21ebdbe7a7b7ec9d476a22f640199ee9388b9914
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3, or (at your option)
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
27
28 #include "as.h"
29 #include <limits.h>
30 #include <stdarg.h>
31 #define NO_RELOC 0
32 #include "safe-ctype.h"
33 #include "subsegs.h"
34 #include "obstack.h"
35
36 #include "opcode/arm.h"
37
38 #ifdef OBJ_ELF
39 #include "elf/arm.h"
40 #include "dw2gencfi.h"
41 #endif
42
43 #include "dwarf2dbg.h"
44
45 #ifdef OBJ_ELF
46 /* Must be at least the size of the largest unwind opcode (currently two). */
47 #define ARM_OPCODE_CHUNK_SIZE 8
48
49 /* This structure holds the unwinding state. */
50
51 static struct
52 {
53 symbolS * proc_start;
54 symbolS * table_entry;
55 symbolS * personality_routine;
56 int personality_index;
57 /* The segment containing the function. */
58 segT saved_seg;
59 subsegT saved_subseg;
60 /* Opcodes generated from this function. */
61 unsigned char * opcodes;
62 int opcode_count;
63 int opcode_alloc;
64 /* The number of bytes pushed to the stack. */
65 offsetT frame_size;
66 /* We don't add stack adjustment opcodes immediately so that we can merge
67 multiple adjustments. We can also omit the final adjustment
68 when using a frame pointer. */
69 offsetT pending_offset;
70 /* These two fields are set by both unwind_movsp and unwind_setfp. They
71 hold the reg+offset to use when restoring sp from a frame pointer. */
72 offsetT fp_offset;
73 int fp_reg;
74 /* Nonzero if an unwind_setfp directive has been seen. */
75 unsigned fp_used:1;
76 /* Nonzero if the last opcode restores sp from fp_reg. */
77 unsigned sp_restored:1;
78 } unwind;
79
80 #endif /* OBJ_ELF */
81
82 /* Results from operand parsing worker functions. */
83
84 typedef enum
85 {
86 PARSE_OPERAND_SUCCESS,
87 PARSE_OPERAND_FAIL,
88 PARSE_OPERAND_FAIL_NO_BACKTRACK
89 } parse_operand_result;
90
91 enum arm_float_abi
92 {
93 ARM_FLOAT_ABI_HARD,
94 ARM_FLOAT_ABI_SOFTFP,
95 ARM_FLOAT_ABI_SOFT
96 };
97
98 /* Types of processor to assemble for. */
99 #ifndef CPU_DEFAULT
100 /* The code that was here used to select a default CPU depending on compiler
101 pre-defines which were only present when doing native builds, thus
102 changing gas' default behaviour depending upon the build host.
103
104 If you have a target that requires a default CPU option then the you
105 should define CPU_DEFAULT here. */
106 #endif
107
108 #ifndef FPU_DEFAULT
109 # ifdef TE_LINUX
110 # define FPU_DEFAULT FPU_ARCH_FPA
111 # elif defined (TE_NetBSD)
112 # ifdef OBJ_ELF
113 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
114 # else
115 /* Legacy a.out format. */
116 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
117 # endif
118 # elif defined (TE_VXWORKS)
119 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
120 # else
121 /* For backwards compatibility, default to FPA. */
122 # define FPU_DEFAULT FPU_ARCH_FPA
123 # endif
124 #endif /* ifndef FPU_DEFAULT */
125
126 #define streq(a, b) (strcmp (a, b) == 0)
127
128 static arm_feature_set cpu_variant;
129 static arm_feature_set arm_arch_used;
130 static arm_feature_set thumb_arch_used;
131
132 /* Flags stored in private area of BFD structure. */
133 static int uses_apcs_26 = FALSE;
134 static int atpcs = FALSE;
135 static int support_interwork = FALSE;
136 static int uses_apcs_float = FALSE;
137 static int pic_code = FALSE;
138 static int fix_v4bx = FALSE;
139 /* Warn on using deprecated features. */
140 static int warn_on_deprecated = TRUE;
141
142
143 /* Variables that we set while parsing command-line options. Once all
144 options have been read we re-process these values to set the real
145 assembly flags. */
146 static const arm_feature_set *legacy_cpu = NULL;
147 static const arm_feature_set *legacy_fpu = NULL;
148
149 static const arm_feature_set *mcpu_cpu_opt = NULL;
150 static const arm_feature_set *mcpu_fpu_opt = NULL;
151 static const arm_feature_set *march_cpu_opt = NULL;
152 static const arm_feature_set *march_fpu_opt = NULL;
153 static const arm_feature_set *mfpu_opt = NULL;
154 static const arm_feature_set *object_arch = NULL;
155
156 /* Constants for known architecture features. */
157 static const arm_feature_set fpu_default = FPU_DEFAULT;
158 static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
159 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
160 static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
161 static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
162 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
163 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
164 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
165 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
166
167 #ifdef CPU_DEFAULT
168 static const arm_feature_set cpu_default = CPU_DEFAULT;
169 #endif
170
171 static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
172 static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
173 static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
174 static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
175 static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
176 static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
177 static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
178 static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
179 static const arm_feature_set arm_ext_v4t_5 =
180 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
181 static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
182 static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
183 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
184 static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
185 static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
186 static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
187 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
188 static const arm_feature_set arm_ext_v6m = ARM_FEATURE (ARM_EXT_V6M, 0);
189 static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
190 static const arm_feature_set arm_ext_v6_dsp = ARM_FEATURE (ARM_EXT_V6_DSP, 0);
191 static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
192 static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
193 static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
194 static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
195 static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
196 static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
197 static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
198 static const arm_feature_set arm_ext_m =
199 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_OS | ARM_EXT_V7M, 0);
200 static const arm_feature_set arm_ext_mp = ARM_FEATURE (ARM_EXT_MP, 0);
201 static const arm_feature_set arm_ext_sec = ARM_FEATURE (ARM_EXT_SEC, 0);
202 static const arm_feature_set arm_ext_os = ARM_FEATURE (ARM_EXT_OS, 0);
203 static const arm_feature_set arm_ext_adiv = ARM_FEATURE (ARM_EXT_ADIV, 0);
204 static const arm_feature_set arm_ext_virt = ARM_FEATURE (ARM_EXT_VIRT, 0);
205
206 static const arm_feature_set arm_arch_any = ARM_ANY;
207 static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
208 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
209 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
210 static const arm_feature_set arm_arch_v6m_only = ARM_ARCH_V6M_ONLY;
211
212 static const arm_feature_set arm_cext_iwmmxt2 =
213 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
214 static const arm_feature_set arm_cext_iwmmxt =
215 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
216 static const arm_feature_set arm_cext_xscale =
217 ARM_FEATURE (0, ARM_CEXT_XSCALE);
218 static const arm_feature_set arm_cext_maverick =
219 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
220 static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
221 static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
222 static const arm_feature_set fpu_vfp_ext_v1xd =
223 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
224 static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
225 static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
226 static const arm_feature_set fpu_vfp_ext_v3xd = ARM_FEATURE (0, FPU_VFP_EXT_V3xD);
227 static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
228 static const arm_feature_set fpu_vfp_ext_d32 =
229 ARM_FEATURE (0, FPU_VFP_EXT_D32);
230 static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
231 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
232 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
233 static const arm_feature_set fpu_vfp_fp16 = ARM_FEATURE (0, FPU_VFP_EXT_FP16);
234 static const arm_feature_set fpu_neon_ext_fma = ARM_FEATURE (0, FPU_NEON_EXT_FMA);
235 static const arm_feature_set fpu_vfp_ext_fma = ARM_FEATURE (0, FPU_VFP_EXT_FMA);
236
237 static int mfloat_abi_opt = -1;
238 /* Record user cpu selection for object attributes. */
239 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
240 /* Must be long enough to hold any of the names in arm_cpus. */
241 static char selected_cpu_name[16];
242
243 /* Return if no cpu was selected on command-line. */
244 static bfd_boolean
245 no_cpu_selected (void)
246 {
247 return selected_cpu.core == arm_arch_none.core
248 && selected_cpu.coproc == arm_arch_none.coproc;
249 }
250
251 #ifdef OBJ_ELF
252 # ifdef EABI_DEFAULT
253 static int meabi_flags = EABI_DEFAULT;
254 # else
255 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
256 # endif
257
258 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
259
260 bfd_boolean
261 arm_is_eabi (void)
262 {
263 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
264 }
265 #endif
266
267 #ifdef OBJ_ELF
268 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
269 symbolS * GOT_symbol;
270 #endif
271
272 /* 0: assemble for ARM,
273 1: assemble for Thumb,
274 2: assemble for Thumb even though target CPU does not support thumb
275 instructions. */
276 static int thumb_mode = 0;
277 /* A value distinct from the possible values for thumb_mode that we
278 can use to record whether thumb_mode has been copied into the
279 tc_frag_data field of a frag. */
280 #define MODE_RECORDED (1 << 4)
281
282 /* Specifies the intrinsic IT insn behavior mode. */
283 enum implicit_it_mode
284 {
285 IMPLICIT_IT_MODE_NEVER = 0x00,
286 IMPLICIT_IT_MODE_ARM = 0x01,
287 IMPLICIT_IT_MODE_THUMB = 0x02,
288 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
289 };
290 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
291
292 /* If unified_syntax is true, we are processing the new unified
293 ARM/Thumb syntax. Important differences from the old ARM mode:
294
295 - Immediate operands do not require a # prefix.
296 - Conditional affixes always appear at the end of the
297 instruction. (For backward compatibility, those instructions
298 that formerly had them in the middle, continue to accept them
299 there.)
300 - The IT instruction may appear, and if it does is validated
301 against subsequent conditional affixes. It does not generate
302 machine code.
303
304 Important differences from the old Thumb mode:
305
306 - Immediate operands do not require a # prefix.
307 - Most of the V6T2 instructions are only available in unified mode.
308 - The .N and .W suffixes are recognized and honored (it is an error
309 if they cannot be honored).
310 - All instructions set the flags if and only if they have an 's' affix.
311 - Conditional affixes may be used. They are validated against
312 preceding IT instructions. Unlike ARM mode, you cannot use a
313 conditional affix except in the scope of an IT instruction. */
314
315 static bfd_boolean unified_syntax = FALSE;
316
317 enum neon_el_type
318 {
319 NT_invtype,
320 NT_untyped,
321 NT_integer,
322 NT_float,
323 NT_poly,
324 NT_signed,
325 NT_unsigned
326 };
327
328 struct neon_type_el
329 {
330 enum neon_el_type type;
331 unsigned size;
332 };
333
334 #define NEON_MAX_TYPE_ELS 4
335
336 struct neon_type
337 {
338 struct neon_type_el el[NEON_MAX_TYPE_ELS];
339 unsigned elems;
340 };
341
342 enum it_instruction_type
343 {
344 OUTSIDE_IT_INSN,
345 INSIDE_IT_INSN,
346 INSIDE_IT_LAST_INSN,
347 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
348 if inside, should be the last one. */
349 NEUTRAL_IT_INSN, /* This could be either inside or outside,
350 i.e. BKPT and NOP. */
351 IT_INSN /* The IT insn has been parsed. */
352 };
353
354 struct arm_it
355 {
356 const char * error;
357 unsigned long instruction;
358 int size;
359 int size_req;
360 int cond;
361 /* "uncond_value" is set to the value in place of the conditional field in
362 unconditional versions of the instruction, or -1 if nothing is
363 appropriate. */
364 int uncond_value;
365 struct neon_type vectype;
366 /* This does not indicate an actual NEON instruction, only that
367 the mnemonic accepts neon-style type suffixes. */
368 int is_neon;
369 /* Set to the opcode if the instruction needs relaxation.
370 Zero if the instruction is not relaxed. */
371 unsigned long relax;
372 struct
373 {
374 bfd_reloc_code_real_type type;
375 expressionS exp;
376 int pc_rel;
377 } reloc;
378
379 enum it_instruction_type it_insn_type;
380
381 struct
382 {
383 unsigned reg;
384 signed int imm;
385 struct neon_type_el vectype;
386 unsigned present : 1; /* Operand present. */
387 unsigned isreg : 1; /* Operand was a register. */
388 unsigned immisreg : 1; /* .imm field is a second register. */
389 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
390 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
391 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
392 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
393 instructions. This allows us to disambiguate ARM <-> vector insns. */
394 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
395 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
396 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
397 unsigned issingle : 1; /* Operand is VFP single-precision register. */
398 unsigned hasreloc : 1; /* Operand has relocation suffix. */
399 unsigned writeback : 1; /* Operand has trailing ! */
400 unsigned preind : 1; /* Preindexed address. */
401 unsigned postind : 1; /* Postindexed address. */
402 unsigned negative : 1; /* Index register was negated. */
403 unsigned shifted : 1; /* Shift applied to operation. */
404 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
405 } operands[6];
406 };
407
408 static struct arm_it inst;
409
410 #define NUM_FLOAT_VALS 8
411
412 const char * fp_const[] =
413 {
414 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
415 };
416
417 /* Number of littlenums required to hold an extended precision number. */
418 #define MAX_LITTLENUMS 6
419
420 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
421
422 #define FAIL (-1)
423 #define SUCCESS (0)
424
425 #define SUFF_S 1
426 #define SUFF_D 2
427 #define SUFF_E 3
428 #define SUFF_P 4
429
430 #define CP_T_X 0x00008000
431 #define CP_T_Y 0x00400000
432
433 #define CONDS_BIT 0x00100000
434 #define LOAD_BIT 0x00100000
435
436 #define DOUBLE_LOAD_FLAG 0x00000001
437
438 struct asm_cond
439 {
440 const char * template_name;
441 unsigned long value;
442 };
443
444 #define COND_ALWAYS 0xE
445
446 struct asm_psr
447 {
448 const char * template_name;
449 unsigned long field;
450 };
451
452 struct asm_barrier_opt
453 {
454 const char * template_name;
455 unsigned long value;
456 };
457
458 /* The bit that distinguishes CPSR and SPSR. */
459 #define SPSR_BIT (1 << 22)
460
461 /* The individual PSR flag bits. */
462 #define PSR_c (1 << 16)
463 #define PSR_x (1 << 17)
464 #define PSR_s (1 << 18)
465 #define PSR_f (1 << 19)
466
467 struct reloc_entry
468 {
469 char * name;
470 bfd_reloc_code_real_type reloc;
471 };
472
473 enum vfp_reg_pos
474 {
475 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
476 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
477 };
478
479 enum vfp_ldstm_type
480 {
481 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
482 };
483
484 /* Bits for DEFINED field in neon_typed_alias. */
485 #define NTA_HASTYPE 1
486 #define NTA_HASINDEX 2
487
488 struct neon_typed_alias
489 {
490 unsigned char defined;
491 unsigned char index;
492 struct neon_type_el eltype;
493 };
494
495 /* ARM register categories. This includes coprocessor numbers and various
496 architecture extensions' registers. */
497 enum arm_reg_type
498 {
499 REG_TYPE_RN,
500 REG_TYPE_CP,
501 REG_TYPE_CN,
502 REG_TYPE_FN,
503 REG_TYPE_VFS,
504 REG_TYPE_VFD,
505 REG_TYPE_NQ,
506 REG_TYPE_VFSD,
507 REG_TYPE_NDQ,
508 REG_TYPE_NSDQ,
509 REG_TYPE_VFC,
510 REG_TYPE_MVF,
511 REG_TYPE_MVD,
512 REG_TYPE_MVFX,
513 REG_TYPE_MVDX,
514 REG_TYPE_MVAX,
515 REG_TYPE_DSPSC,
516 REG_TYPE_MMXWR,
517 REG_TYPE_MMXWC,
518 REG_TYPE_MMXWCG,
519 REG_TYPE_XSCALE,
520 REG_TYPE_RNB
521 };
522
523 /* Structure for a hash table entry for a register.
