335 /* FIXME: The manual is kind of unclear about what value U should have in
13336 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
13337 must be 1. */
13338 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
13339 }
13340
13341 static void
13342 do_neon_movn (void)
13343 {
13344 struct neon_type_el et = neon_check_type (2, NS_DQ,
13345 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
13346 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13347 neon_two_same (0, 1, et.size / 2);
13348 }
13349
13350 static void
13351 do_neon_rshift_narrow (void)
13352 {
13353 struct neon_type_el et = neon_check_type (2, NS_DQI,
13354 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
13355 int imm = inst.operands[2].imm;
13356 /* This gets the bounds check, size encoding and immediate bits calculation
13357 right. */
13358 et.size /= 2;
13359
13360 /* If immediate is zero then we are a pseudo-instruction for
13361 VMOVN.I<size> <Dd>, <Qm> */
13362 if (imm == 0)
13363 {
13364 inst.operands[2].present = 0;
13365 inst.instruction = N_MNEM_vmovn;
13366 do_neon_movn ();
13367 return;
13368 }
13369
13370 constraint (imm < 1 || (unsigned)imm > et.size,
13371 _("immediate out of range for narrowing operation"));
13372 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
13373 }
13374
13375 static void
13376 do_neon_shll (void)
13377 {
13378 /* FIXME: Type checking when lengthening. */
13379 struct neon_type_el et = neon_check_type (2, NS_QDI,
13380 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
13381 unsigned imm = inst.operands[2].imm;
13382
13383 if (imm == et.size)
13384 {
13385 /* Maximum shift variant. */
13386 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13387 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13388 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13389 inst.instruction |= LOW4 (inst.operands[1].reg);
13390 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13391 inst.instruction |= neon_logbits (et.size) << 18;
13392
13393 inst.instruction = neon_dp_fixup (inst.instruction);
13394 }
13395 else
13396 {
13397 /* A more-specific type check for non-max versions. */
13398 et = neon_check_type (2, NS_QDI,
13399 N_EQK | N_DBL, N_SU_32 | N_KEY);
13400 inst.instruction = NEON_ENC_IMMED (inst.instruction);
13401 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
13402 }
13403 }
13404
13405 /* Check the various types for the VCVT instruction, and return which version
13406 the current instruction is. */
13407
13408 static int
13409 neon_cvt_flavour (enum neon_shape rs)
13410 {
13411 #define CVT_VAR(C,X,Y) \
13412 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
13413 if (et.type != NT_invtype) \
13414 { \
13415 inst.error = NULL; \
13416 return (C); \
13417 }
13418 struct neon_type_el et;
13419 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
13420 || rs == NS_FF) ? N_VFP : 0;
13421 /* The instruction versions which take an immediate take one register
13422 argument, which is extended to the width of the full register. Thus the
13423 "source" and "destination" registers must have the same width. Hack that
13424 here by making the size equal to the key (wider, in this case) operand. */
13425 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
13426
13427 CVT_VAR (0, N_S32, N_F32);
13428 CVT_VAR (1, N_U32, N_F32);
13429 CVT_VAR (2, N_F32, N_S32);
13430 CVT_VAR (3, N_F32, N_U32);
13431 /* Half-precision conversions. */
13432 CVT_VAR (4, N_F32, N_F16);
13433 CVT_VAR (5, N_F16, N_F32);
13434
13435 whole_reg = N_VFP;
13436
13437 /* VFP instructions. */
13438 CVT_VAR (6, N_F32, N_F64);
13439 CVT_VAR (7, N_F64, N_F32);
13440 CVT_VAR (8, N_S32, N_F64 | key);
13441 CVT_VAR (9, N_U32, N_F64 | key);
13442 CVT_VAR (10, N_F64 | key, N_S32);
13443 CVT_VAR (11, N_F64 | key, N_U32);
13444 /* VFP instructions with bitshift. */
13445 CVT_VAR (12, N_F32 | key, N_S16);
13446 CVT_VAR (13, N_F32 | key, N_U16);
13447 CVT_VAR (14, N_F64 | key, N_S16);
13448 CVT_VAR (15, N_F64 | key, N_U16);
13449 CVT_VAR (16, N_S16, N_F32 | key);
13450 CVT_VAR (17, N_U16, N_F32 | key);
13451 CVT_VAR (18, N_S16, N_F64 | key);
13452 CVT_VAR (19, N_U16, N_F64 | key);
13453
13454 return -1;
13455 #undef CVT_VAR
13456 }
13457
13458 /* Neon-syntax VFP conversions. */
13459
13460 static void
13461 do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
13462 {
13463 const char *opname = 0;
13464
13465 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
13466 {
13467 /* Conversions with immediate bitshift. */
13468 const char *enc[] =
13469 {
13470 "ftosls",
13471 "ftouls",
13472 "fsltos",
13473 "fultos",
13474 NULL,
13475 NULL,
13476 NULL,
13477 NULL,
13478 "ftosld",
13479 "ftould",
13480 "fsltod",
13481 "fultod",
13482 "fshtos",
13483 "fuhtos",
13484 "fshtod",
13485 "fuhtod",
13486 "ftoshs",
13487 "ftouhs",
13488 "ftoshd",
13489 "ftouhd"
13490 };
13491
13492 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
13493 {
13494 opname = enc[flavour];
13495 constraint (inst.operands[0].reg != inst.operands[1].reg,
13496 _("operands 0 and 1 must be the same register"));
13497 inst.operands[1] = inst.operands[2];
13498 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
13499 }
13500 }
13501 else
13502 {
13503 /* Conversions without bitshift. */
13504 const char *enc[] =
13505 {
13506 "ftosis",
13507 "ftouis",
13508 "fsitos",
13509 "fuitos",
13510 "NULL",
13511 "NULL",
13512 "fcvtsd",
13513 "fcvtds",
13514 "ftosid",
13515 "ftouid",
13516 "fsitod",
13517 "fuitod"
13518 };
13519
13520 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
13521 opname = enc[flavour];
13522 }
13523
13524 if (opname)
13525 do_vfp_nsyn_opcode (opname);
13526 }
13527
13528 static void
13529 do_vfp_nsyn_cvtz (void)
13530 {
13531 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
13532 int flavour = neon_cvt_flavour (rs);
13533 const char *enc[] =
13534 {
13535 "ftosizs",
13536 "ftouizs",
13537 NULL,
13538 NULL,
13539 NULL,
13540 NULL,
13541 NULL,
13542 NULL,
13543 "ftosizd",
13544 "ftouizd"
13545 };
13546
13547 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
13548 do_vfp_nsyn_opcode (enc[flavour]);
13549 }
13550
13551 static void
13552 do_neon_cvt (void)
13553 {
13554 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
13555 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
13556 int flavour = neon_cvt_flavour (rs);
13557
13558 /* VFP rather than Neon conversions. */
13559 if (flavour >= 6)
13560 {
13561 do_vfp_nsyn_cvt (rs, flavour);
13562 return;
13563 }
13564
13565 switch (rs)
13566 {
13567 case NS_DDI:
13568 case NS_QQI:
13569 {
13570 unsigned immbits;
13571 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
13572
13573 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13574 return;
13575
13576 /* Fixed-point conversion with #0 immediate is encoded as an
13577 integer conversion. */
13578 if (inst.operands[2].present && inst.operands[2].imm == 0)
13579 goto int_encode;
13580 immbits = 32 - inst.operands[2].imm;
13581 inst.instruction = NEON_ENC_IMMED (inst.instruction);
13582 if (flavour != -1)
13583 inst.instruction |= enctab[flavour];
13584 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13585 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13586 inst.instruction |= LOW4 (inst.operands[1].reg);
13587 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13588 inst.instruction |= neon_quad (rs) << 6;
13589 inst.instruction |= 1 << 21;
13590 inst.instruction |= immbits << 16;
13591
13592 inst.instruction = neon_dp_fixup (inst.instruction);
13593 }
13594 break;
13595
13596 case NS_DD:
13597 case NS_QQ:
13598 int_encode:
13599 {
13600 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
13601
13602 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13603
13604 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13605 return;
13606
13607 if (flavour != -1)
13608 inst.instruction |= enctab[flavour];
13609
13610 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13611 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13612 inst.instruction |= LOW4 (inst.operands[1].reg);
13613 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13614 inst.instruction |= neon_quad (rs) << 6;
13615 inst.instruction |= 2 << 18;
13616
13617 inst.instruction = neon_dp_fixup (inst.instruction);
13618 }
13619 break;
13620
13621 /* Half-precision conversions for Advanced SIMD -- neon. */
13622 case NS_QD:
13623 case NS_DQ:
13624
13625 if ((rs == NS_DQ)
13626 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
13627 {
13628 as_bad (_("operand size must match register width"));
13629 break;
13630 }
13631
13632 if ((rs == NS_QD)
13633 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
13634 {
13635 as_bad (_("operand size must match register width"));
13636 break;
13637 }
13638
13639 if (rs == NS_DQ)
13640 inst.instruction = 0x3b60600;
13641 else
13642 inst.instruction = 0x3b60700;
13643
13644 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13645 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13646 inst.instruction |= LOW4 (inst.operands[1].reg);
13647 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13648 inst.instruction = neon_dp_fixup (inst.instruction);
13649 break;
13650
13651 default:
13652 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
13653 do_vfp_nsyn_cvt (rs, flavour);
13654 }
13655 }
13656
13657 static void
13658 do_neon_cvtb (void)
13659 {
13660 inst.instruction = 0xeb20a40;
13661
13662 /* The sizes are attached to the mnemonic. */
13663 if (inst.vectype.el[0].type != NT_invtype
13664 && inst.vectype.el[0].size == 16)
13665 inst.instruction |= 0x00010000;
13666
13667 /* Programmer's syntax: the sizes are attached to the operands. */
13668 else if (inst.operands[0].vectype.type != NT_invtype
13669 && inst.operands[0].vectype.size == 16)
13670 inst.instruction |= 0x00010000;
13671
13672 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
13673 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
13674 do_vfp_cond_or_thumb ();
13675 }
13676
13677
13678 static void
13679 do_neon_cvtt (void)
13680 {
13681 do_neon_cvtb ();
13682 inst.instruction |= 0x80;
13683 }
13684
13685 static void
13686 neon_move_immediate (void)
13687 {
13688 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
13689 struct neon_type_el et = neon_check_type (2, rs,
13690 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
13691 unsigned immlo, immhi = 0, immbits;
13692 int op, cmode, float_p;
13693
13694 constraint (et.type == NT_invtype,
13695 _("operand size must be specified for immediate VMOV"));
13696
13697 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
13698 op = (inst.instruction & (1 << 5)) != 0;
13699
13700 immlo = inst.operands[1].imm;
13701 if (inst.operands[1].regisimm)
13702 immhi = inst.operands[1].reg;
13703
13704 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
13705 _("immediate has bits set outside the operand size"));
13706
13707 float_p = inst.operands[1].immisfloat;
13708
13709 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
13710 et.size, et.type)) == FAIL)
13711 {
13712 /* Invert relevant bits only. */
13713 neon_invert_size (&immlo, &immhi, et.size);
13714 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
13715 with one or the other; those cases are caught by
13716 neon_cmode_for_move_imm. */
13717 op = !op;
13718 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
13719 &op, et.size, et.type)) == FAIL)
13720 {
13721 first_error (_("immediate out of range"));
13722 return;
13723 }
13724 }
13725
13726 inst.instruction &= ~(1 << 5);
13727 inst.instruction |= op << 5;
13728
13729 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13730 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13731 inst.instruction |= neon_quad (rs) << 6;
13732 inst.instruction |= cmode << 8;
13733
13734 neon_write_immbits (immbits);
13735 }
13736
13737 static void
13738 do_neon_mvn (void)
13739 {
13740 if (inst.operands[1].isreg)
13741 {
13742 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13743
13744 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13745 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13746 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13747 inst.instruction |= LOW4 (inst.operands[1].reg);
13748 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13749 inst.instruction |= neon_quad (rs) << 6;
13750 }
13751 else
13752 {
13753 inst.instruction = NEON_ENC_IMMED (inst.instruction);
13754 neon_move_immediate ();
13755 }
13756
13757 inst.instruction = neon_dp_fixup (inst.instruction);
13758 }
13759
13760 /* Encode instructions of form:
13761
13762 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
13763 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
13764
13765 static void
13766 neon_mixed_length (struct neon_type_el et, unsigned size)
13767 {
13768 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13769 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13770 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13771 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13772 inst.instruction |= LOW4 (inst.operands[2].reg);
13773 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13774 inst.instruction |= (et.type == NT_unsigned) << 24;
13775 inst.instruction |= neon_logbits (size) << 20;
13776
13777 inst.instruction = neon_dp_fixup (inst.instruction);
13778 }
13779
13780 static void
13781 do_neon_dyadic_long (void)
13782 {
13783 /* FIXME: Type checking for lengthening op. */
13784 struct neon_type_el et = neon_check_type (3, NS_QDD,
13785 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
13786 neon_mixed_length (et, et.size);
13787 }
13788
13789 static void
13790 do_neon_abal (void)
13791 {
13792 struct neon_type_el et = neon_check_type (3, NS_QDD,
13793 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
13794 neon_mixed_length (et, et.size);
13795 }
13796
13797 static void
13798 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
13799 {
13800 if (inst.operands[2].isscalar)
13801 {
13802 struct neon_type_el et = neon_check_type (3, NS_QDS,
13803 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
13804 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
13805 neon_mul_mac (et, et.type == NT_unsigned);
13806 }
13807 else
13808 {
13809 struct neon_type_el et = neon_check_type (3, NS_QDD,
13810 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
13811 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13812 neon_mixed_length (et, et.size);
13813 }
13814 }
13815
13816 static void
13817 do_neon_mac_maybe_scalar_long (void)
13818 {
13819 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
13820 }
13821
13822 static void
13823 do_neon_dyadic_wide (void)
13824 {
13825 struct neon_type_el et = neon_check_type (3, NS_QQD,
13826 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
13827 neon_mixed_length (et, et.size);
13828 }
13829
13830 static void
13831 do_neon_dyadic_narrow (void)
13832 {
13833 struct neon_type_el et = neon_check_type (3, NS_QDD,
13834 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
13835 /* Operand sign is unimportant, and the U bit is part of the opcode,
13836 so force the operand type to integer. */
13837 et.type = NT_integer;
13838 neon_mixed_length (et, et.size / 2);
13839 }
13840
13841 static void
13842 do_neon_mul_sat_scalar_long (void)
13843 {
13844 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
13845 }
13846
13847 static void
13848 do_neon_vmull (void)
13849 {
13850 if (inst.operands[2].isscalar)
13851 do_neon_mac_maybe_scalar_long ();
13852 else
13853 {
13854 struct neon_type_el et = neon_check_type (3, NS_QDD,
13855 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
13856 if (et.type == NT_poly)
13857 inst.instruction = NEON_ENC_POLY (inst.instruction);
13858 else
13859 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13860 /* For polynomial encoding, size field must be 0b00 and the U bit must be
13861 zero. Should be OK as-is. */
13862 neon_mixed_length (et, et.size);
13863 }
13864 }
13865
13866 static void
13867 do_neon_ext (void)
13868 {
13869 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
13870 struct neon_type_el et = neon_check_type (3, rs,
13871 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13872 unsigned imm = (inst.operands[3].imm * et.size) / 8;
13873
13874 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
13875 _("shift out of range"));
13876 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13877 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13878 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13879 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13880 inst.instruction |= LOW4 (inst.operands[2].reg);
13881 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13882 inst.instruction |= neon_quad (rs) << 6;
13883 inst.instruction |= imm << 8;
13884
13885 inst.instruction = neon_dp_fixup (inst.instruction);
13886 }
13887
13888 static void
13889 do_neon_rev (void)
13890 {
13891 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13892 struct neon_type_el et = neon_check_type (2, rs,
13893 N_EQK, N_8 | N_16 | N_32 | N_KEY);
13894 unsigned op = (inst.instruction >> 7) & 3;
13895 /* N (width of reversed regions) is encoded as part of the bitmask. We
13896 extract it here to check the elements to be reversed are smaller.
13897 Otherwise we'd get a reserved instruction. */
13898 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
13899 gas_assert (elsize != 0);
13900 constraint (et.size >= elsize,
13901 _("elements must be smaller than reversal region"));
13902 neon_two_same (neon_quad (rs), 1, et.size);
13903 }
13904
13905 static void
13906 do_neon_dup (void)
13907 {
13908 if (inst.operands[1].isscalar)
13909 {
13910 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
13911 struct neon_type_el et = neon_check_type (2, rs,
13912 N_EQK, N_8 | N_16 | N_32 | N_KEY);
13913 unsigned sizebits = et.size >> 3;
13914 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
13915 int logsize = neon_logbits (et.size);
13916 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
13917
13918 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
13919 return;
13920
13921 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
13922 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13923 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13924 inst.instruction |= LOW4 (dm);
13925 inst.instruction |= HI1 (dm) << 5;
13926 inst.instruction |= neon_quad (rs) << 6;
13927 inst.instruction |= x << 17;
13928 inst.instruction |= sizebits << 16;
13929
13930 inst.instruction = neon_dp_fixup (inst.instruction);
13931 }
13932 else
13933 {
13934 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
13935 struct neon_type_el et = neon_check_type (2, rs,
13936 N_8 | N_16 | N_32 | N_KEY, N_EQK);
13937 /* Duplicate ARM register to lanes of vector. */
13938 inst.instruction = NEON_ENC_ARMREG (inst.instruction);
13939 switch (et.size)
13940 {
13941 case 8: inst.instruction |= 0x400000; break;
13942 case 16: inst.instruction |= 0x000020; break;
13943 case 32: inst.instruction |= 0x000000; break;
13944 default: break;
13945 }
13946 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
13947 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
13948 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
13949 inst.instruction |= neon_quad (rs) << 21;
13950 /* The encoding for this instruction is identical for the ARM and Thumb
13951 variants, except for the condition field. */
13952 do_vfp_cond_or_thumb ();
13953 }
13954 }
13955
13956 /* VMOV has particularly many variations. It can be one of:
13957 0. VMOV<c><q> <Qd>, <Qm>
13958 1. VMOV<c><q> <Dd>, <Dm>
13959 (Register operations, which are VORR with Rm = Rn.)
13960 2. VMOV<c><q>.<dt> <Qd>, #<imm>
13961 3. VMOV<c><q>.<dt> <Dd>, #<imm>
13962 (Immediate loads.)
13963 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
13964 (ARM register to scalar.)
13965 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
13966 (Two ARM registers to vector.)
13967 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
13968 (Scalar to ARM register.)
13969 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
13970 (Vector to two ARM registers.)
13971 8. VMOV.F32 <Sd>, <Sm>
13972 9. VMOV.F64 <Dd>, <Dm>
13973 (VFP register moves.)
13974 10. VMOV.F32 <Sd>, #imm
13975 11. VMOV.F64 <Dd>, #imm
13976 (VFP float immediate load.)
13977 12. VMOV <Rd>, <Sm>
13978 (VFP single to ARM reg.)
13979 13. VMOV <Sd>, <Rm>
13980 (ARM reg to VFP single.)
13981 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
13982 (Two ARM regs to two VFP singles.)
13983 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
13984 (Two VFP singles to two ARM regs.)
13985
13986 These cases can be disambiguated using neon_select_shape, except cases 1/9
13987 and 3/11 which depend on the operand type too.
13988
13989 All the encoded bits are hardcoded by this function.
13990
13991 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
13992 Cases 5, 7 may be used with VFPv2 and above.
13993
13994 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
13995 can specify a type where it doesn't make sense to, and is ignored). */
13996
13997 static void
13998 do_neon_mov (void)
13999 {
14000 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
14001 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
14002 NS_NULL);
14003 struct neon_type_el et;
14004 const char *ldconst = 0;
14005
14006 switch (rs)
14007 {
14008 case NS_DD: /* case 1/9. */
14009 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14010 /* It is not an error here if no type is given. */
14011 inst.error = NULL;
14012 if (et.type == NT_float && et.size == 64)
14013 {
14014 do_vfp_nsyn_opcode ("fcpyd");
14015 break;
14016 }
14017 /* fall through. */
14018
14019 case NS_QQ: /* case 0/1. */
14020 {
14021 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14022 return;
14023 /* The architecture manual I have doesn't explicitly state which
14024 value the U bit should have for register->register moves, but
14025 the equivalent VORR instruction has U = 0, so do that. */
14026 inst.instruction = 0x0200110;
14027 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14028 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14029 inst.instruction |= LOW4 (inst.operands[1].reg);
14030 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14031 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14032 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14033 inst.instruction |= neon_quad (rs) << 6;
14034
14035 inst.instruction = neon_dp_fixup (inst.instruction);
14036 }
14037 break;
14038
14039 case NS_DI: /* case 3/11. */
14040 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14041 inst.error = NULL;
14042 if (et.type == NT_float && et.size == 64)
14043 {
14044 /* case 11 (fconstd). */
14045 ldconst = "fconstd";
14046 goto encode_fconstd;
14047 }
14048 /* fall through. */
14049
14050 case NS_QI: /* case 2/3. */
14051 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14052 return;
14053 inst.instruction = 0x0800010;
14054 neon_move_immediate ();
14055 inst.instruction = neon_dp_fixup (inst.instruction);
14056 break;
14057
14058 case NS_SR: /* case 4. */
14059 {
14060 unsigned bcdebits = 0;
14061 struct neon_type_el et = neon_check_type (2, NS_NULL,
14062 N_8 | N_16 | N_32 | N_KEY, N_EQK);
14063 int logsize = neon_logbits (et.size);
14064 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
14065 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
14066
14067 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14068 _(BAD_FPU));
14069 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14070 && et.size != 32, _(BAD_FPU));
14071 constraint (et.type == NT_invtype, _("bad type for scalar"));
14072 constraint (x >= 64 / et.size, _("scalar index out of range"));
14073
14074 switch (et.size)
14075 {
14076 case 8: bcdebits = 0x8; break;
14077 case 16: bcdebits = 0x1; break;
14078 case 32: bcdebits = 0x0; break;
14079 default: ;
14080 }
14081
14082 bcdebits |= x << logsize;
14083
14084 inst.instruction = 0xe000b10;
14085 do_vfp_cond_or_thumb ();
14086 inst.instruction |= LOW4 (dn) << 16;
14087 inst.instruction |= HI1 (dn) << 7;
14088 inst.instruction |= inst.operands[1].reg << 12;
14089 inst.instruction |= (bcdebits & 3) << 5;
14090 inst.instruction |= (bcdebits >> 2) << 21;
14091 }
14092 break;
14093
14094 case NS_DRR: /* case 5 (fmdrr). */
14095 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
14096 _(BAD_FPU));
14097
14098 inst.instruction = 0xc400b10;
14099 do_vfp_cond_or_thumb ();
14100 inst.instruction |= LOW4 (inst.operands[0].reg);
14101 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
14102 inst.instruction |= inst.operands[1].reg << 12;
14103 inst.instruction |= inst.operands[2].reg << 16;
14104 break;
14105
14106 case NS_RS: /* case 6. */
14107 {
14108 struct neon_type_el et = neon_check_type (2, NS_NULL,
14109 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
14110 unsigned logsize = neon_logbits (et.size);
14111 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
14112 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
14113 unsigned abcdebits = 0;
14114
14115 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14116 _(BAD_FPU));
14117 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14118 && et.size != 32, _(BAD_FPU));
14119 constraint (et.type == NT_invtype, _("bad type for scalar"));
14120 constraint (x >= 64 / et.size, _("scalar index out of range"));
14121
14122 switch (et.size)
14123 {
14124 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
14125 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
14126 case 32: abcdebits = 0x00; break;
14127 default: ;
14128 }
14129
14130 abcdebits |= x << logsize;
14131 inst.instruction = 0xe100b10;
14132 do_vfp_cond_or_thumb ();
14133 inst.instruction |= LOW4 (dn) << 16;
14134 inst.instruction |= HI1 (dn) << 7;
14135 inst.instruction |= inst.operands[0].reg << 12;
14136 inst.instruction |= (abcdebits & 3) << 5;
14137 inst.instruction |= (abcdebits >> 2) << 21;
14138 }
14139 break;
14140
14141 case NS_RRD: /* case 7 (fmrrd). */
14142 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
14143 _(BAD_FPU));
14144
14145 inst.instruction = 0xc500b10;
14146 do_vfp_cond_or_thumb ();
14147 inst.instruction |= inst.operands[0].reg << 12;
14148 inst.instruction |= inst.operands[1].reg << 16;
14149 inst.instruction |= LOW4 (inst.operands[2].reg);
14150 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14151 break;
14152
14153 case NS_FF: /* case 8 (fcpys). */
14154 do_vfp_nsyn_opcode ("fcpys");
14155 break;
14156
14157 case NS_FI: /* case 10 (fconsts). */
14158 ldconst = "fconsts";
14159 encode_fconstd:
14160 if (is_quarter_float (inst.operands[1].imm))
14161 {
14162 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
14163 do_vfp_nsyn_opcode (ldconst);
14164 }
14165 else
14166 first_error (_("immediate out of range"));
14167 break;
14168
14169 case NS_RF: /* case 12 (fmrs). */
14170 do_vfp_nsyn_opcode ("fmrs");
14171 break;
14172
14173 case NS_FR: /* case 13 (fmsr). */
14174 do_vfp_nsyn_opcode ("fmsr");
14175 break;
14176
14177 /* The encoders for the fmrrs and fmsrr instructions expect three operands
14178 (one of which is a list), but we have parsed four. Do some fiddling to
14179 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
14180 expect. */
14181 case NS_RRFF: /* case 14 (fmrrs). */
14182 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
14183 _("VFP registers must be adjacent"));
14184 inst.operands[2].imm = 2;
14185 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
14186 do_vfp_nsyn_opcode ("fmrrs");
14187 break;
14188
14189 case NS_FFRR: /* case 15 (fmsrr). */
14190 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
14191 _("VFP registers must be adjacent"));
14192 inst.operands[1] = inst.operands[2];
14193 inst.operands[2] = inst.operands[3];
14194 inst.operands[0].imm = 2;
14195 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
14196 do_vfp_nsyn_opcode ("fmsrr");
14197 break;
14198
14199 default:
14200 abort ();
14201 }
14202 }
14203
14204 static void
14205 do_neon_rshift_round_imm (void)
14206 {
14207 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14208 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
14209 int imm = inst.operands[2].imm;
14210
14211 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
14212 if (imm == 0)
14213 {
14214 inst.operands[2].present = 0;
14215 do_neon_mov ();
14216 return;
14217 }
14218
14219 constraint (imm < 1 || (unsigned)imm > et.size,
14220 _("immediate out of range for shift"));
14221 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
14222 et.size - imm);
14223 }
14224
14225 static void
14226 do_neon_movl (void)
14227 {
14228 struct neon_type_el et = neon_check_type (2, NS_QD,
14229 N_EQK | N_DBL, N_SU_32 | N_KEY);
14230 unsigned sizebits = et.size >> 3;
14231 inst.instruction |= sizebits << 19;
14232 neon_two_same (0, et.type == NT_unsigned, -1);
14233 }
14234
14235 static void
14236 do_neon_trn (void)
14237 {
14238 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14239 struct neon_type_el et = neon_check_type (2, rs,
14240 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14241 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
14242 neon_two_same (neon_quad (rs), 1, et.size);
14243 }
14244
14245 static void
14246 do_neon_zip_uzp (void)
14247 {
14248 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14249 struct neon_type_el et = neon_check_type (2, rs,
14250 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14251 if (rs == NS_DD && et.size == 32)
14252 {
14253 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
14254 inst.instruction = N_MNEM_vtrn;
14255 do_neon_trn ();
14256 return;
14257 }
14258 neon_two_same (neon_quad (rs), 1, et.size);
14259 }
14260
14261 static void
14262 do_neon_sat_abs_neg (void)
14263 {
14264 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14265 struct neon_type_el et = neon_check_type (2, rs,
14266 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
14267 neon_two_same (neon_quad (rs), 1, et.size);
14268 }
14269
14270 static void
14271 do_neon_pair_long (void)
14272 {
14273 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14274 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
14275 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
14276 inst.instruction |= (et.type == NT_unsigned) << 7;
14277 neon_two_same (neon_quad (rs), 1, et.size);
14278 }
14279
14280 static void
14281 do_neon_recip_est (void)
14282 {
14283 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14284 struct neon_type_el et = neon_check_type (2, rs,
14285 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
14286 inst.instruction |= (et.type == NT_float) << 8;
14287 neon_two_same (neon_quad (rs), 1, et.size);
14288 }
14289
14290 static void
14291 do_neon_cls (void)
14292 {
14293 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14294 struct neon_type_el et = neon_check_type (2, rs,
14295 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
14296 neon_two_same (neon_quad (rs), 1, et.size);
14297 }
14298
14299 static void
14300 do_neon_clz (void)
14301 {
14302 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14303 struct neon_type_el et = neon_check_type (2, rs,
14304 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
14305 neon_two_same (neon_quad (rs), 1, et.size);
14306 }
14307
14308 static void
14309 do_neon_cnt (void)
14310 {
14311 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14312 struct neon_type_el et = neon_check_type (2, rs,
14313 N_EQK | N_INT, N_8 | N_KEY);
14314 neon_two_same (neon_quad (rs), 1, et.size);
14315 }
14316
14317 static void
14318 do_neon_swp (void)
14319 {
14320 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14321 neon_two_same (neon_quad (rs), 1, -1);
14322 }
14323
14324 static void
14325 do_neon_tbl_tbx (void)
14326 {
14327 unsigned listlenbits;
14328 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
14329
14330 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
14331 {
14332 first_error (_("bad list length for table lookup"));
14333 return;
14334 }
14335
14336 listlenbits = inst.operands[1].imm - 1;
14337 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14338 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14339 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14340 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14341 inst.instruction |= LOW4 (inst.operands[2].reg);
14342 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14343 inst.instruction |= listlenbits << 8;
14344
14345 inst.instruction = neon_dp_fixup (inst.instruction);
14346 }
14347
14348 static void
14349 do_neon_ldm_stm (void)
14350 {
14351 /* P, U and L bits are part of bitmask. */
14352 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
14353 unsigned offsetbits = inst.operands[1].imm * 2;
14354
14355 if (inst.operands[1].issingle)
14356 {
14357 do_vfp_nsyn_ldm_stm (is_dbmode);
14358 return;
14359 }
14360
14361 constraint (is_dbmode && !inst.operands[0].writeback,
14362 _("writeback (!) must be used for VLDMDB and VSTMDB"));
14363
14364 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
14365 _("register list must contain at least 1 and at most 16 "
14366 "registers"));
14367
14368 inst.instruction |= inst.operands[0].reg << 16;
14369 inst.instruction |= inst.operands[0].writeback << 21;
14370 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
14371 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
14372
14373 inst.instruction |= offsetbits;
14374
14375 do_vfp_cond_or_thumb ();
14376 }
14377
14378 static void
14379 do_neon_ldr_str (void)
14380 {
14381 int is_ldr = (inst.instruction & (1 << 20)) != 0;
14382
14383 if (inst.operands[0].issingle)
14384 {
14385 if (is_ldr)
14386 do_vfp_nsyn_opcode ("flds");
14387 else
14388 do_vfp_nsyn_opcode ("fsts");
14389 }
14390 else
14391 {
14392 if (is_ldr)
14393 do_vfp_nsyn_opcode ("fldd");
14394 else
14395 do_vfp_nsyn_opcode ("fstd");
14396 }
14397 }
14398
14399 /* "interleave" version also handles non-interleaving register VLD1/VST1
14400 instructions. */
14401
14402 static void
14403 do_neon_ld_st_interleave (void)
14404 {
14405 struct neon_type_el et = neon_check_type (1, NS_NULL,
14406 N_8 | N_16 | N_32 | N_64);
14407 unsigned alignbits = 0;
14408 unsigned idx;
14409 /* The bits in this table go:
14410 0: register stride of one (0) or two (1)
14411 1,2: register list length, minus one (1, 2, 3, 4).
14412 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
14413 We use -1 for invalid entries. */
14414 const int typetable[] =
14415 {
14416 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
14417 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
14418 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
14419 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
14420 };
14421 int typebits;
14422
14423 if (et.type == NT_invtype)
14424 return;
14425
14426 if (inst.operands[1].immisalign)
14427 switch (inst.operands[1].imm >> 8)
14428 {
14429 case 64: alignbits = 1; break;
14430 case 128:
14431 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3)
14432 goto bad_alignment;
14433 alignbits = 2;
14434 break;
14435 case 256:
14436 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3)
14437 goto bad_alignment;
14438 alignbits = 3;
14439 break;
14440 default:
14441 bad_alignment:
14442 first_error (_("bad alignment"));
14443 return;
14444 }
14445
14446 inst.instruction |= alignbits << 4;
14447 inst.instruction |= neon_logbits (et.size) << 6;
14448
14449 /* Bits [4:6] of the immediate in a list specifier encode register stride
14450 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
14451 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
14452 up the right value for "type" in a table based on this value and the given
14453 list style, then stick it back. */
14454 idx = ((inst.operands[0].imm >> 4) & 7)
14455 | (((inst.instruction >> 8) & 3) << 3);
14456
14457 typebits = typetable[idx];
14458
14459 constraint (typebits == -1, _("bad list type for instruction"));
14460
14461 inst.instruction &= ~0xf00;
14462 inst.instruction |= typebits << 8;
14463 }
14464
14465 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
14466 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
14467 otherwise. The variable arguments are a list of pairs of legal (size, align)
14468 values, terminated with -1. */
14469
14470 static int
14471 neon_alignment_bit (int size, int align, int *do_align, ...)