524 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
525 information which states whether a vector type or index is specified (for a
526 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
527 struct reg_entry
528 {
529 const char * name;
530 unsigned int number;
531 unsigned char type;
532 unsigned char builtin;
533 struct neon_typed_alias * neon;
534 };
535
536 /* Diagnostics used when we don't get a register of the expected type. */
537 const char * const reg_expected_msgs[] =
538 {
539 N_("ARM register expected"),
540 N_("bad or missing co-processor number"),
541 N_("co-processor register expected"),
542 N_("FPA register expected"),
543 N_("VFP single precision register expected"),
544 N_("VFP/Neon double precision register expected"),
545 N_("Neon quad precision register expected"),
546 N_("VFP single or double precision register expected"),
547 N_("Neon double or quad precision register expected"),
548 N_("VFP single, double or Neon quad precision register expected"),
549 N_("VFP system register expected"),
550 N_("Maverick MVF register expected"),
551 N_("Maverick MVD register expected"),
552 N_("Maverick MVFX register expected"),
553 N_("Maverick MVDX register expected"),
554 N_("Maverick MVAX register expected"),
555 N_("Maverick DSPSC register expected"),
556 N_("iWMMXt data register expected"),
557 N_("iWMMXt control register expected"),
558 N_("iWMMXt scalar register expected"),
559 N_("XScale accumulator register expected"),
560 };
561
562 /* Some well known registers that we refer to directly elsewhere. */
563 #define REG_SP 13
564 #define REG_LR 14
565 #define REG_PC 15
566
567 /* ARM instructions take 4bytes in the object file, Thumb instructions
568 take 2: */
569 #define INSN_SIZE 4
570
571 struct asm_opcode
572 {
573 /* Basic string to match. */
574 const char * template_name;
575
576 /* Parameters to instruction. */
577 unsigned int operands[8];
578
579 /* Conditional tag - see opcode_lookup. */
580 unsigned int tag : 4;
581
582 /* Basic instruction code. */
583 unsigned int avalue : 28;
584
585 /* Thumb-format instruction code. */
586 unsigned int tvalue;
587
588 /* Which architecture variant provides this instruction. */
589 const arm_feature_set * avariant;
590 const arm_feature_set * tvariant;
591
592 /* Function to call to encode instruction in ARM format. */
593 void (* aencode) (void);
594
595 /* Function to call to encode instruction in Thumb format. */
596 void (* tencode) (void);
597 };
598
599 /* Defines for various bits that we will want to toggle. */
600 #define INST_IMMEDIATE 0x02000000
601 #define OFFSET_REG 0x02000000
602 #define HWOFFSET_IMM 0x00400000
603 #define SHIFT_BY_REG 0x00000010
604 #define PRE_INDEX 0x01000000
605 #define INDEX_UP 0x00800000
606 #define WRITE_BACK 0x00200000
607 #define LDM_TYPE_2_OR_3 0x00400000
608 #define CPSI_MMOD 0x00020000
609
610 #define LITERAL_MASK 0xf000f000
611 #define OPCODE_MASK 0xfe1fffff
612 #define V4_STR_BIT 0x00000020
613
614 #define T2_SUBS_PC_LR 0xf3de8f00
615
616 #define DATA_OP_SHIFT 21
617
618 #define T2_OPCODE_MASK 0xfe1fffff
619 #define T2_DATA_OP_SHIFT 21
620
621 /* Codes to distinguish the arithmetic instructions. */
622 #define OPCODE_AND 0
623 #define OPCODE_EOR 1
624 #define OPCODE_SUB 2
625 #define OPCODE_RSB 3
626 #define OPCODE_ADD 4
627 #define OPCODE_ADC 5
628 #define OPCODE_SBC 6
629 #define OPCODE_RSC 7
630 #define OPCODE_TST 8
631 #define OPCODE_TEQ 9
632 #define OPCODE_CMP 10
633 #define OPCODE_CMN 11
634 #define OPCODE_ORR 12
635 #define OPCODE_MOV 13
636 #define OPCODE_BIC 14
637 #define OPCODE_MVN 15
638
639 #define T2_OPCODE_AND 0
640 #define T2_OPCODE_BIC 1
641 #define T2_OPCODE_ORR 2
642 #define T2_OPCODE_ORN 3
643 #define T2_OPCODE_EOR 4
644 #define T2_OPCODE_ADD 8
645 #define T2_OPCODE_ADC 10
646 #define T2_OPCODE_SBC 11
647 #define T2_OPCODE_SUB 13
648 #define T2_OPCODE_RSB 14
649
650 #define T_OPCODE_MUL 0x4340
651 #define T_OPCODE_TST 0x4200
652 #define T_OPCODE_CMN 0x42c0
653 #define T_OPCODE_NEG 0x4240
654 #define T_OPCODE_MVN 0x43c0
655
656 #define T_OPCODE_ADD_R3 0x1800
657 #define T_OPCODE_SUB_R3 0x1a00
658 #define T_OPCODE_ADD_HI 0x4400
659 #define T_OPCODE_ADD_ST 0xb000
660 #define T_OPCODE_SUB_ST 0xb080
661 #define T_OPCODE_ADD_SP 0xa800
662 #define T_OPCODE_ADD_PC 0xa000
663 #define T_OPCODE_ADD_I8 0x3000
664 #define T_OPCODE_SUB_I8 0x3800
665 #define T_OPCODE_ADD_I3 0x1c00
666 #define T_OPCODE_SUB_I3 0x1e00
667
668 #define T_OPCODE_ASR_R 0x4100
669 #define T_OPCODE_LSL_R 0x4080
670 #define T_OPCODE_LSR_R 0x40c0
671 #define T_OPCODE_ROR_R 0x41c0
672 #define T_OPCODE_ASR_I 0x1000
673 #define T_OPCODE_LSL_I 0x0000
674 #define T_OPCODE_LSR_I 0x0800
675
676 #define T_OPCODE_MOV_I8 0x2000
677 #define T_OPCODE_CMP_I8 0x2800
678 #define T_OPCODE_CMP_LR 0x4280
679 #define T_OPCODE_MOV_HR 0x4600
680 #define T_OPCODE_CMP_HR 0x4500
681
682 #define T_OPCODE_LDR_PC 0x4800
683 #define T_OPCODE_LDR_SP 0x9800
684 #define T_OPCODE_STR_SP 0x9000
685 #define T_OPCODE_LDR_IW 0x6800
686 #define T_OPCODE_STR_IW 0x6000
687 #define T_OPCODE_LDR_IH 0x8800
688 #define T_OPCODE_STR_IH 0x8000
689 #define T_OPCODE_LDR_IB 0x7800
690 #define T_OPCODE_STR_IB 0x7000
691 #define T_OPCODE_LDR_RW 0x5800
692 #define T_OPCODE_STR_RW 0x5000
693 #define T_OPCODE_LDR_RH 0x5a00
694 #define T_OPCODE_STR_RH 0x5200
695 #define T_OPCODE_LDR_RB 0x5c00
696 #define T_OPCODE_STR_RB 0x5400
697
698 #define T_OPCODE_PUSH 0xb400
699 #define T_OPCODE_POP 0xbc00
700
701 #define T_OPCODE_BRANCH 0xe000
702
703 #define THUMB_SIZE 2 /* Size of thumb instruction. */
704 #define THUMB_PP_PC_LR 0x0100
705 #define THUMB_LOAD_BIT 0x0800
706 #define THUMB2_LOAD_BIT 0x00100000
707
708 #define BAD_ARGS _("bad arguments to instruction")
709 #define BAD_SP _("r13 not allowed here")
710 #define BAD_PC _("r15 not allowed here")
711 #define BAD_COND _("instruction cannot be conditional")
712 #define BAD_OVERLAP _("registers may not be the same")
713 #define BAD_HIREG _("lo register required")
714 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
715 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
716 #define BAD_BRANCH _("branch must be last instruction in IT block")
717 #define BAD_NOT_IT _("instruction not allowed in IT block")
718 #define BAD_FPU _("selected FPU does not support instruction")
719 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
720 #define BAD_IT_COND _("incorrect condition in IT block")
721 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
722 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
723 #define BAD_PC_ADDRESSING \
724 _("cannot use register index with PC-relative addressing")
725 #define BAD_PC_WRITEBACK \
726 _("cannot use writeback with PC-relative addressing")
727
728 static struct hash_control * arm_ops_hsh;
729 static struct hash_control * arm_cond_hsh;
730 static struct hash_control * arm_shift_hsh;
731 static struct hash_control * arm_psr_hsh;
732 static struct hash_control * arm_v7m_psr_hsh;
733 static struct hash_control * arm_reg_hsh;
734 static struct hash_control * arm_reloc_hsh;
735 static struct hash_control * arm_barrier_opt_hsh;
736
737 /* Stuff needed to resolve the label ambiguity
738 As:
739 ...
740 label: <insn>
741 may differ from:
742 ...
743 label:
744 <insn> */
745
746 symbolS * last_label_seen;
747 static int label_is_thumb_function_name = FALSE;
748
749 /* Literal pool structure. Held on a per-section
750 and per-sub-section basis. */
751
752 #define MAX_LITERAL_POOL_SIZE 1024
753 typedef struct literal_pool
754 {
755 expressionS literals [MAX_LITERAL_POOL_SIZE];
756 unsigned int next_free_entry;
757 unsigned int id;
758 symbolS * symbol;
759 segT section;
760 subsegT sub_section;
761 struct literal_pool * next;
762 } literal_pool;
763
764 /* Pointer to a linked list of literal pools. */
765 literal_pool * list_of_pools = NULL;
766
767 #ifdef OBJ_ELF
768 # define now_it seg_info (now_seg)->tc_segment_info_data.current_it
769 #else
770 static struct current_it now_it;
771 #endif
772
773 static inline int
774 now_it_compatible (int cond)
775 {
776 return (cond & ~1) == (now_it.cc & ~1);
777 }
778
779 static inline int
780 conditional_insn (void)
781 {
782 return inst.cond != COND_ALWAYS;
783 }
784
785 static int in_it_block (void);
786
787 static int handle_it_state (void);
788
789 static void force_automatic_it_block_close (void);
790
791 static void it_fsm_post_encode (void);
792
793 #define set_it_insn_type(type) \
794 do \
795 { \
796 inst.it_insn_type = type; \
797 if (handle_it_state () == FAIL) \
798 return; \
799 } \
800 while (0)
801
802 #define set_it_insn_type_nonvoid(type, failret) \
803 do \
804 { \
805 inst.it_insn_type = type; \
806 if (handle_it_state () == FAIL) \
807 return failret; \
808 } \
809 while(0)
810
811 #define set_it_insn_type_last() \
812 do \
813 { \
814 if (inst.cond == COND_ALWAYS) \
815 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
816 else \
817 set_it_insn_type (INSIDE_IT_LAST_INSN); \
818 } \
819 while (0)
820
821 /* Pure syntax. */
822
823 /* This array holds the chars that always start a comment. If the
824 pre-processor is disabled, these aren't very useful. */
825 const char comment_chars[] = "@";
826
827 /* This array holds the chars that only start a comment at the beginning of
828 a line. If the line seems to have the form '# 123 filename'
829 .line and .file directives will appear in the pre-processed output. */
830 /* Note that input_file.c hand checks for '#' at the beginning of the
831 first line of the input file. This is because the compiler outputs
832 #NO_APP at the beginning of its output. */
833 /* Also note that comments like this one will always work. */
834 const char line_comment_chars[] = "#";
835
836 const char line_separator_chars[] = ";";
837
838 /* Chars that can be used to separate mant
839 from exp in floating point numbers. */
840 const char EXP_CHARS[] = "eE";
841
842 /* Chars that mean this number is a floating point constant. */
843 /* As in 0f12.456 */
844 /* or 0d1.2345e12 */
845
846 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
847
848 /* Prefix characters that indicate the start of an immediate
849 value. */
850 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
851
852 /* Separator character handling. */
853
854 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
855
856 static inline int
857 skip_past_char (char ** str, char c)
858 {
859 if (**str == c)
860 {
861 (*str)++;
862 return SUCCESS;
863 }
864 else
865 return FAIL;
866 }
867
868 #define skip_past_comma(str) skip_past_char (str, ',')
869
870 /* Arithmetic expressions (possibly involving symbols). */
871
872 /* Return TRUE if anything in the expression is a bignum. */
873
874 static int
875 walk_no_bignums (symbolS * sp)
876 {
877 if (symbol_get_value_expression (sp)->X_op == O_big)
878 return 1;
879
880 if (symbol_get_value_expression (sp)->X_add_symbol)
881 {
882 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
883 || (symbol_get_value_expression (sp)->X_op_symbol
884 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
885 }
886
887 return 0;
888 }
889
890 static int in_my_get_expression = 0;
891
892 /* Third argument to my_get_expression. */
893 #define GE_NO_PREFIX 0
894 #define GE_IMM_PREFIX 1
895 #define GE_OPT_PREFIX 2
896 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
897 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
898 #define GE_OPT_PREFIX_BIG 3
899
900 static int
901 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
902 {
903 char * save_in;
904 segT seg;
905
906 /* In unified syntax, all prefixes are optional. */
907 if (unified_syntax)
908 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
909 : GE_OPT_PREFIX;
910
911 switch (prefix_mode)
912 {
913 case GE_NO_PREFIX: break;
914 case GE_IMM_PREFIX:
915 if (!is_immediate_prefix (**str))
916 {
917 inst.error = _("immediate expression requires a # prefix");
918 return FAIL;
919 }
920 (*str)++;
921 break;
922 case GE_OPT_PREFIX:
923 case GE_OPT_PREFIX_BIG:
924 if (is_immediate_prefix (**str))
925 (*str)++;
926 break;
927 default: abort ();
928 }
929
930 memset (ep, 0, sizeof (expressionS));
931
932 save_in = input_line_pointer;
933 input_line_pointer = *str;
934 in_my_get_expression = 1;
935 seg = expression (ep);
936 in_my_get_expression = 0;
937
938 if (ep->X_op == O_illegal || ep->X_op == O_absent)
939 {
940 /* We found a bad or missing expression in md_operand(). */
941 *str = input_line_pointer;
942 input_line_pointer = save_in;
943 if (inst.error == NULL)
944 inst.error = (ep->X_op == O_absent
945 ? _("missing expression") :_("bad expression"));
946 return 1;
947 }
948
949 #ifdef OBJ_AOUT
950 if (seg != absolute_section
951 && seg != text_section
952 && seg != data_section
953 && seg != bss_section
954 && seg != undefined_section)
955 {
956 inst.error = _("bad segment");
957 *str = input_line_pointer;
958 input_line_pointer = save_in;
959 return 1;
960 }
961 #else
962 (void) seg;
963 #endif
964
965 /* Get rid of any bignums now, so that we don't generate an error for which
966 we can't establish a line number later on. Big numbers are never valid
967 in instructions, which is where this routine is always called. */
968 if (prefix_mode != GE_OPT_PREFIX_BIG
969 && (ep->X_op == O_big
970 || (ep->X_add_symbol
971 && (walk_no_bignums (ep->X_add_symbol)
972 || (ep->X_op_symbol
973 && walk_no_bignums (ep->X_op_symbol))))))
974 {
975 inst.error = _("invalid constant");
976 *str = input_line_pointer;
977 input_line_pointer = save_in;
978 return 1;
979 }
980
981 *str = input_line_pointer;
982 input_line_pointer = save_in;
983 return 0;
984 }
985
986 /* Turn a string in input_line_pointer into a floating point constant
987 of type TYPE, and store the appropriate bytes in *LITP. The number
988 of LITTLENUMS emitted is stored in *SIZEP. An error message is
989 returned, or NULL on OK.
990
991 Note that fp constants aren't represent in the normal way on the ARM.
992 In big endian mode, things are as expected. However, in little endian
993 mode fp constants are big-endian word-wise, and little-endian byte-wise
994 within the words. For example, (double) 1.1 in big endian mode is
995 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
996 the byte sequence 99 99 f1 3f 9a 99 99 99.
997
998 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
999
1000 char *
1001 md_atof (int type, char * litP, int * sizeP)
1002 {
1003 int prec;
1004 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1005 char *t;
1006 int i;
1007
1008 switch (type)
1009 {
1010 case 'f':
1011 case 'F':
1012 case 's':
1013 case 'S':
1014 prec = 2;
1015 break;
1016
1017 case 'd':
1018 case 'D':
1019 case 'r':
1020 case 'R':
1021 prec = 4;
1022 break;
1023
1024 case 'x':
1025 case 'X':
1026 prec = 5;
1027 break;
1028
1029 case 'p':
1030 case 'P':
1031 prec = 5;
1032 break;
1033
1034 default:
1035 *sizeP = 0;
1036 return _("Unrecognized or unsupported floating point constant");
1037 }
1038
1039 t = atof_ieee (input_line_pointer, type, words);
1040 if (t)
1041 input_line_pointer = t;
1042 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1043
1044 if (target_big_endian)
1045 {
1046 for (i = 0; i < prec; i++)
1047 {
1048 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1049 litP += sizeof (LITTLENUM_TYPE);
1050 }
1051 }
1052 else
1053 {
1054 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1055 for (i = prec - 1; i >= 0; i--)
1056 {
1057 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1058 litP += sizeof (LITTLENUM_TYPE);
1059 }
1060 else
1061 /* For a 4 byte float the order of elements in `words' is 1 0.
1062 For an 8 byte float the order is 1 0 3 2. */
1063 for (i = 0; i < prec; i += 2)
1064 {
1065 md_number_to_chars (litP, (valueT) words[i + 1],
1066 sizeof (LITTLENUM_TYPE));
1067 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1068 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1069 litP += 2 * sizeof (LITTLENUM_TYPE);
1070 }
1071 }
1072
1073 return NULL;
1074 }
1075
1076 /* We handle all bad expressions here, so that we can report the faulty
1077 instruction in the error message. */
1078 void
1079 md_operand (expressionS * exp)
1080 {
1081 if (in_my_get_expression)
1082 exp->X_op = O_illegal;
1083 }
1084
1085 /* Immediate values. */
1086
1087 /* Generic immediate-value read function for use in directives.
1088 Accepts anything that 'expression' can fold to a constant.
1089 *val receives the number. */
1090 #ifdef OBJ_ELF
1091 static int
1092 immediate_for_directive (int *val)
1093 {
1094 expressionS exp;
1095 exp.X_op = O_illegal;
1096
1097 if (is_immediate_prefix (*input_line_pointer))
1098 {
1099 input_line_pointer++;
1100 expression (&exp);
1101 }
1102
1103 if (exp.X_op != O_constant)
1104 {
1105 as_bad (_("expected #constant"));
1106 ignore_rest_of_line ();
1107 return FAIL;
1108 }
1109 *val = exp.X_add_number;
1110 return SUCCESS;
1111 }
1112 #endif
1113
1114 /* Register parsing. */
1115
1116 /* Generic register parser. CCP points to what should be the
1117 beginning of a register name. If it is indeed a valid register
1118 name, advance CCP over it and return the reg_entry structure;
1119 otherwise return NULL. Does not issue diagnostics. */
1120
1121 static struct reg_entry *
1122 arm_reg_parse_multi (char **ccp)
1123 {
1124 char *start = *ccp;
1125 char *p;
1126 struct reg_entry *reg;
1127
1128 #ifdef REGISTER_PREFIX
1129 if (*start != REGISTER_PREFIX)
1130 return NULL;
1131 start++;
1132 #endif
1133 #ifdef OPTIONAL_REGISTER_PREFIX
1134 if (*start == OPTIONAL_REGISTER_PREFIX)
1135 start++;
1136 #endif
1137
1138 p = start;
1139 if (!ISALPHA (*p) || !is_name_beginner (*p))
1140 return NULL;
1141
1142 do
1143 p++;
1144 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1145
1146 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1147
1148 if (!reg)
1149 return NULL;
1150
1151 *ccp = p;
1152 return reg;
1153 }
1154
1155 static int
1156 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1157 enum arm_reg_type type)
1158 {
1159 /* Alternative syntaxes are accepted for a few register classes. */
1160 switch (type)
1161 {
1162 case REG_TYPE_MVF:
1163 case REG_TYPE_MVD:
1164 case REG_TYPE_MVFX:
1165 case REG_TYPE_MVDX:
1166 /* Generic coprocessor register names are allowed for these. */
1167 if (reg && reg->type == REG_TYPE_CN)
1168 return reg->number;
1169 break;
1170
1171 case REG_TYPE_CP:
1172 /* For backward compatibility, a bare number is valid here. */
1173 {
1174 unsigned long processor = strtoul (start, ccp, 10);
1175 if (*ccp != start && processor <= 15)
1176 return processor;
1177 }
1178
1179 case REG_TYPE_MMXWC:
1180 /* WC includes WCG. ??? I'm not sure this is true for all
1181 instructions that take WC registers. */
1182 if (reg && reg->type == REG_TYPE_MMXWCG)
1183 return reg->number;
1184 break;
1185
1186 default:
1187 break;
1188 }
1189
1190 return FAIL;
1191 }
1192
1193 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1194 return value is the register number or FAIL. */
1195
1196 static int
1197 arm_reg_parse (char **ccp, enum arm_reg_type type)
1198 {
1199 char *start = *ccp;
1200 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1201 int ret;
1202
1203 /* Do not allow a scalar (reg+index) to parse as a register. */
1204 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1205 return FAIL;
1206
1207 if (reg && reg->type == type)
1208 return reg->number;
1209
1210 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1211 return ret;
1212
1213 *ccp = start;
1214 return FAIL;
1215 }
1216
1217 /* Parse a Neon type specifier. *STR should point at the leading '.'
1218 character. Does no verification at this stage that the type fits the opcode
1219 properly. E.g.,
1220
1221 .i32.i32.s16
1222 .s32.f32
1223 .u16
1224
1225 Can all be legally parsed by this function.
1226
1227 Fills in neon_type struct pointer with parsed information, and updates STR
1228 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1229 type, FAIL if not. */
1230
1231 static int
1232 parse_neon_type (struct neon_type *type, char **str)
1233 {
1234 char *ptr = *str;
1235
1236 if (type)
1237 type->elems = 0;
1238
1239 while (type->elems < NEON_MAX_TYPE_ELS)
1240 {
1241 enum neon_el_type thistype = NT_untyped;
1242 unsigned thissize = -1u;
1243
1244 if (*ptr != '.')
1245 break;
1246
1247 ptr++;
1248
1249 /* Just a size without an explicit type. */
1250 if (ISDIGIT (*ptr))
1251 goto parsesize;
1252
1253 switch (TOLOWER (*ptr))
1254 {
1255 case 'i': thistype = NT_integer; break;
1256 case 'f': thistype = NT_float; break;
1257 case 'p': thistype = NT_poly; break;
1258 case 's': thistype = NT_signed; break;
1259 case 'u': thistype = NT_unsigned; break;
1260 case 'd':
1261 thistype = NT_float;
1262 thissize = 64;
1263 ptr++;
1264 goto done;
1265 default:
1266 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1267 return FAIL;
1268 }
1269
1270 ptr++;
1271
1272 /* .f is an abbreviation for .f32. */
1273 if (thistype == NT_float && !ISDIGIT (*ptr))
1274 thissize = 32;
1275 else
1276 {
1277 parsesize:
1278 thissize = strtoul (ptr, &ptr, 10);
1279
1280 if (thissize != 8 && thissize != 16 && thissize != 32
1281 && thissize != 64)
1282 {
1283 as_bad (_("bad size %d in type specifier"), thissize);
1284 return FAIL;
1285 }
1286 }
1287
1288 done:
1289 if (type)
1290 {
1291 type->el[type->elems].type = thistype;
1292 type->el[type->elems].size = thissize;
1293 type->elems++;
1294 }
1295 }
1296
1297 /* Empty/missing type is not a successful parse. */
1298 if (type->elems == 0)
1299 return FAIL;
1300
1301 *str = ptr;
1302
1303 return SUCCESS;
1304 }
1305
1306 /* Errors may be set multiple times during parsing or bit encoding
1307 (particularly in the Neon bits), but usually the earliest error which is set
1308 will be the most meaningful. Avoid overwriting it with later (cascading)
1309 errors by calling this function. */
1310
1311 static void
1312 first_error (const char *err)
1313 {
1314 if (!inst.error)
1315 inst.error = err;
1316 }
1317
1318 /* Parse a single type, e.g. ".s32", leading period included. */
1319 static int
1320 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1321 {
1322 char *str = *ccp;
1323 struct neon_type optype;
1324
1325 if (*str == '.')
1326 {
1327 if (parse_neon_type (&optype, &str) == SUCCESS)
1328 {
1329 if (optype.elems == 1)
1330 *vectype = optype.el[0];
1331 else
1332 {
1333 first_error (_("only one type should be specified for operand"));
1334 return FAIL;
1335 }
1336 }
1337 else
1338 {
1339 first_error (_("vector type expected"));
1340 return FAIL;
1341 }
1342 }
1343 else
1344 return FAIL;
1345
1346 *ccp = str;
1347
1348 return SUCCESS;
1349 }
1350
1351 /* Special meanings for indices (which have a range of 0-7), which will fit into
1352 a 4-bit integer. */
1353
1354 #define NEON_ALL_LANES 15
1355 #define NEON_INTERLEAVE_LANES 14
1356
1357 /* Parse either a register or a scalar, with an optional type. Return the
1358 register number, and optionally fill in the actual type of the register
1359 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1360 type/index information in *TYPEINFO. */
1361
1362 static int
1363 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1364 enum arm_reg_type *rtype,
1365 struct neon_typed_alias *typeinfo)
1366 {
1367 char *str = *ccp;
1368 struct reg_entry *reg = arm_reg_parse_multi (&str);
1369 struct neon_typed_alias atype;
1370 struct neon_type_el parsetype;
1371
1372 atype.defined = 0;
1373 atype.index = -1;
1374 atype.eltype.type = NT_invtype;
1375 atype.eltype.size = -1;
1376
1377 /* Try alternate syntax for some types of register. Note these are mutually
1378 exclusive with the Neon syntax extensions. */
1379 if (reg == NULL)
1380 {
1381 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1382 if (altreg != FAIL)
1383 *ccp = str;
1384 if (typeinfo)
1385 *typeinfo = atype;
1386 return altreg;
1387 }
1388
1389 /* Undo polymorphism when a set of register types may be accepted. */
1390 if ((type == REG_TYPE_NDQ
1391 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1392 || (type == REG_TYPE_VFSD
1393 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1394 || (type == REG_TYPE_NSDQ
1395 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1396 || reg->type == REG_TYPE_NQ))
1397 || (type == REG_TYPE_MMXWC
1398 && (reg->type == REG_TYPE_MMXWCG)))
1399 type = (enum arm_reg_type) reg->type;
1400
1401 if (type != reg->type)
1402 return FAIL;
1403
1404 if (reg->neon)
1405 atype = *reg->neon;
1406
1407 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1408 {
1409 if ((atype.defined & NTA_HASTYPE) != 0)
1410 {
1411 first_error (_("can't redefine type for operand"));
1412 return FAIL;
1413 }
1414 atype.defined |= NTA_HASTYPE;
1415 atype.eltype = parsetype;
1416 }
1417
1418 if (skip_past_char (&str, '[') == SUCCESS)
1419 {
1420 if (type != REG_TYPE_VFD)
1421 {
1422 first_error (_("only D registers may be indexed"));
1423 return FAIL;
1424 }
1425
1426 if ((atype.defined & NTA_HASINDEX) != 0)
1427 {
1428 first_error (_("can't change index for operand"));
1429 return FAIL;
1430 }
1431
1432 atype.defined |= NTA_HASINDEX;
1433
1434 if (skip_past_char (&str, ']') == SUCCESS)
1435 atype.index = NEON_ALL_LANES;
1436 else
1437 {
1438 expressionS exp;
1439
1440 my_get_expression (&exp, &str, GE_NO_PREFIX);
1441
1442 if (exp.X_op != O_constant)
1443 {
1444 first_error (_("constant expression required"));
1445 return FAIL;
1446 }
1447
1448 if (skip_past_char (&str, ']') == FAIL)
1449 return FAIL;
1450
1451 atype.index = exp.X_add_number;
1452 }
1453 }
1454
1455 if (typeinfo)
1456 *typeinfo = atype;
1457
1458 if (rtype)
1459 *rtype = type;
1460
1461 *ccp = str;
1462
1463 return reg->number;
1464 }
1465
1466 /* Like arm_reg_parse, but allow allow the following extra features:
1467 - If RTYPE is non-zero, return the (possibly restricted) type of the
1468 register (e.g. Neon double or quad reg when either has been requested).
1469 - If this is a Neon vector type with additional type information, fill
1470 in the struct pointed to by VECTYPE (if non-NULL).