14472 {
14473 va_list ap;
14474 int result = FAIL, thissize, thisalign;
14475
14476 if (!inst.operands[1].immisalign)
14477 {
14478 *do_align = 0;
14479 return SUCCESS;
14480 }
14481
14482 va_start (ap, do_align);
14483
14484 do
14485 {
14486 thissize = va_arg (ap, int);
14487 if (thissize == -1)
14488 break;
14489 thisalign = va_arg (ap, int);
14490
14491 if (size == thissize && align == thisalign)
14492 result = SUCCESS;
14493 }
14494 while (result != SUCCESS);
14495
14496 va_end (ap);
14497
14498 if (result == SUCCESS)
14499 *do_align = 1;
14500 else
14501 first_error (_("unsupported alignment for instruction"));
14502
14503 return result;
14504 }
14505
14506 static void
14507 do_neon_ld_st_lane (void)
14508 {
14509 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
14510 int align_good, do_align = 0;
14511 int logsize = neon_logbits (et.size);
14512 int align = inst.operands[1].imm >> 8;
14513 int n = (inst.instruction >> 8) & 3;
14514 int max_el = 64 / et.size;
14515
14516 if (et.type == NT_invtype)
14517 return;
14518
14519 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
14520 _("bad list length"));
14521 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
14522 _("scalar index out of range"));
14523 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
14524 && et.size == 8,
14525 _("stride of 2 unavailable when element size is 8"));
14526
14527 switch (n)
14528 {
14529 case 0: /* VLD1 / VST1. */
14530 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
14531 32, 32, -1);
14532 if (align_good == FAIL)
14533 return;
14534 if (do_align)
14535 {
14536 unsigned alignbits = 0;
14537 switch (et.size)
14538 {
14539 case 16: alignbits = 0x1; break;
14540 case 32: alignbits = 0x3; break;
14541 default: ;
14542 }
14543 inst.instruction |= alignbits << 4;
14544 }
14545 break;
14546
14547 case 1: /* VLD2 / VST2. */
14548 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
14549 32, 64, -1);
14550 if (align_good == FAIL)
14551 return;
14552 if (do_align)
14553 inst.instruction |= 1 << 4;
14554 break;
14555
14556 case 2: /* VLD3 / VST3. */
14557 constraint (inst.operands[1].immisalign,
14558 _("can't use alignment with this instruction"));
14559 break;
14560
14561 case 3: /* VLD4 / VST4. */
14562 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
14563 16, 64, 32, 64, 32, 128, -1);
14564 if (align_good == FAIL)
14565 return;
14566 if (do_align)
14567 {
14568 unsigned alignbits = 0;
14569 switch (et.size)
14570 {
14571 case 8: alignbits = 0x1; break;
14572 case 16: alignbits = 0x1; break;
14573 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
14574 default: ;
14575 }
14576 inst.instruction |= alignbits << 4;
14577 }
14578 break;
14579
14580 default: ;
14581 }
14582
14583 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
14584 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14585 inst.instruction |= 1 << (4 + logsize);
14586
14587 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
14588 inst.instruction |= logsize << 10;
14589 }
14590
14591 /* Encode single n-element structure to all lanes VLD<n> instructions. */
14592
14593 static void
14594 do_neon_ld_dup (void)
14595 {
14596 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
14597 int align_good, do_align = 0;
14598
14599 if (et.type == NT_invtype)
14600 return;
14601
14602 switch ((inst.instruction >> 8) & 3)
14603 {
14604 case 0: /* VLD1. */
14605 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
14606 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
14607 &do_align, 16, 16, 32, 32, -1);
14608 if (align_good == FAIL)
14609 return;
14610 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
14611 {
14612 case 1: break;
14613 case 2: inst.instruction |= 1 << 5; break;
14614 default: first_error (_("bad list length")); return;
14615 }
14616 inst.instruction |= neon_logbits (et.size) << 6;
14617 break;
14618
14619 case 1: /* VLD2. */
14620 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
14621 &do_align, 8, 16, 16, 32, 32, 64, -1);
14622 if (align_good == FAIL)
14623 return;
14624 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
14625 _("bad list length"));
14626 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14627 inst.instruction |= 1 << 5;
14628 inst.instruction |= neon_logbits (et.size) << 6;
14629 break;
14630
14631 case 2: /* VLD3. */
14632 constraint (inst.operands[1].immisalign,
14633 _("can't use alignment with this instruction"));
14634 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
14635 _("bad list length"));
14636 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14637 inst.instruction |= 1 << 5;
14638 inst.instruction |= neon_logbits (et.size) << 6;
14639 break;
14640
14641 case 3: /* VLD4. */
14642 {
14643 int align = inst.operands[1].imm >> 8;
14644 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
14645 16, 64, 32, 64, 32, 128, -1);
14646 if (align_good == FAIL)
14647 return;
14648 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
14649 _("bad list length"));
14650 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14651 inst.instruction |= 1 << 5;
14652 if (et.size == 32 && align == 128)
14653 inst.instruction |= 0x3 << 6;
14654 else
14655 inst.instruction |= neon_logbits (et.size) << 6;
14656 }
14657 break;
14658
14659 default: ;
14660 }
14661
14662 inst.instruction |= do_align << 4;
14663 }
14664
14665 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
14666 apart from bits [11:4]. */
14667
14668 static void
14669 do_neon_ldx_stx (void)
14670 {
14671 switch (NEON_LANE (inst.operands[0].imm))
14672 {
14673 case NEON_INTERLEAVE_LANES:
14674 inst.instruction = NEON_ENC_INTERLV (inst.instruction);
14675 do_neon_ld_st_interleave ();
14676 break;
14677
14678 case NEON_ALL_LANES:
14679 inst.instruction = NEON_ENC_DUP (inst.instruction);
14680 do_neon_ld_dup ();
14681 break;
14682
14683 default:
14684 inst.instruction = NEON_ENC_LANE (inst.instruction);
14685 do_neon_ld_st_lane ();
14686 }
14687
14688 /* L bit comes from bit mask. */
14689 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14690 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14691 inst.instruction |= inst.operands[1].reg << 16;
14692
14693 if (inst.operands[1].postind)
14694 {
14695 int postreg = inst.operands[1].imm & 0xf;
14696 constraint (!inst.operands[1].immisreg,
14697 _("post-index must be a register"));
14698 constraint (postreg == 0xd || postreg == 0xf,
14699 _("bad register for post-index"));
14700 inst.instruction |= postreg;
14701 }
14702 else if (inst.operands[1].writeback)
14703 {
14704 inst.instruction |= 0xd;
14705 }
14706 else
14707 inst.instruction |= 0xf;
14708
14709 if (thumb_mode)
14710 inst.instruction |= 0xf9000000;
14711 else
14712 inst.instruction |= 0xf4000000;
14713 }
14714 \f
14715 /* Overall per-instruction processing. */
14716
14717 /* We need to be able to fix up arbitrary expressions in some statements.
14718 This is so that we can handle symbols that are an arbitrary distance from
14719 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
14720 which returns part of an address in a form which will be valid for
14721 a data instruction. We do this by pushing the expression into a symbol
14722 in the expr_section, and creating a fix for that. */
14723
14724 static void
14725 fix_new_arm (fragS * frag,
14726 int where,
14727 short int size,
14728 expressionS * exp,
14729 int pc_rel,
14730 int reloc)
14731 {
14732 fixS * new_fix;
14733
14734 switch (exp->X_op)
14735 {
14736 case O_constant:
14737 case O_symbol:
14738 case O_add:
14739 case O_subtract:
14740 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
14741 (enum bfd_reloc_code_real) reloc);
14742 break;
14743
14744 default:
14745 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
14746 pc_rel, (enum bfd_reloc_code_real) reloc);
14747 break;
14748 }
14749
14750 /* Mark whether the fix is to a THUMB instruction, or an ARM
14751 instruction. */
14752 new_fix->tc_fix_data = thumb_mode;
14753 }
14754
14755 /* Create a frg for an instruction requiring relaxation. */
14756 static void
14757 output_relax_insn (void)
14758 {
14759 char * to;
14760 symbolS *sym;
14761 int offset;
14762
14763 /* The size of the instruction is unknown, so tie the debug info to the
14764 start of the instruction. */
14765 dwarf2_emit_insn (0);
14766
14767 switch (inst.reloc.exp.X_op)
14768 {
14769 case O_symbol:
14770 sym = inst.reloc.exp.X_add_symbol;
14771 offset = inst.reloc.exp.X_add_number;
14772 break;
14773 case O_constant:
14774 sym = NULL;
14775 offset = inst.reloc.exp.X_add_number;
14776 break;
14777 default:
14778 sym = make_expr_symbol (&inst.reloc.exp);
14779 offset = 0;
14780 break;
14781 }
14782 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
14783 inst.relax, sym, offset, NULL/*offset, opcode*/);
14784 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
14785 }
14786
14787 /* Write a 32-bit thumb instruction to buf. */
14788 static void
14789 put_thumb32_insn (char * buf, unsigned long insn)
14790 {
14791 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
14792 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
14793 }
14794
14795 static void
14796 output_inst (const char * str)
14797 {
14798 char * to = NULL;
14799
14800 if (inst.error)
14801 {
14802 as_bad ("%s -- `%s'", inst.error, str);
14803 return;
14804 }
14805 if (inst.relax)
14806 {
14807 output_relax_insn ();
14808 return;
14809 }
14810 if (inst.size == 0)
14811 return;
14812
14813 to = frag_more (inst.size);
14814 /* PR 9814: Record the thumb mode into the current frag so that we know
14815 what type of NOP padding to use, if necessary. We override any previous
14816 setting so that if the mode has changed then the NOPS that we use will
14817 match the encoding of the last instruction in the frag. */
14818 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
14819
14820 if (thumb_mode && (inst.size > THUMB_SIZE))
14821 {
14822 gas_assert (inst.size == (2 * THUMB_SIZE));
14823 put_thumb32_insn (to, inst.instruction);
14824 }
14825 else if (inst.size > INSN_SIZE)
14826 {
14827 gas_assert (inst.size == (2 * INSN_SIZE));
14828 md_number_to_chars (to, inst.instruction, INSN_SIZE);
14829 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
14830 }
14831 else
14832 md_number_to_chars (to, inst.instruction, inst.size);
14833
14834 if (inst.reloc.type != BFD_RELOC_UNUSED)
14835 fix_new_arm (frag_now, to - frag_now->fr_literal,
14836 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
14837 inst.reloc.type);
14838
14839 dwarf2_emit_insn (inst.size);
14840 }
14841
14842 static char *
14843 output_it_inst (int cond, int mask, char * to)
14844 {
14845 unsigned long instruction = 0xbf00;
14846
14847 mask &= 0xf;
14848 instruction |= mask;
14849 instruction |= cond << 4;
14850
14851 if (to == NULL)
14852 {
14853 to = frag_more (2);
14854 #ifdef OBJ_ELF
14855 dwarf2_emit_insn (2);
14856 #endif
14857 }
14858
14859 md_number_to_chars (to, instruction, 2);
14860
14861 return to;
14862 }
14863
14864 /* Tag values used in struct asm_opcode's tag field. */
14865 enum opcode_tag
14866 {
14867 OT_unconditional, /* Instruction cannot be conditionalized.
14868 The ARM condition field is still 0xE. */
14869 OT_unconditionalF, /* Instruction cannot be conditionalized
14870 and carries 0xF in its ARM condition field. */
14871 OT_csuffix, /* Instruction takes a conditional suffix. */
14872 OT_csuffixF, /* Some forms of the instruction take a conditional
14873 suffix, others place 0xF where the condition field
14874 would be. */
14875 OT_cinfix3, /* Instruction takes a conditional infix,
14876 beginning at character index 3. (In
14877 unified mode, it becomes a suffix.) */
14878 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
14879 tsts, cmps, cmns, and teqs. */
14880 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
14881 character index 3, even in unified mode. Used for
14882 legacy instructions where suffix and infix forms
14883 may be ambiguous. */
14884 OT_csuf_or_in3, /* Instruction takes either a conditional
14885 suffix or an infix at character index 3. */
14886 OT_odd_infix_unc, /* This is the unconditional variant of an
14887 instruction that takes a conditional infix
14888 at an unusual position. In unified mode,
14889 this variant will accept a suffix. */
14890 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
14891 are the conditional variants of instructions that
14892 take conditional infixes in unusual positions.
14893 The infix appears at character index
14894 (tag - OT_odd_infix_0). These are not accepted
14895 in unified mode. */
14896 };
14897
14898 /* Subroutine of md_assemble, responsible for looking up the primary
14899 opcode from the mnemonic the user wrote. STR points to the
14900 beginning of the mnemonic.
14901
14902 This is not simply a hash table lookup, because of conditional
14903 variants. Most instructions have conditional variants, which are
14904 expressed with a _conditional affix_ to the mnemonic. If we were
14905 to encode each conditional variant as a literal string in the opcode
14906 table, it would have approximately 20,000 entries.
14907
14908 Most mnemonics take this affix as a suffix, and in unified syntax,
14909 'most' is upgraded to 'all'. However, in the divided syntax, some
14910 instructions take the affix as an infix, notably the s-variants of
14911 the arithmetic instructions. Of those instructions, all but six
14912 have the infix appear after the third character of the mnemonic.
14913
14914 Accordingly, the algorithm for looking up primary opcodes given
14915 an identifier is:
14916
14917 1. Look up the identifier in the opcode table.
14918 If we find a match, go to step U.
14919
14920 2. Look up the last two characters of the identifier in the
14921 conditions table. If we find a match, look up the first N-2
14922 characters of the identifier in the opcode table. If we
14923 find a match, go to step CE.
14924
14925 3. Look up the fourth and fifth characters of the identifier in
14926 the conditions table. If we find a match, extract those
14927 characters from the identifier, and look up the remaining
14928 characters in the opcode table. If we find a match, go
14929 to step CM.
14930
14931 4. Fail.
14932
14933 U. Examine the tag field of the opcode structure, in case this is
14934 one of the six instructions with its conditional infix in an
14935 unusual place. If it is, the tag tells us where to find the
14936 infix; look it up in the conditions table and set inst.cond
14937 accordingly. Otherwise, this is an unconditional instruction.
14938 Again set inst.cond accordingly. Return the opcode structure.
14939
14940 CE. Examine the tag field to make sure this is an instruction that
14941 should receive a conditional suffix. If it is not, fail.
14942 Otherwise, set inst.cond from the suffix we already looked up,
14943 and return the opcode structure.
14944
14945 CM. Examine the tag field to make sure this is an instruction that
14946 should receive a conditional infix after the third character.
14947 If it is not, fail. Otherwise, undo the edits to the current
14948 line of input and proceed as for case CE. */
14949
14950 static const struct asm_opcode *
14951 opcode_lookup (char **str)
14952 {
14953 char *end, *base;
14954 char *affix;
14955 const struct asm_opcode *opcode;
14956 const struct asm_cond *cond;
14957 char save[2];
14958 bfd_boolean neon_supported;
14959
14960 neon_supported = ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1);
14961
14962 /* Scan up to the end of the mnemonic, which must end in white space,
14963 '.' (in unified mode, or for Neon instructions), or end of string. */
14964 for (base = end = *str; *end != '\0'; end++)
14965 if (*end == ' ' || ((unified_syntax || neon_supported) && *end == '.'))
14966 break;
14967
14968 if (end == base)
14969 return NULL;
14970
14971 /* Handle a possible width suffix and/or Neon type suffix. */
14972 if (end[0] == '.')
14973 {
14974 int offset = 2;
14975
14976 /* The .w and .n suffixes are only valid if the unified syntax is in
14977 use. */
14978 if (unified_syntax && end[1] == 'w')
14979 inst.size_req = 4;
14980 else if (unified_syntax && end[1] == 'n')
14981 inst.size_req = 2;
14982 else
14983 offset = 0;
14984
14985 inst.vectype.elems = 0;
14986
14987 *str = end + offset;
14988
14989 if (end[offset] == '.')
14990 {
14991 /* See if we have a Neon type suffix (possible in either unified or
14992 non-unified ARM syntax mode). */
14993 if (parse_neon_type (&inst.vectype, str) == FAIL)
14994 return NULL;
14995 }
14996 else if (end[offset] != '\0' && end[offset] != ' ')
14997 return NULL;
14998 }
14999 else
15000 *str = end;
15001
15002 /* Look for unaffixed or special-case affixed mnemonic. */
15003 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15004 end - base);
15005 if (opcode)
15006 {
15007 /* step U */
15008 if (opcode->tag < OT_odd_infix_0)
15009 {
15010 inst.cond = COND_ALWAYS;
15011 return opcode;
15012 }
15013
15014 if (warn_on_deprecated && unified_syntax)
15015 as_warn (_("conditional infixes are deprecated in unified syntax"));
15016 affix = base + (opcode->tag - OT_odd_infix_0);
15017 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15018 gas_assert (cond);
15019
15020 inst.cond = cond->value;
15021 return opcode;
15022 }
15023
15024 /* Cannot have a conditional suffix on a mnemonic of less than two
15025 characters. */
15026 if (end - base < 3)
15027 return NULL;
15028
15029 /* Look for suffixed mnemonic. */
15030 affix = end - 2;
15031 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15032 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15033 affix - base);
15034 if (opcode && cond)
15035 {
15036 /* step CE */
15037 switch (opcode->tag)
15038 {
15039 case OT_cinfix3_legacy:
15040 /* Ignore conditional suffixes matched on infix only mnemonics. */
15041 break;
15042
15043 case OT_cinfix3:
15044 case OT_cinfix3_deprecated:
15045 case OT_odd_infix_unc:
15046 if (!unified_syntax)
15047 return 0;
15048 /* else fall through */
15049
15050 case OT_csuffix:
15051 case OT_csuffixF:
15052 case OT_csuf_or_in3:
15053 inst.cond = cond->value;
15054 return opcode;
15055
15056 case OT_unconditional:
15057 case OT_unconditionalF:
15058 if (thumb_mode)
15059 inst.cond = cond->value;
15060 else
15061 {
15062 /* Delayed diagnostic. */
15063 inst.error = BAD_COND;
15064 inst.cond = COND_ALWAYS;
15065 }
15066 return opcode;
15067
15068 default:
15069 return NULL;
15070 }
15071 }
15072
15073 /* Cannot have a usual-position infix on a mnemonic of less than
15074 six characters (five would be a suffix). */
15075 if (end - base < 6)
15076 return NULL;
15077
15078 /* Look for infixed mnemonic in the usual position. */
15079 affix = base + 3;
15080 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15081 if (!cond)
15082 return NULL;
15083
15084 memcpy (save, affix, 2);
15085 memmove (affix, affix + 2, (end - affix) - 2);
15086 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15087 (end - base) - 2);
15088 memmove (affix + 2, affix, (end - affix) - 2);
15089 memcpy (affix, save, 2);
15090
15091 if (opcode
15092 && (opcode->tag == OT_cinfix3
15093 || opcode->tag == OT_cinfix3_deprecated
15094 || opcode->tag == OT_csuf_or_in3
15095 || opcode->tag == OT_cinfix3_legacy))
15096 {
15097 /* Step CM. */
15098 if (warn_on_deprecated && unified_syntax
15099 && (opcode->tag == OT_cinfix3
15100 || opcode->tag == OT_cinfix3_deprecated))
15101 as_warn (_("conditional infixes are deprecated in unified syntax"));
15102
15103 inst.cond = cond->value;
15104 return opcode;
15105 }
15106
15107 return NULL;
15108 }
15109
15110 /* This function generates an initial IT instruction, leaving its block
15111 virtually open for the new instructions. Eventually,
15112 the mask will be updated by now_it_add_mask () each time
15113 a new instruction needs to be included in the IT block.
15114 Finally, the block is closed with close_automatic_it_block ().
15115 The block closure can be requested either from md_assemble (),
15116 a tencode (), or due to a label hook. */
15117
15118 static void
15119 new_automatic_it_block (int cond)
15120 {
15121 now_it.state = AUTOMATIC_IT_BLOCK;
15122 now_it.mask = 0x18;
15123 now_it.cc = cond;
15124 now_it.block_length = 1;
15125 mapping_state (MAP_THUMB);
15126 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
15127 }
15128
15129 /* Close an automatic IT block.
15130 See comments in new_automatic_it_block (). */
15131
15132 static void
15133 close_automatic_it_block (void)
15134 {
15135 now_it.mask = 0x10;
15136 now_it.block_length = 0;
15137 }
15138
15139 /* Update the mask of the current automatically-generated IT
15140 instruction. See comments in new_automatic_it_block (). */
15141
15142 static void
15143 now_it_add_mask (int cond)
15144 {
15145 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
15146 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
15147 | ((bitvalue) << (nbit)))
15148 const int resulting_bit = (cond & 1);
15149
15150 now_it.mask &= 0xf;
15151 now_it.mask = SET_BIT_VALUE (now_it.mask,
15152 resulting_bit,
15153 (5 - now_it.block_length));
15154 now_it.mask = SET_BIT_VALUE (now_it.mask,
15155 1,
15156 ((5 - now_it.block_length) - 1) );
15157 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
15158
15159 #undef CLEAR_BIT
15160 #undef SET_BIT_VALUE
15161 }
15162
15163 /* The IT blocks handling machinery is accessed through the these functions:
15164 it_fsm_pre_encode () from md_assemble ()
15165 set_it_insn_type () optional, from the tencode functions
15166 set_it_insn_type_last () ditto
15167 in_it_block () ditto
15168 it_fsm_post_encode () from md_assemble ()
15169 force_automatic_it_block_close () from label habdling functions
15170
15171 Rationale:
15172 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
15173 initializing the IT insn type with a generic initial value depending
15174 on the inst.condition.
15175 2) During the tencode function, two things may happen:
15176 a) The tencode function overrides the IT insn type by
15177 calling either set_it_insn_type (type) or set_it_insn_type_last ().
15178 b) The tencode function queries the IT block state by
15179 calling in_it_block () (i.e. to determine narrow/not narrow mode).
15180
15181 Both set_it_insn_type and in_it_block run the internal FSM state
15182 handling function (handle_it_state), because: a) setting the IT insn
15183 type may incur in an invalid state (exiting the function),
15184 and b) querying the state requires the FSM to be updated.
15185 Specifically we want to avoid creating an IT block for conditional
15186 branches, so it_fsm_pre_encode is actually a guess and we can't
15187 determine whether an IT block is required until the tencode () routine
15188 has decided what type of instruction this actually it.
15189 Because of this, if set_it_insn_type and in_it_block have to be used,
15190 set_it_insn_type has to be called first.
15191
15192 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
15193 determines the insn IT type depending on the inst.cond code.
15194 When a tencode () routine encodes an instruction that can be
15195 either outside an IT block, or, in the case of being inside, has to be
15196 the last one, set_it_insn_type_last () will determine the proper
15197 IT instruction type based on the inst.cond code. Otherwise,
15198 set_it_insn_type can be called for overriding that logic or
15199 for covering other cases.
15200
15201 Calling handle_it_state () may not transition the IT block state to
15202 OUTSIDE_IT_BLOCK immediatelly, since the (current) state could be
15203 still queried. Instead, if the FSM determines that the state should
15204 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
15205 after the tencode () function: that's what it_fsm_post_encode () does.
15206
15207 Since in_it_block () calls the state handling function to get an
15208 updated state, an error may occur (due to invalid insns combination).
15209 In that case, inst.error is set.
15210 Therefore, inst.error has to be checked after the execution of
15211 the tencode () routine.
15212
15213 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
15214 any pending state change (if any) that didn't take place in
15215 handle_it_state () as explained above. */
15216
15217 static void
15218 it_fsm_pre_encode (void)
15219 {
15220 if (inst.cond != COND_ALWAYS)
15221 inst.it_insn_type = INSIDE_IT_INSN;
15222 else
15223 inst.it_insn_type = OUTSIDE_IT_INSN;
15224
15225 now_it.state_handled = 0;
15226 }
15227
15228 /* IT state FSM handling function. */
15229
15230 static int
15231 handle_it_state (void)
15232 {
15233 now_it.state_handled = 1;
15234
15235 switch (now_it.state)
15236 {
15237 case OUTSIDE_IT_BLOCK:
15238 switch (inst.it_insn_type)
15239 {
15240 case OUTSIDE_IT_INSN:
15241 break;
15242
15243 case INSIDE_IT_INSN:
15244 case INSIDE_IT_LAST_INSN:
15245 if (thumb_mode == 0)
15246 {
15247 if (unified_syntax
15248 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
15249 as_tsktsk (_("Warning: conditional outside an IT block"\
15250 " for Thumb."));
15251 }
15252 else
15253 {
15254 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
15255 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
15256 {
15257 /* Automatically generate the IT instruction. */
15258 new_automatic_it_block (inst.cond);
15259 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
15260 close_automatic_it_block ();
15261 }
15262 else
15263 {
15264 inst.error = BAD_OUT_IT;
15265 return FAIL;
15266 }
15267 }
15268 break;
15269
15270 case IF_INSIDE_IT_LAST_INSN:
15271 case NEUTRAL_IT_INSN:
15272 break;
15273
15274 case IT_INSN:
15275 now_it.state = MANUAL_IT_BLOCK;
15276 now_it.block_length = 0;
15277 break;
15278 }
15279 break;
15280
15281 case AUTOMATIC_IT_BLOCK:
15282 /* Three things may happen now:
15283 a) We should increment current it block size;
15284 b) We should close current it block (closing insn or 4 insns);
15285 c) We should close current it block and start a new one (due
15286 to incompatible conditions or
15287 4 insns-length block reached). */
15288
15289 switch (inst.it_insn_type)
15290 {
15291 case OUTSIDE_IT_INSN:
15292 /* The closure of the block shall happen immediatelly,
15293 so any in_it_block () call reports the block as closed. */
15294 force_automatic_it_block_close ();
15295 break;
15296
15297 case INSIDE_IT_INSN:
15298 case INSIDE_IT_LAST_INSN:
15299 case IF_INSIDE_IT_LAST_INSN:
15300 now_it.block_length++;
15301
15302 if (now_it.block_length > 4
15303 || !now_it_compatible (inst.cond))
15304 {
15305 force_automatic_it_block_close ();
15306 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
15307 new_automatic_it_block (inst.cond);
15308 }
15309 else
15310 {
15311 now_it_add_mask (inst.cond);
15312 }
15313
15314 if (now_it.state == AUTOMATIC_IT_BLOCK
15315 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
15316 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
15317 close_automatic_it_block ();
15318 break;
15319
15320 case NEUTRAL_IT_INSN:
15321 now_it.block_length++;
15322
15323 if (now_it.block_length > 4)
15324 force_automatic_it_block_close ();
15325 else
15326 now_it_add_mask (now_it.cc & 1);
15327 break;
15328
15329 case IT_INSN:
15330 close_automatic_it_block ();
15331 now_it.state = MANUAL_IT_BLOCK;
15332 break;
15333 }
15334 break;
15335
15336 case MANUAL_IT_BLOCK:
15337 {
15338 /* Check conditional suffixes. */
15339 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
15340 int is_last;
15341 now_it.mask <<= 1;
15342 now_it.mask &= 0x1f;
15343 is_last = (now_it.mask == 0x10);
15344
15345 switch (inst.it_insn_type)
15346 {
15347 case OUTSIDE_IT_INSN:
15348 inst.error = BAD_NOT_IT;
15349 return FAIL;
15350
15351 case INSIDE_IT_INSN:
15352 if (cond != inst.cond)
15353 {
15354 inst.error = BAD_IT_COND;
15355 return FAIL;
15356 }
15357 break;
15358
15359 case INSIDE_IT_LAST_INSN:
15360 case IF_INSIDE_IT_LAST_INSN:
15361 if (cond != inst.cond)
15362 {
15363 inst.error = BAD_IT_COND;
15364 return FAIL;
15365 }
15366 if (!is_last)
15367 {
15368 inst.error = BAD_BRANCH;
15369 return FAIL;
15370 }
15371 break;
15372
15373 case NEUTRAL_IT_INSN:
15374 /* The BKPT instruction is unconditional even in an IT block. */
15375 break;
15376
15377 case IT_INSN:
15378 inst.error = BAD_IT_IT;
15379 return FAIL;
15380 }
15381 }
15382 break;
15383 }
15384
15385 return SUCCESS;
15386 }
15387
15388 static void
15389 it_fsm_post_encode (void)
15390 {
15391 int is_last;
15392
15393 if (!now_it.state_handled)
15394 handle_it_state ();
15395
15396 is_last = (now_it.mask == 0x10);
15397 if (is_last)
15398 {
15399 now_it.state = OUTSIDE_IT_BLOCK;
15400 now_it.mask = 0;
15401 }
15402 }
15403
15404 static void
15405 force_automatic_it_block_close (void)
15406 {
15407 if (now_it.state == AUTOMATIC_IT_BLOCK)
15408 {
15409 close_automatic_it_block ();
15410 now_it.state = OUTSIDE_IT_BLOCK;
15411 now_it.mask = 0;
15412 }
15413 }
15414
15415 static int
15416 in_it_block (void)
15417 {
15418 if (!now_it.state_handled)
15419 handle_it_state ();
15420
15421 return now_it.state != OUTSIDE_IT_BLOCK;
15422 }
15423
15424 void
15425 md_assemble (char *str)
15426 {
15427 char *p = str;
15428 const struct asm_opcode * opcode;
15429
15430 /* Align the previous label if needed. */
15431 if (last_label_seen != NULL)
15432 {
15433 symbol_set_frag (last_label_seen, frag_now);
15434 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
15435 S_SET_SEGMENT (last_label_seen, now_seg);
15436 }
15437
15438 memset (&inst, '\0', sizeof (inst));
15439 inst.reloc.type = BFD_RELOC_UNUSED;
15440
15441 opcode = opcode_lookup (&p);
15442 if (!opcode)
15443 {
15444 /* It wasn't an instruction, but it might be a register alias of
15445 the form alias .req reg, or a Neon .dn/.qn directive. */
15446 if (! create_register_alias (str, p)
15447 && ! create_neon_reg_alias (str, p))
15448 as_bad (_("bad instruction `%s'"), str);
15449
15450 return;
15451 }
15452
15453 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
15454 as_warn (_("s suffix on comparison instruction is deprecated"));
15455
15456 /* The value which unconditional instructions should have in place of the
15457 condition field. */
15458 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
15459
15460 if (thumb_mode)
15461 {
15462 arm_feature_set variant;
15463
15464 variant = cpu_variant;
15465 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
15466 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
15467 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
15468 /* Check that this instruction is supported for this CPU. */
15469 if (!opcode->tvariant
15470 || (thumb_mode == 1
15471 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
15472 {
15473 as_bad (_("selected processor does not support `%s'"), str);
15474 return;
15475 }
15476 if (inst.cond != COND_ALWAYS && !unified_syntax
15477 && opcode->tencode != do_t_branch)
15478 {
15479 as_bad (_("Thumb does not support conditional execution"));
15480 return;
15481 }
15482
15483 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2))
15484 {
15485 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
15486 && !(ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr)
15487 || ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_barrier)))
15488 {
15489 /* Two things are addressed here.
15490 1) Implicit require narrow instructions on Thumb-1.
15491 This avoids relaxation accidentally introducing Thumb-2
15492 instructions.
15493 2) Reject wide instructions in non Thumb-2 cores. */
15494 if (inst.size_req == 0)
15495 inst.size_req = 2;
15496 else if (inst.size_req == 4)
15497 {
15498 as_bad (_("selected processor does not support `%s'"), str);
15499 return;
15500 }
15501 }
15502 }
15503
15504 inst.instruction = opcode->tvalue;
15505
15506 if (!parse_operands (p, opcode->operands))
15507 {
15508 /* Prepare the it_insn_type for those encodings that don't set
15509 it. */
15510 it_fsm_pre_encode ();
15511
15512 opcode->tencode ();
15513
15514 it_fsm_post_encode ();
15515 }
15516
15517 if (!(inst.error || inst.relax))
15518 {
15519 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
15520 inst.size = (inst.instruction > 0xffff ? 4 : 2);
15521 if (inst.size_req && inst.size_req != inst.size)
15522 {
15523 as_bad (_("cannot honor width suffix -- `%s'"), str);
15524 return;
15525 }
15526 }
15527
15528 /* Something has gone badly wrong if we try to relax a fixed size
15529 instruction. */
15530 gas_assert (inst.size_req == 0 || !inst.relax);
15531
15532 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
15533 *opcode->tvariant);
15534 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
15535 set those bits when Thumb-2 32-bit instructions are seen. ie.
15536 anything other than bl/blx and v6-M instructions.
15537 This is overly pessimistic for relaxable instructions. */
15538 if (((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
15539 || inst.relax)
15540 && !(ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
15541 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier)))
15542 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
15543 arm_ext_v6t2);
15544
15545 if (!inst.error)
15546 {
15547 mapping_state (MAP_THUMB);
15548 }
15549 }
15550 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
15551 {
15552 bfd_boolean is_bx;
15553
15554 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
15555 is_bx = (opcode->aencode == do_bx);
15556
15557 /* Check that this instruction is supported for this CPU. */
15558 if (!(is_bx && fix_v4bx)
15559 && !(opcode->avariant &&
15560 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
15561 {
15562 as_bad (_("selected processor does not support `%s'"), str);
15563 return;
15564 }
15565 if (inst.size_req)
15566 {
15567 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
15568 return;
15569 }
15570
15571 inst.instruction = opcode->avalue;
15572 if (opcode->tag == OT_unconditionalF)
15573 inst.instruction |= 0xF << 28;
15574 else
15575 inst.instruction |= inst.cond << 28;
15576 inst.size = INSN_SIZE;
15577 if (!parse_operands (p, opcode->operands))
15578 {
15579 it_fsm_pre_encode ();
15580 opcode->aencode ();
15581 it_fsm_post_encode ();
15582 }
15583 /* Arm mode bx is marked as both v4T and v5 because it's still required
15584 on a hypothetical non-thumb v5 core. */
15585 if (is_bx)
15586 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
15587 else
15588 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
15589 *opcode->avariant);
15590 if (!inst.error)
15591 {
15592 mapping_state (MAP_ARM);
15593 }
15594 }
15595 else
15596 {
15597 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
15598 "-- `%s'"), str);
15599 return;
15600 }
15601 output_inst (str);
15602 }
15603
15604 static void
15605 check_it_blocks_finished (void)
15606 {
15607 #ifdef OBJ_ELF
15608 asection *sect;
15609
15610 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
15611 if (seg_info (sect)->tc_segment_info_data.current_it.state
15612 == MANUAL_IT_BLOCK)
15613 {
15614 as_warn (_("section '%s' finished with an open IT block."),
15615 sect->name);
15616 }
15617 #else
15618 if (now_it.state == MANUAL_IT_BLOCK)
15619 as_warn (_("file finished with an open IT block."));
15620 #endif
15621 }
15622
15623 /* Various frobbings of labels and their addresses. */
15624
15625 void
15626 arm_start_line_hook (void)
15627 {
15628 last_label_seen = NULL;
15629 }
15630
15631 void
15632 arm_frob_label (symbolS * sym)
15633 {
15634 last_label_seen = sym;
15635
15636 ARM_SET_THUMB (sym, thumb_mode);
15637
15638 #if defined OBJ_COFF || defined OBJ_ELF
15639 ARM_SET_INTERWORK (sym, support_interwork);
15640 #endif
15641
15642 force_automatic_it_block_close ();
15643
15644 /* Note - do not allow local symbols (.Lxxx) to be labelled
15645 as Thumb functions. This is because these labels, whilst
15646 they exist inside Thumb code, are not the entry points for
15647 possible ARM->Thumb calls. Also, these labels can be used
15648 as part of a computed goto or switch statement. eg gcc
15649 can generate code that looks like this:
15650
15651 ldr r2, [pc, .Laaa]
15652 lsl r3, r3, #2
15653 ldr r2, [r3, r2]
15654 mov pc, r2
15655
15656 .Lbbb: .word .Lxxx
15657 .Lccc: .word .Lyyy
15658 ..etc...