1471 This function will fault on encountering a scalar. */
1472
1473 static int
1474 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1475 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1476 {
1477 struct neon_typed_alias atype;
1478 char *str = *ccp;
1479 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1480
1481 if (reg == FAIL)
1482 return FAIL;
1483
1484 /* Do not allow regname(... to parse as a register. */
1485 if (*str == '(')
1486 return FAIL;
1487
1488 /* Do not allow a scalar (reg+index) to parse as a register. */
1489 if ((atype.defined & NTA_HASINDEX) != 0)
1490 {
1491 first_error (_("register operand expected, but got scalar"));
1492 return FAIL;
1493 }
1494
1495 if (vectype)
1496 *vectype = atype.eltype;
1497
1498 *ccp = str;
1499
1500 return reg;
1501 }
1502
1503 #define NEON_SCALAR_REG(X) ((X) >> 4)
1504 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1505
1506 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1507 have enough information to be able to do a good job bounds-checking. So, we
1508 just do easy checks here, and do further checks later. */
1509
1510 static int
1511 parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
1512 {
1513 int reg;
1514 char *str = *ccp;
1515 struct neon_typed_alias atype;
1516
1517 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
1518
1519 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1520 return FAIL;
1521
1522 if (atype.index == NEON_ALL_LANES)
1523 {
1524 first_error (_("scalar must have an index"));
1525 return FAIL;
1526 }
1527 else if (atype.index >= 64 / elsize)
1528 {
1529 first_error (_("scalar index out of range"));
1530 return FAIL;
1531 }
1532
1533 if (type)
1534 *type = atype.eltype;
1535
1536 *ccp = str;
1537
1538 return reg * 16 + atype.index;
1539 }
1540
1541 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1542
1543 static long
1544 parse_reg_list (char ** strp)
1545 {
1546 char * str = * strp;
1547 long range = 0;
1548 int another_range;
1549
1550 /* We come back here if we get ranges concatenated by '+' or '|'. */
1551 do
1552 {
1553 another_range = 0;
1554
1555 if (*str == '{')
1556 {
1557 int in_range = 0;
1558 int cur_reg = -1;
1559
1560 str++;
1561 do
1562 {
1563 int reg;
1564
1565 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
1566 {
1567 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
1568 return FAIL;
1569 }
1570
1571 if (in_range)
1572 {
1573 int i;
1574
1575 if (reg <= cur_reg)
1576 {
1577 first_error (_("bad range in register list"));
1578 return FAIL;
1579 }
1580
1581 for (i = cur_reg + 1; i < reg; i++)
1582 {
1583 if (range & (1 << i))
1584 as_tsktsk
1585 (_("Warning: duplicated register (r%d) in register list"),
1586 i);
1587 else
1588 range |= 1 << i;
1589 }
1590 in_range = 0;
1591 }
1592
1593 if (range & (1 << reg))
1594 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1595 reg);
1596 else if (reg <= cur_reg)
1597 as_tsktsk (_("Warning: register range not in ascending order"));
1598
1599 range |= 1 << reg;
1600 cur_reg = reg;
1601 }
1602 while (skip_past_comma (&str) != FAIL
1603 || (in_range = 1, *str++ == '-'));
1604 str--;
1605
1606 if (*str++ != '}')
1607 {
1608 first_error (_("missing `}'"));
1609 return FAIL;
1610 }
1611 }
1612 else
1613 {
1614 expressionS exp;
1615
1616 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
1617 return FAIL;
1618
1619 if (exp.X_op == O_constant)
1620 {
1621 if (exp.X_add_number
1622 != (exp.X_add_number & 0x0000ffff))
1623 {
1624 inst.error = _("invalid register mask");
1625 return FAIL;
1626 }
1627
1628 if ((range & exp.X_add_number) != 0)
1629 {
1630 int regno = range & exp.X_add_number;
1631
1632 regno &= -regno;
1633 regno = (1 << regno) - 1;
1634 as_tsktsk
1635 (_("Warning: duplicated register (r%d) in register list"),
1636 regno);
1637 }
1638
1639 range |= exp.X_add_number;
1640 }
1641 else
1642 {
1643 if (inst.reloc.type != 0)
1644 {
1645 inst.error = _("expression too complex");
1646 return FAIL;
1647 }
1648
1649 memcpy (&inst.reloc.exp, &exp, sizeof (expressionS));
1650 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1651 inst.reloc.pc_rel = 0;
1652 }
1653 }
1654
1655 if (*str == '|' || *str == '+')
1656 {
1657 str++;
1658 another_range = 1;
1659 }
1660 }
1661 while (another_range);
1662
1663 *strp = str;
1664 return range;
1665 }
1666
1667 /* Types of registers in a list. */
1668
1669 enum reg_list_els
1670 {
1671 REGLIST_VFP_S,
1672 REGLIST_VFP_D,
1673 REGLIST_NEON_D
1674 };
1675
1676 /* Parse a VFP register list. If the string is invalid return FAIL.
1677 Otherwise return the number of registers, and set PBASE to the first
1678 register. Parses registers of type ETYPE.
1679 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1680 - Q registers can be used to specify pairs of D registers
1681 - { } can be omitted from around a singleton register list
1682 FIXME: This is not implemented, as it would require backtracking in
1683 some cases, e.g.:
1684 vtbl.8 d3,d4,d5
1685 This could be done (the meaning isn't really ambiguous), but doesn't
1686 fit in well with the current parsing framework.
1687 - 32 D registers may be used (also true for VFPv3).
1688 FIXME: Types are ignored in these register lists, which is probably a
1689 bug. */
1690
1691 static int
1692 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
1693 {
1694 char *str = *ccp;
1695 int base_reg;
1696 int new_base;
1697 enum arm_reg_type regtype = (enum arm_reg_type) 0;
1698 int max_regs = 0;
1699 int count = 0;
1700 int warned = 0;
1701 unsigned long mask = 0;
1702 int i;
1703
1704 if (*str != '{')
1705 {
1706 inst.error = _("expecting {");
1707 return FAIL;
1708 }
1709
1710 str++;
1711
1712 switch (etype)
1713 {
1714 case REGLIST_VFP_S:
1715 regtype = REG_TYPE_VFS;
1716 max_regs = 32;
1717 break;
1718
1719 case REGLIST_VFP_D:
1720 regtype = REG_TYPE_VFD;
1721 break;
1722
1723 case REGLIST_NEON_D:
1724 regtype = REG_TYPE_NDQ;
1725 break;
1726 }
1727
1728 if (etype != REGLIST_VFP_S)
1729 {
1730 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1731 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
1732 {
1733 max_regs = 32;
1734 if (thumb_mode)
1735 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1736 fpu_vfp_ext_d32);
1737 else
1738 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1739 fpu_vfp_ext_d32);
1740 }
1741 else
1742 max_regs = 16;
1743 }
1744
1745 base_reg = max_regs;
1746
1747 do
1748 {
1749 int setmask = 1, addregs = 1;
1750
1751 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
1752
1753 if (new_base == FAIL)
1754 {
1755 first_error (_(reg_expected_msgs[regtype]));
1756 return FAIL;
1757 }
1758
1759 if (new_base >= max_regs)
1760 {
1761 first_error (_("register out of range in list"));
1762 return FAIL;
1763 }
1764
1765 /* Note: a value of 2 * n is returned for the register Q<n>. */
1766 if (regtype == REG_TYPE_NQ)
1767 {
1768 setmask = 3;
1769 addregs = 2;
1770 }
1771
1772 if (new_base < base_reg)
1773 base_reg = new_base;
1774
1775 if (mask & (setmask << new_base))
1776 {
1777 first_error (_("invalid register list"));
1778 return FAIL;
1779 }
1780
1781 if ((mask >> new_base) != 0 && ! warned)
1782 {
1783 as_tsktsk (_("register list not in ascending order"));
1784 warned = 1;
1785 }
1786
1787 mask |= setmask << new_base;
1788 count += addregs;
1789
1790 if (*str == '-') /* We have the start of a range expression */
1791 {
1792 int high_range;
1793
1794 str++;
1795
1796 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
1797 == FAIL)
1798 {
1799 inst.error = gettext (reg_expected_msgs[regtype]);
1800 return FAIL;
1801 }
1802
1803 if (high_range >= max_regs)
1804 {
1805 first_error (_("register out of range in list"));
1806 return FAIL;
1807 }
1808
1809 if (regtype == REG_TYPE_NQ)
1810 high_range = high_range + 1;
1811
1812 if (high_range <= new_base)
1813 {
1814 inst.error = _("register range not in ascending order");
1815 return FAIL;
1816 }
1817
1818 for (new_base += addregs; new_base <= high_range; new_base += addregs)
1819 {
1820 if (mask & (setmask << new_base))
1821 {
1822 inst.error = _("invalid register list");
1823 return FAIL;
1824 }
1825
1826 mask |= setmask << new_base;
1827 count += addregs;
1828 }
1829 }
1830 }
1831 while (skip_past_comma (&str) != FAIL);
1832
1833 str++;
1834
1835 /* Sanity check -- should have raised a parse error above. */
1836 if (count == 0 || count > max_regs)
1837 abort ();
1838
1839 *pbase = base_reg;
1840
1841 /* Final test -- the registers must be consecutive. */
1842 mask >>= base_reg;
1843 for (i = 0; i < count; i++)
1844 {
1845 if ((mask & (1u << i)) == 0)
1846 {
1847 inst.error = _("non-contiguous register range");
1848 return FAIL;
1849 }
1850 }
1851
1852 *ccp = str;
1853
1854 return count;
1855 }
1856
1857 /* True if two alias types are the same. */
1858
1859 static bfd_boolean
1860 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1861 {
1862 if (!a && !b)
1863 return TRUE;
1864
1865 if (!a || !b)
1866 return FALSE;
1867
1868 if (a->defined != b->defined)
1869 return FALSE;
1870
1871 if ((a->defined & NTA_HASTYPE) != 0
1872 && (a->eltype.type != b->eltype.type
1873 || a->eltype.size != b->eltype.size))
1874 return FALSE;
1875
1876 if ((a->defined & NTA_HASINDEX) != 0
1877 && (a->index != b->index))
1878 return FALSE;
1879
1880 return TRUE;
1881 }
1882
1883 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1884 The base register is put in *PBASE.
1885 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
1886 the return value.
1887 The register stride (minus one) is put in bit 4 of the return value.
1888 Bits [6:5] encode the list length (minus one).
1889 The type of the list elements is put in *ELTYPE, if non-NULL. */
1890
1891 #define NEON_LANE(X) ((X) & 0xf)
1892 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
1893 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1894
1895 static int
1896 parse_neon_el_struct_list (char **str, unsigned *pbase,
1897 struct neon_type_el *eltype)
1898 {
1899 char *ptr = *str;
1900 int base_reg = -1;
1901 int reg_incr = -1;
1902 int count = 0;
1903 int lane = -1;
1904 int leading_brace = 0;
1905 enum arm_reg_type rtype = REG_TYPE_NDQ;
1906 const char *const incr_error = _("register stride must be 1 or 2");
1907 const char *const type_error = _("mismatched element/structure types in list");
1908 struct neon_typed_alias firsttype;
1909
1910 if (skip_past_char (&ptr, '{') == SUCCESS)
1911 leading_brace = 1;
1912
1913 do
1914 {
1915 struct neon_typed_alias atype;
1916 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1917
1918 if (getreg == FAIL)
1919 {
1920 first_error (_(reg_expected_msgs[rtype]));
1921 return FAIL;
1922 }
1923
1924 if (base_reg == -1)
1925 {
1926 base_reg = getreg;
1927 if (rtype == REG_TYPE_NQ)
1928 {
1929 reg_incr = 1;
1930 }
1931 firsttype = atype;
1932 }
1933 else if (reg_incr == -1)
1934 {
1935 reg_incr = getreg - base_reg;
1936 if (reg_incr < 1 || reg_incr > 2)
1937 {
1938 first_error (_(incr_error));
1939 return FAIL;
1940 }
1941 }
1942 else if (getreg != base_reg + reg_incr * count)
1943 {
1944 first_error (_(incr_error));
1945 return FAIL;
1946 }
1947
1948 if (! neon_alias_types_same (&atype, &firsttype))
1949 {
1950 first_error (_(type_error));
1951 return FAIL;
1952 }
1953
1954 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1955 modes. */
1956 if (ptr[0] == '-')
1957 {
1958 struct neon_typed_alias htype;
1959 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1960 if (lane == -1)
1961 lane = NEON_INTERLEAVE_LANES;
1962 else if (lane != NEON_INTERLEAVE_LANES)
1963 {
1964 first_error (_(type_error));
1965 return FAIL;
1966 }
1967 if (reg_incr == -1)
1968 reg_incr = 1;
1969 else if (reg_incr != 1)
1970 {
1971 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
1972 return FAIL;
1973 }
1974 ptr++;
1975 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
1976 if (hireg == FAIL)
1977 {
1978 first_error (_(reg_expected_msgs[rtype]));
1979 return FAIL;
1980 }
1981 if (! neon_alias_types_same (&htype, &firsttype))
1982 {
1983 first_error (_(type_error));
1984 return FAIL;
1985 }
1986 count += hireg + dregs - getreg;
1987 continue;
1988 }
1989
1990 /* If we're using Q registers, we can't use [] or [n] syntax. */
1991 if (rtype == REG_TYPE_NQ)
1992 {
1993 count += 2;
1994 continue;
1995 }
1996
1997 if ((atype.defined & NTA_HASINDEX) != 0)
1998 {
1999 if (lane == -1)
2000 lane = atype.index;
2001 else if (lane != atype.index)
2002 {
2003 first_error (_(type_error));
2004 return FAIL;
2005 }
2006 }
2007 else if (lane == -1)
2008 lane = NEON_INTERLEAVE_LANES;
2009 else if (lane != NEON_INTERLEAVE_LANES)
2010 {
2011 first_error (_(type_error));
2012 return FAIL;
2013 }
2014 count++;
2015 }
2016 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
2017
2018 /* No lane set by [x]. We must be interleaving structures. */
2019 if (lane == -1)
2020 lane = NEON_INTERLEAVE_LANES;
2021
2022 /* Sanity check. */
2023 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2024 || (count > 1 && reg_incr == -1))
2025 {
2026 first_error (_("error parsing element/structure list"));
2027 return FAIL;
2028 }
2029
2030 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2031 {
2032 first_error (_("expected }"));
2033 return FAIL;
2034 }
2035
2036 if (reg_incr == -1)
2037 reg_incr = 1;
2038
2039 if (eltype)
2040 *eltype = firsttype.eltype;
2041
2042 *pbase = base_reg;
2043 *str = ptr;
2044
2045 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2046 }
2047
2048 /* Parse an explicit relocation suffix on an expression. This is
2049 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2050 arm_reloc_hsh contains no entries, so this function can only
2051 succeed if there is no () after the word. Returns -1 on error,
2052 BFD_RELOC_UNUSED if there wasn't any suffix. */
2053 static int
2054 parse_reloc (char **str)
2055 {
2056 struct reloc_entry *r;
2057 char *p, *q;
2058
2059 if (**str != '(')
2060 return BFD_RELOC_UNUSED;
2061
2062 p = *str + 1;
2063 q = p;
2064
2065 while (*q && *q != ')' && *q != ',')
2066 q++;
2067 if (*q != ')')
2068 return -1;
2069
2070 if ((r = (struct reloc_entry *)
2071 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2072 return -1;
2073
2074 *str = q + 1;
2075 return r->reloc;
2076 }
2077
2078 /* Directives: register aliases. */
2079
2080 static struct reg_entry *
2081 insert_reg_alias (char *str, unsigned number, int type)
2082 {
2083 struct reg_entry *new_reg;
2084 const char *name;
2085
2086 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2087 {
2088 if (new_reg->builtin)
2089 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2090
2091 /* Only warn about a redefinition if it's not defined as the
2092 same register. */
2093 else if (new_reg->number != number || new_reg->type != type)
2094 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2095
2096 return NULL;
2097 }
2098
2099 name = xstrdup (str);
2100 new_reg = (struct reg_entry *) xmalloc (sizeof (struct reg_entry));
2101
2102 new_reg->name = name;
2103 new_reg->number = number;
2104 new_reg->type = type;
2105 new_reg->builtin = FALSE;
2106 new_reg->neon = NULL;
2107
2108 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2109 abort ();
2110
2111 return new_reg;
2112 }
2113
2114 static void
2115 insert_neon_reg_alias (char *str, int number, int type,