15659 .Laaa: .word Lbbb
15660
15661 The first instruction loads the address of the jump table.
15662 The second instruction converts a table index into a byte offset.
15663 The third instruction gets the jump address out of the table.
15664 The fourth instruction performs the jump.
15665
15666 If the address stored at .Laaa is that of a symbol which has the
15667 Thumb_Func bit set, then the linker will arrange for this address
15668 to have the bottom bit set, which in turn would mean that the
15669 address computation performed by the third instruction would end
15670 up with the bottom bit set. Since the ARM is capable of unaligned
15671 word loads, the instruction would then load the incorrect address
15672 out of the jump table, and chaos would ensue. */
15673 if (label_is_thumb_function_name
15674 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
15675 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
15676 {
15677 /* When the address of a Thumb function is taken the bottom
15678 bit of that address should be set. This will allow
15679 interworking between Arm and Thumb functions to work
15680 correctly. */
15681
15682 THUMB_SET_FUNC (sym, 1);
15683
15684 label_is_thumb_function_name = FALSE;
15685 }
15686
15687 dwarf2_emit_label (sym);
15688 }
15689
15690 bfd_boolean
15691 arm_data_in_code (void)
15692 {
15693 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
15694 {
15695 *input_line_pointer = '/';
15696 input_line_pointer += 5;
15697 *input_line_pointer = 0;
15698 return TRUE;
15699 }
15700
15701 return FALSE;
15702 }
15703
15704 char *
15705 arm_canonicalize_symbol_name (char * name)
15706 {
15707 int len;
15708
15709 if (thumb_mode && (len = strlen (name)) > 5
15710 && streq (name + len - 5, "/data"))
15711 *(name + len - 5) = 0;
15712
15713 return name;
15714 }
15715 \f
15716 /* Table of all register names defined by default. The user can
15717 define additional names with .req. Note that all register names
15718 should appear in both upper and lowercase variants. Some registers
15719 also have mixed-case names. */
15720
15721 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
15722 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
15723 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
15724 #define REGSET(p,t) \
15725 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
15726 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
15727 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
15728 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
15729 #define REGSETH(p,t) \
15730 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
15731 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
15732 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
15733 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
15734 #define REGSET2(p,t) \
15735 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
15736 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
15737 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
15738 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
15739
15740 static const struct reg_entry reg_names[] =
15741 {
15742 /* ARM integer registers. */
15743 REGSET(r, RN), REGSET(R, RN),
15744
15745 /* ATPCS synonyms. */
15746 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
15747 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
15748 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
15749
15750 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
15751 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
15752 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
15753
15754 /* Well-known aliases. */
15755 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
15756 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
15757
15758 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
15759 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
15760
15761 /* Coprocessor numbers. */
15762 REGSET(p, CP), REGSET(P, CP),
15763
15764 /* Coprocessor register numbers. The "cr" variants are for backward
15765 compatibility. */
15766 REGSET(c, CN), REGSET(C, CN),
15767 REGSET(cr, CN), REGSET(CR, CN),
15768
15769 /* FPA registers. */
15770 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
15771 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
15772
15773 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
15774 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
15775
15776 /* VFP SP registers. */
15777 REGSET(s,VFS), REGSET(S,VFS),
15778 REGSETH(s,VFS), REGSETH(S,VFS),
15779
15780 /* VFP DP Registers. */
15781 REGSET(d,VFD), REGSET(D,VFD),
15782 /* Extra Neon DP registers. */
15783 REGSETH(d,VFD), REGSETH(D,VFD),
15784
15785 /* Neon QP registers. */
15786 REGSET2(q,NQ), REGSET2(Q,NQ),
15787
15788 /* VFP control registers. */
15789 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
15790 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
15791 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
15792 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
15793 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
15794 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
15795
15796 /* Maverick DSP coprocessor registers. */
15797 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
15798 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
15799
15800 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
15801 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
15802 REGDEF(dspsc,0,DSPSC),
15803
15804 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
15805 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
15806 REGDEF(DSPSC,0,DSPSC),
15807
15808 /* iWMMXt data registers - p0, c0-15. */
15809 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
15810
15811 /* iWMMXt control registers - p1, c0-3. */
15812 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
15813 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
15814 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
15815 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
15816
15817 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
15818 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
15819 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
15820 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
15821 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
15822
15823 /* XScale accumulator registers. */
15824 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
15825 };
15826 #undef REGDEF
15827 #undef REGNUM
15828 #undef REGSET
15829
15830 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
15831 within psr_required_here. */
15832 static const struct asm_psr psrs[] =
15833 {
15834 /* Backward compatibility notation. Note that "all" is no longer
15835 truly all possible PSR bits. */
15836 {"all", PSR_c | PSR_f},
15837 {"flg", PSR_f},
15838 {"ctl", PSR_c},
15839
15840 /* Individual flags. */
15841 {"f", PSR_f},
15842 {"c", PSR_c},
15843 {"x", PSR_x},
15844 {"s", PSR_s},
15845 /* Combinations of flags. */
15846 {"fs", PSR_f | PSR_s},
15847 {"fx", PSR_f | PSR_x},
15848 {"fc", PSR_f | PSR_c},
15849 {"sf", PSR_s | PSR_f},
15850 {"sx", PSR_s | PSR_x},
15851 {"sc", PSR_s | PSR_c},
15852 {"xf", PSR_x | PSR_f},
15853 {"xs", PSR_x | PSR_s},
15854 {"xc", PSR_x | PSR_c},
15855 {"cf", PSR_c | PSR_f},
15856 {"cs", PSR_c | PSR_s},
15857 {"cx", PSR_c | PSR_x},
15858 {"fsx", PSR_f | PSR_s | PSR_x},
15859 {"fsc", PSR_f | PSR_s | PSR_c},
15860 {"fxs", PSR_f | PSR_x | PSR_s},
15861 {"fxc", PSR_f | PSR_x | PSR_c},
15862 {"fcs", PSR_f | PSR_c | PSR_s},
15863 {"fcx", PSR_f | PSR_c | PSR_x},
15864 {"sfx", PSR_s | PSR_f | PSR_x},
15865 {"sfc", PSR_s | PSR_f | PSR_c},
15866 {"sxf", PSR_s | PSR_x | PSR_f},
15867 {"sxc", PSR_s | PSR_x | PSR_c},
15868 {"scf", PSR_s | PSR_c | PSR_f},
15869 {"scx", PSR_s | PSR_c | PSR_x},
15870 {"xfs", PSR_x | PSR_f | PSR_s},
15871 {"xfc", PSR_x | PSR_f | PSR_c},
15872 {"xsf", PSR_x | PSR_s | PSR_f},
15873 {"xsc", PSR_x | PSR_s | PSR_c},
15874 {"xcf", PSR_x | PSR_c | PSR_f},
15875 {"xcs", PSR_x | PSR_c | PSR_s},
15876 {"cfs", PSR_c | PSR_f | PSR_s},
15877 {"cfx", PSR_c | PSR_f | PSR_x},
15878 {"csf", PSR_c | PSR_s | PSR_f},
15879 {"csx", PSR_c | PSR_s | PSR_x},
15880 {"cxf", PSR_c | PSR_x | PSR_f},
15881 {"cxs", PSR_c | PSR_x | PSR_s},
15882 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
15883 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
15884 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
15885 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
15886 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
15887 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
15888 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
15889 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
15890 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
15891 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
15892 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
15893 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
15894 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
15895 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
15896 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
15897 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
15898 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
15899 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
15900 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
15901 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
15902 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
15903 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
15904 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
15905 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
15906 };
15907
15908 /* Table of V7M psr names. */
15909 static const struct asm_psr v7m_psrs[] =
15910 {
15911 {"apsr", 0 }, {"APSR", 0 },
15912 {"iapsr", 1 }, {"IAPSR", 1 },
15913 {"eapsr", 2 }, {"EAPSR", 2 },
15914 {"psr", 3 }, {"PSR", 3 },
15915 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
15916 {"ipsr", 5 }, {"IPSR", 5 },
15917 {"epsr", 6 }, {"EPSR", 6 },
15918 {"iepsr", 7 }, {"IEPSR", 7 },
15919 {"msp", 8 }, {"MSP", 8 },
15920 {"psp", 9 }, {"PSP", 9 },
15921 {"primask", 16}, {"PRIMASK", 16},
15922 {"basepri", 17}, {"BASEPRI", 17},
15923 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
15924 {"faultmask", 19}, {"FAULTMASK", 19},
15925 {"control", 20}, {"CONTROL", 20}
15926 };
15927
15928 /* Table of all shift-in-operand names. */
15929 static const struct asm_shift_name shift_names [] =
15930 {
15931 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
15932 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
15933 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
15934 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
15935 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
15936 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
15937 };
15938
15939 /* Table of all explicit relocation names. */
15940 #ifdef OBJ_ELF
15941 static struct reloc_entry reloc_names[] =
15942 {
15943 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
15944 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
15945 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
15946 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
15947 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
15948 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
15949 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
15950 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
15951 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
15952 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
15953 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32}
15954 };
15955 #endif
15956
15957 /* Table of all conditional affixes. 0xF is not defined as a condition code. */
15958 static const struct asm_cond conds[] =
15959 {
15960 {"eq", 0x0},
15961 {"ne", 0x1},
15962 {"cs", 0x2}, {"hs", 0x2},
15963 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
15964 {"mi", 0x4},
15965 {"pl", 0x5},
15966 {"vs", 0x6},
15967 {"vc", 0x7},
15968 {"hi", 0x8},
15969 {"ls", 0x9},
15970 {"ge", 0xa},
15971 {"lt", 0xb},
15972 {"gt", 0xc},
15973 {"le", 0xd},
15974 {"al", 0xe}
15975 };
15976
15977 static struct asm_barrier_opt barrier_opt_names[] =
15978 {
15979 { "sy", 0xf },
15980 { "un", 0x7 },
15981 { "st", 0xe },
15982 { "unst", 0x6 }
15983 };
15984
15985 /* Table of ARM-format instructions. */
15986
15987 /* Macros for gluing together operand strings. N.B. In all cases
15988 other than OPS0, the trailing OP_stop comes from default
15989 zero-initialization of the unspecified elements of the array. */
15990 #define OPS0() { OP_stop, }
15991 #define OPS1(a) { OP_##a, }
15992 #define OPS2(a,b) { OP_##a,OP_##b, }
15993 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
15994 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
15995 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
15996 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
15997
15998 /* These macros abstract out the exact format of the mnemonic table and
15999 save some repeated characters. */
16000
16001 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
16002 #define TxCE(mnem, op, top, nops, ops, ae, te) \
16003 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
16004 THUMB_VARIANT, do_##ae, do_##te }
16005
16006 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
16007 a T_MNEM_xyz enumerator. */
16008 #define TCE(mnem, aop, top, nops, ops, ae, te) \
16009 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
16010 #define tCE(mnem, aop, top, nops, ops, ae, te) \
16011 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16012
16013 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
16014 infix after the third character. */
16015 #define TxC3(mnem, op, top, nops, ops, ae, te) \
16016 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
16017 THUMB_VARIANT, do_##ae, do_##te }
16018 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
16019 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
16020 THUMB_VARIANT, do_##ae, do_##te }
16021 #define TC3(mnem, aop, top, nops, ops, ae, te) \
16022 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
16023 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
16024 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
16025 #define tC3(mnem, aop, top, nops, ops, ae, te) \
16026 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16027 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
16028 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16029
16030 /* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
16031 appear in the condition table. */
16032 #define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
16033 { m1 #m2 m3, OPS##nops ops, sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
16034 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
16035
16036 #define TxCM(m1, m2, op, top, nops, ops, ae, te) \
16037 TxCM_ (m1, , m2, op, top, nops, ops, ae, te), \
16038 TxCM_ (m1, eq, m2, op, top, nops, ops, ae, te), \
16039 TxCM_ (m1, ne, m2, op, top, nops, ops, ae, te), \
16040 TxCM_ (m1, cs, m2, op, top, nops, ops, ae, te), \
16041 TxCM_ (m1, hs, m2, op, top, nops, ops, ae, te), \
16042 TxCM_ (m1, cc, m2, op, top, nops, ops, ae, te), \
16043 TxCM_ (m1, ul, m2, op, top, nops, ops, ae, te), \
16044 TxCM_ (m1, lo, m2, op, top, nops, ops, ae, te), \
16045 TxCM_ (m1, mi, m2, op, top, nops, ops, ae, te), \
16046 TxCM_ (m1, pl, m2, op, top, nops, ops, ae, te), \
16047 TxCM_ (m1, vs, m2, op, top, nops, ops, ae, te), \
16048 TxCM_ (m1, vc, m2, op, top, nops, ops, ae, te), \
16049 TxCM_ (m1, hi, m2, op, top, nops, ops, ae, te), \
16050 TxCM_ (m1, ls, m2, op, top, nops, ops, ae, te), \
16051 TxCM_ (m1, ge, m2, op, top, nops, ops, ae, te), \
16052 TxCM_ (m1, lt, m2, op, top, nops, ops, ae, te), \
16053 TxCM_ (m1, gt, m2, op, top, nops, ops, ae, te), \
16054 TxCM_ (m1, le, m2, op, top, nops, ops, ae, te), \
16055 TxCM_ (m1, al, m2, op, top, nops, ops, ae, te)
16056
16057 #define TCM(m1,m2, aop, top, nops, ops, ae, te) \
16058 TxCM (m1,m2, aop, 0x##top, nops, ops, ae, te)
16059 #define tCM(m1,m2, aop, top, nops, ops, ae, te) \
16060 TxCM (m1,m2, aop, T_MNEM##top, nops, ops, ae, te)
16061
16062 /* Mnemonic that cannot be conditionalized. The ARM condition-code
16063 field is still 0xE. Many of the Thumb variants can be executed
16064 conditionally, so this is checked separately. */
16065 #define TUE(mnem, op, top, nops, ops, ae, te) \
16066 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
16067 THUMB_VARIANT, do_##ae, do_##te }
16068
16069 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
16070 condition code field. */
16071 #define TUF(mnem, op, top, nops, ops, ae, te) \
16072 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
16073 THUMB_VARIANT, do_##ae, do_##te }
16074
16075 /* ARM-only variants of all the above. */
16076 #define CE(mnem, op, nops, ops, ae) \
16077 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16078
16079 #define C3(mnem, op, nops, ops, ae) \
16080 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16081
16082 /* Legacy mnemonics that always have conditional infix after the third
16083 character. */
16084 #define CL(mnem, op, nops, ops, ae) \
16085 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
16086 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16087
16088 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
16089 #define cCE(mnem, op, nops, ops, ae) \
16090 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16091
16092 /* Legacy coprocessor instructions where conditional infix and conditional
16093 suffix are ambiguous. For consistency this includes all FPA instructions,
16094 not just the potentially ambiguous ones. */
16095 #define cCL(mnem, op, nops, ops, ae) \
16096 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
16097 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16098
16099 /* Coprocessor, takes either a suffix or a position-3 infix
16100 (for an FPA corner case). */
16101 #define C3E(mnem, op, nops, ops, ae) \
16102 { mnem, OPS##nops ops, OT_csuf_or_in3, \
16103 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16104
16105 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
16106 { m1 #m2 m3, OPS##nops ops, \
16107 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
16108 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16109
16110 #define CM(m1, m2, op, nops, ops, ae) \
16111 xCM_ (m1, , m2, op, nops, ops, ae), \
16112 xCM_ (m1, eq, m2, op, nops, ops, ae), \
16113 xCM_ (m1, ne, m2, op, nops, ops, ae), \
16114 xCM_ (m1, cs, m2, op, nops, ops, ae), \
16115 xCM_ (m1, hs, m2, op, nops, ops, ae), \
16116 xCM_ (m1, cc, m2, op, nops, ops, ae), \
16117 xCM_ (m1, ul, m2, op, nops, ops, ae), \
16118 xCM_ (m1, lo, m2, op, nops, ops, ae), \
16119 xCM_ (m1, mi, m2, op, nops, ops, ae), \
16120 xCM_ (m1, pl, m2, op, nops, ops, ae), \
16121 xCM_ (m1, vs, m2, op, nops, ops, ae), \
16122 xCM_ (m1, vc, m2, op, nops, ops, ae), \
16123 xCM_ (m1, hi, m2, op, nops, ops, ae), \
16124 xCM_ (m1, ls, m2, op, nops, ops, ae), \
16125 xCM_ (m1, ge, m2, op, nops, ops, ae), \
16126 xCM_ (m1, lt, m2, op, nops, ops, ae), \
16127 xCM_ (m1, gt, m2, op, nops, ops, ae), \
16128 xCM_ (m1, le, m2, op, nops, ops, ae), \
16129 xCM_ (m1, al, m2, op, nops, ops, ae)
16130
16131 #define UE(mnem, op, nops, ops, ae) \
16132 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16133
16134 #define UF(mnem, op, nops, ops, ae) \
16135 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16136
16137 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
16138 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
16139 use the same encoding function for each. */
16140 #define NUF(mnem, op, nops, ops, enc) \
16141 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
16142 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16143
16144 /* Neon data processing, version which indirects through neon_enc_tab for
16145 the various overloaded versions of opcodes. */
16146 #define nUF(mnem, op, nops, ops, enc) \
16147 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
16148 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16149
16150 /* Neon insn with conditional suffix for the ARM version, non-overloaded
16151 version. */
16152 #define NCE_tag(mnem, op, nops, ops, enc, tag) \
16153 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
16154 THUMB_VARIANT, do_##enc, do_##enc }
16155
16156 #define NCE(mnem, op, nops, ops, enc) \
16157 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
16158
16159 #define NCEF(mnem, op, nops, ops, enc) \
16160 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
16161
16162 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
16163 #define nCE_tag(mnem, op, nops, ops, enc, tag) \
16164 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
16165 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16166
16167 #define nCE(mnem, op, nops, ops, enc) \
16168 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
16169
16170 #define nCEF(mnem, op, nops, ops, enc) \
16171 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
16172
16173 #define do_0 0
16174
16175 /* Thumb-only, unconditional. */
16176 #define UT(mnem, op, nops, ops, te) TUE (mnem, 0, op, nops, ops, 0, te)
16177
16178 static const struct asm_opcode insns[] =
16179 {
16180 #define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
16181 #define THUMB_VARIANT &arm_ext_v4t
16182 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
16183 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
16184 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
16185 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
16186 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
16187 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
16188 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
16189 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
16190 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
16191 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
16192 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
16193 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
16194 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
16195 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
16196 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
16197 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
16198
16199 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
16200 for setting PSR flag bits. They are obsolete in V6 and do not
16201 have Thumb equivalents. */
16202 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
16203 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
16204 CL("tstp", 110f000, 2, (RR, SH), cmp),
16205 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
16206 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
16207 CL("cmpp", 150f000, 2, (RR, SH), cmp),
16208 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
16209 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
16210 CL("cmnp", 170f000, 2, (RR, SH), cmp),
16211
16212 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
16213 tC3("movs", 1b00000, _movs, 2, (RR, SH), mov, t_mov_cmp),
16214 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
16215 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
16216
16217 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
16218 tC3("ldrb", 4500000, _ldrb, 2, (RR, ADDRGLDR),ldst, t_ldst),
16219 tCE("str", 4000000, _str, 2, (RR, ADDRGLDR),ldst, t_ldst),
16220 tC3("strb", 4400000, _strb, 2, (RR, ADDRGLDR),ldst, t_ldst),
16221
16222 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16223 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16224 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16225 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16226 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16227 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16228
16229 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
16230 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
16231 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
16232 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
16233
16234 /* Pseudo ops. */
16235 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
16236 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
16237 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
16238
16239 /* Thumb-compatibility pseudo ops. */
16240 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
16241 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
16242 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
16243 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
16244 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
16245 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
16246 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
16247 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
16248 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
16249 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
16250 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
16251 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
16252
16253 /* These may simplify to neg. */
16254 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
16255 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
16256
16257 #undef THUMB_VARIANT
16258 #define THUMB_VARIANT & arm_ext_v6
16259
16260 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
16261
16262 /* V1 instructions with no Thumb analogue prior to V6T2. */
16263 #undef THUMB_VARIANT
16264 #define THUMB_VARIANT & arm_ext_v6t2
16265
16266 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
16267 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
16268 CL("teqp", 130f000, 2, (RR, SH), cmp),
16269
16270 TC3("ldrt", 4300000, f8500e00, 2, (RR, ADDR), ldstt, t_ldstt),
16271 TC3("ldrbt", 4700000, f8100e00, 2, (RR, ADDR), ldstt, t_ldstt),
16272 TC3("strt", 4200000, f8400e00, 2, (RR, ADDR), ldstt, t_ldstt),
16273 TC3("strbt", 4600000, f8000e00, 2, (RR, ADDR), ldstt, t_ldstt),
16274
16275 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16276 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16277
16278 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16279 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16280
16281 /* V1 instructions with no Thumb analogue at all. */
16282 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
16283 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
16284
16285 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
16286 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
16287 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
16288 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
16289 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
16290 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
16291 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
16292 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
16293
16294 #undef ARM_VARIANT
16295 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
16296 #undef THUMB_VARIANT
16297 #define THUMB_VARIANT & arm_ext_v4t
16298
16299 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
16300 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
16301
16302 #undef THUMB_VARIANT
16303 #define THUMB_VARIANT & arm_ext_v6t2
16304
16305 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
16306 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
16307
16308 /* Generic coprocessor instructions. */
16309 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
16310 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16311 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16312 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16313 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16314 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
16315 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
16316
16317 #undef ARM_VARIANT
16318 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
16319
16320 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
16321 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
16322
16323 #undef ARM_VARIANT
16324 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
16325 #undef THUMB_VARIANT
16326 #define THUMB_VARIANT & arm_ext_msr
16327
16328 TCE("mrs", 10f0000, f3ef8000, 2, (APSR_RR, RVC_PSR), mrs, t_mrs),
16329 TCE("msr", 120f000, f3808000, 2, (RVC_PSR, RR_EXi), msr, t_msr),
16330
16331 #undef ARM_VARIANT
16332 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
16333 #undef THUMB_VARIANT
16334 #define THUMB_VARIANT & arm_ext_v6t2
16335
16336 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16337 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16338 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16339 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16340 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16341 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16342 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16343 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16344
16345 #undef ARM_VARIANT
16346 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
16347 #undef THUMB_VARIANT
16348 #define THUMB_VARIANT & arm_ext_v4t
16349
16350 tC3("ldrh", 01000b0, _ldrh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
16351 tC3("strh", 00000b0, _strh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
16352 tC3("ldrsh", 01000f0, _ldrsh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
16353 tC3("ldrsb", 01000d0, _ldrsb, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
16354 tCM("ld","sh", 01000f0, _ldrsh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
16355 tCM("ld","sb", 01000d0, _ldrsb, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
16356
16357 #undef ARM_VARIANT
16358 #define ARM_VARIANT & arm_ext_v4t_5
16359
16360 /* ARM Architecture 4T. */
16361 /* Note: bx (and blx) are required on V5, even if the processor does
16362 not support Thumb. */
16363 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
16364
16365 #undef ARM_VARIANT
16366 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
16367 #undef THUMB_VARIANT
16368 #define THUMB_VARIANT & arm_ext_v5t
16369
16370 /* Note: blx has 2 variants; the .value coded here is for
16371 BLX(2). Only this variant has conditional execution. */
16372 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
16373 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
16374
16375 #undef THUMB_VARIANT
16376 #define THUMB_VARIANT & arm_ext_v6t2
16377
16378 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
16379 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16380 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16381 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16382 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16383 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
16384 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
16385 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
16386
16387 #undef ARM_VARIANT
16388 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
16389
16390 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16391 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16392 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16393 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16394
16395 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16396 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16397
16398 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16399 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16400 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16401 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16402
16403 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16404 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16405 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16406 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16407
16408 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16409 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16410
16411 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd),
16412 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd),
16413 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd),
16414 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd),
16415
16416 #undef ARM_VARIANT
16417 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
16418
16419 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
16420 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc, oRRnpc, ADDRGLDRS), ldrd, t_ldstd),
16421 TC3("strd", 00000f0, e8400000, 3, (RRnpc, oRRnpc, ADDRGLDRS), ldrd, t_ldstd),
16422
16423 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
16424 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
16425
16426 #undef ARM_VARIANT
16427 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
16428
16429 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
16430
16431 #undef ARM_VARIANT
16432 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
16433 #undef THUMB_VARIANT
16434 #define THUMB_VARIANT & arm_ext_v6
16435
16436 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
16437 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
16438 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
16439 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
16440 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
16441 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16442 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16443 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16444 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16445 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
16446
16447 #undef THUMB_VARIANT
16448 #define THUMB_VARIANT & arm_ext_v6t2
16449
16450 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc, ADDR), ldrex, t_ldrex),
16451 TCE("strex", 1800f90, e8400000, 3, (RRnpc, RRnpc, ADDR), strex, t_strex),
16452 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
16453 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
16454
16455 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
16456 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
16457
16458 /* ARM V6 not included in V7M (eg. integer SIMD). */
16459 #undef THUMB_VARIANT
16460 #define THUMB_VARIANT & arm_ext_v6_notm
16461
16462 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
16463 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
16464 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
16465 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16466 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16467 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16468 /* Old name for QASX. */
16469 TCE("qaddsubx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16470 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16471 /* Old name for QSAX. */
16472 TCE("qsubaddx", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16473 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16474 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16475 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16476 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16477 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16478 /* Old name for SASX. */
16479 TCE("saddsubx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16480 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16481 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16482 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16483 /* Old name for SHASX. */
16484 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16485 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16486 /* Old name for SHSAX. */
16487 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16488 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16489 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16490 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16491 /* Old name for SSAX. */
16492 TCE("ssubaddx", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16493 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16494 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16495 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16496 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16497 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16498 /* Old name for UASX. */
16499 TCE("uaddsubx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16500 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16501 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16502 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16503 /* Old name for UHASX. */
16504 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16505 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16506 /* Old name for UHSAX. */
16507 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16508 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16509 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16510 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16511 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16512 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16513 /* Old name for UQASX. */
16514 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16515 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16516 /* Old name for UQSAX. */
16517 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16518 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16519 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16520 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16521 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16522 /* Old name for USAX. */
16523 TCE("usubaddx", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16524 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16525 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
16526 UF(rfeib, 9900a00, 1, (RRw), rfe),
16527 UF(rfeda, 8100a00, 1, (RRw), rfe),
16528 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
16529 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
16530 UF(rfefa, 9900a00, 1, (RRw), rfe),
16531 UF(rfeea, 8100a00, 1, (RRw), rfe),
16532 TUF("rfeed", 9100a00, e810c000, 1, (RRw), rfe, rfe),
16533 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16534 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16535 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16536 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16537 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16538 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16539 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16540 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16541 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16542 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16543 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16544 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
16545 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
16546 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16547 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16548 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
16549 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
16550 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16551 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16552 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16553 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16554 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16555 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16556 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16557 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16558 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16559 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16560 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
16561 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
16562 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
16563 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
16564 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
16565 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
16566 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16567 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16568 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
16569
16570 #undef ARM_VARIANT
16571 #define ARM_VARIANT & arm_ext_v6k
16572 #undef THUMB_VARIANT
16573 #define THUMB_VARIANT & arm_ext_v6k
16574
16575 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
16576 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
16577 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
16578 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
16579
16580 #undef THUMB_VARIANT
16581 #define THUMB_VARIANT & arm_ext_v6_notm
16582
16583 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc, oRRnpc, RRnpcb), ldrexd, t_ldrexd),
16584 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb), strexd, t_strexd),
16585
16586 #undef THUMB_VARIANT
16587 #define THUMB_VARIANT & arm_ext_v6t2
16588
16589 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
16590 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
16591 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
16592 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
16593 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
16594
16595 #undef ARM_VARIANT
16596 #define ARM_VARIANT & arm_ext_v6z
16597
16598 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
16599
16600 #undef ARM_VARIANT
16601 #define ARM_VARIANT & arm_ext_v6t2
16602
16603 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
16604 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
16605 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
16606 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
16607
16608 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
16609 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
16610 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
16611 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
16612
16613 TC3("ldrht", 03000b0, f8300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
16614 TC3("ldrsht", 03000f0, f9300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
16615 TC3("ldrsbt", 03000d0, f9100e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
16616 TC3("strht", 02000b0, f8200e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
16617
16618 UT("cbnz", b900, 2, (RR, EXP), t_cbz),
16619 UT("cbz", b100, 2, (RR, EXP), t_cbz),
16620
16621 /* ARM does not really have an IT instruction, so always allow it.
16622 The opcode is copied from Thumb in order to allow warnings in
16623 -mimplicit-it=[never | arm] modes. */
16624 #undef ARM_VARIANT
16625 #define ARM_VARIANT & arm_ext_v1
16626
16627 TUE("it", bf08, bf08, 1, (COND), it, t_it),
16628 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
16629 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
16630 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
16631 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
16632 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
16633 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
16634 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
16635 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
16636 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
16637 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
16638 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
16639 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
16640 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
16641 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
16642 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
16643 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
16644 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
16645
16646 /* Thumb2 only instructions. */
16647 #undef ARM_VARIANT
16648 #define ARM_VARIANT NULL
16649
16650 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
16651 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
16652 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
16653 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
16654 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
16655 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
16656
16657 /* Thumb-2 hardware division instructions (R and M profiles only). */
16658 #undef THUMB_VARIANT
16659 #define THUMB_VARIANT & arm_ext_div
16660
16661 TCE("sdiv", 0, fb90f0f0, 3, (RR, oRR, RR), 0, t_div),
16662 TCE("udiv", 0, fbb0f0f0, 3, (RR, oRR, RR), 0, t_div),
16663
16664 /* ARM V6M/V7 instructions. */
16665 #undef ARM_VARIANT
16666 #define ARM_VARIANT & arm_ext_barrier
16667 #undef THUMB_VARIANT
16668 #define THUMB_VARIANT & arm_ext_barrier
16669
16670 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER), barrier, t_barrier),
16671 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER), barrier, t_barrier),
16672 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER), barrier, t_barrier),
16673
16674 /* ARM V7 instructions. */
16675 #undef ARM_VARIANT
16676 #define ARM_VARIANT & arm_ext_v7
16677 #undef THUMB_VARIANT
16678 #define THUMB_VARIANT & arm_ext_v7
16679
16680 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
16681 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
16682
16683 #undef ARM_VARIANT
16684 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
16685
16686 cCE("wfs", e200110, 1, (RR), rd),
16687 cCE("rfs", e300110, 1, (RR), rd),
16688 cCE("wfc", e400110, 1, (RR), rd),
16689 cCE("rfc", e500110, 1, (RR), rd),
16690
16691 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
16692 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
16693 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
16694 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
16695
16696 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
16697 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
16698 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
16699 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
16700
16701 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
16702 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
16703 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
16704 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
16705 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
16706 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
16707 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
16708 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
16709 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
16710 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
16711 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
16712 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
16713
16714 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
16715 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
16716 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
16717 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
16718 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
16719 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
16720 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
16721 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
16722 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
16723 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
16724 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
16725 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
16726
16727 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
16728 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
16729 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
16730 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
16731 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
16732 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
16733 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
16734 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
16735 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
16736 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
16737 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
16738 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
16739
16740 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
16741 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
16742 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
16743 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
16744 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
16745 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
16746 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
16747 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
16748 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
16749 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
16750 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
16751 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
16752
16753 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
16754 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
16755 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
16756 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
16757 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
16758 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
16759 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
16760 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
16761 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
16762 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
16763 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
16764 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
16765
16766 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
16767 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
16768 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
16769 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
16770 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
16771 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
16772 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
16773 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
16774 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
16775 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
16776 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
16777 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
16778
16779 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
16780 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
16781 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
16782 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
16783 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
16784 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
16785 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
16786 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
16787 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
16788 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
16789 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
16790 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
16791
16792 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
16793 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
16794 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
16795 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
16796 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
16797 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
16798 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
16799 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
16800 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
16801 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
16802 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
16803 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
16804
16805 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
16806 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
16807 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
16808 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
16809 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
16810 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
16811 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
16812 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
16813 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
16814 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
16815 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
16816 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
16817
16818 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
16819 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
16820 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
16821 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
16822 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
16823 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
16824 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
16825 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
16826 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
16827 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
16828 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
16829 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
16830
16831 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
16832 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
16833 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
16834 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
16835 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
16836 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
16837 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
16838 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
16839 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
16840 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
16841 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
16842 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
16843
16844 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
16845 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
16846 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
16847 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
16848 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
16849 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
16850 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
16851 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
16852 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
16853 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
16854 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
16855 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
16856
16857 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
16858 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
16859 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
16860 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
16861 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
16862 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
16863 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
16864 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
16865 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
16866 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
16867 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
16868 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
16869
16870 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
16871 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
16872 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
16873 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
16874 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
16875 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
16876 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
16877 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
16878 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
16879 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
16880 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
16881 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
16882
16883 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
16884 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
16885 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
16886 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
16887 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
16888 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
16889 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
16890 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
16891 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
16892 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
16893 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
16894 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
16895
16896 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
16897 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
16898 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
16899 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
16900 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
16901 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
16902 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
16903 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
16904 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
16905 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
16906 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
16907 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
16908
16909 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
16910 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
16911 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
16912 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
16913 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
16914 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16915 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16916 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16917 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
16918 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
16919 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
16920 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
16921
16922 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
16923 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
16924 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
16925 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
16926 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
16927 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16928 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16929 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16930 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
16931 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
16932 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
16933 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
16934
16935 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
16936 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
16937 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
16938 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
16939 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
16940 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16941 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16942 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16943 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
16944 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
16945 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
16946 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
16947
16948 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
16949 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
16950 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
16951 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
16952 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
16953 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16954 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16955 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16956 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
16957 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
16958 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
16959 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
16960
16961 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
16962 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
16963 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
16964 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
16965 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
16966 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16967 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16968 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16969 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
16970 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
16971 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
16972 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
16973
16974 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
16975 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
16976 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
16977 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
16978 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
16979 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16980 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16981 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16982 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
16983 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
16984 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
16985 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
16986
16987 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
16988 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
16989 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
16990 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
16991 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
16992 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16993 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16994 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16995 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
16996 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
16997 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
16998 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
16999
17000 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
17001 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
17002 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
17003 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
17004 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
17005 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17006 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17007 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17008 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
17009 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
17010 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
17011 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
17012
17013 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
17014 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
17015 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
17016 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
17017 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
17018 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17019 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17020 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17021 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
17022 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
17023 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
17024 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
17025
17026 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
17027 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
17028 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
17029 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
17030 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
17031 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17032 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17033 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17034 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
17035 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
17036 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
17037 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
17038
17039 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17040 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17041 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17042 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17043 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17044 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17045 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17046 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17047 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17048 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17049 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17050 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17051
17052 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17053 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17054 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17055 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17056 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17057 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17058 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17059 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17060 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17061 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17062 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17063 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17064
17065 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17066 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17067 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17068 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17069 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17070 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17071 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17072 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17073 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17074 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17075 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17076 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17077
17078 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
17079 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
17080 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
17081 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
17082
17083 cCL("flts", e000110, 2, (RF, RR), rn_rd),
17084 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
17085 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
17086 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
17087 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
17088 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
17089 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
17090 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
17091 cCL("flte", e080110, 2, (RF, RR), rn_rd),
17092 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
17093 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
17094 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
17095
17096 /* The implementation of the FIX instruction is broken on some
17097 assemblers, in that it accepts a precision specifier as well as a
17098 rounding specifier, despite the fact that this is meaningless.