2116 struct neon_typed_alias *atype)
2117 {
2118 struct reg_entry *reg = insert_reg_alias (str, number, type);
2119
2120 if (!reg)
2121 {
2122 first_error (_("attempt to redefine typed alias"));
2123 return;
2124 }
2125
2126 if (atype)
2127 {
2128 reg->neon = (struct neon_typed_alias *)
2129 xmalloc (sizeof (struct neon_typed_alias));
2130 *reg->neon = *atype;
2131 }
2132 }
2133
2134 /* Look for the .req directive. This is of the form:
2135
2136 new_register_name .req existing_register_name
2137
2138 If we find one, or if it looks sufficiently like one that we want to
2139 handle any error here, return TRUE. Otherwise return FALSE. */
2140
2141 static bfd_boolean
2142 create_register_alias (char * newname, char *p)
2143 {
2144 struct reg_entry *old;
2145 char *oldname, *nbuf;
2146 size_t nlen;
2147
2148 /* The input scrubber ensures that whitespace after the mnemonic is
2149 collapsed to single spaces. */
2150 oldname = p;
2151 if (strncmp (oldname, " .req ", 6) != 0)
2152 return FALSE;
2153
2154 oldname += 6;
2155 if (*oldname == '\0')
2156 return FALSE;
2157
2158 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2159 if (!old)
2160 {
2161 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2162 return TRUE;
2163 }
2164
2165 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2166 the desired alias name, and p points to its end. If not, then
2167 the desired alias name is in the global original_case_string. */
2168 #ifdef TC_CASE_SENSITIVE
2169 nlen = p - newname;
2170 #else
2171 newname = original_case_string;
2172 nlen = strlen (newname);
2173 #endif
2174
2175 nbuf = (char *) alloca (nlen + 1);
2176 memcpy (nbuf, newname, nlen);
2177 nbuf[nlen] = '\0';
2178
2179 /* Create aliases under the new name as stated; an all-lowercase
2180 version of the new name; and an all-uppercase version of the new
2181 name. */
2182 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2183 {
2184 for (p = nbuf; *p; p++)
2185 *p = TOUPPER (*p);
2186
2187 if (strncmp (nbuf, newname, nlen))
2188 {
2189 /* If this attempt to create an additional alias fails, do not bother
2190 trying to create the all-lower case alias. We will fail and issue
2191 a second, duplicate error message. This situation arises when the
2192 programmer does something like:
2193 foo .req r0
2194 Foo .req r1
2195 The second .req creates the "Foo" alias but then fails to create
2196 the artificial FOO alias because it has already been created by the
2197 first .req. */
2198 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2199 return TRUE;
2200 }
2201
2202 for (p = nbuf; *p; p++)
2203 *p = TOLOWER (*p);
2204
2205 if (strncmp (nbuf, newname, nlen))
2206 insert_reg_alias (nbuf, old->number, old->type);
2207 }
2208
2209 return TRUE;
2210 }
2211
2212 /* Create a Neon typed/indexed register alias using directives, e.g.:
2213 X .dn d5.s32[1]
2214 Y .qn 6.s16
2215 Z .dn d7
2216 T .dn Z[0]
2217 These typed registers can be used instead of the types specified after the
2218 Neon mnemonic, so long as all operands given have types. Types can also be
2219 specified directly, e.g.:
2220 vadd d0.s32, d1.s32, d2.s32 */
2221
2222 static bfd_boolean
2223 create_neon_reg_alias (char *newname, char *p)
2224 {
2225 enum arm_reg_type basetype;
2226 struct reg_entry *basereg;
2227 struct reg_entry mybasereg;
2228 struct neon_type ntype;
2229 struct neon_typed_alias typeinfo;
2230 char *namebuf, *nameend ATTRIBUTE_UNUSED;
2231 int namelen;
2232
2233 typeinfo.defined = 0;
2234 typeinfo.eltype.type = NT_invtype;
2235 typeinfo.eltype.size = -1;
2236 typeinfo.index = -1;
2237
2238 nameend = p;
2239
2240 if (strncmp (p, " .dn ", 5) == 0)
2241 basetype = REG_TYPE_VFD;
2242 else if (strncmp (p, " .qn ", 5) == 0)
2243 basetype = REG_TYPE_NQ;
2244 else
2245 return FALSE;
2246
2247 p += 5;
2248
2249 if (*p == '\0')
2250 return FALSE;
2251
2252 basereg = arm_reg_parse_multi (&p);
2253
2254 if (basereg && basereg->type != basetype)
2255 {
2256 as_bad (_("bad type for register"));
2257 return FALSE;
2258 }
2259
2260 if (basereg == NULL)
2261 {
2262 expressionS exp;
2263 /* Try parsing as an integer. */
2264 my_get_expression (&exp, &p, GE_NO_PREFIX);
2265 if (exp.X_op != O_constant)
2266 {
2267 as_bad (_("expression must be constant"));
2268 return FALSE;
2269 }
2270 basereg = &mybasereg;
2271 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2272 : exp.X_add_number;
2273 basereg->neon = 0;
2274 }
2275
2276 if (basereg->neon)
2277 typeinfo = *basereg->neon;
2278
2279 if (parse_neon_type (&ntype, &p) == SUCCESS)
2280 {
2281 /* We got a type. */
2282 if (typeinfo.defined & NTA_HASTYPE)
2283 {
2284 as_bad (_("can't redefine the type of a register alias"));
2285 return FALSE;
2286 }
2287
2288 typeinfo.defined |= NTA_HASTYPE;
2289 if (ntype.elems != 1)
2290 {
2291 as_bad (_("you must specify a single type only"));
2292 return FALSE;
2293 }
2294 typeinfo.eltype = ntype.el[0];
2295 }
2296
2297 if (skip_past_char (&p, '[') == SUCCESS)
2298 {
2299 expressionS exp;
2300 /* We got a scalar index. */
2301
2302 if (typeinfo.defined & NTA_HASINDEX)
2303 {
2304 as_bad (_("can't redefine the index of a scalar alias"));
2305 return FALSE;
2306 }
2307
2308 my_get_expression (&exp, &p, GE_NO_PREFIX);
2309
2310 if (exp.X_op != O_constant)
2311 {
2312 as_bad (_("scalar index must be constant"));
2313 return FALSE;
2314 }
2315
2316 typeinfo.defined |= NTA_HASINDEX;
2317 typeinfo.index = exp.X_add_number;
2318
2319 if (skip_past_char (&p, ']') == FAIL)
2320 {
2321 as_bad (_("expecting ]"));
2322 return FALSE;
2323 }
2324 }
2325
2326 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2327 the desired alias name, and p points to its end. If not, then
2328 the desired alias name is in the global original_case_string. */
2329 #ifdef TC_CASE_SENSITIVE
2330 namelen = nameend - newname;
2331 #else
2332 newname = original_case_string;
2333 namelen = strlen (newname);
2334 #endif
2335
2336 namebuf = (char *) alloca (namelen + 1);
2337 strncpy (namebuf, newname, namelen);
2338 namebuf[namelen] = '\0';
2339
2340 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2341 typeinfo.defined != 0 ? &typeinfo : NULL);
2342
2343 /* Insert name in all uppercase. */
2344 for (p = namebuf; *p; p++)
2345 *p = TOUPPER (*p);
2346
2347 if (strncmp (namebuf, newname, namelen))
2348 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2349 typeinfo.defined != 0 ? &typeinfo : NULL);
2350
2351 /* Insert name in all lowercase. */
2352 for (p = namebuf; *p; p++)
2353 *p = TOLOWER (*p);
2354
2355 if (strncmp (namebuf, newname, namelen))
2356 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2357 typeinfo.defined != 0 ? &typeinfo : NULL);
2358
2359 return TRUE;
2360 }
2361
2362 /* Should never be called, as .req goes between the alias and the
2363 register name, not at the beginning of the line. */
2364
2365 static void
2366 s_req (int a ATTRIBUTE_UNUSED)
2367 {
2368 as_bad (_("invalid syntax for .req directive"));
2369 }
2370
2371 static void
2372 s_dn (int a ATTRIBUTE_UNUSED)
2373 {
2374 as_bad (_("invalid syntax for .dn directive"));
2375 }
2376
2377 static void
2378 s_qn (int a ATTRIBUTE_UNUSED)
2379 {
2380 as_bad (_("invalid syntax for .qn directive"));
2381 }
2382
2383 /* The .unreq directive deletes an alias which was previously defined
2384 by .req. For example:
2385
2386 my_alias .req r11
2387 .unreq my_alias */
2388
2389 static void
2390 s_unreq (int a ATTRIBUTE_UNUSED)
2391 {
2392 char * name;
2393 char saved_char;
2394
2395 name = input_line_pointer;
2396
2397 while (*input_line_pointer != 0
2398 && *input_line_pointer != ' '
2399 && *input_line_pointer != '\n')
2400 ++input_line_pointer;
2401
2402 saved_char = *input_line_pointer;
2403 *input_line_pointer = 0;
2404
2405 if (!*name)
2406 as_bad (_("invalid syntax for .unreq directive"));
2407 else
2408 {
2409 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2410 name);
2411
2412 if (!reg)
2413 as_bad (_("unknown register alias '%s'"), name);
2414 else if (reg->builtin)
2415 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
2416 name);
2417 else
2418 {
2419 char * p;
2420 char * nbuf;
2421
2422 hash_delete (arm_reg_hsh, name, FALSE);
2423 free ((char *) reg->name);
2424 if (reg->neon)
2425 free (reg->neon);
2426 free (reg);
2427
2428 /* Also locate the all upper case and all lower case versions.
2429 Do not complain if we cannot find one or the other as it
2430 was probably deleted above. */
2431
2432 nbuf = strdup (name);
2433 for (p = nbuf; *p; p++)
2434 *p = TOUPPER (*p);
2435 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2436 if (reg)
2437 {
2438 hash_delete (arm_reg_hsh, nbuf, FALSE);
2439 free ((char *) reg->name);
2440 if (reg->neon)
2441 free (reg->neon);
2442 free (reg);
2443 }
2444
2445 for (p = nbuf; *p; p++)
2446 *p = TOLOWER (*p);
2447 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2448 if (reg)
2449 {
2450 hash_delete (arm_reg_hsh, nbuf, FALSE);
2451 free ((char *) reg->name);
2452 if (reg->neon)
2453 free (reg->neon);
2454 free (reg);
2455 }
2456
2457 free (nbuf);
2458 }
2459 }
2460
2461 *input_line_pointer = saved_char;
2462 demand_empty_rest_of_line ();
2463 }
2464
2465 /* Directives: Instruction set selection. */
2466
2467 #ifdef OBJ_ELF
2468 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2469 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2470 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2471 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2472
2473 /* Create a new mapping symbol for the transition to STATE. */
2474
2475 static void
2476 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2477 {
2478 symbolS * symbolP;
2479 const char * symname;
2480 int type;
2481
2482 switch (state)
2483 {
2484 case MAP_DATA:
2485 symname = "$d";
2486 type = BSF_NO_FLAGS;
2487 break;
2488 case MAP_ARM:
2489 symname = "$a";
2490 type = BSF_NO_FLAGS;
2491 break;
2492 case MAP_THUMB:
2493 symname = "$t";
2494 type = BSF_NO_FLAGS;
2495 break;
2496 default:
2497 abort ();
2498 }
2499
2500 symbolP = symbol_new (symname, now_seg, value, frag);
2501 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2502
2503 switch (state)
2504 {
2505 case MAP_ARM:
2506 THUMB_SET_FUNC (symbolP, 0);
2507 ARM_SET_THUMB (symbolP, 0);
2508 ARM_SET_INTERWORK (symbolP, support_interwork);
2509 break;
2510
2511 case MAP_THUMB:
2512 THUMB_SET_FUNC (symbolP, 1);
2513 ARM_SET_THUMB (symbolP, 1);
2514 ARM_SET_INTERWORK (symbolP, support_interwork);
2515 break;
2516
2517 case MAP_DATA:
2518 default:
2519 break;
2520 }
2521
2522 /* Save the mapping symbols for future reference. Also check that
2523 we do not place two mapping symbols at the same offset within a
2524 frag. We'll handle overlap between frags in
2525 check_mapping_symbols.
2526
2527 If .fill or other data filling directive generates zero sized data,
2528 the mapping symbol for the following code will have the same value
2529 as the one generated for the data filling directive. In this case,
2530 we replace the old symbol with the new one at the same address. */
2531 if (value == 0)
2532 {
2533 if (frag->tc_frag_data.first_map != NULL)
2534 {
2535 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2536 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2537 }
2538 frag->tc_frag_data.first_map = symbolP;
2539 }
2540 if (frag->tc_frag_data.last_map != NULL)
2541 {
2542 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
2543 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2544 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2545 }
2546 frag->tc_frag_data.last_map = symbolP;
2547 }
2548
2549 /* We must sometimes convert a region marked as code to data during
2550 code alignment, if an odd number of bytes have to be padded. The
2551 code mapping symbol is pushed to an aligned address. */
2552
2553 static void
2554 insert_data_mapping_symbol (enum mstate state,
2555 valueT value, fragS *frag, offsetT bytes)
2556 {
2557 /* If there was already a mapping symbol, remove it. */
2558 if (frag->tc_frag_data.last_map != NULL
2559 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2560 {
2561 symbolS *symp = frag->tc_frag_data.last_map;
2562
2563 if (value == 0)
2564 {
2565 know (frag->tc_frag_data.first_map == symp);
2566 frag->tc_frag_data.first_map = NULL;
2567 }
2568 frag->tc_frag_data.last_map = NULL;
2569 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
2570 }
2571
2572 make_mapping_symbol (MAP_DATA, value, frag);
2573 make_mapping_symbol (state, value + bytes, frag);
2574 }
2575
2576 static void mapping_state_2 (enum mstate state, int max_chars);
2577
2578 /* Set the mapping state to STATE. Only call this when about to
2579 emit some STATE bytes to the file. */
2580
2581 void
2582 mapping_state (enum mstate state)
2583 {
2584 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2585
2586 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2587
2588 if (mapstate == state)
2589 /* The mapping symbol has already been emitted.
2590 There is nothing else to do. */
2591 return;
2592 else if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2593 /* This case will be evaluated later in the next else. */
2594 return;
2595 else if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2596 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2597 {
2598 /* Only add the symbol if the offset is > 0:
2599 if we're at the first frag, check it's size > 0;
2600 if we're not at the first frag, then for sure
2601 the offset is > 0. */
2602 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2603 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2604
2605 if (add_symbol)
2606 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2607 }
2608
2609 mapping_state_2 (state, 0);
2610 #undef TRANSITION
2611 }
2612
2613 /* Same as mapping_state, but MAX_CHARS bytes have already been
2614 allocated. Put the mapping symbol that far back. */
2615
2616 static void
2617 mapping_state_2 (enum mstate state, int max_chars)
2618 {
2619 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2620
2621 if (!SEG_NORMAL (now_seg))
2622 return;
2623
2624 if (mapstate == state)
2625 /* The mapping symbol has already been emitted.
2626 There is nothing else to do. */
2627 return;
2628
2629 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2630 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
2631 }
2632 #else
2633 #define mapping_state(x) ((void)0)
2634 #define mapping_state_2(x, y) ((void)0)
2635 #endif
2636
2637 /* Find the real, Thumb encoded start of a Thumb function. */
2638
2639 #ifdef OBJ_COFF
2640 static symbolS *
2641 find_real_start (symbolS * symbolP)
2642 {
2643 char * real_start;
2644 const char * name = S_GET_NAME (symbolP);
2645 symbolS * new_target;
2646
2647 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2648 #define STUB_NAME ".real_start_of"
2649
2650 if (name == NULL)
2651 abort ();
2652
2653 /* The compiler may generate BL instructions to local labels because
2654 it needs to perform a branch to a far away location. These labels
2655 do not have a corresponding ".real_start_of" label. We check
2656 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2657 the ".real_start_of" convention for nonlocal branches. */
2658 if (S_IS_LOCAL (symbolP) || name[0] == '.')
2659 return symbolP;
2660
2661 real_start = ACONCAT ((STUB_NAME, name, NULL));
2662 new_target = symbol_find (real_start);
2663
2664 if (new_target == NULL)
2665 {
2666 as_warn (_("Failed to find real start of function: %s\n"), name);
2667 new_target = symbolP;
2668 }
2669
2670 return new_target;
2671 }
2672 #endif
2673
2674 static void
2675 opcode_select (int width)
2676 {
2677 switch (width)
2678 {
2679 case 16:
2680 if (! thumb_mode)
2681 {
2682 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
2683 as_bad (_("selected processor does not support THUMB opcodes"));
2684
2685 thumb_mode = 1;
2686 /* No need to force the alignment, since we will have been
2687 coming from ARM mode, which is word-aligned. */
2688 record_alignment (now_seg, 1);
2689 }
2690 break;
2691
2692 case 32:
2693 if (thumb_mode)
2694 {
2695 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
2696 as_bad (_("selected processor does not support ARM opcodes"));
2697
2698 thumb_mode = 0;
2699
2700 if (!need_pass_2)
2701 frag_align (2, 0, 0);
2702
2703 record_alignment (now_seg, 1);
2704 }
2705 break;
2706
2707 default:
2708 as_bad (_("invalid instruction size selected (%d)"), width);
2709 }
2710 }
2711
2712 static void
2713 s_arm (int ignore ATTRIBUTE_UNUSED)
2714 {
2715 opcode_select (32);
2716 demand_empty_rest_of_line ();
2717 }
2718
2719 static void
2720 s_thumb (int ignore ATTRIBUTE_UNUSED)
2721 {
2722 opcode_select (16);
2723 demand_empty_rest_of_line ();
2724 }
2725
2726 static void
2727 s_code (int unused ATTRIBUTE_UNUSED)
2728 {
2729 int temp;
2730
2731 temp = get_absolute_expression ();
2732 switch (temp)
2733 {
2734 case 16:
2735 case 32:
2736 opcode_select (temp);
2737 break;
2738
2739 default:
2740 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2741 }
2742 }
2743
2744 static void
2745 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2746 {
2747 /* If we are not already in thumb mode go into it, EVEN if
2748 the target processor does not support thumb instructions.
2749 This is used by gcc/config/arm/lib1funcs.asm for example
2750 to compile interworking support functions even if the
2751 target processor should not support interworking. */
2752 if (! thumb_mode)
2753 {
2754 thumb_mode = 2;
2755 record_alignment (now_seg, 1);
2756 }
2757
2758 demand_empty_rest_of_line ();
2759 }
2760
2761 static void
2762 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2763 {
2764 s_thumb (0);
2765
2766 /* The following label is the name/address of the start of a Thumb function.
2767 We need to know this for the interworking support. */
2768 label_is_thumb_function_name = TRUE;
2769 }
2770
2771 /* Perform a .set directive, but also mark the alias as
2772 being a thumb function. */
2773
2774 static void
2775 s_thumb_set (int equiv)
2776 {
2777 /* XXX the following is a duplicate of the code for s_set() in read.c
2778 We cannot just call that code as we need to get at the symbol that
2779 is created. */
2780 char * name;
2781 char delim;
2782 char * end_name;
2783 symbolS * symbolP;
2784
2785 /* Especial apologies for the random logic:
2786 This just grew, and could be parsed much more simply!
2787 Dean - in haste. */
2788 name = input_line_pointer;
2789 delim = get_symbol_end ();
2790 end_name = input_line_pointer;
2791 *end_name = delim;
2792
2793 if (*input_line_pointer != ',')
2794 {
2795 *end_name = 0;
2796 as_bad (_("expected comma after name \"%s\""), name);
2797 *end_name = delim;
2798 ignore_rest_of_line ();
2799 return;
2800 }
2801
2802 input_line_pointer++;
2803 *end_name = 0;
2804
2805 if (name[0] == '.' && name[1] == '\0')
2806 {
2807 /* XXX - this should not happen to .thumb_set. */
2808 abort ();
2809 }
2810
2811 if ((symbolP = symbol_find (name)) == NULL
2812 && (symbolP = md_undefined_symbol (name)) == NULL)
2813 {
2814 #ifndef NO_LISTING
2815 /* When doing symbol listings, play games with dummy fragments living
2816 outside the normal fragment chain to record the file and line info
2817 for this symbol. */
2818 if (listing & LISTING_SYMBOLS)
2819 {
2820 extern struct list_info_struct * listing_tail;
2821 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
2822
2823 memset (dummy_frag, 0, sizeof (fragS));
2824 dummy_frag->fr_type = rs_fill;
2825 dummy_frag->line = listing_tail;
2826 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2827 dummy_frag->fr_symbol = symbolP;
2828 }
2829 else
2830 #endif
2831 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2832
2833 #ifdef OBJ_COFF
2834 /* "set" symbols are local unless otherwise specified. */
2835 SF_SET_LOCAL (symbolP);
2836 #endif /* OBJ_COFF */
2837 } /* Make a new symbol. */
2838
2839 symbol_table_insert (symbolP);
2840
2841 * end_name = delim;
2842
2843 if (equiv
2844 && S_IS_DEFINED (symbolP)
2845 && S_GET_SEGMENT (symbolP) != reg_section)
2846 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2847
2848 pseudo_set (symbolP);
2849
2850 demand_empty_rest_of_line ();
2851
2852 /* XXX Now we come to the Thumb specific bit of code. */
2853
2854 THUMB_SET_FUNC (symbolP, 1);
2855 ARM_SET_THUMB (symbolP, 1);
2856 #if defined OBJ_ELF || defined OBJ_COFF
2857 ARM_SET_INTERWORK (symbolP, support_interwork);
2858 #endif
2859 }
2860
2861 /* Directives: Mode selection. */
2862
2863 /* .syntax [unified|divided] - choose the new unified syntax
2864 (same for Arm and Thumb encoding, modulo slight differences in what
2865 can be represented) or the old divergent syntax for each mode. */
2866 static void
2867 s_syntax (int unused ATTRIBUTE_UNUSED)
2868 {
2869 char *name, delim;
2870
2871 name = input_line_pointer;
2872 delim = get_symbol_end ();
2873
2874 if (!strcasecmp (name, "unified"))
2875 unified_syntax = TRUE;
2876 else if (!strcasecmp (name, "divided"))
2877 unified_syntax = FALSE;
2878 else
2879 {
2880 as_bad (_("unrecognized syntax mode \"%s\""), name);
2881 return;
2882 }
2883 *input_line_pointer = delim;
2884 demand_empty_rest_of_line ();
2885 }
2886
2887 /* Directives: sectioning and alignment. */
2888
2889 /* Same as s_align_ptwo but align 0 => align 2. */
2890
2891 static void
2892 s_align (int unused ATTRIBUTE_UNUSED)
2893 {
2894 int temp;
2895 bfd_boolean fill_p;
2896 long temp_fill;
2897 long max_alignment = 15;
2898
2899 temp = get_absolute_expression ();
2900 if (temp > max_alignment)
2901 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2902 else if (temp < 0)
2903 {
2904 as_bad (_("alignment negative. 0 assumed."));
2905 temp = 0;
2906 }
2907
2908 if (*input_line_pointer == ',')
2909 {
2910 input_line_pointer++;
2911 temp_fill = get_absolute_expression ();
2912 fill_p = TRUE;
2913 }
2914 else
2915 {
2916 fill_p = FALSE;
2917 temp_fill = 0;
2918 }
2919
2920 if (!temp)
2921 temp = 2;
2922
2923 /* Only make a frag if we HAVE to. */
2924 if (temp && !need_pass_2)
2925 {
2926 if (!fill_p && subseg_text_p (now_seg))
2927 frag_align_code (temp, 0);
2928 else
2929 frag_align (temp, (int) temp_fill, 0);
2930 }
2931 demand_empty_rest_of_line ();
2932
2933 record_alignment (now_seg, temp);
2934 }
2935
2936 static void
2937 s_bss (int ignore ATTRIBUTE_UNUSED)
2938 {
2939 /* We don't support putting frags in the BSS segment, we fake it by
2940 marking in_bss, then looking at s_skip for clues. */
2941 subseg_set (bss_section, 0);
2942 demand_empty_rest_of_line ();
2943
2944 #ifdef md_elf_section_change_hook
2945 md_elf_section_change_hook ();
2946 #endif
2947 }
2948
2949 static void
2950 s_even (int ignore ATTRIBUTE_UNUSED)
2951 {
2952 /* Never make frag if expect extra pass. */
2953 if (!need_pass_2)
2954 frag_align (1, 0, 0);
2955
2956 record_alignment (now_seg, 1);
2957
2958 demand_empty_rest_of_line ();
2959 }
2960
2961 /* Directives: Literal pools. */
2962
2963 static literal_pool *
2964 find_literal_pool (void)
2965 {
2966 literal_pool * pool;
2967
2968 for (pool = list_of_pools; pool != NULL; pool = pool->next)
2969 {
2970 if (pool->section == now_seg
2971 && pool->sub_section == now_subseg)
2972 break;
2973 }
2974
2975 return pool;
2976 }
2977
2978 static literal_pool *
2979 find_or_make_literal_pool (void)
2980 {
2981 /* Next literal pool ID number. */
2982 static unsigned int latest_pool_num = 1;
2983 literal_pool * pool;
2984
2985 pool = find_literal_pool ();
2986
2987 if (pool == NULL)
2988 {
2989 /* Create a new pool. */
2990 pool = (literal_pool *) xmalloc (sizeof (* pool));
2991 if (! pool)
2992 return NULL;
2993
2994 pool->next_free_entry = 0;
2995 pool->section = now_seg;
2996 pool->sub_section = now_subseg;
2997 pool->next = list_of_pools;
2998 pool->symbol = NULL;
2999
3000 /* Add it to the list. */
3001 list_of_pools = pool;
3002 }
3003
3004 /* New pools, and emptied pools, will have a NULL symbol. */
3005 if (pool->symbol == NULL)
3006 {
3007 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3008 (valueT) 0, &zero_address_frag);
3009 pool->id = latest_pool_num ++;
3010 }
3011
3012 /* Done. */
3013 return pool;
3014 }
3015
3016 /* Add the literal in the global 'inst'
3017 structure to the relevant literal pool. */
3018
3019 static int
3020 add_to_lit_pool (void)
3021 {
3022 literal_pool * pool;
3023 unsigned int entry;
3024
3025 pool = find_or_make_literal_pool ();
3026
3027 /* Check if this literal value is already in the pool. */
3028 for (entry = 0; entry < pool->next_free_entry; entry ++)
3029 {
3030 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3031 && (inst.reloc.exp.X_op == O_constant)
3032 && (pool->literals[entry].X_add_number
3033 == inst.reloc.exp.X_add_number)
3034 && (pool->literals[entry].X_unsigned
3035 == inst.reloc.exp.X_unsigned))
3036 break;
3037
3038 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3039 && (inst.reloc.exp.X_op == O_symbol)
3040 && (pool->literals[entry].X_add_number
3041 == inst.reloc.exp.X_add_number)
3042 && (pool->literals[entry].X_add_symbol
3043 == inst.reloc.exp.X_add_symbol)
3044 && (pool->literals[entry].X_op_symbol
3045 == inst.reloc.exp.X_op_symbol))
3046 break;
3047 }
3048
3049 /* Do we need to create a new entry? */
3050 if (entry == pool->next_free_entry)
3051 {
3052 if (entry >= MAX_LITERAL_POOL_SIZE)
3053 {
3054 inst.error = _("literal pool overflow");
3055 return FAIL;
3056 }
3057
3058 pool->literals[entry] = inst.reloc.exp;
3059 pool->next_free_entry += 1;
3060 }
3061
3062 inst.reloc.exp.X_op = O_symbol;
3063 inst.reloc.exp.X_add_number = ((int) entry) * 4;
3064 inst.reloc.exp.X_add_symbol = pool->symbol;
3065
3066 return SUCCESS;
3067 }
3068
3069 /* Can't use symbol_new here, so have to create a symbol and then at
3070 a later date assign it a value. Thats what these functions do. */
3071
3072 static void
3073 symbol_locate (symbolS * symbolP,
3074 const char * name, /* It is copied, the caller can modify. */
3075 segT segment, /* Segment identifier (SEG_<something>). */
3076 valueT valu, /* Symbol value. */
3077 fragS * frag) /* Associated fragment. */
3078 {
3079 unsigned int name_length;
3080 char * preserved_copy_of_name;
3081
3082 name_length = strlen (name) + 1; /* +1 for \0. */
3083 obstack_grow (&notes, name, name_length);
3084 preserved_copy_of_name = (char *) obstack_finish (&notes);
3085
3086 #ifdef tc_canonicalize_symbol_name
3087 preserved_copy_of_name =
3088 tc_canonicalize_symbol_name (preserved_copy_of_name);
3089 #endif
3090
3091 S_SET_NAME (symbolP, preserved_copy_of_name);
3092
3093 S_SET_SEGMENT (symbolP, segment);
3094 S_SET_VALUE (symbolP, valu);
3095 symbol_clear_list_pointers (symbolP);
3096
3097 symbol_set_frag (symbolP, frag);
3098
3099 /* Link to end of symbol chain. */
3100 {
3101 extern int symbol_table_frozen;
3102
3103 if (symbol_table_frozen)
3104 abort ();
3105 }
3106
3107 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3108
3109 obj_symbol_new_hook (symbolP);
3110
3111 #ifdef tc_symbol_new_hook
3112 tc_symbol_new_hook (symbolP);
3113 #endif
3114
3115 #ifdef DEBUG_SYMS
3116 verify_symbol_chain (symbol_rootP, symbol_lastP);
3117 #endif /* DEBUG_SYMS */
3118 }
3119
3120
3121 static void
3122 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3123 {
3124 unsigned int entry;
3125 literal_pool * pool;
3126 char sym_name[20];
3127
3128 pool = find_literal_pool ();
3129 if (pool == NULL
3130 || pool->symbol == NULL
3131 || pool->next_free_entry == 0)
3132 return;
3133
3134 mapping_state (MAP_DATA);
3135
3136 /* Align pool as you have word accesses.