17099 To be more compatible, we accept it as well, though of course it
17100 does not set any bits. */
17101 cCE("fix", e100110, 2, (RR, RF), rd_rm),
17102 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
17103 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
17104 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
17105 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
17106 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
17107 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
17108 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
17109 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
17110 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
17111 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
17112 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
17113 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
17114
17115 /* Instructions that were new with the real FPA, call them V2. */
17116 #undef ARM_VARIANT
17117 #define ARM_VARIANT & fpu_fpa_ext_v2
17118
17119 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17120 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17121 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17122 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17123 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17124 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17125
17126 #undef ARM_VARIANT
17127 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
17128
17129 /* Moves and type conversions. */
17130 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
17131 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
17132 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
17133 cCE("fmstat", ef1fa10, 0, (), noargs),
17134 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
17135 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
17136 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
17137 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
17138 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
17139 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
17140 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
17141 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
17142
17143 /* Memory operations. */
17144 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
17145 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
17146 cCE("fldmias", c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
17147 cCE("fldmfds", c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
17148 cCE("fldmdbs", d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
17149 cCE("fldmeas", d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
17150 cCE("fldmiax", c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
17151 cCE("fldmfdx", c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
17152 cCE("fldmdbx", d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
17153 cCE("fldmeax", d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
17154 cCE("fstmias", c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
17155 cCE("fstmeas", c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
17156 cCE("fstmdbs", d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
17157 cCE("fstmfds", d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
17158 cCE("fstmiax", c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
17159 cCE("fstmeax", c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
17160 cCE("fstmdbx", d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
17161 cCE("fstmfdx", d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
17162
17163 /* Monadic operations. */
17164 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
17165 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
17166 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
17167
17168 /* Dyadic operations. */
17169 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17170 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17171 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17172 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17173 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17174 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17175 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17176 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17177 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17178
17179 /* Comparisons. */
17180 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
17181 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
17182 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
17183 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
17184
17185 #undef ARM_VARIANT
17186 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
17187
17188 /* Moves and type conversions. */
17189 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17190 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
17191 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
17192 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
17193 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
17194 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
17195 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
17196 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
17197 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
17198 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
17199 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
17200 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
17201 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
17202
17203 /* Memory operations. */
17204 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
17205 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
17206 cCE("fldmiad", c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
17207 cCE("fldmfdd", c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
17208 cCE("fldmdbd", d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
17209 cCE("fldmead", d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
17210 cCE("fstmiad", c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
17211 cCE("fstmead", c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
17212 cCE("fstmdbd", d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
17213 cCE("fstmfdd", d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
17214
17215 /* Monadic operations. */
17216 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
17217 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17218 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
17219
17220 /* Dyadic operations. */
17221 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17222 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17223 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17224 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17225 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17226 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17227 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17228 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17229 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17230
17231 /* Comparisons. */
17232 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17233 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
17234 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
17235 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
17236
17237 #undef ARM_VARIANT
17238 #define ARM_VARIANT & fpu_vfp_ext_v2
17239
17240 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
17241 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
17242 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
17243 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
17244
17245 /* Instructions which may belong to either the Neon or VFP instruction sets.
17246 Individual encoder functions perform additional architecture checks. */
17247 #undef ARM_VARIANT
17248 #define ARM_VARIANT & fpu_vfp_ext_v1xd
17249 #undef THUMB_VARIANT
17250 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
17251
17252 /* These mnemonics are unique to VFP. */
17253 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
17254 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
17255 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17256 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17257 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17258 nCE(vcmp, _vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
17259 nCE(vcmpe, _vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
17260 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
17261 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
17262 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
17263
17264 /* Mnemonics shared by Neon and VFP. */
17265 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
17266 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
17267 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
17268
17269 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
17270 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
17271
17272 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
17273 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
17274
17275 NCE(vldm, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17276 NCE(vldmia, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17277 NCE(vldmdb, d100b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17278 NCE(vstm, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17279 NCE(vstmia, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17280 NCE(vstmdb, d000b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17281 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
17282 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
17283
17284 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32b), neon_cvt),
17285 nCEF(vcvtb, _vcvt, 2, (RVS, RVS), neon_cvtb),
17286 nCEF(vcvtt, _vcvt, 2, (RVS, RVS), neon_cvtt),
17287
17288
17289 /* NOTE: All VMOV encoding is special-cased! */
17290 NCE(vmov, 0, 1, (VMOV), neon_mov),
17291 NCE(vmovq, 0, 1, (VMOV), neon_mov),
17292
17293 #undef THUMB_VARIANT
17294 #define THUMB_VARIANT & fpu_neon_ext_v1
17295 #undef ARM_VARIANT
17296 #define ARM_VARIANT & fpu_neon_ext_v1
17297
17298 /* Data processing with three registers of the same length. */
17299 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
17300 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
17301 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
17302 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
17303 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
17304 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
17305 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
17306 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
17307 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
17308 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
17309 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
17310 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
17311 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
17312 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
17313 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
17314 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
17315 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
17316 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
17317 /* If not immediate, fall back to neon_dyadic_i64_su.
17318 shl_imm should accept I8 I16 I32 I64,
17319 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
17320 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
17321 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
17322 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
17323 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
17324 /* Logic ops, types optional & ignored. */
17325 nUF(vand, _vand, 2, (RNDQ, NILO), neon_logic),
17326 nUF(vandq, _vand, 2, (RNQ, NILO), neon_logic),
17327 nUF(vbic, _vbic, 2, (RNDQ, NILO), neon_logic),
17328 nUF(vbicq, _vbic, 2, (RNQ, NILO), neon_logic),
17329 nUF(vorr, _vorr, 2, (RNDQ, NILO), neon_logic),
17330 nUF(vorrq, _vorr, 2, (RNQ, NILO), neon_logic),
17331 nUF(vorn, _vorn, 2, (RNDQ, NILO), neon_logic),
17332 nUF(vornq, _vorn, 2, (RNQ, NILO), neon_logic),
17333 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
17334 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
17335 /* Bitfield ops, untyped. */
17336 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
17337 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
17338 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
17339 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
17340 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
17341 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
17342 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
17343 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
17344 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
17345 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
17346 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
17347 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
17348 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
17349 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
17350 back to neon_dyadic_if_su. */
17351 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
17352 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
17353 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
17354 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
17355 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
17356 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
17357 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
17358 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
17359 /* Comparison. Type I8 I16 I32 F32. */
17360 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
17361 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
17362 /* As above, D registers only. */
17363 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
17364 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
17365 /* Int and float variants, signedness unimportant. */
17366 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
17367 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
17368 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
17369 /* Add/sub take types I8 I16 I32 I64 F32. */
17370 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
17371 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
17372 /* vtst takes sizes 8, 16, 32. */
17373 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
17374 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
17375 /* VMUL takes I8 I16 I32 F32 P8. */
17376 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
17377 /* VQD{R}MULH takes S16 S32. */
17378 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
17379 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
17380 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
17381 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
17382 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
17383 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
17384 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
17385 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
17386 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
17387 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
17388 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
17389 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
17390 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
17391 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
17392 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
17393 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
17394
17395 /* Two address, int/float. Types S8 S16 S32 F32. */
17396 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
17397 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
17398
17399 /* Data processing with two registers and a shift amount. */
17400 /* Right shifts, and variants with rounding.
17401 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
17402 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
17403 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
17404 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
17405 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
17406 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
17407 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
17408 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
17409 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
17410 /* Shift and insert. Sizes accepted 8 16 32 64. */
17411 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
17412 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
17413 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
17414 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
17415 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
17416 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
17417 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
17418 /* Right shift immediate, saturating & narrowing, with rounding variants.
17419 Types accepted S16 S32 S64 U16 U32 U64. */
17420 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
17421 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
17422 /* As above, unsigned. Types accepted S16 S32 S64. */
17423 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
17424 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
17425 /* Right shift narrowing. Types accepted I16 I32 I64. */
17426 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
17427 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
17428 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
17429 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
17430 /* CVT with optional immediate for fixed-point variant. */
17431 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
17432
17433 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_IMVNb), neon_mvn),
17434 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_IMVNb), neon_mvn),
17435
17436 /* Data processing, three registers of different lengths. */
17437 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
17438 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
17439 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
17440 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
17441 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
17442 /* If not scalar, fall back to neon_dyadic_long.
17443 Vector types as above, scalar types S16 S32 U16 U32. */
17444 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
17445 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
17446 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
17447 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
17448 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
17449 /* Dyadic, narrowing insns. Types I16 I32 I64. */
17450 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
17451 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
17452 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
17453 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
17454 /* Saturating doubling multiplies. Types S16 S32. */
17455 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
17456 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
17457 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
17458 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
17459 S16 S32 U16 U32. */
17460 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
17461
17462 /* Extract. Size 8. */
17463 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
17464 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
17465
17466 /* Two registers, miscellaneous. */
17467 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
17468 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
17469 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
17470 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
17471 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
17472 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
17473 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
17474 /* Vector replicate. Sizes 8 16 32. */
17475 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
17476 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
17477 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
17478 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
17479 /* VMOVN. Types I16 I32 I64. */
17480 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
17481 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
17482 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
17483 /* VQMOVUN. Types S16 S32 S64. */
17484 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
17485 /* VZIP / VUZP. Sizes 8 16 32. */
17486 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
17487 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
17488 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
17489 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
17490 /* VQABS / VQNEG. Types S8 S16 S32. */
17491 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
17492 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
17493 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
17494 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
17495 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
17496 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
17497 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
17498 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
17499 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
17500 /* Reciprocal estimates. Types U32 F32. */
17501 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
17502 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
17503 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
17504 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
17505 /* VCLS. Types S8 S16 S32. */
17506 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
17507 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
17508 /* VCLZ. Types I8 I16 I32. */
17509 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
17510 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
17511 /* VCNT. Size 8. */
17512 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
17513 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
17514 /* Two address, untyped. */
17515 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
17516 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
17517 /* VTRN. Sizes 8 16 32. */
17518 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
17519 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
17520
17521 /* Table lookup. Size 8. */
17522 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
17523 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
17524
17525 #undef THUMB_VARIANT
17526 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
17527 #undef ARM_VARIANT
17528 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
17529
17530 /* Neon element/structure load/store. */
17531 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
17532 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
17533 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
17534 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
17535 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
17536 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
17537 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
17538 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
17539
17540 #undef THUMB_VARIANT
17541 #define THUMB_VARIANT & fpu_vfp_ext_v3
17542 #undef ARM_VARIANT
17543 #define ARM_VARIANT & fpu_vfp_ext_v3
17544
17545 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
17546 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
17547 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
17548 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
17549 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
17550 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
17551 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
17552 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
17553 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
17554 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
17555 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
17556 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
17557 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
17558 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
17559 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
17560 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
17561 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
17562 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
17563
17564 #undef THUMB_VARIANT
17565 #undef ARM_VARIANT
17566 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
17567
17568 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17569 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17570 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17571 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17572 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17573 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17574 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
17575 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
17576
17577 #undef ARM_VARIANT
17578 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
17579
17580 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
17581 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
17582 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
17583 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
17584 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
17585 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
17586 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
17587 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
17588 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
17589 cCE("textrmub", e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
17590 cCE("textrmuh", e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
17591 cCE("textrmuw", e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
17592 cCE("textrmsb", e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
17593 cCE("textrmsh", e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
17594 cCE("textrmsw", e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
17595 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
17596 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
17597 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
17598 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
17599 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
17600 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17601 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17602 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17603 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17604 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17605 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17606 cCE("tmovmskb", e100030, 2, (RR, RIWR), rd_rn),
17607 cCE("tmovmskh", e500030, 2, (RR, RIWR), rd_rn),
17608 cCE("tmovmskw", e900030, 2, (RR, RIWR), rd_rn),
17609 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
17610 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
17611 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
17612 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
17613 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
17614 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
17615 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
17616 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
17617 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17618 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17619 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17620 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17621 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17622 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17623 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17624 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17625 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17626 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
17627 cCE("walignr0", e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17628 cCE("walignr1", e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17629 cCE("walignr2", ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17630 cCE("walignr3", eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17631 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17632 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17633 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17634 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17635 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17636 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17637 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17638 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17639 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17640 cCE("wcmpgtub", e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17641 cCE("wcmpgtuh", e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17642 cCE("wcmpgtuw", e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17643 cCE("wcmpgtsb", e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17644 cCE("wcmpgtsh", e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17645 cCE("wcmpgtsw", eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17646 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
17647 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
17648 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
17649 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
17650 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17651 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17652 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17653 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17654 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17655 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17656 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17657 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17658 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17659 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17660 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17661 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17662 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17663 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17664 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17665 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17666 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17667 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17668 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
17669 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17670 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17671 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17672 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17673 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17674 cCE("wpackhss", e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17675 cCE("wpackhus", e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17676 cCE("wpackwss", eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17677 cCE("wpackwus", e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17678 cCE("wpackdss", ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17679 cCE("wpackdus", ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17680 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17681 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17682 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17683 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17684 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17685 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17686 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17687 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17688 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17689 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17690 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
17691 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17692 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17693 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17694 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17695 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17696 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17697 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17698 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17699 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17700 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17701 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17702 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17703 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17704 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17705 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17706 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17707 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17708 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17709 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
17710 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
17711 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
17712 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
17713 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17714 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17715 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17716 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17717 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17718 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17719 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17720 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17721 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17722 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
17723 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
17724 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
17725 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
17726 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
17727 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
17728 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17729 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17730 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17731 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
17732 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
17733 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
17734 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
17735 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
17736 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
17737 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17738 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17739 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17740 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17741 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
17742
17743 #undef ARM_VARIANT
17744 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
17745
17746 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
17747 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
17748 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
17749 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
17750 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
17751 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
17752 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17753 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17754 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17755 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17756 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17757 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17758 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17759 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17760 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17761 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17762 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17763 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17764 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17765 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17766 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
17767 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17768 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17769 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17770 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17771 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17772 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17773 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17774 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17775 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17776 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17777 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17778 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17779 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17780 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17781 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17782 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17783 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17784 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17785 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17786 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17787 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17788 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17789 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17790 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17791 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17792 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17793 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17794 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17795 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17796 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17797 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17798 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17799 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17800 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17801 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17802 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17803
17804 #undef ARM_VARIANT
17805 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
17806
17807 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
17808 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
17809 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
17810 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
17811 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
17812 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
17813 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
17814 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
17815 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
17816 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
17817 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
17818 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
17819 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
17820 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
17821 cCE("cfmv64lr", e000510, 2, (RMDX, RR), rn_rd),
17822 cCE("cfmvr64l", e100510, 2, (RR, RMDX), rd_rn),
17823 cCE("cfmv64hr", e000530, 2, (RMDX, RR), rn_rd),
17824 cCE("cfmvr64h", e100530, 2, (RR, RMDX), rd_rn),
17825 cCE("cfmval32", e200440, 2, (RMAX, RMFX), rd_rn),
17826 cCE("cfmv32al", e100440, 2, (RMFX, RMAX), rd_rn),
17827 cCE("cfmvam32", e200460, 2, (RMAX, RMFX), rd_rn),
17828 cCE("cfmv32am", e100460, 2, (RMFX, RMAX), rd_rn),
17829 cCE("cfmvah32", e200480, 2, (RMAX, RMFX), rd_rn),
17830 cCE("cfmv32ah", e100480, 2, (RMFX, RMAX), rd_rn),
17831 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
17832 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
17833 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
17834 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
17835 cCE("cfmvsc32", e2004e0, 2, (RMDS, RMDX), mav_dspsc),
17836 cCE("cfmv32sc", e1004e0, 2, (RMDX, RMDS), rd),
17837 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
17838 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
17839 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
17840 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
17841 cCE("cfcvt32s", e000480, 2, (RMF, RMFX), rd_rn),
17842 cCE("cfcvt32d", e0004a0, 2, (RMD, RMFX), rd_rn),
17843 cCE("cfcvt64s", e0004c0, 2, (RMF, RMDX), rd_rn),
17844 cCE("cfcvt64d", e0004e0, 2, (RMD, RMDX), rd_rn),
17845 cCE("cfcvts32", e100580, 2, (RMFX, RMF), rd_rn),
17846 cCE("cfcvtd32", e1005a0, 2, (RMFX, RMD), rd_rn),
17847 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
17848 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
17849 cCE("cfrshl32", e000550, 3, (RMFX, RMFX, RR), mav_triple),
17850 cCE("cfrshl64", e000570, 3, (RMDX, RMDX, RR), mav_triple),
17851 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
17852 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
17853 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
17854 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
17855 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
17856 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
17857 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
17858 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
17859 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
17860 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
17861 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
17862 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
17863 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
17864 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
17865 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
17866 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
17867 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
17868 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
17869 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
17870 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
17871 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
17872 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
17873 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
17874 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
17875 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
17876 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
17877 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
17878 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
17879 cCE("cfmadd32", e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
17880 cCE("cfmsub32", e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
17881 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
17882 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
17883 };
17884 #undef ARM_VARIANT
17885 #undef THUMB_VARIANT
17886 #undef TCE
17887 #undef TCM
17888 #undef TUE
17889 #undef TUF
17890 #undef TCC
17891 #undef cCE
17892 #undef cCL
17893 #undef C3E
17894 #undef CE
17895 #undef CM
17896 #undef UE
17897 #undef UF
17898 #undef UT
17899 #undef NUF
17900 #undef nUF
17901 #undef NCE
17902 #undef nCE
17903 #undef OPS0
17904 #undef OPS1
17905 #undef OPS2
17906 #undef OPS3
17907 #undef OPS4
17908 #undef OPS5
17909 #undef OPS6
17910 #undef do_0
17911 \f
17912 /* MD interface: bits in the object file. */
17913
17914 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
17915 for use in the a.out file, and stores them in the array pointed to by buf.
17916 This knows about the endian-ness of the target machine and does
17917 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
17918 2 (short) and 4 (long) Floating numbers are put out as a series of
17919 LITTLENUMS (shorts, here at least). */
17920
17921 void
17922 md_number_to_chars (char * buf, valueT val, int n)
17923 {
17924 if (target_big_endian)
17925 number_to_chars_bigendian (buf, val, n);
17926 else
17927 number_to_chars_littleendian (buf, val, n);
17928 }
17929
17930 static valueT
17931 md_chars_to_number (char * buf, int n)
17932 {
17933 valueT result = 0;
17934 unsigned char * where = (unsigned char *) buf;
17935
17936 if (target_big_endian)
17937 {
17938 while (n--)
17939 {
17940 result <<= 8;
17941 result |= (*where++ & 255);
17942 }
17943 }
17944 else
17945 {
17946 while (n--)
17947 {
17948 result <<= 8;
17949 result |= (where[n] & 255);
17950 }
17951 }
17952
17953 return result;
17954 }
17955
17956 /* MD interface: Sections. */
17957
17958 /* Estimate the size of a frag before relaxing. Assume everything fits in
17959 2 bytes. */
17960
17961 int
17962 md_estimate_size_before_relax (fragS * fragp,
17963 segT segtype ATTRIBUTE_UNUSED)
17964 {
17965 fragp->fr_var = 2;
17966 return 2;
17967 }
17968
17969 /* Convert a machine dependent frag. */
17970
17971 void
17972 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
17973 {
17974 unsigned long insn;
17975 unsigned long old_op;
17976 char *buf;
17977 expressionS exp;
17978 fixS *fixp;
17979 int reloc_type;
17980 int pc_rel;
17981 int opcode;
17982
17983 buf = fragp->fr_literal + fragp->fr_fix;
17984
17985 old_op = bfd_get_16(abfd, buf);
17986 if (fragp->fr_symbol)
17987 {
17988 exp.X_op = O_symbol;
17989 exp.X_add_symbol = fragp->fr_symbol;
17990 }
17991 else
17992 {
17993 exp.X_op = O_constant;
17994 }
17995 exp.X_add_number = fragp->fr_offset;
17996 opcode = fragp->fr_subtype;
17997 switch (opcode)
17998 {
17999 case T_MNEM_ldr_pc:
18000 case T_MNEM_ldr_pc2:
18001 case T_MNEM_ldr_sp:
18002 case T_MNEM_str_sp:
18003 case T_MNEM_ldr:
18004 case T_MNEM_ldrb:
18005 case T_MNEM_ldrh:
18006 case T_MNEM_str:
18007 case T_MNEM_strb:
18008 case T_MNEM_strh:
18009 if (fragp->fr_var == 4)
18010 {
18011 insn = THUMB_OP32 (opcode);
18012 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
18013 {
18014 insn |= (old_op & 0x700) << 4;
18015 }
18016 else
18017 {
18018 insn |= (old_op & 7) << 12;
18019 insn |= (old_op & 0x38) << 13;
18020 }
18021 insn |= 0x00000c00;
18022 put_thumb32_insn (buf, insn);
18023 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
18024 }
18025 else
18026 {
18027 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
18028 }
18029 pc_rel = (opcode == T_MNEM_ldr_pc2);
18030 break;
18031 case T_MNEM_adr:
18032 if (fragp->fr_var == 4)
18033 {
18034 insn = THUMB_OP32 (opcode);
18035 insn |= (old_op & 0xf0) << 4;
18036 put_thumb32_insn (buf, insn);
18037 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
18038 }
18039 else
18040 {
18041 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18042 exp.X_add_number -= 4;
18043 }
18044 pc_rel = 1;
18045 break;
18046 case T_MNEM_mov:
18047 case T_MNEM_movs:
18048 case T_MNEM_cmp:
18049 case T_MNEM_cmn:
18050 if (fragp->fr_var == 4)
18051 {
18052 int r0off = (opcode == T_MNEM_mov
18053 || opcode == T_MNEM_movs) ? 0 : 8;
18054 insn = THUMB_OP32 (opcode);
18055 insn = (insn & 0xe1ffffff) | 0x10000000;
18056 insn |= (old_op & 0x700) << r0off;
18057 put_thumb32_insn (buf, insn);
18058 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
18059 }
18060 else
18061 {
18062 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
18063 }
18064 pc_rel = 0;
18065 break;
18066 case T_MNEM_b:
18067 if (fragp->fr_var == 4)
18068 {
18069 insn = THUMB_OP32(opcode);
18070 put_thumb32_insn (buf, insn);
18071 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
18072 }
18073 else
18074 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
18075 pc_rel = 1;
18076 break;
18077 case T_MNEM_bcond:
18078 if (fragp->fr_var == 4)
18079 {
18080 insn = THUMB_OP32(opcode);
18081 insn |= (old_op & 0xf00) << 14;
18082 put_thumb32_insn (buf, insn);
18083 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
18084 }
18085 else
18086 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
18087 pc_rel = 1;
18088 break;
18089 case T_MNEM_add_sp:
18090 case T_MNEM_add_pc:
18091 case T_MNEM_inc_sp:
18092 case T_MNEM_dec_sp:
18093 if (fragp->fr_var == 4)
18094 {
18095 /* ??? Choose between add and addw. */
18096 insn = THUMB_OP32 (opcode);
18097 insn |= (old_op & 0xf0) << 4;
18098 put_thumb32_insn (buf, insn);
18099 if (opcode == T_MNEM_add_pc)
18100 reloc_type = BFD_RELOC_ARM_T32_IMM12;
18101 else
18102 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
18103 }
18104 else
18105 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18106 pc_rel = 0;
18107 break;
18108
18109 case T_MNEM_addi:
18110 case T_MNEM_addis:
18111 case T_MNEM_subi:
18112 case T_MNEM_subis:
18113 if (fragp->fr_var == 4)
18114 {
18115 insn = THUMB_OP32 (opcode);
18116 insn |= (old_op & 0xf0) << 4;
18117 insn |= (old_op & 0xf) << 16;
18118 put_thumb32_insn (buf, insn);
18119 if (insn & (1 << 20))
18120 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
18121 else
18122 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
18123 }
18124 else
18125 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18126 pc_rel = 0;
18127 break;
18128 default:
18129 abort ();
18130 }
18131 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
18132 (enum bfd_reloc_code_real) reloc_type);
18133 fixp->fx_file = fragp->fr_file;
18134 fixp->fx_line = fragp->fr_line;
18135 fragp->fr_fix += fragp->fr_var;
18136 }
18137
18138 /* Return the size of a relaxable immediate operand instruction.
18139 SHIFT and SIZE specify the form of the allowable immediate. */
18140 static int
18141 relax_immediate (fragS *fragp, int size, int shift)
18142 {
18143 offsetT offset;
18144 offsetT mask;
18145 offsetT low;
18146
18147 /* ??? Should be able to do better than this. */
18148 if (fragp->fr_symbol)
18149 return 4;
18150
18151 low = (1 << shift) - 1;
18152 mask = (1 << (shift + size)) - (1 << shift);
18153 offset = fragp->fr_offset;
18154 /* Force misaligned offsets to 32-bit variant. */
18155 if (offset & low)
18156 return 4;
18157 if (offset & ~mask)
18158 return 4;
18159 return 2;
18160 }
18161
18162 /* Get the address of a symbol during relaxation. */
18163 static addressT
18164 relaxed_symbol_addr (fragS *fragp, long stretch)
18165 {
18166 fragS *sym_frag;
18167 addressT addr;
18168 symbolS *sym;
18169
18170 sym = fragp->fr_symbol;
18171 sym_frag = symbol_get_frag (sym);
18172 know (S_GET_SEGMENT (sym) != absolute_section
18173 || sym_frag == &zero_address_frag);
18174 addr = S_GET_VALUE (sym) + fragp->fr_offset;
18175
18176 /* If frag has yet to be reached on this pass, assume it will
18177 move by STRETCH just as we did. If this is not so, it will
18178 be because some frag between grows, and that will force
18179 another pass. */
18180
18181 if (stretch != 0
18182 && sym_frag->relax_marker != fragp->relax_marker)
18183 {
18184 fragS *f;
18185
18186 /* Adjust stretch for any alignment frag. Note that if have
18187 been expanding the earlier code, the symbol may be
18188 defined in what appears to be an earlier frag. FIXME:
18189 This doesn't handle the fr_subtype field, which specifies
18190 a maximum number of bytes to skip when doing an
18191 alignment. */
18192 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
18193 {
18194 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
18195 {
18196 if (stretch < 0)
18197 stretch = - ((- stretch)
18198 & ~ ((1 << (int) f->fr_offset) - 1));
18199 else
18200 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
18201 if (stretch == 0)
18202 break;
18203 }
18204 }
18205 if (f != NULL)
18206 addr += stretch;
18207 }
18208
18209 return addr;
18210 }
18211
18212 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
18213 load. */
18214 static int
18215 relax_adr (fragS *fragp, asection *sec, long stretch)
18216 {
18217 addressT addr;
18218 offsetT val;
18219
18220 /* Assume worst case for symbols not known to be in the same section. */
18221 if (!S_IS_DEFINED (fragp->fr_symbol)
18222 || sec != S_GET_SEGMENT (fragp->fr_symbol))
18223 return 4;
18224
18225 val = relaxed_symbol_addr (fragp, stretch);
18226 addr = fragp->fr_address + fragp->fr_fix;
18227 addr = (addr + 4) & ~3;
18228 /* Force misaligned targets to 32-bit variant. */
18229 if (val & 3)
18230 return 4;
18231 val -= addr;
18232 if (val < 0 || val > 1020)
18233 return 4;
18234 return 2;
18235 }
18236
18237 /* Return the size of a relaxable add/sub immediate instruction. */
18238 static int
18239 relax_addsub (fragS *fragp, asection *sec)
18240 {
18241 char *buf;
18242 int op;
18243
18244 buf = fragp->fr_literal + fragp->fr_fix;
18245 op = bfd_get_16(sec->owner, buf);
18246 if ((op & 0xf) == ((op >> 4) & 0xf))
18247 return relax_immediate (fragp, 8, 0);
18248 else
18249 return relax_immediate (fragp, 3, 0);
18250 }
18251
18252
18253 /* Return the size of a relaxable branch instruction. BITS is the
18254 size of the offset field in the narrow instruction. */
18255
18256 static int
18257 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
18258 {
18259 addressT addr;
18260 offsetT val;
18261 offsetT limit;
18262
18263 /* Assume worst case for symbols not known to be in the same section. */
18264 if (!S_IS_DEFINED (fragp->fr_symbol)
18265 || sec != S_GET_SEGMENT (fragp->fr_symbol))
18266 return 4;
18267
18268 #ifdef OBJ_ELF
18269 if (S_IS_DEFINED (fragp->fr_symbol)
18270 && ARM_IS_FUNC (fragp->fr_symbol))
18271 return 4;
18272 #endif
18273
18274 val = relaxed_symbol_addr (fragp, stretch);
18275 addr = fragp->fr_address + fragp->fr_fix + 4;
18276 val -= addr;
18277
18278 /* Offset is a signed value *2 */
18279 limit = 1 << bits;
18280 if (val >= limit || val < -limit)
18281 return 4;
18282 return 2;
18283 }
18284
18285
18286 /* Relax a machine dependent frag. This returns the amount by which
18287 the current size of the frag should change. */
18288
18289 int
18290 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
18291 {
18292 int oldsize;
18293 int newsize;
18294
18295 oldsize = fragp->fr_var;
18296 switch (fragp->fr_subtype)
18297 {
18298 case T_MNEM_ldr_pc2:
18299 newsize = relax_adr (fragp, sec, stretch);
18300 break;
18301 case T_MNEM_ldr_pc:
18302 case T_MNEM_ldr_sp:
18303 case T_MNEM_str_sp:
18304 newsize = relax_immediate (fragp, 8, 2);
18305 break;
18306 case T_MNEM_ldr:
18307 case T_MNEM_str:
18308 newsize = relax_immediate (fragp, 5, 2);
18309 break;
18310 case T_MNEM_ldrh:
18311 case T_MNEM_strh:
18312 newsize = relax_immediate (fragp, 5, 1);
18313 break;
18314 case T_MNEM_ldrb:
18315 case T_MNEM_strb:
18316 newsize = relax_immediate (fragp, 5, 0);
18317 break;
18318 case T_MNEM_adr:
18319 newsize = relax_adr (fragp, sec, stretch);
18320 break;
18321 case T_MNEM_mov:
18322 case T_MNEM_movs:
18323 case T_MNEM_cmp:
18324 case T_MNEM_cmn:
18325 newsize = relax_immediate (fragp, 8, 0);
18326 break;
18327 case T_MNEM_b:
18328 newsize = relax_branch (fragp, sec, 11, stretch);
18329 break;
18330 case T_MNEM_bcond:
18331 newsize = relax_branch (fragp, sec, 8, stretch);
18332 break;
18333 case T_MNEM_add_sp:
18334 case T_MNEM_add_pc:
18335 newsize = relax_immediate (fragp, 8, 2);
18336 break;
18337 case T_MNEM_inc_sp:
18338 case T_MNEM_dec_sp:
18339 newsize = relax_immediate (fragp, 7, 2);
18340 break;
18341 case T_MNEM_addi:
18342 case T_MNEM_addis:
18343 case T_MNEM_subi:
18344 case T_MNEM_subis:
18345 newsize = relax_addsub (fragp, sec);
18346 break;
18347 default:
18348 abort ();
18349 }
18350
18351 fragp->fr_var = newsize;
18352 /* Freeze wide instructions that are at or before the same location as
18353 in the previous pass. This avoids infinite loops.