3137 Only make a frag if we have to. */
3138 if (!need_pass_2)
3139 frag_align (2, 0, 0);
3140
3141 record_alignment (now_seg, 2);
3142
3143 sprintf (sym_name, "$$lit_\002%x", pool->id);
3144
3145 symbol_locate (pool->symbol, sym_name, now_seg,
3146 (valueT) frag_now_fix (), frag_now);
3147 symbol_table_insert (pool->symbol);
3148
3149 ARM_SET_THUMB (pool->symbol, thumb_mode);
3150
3151 #if defined OBJ_COFF || defined OBJ_ELF
3152 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3153 #endif
3154
3155 for (entry = 0; entry < pool->next_free_entry; entry ++)
3156 /* First output the expression in the instruction to the pool. */
3157 emit_expr (&(pool->literals[entry]), 4); /* .word */
3158
3159 /* Mark the pool as empty. */
3160 pool->next_free_entry = 0;
3161 pool->symbol = NULL;
3162 }
3163
3164 #ifdef OBJ_ELF
3165 /* Forward declarations for functions below, in the MD interface
3166 section. */
3167 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3168 static valueT create_unwind_entry (int);
3169 static void start_unwind_section (const segT, int);
3170 static void add_unwind_opcode (valueT, int);
3171 static void flush_pending_unwind (void);
3172
3173 /* Directives: Data. */
3174
3175 static void
3176 s_arm_elf_cons (int nbytes)
3177 {
3178 expressionS exp;
3179
3180 #ifdef md_flush_pending_output
3181 md_flush_pending_output ();
3182 #endif
3183
3184 if (is_it_end_of_statement ())
3185 {
3186 demand_empty_rest_of_line ();
3187 return;
3188 }
3189
3190 #ifdef md_cons_align
3191 md_cons_align (nbytes);
3192 #endif
3193
3194 mapping_state (MAP_DATA);
3195 do
3196 {
3197 int reloc;
3198 char *base = input_line_pointer;
3199
3200 expression (& exp);
3201
3202 if (exp.X_op != O_symbol)
3203 emit_expr (&exp, (unsigned int) nbytes);
3204 else
3205 {
3206 char *before_reloc = input_line_pointer;
3207 reloc = parse_reloc (&input_line_pointer);
3208 if (reloc == -1)
3209 {
3210 as_bad (_("unrecognized relocation suffix"));
3211 ignore_rest_of_line ();
3212 return;
3213 }
3214 else if (reloc == BFD_RELOC_UNUSED)
3215 emit_expr (&exp, (unsigned int) nbytes);
3216 else
3217 {
3218 reloc_howto_type *howto = (reloc_howto_type *)
3219 bfd_reloc_type_lookup (stdoutput,
3220 (bfd_reloc_code_real_type) reloc);
3221 int size = bfd_get_reloc_size (howto);
3222
3223 if (reloc == BFD_RELOC_ARM_PLT32)
3224 {
3225 as_bad (_("(plt) is only valid on branch targets"));
3226 reloc = BFD_RELOC_UNUSED;
3227 size = 0;
3228 }
3229
3230 if (size > nbytes)
3231 as_bad (_("%s relocations do not fit in %d bytes"),
3232 howto->name, nbytes);
3233 else
3234 {
3235 /* We've parsed an expression stopping at O_symbol.
3236 But there may be more expression left now that we
3237 have parsed the relocation marker. Parse it again.
3238 XXX Surely there is a cleaner way to do this. */
3239 char *p = input_line_pointer;
3240 int offset;
3241 char *save_buf = (char *) alloca (input_line_pointer - base);
3242 memcpy (save_buf, base, input_line_pointer - base);
3243 memmove (base + (input_line_pointer - before_reloc),
3244 base, before_reloc - base);
3245
3246 input_line_pointer = base + (input_line_pointer-before_reloc);
3247 expression (&exp);
3248 memcpy (base, save_buf, p - base);
3249
3250 offset = nbytes - size;
3251 p = frag_more ((int) nbytes);
3252 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3253 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3254 }
3255 }
3256 }
3257 }
3258 while (*input_line_pointer++ == ',');
3259
3260 /* Put terminator back into stream. */
3261 input_line_pointer --;
3262 demand_empty_rest_of_line ();
3263 }
3264
3265 /* Emit an expression containing a 32-bit thumb instruction.
3266 Implementation based on put_thumb32_insn. */
3267
3268 static void
3269 emit_thumb32_expr (expressionS * exp)
3270 {
3271 expressionS exp_high = *exp;
3272
3273 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3274 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3275 exp->X_add_number &= 0xffff;
3276 emit_expr (exp, (unsigned int) THUMB_SIZE);
3277 }
3278
3279 /* Guess the instruction size based on the opcode. */
3280
3281 static int
3282 thumb_insn_size (int opcode)
3283 {
3284 if ((unsigned int) opcode < 0xe800u)
3285 return 2;
3286 else if ((unsigned int) opcode >= 0xe8000000u)
3287 return 4;
3288 else
3289 return 0;
3290 }
3291
3292 static bfd_boolean
3293 emit_insn (expressionS *exp, int nbytes)
3294 {
3295 int size = 0;
3296
3297 if (exp->X_op == O_constant)
3298 {
3299 size = nbytes;
3300
3301 if (size == 0)
3302 size = thumb_insn_size (exp->X_add_number);
3303
3304 if (size != 0)
3305 {
3306 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3307 {
3308 as_bad (_(".inst.n operand too big. "\
3309 "Use .inst.w instead"));
3310 size = 0;
3311 }
3312 else
3313 {
3314 if (now_it.state == AUTOMATIC_IT_BLOCK)
3315 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3316 else
3317 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3318
3319 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3320 emit_thumb32_expr (exp);
3321 else
3322 emit_expr (exp, (unsigned int) size);
3323
3324 it_fsm_post_encode ();
3325 }
3326 }
3327 else
3328 as_bad (_("cannot determine Thumb instruction size. " \
3329 "Use .inst.n/.inst.w instead"));
3330 }
3331 else
3332 as_bad (_("constant expression required"));
3333
3334 return (size != 0);
3335 }
3336
3337 /* Like s_arm_elf_cons but do not use md_cons_align and
3338 set the mapping state to MAP_ARM/MAP_THUMB. */
3339
3340 static void
3341 s_arm_elf_inst (int nbytes)
3342 {
3343 if (is_it_end_of_statement ())
3344 {
3345 demand_empty_rest_of_line ();
3346 return;
3347 }
3348
3349 /* Calling mapping_state () here will not change ARM/THUMB,
3350 but will ensure not to be in DATA state. */
3351
3352 if (thumb_mode)
3353 mapping_state (MAP_THUMB);
3354 else
3355 {
3356 if (nbytes != 0)
3357 {
3358 as_bad (_("width suffixes are invalid in ARM mode"));
3359 ignore_rest_of_line ();
3360 return;
3361 }
3362
3363 nbytes = 4;
3364
3365 mapping_state (MAP_ARM);
3366 }
3367
3368 do
3369 {
3370 expressionS exp;
3371
3372 expression (& exp);
3373
3374 if (! emit_insn (& exp, nbytes))
3375 {
3376 ignore_rest_of_line ();
3377 return;
3378 }
3379 }
3380 while (*input_line_pointer++ == ',');
3381
3382 /* Put terminator back into stream. */
3383 input_line_pointer --;
3384 demand_empty_rest_of_line ();
3385 }
3386
3387 /* Parse a .rel31 directive. */
3388
3389 static void
3390 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3391 {
3392 expressionS exp;
3393 char *p;
3394 valueT highbit;
3395
3396 highbit = 0;
3397 if (*input_line_pointer == '1')
3398 highbit = 0x80000000;
3399 else if (*input_line_pointer != '0')
3400 as_bad (_("expected 0 or 1"));
3401
3402 input_line_pointer++;
3403 if (*input_line_pointer != ',')
3404 as_bad (_("missing comma"));
3405 input_line_pointer++;
3406
3407 #ifdef md_flush_pending_output
3408 md_flush_pending_output ();
3409 #endif
3410
3411 #ifdef md_cons_align
3412 md_cons_align (4);
3413 #endif
3414
3415 mapping_state (MAP_DATA);
3416
3417 expression (&exp);
3418
3419 p = frag_more (4);
3420 md_number_to_chars (p, highbit, 4);
3421 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3422 BFD_RELOC_ARM_PREL31);
3423
3424 demand_empty_rest_of_line ();
3425 }
3426
3427 /* Directives: AEABI stack-unwind tables. */
3428
3429 /* Parse an unwind_fnstart directive. Simply records the current location. */
3430
3431 static void
3432 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3433 {
3434 demand_empty_rest_of_line ();
3435 if (unwind.proc_start)
3436 {
3437 as_bad (_("duplicate .fnstart directive"));
3438 return;
3439 }
3440
3441 /* Mark the start of the function. */
3442 unwind.proc_start = expr_build_dot ();
3443
3444 /* Reset the rest of the unwind info. */
3445 unwind.opcode_count = 0;
3446 unwind.table_entry = NULL;
3447 unwind.personality_routine = NULL;
3448 unwind.personality_index = -1;
3449 unwind.frame_size = 0;
3450 unwind.fp_offset = 0;
3451 unwind.fp_reg = REG_SP;
3452 unwind.fp_used = 0;
3453 unwind.sp_restored = 0;
3454 }
3455
3456
3457 /* Parse a handlerdata directive. Creates the exception handling table entry
3458 for the function. */
3459
3460 static void
3461 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3462 {
3463 demand_empty_rest_of_line ();
3464 if (!unwind.proc_start)
3465 as_bad (MISSING_FNSTART);
3466
3467 if (unwind.table_entry)
3468 as_bad (_("duplicate .handlerdata directive"));
3469
3470 create_unwind_entry (1);
3471 }
3472
3473 /* Parse an unwind_fnend directive. Generates the index table entry. */
3474
3475 static void
3476 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3477 {
3478 long where;
3479 char *ptr;
3480 valueT val;
3481 unsigned int marked_pr_dependency;
3482
3483 demand_empty_rest_of_line ();
3484
3485 if (!unwind.proc_start)
3486 {
3487 as_bad (_(".fnend directive without .fnstart"));
3488 return;
3489 }
3490
3491 /* Add eh table entry. */
3492 if (unwind.table_entry == NULL)
3493 val = create_unwind_entry (0);
3494 else
3495 val = 0;
3496
3497 /* Add index table entry. This is two words. */
3498 start_unwind_section (unwind.saved_seg, 1);
3499 frag_align (2, 0, 0);
3500 record_alignment (now_seg, 2);
3501
3502 ptr = frag_more (8);
3503 where = frag_now_fix () - 8;
3504
3505 /* Self relative offset of the function start. */
3506 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3507 BFD_RELOC_ARM_PREL31);
3508
3509 /* Indicate dependency on EHABI-defined personality routines to the
3510 linker, if it hasn't been done already. */
3511 marked_pr_dependency
3512 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
3513 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3514 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3515 {
3516 static const char *const name[] =
3517 {
3518 "__aeabi_unwind_cpp_pr0",
3519 "__aeabi_unwind_cpp_pr1",
3520 "__aeabi_unwind_cpp_pr2"
3521 };
3522 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3523 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3524 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3525 |= 1 << unwind.personality_index;
3526 }
3527
3528 if (val)
3529 /* Inline exception table entry. */
3530 md_number_to_chars (ptr + 4, val, 4);
3531 else
3532 /* Self relative offset of the table entry. */
3533 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3534 BFD_RELOC_ARM_PREL31);
3535
3536 /* Restore the original section. */
3537 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3538
3539 unwind.proc_start = NULL;
3540 }
3541
3542
3543 /* Parse an unwind_cantunwind directive. */
3544
3545 static void
3546 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3547 {
3548 demand_empty_rest_of_line ();
3549 if (!unwind.proc_start)
3550 as_bad (MISSING_FNSTART);
3551
3552 if (unwind.personality_routine || unwind.personality_index != -1)
3553 as_bad (_("personality routine specified for cantunwind frame"));
3554
3555 unwind.personality_index = -2;
3556 }
3557
3558
3559 /* Parse a personalityindex directive. */
3560
3561 static void
3562 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3563 {
3564 expressionS exp;
3565
3566 if (!unwind.proc_start)
3567 as_bad (MISSING_FNSTART);
3568
3569 if (unwind.personality_routine || unwind.personality_index != -1)
3570 as_bad (_("duplicate .personalityindex directive"));
3571
3572 expression (&exp);
3573
3574 if (exp.X_op != O_constant
3575 || exp.X_add_number < 0 || exp.X_add_number > 15)
3576 {
3577 as_bad (_("bad personality routine number"));
3578 ignore_rest_of_line ();
3579 return;
3580 }
3581
3582 unwind.personality_index = exp.X_add_number;
3583
3584 demand_empty_rest_of_line ();
3585 }
3586
3587
3588 /* Parse a personality directive. */
3589
3590 static void
3591 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3592 {
3593 char *name, *p, c;
3594
3595 if (!unwind.proc_start)
3596 as_bad (MISSING_FNSTART);
3597
3598 if (unwind.personality_routine || unwind.personality_index != -1)
3599 as_bad (_("duplicate .personality directive"));
3600
3601 name = input_line_pointer;
3602 c = get_symbol_end ();
3603 p = input_line_pointer;
3604 unwind.personality_routine = symbol_find_or_make (name);
3605 *p = c;
3606 demand_empty_rest_of_line ();
3607 }
3608
3609
3610 /* Parse a directive saving core registers. */
3611
3612 static void
3613 s_arm_unwind_save_core (void)
3614 {
3615 valueT op;
3616 long range;
3617 int n;
3618
3619 range = parse_reg_list (&input_line_pointer);
3620 if (range == FAIL)
3621 {
3622 as_bad (_("expected register list"));
3623 ignore_rest_of_line ();
3624 return;
3625 }
3626
3627 demand_empty_rest_of_line ();
3628
3629 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3630 into .unwind_save {..., sp...}. We aren't bothered about the value of
3631 ip because it is clobbered by calls. */
3632 if (unwind.sp_restored && unwind.fp_reg == 12
3633 && (range & 0x3000) == 0x1000)
3634 {
3635 unwind.opcode_count--;
3636 unwind.sp_restored = 0;
3637 range = (range | 0x2000) & ~0x1000;
3638 unwind.pending_offset = 0;
3639 }
3640
3641 /* Pop r4-r15. */
3642 if (range & 0xfff0)
3643 {
3644 /* See if we can use the short opcodes. These pop a block of up to 8
3645 registers starting with r4, plus maybe r14. */
3646 for (n = 0; n < 8; n++)
3647 {
3648 /* Break at the first non-saved register. */
3649 if ((range & (1 << (n + 4))) == 0)
3650 break;
3651 }
3652 /* See if there are any other bits set. */
3653 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3654 {
3655 /* Use the long form. */
3656 op = 0x8000 | ((range >> 4) & 0xfff);
3657 add_unwind_opcode (op, 2);
3658 }
3659 else
3660 {
3661 /* Use the short form. */
3662 if (range & 0x4000)
3663 op = 0xa8; /* Pop r14. */
3664 else
3665 op = 0xa0; /* Do not pop r14. */
3666 op |= (n - 1);
3667 add_unwind_opcode (op, 1);
3668 }
3669 }
3670
3671 /* Pop r0-r3. */
3672 if (range & 0xf)
3673 {
3674 op = 0xb100 | (range & 0xf);