18354 Don't freeze them unconditionally because targets may be artificially
18355 misaligned by the expansion of preceding frags. */
18356 if (stretch <= 0 && newsize > 2)
18357 {
18358 md_convert_frag (sec->owner, sec, fragp);
18359 frag_wane (fragp);
18360 }
18361
18362 return newsize - oldsize;
18363 }
18364
18365 /* Round up a section size to the appropriate boundary. */
18366
18367 valueT
18368 md_section_align (segT segment ATTRIBUTE_UNUSED,
18369 valueT size)
18370 {
18371 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
18372 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
18373 {
18374 /* For a.out, force the section size to be aligned. If we don't do
18375 this, BFD will align it for us, but it will not write out the
18376 final bytes of the section. This may be a bug in BFD, but it is
18377 easier to fix it here since that is how the other a.out targets
18378 work. */
18379 int align;
18380
18381 align = bfd_get_section_alignment (stdoutput, segment);
18382 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
18383 }
18384 #endif
18385
18386 return size;
18387 }
18388
18389 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
18390 of an rs_align_code fragment. */
18391
18392 void
18393 arm_handle_align (fragS * fragP)
18394 {
18395 static char const arm_noop[2][2][4] =
18396 {
18397 { /* ARMv1 */
18398 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
18399 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
18400 },
18401 { /* ARMv6k */
18402 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
18403 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
18404 },
18405 };
18406 static char const thumb_noop[2][2][2] =
18407 {
18408 { /* Thumb-1 */
18409 {0xc0, 0x46}, /* LE */
18410 {0x46, 0xc0}, /* BE */
18411 },
18412 { /* Thumb-2 */
18413 {0x00, 0xbf}, /* LE */
18414 {0xbf, 0x00} /* BE */
18415 }
18416 };
18417 static char const wide_thumb_noop[2][4] =
18418 { /* Wide Thumb-2 */
18419 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
18420 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
18421 };
18422
18423 unsigned bytes, fix, noop_size;
18424 char * p;
18425 const char * noop;
18426 const char *narrow_noop = NULL;
18427 #ifdef OBJ_ELF
18428 enum mstate state;
18429 #endif
18430
18431 if (fragP->fr_type != rs_align_code)
18432 return;
18433
18434 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
18435 p = fragP->fr_literal + fragP->fr_fix;
18436 fix = 0;
18437
18438 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
18439 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
18440
18441 #ifdef OBJ_ELF
18442 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
18443 #endif
18444
18445 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
18446 {
18447 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
18448 {
18449 narrow_noop = thumb_noop[1][target_big_endian];
18450 noop = wide_thumb_noop[target_big_endian];
18451 }
18452 else
18453 noop = thumb_noop[0][target_big_endian];
18454 noop_size = 2;
18455 #ifdef OBJ_ELF
18456 state = MAP_THUMB;
18457 #endif
18458 }
18459 else
18460 {
18461 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k) != 0]
18462 [target_big_endian];
18463 noop_size = 4;
18464 #ifdef OBJ_ELF
18465 state = MAP_ARM;
18466 #endif
18467 }
18468
18469 fragP->fr_var = noop_size;
18470
18471 if (bytes & (noop_size - 1))
18472 {
18473 fix = bytes & (noop_size - 1);
18474 #ifdef OBJ_ELF
18475 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
18476 #endif
18477 memset (p, 0, fix);
18478 p += fix;
18479 bytes -= fix;
18480 }
18481
18482 if (narrow_noop)
18483 {
18484 if (bytes & noop_size)
18485 {
18486 /* Insert a narrow noop. */
18487 memcpy (p, narrow_noop, noop_size);
18488 p += noop_size;
18489 bytes -= noop_size;
18490 fix += noop_size;
18491 }
18492
18493 /* Use wide noops for the remainder */
18494 noop_size = 4;
18495 }
18496
18497 while (bytes >= noop_size)
18498 {
18499 memcpy (p, noop, noop_size);
18500 p += noop_size;
18501 bytes -= noop_size;
18502 fix += noop_size;
18503 }
18504
18505 fragP->fr_fix += fix;
18506 }
18507
18508 /* Called from md_do_align. Used to create an alignment
18509 frag in a code section. */
18510
18511 void
18512 arm_frag_align_code (int n, int max)
18513 {
18514 char * p;
18515
18516 /* We assume that there will never be a requirement
18517 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
18518 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
18519 {
18520 char err_msg[128];
18521
18522 sprintf (err_msg,
18523 _("alignments greater than %d bytes not supported in .text sections."),
18524 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
18525 as_fatal ("%s", err_msg);
18526 }
18527
18528 p = frag_var (rs_align_code,
18529 MAX_MEM_FOR_RS_ALIGN_CODE,
18530 1,
18531 (relax_substateT) max,
18532 (symbolS *) NULL,
18533 (offsetT) n,
18534 (char *) NULL);
18535 *p = 0;
18536 }
18537
18538 /* Perform target specific initialisation of a frag.
18539 Note - despite the name this initialisation is not done when the frag
18540 is created, but only when its type is assigned. A frag can be created
18541 and used a long time before its type is set, so beware of assuming that
18542 this initialisationis performed first. */
18543
18544 #ifndef OBJ_ELF
18545 void
18546 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
18547 {
18548 /* Record whether this frag is in an ARM or a THUMB area. */
18549 fragP->tc_frag_data.thumb_mode = thumb_mode;
18550 }
18551
18552 #else /* OBJ_ELF is defined. */
18553 void
18554 arm_init_frag (fragS * fragP, int max_chars)
18555 {
18556 /* If the current ARM vs THUMB mode has not already
18557 been recorded into this frag then do so now. */
18558 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
18559 {
18560 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
18561
18562 /* Record a mapping symbol for alignment frags. We will delete this
18563 later if the alignment ends up empty. */
18564 switch (fragP->fr_type)
18565 {
18566 case rs_align:
18567 case rs_align_test:
18568 case rs_fill:
18569 mapping_state_2 (MAP_DATA, max_chars);
18570 break;
18571 case rs_align_code:
18572 mapping_state_2 (thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
18573 break;
18574 default:
18575 break;
18576 }
18577 }
18578 }
18579
18580 /* When we change sections we need to issue a new mapping symbol. */
18581
18582 void
18583 arm_elf_change_section (void)
18584 {
18585 /* Link an unlinked unwind index table section to the .text section. */
18586 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
18587 && elf_linked_to_section (now_seg) == NULL)
18588 elf_linked_to_section (now_seg) = text_section;
18589 }
18590
18591 int
18592 arm_elf_section_type (const char * str, size_t len)
18593 {
18594 if (len == 5 && strncmp (str, "exidx", 5) == 0)
18595 return SHT_ARM_EXIDX;
18596
18597 return -1;
18598 }
18599 \f
18600 /* Code to deal with unwinding tables. */
18601
18602 static void add_unwind_adjustsp (offsetT);
18603
18604 /* Generate any deferred unwind frame offset. */
18605
18606 static void
18607 flush_pending_unwind (void)
18608 {
18609 offsetT offset;
18610
18611 offset = unwind.pending_offset;
18612 unwind.pending_offset = 0;
18613 if (offset != 0)
18614 add_unwind_adjustsp (offset);
18615 }
18616
18617 /* Add an opcode to this list for this function. Two-byte opcodes should
18618 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
18619 order. */
18620
18621 static void
18622 add_unwind_opcode (valueT op, int length)
18623 {
18624 /* Add any deferred stack adjustment. */
18625 if (unwind.pending_offset)
18626 flush_pending_unwind ();
18627
18628 unwind.sp_restored = 0;
18629
18630 if (unwind.opcode_count + length > unwind.opcode_alloc)
18631 {
18632 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
18633 if (unwind.opcodes)
18634 unwind.opcodes = (unsigned char *) xrealloc (unwind.opcodes,
18635 unwind.opcode_alloc);
18636 else
18637 unwind.opcodes = (unsigned char *) xmalloc (unwind.opcode_alloc);
18638 }
18639 while (length > 0)
18640 {
18641 length--;
18642 unwind.opcodes[unwind.opcode_count] = op & 0xff;
18643 op >>= 8;
18644 unwind.opcode_count++;
18645 }
18646 }
18647
18648 /* Add unwind opcodes to adjust the stack pointer. */
18649
18650 static void
18651 add_unwind_adjustsp (offsetT offset)
18652 {
18653 valueT op;
18654
18655 if (offset > 0x200)
18656 {
18657 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
18658 char bytes[5];
18659 int n;
18660 valueT o;
18661
18662 /* Long form: 0xb2, uleb128. */
18663 /* This might not fit in a word so add the individual bytes,
18664 remembering the list is built in reverse order. */
18665 o = (valueT) ((offset - 0x204) >> 2);
18666 if (o == 0)
18667 add_unwind_opcode (0, 1);
18668
18669 /* Calculate the uleb128 encoding of the offset. */
18670 n = 0;
18671 while (o)
18672 {
18673 bytes[n] = o & 0x7f;
18674 o >>= 7;
18675 if (o)
18676 bytes[n] |= 0x80;
18677 n++;
18678 }
18679 /* Add the insn. */
18680 for (; n; n--)
18681 add_unwind_opcode (bytes[n - 1], 1);
18682 add_unwind_opcode (0xb2, 1);
18683 }
18684 else if (offset > 0x100)
18685 {
18686 /* Two short opcodes. */
18687 add_unwind_opcode (0x3f, 1);
18688 op = (offset - 0x104) >> 2;
18689 add_unwind_opcode (op, 1);
18690 }
18691 else if (offset > 0)
18692 {
18693 /* Short opcode. */
18694 op = (offset - 4) >> 2;
18695 add_unwind_opcode (op, 1);
18696 }
18697 else if (offset < 0)
18698 {
18699 offset = -offset;
18700 while (offset > 0x100)
18701 {
18702 add_unwind_opcode (0x7f, 1);
18703 offset -= 0x100;
18704 }
18705 op = ((offset - 4) >> 2) | 0x40;
18706 add_unwind_opcode (op, 1);
18707 }
18708 }
18709
18710 /* Finish the list of unwind opcodes for this function. */
18711 static void
18712 finish_unwind_opcodes (void)
18713 {
18714 valueT op;
18715
18716 if (unwind.fp_used)
18717 {
18718 /* Adjust sp as necessary. */
18719 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
18720 flush_pending_unwind ();
18721
18722 /* After restoring sp from the frame pointer. */
18723 op = 0x90 | unwind.fp_reg;
18724 add_unwind_opcode (op, 1);
18725 }
18726 else
18727 flush_pending_unwind ();
18728 }
18729
18730
18731 /* Start an exception table entry. If idx is nonzero this is an index table
18732 entry. */
18733
18734 static void
18735 start_unwind_section (const segT text_seg, int idx)
18736 {
18737 const char * text_name;
18738 const char * prefix;
18739 const char * prefix_once;
18740 const char * group_name;
18741 size_t prefix_len;
18742 size_t text_len;
18743 char * sec_name;
18744 size_t sec_name_len;
18745 int type;
18746 int flags;
18747 int linkonce;
18748
18749 if (idx)
18750 {
18751 prefix = ELF_STRING_ARM_unwind;
18752 prefix_once = ELF_STRING_ARM_unwind_once;
18753 type = SHT_ARM_EXIDX;
18754 }
18755 else
18756 {
18757 prefix = ELF_STRING_ARM_unwind_info;
18758 prefix_once = ELF_STRING_ARM_unwind_info_once;
18759 type = SHT_PROGBITS;
18760 }
18761
18762 text_name = segment_name (text_seg);
18763 if (streq (text_name, ".text"))
18764 text_name = "";
18765
18766 if (strncmp (text_name, ".gnu.linkonce.t.",
18767 strlen (".gnu.linkonce.t.")) == 0)
18768 {
18769 prefix = prefix_once;
18770 text_name += strlen (".gnu.linkonce.t.");
18771 }
18772
18773 prefix_len = strlen (prefix);
18774 text_len = strlen (text_name);
18775 sec_name_len = prefix_len + text_len;
18776 sec_name = (char *) xmalloc (sec_name_len + 1);
18777 memcpy (sec_name, prefix, prefix_len);
18778 memcpy (sec_name + prefix_len, text_name, text_len);
18779 sec_name[prefix_len + text_len] = '\0';
18780
18781 flags = SHF_ALLOC;
18782 linkonce = 0;
18783 group_name = 0;
18784
18785 /* Handle COMDAT group. */
18786 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
18787 {
18788 group_name = elf_group_name (text_seg);
18789 if (group_name == NULL)
18790 {
18791 as_bad (_("Group section `%s' has no group signature"),
18792 segment_name (text_seg));
18793 ignore_rest_of_line ();
18794 return;
18795 }
18796 flags |= SHF_GROUP;
18797 linkonce = 1;
18798 }
18799
18800 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
18801
18802 /* Set the section link for index tables. */
18803 if (idx)
18804 elf_linked_to_section (now_seg) = text_seg;
18805 }
18806
18807
18808 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
18809 personality routine data. Returns zero, or the index table value for
18810 and inline entry. */
18811
18812 static valueT
18813 create_unwind_entry (int have_data)
18814 {
18815 int size;
18816 addressT where;
18817 char *ptr;
18818 /* The current word of data. */
18819 valueT data;
18820 /* The number of bytes left in this word. */
18821 int n;
18822
18823 finish_unwind_opcodes ();
18824
18825 /* Remember the current text section. */
18826 unwind.saved_seg = now_seg;
18827 unwind.saved_subseg = now_subseg;
18828
18829 start_unwind_section (now_seg, 0);
18830
18831 if (unwind.personality_routine == NULL)
18832 {
18833 if (unwind.personality_index == -2)
18834 {
18835 if (have_data)
18836 as_bad (_("handlerdata in cantunwind frame"));
18837 return 1; /* EXIDX_CANTUNWIND. */
18838 }
18839
18840 /* Use a default personality routine if none is specified. */
18841 if (unwind.personality_index == -1)
18842 {
18843 if (unwind.opcode_count > 3)
18844 unwind.personality_index = 1;
18845 else
18846 unwind.personality_index = 0;
18847 }
18848
18849 /* Space for the personality routine entry. */
18850 if (unwind.personality_index == 0)
18851 {
18852 if (unwind.opcode_count > 3)
18853 as_bad (_("too many unwind opcodes for personality routine 0"));
18854
18855 if (!have_data)
18856 {
18857 /* All the data is inline in the index table. */
18858 data = 0x80;
18859 n = 3;
18860 while (unwind.opcode_count > 0)
18861 {
18862 unwind.opcode_count--;
18863 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
18864 n--;
18865 }
18866
18867 /* Pad with "finish" opcodes. */
18868 while (n--)
18869 data = (data << 8) | 0xb0;
18870
18871 return data;
18872 }
18873 size = 0;
18874 }
18875 else
18876 /* We get two opcodes "free" in the first word. */
18877 size = unwind.opcode_count - 2;
18878 }
18879 else
18880 /* An extra byte is required for the opcode count. */
18881 size = unwind.opcode_count + 1;
18882
18883 size = (size + 3) >> 2;
18884 if (size > 0xff)
18885 as_bad (_("too many unwind opcodes"));
18886
18887 frag_align (2, 0, 0);
18888 record_alignment (now_seg, 2);
18889 unwind.table_entry = expr_build_dot ();
18890
18891 /* Allocate the table entry. */
18892 ptr = frag_more ((size << 2) + 4);
18893 where = frag_now_fix () - ((size << 2) + 4);
18894
18895 switch (unwind.personality_index)
18896 {
18897 case -1:
18898 /* ??? Should this be a PLT generating relocation? */
18899 /* Custom personality routine. */
18900 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
18901 BFD_RELOC_ARM_PREL31);
18902
18903 where += 4;
18904 ptr += 4;
18905
18906 /* Set the first byte to the number of additional words. */
18907 data = size - 1;
18908 n = 3;
18909 break;
18910
18911 /* ABI defined personality routines. */
18912 case 0:
18913 /* Three opcodes bytes are packed into the first word. */
18914 data = 0x80;
18915 n = 3;
18916 break;
18917
18918 case 1:
18919 case 2:
18920 /* The size and first two opcode bytes go in the first word. */
18921 data = ((0x80 + unwind.personality_index) << 8) | size;
18922 n = 2;
18923 break;
18924
18925 default:
18926 /* Should never happen. */
18927 abort ();
18928 }
18929
18930 /* Pack the opcodes into words (MSB first), reversing the list at the same
18931 time. */
18932 while (unwind.opcode_count > 0)
18933 {
18934 if (n == 0)
18935 {
18936 md_number_to_chars (ptr, data, 4);
18937 ptr += 4;
18938 n = 4;
18939 data = 0;
18940 }
18941 unwind.opcode_count--;
18942 n--;
18943 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
18944 }
18945
18946 /* Finish off the last word. */
18947 if (n < 4)
18948 {
18949 /* Pad with "finish" opcodes. */
18950 while (n--)
18951 data = (data << 8) | 0xb0;
18952
18953 md_number_to_chars (ptr, data, 4);
18954 }
18955
18956 if (!have_data)
18957 {
18958 /* Add an empty descriptor if there is no user-specified data. */
18959 ptr = frag_more (4);
18960 md_number_to_chars (ptr, 0, 4);
18961 }
18962
18963 return 0;
18964 }
18965
18966
18967 /* Initialize the DWARF-2 unwind information for this procedure. */
18968
18969 void
18970 tc_arm_frame_initial_instructions (void)
18971 {
18972 cfi_add_CFA_def_cfa (REG_SP, 0);
18973 }
18974 #endif /* OBJ_ELF */
18975
18976 /* Convert REGNAME to a DWARF-2 register number. */
18977
18978 int
18979 tc_arm_regname_to_dw2regnum (char *regname)
18980 {
18981 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
18982
18983 if (reg == FAIL)
18984 return -1;
18985
18986 return reg;
18987 }
18988
18989 #ifdef TE_PE
18990 void
18991 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
18992 {
18993 expressionS expr;
18994
18995 expr.X_op = O_secrel;
18996 expr.X_add_symbol = symbol;
18997 expr.X_add_number = 0;
18998 emit_expr (&expr, size);
18999 }
19000 #endif
19001
19002 /* MD interface: Symbol and relocation handling. */
19003
19004 /* Return the address within the segment that a PC-relative fixup is
19005 relative to. For ARM, PC-relative fixups applied to instructions
19006 are generally relative to the location of the fixup plus 8 bytes.
19007 Thumb branches are offset by 4, and Thumb loads relative to PC
19008 require special handling. */
19009
19010 long
19011 md_pcrel_from_section (fixS * fixP, segT seg)
19012 {
19013 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
19014
19015 /* If this is pc-relative and we are going to emit a relocation
19016 then we just want to put out any pipeline compensation that the linker
19017 will need. Otherwise we want to use the calculated base.
19018 For WinCE we skip the bias for externals as well, since this
19019 is how the MS ARM-CE assembler behaves and we want to be compatible. */
19020 if (fixP->fx_pcrel
19021 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
19022 || (arm_force_relocation (fixP)
19023 #ifdef TE_WINCE
19024 && !S_IS_EXTERNAL (fixP->fx_addsy)
19025 #endif
19026 )))
19027 base = 0;
19028
19029
19030 switch (fixP->fx_r_type)
19031 {
19032 /* PC relative addressing on the Thumb is slightly odd as the
19033 bottom two bits of the PC are forced to zero for the
19034 calculation. This happens *after* application of the
19035 pipeline offset. However, Thumb adrl already adjusts for
19036 this, so we need not do it again. */
19037 case BFD_RELOC_ARM_THUMB_ADD:
19038 return base & ~3;
19039
19040 case BFD_RELOC_ARM_THUMB_OFFSET:
19041 case BFD_RELOC_ARM_T32_OFFSET_IMM:
19042 case BFD_RELOC_ARM_T32_ADD_PC12:
19043 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
19044 return (base + 4) & ~3;
19045
19046 /* Thumb branches are simply offset by +4. */
19047 case BFD_RELOC_THUMB_PCREL_BRANCH7:
19048 case BFD_RELOC_THUMB_PCREL_BRANCH9:
19049 case BFD_RELOC_THUMB_PCREL_BRANCH12:
19050 case BFD_RELOC_THUMB_PCREL_BRANCH20:
19051 case BFD_RELOC_THUMB_PCREL_BRANCH25:
19052 return base + 4;
19053
19054 case BFD_RELOC_THUMB_PCREL_BRANCH23:
19055 if (fixP->fx_addsy
19056 && ARM_IS_FUNC (fixP->fx_addsy)
19057 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19058 base = fixP->fx_where + fixP->fx_frag->fr_address;
19059 return base + 4;
19060
19061 /* BLX is like branches above, but forces the low two bits of PC to
19062 zero. */
19063 case BFD_RELOC_THUMB_PCREL_BLX:
19064 if (fixP->fx_addsy
19065 && THUMB_IS_FUNC (fixP->fx_addsy)
19066 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19067 base = fixP->fx_where + fixP->fx_frag->fr_address;
19068 return (base + 4) & ~3;
19069
19070 /* ARM mode branches are offset by +8. However, the Windows CE
19071 loader expects the relocation not to take this into account. */
19072 case BFD_RELOC_ARM_PCREL_BLX:
19073 if (fixP->fx_addsy
19074 && ARM_IS_FUNC (fixP->fx_addsy)
19075 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19076 base = fixP->fx_where + fixP->fx_frag->fr_address;
19077 return base + 8;
19078
19079 case BFD_RELOC_ARM_PCREL_CALL:
19080 if (fixP->fx_addsy
19081 && THUMB_IS_FUNC (fixP->fx_addsy)
19082 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19083 base = fixP->fx_where + fixP->fx_frag->fr_address;
19084 return base + 8;
19085
19086 case BFD_RELOC_ARM_PCREL_BRANCH:
19087 case BFD_RELOC_ARM_PCREL_JUMP:
19088 case BFD_RELOC_ARM_PLT32:
19089 #ifdef TE_WINCE
19090 /* When handling fixups immediately, because we have already
19091 discovered the value of a symbol, or the address of the frag involved
19092 we must account for the offset by +8, as the OS loader will never see the reloc.
19093 see fixup_segment() in write.c
19094 The S_IS_EXTERNAL test handles the case of global symbols.
19095 Those need the calculated base, not just the pipe compensation the linker will need. */
19096 if (fixP->fx_pcrel
19097 && fixP->fx_addsy != NULL
19098 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19099 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
19100 return base + 8;
19101 return base;
19102 #else
19103 return base + 8;
19104 #endif
19105
19106
19107 /* ARM mode loads relative to PC are also offset by +8. Unlike
19108 branches, the Windows CE loader *does* expect the relocation
19109 to take this into account. */
19110 case BFD_RELOC_ARM_OFFSET_IMM:
19111 case BFD_RELOC_ARM_OFFSET_IMM8:
19112 case BFD_RELOC_ARM_HWLITERAL:
19113 case BFD_RELOC_ARM_LITERAL:
19114 case BFD_RELOC_ARM_CP_OFF_IMM:
19115 return base + 8;
19116
19117
19118 /* Other PC-relative relocations are un-offset. */
19119 default:
19120 return base;
19121 }
19122 }
19123
19124 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
19125 Otherwise we have no need to default values of symbols. */
19126
19127 symbolS *
19128 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
19129 {
19130 #ifdef OBJ_ELF
19131 if (name[0] == '_' && name[1] == 'G'
19132 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
19133 {
19134 if (!GOT_symbol)
19135 {
19136 if (symbol_find (name))
19137 as_bad (_("GOT already in the symbol table"));
19138
19139 GOT_symbol = symbol_new (name, undefined_section,
19140 (valueT) 0, & zero_address_frag);
19141 }
19142
19143 return GOT_symbol;
19144 }
19145 #endif
19146
19147 return NULL;
19148 }
19149
19150 /* Subroutine of md_apply_fix. Check to see if an immediate can be
19151 computed as two separate immediate values, added together. We
19152 already know that this value cannot be computed by just one ARM
19153 instruction. */
19154
19155 static unsigned int
19156 validate_immediate_twopart (unsigned int val,
19157 unsigned int * highpart)
19158 {
19159 unsigned int a;
19160 unsigned int i;
19161
19162 for (i = 0; i < 32; i += 2)
19163 if (((a = rotate_left (val, i)) & 0xff) != 0)
19164 {
19165 if (a & 0xff00)
19166 {
19167 if (a & ~ 0xffff)
19168 continue;
19169 * highpart = (a >> 8) | ((i + 24) << 7);
19170 }
19171 else if (a & 0xff0000)
19172 {
19173 if (a & 0xff000000)
19174 continue;
19175 * highpart = (a >> 16) | ((i + 16) << 7);
19176 }
19177 else
19178 {
19179 gas_assert (a & 0xff000000);
19180 * highpart = (a >> 24) | ((i + 8) << 7);
19181 }
19182
19183 return (a & 0xff) | (i << 7);
19184 }
19185
19186 return FAIL;
19187 }
19188
19189 static int
19190 validate_offset_imm (unsigned int val, int hwse)
19191 {
19192 if ((hwse && val > 255) || val > 4095)
19193 return FAIL;
19194 return val;
19195 }
19196
19197 /* Subroutine of md_apply_fix. Do those data_ops which can take a
19198 negative immediate constant by altering the instruction. A bit of
19199 a hack really.
19200 MOV <-> MVN
19201 AND <-> BIC
19202 ADC <-> SBC
19203 by inverting the second operand, and
19204 ADD <-> SUB
19205 CMP <-> CMN
19206 by negating the second operand. */
19207
19208 static int
19209 negate_data_op (unsigned long * instruction,
19210 unsigned long value)
19211 {
19212 int op, new_inst;
19213 unsigned long negated, inverted;
19214
19215 negated = encode_arm_immediate (-value);
19216 inverted = encode_arm_immediate (~value);
19217
19218 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
19219 switch (op)
19220 {
19221 /* First negates. */
19222 case OPCODE_SUB: /* ADD <-> SUB */
19223 new_inst = OPCODE_ADD;
19224 value = negated;
19225 break;
19226
19227 case OPCODE_ADD:
19228 new_inst = OPCODE_SUB;
19229 value = negated;
19230 break;
19231
19232 case OPCODE_CMP: /* CMP <-> CMN */
19233 new_inst = OPCODE_CMN;
19234 value = negated;
19235 break;
19236
19237 case OPCODE_CMN:
19238 new_inst = OPCODE_CMP;
19239 value = negated;
19240 break;
19241
19242 /* Now Inverted ops. */
19243 case OPCODE_MOV: /* MOV <-> MVN */
19244 new_inst = OPCODE_MVN;
19245 value = inverted;
19246 break;
19247
19248 case OPCODE_MVN:
19249 new_inst = OPCODE_MOV;
19250 value = inverted;
19251 break;
19252
19253 case OPCODE_AND: /* AND <-> BIC */
19254 new_inst = OPCODE_BIC;
19255 value = inverted;
19256 break;
19257
19258 case OPCODE_BIC:
19259 new_inst = OPCODE_AND;
19260 value = inverted;
19261 break;
19262
19263 case OPCODE_ADC: /* ADC <-> SBC */
19264 new_inst = OPCODE_SBC;
19265 value = inverted;
19266 break;
19267
19268 case OPCODE_SBC:
19269 new_inst = OPCODE_ADC;
19270 value = inverted;
19271 break;
19272
19273 /* We cannot do anything. */
19274 default:
19275 return FAIL;
19276 }
19277
19278 if (value == (unsigned) FAIL)
19279 return FAIL;
19280
19281 *instruction &= OPCODE_MASK;
19282 *instruction |= new_inst << DATA_OP_SHIFT;
19283 return value;
19284 }
19285
19286 /* Like negate_data_op, but for Thumb-2. */
19287
19288 static unsigned int
19289 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
19290 {
19291 int op, new_inst;
19292 int rd;
19293 unsigned int negated, inverted;
19294
19295 negated = encode_thumb32_immediate (-value);
19296 inverted = encode_thumb32_immediate (~value);
19297
19298 rd = (*instruction >> 8) & 0xf;
19299 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
19300 switch (op)
19301 {
19302 /* ADD <-> SUB. Includes CMP <-> CMN. */
19303 case T2_OPCODE_SUB:
19304 new_inst = T2_OPCODE_ADD;
19305 value = negated;
19306 break;
19307
19308 case T2_OPCODE_ADD:
19309 new_inst = T2_OPCODE_SUB;
19310 value = negated;
19311 break;
19312
19313 /* ORR <-> ORN. Includes MOV <-> MVN. */
19314 case T2_OPCODE_ORR:
19315 new_inst = T2_OPCODE_ORN;
19316 value = inverted;
19317 break;
19318
19319 case T2_OPCODE_ORN:
19320 new_inst = T2_OPCODE_ORR;
19321 value = inverted;
19322 break;
19323
19324 /* AND <-> BIC. TST has no inverted equivalent. */
19325 case T2_OPCODE_AND:
19326 new_inst = T2_OPCODE_BIC;
19327 if (rd == 15)
19328 value = FAIL;
19329 else
19330 value = inverted;
19331 break;
19332
19333 case T2_OPCODE_BIC:
19334 new_inst = T2_OPCODE_AND;
19335 value = inverted;
19336 break;
19337
19338 /* ADC <-> SBC */
19339 case T2_OPCODE_ADC:
19340 new_inst = T2_OPCODE_SBC;
19341 value = inverted;
19342 break;
19343
19344 case T2_OPCODE_SBC:
19345 new_inst = T2_OPCODE_ADC;
19346 value = inverted;
19347 break;
19348
19349 /* We cannot do anything. */
19350 default:
19351 return FAIL;
19352 }
19353
19354 if (value == (unsigned int)FAIL)
19355 return FAIL;
19356
19357 *instruction &= T2_OPCODE_MASK;
19358 *instruction |= new_inst << T2_DATA_OP_SHIFT;
19359 return value;
19360 }
19361
19362 /* Read a 32-bit thumb instruction from buf. */
19363 static unsigned long
19364 get_thumb32_insn (char * buf)
19365 {
19366 unsigned long insn;
19367 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
19368 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
19369
19370 return insn;
19371 }
19372
19373
19374 /* We usually want to set the low bit on the address of thumb function
19375 symbols. In particular .word foo - . should have the low bit set.
19376 Generic code tries to fold the difference of two symbols to
19377 a constant. Prevent this and force a relocation when the first symbols
19378 is a thumb function. */
19379
19380 bfd_boolean
19381 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
19382 {
19383 if (op == O_subtract
19384 && l->X_op == O_symbol
19385 && r->X_op == O_symbol
19386 && THUMB_IS_FUNC (l->X_add_symbol))
19387 {
19388 l->X_op = O_subtract;
19389 l->X_op_symbol = r->X_add_symbol;
19390 l->X_add_number -= r->X_add_number;
19391 return TRUE;
19392 }
19393
19394 /* Process as normal. */
19395 return FALSE;
19396 }
19397
19398 void
19399 md_apply_fix (fixS * fixP,
19400 valueT * valP,
19401 segT seg)
19402 {
19403 offsetT value = * valP;
19404 offsetT newval;
19405 unsigned int newimm;
19406 unsigned long temp;
19407 int sign;
19408 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
19409
19410 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
19411
19412 /* Note whether this will delete the relocation. */
19413
19414 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
19415 fixP->fx_done = 1;
19416
19417 /* On a 64-bit host, silently truncate 'value' to 32 bits for
19418 consistency with the behaviour on 32-bit hosts. Remember value
19419 for emit_reloc. */
19420 value &= 0xffffffff;
19421 value ^= 0x80000000;
19422 value -= 0x80000000;
19423
19424 *valP = value;
19425 fixP->fx_addnumber = value;
19426
19427 /* Same treatment for fixP->fx_offset. */
19428 fixP->fx_offset &= 0xffffffff;
19429 fixP->fx_offset ^= 0x80000000;
19430 fixP->fx_offset -= 0x80000000;
19431
19432 switch (fixP->fx_r_type)
19433 {
19434 case BFD_RELOC_NONE:
19435 /* This will need to go in the object file. */
19436 fixP->fx_done = 0;
19437 break;
19438
19439 case BFD_RELOC_ARM_IMMEDIATE:
19440 /* We claim that this fixup has been processed here,
19441 even if in fact we generate an error because we do
19442 not have a reloc for it, so tc_gen_reloc will reject it. */
19443 fixP->fx_done = 1;
19444
19445 if (fixP->fx_addsy
19446 && ! S_IS_DEFINED (fixP->fx_addsy))
19447 {
19448 as_bad_where (fixP->fx_file, fixP->fx_line,
19449 _("undefined symbol %s used as an immediate value"),
19450 S_GET_NAME (fixP->fx_addsy));
19451 break;
19452 }
19453
19454 if (fixP->fx_addsy
19455 && S_GET_SEGMENT (fixP->fx_addsy) != seg)
19456 {
19457 as_bad_where (fixP->fx_file, fixP->fx_line,
19458 _("symbol %s is in a different section"),
19459 S_GET_NAME (fixP->fx_addsy));
19460 break;
19461 }
19462
19463 newimm = encode_arm_immediate (value);
19464 temp = md_chars_to_number (buf, INSN_SIZE);
19465
19466 /* If the instruction will fail, see if we can fix things up by
19467 changing the opcode. */
19468 if (newimm == (unsigned int) FAIL
19469 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
19470 {
19471 as_bad_where (fixP->fx_file, fixP->fx_line,
19472 _("invalid constant (%lx) after fixup"),
19473 (unsigned long) value);
19474 break;
19475 }
19476
19477 newimm |= (temp & 0xfffff000);
19478 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
19479 break;
19480
19481 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
19482 {
19483 unsigned int highpart = 0;
19484 unsigned int newinsn = 0xe1a00000; /* nop. */
19485
19486 if (fixP->fx_addsy
19487 && ! S_IS_DEFINED (fixP->fx_addsy))
19488 {
19489 as_bad_where (fixP->fx_file, fixP->fx_line,
19490 _("undefined symbol %s used as an immediate value"),
19491 S_GET_NAME (fixP->fx_addsy));
19492 break;
19493 }
19494
19495 if (fixP->fx_addsy
19496 && S_GET_SEGMENT (fixP->fx_addsy) != seg)
19497 {
19498 as_bad_where (fixP->fx_file, fixP->fx_line,
19499 _("symbol %s is in a different section"),
19500 S_GET_NAME (fixP->fx_addsy));
19501 break;
19502 }
19503
19504 newimm = encode_arm_immediate (value);
19505 temp = md_chars_to_number (buf, INSN_SIZE);
19506
19507 /* If the instruction will fail, see if we can fix things up by
19508 changing the opcode. */
19509 if (newimm == (unsigned int) FAIL
19510 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
19511 {
19512 /* No ? OK - try using two ADD instructions to generate
19513 the value. */
19514 newimm = validate_immediate_twopart (value, & highpart);
19515
19516 /* Yes - then make sure that the second instruction is
19517 also an add. */
19518 if (newimm != (unsigned int) FAIL)
19519 newinsn = temp;
19520 /* Still No ? Try using a negated value. */
19521 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
19522 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
19523 /* Otherwise - give up. */
19524 else
19525 {
19526 as_bad_where (fixP->fx_file, fixP->fx_line,
19527 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
19528 (long) value);
19529 break;
19530 }
19531
19532 /* Replace the first operand in the 2nd instruction (which
19533 is the PC) with the destination register. We have
19534 already added in the PC in the first instruction and we
19535 do not want to do it again. */
19536 newinsn &= ~ 0xf0000;
19537 newinsn |= ((newinsn & 0x0f000) << 4);
19538 }
19539
19540 newimm |= (temp & 0xfffff000);
19541 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
19542
19543 highpart |= (newinsn & 0xfffff000);
19544 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
19545 }
19546 break;
19547
19548 case BFD_RELOC_ARM_OFFSET_IMM:
19549 if (!fixP->fx_done && seg->use_rela_p)
19550 value = 0;
19551
19552 case BFD_RELOC_ARM_LITERAL:
19553 sign = value >= 0;
19554
19555 if (value < 0)
19556 value = - value;
19557
19558 if (validate_offset_imm (value, 0) == FAIL)
19559 {
19560 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
19561 as_bad_where (fixP->fx_file, fixP->fx_line,
19562 _("invalid literal constant: pool needs to be closer"));
19563 else
19564 as_bad_where (fixP->fx_file, fixP->fx_line,
19565 _("bad immediate value for offset (%ld)"),
19566 (long) value);
19567 break;
19568 }
19569
19570 newval = md_chars_to_number (buf, INSN_SIZE);
19571 newval &= 0xff7ff000;
19572 newval |= value | (sign ? INDEX_UP : 0);
19573 md_number_to_chars (buf, newval, INSN_SIZE);
19574 break;
19575
19576 case BFD_RELOC_ARM_OFFSET_IMM8:
19577 case BFD_RELOC_ARM_HWLITERAL:
19578 sign = value >= 0;
19579
19580 if (value < 0)
19581 value = - value;
19582
19583 if (validate_offset_imm (value, 1) == FAIL)
19584 {
19585 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
19586 as_bad_where (fixP->fx_file, fixP->fx_line,
19587 _("invalid literal constant: pool needs to be closer"));
19588 else
19589 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
19590 (long) value);
19591 break;
19592 }
19593
19594 newval = md_chars_to_number (buf, INSN_SIZE);
19595 newval &= 0xff7ff0f0;
19596 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
19597 md_number_to_chars (buf, newval, INSN_SIZE);
19598 break;
19599
19600 case BFD_RELOC_ARM_T32_OFFSET_U8:
19601 if (value < 0 || value > 1020 || value % 4 != 0)
19602 as_bad_where (fixP->fx_file, fixP->fx_line,
19603 _("bad immediate value for offset (%ld)"), (long) value);
19604 value /= 4;
19605
19606 newval = md_chars_to_number (buf+2, THUMB_SIZE);
19607 newval |= value;
19608 md_number_to_chars (buf+2, newval, THUMB_SIZE);
19609 break;
19610
19611 case BFD_RELOC_ARM_T32_OFFSET_IMM:
19612 /* This is a complicated relocation used for all varieties of Thumb32
19613 load/store instruction with immediate offset:
19614
19615 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
19616 *4, optional writeback(W)
19617 (doubleword load/store)
19618
19619 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
19620 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
19621 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
19622 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
19623 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
19624
19625 Uppercase letters indicate bits that are already encoded at
19626 this point. Lowercase letters are our problem. For the
19627 second block of instructions, the secondary opcode nybble
19628 (bits 8..11) is present, and bit 23 is zero, even if this is
19629 a PC-relative operation. */
19630 newval = md_chars_to_number (buf, THUMB_SIZE);
19631 newval <<= 16;
19632 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
19633
19634 if ((newval & 0xf0000000) == 0xe0000000)
19635 {
19636 /* Doubleword load/store: 8-bit offset, scaled by 4. */
19637 if (value >= 0)
19638 newval |= (1 << 23);
19639 else
19640 value = -value;
19641 if (value % 4 != 0)
19642 {
19643 as_bad_where (fixP->fx_file, fixP->fx_line,
19644 _("offset not a multiple of 4"));
19645 break;
19646 }
19647 value /= 4;
19648 if (value > 0xff)
19649 {
19650 as_bad_where (fixP->fx_file, fixP->fx_line,
19651 _("offset out of range"));
19652 break;
19653 }
19654 newval &= ~0xff;
19655 }
19656 else if ((newval & 0x000f0000) == 0x000f0000)
19657 {
19658 /* PC-relative, 12-bit offset. */
19659 if (value >= 0)
19660 newval |= (1 << 23);
19661 else
19662 value = -value;
19663 if (value > 0xfff)
19664 {
19665 as_bad_where (fixP->fx_file, fixP->fx_line,
19666 _("offset out of range"));
19667 break;
19668 }
19669 newval &= ~0xfff;
19670 }
19671 else if ((newval & 0x00000100) == 0x00000100)
19672 {
19673 /* Writeback: 8-bit, +/- offset. */
19674 if (value >= 0)
19675 newval |= (1 << 9);
19676 else
19677 value = -value;
19678 if (value > 0xff)
19679 {
19680 as_bad_where (fixP->fx_file, fixP->fx_line,
19681 _("offset out of range"));
19682 break;
19683 }
19684 newval &= ~0xff;
19685 }
19686 else if ((newval & 0x00000f00) == 0x00000e00)
19687 {
19688 /* T-instruction: positive 8-bit offset. */
19689 if (value < 0 || value > 0xff)
19690 {
19691 as_bad_where (fixP->fx_file, fixP->fx_line,
19692 _("offset out of range"));
19693 break;
19694 }
19695 newval &= ~0xff;
19696 newval |= value;
19697 }
19698 else
19699 {
19700 /* Positive 12-bit or negative 8-bit offset. */
19701 int limit;
19702 if (value >= 0)
19703 {
19704 newval |= (1 << 23);
19705 limit = 0xfff;
19706 }
19707 else
19708 {
19709 value = -value;
19710 limit = 0xff;
19711 }
19712 if (value > limit)
19713 {
19714 as_bad_where (fixP->fx_file, fixP->fx_line,
19715 _("offset out of range"));
19716 break;
19717 }
19718 newval &= ~limit;
19719 }
19720
19721 newval |= value;
19722 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
19723 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
19724 break;
19725
19726 case BFD_RELOC_ARM_SHIFT_IMM:
19727 newval = md_chars_to_number (buf, INSN_SIZE);
19728 if (((unsigned long) value) > 32
19729 || (value == 32
19730 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
19731 {
19732 as_bad_where (fixP->fx_file, fixP->fx_line,
19733 _("shift expression is too large"));
19734 break;
19735 }
19736
19737 if (value == 0)
19738 /* Shifts of zero must be done as lsl. */
19739 newval &= ~0x60;
19740 else if (value == 32)
19741 value = 0;
19742 newval &= 0xfffff07f;
19743 newval |= (value & 0x1f) << 7;
19744 md_number_to_chars (buf, newval, INSN_SIZE);
19745 break;
19746
19747 case BFD_RELOC_ARM_T32_IMMEDIATE:
19748 case BFD_RELOC_ARM_T32_ADD_IMM:
19749 case BFD_RELOC_ARM_T32_IMM12:
19750 case BFD_RELOC_ARM_T32_ADD_PC12:
19751 /* We claim that this fixup has been processed here,
19752 even if in fact we generate an error because we do
19753 not have a reloc for it, so tc_gen_reloc will reject it. */
19754 fixP->fx_done = 1;
19755
19756 if (fixP->fx_addsy
19757 && ! S_IS_DEFINED (fixP->fx_addsy))
19758 {
19759 as_bad_where (fixP->fx_file, fixP->fx_line,
19760 _("undefined symbol %s used as an immediate value"),
19761 S_GET_NAME (fixP->fx_addsy));
19762 break;
19763 }
19764
19765 newval = md_chars_to_number (buf, THUMB_SIZE);
19766 newval <<= 16;
19767 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
19768
19769 newimm = FAIL;
19770 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
19771 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
19772 {
19773 newimm = encode_thumb32_immediate (value);
19774 if (newimm == (unsigned int) FAIL)
19775 newimm = thumb32_negate_data_op (&newval, value);
19776 }
19777 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
19778 && newimm == (unsigned int) FAIL)
19779 {
19780 /* Turn add/sum into addw/subw. */
19781 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
19782 newval = (newval & 0xfeffffff) | 0x02000000;
19783
19784 /* 12 bit immediate for addw/subw. */
19785 if (value < 0)
19786 {
19787 value = -value;
19788 newval ^= 0x00a00000;
19789 }
19790 if (value > 0xfff)
19791 newimm = (unsigned int) FAIL;
19792 else
19793 newimm = value;
19794 }
19795
19796 if (newimm == (unsigned int)FAIL)
19797 {
19798 as_bad_where (fixP->fx_file, fixP->fx_line,
19799 _("invalid constant (%lx) after fixup"),
19800 (unsigned long) value);
19801 break;
19802 }
19803
19804 newval |= (newimm & 0x800) << 15;
19805 newval |= (newimm & 0x700) << 4;
19806 newval |= (newimm & 0x0ff);
19807
19808 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
19809 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
19810 break;
19811
19812 case BFD_RELOC_ARM_SMC:
19813 if (((unsigned long) value) > 0xffff)
19814 as_bad_where (fixP->fx_file, fixP->fx_line,
19815 _("invalid smc expression"));
19816 newval = md_chars_to_number (buf, INSN_SIZE);
19817 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
19818 md_number_to_chars (buf, newval, INSN_SIZE);
19819 break;
19820
19821 case BFD_RELOC_ARM_SWI:
19822 if (fixP->tc_fix_data != 0)
19823 {
19824 if (((unsigned long) value) > 0xff)
19825 as_bad_where (fixP->fx_file, fixP->fx_line,
19826 _("invalid swi expression"));
19827 newval = md_chars_to_number (buf, THUMB_SIZE);
19828 newval |= value;
19829 md_number_to_chars (buf, newval, THUMB_SIZE);
19830 }
19831 else
19832 {
19833 if (((unsigned long) value) > 0x00ffffff)
19834 as_bad_where (fixP->fx_file, fixP->fx_line,
19835 _("invalid swi expression"));
19836 newval = md_chars_to_number (buf, INSN_SIZE);
19837 newval |= value;
19838 md_number_to_chars (buf, newval, INSN_SIZE);
19839 }
19840 break;
19841
19842 case BFD_RELOC_ARM_MULTI:
19843 if (((unsigned long) value) > 0xffff)
19844 as_bad_where (fixP->fx_file, fixP->fx_line,
19845 _("invalid expression in load/store multiple"));
19846 newval = value | md_chars_to_number (buf, INSN_SIZE);
19847 md_number_to_chars (buf, newval, INSN_SIZE);
19848 break;
19849
19850 #ifdef OBJ_ELF
19851 case BFD_RELOC_ARM_PCREL_CALL:
19852
19853 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
19854 && fixP->fx_addsy
19855 && !S_IS_EXTERNAL (fixP->fx_addsy)
19856 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19857 && THUMB_IS_FUNC (fixP->fx_addsy))
19858 /* Flip the bl to blx. This is a simple flip
19859 bit here because we generate PCREL_CALL for
19860 unconditional bls. */
19861 {
19862 newval = md_chars_to_number (buf, INSN_SIZE);
19863 newval = newval | 0x10000000;
19864 md_number_to_chars (buf, newval, INSN_SIZE);
19865 temp = 1;
19866 fixP->fx_done = 1;
19867 }
19868 else
19869 temp = 3;
19870 goto arm_branch_common;
19871
19872 case BFD_RELOC_ARM_PCREL_JUMP:
19873 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
19874 && fixP->fx_addsy
19875 && !S_IS_EXTERNAL (fixP->fx_addsy)
19876 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19877 && THUMB_IS_FUNC (fixP->fx_addsy))
19878 {
19879 /* This would map to a bl<cond>, b<cond>,
19880 b<always> to a Thumb function. We
19881 need to force a relocation for this particular
19882 case. */
19883 newval = md_chars_to_number (buf, INSN_SIZE);
19884 fixP->fx_done = 0;
19885 }
19886
19887 case BFD_RELOC_ARM_PLT32:
19888 #endif
19889 case BFD_RELOC_ARM_PCREL_BRANCH:
19890 temp = 3;
19891 goto arm_branch_common;
19892
19893 case BFD_RELOC_ARM_PCREL_BLX:
19894
19895 temp = 1;
19896 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
19897 && fixP->fx_addsy
19898 && !S_IS_EXTERNAL (fixP->fx_addsy)
19899 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19900 && ARM_IS_FUNC (fixP->fx_addsy))
19901 {
19902 /* Flip the blx to a bl and warn. */
19903 const char *name = S_GET_NAME (fixP->fx_addsy);
19904 newval = 0xeb000000;
19905 as_warn_where (fixP->fx_file, fixP->fx_line,
19906 _("blx to '%s' an ARM ISA state function changed to bl"),
19907 name);
19908 md_number_to_chars (buf, newval, INSN_SIZE);
19909 temp = 3;
19910 fixP->fx_done = 1;
19911 }
19912
19913 #ifdef OBJ_ELF
19914 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
19915 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
19916 #endif
19917
19918 arm_branch_common:
19919 /* We are going to store value (shifted right by two) in the
19920 instruction, in a 24 bit, signed field. Bits 26 through 32 either
19921 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
19922 also be be clear. */
19923 if (value & temp)
19924 as_bad_where (fixP->fx_file, fixP->fx_line,
19925 _("misaligned branch destination"));
19926 if ((value & (offsetT)0xfe000000) != (offsetT)0
19927 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
19928 as_bad_where (fixP->fx_file, fixP->fx_line,
19929 _("branch out of range"));
19930
19931 if (fixP->fx_done || !seg->use_rela_p)
19932 {
19933 newval = md_chars_to_number (buf, INSN_SIZE);
19934 newval |= (value >> 2) & 0x00ffffff;
19935 /* Set the H bit on BLX instructions. */
19936 if (temp == 1)
19937 {
19938 if (value & 2)
19939 newval |= 0x01000000;
19940 else
19941 newval &= ~0x01000000;
19942 }
19943 md_number_to_chars (buf, newval, INSN_SIZE);
19944 }
19945 break;
19946
19947 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
19948 /* CBZ can only branch forward. */
19949
19950 /* Attempts to use CBZ to branch to the next instruction
19951 (which, strictly speaking, are prohibited) will be turned into
19952 no-ops.
19953
19954 FIXME: It may be better to remove the instruction completely and
19955 perform relaxation. */
19956 if (value == -2)
19957 {
19958 newval = md_chars_to_number (buf, THUMB_SIZE);
19959 newval = 0xbf00; /* NOP encoding T1 */
19960 md_number_to_chars (buf, newval, THUMB_SIZE);
19961 }
19962 else
19963 {
19964 if (value & ~0x7e)
19965 as_bad_where (fixP->fx_file, fixP->fx_line,
19966 _("branch out of range"));
19967
19968 if (fixP->fx_done || !seg->use_rela_p)
19969 {
19970 newval = md_chars_to_number (buf, THUMB_SIZE);
19971 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
19972 md_number_to_chars (buf, newval, THUMB_SIZE);
19973 }
19974 }
19975 break;
19976
19977 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
19978 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
19979 as_bad_where (fixP->fx_file, fixP->fx_line,
19980 _("branch out of range"));
19981
19982 if (fixP->fx_done || !seg->use_rela_p)
19983 {
19984 newval = md_chars_to_number (buf, THUMB_SIZE);
19985 newval |= (value & 0x1ff) >> 1;
19986 md_number_to_chars (buf, newval, THUMB_SIZE);
19987 }
19988 break;
19989
19990 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
19991 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
19992 as_bad_where (fixP->fx_file, fixP->fx_line,
19993 _("branch out of range"));
19994
19995 if (fixP->fx_done || !seg->use_rela_p)
19996 {
19997 newval = md_chars_to_number (buf, THUMB_SIZE);
19998 newval |= (value & 0xfff) >> 1;
19999 md_number_to_chars (buf, newval, THUMB_SIZE);
20000 }
20001 break;
20002
20003 case BFD_RELOC_THUMB_PCREL_BRANCH20:
20004 if (fixP->fx_addsy
20005 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20006 && !S_IS_EXTERNAL (fixP->fx_addsy)
20007 && S_IS_DEFINED (fixP->fx_addsy)
20008 && ARM_IS_FUNC (fixP->fx_addsy)
20009 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20010 {
20011 /* Force a relocation for a branch 20 bits wide. */
20012 fixP->fx_done = 0;
20013 }
20014 if ((value & ~0x1fffff) && ((value & ~0x1fffff) != ~0x1fffff))
20015 as_bad_where (fixP->fx_file, fixP->fx_line,
20016 _("conditional branch out of range"));
20017
20018 if (fixP->fx_done || !seg->use_rela_p)
20019 {
20020 offsetT newval2;
20021 addressT S, J1, J2, lo, hi;
20022
20023 S = (value & 0x00100000) >> 20;
20024 J2 = (value & 0x00080000) >> 19;
20025 J1 = (value & 0x00040000) >> 18;
20026 hi = (value & 0x0003f000) >> 12;
20027 lo = (value & 0x00000ffe) >> 1;
20028
20029 newval = md_chars_to_number (buf, THUMB_SIZE);
20030 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20031 newval |= (S << 10) | hi;
20032 newval2 |= (J1 << 13) | (J2 << 11) | lo;
20033 md_number_to_chars (buf, newval, THUMB_SIZE);
20034 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20035 }
20036 break;
20037
20038 case BFD_RELOC_THUMB_PCREL_BLX:
20039
20040 /* If there is a blx from a thumb state function to
20041 another thumb function flip this to a bl and warn
20042 about it. */
20043
20044 if (fixP->fx_addsy
20045 && S_IS_DEFINED (fixP->fx_addsy)
20046 && !S_IS_EXTERNAL (fixP->fx_addsy)
20047 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20048 && THUMB_IS_FUNC (fixP->fx_addsy))
20049 {
20050 const char *name = S_GET_NAME (fixP->fx_addsy);
20051 as_warn_where (fixP->fx_file, fixP->fx_line,
20052 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
20053 name);
20054 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20055 newval = newval | 0x1000;
20056 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
20057 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
20058 fixP->fx_done = 1;
20059 }
20060
20061
20062 goto thumb_bl_common;
20063
20064 case BFD_RELOC_THUMB_PCREL_BRANCH23:
20065
20066 /* A bl from Thumb state ISA to an internal ARM state function
20067 is converted to a blx. */
20068 if (fixP->fx_addsy
20069 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20070 && !S_IS_EXTERNAL (fixP->fx_addsy)
20071 && S_IS_DEFINED (fixP->fx_addsy)
20072 && ARM_IS_FUNC (fixP->fx_addsy)
20073 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20074 {
20075 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20076 newval = newval & ~0x1000;
20077 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
20078 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
20079 fixP->fx_done = 1;
20080 }
20081
20082 thumb_bl_common:
20083
20084 #ifdef OBJ_ELF
20085 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4 &&
20086 fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
20087 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
20088 #endif
20089
20090 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
20091 as_bad_where (fixP->fx_file, fixP->fx_line,
20092 _("branch out of range"));
20093
20094 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
20095 /* For a BLX instruction, make sure that the relocation is rounded up
20096 to a word boundary. This follows the semantics of the instruction
20097 which specifies that bit 1 of the target address will come from bit
20098 1 of the base address. */
20099 value = (value + 1) & ~ 1;
20100
20101 if (fixP->fx_done || !seg->use_rela_p)
20102 {
20103 offsetT newval2;
20104
20105 newval = md_chars_to_number (buf, THUMB_SIZE);
20106 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20107 newval |= (value & 0x7fffff) >> 12;
20108 newval2 |= (value & 0xfff) >> 1;
20109 md_number_to_chars (buf, newval, THUMB_SIZE);
20110 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20111 }
20112 break;
20113
20114 case BFD_RELOC_THUMB_PCREL_BRANCH25:
20115 if ((value & ~0x1ffffff) && ((value & ~0x1ffffff) != ~0x1ffffff))
20116 as_bad_where (fixP->fx_file, fixP->fx_line,
20117 _("branch out of range"));
20118
20119 if (fixP->fx_done || !seg->use_rela_p)
20120 {
20121 offsetT newval2;
20122 addressT S, I1, I2, lo, hi;
20123
20124 S = (value & 0x01000000) >> 24;
20125 I1 = (value & 0x00800000) >> 23;
20126 I2 = (value & 0x00400000) >> 22;
20127 hi = (value & 0x003ff000) >> 12;
20128 lo = (value & 0x00000ffe) >> 1;
20129
20130 I1 = !(I1 ^ S);
20131 I2 = !(I2 ^ S);
20132
20133 newval = md_chars_to_number (buf, THUMB_SIZE);
20134 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20135 newval |= (S << 10) | hi;
20136 newval2 |= (I1 << 13) | (I2 << 11) | lo;
20137 md_number_to_chars (buf, newval, THUMB_SIZE);
20138 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20139 }
20140 break;
20141
20142 case BFD_RELOC_8:
20143 if (fixP->fx_done || !seg->use_rela_p)
20144 md_number_to_chars (buf, value, 1);
20145 break;
20146
20147 case BFD_RELOC_16:
20148 if (fixP->fx_done || !seg->use_rela_p)
20149 md_number_to_chars (buf, value, 2);
20150 break;
20151
20152 #ifdef OBJ_ELF
20153 case BFD_RELOC_ARM_TLS_GD32:
20154 case BFD_RELOC_ARM_TLS_LE32:
20155 case BFD_RELOC_ARM_TLS_IE32:
20156 case BFD_RELOC_ARM_TLS_LDM32:
20157 case BFD_RELOC_ARM_TLS_LDO32:
20158 S_SET_THREAD_LOCAL (fixP->fx_addsy);
20159 /* fall through */
20160
20161 case BFD_RELOC_ARM_GOT32:
20162 case BFD_RELOC_ARM_GOTOFF:
20163 if (fixP->fx_done || !seg->use_rela_p)
20164 md_number_to_chars (buf, 0, 4);
20165 break;
20166
20167 case BFD_RELOC_ARM_TARGET2:
20168 /* TARGET2 is not partial-inplace, so we need to write the
20169 addend here for REL targets, because it won't be written out
20170 during reloc processing later. */
20171 if (fixP->fx_done || !seg->use_rela_p)
20172 md_number_to_chars (buf, fixP->fx_offset, 4);
20173 break;
20174 #endif
20175
20176 case BFD_RELOC_RVA:
20177 case BFD_RELOC_32:
20178 case BFD_RELOC_ARM_TARGET1:
20179 case BFD_RELOC_ARM_ROSEGREL32:
20180 case BFD_RELOC_ARM_SBREL32:
20181 case BFD_RELOC_32_PCREL:
20182 #ifdef TE_PE
20183 case BFD_RELOC_32_SECREL:
20184 #endif
20185 if (fixP->fx_done || !seg->use_rela_p)
20186 #ifdef TE_WINCE
20187 /* For WinCE we only do this for pcrel fixups. */
20188 if (fixP->fx_done || fixP->fx_pcrel)
20189 #endif
20190 md_number_to_chars (buf, value, 4);
20191 break;
20192
20193 #ifdef OBJ_ELF
20194 case BFD_RELOC_ARM_PREL31:
20195 if (fixP->fx_done || !seg->use_rela_p)
20196 {
20197 newval = md_chars_to_number (buf, 4) & 0x80000000;
20198 if ((value ^ (value >> 1)) & 0x40000000)
20199 {
20200 as_bad_where (fixP->fx_file, fixP->fx_line,
20201 _("rel31 relocation overflow"));
20202 }
20203 newval |= value & 0x7fffffff;
20204 md_number_to_chars (buf, newval, 4);
20205 }
20206 break;
20207 #endif
20208
20209 case BFD_RELOC_ARM_CP_OFF_IMM:
20210 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
20211 if (value < -1023 || value > 1023 || (value & 3))
20212 as_bad_where (fixP->fx_file, fixP->fx_line,
20213 _("co-processor offset out of range"));
20214 cp_off_common:
20215 sign = value >= 0;
20216 if (value < 0)
20217 value = -value;
20218 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
20219 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
20220 newval = md_chars_to_number (buf, INSN_SIZE);
20221 else
20222 newval = get_thumb32_insn (buf);
20223 newval &= 0xff7fff00;
20224 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
20225 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
20226 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
20227 md_number_to_chars (buf, newval, INSN_SIZE);
20228 else
20229 put_thumb32_insn (buf, newval);
20230 break;
20231
20232 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
20233 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
20234 if (value < -255 || value > 255)
20235 as_bad_where (fixP->fx_file, fixP->fx_line,
20236 _("co-processor offset out of range"));
20237 value *= 4;
20238 goto cp_off_common;
20239
20240 case BFD_RELOC_ARM_THUMB_OFFSET:
20241 newval = md_chars_to_number (buf, THUMB_SIZE);
20242 /* Exactly what ranges, and where the offset is inserted depends
20243 on the type of instruction, we can establish this from the
20244 top 4 bits. */
20245 switch (newval >> 12)
20246 {
20247 case 4: /* PC load. */
20248 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
20249 forced to zero for these loads; md_pcrel_from has already
20250 compensated for this. */
20251 if (value & 3)
20252 as_bad_where (fixP->fx_file, fixP->fx_line,
20253 _("invalid offset, target not word aligned (0x%08lX)"),
20254 (((unsigned long) fixP->fx_frag->fr_address
20255 + (unsigned long) fixP->fx_where) & ~3)
20256 + (unsigned long) value);
20257
20258 if (value & ~0x3fc)
20259 as_bad_where (fixP->fx_file, fixP->fx_line,
20260 _("invalid offset, value too big (0x%08lX)"),
20261 (long) value);
20262
20263 newval |= value >> 2;
20264 break;
20265
20266 case 9: /* SP load/store. */
20267 if (value & ~0x3fc)
20268 as_bad_where (fixP->fx_file, fixP->fx_line,
20269 _("invalid offset, value too big (0x%08lX)"),
20270 (long) value);
20271 newval |= value >> 2;
20272 break;
20273
20274 case 6: /* Word load/store. */
20275 if (value & ~0x7c)
20276 as_bad_where (fixP->fx_file, fixP->fx_line,
20277 _("invalid offset, value too big (0x%08lX)"),
20278 (long) value);
20279 newval |= value << 4; /* 6 - 2. */
20280 break;
20281
20282 case 7: /* Byte load/store. */
20283 if (value & ~0x1f)
20284 as_bad_where (fixP->fx_file, fixP->fx_line,
20285 _("invalid offset, value too big (0x%08lX)"),
20286 (long) value);
20287 newval |= value << 6;
20288 break;
20289
20290 case 8: /* Halfword load/store. */
20291 if (value & ~0x3e)
20292 as_bad_where (fixP->fx_file, fixP->fx_line,
20293 _("invalid offset, value too big (0x%08lX)"),
20294 (long) value);
20295 newval |= value << 5; /* 6 - 1. */
20296 break;
20297
20298 default:
20299 as_bad_where (fixP->fx_file, fixP->fx_line,
20300 "Unable to process relocation for thumb opcode: %lx",
20301 (unsigned long) newval);
20302 break;
20303 }
20304 md_number_to_chars (buf, newval, THUMB_SIZE);
20305 break;
20306
20307 case BFD_RELOC_ARM_THUMB_ADD:
20308 /* This is a complicated relocation, since we use it for all of
20309 the following immediate relocations:
20310
20311 3bit ADD/SUB
20312 8bit ADD/SUB
20313 9bit ADD/SUB SP word-aligned
20314 10bit ADD PC/SP word-aligned
20315
20316 The type of instruction being processed is encoded in the
20317 instruction field:
20318
20319 0x8000 SUB
20320 0x00F0 Rd
20321 0x000F Rs
20322 */
20323 newval = md_chars_to_number (buf, THUMB_SIZE);
20324 {
20325 int rd = (newval >> 4) & 0xf;
20326 int rs = newval & 0xf;
20327 int subtract = !!(newval & 0x8000);
20328
20329 /* Check for HI regs, only very restricted cases allowed:
20330 Adjusting SP, and using PC or SP to get an address. */
20331 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
20332 || (rs > 7 && rs != REG_SP && rs != REG_PC))
20333 as_bad_where (fixP->fx_file, fixP->fx_line,
20334 _("invalid Hi register with immediate"));
20335
20336 /* If value is negative, choose the opposite instruction. */
20337 if (value < 0)
20338 {
20339 value = -value;
20340 subtract = !subtract;
20341 if (value < 0)
20342 as_bad_where (fixP->fx_file, fixP->fx_line,
20343 _("immediate value out of range"));
20344 }
20345
20346 if (rd == REG_SP)
20347 {
20348 if (value & ~0x1fc)
20349 as_bad_where (fixP->fx_file, fixP->fx_line,
20350 _("invalid immediate for stack address calculation"));
20351 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
20352 newval |= value >> 2;
20353 }
20354 else if (rs == REG_PC || rs == REG_SP)
20355 {
20356 if (subtract || value & ~0x3fc)
20357 as_bad_where (fixP->fx_file, fixP->fx_line,
20358 _("invalid immediate for address calculation (value = 0x%08lX)"),
20359 (unsigned long) value);
20360 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
20361 newval |= rd << 8;
20362 newval |= value >> 2;
20363 }
20364 else if (rs == rd)
20365 {
20366 if (value & ~0xff)
20367 as_bad_where (fixP->fx_file, fixP->fx_line,
20368 _("immediate value out of range"));
20369 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
20370 newval |= (rd << 8) | value;
20371 }
20372 else
20373 {
20374 if (value & ~0x7)
20375 as_bad_where (fixP->fx_file, fixP->fx_line,
20376 _("immediate value out of range"));
20377 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
20378 newval |= rd | (rs << 3) | (value << 6);
20379 }
20380 }
20381 md_number_to_chars (buf, newval, THUMB_SIZE);
20382 break;
20383
20384 case BFD_RELOC_ARM_THUMB_IMM:
20385 newval = md_chars_to_number (buf, THUMB_SIZE);
20386 if (value < 0 || value > 255)
20387 as_bad_where (fixP->fx_file, fixP->fx_line,
20388 _("invalid immediate: %ld is out of range"),
20389 (long) value);
20390 newval |= value;
20391 md_number_to_chars (buf, newval, THUMB_SIZE);
20392 break;
20393
20394 case BFD_RELOC_ARM_THUMB_SHIFT:
20395 /* 5bit shift value (0..32). LSL cannot take 32. */
20396 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
20397 temp = newval & 0xf800;
20398 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
20399 as_bad_where (fixP->fx_file, fixP->fx_line,
20400 _("invalid shift value: %ld"), (long) value);
20401 /* Shifts of zero must be encoded as LSL. */
20402 if (value == 0)
20403 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
20404 /* Shifts of 32 are encoded as zero. */
20405 else if (value == 32)
20406 value = 0;
20407 newval |= value << 6;
20408 md_number_to_chars (buf, newval, THUMB_SIZE);
20409 break;
20410
20411 case BFD_RELOC_VTABLE_INHERIT:
20412 case BFD_RELOC_VTABLE_ENTRY:
20413 fixP->fx_done = 0;
20414 return;
20415
20416 case BFD_RELOC_ARM_MOVW:
20417 case BFD_RELOC_ARM_MOVT:
20418 case BFD_RELOC_ARM_THUMB_MOVW:
20419 case BFD_RELOC_ARM_THUMB_MOVT:
20420 if (fixP->fx_done || !seg->use_rela_p)
20421 {
20422 /* REL format relocations are limited to a 16-bit addend. */
20423 if (!fixP->fx_done)
20424 {
20425 if (value < -0x8000 || value > 0x7fff)
20426 as_bad_where (fixP->fx_file, fixP->fx_line,
20427 _("offset out of range"));
20428 }
20429 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
20430 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
20431 {
20432 value >>= 16;
20433 }
20434
20435 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
20436 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
20437 {
20438 newval = get_thumb32_insn (buf);
20439 newval &= 0xfbf08f00;
20440 newval |= (value & 0xf000) << 4;
20441 newval |= (value & 0x0800) << 15;
20442 newval |= (value & 0x0700) << 4;
20443 newval |= (value & 0x00ff);
20444 put_thumb32_insn (buf, newval);
20445 }
20446 else
20447 {
20448 newval = md_chars_to_number (buf, 4);
20449 newval &= 0xfff0f000;
20450 newval |= value & 0x0fff;
20451 newval |= (value & 0xf000) << 4;
20452 md_number_to_chars (buf, newval, 4);
20453 }
20454 }
20455 return;
20456
20457 case BFD_RELOC_ARM_ALU_PC_G0_NC:
20458 case BFD_RELOC_ARM_ALU_PC_G0:
20459 case BFD_RELOC_ARM_ALU_PC_G1_NC:
20460 case BFD_RELOC_ARM_ALU_PC_G1:
20461 case BFD_RELOC_ARM_ALU_PC_G2:
20462 case BFD_RELOC_ARM_ALU_SB_G0_NC:
20463 case BFD_RELOC_ARM_ALU_SB_G0:
20464 case BFD_RELOC_ARM_ALU_SB_G1_NC:
20465 case BFD_RELOC_ARM_ALU_SB_G1:
20466 case BFD_RELOC_ARM_ALU_SB_G2:
20467 gas_assert (!fixP->fx_done);
20468 if (!seg->use_rela_p)
20469 {
20470 bfd_vma insn;
20471 bfd_vma encoded_addend;
20472 bfd_vma addend_abs = abs (value);
20473
20474 /* Check that the absolute value of the addend can be
20475 expressed as an 8-bit constant plus a rotation. */
20476 encoded_addend = encode_arm_immediate (addend_abs);
20477 if (encoded_addend == (unsigned int) FAIL)
20478 as_bad_where (fixP->fx_file, fixP->fx_line,
20479 _("the offset 0x%08lX is not representable"),
20480 (unsigned long) addend_abs);
20481
20482 /* Extract the instruction. */
20483 insn = md_chars_to_number (buf, INSN_SIZE);
20484
20485 /* If the addend is positive, use an ADD instruction.
20486 Otherwise use a SUB. Take care not to destroy the S bit. */
20487 insn &= 0xff1fffff;
20488 if (value < 0)
20489 insn |= 1 << 22;
20490 else
20491 insn |= 1 << 23;
20492
20493 /* Place the encoded addend into the first 12 bits of the
20494 instruction. */
20495 insn &= 0xfffff000;
20496 insn |= encoded_addend;
20497
20498 /* Update the instruction. */
20499 md_number_to_chars (buf, insn, INSN_SIZE);
20500 }
20501 break;
20502
20503 case BFD_RELOC_ARM_LDR_PC_G0:
20504 case BFD_RELOC_ARM_LDR_PC_G1:
20505 case BFD_RELOC_ARM_LDR_PC_G2:
20506 case BFD_RELOC_ARM_LDR_SB_G0:
20507 case BFD_RELOC_ARM_LDR_SB_G1:
20508 case BFD_RELOC_ARM_LDR_SB_G2:
20509 gas_assert (!fixP->fx_done);
20510 if (!seg->use_rela_p)
20511 {
20512 bfd_vma insn;
20513 bfd_vma addend_abs = abs (value);
20514
20515 /* Check that the absolute value of the addend can be
20516 encoded in 12 bits. */
20517 if (addend_abs >= 0x1000)
20518 as_bad_where (fixP->fx_file, fixP->fx_line,
20519 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
20520 (unsigned long) addend_abs);
20521
20522 /* Extract the instruction. */
20523 insn = md_chars_to_number (buf, INSN_SIZE);
20524
20525 /* If the addend is negative, clear bit 23 of the instruction.
20526 Otherwise set it. */
20527 if (value < 0)
20528 insn &= ~(1 << 23);
20529 else
20530 insn |= 1 << 23;
20531
20532 /* Place the absolute value of the addend into the first 12 bits
20533 of the instruction. */
20534 insn &= 0xfffff000;
20535 insn |= addend_abs;
20536
20537 /* Update the instruction. */
20538 md_number_to_chars (buf, insn, INSN_SIZE);
20539 }
20540 break;
20541
20542 case BFD_RELOC_ARM_LDRS_PC_G0:
20543 case BFD_RELOC_ARM_LDRS_PC_G1:
20544 case BFD_RELOC_ARM_LDRS_PC_G2:
20545 case BFD_RELOC_ARM_LDRS_SB_G0:
20546 case BFD_RELOC_ARM_LDRS_SB_G1:
20547 case BFD_RELOC_ARM_LDRS_SB_G2:
20548 gas_assert (!fixP->fx_done);
20549 if (!seg->use_rela_p)
20550 {
20551 bfd_vma insn;
20552 bfd_vma addend_abs = abs (value);
20553
20554 /* Check that the absolute value of the addend can be
20555 encoded in 8 bits. */
20556 if (addend_abs >= 0x100)
20557 as_bad_where (fixP->fx_file, fixP->fx_line,
20558 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
20559 (unsigned long) addend_abs);
20560
20561 /* Extract the instruction. */
20562 insn = md_chars_to_number (buf, INSN_SIZE);
20563
20564 /* If the addend is negative, clear bit 23 of the instruction.
20565 Otherwise set it. */
20566 if (value < 0)
20567 insn &= ~(1 << 23);
20568 else
20569 insn |= 1 << 23;
20570
20571 /* Place the first four bits of the absolute value of the addend
20572 into the first 4 bits of the instruction, and the remaining
20573 four into bits 8 .. 11. */
20574 insn &= 0xfffff0f0;
20575 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
20576
20577 /* Update the instruction. */
20578 md_number_to_chars (buf, insn, INSN_SIZE);
20579 }
20580 break;
20581
20582 case BFD_RELOC_ARM_LDC_PC_G0:
20583 case BFD_RELOC_ARM_LDC_PC_G1:
20584 case BFD_RELOC_ARM_LDC_PC_G2:
20585 case BFD_RELOC_ARM_LDC_SB_G0:
20586 case BFD_RELOC_ARM_LDC_SB_G1:
20587 case BFD_RELOC_ARM_LDC_SB_G2:
20588 gas_assert (!fixP->fx_done);
20589 if (!seg->use_rela_p)
20590 {
20591 bfd_vma insn;
20592 bfd_vma addend_abs = abs (value);
20593
20594 /* Check that the absolute value of the addend is a multiple of
20595 four and, when divided by four, fits in 8 bits. */
20596 if (addend_abs & 0x3)
20597 as_bad_where (fixP->fx_file, fixP->fx_line,
20598 _("bad offset 0x%08lX (must be word-aligned)"),
20599 (unsigned long) addend_abs);
20600
20601 if ((addend_abs >> 2) > 0xff)
20602 as_bad_where (fixP->fx_file, fixP->fx_line,
20603 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
20604 (unsigned long) addend_abs);
20605
20606 /* Extract the instruction. */
20607 insn = md_chars_to_number (buf, INSN_SIZE);
20608
20609 /* If the addend is negative, clear bit 23 of the instruction.
20610 Otherwise set it. */
20611 if (value < 0)
20612 insn &= ~(1 << 23);
20613 else
20614 insn |= 1 << 23;
20615
20616 /* Place the addend (divided by four) into the first eight
20617 bits of the instruction. */
20618 insn &= 0xfffffff0;
20619 insn |= addend_abs >> 2;
20620
20621 /* Update the instruction. */
20622 md_number_to_chars (buf, insn, INSN_SIZE);
20623 }
20624 break;
20625
20626 case BFD_RELOC_ARM_V4BX:
20627 /* This will need to go in the object file. */
20628 fixP->fx_done = 0;
20629 break;
20630
20631 case BFD_RELOC_UNUSED:
20632 default:
20633 as_bad_where (fixP->fx_file, fixP->fx_line,
20634 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
20635 }
20636 }
20637
20638 /* Translate internal representation of relocation info to BFD target
20639 format. */
20640
20641 arelent *
20642 tc_gen_reloc (asection *section, fixS *fixp)
20643 {
20644 arelent * reloc;
20645 bfd_reloc_code_real_type code;
20646
20647 reloc = (arelent *) xmalloc (sizeof (arelent));
20648
20649 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
20650 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
20651 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
20652
20653 if (fixp->fx_pcrel)
20654 {
20655 if (section->use_rela_p)
20656 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
20657 else
20658 fixp->fx_offset = reloc->address;
20659 }
20660 reloc->addend = fixp->fx_offset;
20661
20662 switch (fixp->fx_r_type)
20663 {
20664 case BFD_RELOC_8:
20665 if (fixp->fx_pcrel)
20666 {
20667 code = BFD_RELOC_8_PCREL;
20668 break;
20669 }
20670
20671 case BFD_RELOC_16:
20672 if (fixp->fx_pcrel)
20673 {
20674 code = BFD_RELOC_16_PCREL;
20675 break;
20676 }
20677
20678 case BFD_RELOC_32:
20679 if (fixp->fx_pcrel)
20680 {
20681 code = BFD_RELOC_32_PCREL;
20682 break;
20683 }
20684
20685 case BFD_RELOC_ARM_MOVW:
20686 if (fixp->fx_pcrel)
20687 {
20688 code = BFD_RELOC_ARM_MOVW_PCREL;
20689 break;
20690 }
20691
20692 case BFD_RELOC_ARM_MOVT:
20693 if (fixp->fx_pcrel)
20694 {
20695 code = BFD_RELOC_ARM_MOVT_PCREL;
20696 break;
20697 }
20698
20699 case BFD_RELOC_ARM_THUMB_MOVW:
20700 if (fixp->fx_pcrel)
20701 {
20702 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
20703 break;
20704 }
20705
20706 case BFD_RELOC_ARM_THUMB_MOVT:
20707 if (fixp->fx_pcrel)
20708 {
20709 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
20710 break;
20711 }
20712
20713 case BFD_RELOC_NONE:
20714 case BFD_RELOC_ARM_PCREL_BRANCH:
20715 case BFD_RELOC_ARM_PCREL_BLX:
20716 case BFD_RELOC_RVA:
20717 case BFD_RELOC_THUMB_PCREL_BRANCH7:
20718 case BFD_RELOC_THUMB_PCREL_BRANCH9:
20719 case BFD_RELOC_THUMB_PCREL_BRANCH12:
20720 case BFD_RELOC_THUMB_PCREL_BRANCH20:
20721 case BFD_RELOC_THUMB_PCREL_BRANCH23:
20722 case BFD_RELOC_THUMB_PCREL_BRANCH25:
20723 case BFD_RELOC_VTABLE_ENTRY:
20724 case BFD_RELOC_VTABLE_INHERIT:
20725 #ifdef TE_PE
20726 case BFD_RELOC_32_SECREL:
20727 #endif
20728 code = fixp->fx_r_type;
20729 break;
20730
20731 case BFD_RELOC_THUMB_PCREL_BLX:
20732 #ifdef OBJ_ELF
20733 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
20734 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
20735 else
20736 #endif
20737 code = BFD_RELOC_THUMB_PCREL_BLX;
20738 break;
20739
20740 case BFD_RELOC_ARM_LITERAL:
20741 case BFD_RELOC_ARM_HWLITERAL:
20742 /* If this is called then the a literal has
20743 been referenced across a section boundary. */
20744 as_bad_where (fixp->fx_file, fixp->fx_line,
20745 _("literal referenced across section boundary"));
20746 return NULL;
20747
20748 #ifdef OBJ_ELF
20749 case BFD_RELOC_ARM_GOT32:
20750 case BFD_RELOC_ARM_GOTOFF:
20751 case BFD_RELOC_ARM_PLT32:
20752 case BFD_RELOC_ARM_TARGET1:
20753 case BFD_RELOC_ARM_ROSEGREL32:
20754 case BFD_RELOC_ARM_SBREL32:
20755 case BFD_RELOC_ARM_PREL31:
20756 case BFD_RELOC_ARM_TARGET2:
20757 case BFD_RELOC_ARM_TLS_LE32:
20758 case BFD_RELOC_ARM_TLS_LDO32:
20759 case BFD_RELOC_ARM_PCREL_CALL:
20760 case BFD_RELOC_ARM_PCREL_JUMP:
20761 case BFD_RELOC_ARM_ALU_PC_G0_NC:
20762 case BFD_RELOC_ARM_ALU_PC_G0:
20763 case BFD_RELOC_ARM_ALU_PC_G1_NC:
20764 case BFD_RELOC_ARM_ALU_PC_G1:
20765 case BFD_RELOC_ARM_ALU_PC_G2:
20766 case BFD_RELOC_ARM_LDR_PC_G0:
20767 case BFD_RELOC_ARM_LDR_PC_G1:
20768 case BFD_RELOC_ARM_LDR_PC_G2:
20769 case BFD_RELOC_ARM_LDRS_PC_G0:
20770 case BFD_RELOC_ARM_LDRS_PC_G1:
20771 case BFD_RELOC_ARM_LDRS_PC_G2:
20772 case BFD_RELOC_ARM_LDC_PC_G0:
20773 case BFD_RELOC_ARM_LDC_PC_G1:
20774 case BFD_RELOC_ARM_LDC_PC_G2:
20775 case BFD_RELOC_ARM_ALU_SB_G0_NC:
20776 case BFD_RELOC_ARM_ALU_SB_G0:
20777 case BFD_RELOC_ARM_ALU_SB_G1_NC:
20778 case BFD_RELOC_ARM_ALU_SB_G1:
20779 case BFD_RELOC_ARM_ALU_SB_G2:
20780 case BFD_RELOC_ARM_LDR_SB_G0:
20781 case BFD_RELOC_ARM_LDR_SB_G1:
20782 case BFD_RELOC_ARM_LDR_SB_G2:
20783 case BFD_RELOC_ARM_LDRS_SB_G0:
20784 case BFD_RELOC_ARM_LDRS_SB_G1:
20785 case BFD_RELOC_ARM_LDRS_SB_G2:
20786 case BFD_RELOC_ARM_LDC_SB_G0:
20787 case BFD_RELOC_ARM_LDC_SB_G1:
20788 case BFD_RELOC_ARM_LDC_SB_G2:
20789 case BFD_RELOC_ARM_V4BX:
20790 code = fixp->fx_r_type;
20791 break;
20792
20793 case BFD_RELOC_ARM_TLS_GD32:
20794 case BFD_RELOC_ARM_TLS_IE32:
20795 case BFD_RELOC_ARM_TLS_LDM32:
20796 /* BFD will include the symbol's address in the addend.
20797 But we don't want that, so subtract it out again here. */
20798 if (!S_IS_COMMON (fixp->fx_addsy))
20799 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
20800 code = fixp->fx_r_type;
20801 break;
20802 #endif
20803
20804 case BFD_RELOC_ARM_IMMEDIATE:
20805 as_bad_where (fixp->fx_file, fixp->fx_line,
20806 _("internal relocation (type: IMMEDIATE) not fixed up"));
20807 return NULL;
20808
20809 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
20810 as_bad_where (fixp->fx_file, fixp->fx_line,
20811 _("ADRL used for a symbol not defined in the same file"));
20812 return NULL;
20813
20814 case BFD_RELOC_ARM_OFFSET_IMM:
20815 if (section->use_rela_p)
20816 {
20817 code = fixp->fx_r_type;
20818 break;
20819 }
20820
20821 if (fixp->fx_addsy != NULL
20822 && !S_IS_DEFINED (fixp->fx_addsy)
20823 && S_IS_LOCAL (fixp->fx_addsy))
20824 {
20825 as_bad_where (fixp->fx_file, fixp->fx_line,
20826 _("undefined local label `%s'"),
20827 S_GET_NAME (fixp->fx_addsy));
20828 return NULL;
20829 }
20830
20831 as_bad_where (fixp->fx_file, fixp->fx_line,
20832 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
20833 return NULL;
20834
20835 default:
20836 {
20837 char * type;
20838
20839 switch (fixp->fx_r_type)
20840 {
20841 case BFD_RELOC_NONE: type = "NONE"; break;
20842 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
20843 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
20844 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
20845 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
20846 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
20847 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
20848 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
20849 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
20850 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
20851 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
20852 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
20853 default: type = _("<unknown>"); break;
20854 }
20855 as_bad_where (fixp->fx_file, fixp->fx_line,
20856 _("cannot represent %s relocation in this object file format"),
20857 type);
20858 return NULL;
20859 }
20860 }
20861
20862 #ifdef OBJ_ELF
20863 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
20864 && GOT_symbol
20865 && fixp->fx_addsy == GOT_symbol)
20866 {
20867 code = BFD_RELOC_ARM_GOTPC;
20868 reloc->addend = fixp->fx_offset = reloc->address;
20869 }
20870 #endif
20871
20872 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
20873
20874 if (reloc->howto == NULL)
20875 {
20876 as_bad_where (fixp->fx_file, fixp->fx_line,
20877 _("cannot represent %s relocation in this object file format"),
20878 bfd_get_reloc_code_name (code));
20879 return NULL;
20880 }
20881
20882 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
20883 vtable entry to be used in the relocation's section offset. */
20884 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
20885 reloc->address = fixp->fx_offset;
20886
20887 return reloc;
20888 }
20889
20890 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
20891
20892 void
20893 cons_fix_new_arm (fragS * frag,
20894 int where,
20895 int size,
20896 expressionS * exp)
20897 {
20898 bfd_reloc_code_real_type type;
20899 int pcrel = 0;
20900
20901 /* Pick a reloc.
20902 FIXME: @@ Should look at CPU word size. */
20903 switch (size)
20904 {
20905 case 1:
20906 type = BFD_RELOC_8;
20907 break;
20908 case 2:
20909 type = BFD_RELOC_16;
20910 break;
20911 case 4:
20912 default:
20913 type = BFD_RELOC_32;
20914 break;
20915 case 8:
20916 type = BFD_RELOC_64;
20917 break;
20918 }
20919
20920 #ifdef TE_PE
20921 if (exp->X_op == O_secrel)
20922 {
20923 exp->X_op = O_symbol;
20924 type = BFD_RELOC_32_SECREL;
20925 }
20926 #endif
20927
20928 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
20929 }
20930
20931 #if defined (OBJ_COFF)
20932 void
20933 arm_validate_fix (fixS * fixP)
20934 {
20935 /* If the destination of the branch is a defined symbol which does not have
20936 the THUMB_FUNC attribute, then we must be calling a function which has
20937 the (interfacearm) attribute. We look for the Thumb entry point to that
20938 function and change the branch to refer to that function instead. */
20939 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
20940 && fixP->fx_addsy != NULL
20941 && S_IS_DEFINED (fixP->fx_addsy)
20942 && ! THUMB_IS_FUNC (fixP->fx_addsy))
20943 {
20944 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
20945 }
20946 }
20947 #endif
20948
20949
20950 int
20951 arm_force_relocation (struct fix * fixp)
20952 {
20953 #if defined (OBJ_COFF) && defined (TE_PE)
20954 if (fixp->fx_r_type == BFD_RELOC_RVA)
20955 return 1;
20956 #endif
20957
20958 /* In case we have a call or a branch to a function in ARM ISA mode from
20959 a thumb function or vice-versa force the relocation. These relocations
20960 are cleared off for some cores that might have blx and simple transformations
20961 are possible. */
20962
20963 #ifdef OBJ_ELF
20964 switch (fixp->fx_r_type)
20965 {
20966 case BFD_RELOC_ARM_PCREL_JUMP:
20967 case BFD_RELOC_ARM_PCREL_CALL:
20968 case BFD_RELOC_THUMB_PCREL_BLX:
20969 if (THUMB_IS_FUNC (fixp->fx_addsy))
20970 return 1;
20971 break;
20972
20973 case BFD_RELOC_ARM_PCREL_BLX:
20974 case BFD_RELOC_THUMB_PCREL_BRANCH25:
20975 case BFD_RELOC_THUMB_PCREL_BRANCH20:
20976 case BFD_RELOC_THUMB_PCREL_BRANCH23:
20977 if (ARM_IS_FUNC (fixp->fx_addsy))
20978 return 1;
20979 break;
20980
20981 default:
20982 break;
20983 }
20984 #endif
20985
20986 /* Resolve these relocations even if the symbol is extern or weak. */
20987 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
20988 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
20989 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
20990 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
20991 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
20992 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
20993 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12)
20994 return 0;
20995
20996 /* Always leave these relocations for the linker. */
20997 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
20998 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
20999 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
21000 return 1;
21001
21002 /* Always generate relocations against function symbols. */
21003 if (fixp->fx_r_type == BFD_RELOC_32
21004 && fixp->fx_addsy
21005 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
21006 return 1;
21007
21008 return generic_force_reloc (fixp);
21009 }
21010
21011 #if defined (OBJ_ELF) || defined (OBJ_COFF)
21012 /* Relocations against function names must be left unadjusted,
21013 so that the linker can use this information to generate interworking
21014 stubs. The MIPS version of this function
21015 also prevents relocations that are mips-16 specific, but I do not
21016 know why it does this.
21017
21018 FIXME:
21019 There is one other problem that ought to be addressed here, but
21020 which currently is not: Taking the address of a label (rather
21021 than a function) and then later jumping to that address. Such
21022 addresses also ought to have their bottom bit set (assuming that
21023 they reside in Thumb code), but at the moment they will not. */
21024
21025 bfd_boolean
21026 arm_fix_adjustable (fixS * fixP)
21027 {
21028 if (fixP->fx_addsy == NULL)
21029 return 1;
21030
21031 /* Preserve relocations against symbols with function type. */
21032 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
21033 return FALSE;
21034
21035 if (THUMB_IS_FUNC (fixP->fx_addsy)
21036 && fixP->fx_subsy == NULL)
21037 return FALSE;
21038
21039 /* We need the symbol name for the VTABLE entries. */
21040 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
21041 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
21042 return FALSE;
21043
21044 /* Don't allow symbols to be discarded on GOT related relocs. */
21045 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
21046 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
21047 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
21048 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
21049 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
21050 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
21051 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
21052 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
21053 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
21054 return FALSE;
21055
21056 /* Similarly for group relocations. */
21057 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
21058 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
21059 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
21060 return FALSE;
21061
21062 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
21063 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
21064 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
21065 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
21066 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
21067 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
21068 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
21069 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
21070 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
21071 return FALSE;
21072
21073 return TRUE;
21074 }
21075 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
21076
21077 #ifdef OBJ_ELF
21078
21079 const char *
21080 elf32_arm_target_format (void)
21081 {
21082 #ifdef TE_SYMBIAN
21083 return (target_big_endian
21084 ? "elf32-bigarm-symbian"
21085 : "elf32-littlearm-symbian");
21086 #elif defined (TE_VXWORKS)
21087 return (target_big_endian
21088 ? "elf32-bigarm-vxworks"
21089 : "elf32-littlearm-vxworks");
21090 #else
21091 if (target_big_endian)
21092 return "elf32-bigarm";
21093 else
21094 return "elf32-littlearm";
21095 #endif
21096 }
21097
21098 void
21099 armelf_frob_symbol (symbolS * symp,
21100 int * puntp)
21101 {
21102 elf_frob_symbol (symp, puntp);
21103 }
21104 #endif
21105
21106 /* MD interface: Finalization. */
21107
21108 void
21109 arm_cleanup (void)
21110 {
21111 literal_pool * pool;
21112
21113 /* Ensure that all the IT blocks are properly closed. */
21114 check_it_blocks_finished ();
21115
21116 for (pool = list_of_pools; pool; pool = pool->next)
21117 {
21118 /* Put it at the end of the relevant section. */
21119 subseg_set (pool->section, pool->sub_section);
21120 #ifdef OBJ_ELF
21121 arm_elf_change_section ();
21122 #endif
21123 s_ltorg (0);
21124 }
21125 }
21126
21127 #ifdef OBJ_ELF
21128 /* Remove any excess mapping symbols generated for alignment frags in
21129 SEC. We may have created a mapping symbol before a zero byte
21130 alignment; remove it if there's a mapping symbol after the
21131 alignment. */
21132 static void
21133 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
21134 void *dummy ATTRIBUTE_UNUSED)
21135 {
21136 segment_info_type *seginfo = seg_info (sec);
21137 fragS *fragp;
21138
21139 if (seginfo == NULL || seginfo->frchainP == NULL)
21140 return;
21141
21142 for (fragp = seginfo->frchainP->frch_root;
21143 fragp != NULL;
21144 fragp = fragp->fr_next)
21145 {
21146 symbolS *sym = fragp->tc_frag_data.last_map;
21147 fragS *next = fragp->fr_next;
21148
21149 /* Variable-sized frags have been converted to fixed size by
21150 this point. But if this was variable-sized to start with,
21151 there will be a fixed-size frag after it. So don't handle
21152 next == NULL. */
21153 if (sym == NULL || next == NULL)
21154 continue;
21155
21156 if (S_GET_VALUE (sym) < next->fr_address)
21157 /* Not at the end of this frag. */
21158 continue;
21159 know (S_GET_VALUE (sym) == next->fr_address);
21160
21161 do
21162 {
21163 if (next->tc_frag_data.first_map != NULL)
21164 {
21165 /* Next frag starts with a mapping symbol. Discard this
21166 one. */
21167 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
21168 break;
21169 }
21170
21171 if (next->fr_next == NULL)
21172 {
21173 /* This mapping symbol is at the end of the section. Discard
21174 it. */
21175 know (next->fr_fix == 0 && next->fr_var == 0);
21176 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
21177 break;
21178 }
21179
21180 /* As long as we have empty frags without any mapping symbols,
21181 keep looking. */
21182 /* If the next frag is non-empty and does not start with a
21183 mapping symbol, then this mapping symbol is required. */
21184 if (next->fr_address != next->fr_next->fr_address)
21185 break;
21186
21187 next = next->fr_next;
21188 }
21189 while (next != NULL);
21190 }
21191 }
21192 #endif
21193
21194 /* Adjust the symbol table. This marks Thumb symbols as distinct from
21195 ARM ones. */
21196
21197 void
21198 arm_adjust_symtab (void)
21199 {
21200 #ifdef OBJ_COFF
21201 symbolS * sym;
21202
21203 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
21204 {
21205 if (ARM_IS_THUMB (sym))
21206 {
21207 if (THUMB_IS_FUNC (sym))
21208 {
21209 /* Mark the symbol as a Thumb function. */
21210 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
21211 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
21212 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
21213
21214 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
21215 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
21216 else
21217 as_bad (_("%s: unexpected function type: %d"),
21218 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
21219 }
21220 else switch (S_GET_STORAGE_CLASS (sym))
21221 {
21222 case C_EXT:
21223 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
21224 break;
21225 case C_STAT:
21226 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
21227 break;
21228 case C_LABEL:
21229 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
21230 break;
21231 default:
21232 /* Do nothing. */
21233 break;
21234 }
21235 }
21236
21237 if (ARM_IS_INTERWORK (sym))
21238 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
21239 }
21240 #endif
21241 #ifdef OBJ_ELF
21242 symbolS * sym;
21243 char bind;
21244
21245 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
21246 {
21247 if (ARM_IS_THUMB (sym))
21248 {
21249 elf_symbol_type * elf_sym;
21250
21251 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
21252 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
21253
21254 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
21255 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
21256 {
21257 /* If it's a .thumb_func, declare it as so,
21258 otherwise tag label as .code 16. */
21259 if (THUMB_IS_FUNC (sym))
21260 elf_sym->internal_elf_sym.st_info =
21261 ELF_ST_INFO (bind, STT_ARM_TFUNC);
21262 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
21263 elf_sym->internal_elf_sym.st_info =
21264 ELF_ST_INFO (bind, STT_ARM_16BIT);
21265 }
21266 }
21267 }
21268
21269 /* Remove any overlapping mapping symbols generated by alignment frags. */
21270 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
21271 #endif
21272 }
21273
21274 /* MD interface: Initialization. */
21275
21276 static void
21277 set_constant_flonums (void)
21278 {
21279 int i;
21280
21281 for (i = 0; i < NUM_FLOAT_VALS; i++)
21282 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
21283 abort ();
21284 }
21285
21286 /* Auto-select Thumb mode if it's the only available instruction set for the
21287 given architecture. */
21288
21289 static void
21290 autoselect_thumb_from_cpu_variant (void)
21291 {
21292 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
21293 opcode_select (16);
21294 }
21295
21296 void
21297 md_begin (void)
21298 {
21299 unsigned mach;
21300 unsigned int i;
21301
21302 if ( (arm_ops_hsh = hash_new ()) == NULL
21303 || (arm_cond_hsh = hash_new ()) == NULL
21304 || (arm_shift_hsh = hash_new ()) == NULL
21305 || (arm_psr_hsh = hash_new ()) == NULL
21306 || (arm_v7m_psr_hsh = hash_new ()) == NULL
21307 || (arm_reg_hsh = hash_new ()) == NULL
21308 || (arm_reloc_hsh = hash_new ()) == NULL
21309 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
21310 as_fatal (_("virtual memory exhausted"));
21311
21312 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
21313 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
21314 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
21315 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
21316 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
21317 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
21318 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
21319 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
21320 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
21321 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
21322 (void *) (v7m_psrs + i));
21323 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
21324 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
21325 for (i = 0;
21326 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
21327 i++)
21328 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
21329 (void *) (barrier_opt_names + i));
21330 #ifdef OBJ_ELF
21331 for (i = 0; i < sizeof (reloc_names) / sizeof (struct reloc_entry); i++)
21332 hash_insert (arm_reloc_hsh, reloc_names[i].name, (void *) (reloc_names + i));
21333 #endif
21334
21335 set_constant_flonums ();
21336
21337 /* Set the cpu variant based on the command-line options. We prefer
21338 -mcpu= over -march= if both are set (as for GCC); and we prefer
21339 -mfpu= over any other way of setting the floating point unit.
21340 Use of legacy options with new options are faulted. */
21341 if (legacy_cpu)
21342 {
21343 if (mcpu_cpu_opt || march_cpu_opt)
21344 as_bad (_("use of old and new-style options to set CPU type"));
21345
21346 mcpu_cpu_opt = legacy_cpu;
21347 }
21348 else if (!mcpu_cpu_opt)
21349 mcpu_cpu_opt = march_cpu_opt;
21350
21351 if (legacy_fpu)
21352 {
21353 if (mfpu_opt)
21354 as_bad (_("use of old and new-style options to set FPU type"));
21355
21356 mfpu_opt = legacy_fpu;
21357 }
21358 else if (!mfpu_opt)
21359 {
21360 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
21361 || defined (TE_NetBSD) || defined (TE_VXWORKS))
21362 /* Some environments specify a default FPU. If they don't, infer it
21363 from the processor. */
21364 if (mcpu_fpu_opt)
21365 mfpu_opt = mcpu_fpu_opt;
21366 else
21367 mfpu_opt = march_fpu_opt;
21368 #else
21369 mfpu_opt = &fpu_default;
21370 #endif
21371 }
21372
21373 if (!mfpu_opt)
21374 {
21375 if (mcpu_cpu_opt != NULL)
21376 mfpu_opt = &fpu_default;
21377 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
21378 mfpu_opt = &fpu_arch_vfp_v2;
21379 else
21380 mfpu_opt = &fpu_arch_fpa;
21381 }
21382
21383 #ifdef CPU_DEFAULT
21384 if (!mcpu_cpu_opt)
21385 {
21386 mcpu_cpu_opt = &cpu_default;
21387 selected_cpu = cpu_default;
21388 }
21389 #else
21390 if (mcpu_cpu_opt)
21391 selected_cpu = *mcpu_cpu_opt;
21392 else
21393 mcpu_cpu_opt = &arm_arch_any;
21394 #endif
21395
21396 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
21397
21398 autoselect_thumb_from_cpu_variant ();
21399
21400 arm_arch_used = thumb_arch_used = arm_arch_none;
21401
21402 #if defined OBJ_COFF || defined OBJ_ELF
21403 {
21404 unsigned int flags = 0;
21405
21406 #if defined OBJ_ELF
21407 flags = meabi_flags;
21408
21409 switch (meabi_flags)
21410 {
21411 case EF_ARM_EABI_UNKNOWN:
21412 #endif
21413 /* Set the flags in the private structure. */
21414 if (uses_apcs_26) flags |= F_APCS26;
21415 if (support_interwork) flags |= F_INTERWORK;
21416 if (uses_apcs_float) flags |= F_APCS_FLOAT;
21417 if (pic_code) flags |= F_PIC;
21418 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
21419 flags |= F_SOFT_FLOAT;
21420
21421 switch (mfloat_abi_opt)
21422 {
21423 case ARM_FLOAT_ABI_SOFT:
21424 case ARM_FLOAT_ABI_SOFTFP:
21425 flags |= F_SOFT_FLOAT;
21426 break;
21427
21428 case ARM_FLOAT_ABI_HARD:
21429 if (flags & F_SOFT_FLOAT)
21430 as_bad (_("hard-float conflicts with specified fpu"));
21431 break;
21432 }
21433
21434 /* Using pure-endian doubles (even if soft-float). */
21435 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
21436 flags |= F_VFP_FLOAT;
21437
21438 #if defined OBJ_ELF
21439 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
21440 flags |= EF_ARM_MAVERICK_FLOAT;
21441 break;
21442
21443 case EF_ARM_EABI_VER4:
21444 case EF_ARM_EABI_VER5:
21445 /* No additional flags to set. */
21446 break;
21447
21448 default:
21449 abort ();
21450 }
21451 #endif
21452 bfd_set_private_flags (stdoutput, flags);
21453
21454 /* We have run out flags in the COFF header to encode the
21455 status of ATPCS support, so instead we create a dummy,
21456 empty, debug section called .arm.atpcs. */
21457 if (atpcs)
21458 {
21459 asection * sec;
21460
21461 sec = bfd_make_section (stdoutput, ".arm.atpcs");
21462
21463 if (sec != NULL)
21464 {
21465 bfd_set_section_flags
21466 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
21467 bfd_set_section_size (stdoutput, sec, 0);
21468 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
21469 }
21470 }
21471 }
21472 #endif
21473
21474 /* Record the CPU type as well. */
21475 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
21476 mach = bfd_mach_arm_iWMMXt2;
21477 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
21478 mach = bfd_mach_arm_iWMMXt;
21479 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
21480 mach = bfd_mach_arm_XScale;
21481 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
21482 mach = bfd_mach_arm_ep9312;
21483 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
21484 mach = bfd_mach_arm_5TE;
21485 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
21486 {
21487 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
21488 mach = bfd_mach_arm_5T;
21489 else
21490 mach = bfd_mach_arm_5;
21491 }
21492 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
21493 {
21494 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
21495 mach = bfd_mach_arm_4T;
21496 else
21497 mach = bfd_mach_arm_4;
21498 }
21499 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
21500 mach = bfd_mach_arm_3M;
21501 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
21502 mach = bfd_mach_arm_3;
21503 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
21504 mach = bfd_mach_arm_2a;
21505 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
21506 mach = bfd_mach_arm_2;
21507 else
21508 mach = bfd_mach_arm_unknown;
21509
21510 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
21511 }
21512
21513 /* Command line processing. */
21514
21515 /* md_parse_option
21516 Invocation line includes a switch not recognized by the base assembler.
21517 See if it's a processor-specific option.
21518
21519 This routine is somewhat complicated by the need for backwards
21520 compatibility (since older releases of gcc can't be changed).
21521 The new options try to make the interface as compatible as
21522 possible with GCC.
21523
21524 New options (supported) are:
21525
21526 -mcpu=<cpu name> Assemble for selected processor
21527 -march=<architecture name> Assemble for selected architecture
21528 -mfpu=<fpu architecture> Assemble for selected FPU.
21529 -EB/-mbig-endian Big-endian
21530 -EL/-mlittle-endian Little-endian
21531 -k Generate PIC code
21532 -mthumb Start in Thumb mode
21533 -mthumb-interwork Code supports ARM/Thumb interworking
21534
21535 -m[no-]warn-deprecated Warn about deprecated features
21536
21537 For now we will also provide support for:
21538
21539 -mapcs-32 32-bit Program counter
21540 -mapcs-26 26-bit Program counter
21541 -macps-float Floats passed in FP registers
21542 -mapcs-reentrant Reentrant code
21543 -matpcs
21544 (sometime these will probably be replaced with -mapcs=<list of options>
21545 and -matpcs=<list of options>)
21546
21547 The remaining options are only supported for back-wards compatibility.
21548 Cpu variants, the arm part is optional:
21549 -m[arm]1 Currently not supported.
21550 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
21551 -m[arm]3 Arm 3 processor
21552 -m[arm]6[xx], Arm 6 processors
21553 -m[arm]7[xx][t][[d]m] Arm 7 processors
21554 -m[arm]8[10] Arm 8 processors
21555 -m[arm]9[20][tdmi] Arm 9 processors
21556 -mstrongarm[110[0]] StrongARM processors
21557 -mxscale XScale processors
21558 -m[arm]v[2345[t[e]]] Arm architectures
21559 -mall All (except the ARM1)
21560 FP variants:
21561 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
21562 -mfpe-old (No float load/store multiples)
21563 -mvfpxd VFP Single precision
21564 -mvfp All VFP
21565 -mno-fpu Disable all floating point instructions
21566
21567 The following CPU names are recognized:
21568 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
21569 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
21570 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
21571 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
21572 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
21573 arm10t arm10e, arm1020t, arm1020e, arm10200e,
21574 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
21575
21576 */
21577
21578 const char * md_shortopts = "m:k";
21579
21580 #ifdef ARM_BI_ENDIAN
21581 #define OPTION_EB (OPTION_MD_BASE + 0)
21582 #define OPTION_EL (OPTION_MD_BASE + 1)
21583 #else
21584 #if TARGET_BYTES_BIG_ENDIAN
21585 #define OPTION_EB (OPTION_MD_BASE + 0)
21586 #else
21587 #define OPTION_EL (OPTION_MD_BASE + 1)
21588 #endif
21589 #endif
21590 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
21591
21592 struct option md_longopts[] =
21593 {
21594 #ifdef OPTION_EB
21595 {"EB", no_argument, NULL, OPTION_EB},
21596 #endif
21597 #ifdef OPTION_EL
21598 {"EL", no_argument, NULL, OPTION_EL},
21599 #endif
21600 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
21601 {NULL, no_argument, NULL, 0}
21602 };
21603
21604 size_t md_longopts_size = sizeof (md_longopts);
21605
21606 struct arm_option_table
21607 {
21608 char *option; /* Option name to match. */
21609 char *help; /* Help information. */
21610 int *var; /* Variable to change. */
21611 int value; /* What to change it to. */
21612 char *deprecated; /* If non-null, print this message. */
21613 };
21614
21615 struct arm_option_table arm_opts[] =
21616 {
21617 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
21618 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
21619 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
21620 &support_interwork, 1, NULL},
21621 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
21622 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
21623 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
21624 1, NULL},
21625 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
21626 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
21627 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
21628 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
21629 NULL},
21630
21631 /* These are recognized by the assembler, but have no affect on code. */
21632 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
21633 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
21634
21635 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
21636 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
21637 &warn_on_deprecated, 0, NULL},
21638 {NULL, NULL, NULL, 0, NULL}
21639 };
21640
21641 struct arm_legacy_option_table
21642 {
21643 char *option; /* Option name to match. */
21644 const arm_feature_set **var; /* Variable to change. */
21645 const arm_feature_set value; /* What to change it to. */
21646 char *deprecated; /* If non-null, print this message. */
21647 };
21648
21649 const struct arm_legacy_option_table arm_legacy_opts[] =
21650 {
21651 /* DON'T add any new processors to this list -- we want the whole list
21652 to go away... Add them to the processors table instead. */
21653 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
21654 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
21655 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
21656 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
21657 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
21658 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
21659 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
21660 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
21661 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
21662 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
21663 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
21664 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
21665 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
21666 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
21667 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
21668 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
21669 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
21670 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
21671 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
21672 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
21673 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
21674 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
21675 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
21676 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
21677 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
21678 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
21679 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
21680 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
21681 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
21682 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
21683 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
21684 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
21685 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
21686 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
21687 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
21688 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
21689 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
21690 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
21691 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
21692 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
21693 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
21694 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
21695 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
21696 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
21697 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
21698 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
21699 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
21700 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
21701 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
21702 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
21703 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
21704 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
21705 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
21706 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
21707 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
21708 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
21709 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
21710 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
21711 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
21712 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
21713 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
21714 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
21715 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
21716 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
21717 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
21718 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
21719 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
21720 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
21721 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
21722 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
21723 N_("use -mcpu=strongarm110")},
21724 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
21725 N_("use -mcpu=strongarm1100")},
21726 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
21727 N_("use -mcpu=strongarm1110")},
21728 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
21729 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
21730 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
21731
21732 /* Architecture variants -- don't add any more to this list either. */
21733 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
21734 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
21735 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
21736 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
21737 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
21738 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
21739 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
21740 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
21741 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
21742 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
21743 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
21744 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
21745 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
21746 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
21747 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
21748 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
21749 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
21750 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
21751
21752 /* Floating point variants -- don't add any more to this list either. */
21753 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
21754 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
21755 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
21756 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
21757 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
21758
21759 {NULL, NULL, ARM_ARCH_NONE, NULL}
21760 };
21761
21762 struct arm_cpu_option_table
21763 {
21764 char *name;
21765 const arm_feature_set value;
21766 /* For some CPUs we assume an FPU unless the user explicitly sets
21767 -mfpu=... */
21768 const arm_feature_set default_fpu;
21769 /* The canonical name of the CPU, or NULL to use NAME converted to upper
21770 case. */
21771 const char *canonical_name;
21772 };
21773
21774 /* This list should, at a minimum, contain all the cpu names
21775 recognized by GCC. */
21776 static const struct arm_cpu_option_table arm_cpus[] =
21777 {
21778 {"all", ARM_ANY, FPU_ARCH_FPA, NULL},
21779 {"arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL},
21780 {"arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL},
21781 {"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
21782 {"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
21783 {"arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21784 {"arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21785 {"arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21786 {"arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21787 {"arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21788 {"arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21789 {"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
21790 {"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21791 {"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
21792 {"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21793 {"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
21794 {"arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21795 {"arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21796 {"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21797 {"arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21798 {"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21799 {"arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21800 {"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21801 {"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21802 {"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21803 {"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21804 {"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21805 {"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21806 {"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21807 {"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21808 {"arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21809 {"arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
21810 {"arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
21811 {"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
21812 {"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
21813 {"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
21814 {"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
21815 {"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
21816 {"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21817 {"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"},
21818 {"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21819 {"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21820 {"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21821 {"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21822 {"fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
21823 {"fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
21824 /* For V5 or later processors we default to using VFP; but the user
21825 should really set the FPU type explicitly. */
21826 {"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
21827 {"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
21828 {"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
21829 {"arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
21830 {"arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
21831 {"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
21832 {"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"},
21833 {"arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
21834 {"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
21835 {"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"},
21836 {"arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
21837 {"arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
21838 {"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
21839 {"arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
21840 {"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
21841 {"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"},
21842 {"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
21843 {"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
21844 {"arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
21845 {"arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM1026EJ-S"},
21846 {"arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
21847 {"fa626te", ARM_ARCH_V5TE, FPU_NONE, NULL},
21848 {"fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
21849 {"arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"},
21850 {"arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL},
21851 {"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2, "ARM1136JF-S"},
21852 {"arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL},
21853 {"mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, NULL},
21854 {"mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, NULL},
21855 {"arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL},
21856 {"arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL},
21857 {"arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL},
21858 {"arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL},
21859 {"cortex-a8", ARM_ARCH_V7A, ARM_FEATURE (0, FPU_VFP_V3
21860 | FPU_NEON_EXT_V1),
21861 NULL},
21862 {"cortex-a9", ARM_ARCH_V7A, ARM_FEATURE (0, FPU_VFP_V3
21863 | FPU_NEON_EXT_V1),
21864 NULL},
21865 {"cortex-r4", ARM_ARCH_V7R, FPU_NONE, NULL},
21866 {"cortex-r4f", ARM_ARCH_V7R, FPU_ARCH_VFP_V3D16, NULL},
21867 {"cortex-m3", ARM_ARCH_V7M, FPU_NONE, NULL},
21868 {"cortex-m1", ARM_ARCH_V6M, FPU_NONE, NULL},
21869 {"cortex-m0", ARM_ARCH_V6M, FPU_NONE, NULL},
21870 /* ??? XSCALE is really an architecture. */
21871 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
21872 /* ??? iwmmxt is not a processor. */
21873 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL},
21874 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL},
21875 {"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
21876 /* Maverick */
21877 {"ep9312", ARM_FEATURE (ARM_AEXT_V4T, ARM_CEXT_MAVERICK), FPU_ARCH_MAVERICK, "ARM920T"},
21878 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL}
21879 };
21880
21881 struct arm_arch_option_table
21882 {
21883 char *name;
21884 const arm_feature_set value;
21885 const arm_feature_set default_fpu;
21886 };
21887
21888 /* This list should, at a minimum, contain all the architecture names
21889 recognized by GCC. */
21890 static const struct arm_arch_option_table arm_archs[] =
21891 {
21892 {"all", ARM_ANY, FPU_ARCH_FPA},
21893 {"armv1", ARM_ARCH_V1, FPU_ARCH_FPA},
21894 {"armv2", ARM_ARCH_V2, FPU_ARCH_FPA},
21895 {"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA},
21896 {"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA},
21897 {"armv3", ARM_ARCH_V3, FPU_ARCH_FPA},
21898 {"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA},
21899 {"armv4", ARM_ARCH_V4, FPU_ARCH_FPA},
21900 {"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA},
21901 {"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA},
21902 {"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA},
21903 {"armv5", ARM_ARCH_V5, FPU_ARCH_VFP},
21904 {"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP},
21905 {"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP},
21906 {"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP},
21907 {"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP},
21908 {"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP},
21909 {"armv6", ARM_ARCH_V6, FPU_ARCH_VFP},
21910 {"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP},
21911 {"armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP},
21912 {"armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP},
21913 {"armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP},
21914 {"armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP},
21915 {"armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP},
21916 {"armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP},
21917 {"armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP},
21918 {"armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP},
21919 {"armv7", ARM_ARCH_V7, FPU_ARCH_VFP},
21920 /* The official spelling of the ARMv7 profile variants is the dashed form.
21921 Accept the non-dashed form for compatibility with old toolchains. */
21922 {"armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP},
21923 {"armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP},
21924 {"armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP},
21925 {"armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP},
21926 {"armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP},
21927 {"armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP},
21928 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP},
21929 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP},
21930 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP},
21931 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
21932 };
21933
21934 /* ISA extensions in the co-processor space. */
21935 struct arm_option_cpu_value_table
21936 {
21937 char *name;
21938 const arm_feature_set value;
21939 };
21940
21941 static const struct arm_option_cpu_value_table arm_extensions[] =
21942 {
21943 {"maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK)},
21944 {"xscale", ARM_FEATURE (0, ARM_CEXT_XSCALE)},
21945 {"iwmmxt", ARM_FEATURE (0, ARM_CEXT_IWMMXT)},
21946 {"iwmmxt2", ARM_FEATURE (0, ARM_CEXT_IWMMXT2)},
21947 {NULL, ARM_ARCH_NONE}
21948 };
21949
21950 /* This list should, at a minimum, contain all the fpu names
21951 recognized by GCC. */
21952 static const struct arm_option_cpu_value_table arm_fpus[] =
21953 {
21954 {"softfpa", FPU_NONE},
21955 {"fpe", FPU_ARCH_FPE},
21956 {"fpe2", FPU_ARCH_FPE},
21957 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
21958 {"fpa", FPU_ARCH_FPA},
21959 {"fpa10", FPU_ARCH_FPA},
21960 {"fpa11", FPU_ARCH_FPA},
21961 {"arm7500fe", FPU_ARCH_FPA},
21962 {"softvfp", FPU_ARCH_VFP},
21963 {"softvfp+vfp", FPU_ARCH_VFP_V2},
21964 {"vfp", FPU_ARCH_VFP_V2},
21965 {"vfp9", FPU_ARCH_VFP_V2},
21966 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
21967 {"vfp10", FPU_ARCH_VFP_V2},
21968 {"vfp10-r0", FPU_ARCH_VFP_V1},
21969 {"vfpxd", FPU_ARCH_VFP_V1xD},
21970 {"vfpv2", FPU_ARCH_VFP_V2},
21971 {"vfpv3", FPU_ARCH_VFP_V3},
21972 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
21973 {"arm1020t", FPU_ARCH_VFP_V1},
21974 {"arm1020e", FPU_ARCH_VFP_V2},
21975 {"arm1136jfs", FPU_ARCH_VFP_V2},
21976 {"arm1136jf-s", FPU_ARCH_VFP_V2},
21977 {"maverick", FPU_ARCH_MAVERICK},
21978 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
21979 {"neon-fp16", FPU_ARCH_NEON_FP16},
21980 {NULL, ARM_ARCH_NONE}
21981 };
21982
21983 struct arm_option_value_table
21984 {
21985 char *name;
21986 long value;
21987 };
21988
21989 static const struct arm_option_value_table arm_float_abis[] =
21990 {
21991 {"hard", ARM_FLOAT_ABI_HARD},
21992 {"softfp", ARM_FLOAT_ABI_SOFTFP},
21993 {"soft", ARM_FLOAT_ABI_SOFT},
21994 {NULL, 0}
21995 };
21996
21997 #ifdef OBJ_ELF
21998 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
21999 static const struct arm_option_value_table arm_eabis[] =
22000 {
22001 {"gnu", EF_ARM_EABI_UNKNOWN},
22002 {"4", EF_ARM_EABI_VER4},
22003 {"5", EF_ARM_EABI_VER5},
22004 {NULL, 0}
22005 };
22006 #endif
22007
22008 struct arm_long_option_table
22009 {
22010 char * option; /* Substring to match. */
22011 char * help; /* Help information. */
22012 int (* func) (char * subopt); /* Function to decode sub-option. */
22013 char * deprecated; /* If non-null, print this message. */
22014 };
22015
22016 static bfd_boolean
22017 arm_parse_extension (char * str, const arm_feature_set **opt_p)
22018 {
22019 arm_feature_set *ext_set = (arm_feature_set *)
22020 xmalloc (sizeof (arm_feature_set));
22021
22022 /* Copy the feature set, so that we can modify it. */
22023 *ext_set = **opt_p;
22024 *opt_p = ext_set;
22025
22026 while (str != NULL && *str != 0)
22027 {
22028 const struct arm_option_cpu_value_table * opt;
22029 char * ext;
22030 int optlen;
22031
22032 if (*str != '+')
22033 {
22034 as_bad (_("invalid architectural extension"));
22035 return FALSE;
22036 }
22037
22038 str++;
22039 ext = strchr (str, '+');
22040
22041 if (ext != NULL)
22042 optlen = ext - str;
22043 else
22044 optlen = strlen (str);
22045
22046 if (optlen == 0)
22047 {
22048 as_bad (_("missing architectural extension"));
22049 return FALSE;
22050 }
22051
22052 for (opt = arm_extensions; opt->name != NULL; opt++)
22053 if (strncmp (opt->name, str, optlen) == 0)
22054 {
22055 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
22056 break;
22057 }
22058
22059 if (opt->name == NULL)
22060 {
22061 as_bad (_("unknown architectural extension `%s'"), str);
22062 return FALSE;
22063 }
22064
22065 str = ext;
22066 };
22067
22068 return TRUE;
22069 }
22070
22071 static bfd_boolean
22072 arm_parse_cpu (char * str)
22073 {
22074 const struct arm_cpu_option_table * opt;
22075 char * ext = strchr (str, '+');
22076 int optlen;
22077
22078 if (ext != NULL)
22079 optlen = ext - str;
22080 else
22081 optlen = strlen (str);
22082
22083 if (optlen == 0)
22084 {
22085 as_bad (_("missing cpu name `%s'"), str);
22086 return FALSE;
22087 }
22088
22089 for (opt = arm_cpus; opt->name != NULL; opt++)
22090 if (strncmp (opt->name, str, optlen) == 0)
22091 {
22092 mcpu_cpu_opt = &opt->value;
22093 mcpu_fpu_opt = &opt->default_fpu;
22094 if (opt->canonical_name)
22095 strcpy (selected_cpu_name, opt->canonical_name);
22096 else
22097 {
22098 int i;
22099
22100 for (i = 0; i < optlen; i++)
22101 selected_cpu_name[i] = TOUPPER (opt->name[i]);
22102 selected_cpu_name[i] = 0;
22103 }
22104
22105 if (ext != NULL)
22106 return arm_parse_extension (ext, &mcpu_cpu_opt);
22107
22108 return TRUE;
22109 }
22110
22111 as_bad (_("unknown cpu `%s'"), str);
22112 return FALSE;
22113 }
22114
22115 static bfd_boolean
22116 arm_parse_arch (char * str)
22117 {
22118 const struct arm_arch_option_table *opt;
22119 char *ext = strchr (str, '+');
22120 int optlen;
22121
22122 if (ext != NULL)
22123 optlen = ext - str;
22124 else
22125 optlen = strlen (str);
22126
22127 if (optlen == 0)
22128 {
22129 as_bad (_("missing architecture name `%s'"), str);
22130 return FALSE;
22131 }
22132
22133 for (opt = arm_archs; opt->name != NULL; opt++)
22134 if (streq (opt->name, str))
22135 {
22136 march_cpu_opt = &opt->value;
22137 march_fpu_opt = &opt->default_fpu;
22138 strcpy (selected_cpu_name, opt->name);
22139
22140 if (ext != NULL)
22141 return arm_parse_extension (ext, &march_cpu_opt);
22142
22143 return TRUE;
22144 }
22145
22146 as_bad (_("unknown architecture `%s'\n"), str);
22147 return FALSE;
22148 }
22149
22150 static bfd_boolean
22151 arm_parse_fpu (char * str)
22152 {
22153 const struct arm_option_cpu_value_table * opt;
22154
22155 for (opt = arm_fpus; opt->name != NULL; opt++)
22156 if (streq (opt->name, str))
22157 {
22158 mfpu_opt = &opt->value;
22159 return TRUE;
22160 }
22161
22162 as_bad (_("unknown floating point format `%s'\n"), str);
22163 return FALSE;
22164 }
22165
22166 static bfd_boolean
22167 arm_parse_float_abi (char * str)
22168 {
22169 const struct arm_option_value_table * opt;
22170
22171 for (opt = arm_float_abis; opt->name != NULL; opt++)
22172 if (streq (opt->name, str))
22173 {
22174 mfloat_abi_opt = opt->value;
22175 return TRUE;
22176 }
22177
22178 as_bad (_("unknown floating point abi `%s'\n"), str);
22179 return FALSE;
22180 }
22181
22182 #ifdef OBJ_ELF
22183 static bfd_boolean
22184 arm_parse_eabi (char * str)
22185 {
22186 const struct arm_option_value_table *opt;
22187
22188 for (opt = arm_eabis; opt->name != NULL; opt++)
22189 if (streq (opt->name, str))
22190 {
22191 meabi_flags = opt->value;
22192 return TRUE;
22193 }
22194 as_bad (_("unknown EABI `%s'\n"), str);
22195 return FALSE;
22196 }
22197 #endif
22198
22199 static bfd_boolean
22200 arm_parse_it_mode (char * str)
22201 {
22202 bfd_boolean ret = TRUE;
22203
22204 if (streq ("arm", str))
22205 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
22206 else if (streq ("thumb", str))
22207 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
22208 else if (streq ("always", str))
22209 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
22210 else if (streq ("never", str))
22211 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
22212 else
22213 {
22214 as_bad (_("unknown implicit IT mode `%s', should be "\
22215 "arm, thumb, always, or never."), str);
22216 ret = FALSE;
22217 }
22218
22219 return ret;
22220 }
22221
22222 struct arm_long_option_table arm_long_opts[] =
22223 {
22224 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
22225 arm_parse_cpu, NULL},
22226 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
22227 arm_parse_arch, NULL},
22228 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
22229 arm_parse_fpu, NULL},
22230 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
22231 arm_parse_float_abi, NULL},
22232 #ifdef OBJ_ELF
22233 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
22234 arm_parse_eabi, NULL},
22235 #endif
22236 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
22237 arm_parse_it_mode, NULL},
22238 {NULL, NULL, 0, NULL}
22239 };
22240
22241 int
22242 md_parse_option (int c, char * arg)
22243 {
22244 struct arm_option_table *opt;
22245 const struct arm_legacy_option_table *fopt;
22246 struct arm_long_option_table *lopt;
22247
22248 switch (c)
22249 {
22250 #ifdef OPTION_EB
22251 case OPTION_EB:
22252 target_big_endian = 1;
22253 break;
22254 #endif
22255
22256 #ifdef OPTION_EL
22257 case OPTION_EL:
22258 target_big_endian = 0;
22259 break;
22260 #endif
22261
22262 case OPTION_FIX_V4BX:
22263 fix_v4bx = TRUE;
22264 break;
22265
22266 case 'a':
22267 /* Listing option. Just ignore these, we don't support additional
22268 ones. */
22269 return 0;
22270
22271 default:
22272 for (opt = arm_opts; opt->option != NULL; opt++)
22273 {
22274 if (c == opt->option[0]
22275 && ((arg == NULL && opt->option[1] == 0)
22276 || streq (arg, opt->option + 1)))
22277 {
22278 /* If the option is deprecated, tell the user. */
22279 if (warn_on_deprecated && opt->deprecated != NULL)
22280 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
22281 arg ? arg : "", _(opt->deprecated));
22282
22283 if (opt->var != NULL)
22284 *opt->var = opt->value;
22285
22286 return 1;
22287 }
22288 }
22289
22290 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
22291 {
22292 if (c == fopt->option[0]
22293 && ((arg == NULL && fopt->option[1] == 0)
22294 || streq (arg, fopt->option + 1)))
22295 {
22296 /* If the option is deprecated, tell the user. */
22297 if (warn_on_deprecated && fopt->deprecated != NULL)
22298 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
22299 arg ? arg : "", _(fopt->deprecated));
22300
22301 if (fopt->var != NULL)
22302 *fopt->var = &fopt->value;
22303
22304 return 1;
22305 }
22306 }
22307
22308 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
22309 {
22310 /* These options are expected to have an argument. */
22311 if (c == lopt->option[0]
22312 && arg != NULL
22313 && strncmp (arg, lopt->option + 1,
22314 strlen (lopt->option + 1)) == 0)
22315 {
22316 /* If the option is deprecated, tell the user. */
22317 if (warn_on_deprecated && lopt->deprecated != NULL)
22318 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
22319 _(lopt->deprecated));
22320
22321 /* Call the sup-option parser. */
22322 return lopt->func (arg + strlen (lopt->option) - 1);
22323 }
22324 }
22325
22326 return 0;
22327 }
22328
22329 return 1;
22330 }
22331
22332 void
22333 md_show_usage (FILE * fp)
22334 {
22335 struct arm_option_table *opt;
22336 struct arm_long_option_table *lopt;
22337
22338 fprintf (fp, _(" ARM-specific assembler options:\n"));
22339
22340 for (opt = arm_opts; opt->option != NULL; opt++)
22341 if (opt->help != NULL)
22342 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
22343
22344 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
22345 if (lopt->help != NULL)
22346 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
22347
22348 #ifdef OPTION_EB
22349 fprintf (fp, _("\
22350 -EB assemble code for a big-endian cpu\n"));
22351 #endif
22352
22353 #ifdef OPTION_EL
22354 fprintf (fp, _("\
22355 -EL assemble code for a little-endian cpu\n"));
22356 #endif
22357
22358 fprintf (fp, _("\
22359 --fix-v4bx Allow BX in ARMv4 code\n"));
22360 }
22361
22362
22363 #ifdef OBJ_ELF
22364 typedef struct
22365 {
22366 int val;
22367 arm_feature_set flags;
22368 } cpu_arch_ver_table;
22369
22370 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
22371 least features first. */
22372 static const cpu_arch_ver_table cpu_arch_ver[] =
22373 {
22374 {1, ARM_ARCH_V4},
22375 {2, ARM_ARCH_V4T},
22376 {3, ARM_ARCH_V5},
22377 {3, ARM_ARCH_V5T},
22378 {4, ARM_ARCH_V5TE},
22379 {5, ARM_ARCH_V5TEJ},
22380 {6, ARM_ARCH_V6},
22381 {7, ARM_ARCH_V6Z},
22382 {9, ARM_ARCH_V6K},
22383 {11, ARM_ARCH_V6M},
22384 {8, ARM_ARCH_V6T2},
22385 {10, ARM_ARCH_V7A},
22386 {10, ARM_ARCH_V7R},
22387 {10, ARM_ARCH_V7M},
22388 {0, ARM_ARCH_NONE}
22389 };
22390
22391 /* Set an attribute if it has not already been set by the user. */
22392 static void
22393 aeabi_set_attribute_int (int tag, int value)
22394 {
22395 if (tag < 1
22396 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
22397 || !attributes_set_explicitly[tag])
22398 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
22399 }
22400
22401 static void
22402 aeabi_set_attribute_string (int tag, const char *value)
22403 {
22404 if (tag < 1
22405 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
22406 || !attributes_set_explicitly[tag])
22407 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
22408 }
22409
22410 /* Set the public EABI object attributes. */
22411 static void
22412 aeabi_set_public_attributes (void)
22413 {
22414 int arch;
22415 arm_feature_set flags;
22416 arm_feature_set tmp;
22417 const cpu_arch_ver_table *p;
22418
22419 /* Choose the architecture based on the capabilities of the requested cpu
22420 (if any) and/or the instructions actually used. */
22421 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
22422 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
22423 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
22424 /*Allow the user to override the reported architecture. */
22425 if (object_arch)
22426 {
22427 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
22428 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
22429 }
22430
22431 tmp = flags;
22432 arch = 0;
22433 for (p = cpu_arch_ver; p->val; p++)
22434 {
22435 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
22436 {
22437 arch = p->val;
22438 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
22439 }
22440 }
22441
22442 /* Tag_CPU_name. */
22443 if (selected_cpu_name[0])
22444 {
22445 char *p;
22446
22447 p = selected_cpu_name;
22448 if (strncmp (p, "armv", 4) == 0)
22449 {
22450 int i;
22451
22452 p += 4;
22453 for (i = 0; p[i]; i++)
22454 p[i] = TOUPPER (p[i]);
22455 }
22456 aeabi_set_attribute_string (Tag_CPU_name, p);
22457 }
22458 /* Tag_CPU_arch. */
22459 aeabi_set_attribute_int (Tag_CPU_arch, arch);
22460 /* Tag_CPU_arch_profile. */
22461 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
22462 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'A');
22463 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
22464 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'R');
22465 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
22466 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'M');
22467 /* Tag_ARM_ISA_use. */
22468 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
22469 || arch == 0)
22470 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
22471 /* Tag_THUMB_ISA_use. */
22472 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
22473 || arch == 0)
22474 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
22475 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
22476 /* Tag_VFP_arch. */
22477 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
22478 aeabi_set_attribute_int (Tag_VFP_arch, 3);
22479 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3))
22480 aeabi_set_attribute_int (Tag_VFP_arch, 4);
22481 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
22482 aeabi_set_attribute_int (Tag_VFP_arch, 2);
22483 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
22484 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
22485 aeabi_set_attribute_int (Tag_VFP_arch, 1);
22486 /* Tag_WMMX_arch. */
22487 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
22488 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
22489 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
22490 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
22491 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
22492 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
22493 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
22494 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
22495 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_fp16))
22496 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
22497 }
22498
22499 /* Add the default contents for the .ARM.attributes section. */
22500 void
22501 arm_md_end (void)
22502 {
22503 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
22504 return;
22505
22506 aeabi_set_public_attributes ();
22507 }
22508 #endif /* OBJ_ELF */
22509
22510
22511 /* Parse a .cpu directive. */
22512
22513 static void
22514 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
22515 {
22516 const struct arm_cpu_option_table *opt;
22517 char *name;
22518 char saved_char;
22519
22520 name = input_line_pointer;
22521 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
22522 input_line_pointer++;
22523 saved_char = *input_line_pointer;
22524 *input_line_pointer = 0;
22525
22526 /* Skip the first "all" entry. */
22527 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
22528 if (streq (opt->name, name))
22529 {
22530 mcpu_cpu_opt = &opt->value;
22531 selected_cpu = opt->value;
22532 if (opt->canonical_name)
22533 strcpy (selected_cpu_name, opt->canonical_name);
22534 else
22535 {
22536 int i;
22537 for (i = 0; opt->name[i]; i++)
22538 selected_cpu_name[i] = TOUPPER (opt->name[i]);
22539 selected_cpu_name[i] = 0;
22540 }
22541 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
22542 *input_line_pointer = saved_char;
22543 demand_empty_rest_of_line ();
22544 return;
22545 }
22546 as_bad (_("unknown cpu `%s'"), name);
22547 *input_line_pointer = saved_char;
22548 ignore_rest_of_line ();
22549 }
22550
22551
22552 /* Parse a .arch directive. */
22553
22554 static void
22555 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
22556 {
22557 const struct arm_arch_option_table *opt;
22558 char saved_char;
22559 char *name;
22560
22561 name = input_line_pointer;
22562 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
22563 input_line_pointer++;
22564 saved_char = *input_line_pointer;
22565 *input_line_pointer = 0;
22566
22567 /* Skip the first "all" entry. */
22568 for (opt = arm_archs + 1; opt->name != NULL; opt++)
22569 if (streq (opt->name, name))
22570 {
22571 mcpu_cpu_opt = &opt->value;
22572 selected_cpu = opt->value;
22573 strcpy (selected_cpu_name, opt->name);
22574 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
22575 *input_line_pointer = saved_char;
22576 demand_empty_rest_of_line ();
22577 return;
22578 }
22579
22580 as_bad (_("unknown architecture `%s'\n"), name);
22581 *input_line_pointer = saved_char;
22582 ignore_rest_of_line ();
22583 }
22584
22585
22586 /* Parse a .object_arch directive. */
22587
22588 static void
22589 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
22590 {
22591 const struct arm_arch_option_table *opt;
22592 char saved_char;
22593 char *name;
22594
22595 name = input_line_pointer;
22596 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
22597 input_line_pointer++;
22598 saved_char = *input_line_pointer;
22599 *input_line_pointer = 0;
22600
22601 /* Skip the first "all" entry. */
22602 for (opt = arm_archs + 1; opt->name != NULL; opt++)
22603 if (streq (opt->name, name))
22604 {
22605 object_arch = &opt->value;
22606 *input_line_pointer = saved_char;
22607 demand_empty_rest_of_line ();
22608 return;
22609 }
22610
22611 as_bad (_("unknown architecture `%s'\n"), name);
22612 *input_line_pointer = saved_char;
22613 ignore_rest_of_line ();
22614 }
22615
22616 /* Parse a .fpu directive. */
22617
22618 static void
22619 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
22620 {
22621 const struct arm_option_cpu_value_table *opt;
22622 char saved_char;
22623 char *name;
22624
22625 name = input_line_pointer;
22626 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
22627 input_line_pointer++;
22628 saved_char = *input_line_pointer;
22629 *input_line_pointer = 0;
22630
22631 for (opt = arm_fpus; opt->name != NULL; opt++)
22632 if (streq (opt->name, name))
22633 {
22634 mfpu_opt = &opt->value;
22635 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
22636 *input_line_pointer = saved_char;
22637 demand_empty_rest_of_line ();
22638 return;
22639 }
22640
22641 as_bad (_("unknown floating point format `%s'\n"), name);
22642 *input_line_pointer = saved_char;
22643 ignore_rest_of_line ();
22644 }
22645
22646 /* Copy symbol information. */
22647
22648 void
22649 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
22650 {
22651 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
22652 }
22653
22654 #ifdef OBJ_ELF
22655 /* Given a symbolic attribute NAME, return the proper integer value.
22656 Returns -1 if the attribute is not known. */
22657
22658 int
22659 arm_convert_symbolic_attribute (const char *name)
22660 {
22661 static const struct
22662 {
22663 const char * name;
22664 const int tag;
22665 }
22666 attribute_table[] =
22667 {
22668 /* When you modify this table you should
22669 also modify the list in doc/c-arm.texi. */
22670 #define T(tag) {#tag, tag}
22671 T (Tag_CPU_raw_name),
22672 T (Tag_CPU_name),
22673 T (Tag_CPU_arch),
22674 T (Tag_CPU_arch_profile),
22675 T (Tag_ARM_ISA_use),
22676 T (Tag_THUMB_ISA_use),
22677 T (Tag_VFP_arch),
22678 T (Tag_WMMX_arch),
22679 T (Tag_Advanced_SIMD_arch),
22680 T (Tag_PCS_config),
22681 T (Tag_ABI_PCS_R9_use),
22682 T (Tag_ABI_PCS_RW_data),
22683 T (Tag_ABI_PCS_RO_data),
22684 T (Tag_ABI_PCS_GOT_use),
22685 T (Tag_ABI_PCS_wchar_t),
22686 T (Tag_ABI_FP_rounding),
22687 T (Tag_ABI_FP_denormal),
22688 T (Tag_ABI_FP_exceptions),
22689 T (Tag_ABI_FP_user_exceptions),
22690 T (Tag_ABI_FP_number_model),
22691 T (Tag_ABI_align8_needed),
22692 T (Tag_ABI_align8_preserved),
22693 T (Tag_ABI_enum_size),
22694 T (Tag_ABI_HardFP_use),
22695 T (Tag_ABI_VFP_args),
22696 T (Tag_ABI_WMMX_args),
22697 T (Tag_ABI_optimization_goals),
22698 T (Tag_ABI_FP_optimization_goals),
22699 T (Tag_compatibility),
22700 T (Tag_CPU_unaligned_access),
22701 T (Tag_VFP_HP_extension),
22702 T (Tag_ABI_FP_16bit_format),
22703 T (Tag_nodefaults),
22704 T (Tag_also_compatible_with),
22705 T (Tag_conformance),
22706 T (Tag_T2EE_use),
22707 T (Tag_Virtualization_use),
22708 T (Tag_MPextension_use)
22709 #undef T
22710 };
22711 unsigned int i;
22712
22713 if (name == NULL)
22714 return -1;
22715
22716 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
22717 if (streq (name, attribute_table[i].name))
22718 return attribute_table[i].tag;
22719
22720 return -1;
22721 }
22722
22723
22724 /* Apply sym value for relocations only in the case that
22725 they are for local symbols and you have the respective
22726 architectural feature for blx and simple switches. */
22727 int
22728 arm_apply_sym_value (struct fix * fixP)
22729 {
22730 if (fixP->fx_addsy
22731 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
22732 && !S_IS_EXTERNAL (fixP->fx_addsy))
22733 {
22734 switch (fixP->fx_r_type)
22735 {
22736 case BFD_RELOC_ARM_PCREL_BLX:
22737 case BFD_RELOC_THUMB_PCREL_BRANCH23:
22738 if (ARM_IS_FUNC (fixP->fx_addsy))
22739 return 1;
22740 break;
22741
22742 case BFD_RELOC_ARM_PCREL_CALL:
22743 case BFD_RELOC_THUMB_PCREL_BLX:
22744 if (THUMB_IS_FUNC (fixP->fx_addsy))
22745 return 1;
22746 break;
22747
22748 default:
22749 break;
22750 }
22751
22752 }
22753 return 0;
22754 }
22755 #endif /* OBJ_ELF */
This page took 0.554649 seconds and 4 git commands to generate.