3675 add_unwind_opcode (op, 2);
3676 }
3677
3678 /* Record the number of bytes pushed. */
3679 for (n = 0; n < 16; n++)
3680 {
3681 if (range & (1 << n))
3682 unwind.frame_size += 4;
3683 }
3684 }
3685
3686
3687 /* Parse a directive saving FPA registers. */
3688
3689 static void
3690 s_arm_unwind_save_fpa (int reg)
3691 {
3692 expressionS exp;
3693 int num_regs;
3694 valueT op;
3695
3696 /* Get Number of registers to transfer. */
3697 if (skip_past_comma (&input_line_pointer) != FAIL)
3698 expression (&exp);
3699 else
3700 exp.X_op = O_illegal;
3701
3702 if (exp.X_op != O_constant)
3703 {
3704 as_bad (_("expected , <constant>"));
3705 ignore_rest_of_line ();
3706 return;
3707 }
3708
3709 num_regs = exp.X_add_number;
3710
3711 if (num_regs < 1 || num_regs > 4)
3712 {
3713 as_bad (_("number of registers must be in the range [1:4]"));
3714 ignore_rest_of_line ();
3715 return;
3716 }
3717
3718 demand_empty_rest_of_line ();
3719
3720 if (reg == 4)
3721 {
3722 /* Short form. */
3723 op = 0xb4 | (num_regs - 1);
3724 add_unwind_opcode (op, 1);
3725 }
3726 else
3727 {
3728 /* Long form. */
3729 op = 0xc800 | (reg << 4) | (num_regs - 1);
3730 add_unwind_opcode (op, 2);
3731 }
3732 unwind.frame_size += num_regs * 12;
3733 }
3734
3735
3736 /* Parse a directive saving VFP registers for ARMv6 and above. */
3737
3738 static void
3739 s_arm_unwind_save_vfp_armv6 (void)
3740 {
3741 int count;
3742 unsigned int start;
3743 valueT op;
3744 int num_vfpv3_regs = 0;
3745 int num_regs_below_16;
3746
3747 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3748 if (count == FAIL)
3749 {
3750 as_bad (_("expected register list"));
3751 ignore_rest_of_line ();
3752 return;
3753 }
3754
3755 demand_empty_rest_of_line ();
3756
3757 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3758 than FSTMX/FLDMX-style ones). */
3759
3760 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3761 if (start >= 16)
3762 num_vfpv3_regs = count;
3763 else if (start + count > 16)
3764 num_vfpv3_regs = start + count - 16;
3765
3766 if (num_vfpv3_regs > 0)
3767 {
3768 int start_offset = start > 16 ? start - 16 : 0;
3769 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3770 add_unwind_opcode (op, 2);
3771 }
3772
3773 /* Generate opcode for registers numbered in the range 0 .. 15. */
3774 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
3775 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
3776 if (num_regs_below_16 > 0)
3777 {
3778 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3779 add_unwind_opcode (op, 2);
3780 }
3781
3782 unwind.frame_size += count * 8;
3783 }
3784
3785
3786 /* Parse a directive saving VFP registers for pre-ARMv6. */
3787
3788 static void
3789 s_arm_unwind_save_vfp (void)
3790 {
3791 int count;
3792 unsigned int reg;
3793 valueT op;
3794
3795 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
3796 if (count == FAIL)
3797 {
3798 as_bad (_("expected register list"));
3799 ignore_rest_of_line ();
3800 return;
3801 }
3802
3803 demand_empty_rest_of_line ();
3804
3805 if (reg == 8)
3806 {
3807 /* Short form. */
3808 op = 0xb8 | (count - 1);
3809 add_unwind_opcode (op, 1);
3810 }
3811 else
3812 {
3813 /* Long form. */
3814 op = 0xb300 | (reg << 4) | (count - 1);
3815 add_unwind_opcode (op, 2);
3816 }
3817 unwind.frame_size += count * 8 + 4;
3818 }
3819
3820
3821 /* Parse a directive saving iWMMXt data registers. */
3822
3823 static void
3824 s_arm_unwind_save_mmxwr (void)
3825 {
3826 int reg;
3827 int hi_reg;
3828 int i;
3829 unsigned mask = 0;
3830 valueT op;
3831
3832 if (*input_line_pointer == '{')
3833 input_line_pointer++;
3834
3835 do
3836 {
3837 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3838
3839 if (reg == FAIL)
3840 {
3841 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3842 goto error;
3843 }
3844
3845 if (mask >> reg)
3846 as_tsktsk (_("register list not in ascending order"));
3847 mask |= 1 << reg;
3848
3849 if (*input_line_pointer == '-')
3850 {
3851 input_line_pointer++;
3852 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3853 if (hi_reg == FAIL)
3854 {
3855 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3856 goto error;
3857 }
3858 else if (reg >= hi_reg)
3859 {
3860 as_bad (_("bad register range"));
3861 goto error;
3862 }
3863 for (; reg < hi_reg; reg++)
3864 mask |= 1 << reg;
3865 }
3866 }
3867 while (skip_past_comma (&input_line_pointer) != FAIL);
3868
3869 if (*input_line_pointer == '}')
3870 input_line_pointer++;
3871
3872 demand_empty_rest_of_line ();
3873
3874 /* Generate any deferred opcodes because we're going to be looking at
3875 the list. */
3876 flush_pending_unwind ();
3877
3878 for (i = 0; i < 16; i++)
3879 {
3880 if (mask & (1 << i))
3881 unwind.frame_size += 8;
3882 }
3883
3884 /* Attempt to combine with a previous opcode. We do this because gcc
3885 likes to output separate unwind directives for a single block of
3886 registers. */
3887 if (unwind.opcode_count > 0)
3888 {
3889 i = unwind.opcodes[unwind.opcode_count - 1];
3890 if ((i & 0xf8) == 0xc0)
3891 {
3892 i &= 7;
3893 /* Only merge if the blocks are contiguous. */
3894 if (i < 6)
3895 {
3896 if ((mask & 0xfe00) == (1 << 9))
3897 {
3898 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3899 unwind.opcode_count--;
3900 }
3901 }
3902 else if (i == 6 && unwind.opcode_count >= 2)
3903 {
3904 i = unwind.opcodes[unwind.opcode_count - 2];
3905 reg = i >> 4;
3906 i &= 0xf;
3907
3908 op = 0xffff << (reg - 1);
3909 if (reg > 0
3910 && ((mask & op) == (1u << (reg - 1))))
3911 {
3912 op = (1 << (reg + i + 1)) - 1;
3913 op &= ~((1 << reg) - 1);
3914 mask |= op;
3915 unwind.opcode_count -= 2;
3916 }
3917 }
3918 }
3919 }
3920
3921 hi_reg = 15;
3922 /* We want to generate opcodes in the order the registers have been
3923 saved, ie. descending order. */
3924 for (reg = 15; reg >= -1; reg--)
3925 {
3926 /* Save registers in blocks. */
3927 if (reg < 0
3928 || !(mask & (1 << reg)))
3929 {
3930 /* We found an unsaved reg. Generate opcodes to save the
3931 preceding block. */
3932 if (reg != hi_reg)
3933 {
3934 if (reg == 9)
3935 {
3936 /* Short form. */
3937 op = 0xc0 | (hi_reg - 10);
3938 add_unwind_opcode (op, 1);
3939 }
3940 else
3941 {
3942 /* Long form. */
3943 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
3944 add_unwind_opcode (op, 2);
3945 }
3946 }
3947 hi_reg = reg - 1;
3948 }
3949 }
3950
3951 return;
3952 error:
3953 ignore_rest_of_line ();
3954 }
3955
3956 static void
3957 s_arm_unwind_save_mmxwcg (void)
3958 {
3959 int reg;
3960 int hi_reg;
3961 unsigned mask = 0;
3962 valueT op;
3963
3964 if (*input_line_pointer == '{')
3965 input_line_pointer++;
3966
3967 do
3968 {
3969 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
3970
3971 if (reg == FAIL)
3972 {
3973 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
3974 goto error;
3975 }
3976
3977 reg -= 8;
3978 if (mask >> reg)
3979 as_tsktsk (_("register list not in ascending order"));
3980 mask |= 1 << reg;
3981
3982 if (*input_line_pointer == '-')
3983 {
3984 input_line_pointer++;
3985 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
3986 if (hi_reg == FAIL)
3987 {
3988 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
3989 goto error;
3990 }
3991 else if (reg >= hi_reg)
3992 {
3993 as_bad (_("bad register range"));
3994 goto error;
3995 }
3996 for (; reg < hi_reg; reg++)
3997 mask |= 1 << reg;
3998 }
3999 }
4000 while (skip_past_comma (&input_line_pointer) != FAIL);
4001
4002 if (*input_line_pointer == '}')
4003 input_line_pointer++;
4004
4005 demand_empty_rest_of_line ();
4006
4007 /* Generate any deferred opcodes because we're going to be looking at
4008 the list. */
4009 flush_pending_unwind ();
4010
4011 for (reg = 0; reg < 16; reg++)
4012 {
4013 if (mask & (1 << reg))
4014 unwind.frame_size += 4;
4015 }
4016 op = 0xc700 | mask;
4017 add_unwind_opcode (op, 2);
4018 return;
4019 error:
4020 ignore_rest_of_line ();
4021 }
4022
4023
4024 /* Parse an unwind_save directive.
4025 If the argument is non-zero, this is a .vsave directive. */
4026
4027 static void
4028 s_arm_unwind_save (int arch_v6)
4029 {
4030 char *peek;
4031 struct reg_entry *reg;
4032 bfd_boolean had_brace = FALSE;
4033
4034 if (!unwind.proc_start)
4035 as_bad (MISSING_FNSTART);
4036
4037 /* Figure out what sort of save we have. */
4038 peek = input_line_pointer;
4039
4040 if (*peek == '{')
4041 {
4042 had_brace = TRUE;
4043 peek++;
4044 }
4045
4046 reg = arm_reg_parse_multi (&peek);
4047
4048 if (!reg)
4049 {
4050 as_bad (_("register expected"));
4051 ignore_rest_of_line ();
4052 return;
4053 }
4054
4055 switch (reg->type)
4056 {
4057 case REG_TYPE_FN:
4058 if (had_brace)
4059 {
4060 as_bad (_("FPA .unwind_save does not take a register list"));
4061 ignore_rest_of_line ();
4062 return;
4063 }
4064 input_line_pointer = peek;
4065 s_arm_unwind_save_fpa (reg->number);
4066 return;
4067
4068 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
4069 case REG_TYPE_VFD:
4070 if (arch_v6)
4071 s_arm_unwind_save_vfp_armv6 ();
4072 else
4073 s_arm_unwind_save_vfp ();
4074 return;
4075 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
4076 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
4077
4078 default:
4079 as_bad (_(".unwind_save does not support this kind of register"));
4080 ignore_rest_of_line ();
4081 }
4082 }
4083
4084
4085 /* Parse an unwind_movsp directive. */
4086
4087 static void
4088 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4089 {
4090 int reg;
4091 valueT op;
4092 int offset;
4093
4094 if (!unwind.proc_start)
4095 as_bad (MISSING_FNSTART);
4096
4097 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4098 if (reg == FAIL)
4099 {
4100 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4101 ignore_rest_of_line ();
4102 return;
4103 }
4104
4105 /* Optional constant. */
4106 if (skip_past_comma (&input_line_pointer) != FAIL)
4107 {
4108 if (immediate_for_directive (&offset) == FAIL)
4109 return;
4110 }
4111 else
4112 offset = 0;
4113
4114 demand_empty_rest_of_line ();
4115
4116 if (reg == REG_SP || reg == REG_PC)
4117 {
4118 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4119 return;
4120 }
4121
4122 if (unwind.fp_reg != REG_SP)
4123 as_bad (_("unexpected .unwind_movsp directive"));
4124
4125 /* Generate opcode to restore the value. */
4126 op = 0x90 | reg;
4127 add_unwind_opcode (op, 1);
4128
4129 /* Record the information for later. */
4130 unwind.fp_reg = reg;
4131 unwind.fp_offset = unwind.frame_size - offset;
4132 unwind.sp_restored = 1;
4133 }
4134
4135 /* Parse an unwind_pad directive. */
4136
4137 static void
4138 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4139 {
4140 int offset;
4141
4142 if (!unwind.proc_start)
4143 as_bad (MISSING_FNSTART);
4144
4145 if (immediate_for_directive (&offset) == FAIL)
4146 return;
4147
4148 if (offset & 3)
4149 {
4150 as_bad (_("stack increment must be multiple of 4"));
4151 ignore_rest_of_line ();
4152 return;
4153 }
4154
4155 /* Don't generate any opcodes, just record the details for later. */
4156 unwind.frame_size += offset;
4157 unwind.pending_offset += offset;
4158
4159 demand_empty_rest_of_line ();
4160 }
4161
4162 /* Parse an unwind_setfp directive. */
4163
4164 static void
4165 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4166 {
4167 int sp_reg;
4168 int fp_reg;
4169 int offset;
4170
4171 if (!unwind.proc_start)
4172 as_bad (MISSING_FNSTART);
4173
4174 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4175 if (skip_past_comma (&input_line_pointer) == FAIL)
4176 sp_reg = FAIL;
4177 else
4178 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4179
4180 if (fp_reg == FAIL || sp_reg == FAIL)
4181 {
4182 as_bad (_("expected <reg>, <reg>"));
4183 ignore_rest_of_line ();
4184 return;
4185 }
4186
4187 /* Optional constant. */
4188 if (skip_past_comma (&input_line_pointer) != FAIL)
4189 {
4190 if (immediate_for_directive (&offset) == FAIL)
4191 return;
4192 }
4193 else
4194 offset = 0;
4195
4196 demand_empty_rest_of_line ();
4197
4198 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4199 {
4200 as_bad (_("register must be either sp or set by a previous"
4201 "unwind_movsp directive"));
4202 return;
4203 }
4204
4205 /* Don't generate any opcodes, just record the information for later. */
4206 unwind.fp_reg = fp_reg;
4207 unwind.fp_used = 1;
4208 if (sp_reg == REG_SP)
4209 unwind.fp_offset = unwind.frame_size - offset;
4210 else
4211 unwind.fp_offset -= offset;
4212 }
4213
4214 /* Parse an unwind_raw directive. */
4215
4216 static void
4217 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4218 {
4219 expressionS exp;
4220 /* This is an arbitrary limit. */
4221 unsigned char op[16];
4222 int count;
4223
4224 if (!unwind.proc_start)
4225 as_bad (MISSING_FNSTART);
4226
4227 expression (&exp);
4228 if (exp.X_op == O_constant
4229 && skip_past_comma (&input_line_pointer) != FAIL)
4230 {
4231 unwind.frame_size += exp.X_add_number;
4232 expression (&exp);
4233 }
4234 else
4235 exp.X_op = O_illegal;
4236
4237 if (exp.X_op != O_constant)
4238 {
4239 as_bad (_("expected <offset>, <opcode>"));
4240 ignore_rest_of_line ();
4241 return;
4242 }
4243
4244 count = 0;
4245
4246 /* Parse the opcode. */
4247 for (;;)
4248 {
4249 if (count >= 16)
4250 {
4251 as_bad (_("unwind opcode too long"));
4252 ignore_rest_of_line ();
4253 }
4254 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4255 {
4256 as_bad (_("invalid unwind opcode"));
4257 ignore_rest_of_line ();
4258 return;
4259 }
4260 op[count++] = exp.X_add_number;
4261
4262 /* Parse the next byte. */
4263 if (skip_past_comma (&input_line_pointer) == FAIL)
4264 break;
4265
4266 expression (&exp);
4267 }
4268
4269 /* Add the opcode bytes in reverse order. */
4270 while (count--)
4271 add_unwind_opcode (op[count], 1);
4272
4273 demand_empty_rest_of_line ();
4274 }
4275
4276
4277 /* Parse a .eabi_attribute directive. */
4278
4279 static void
4280 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4281 {
4282 int tag = s_vendor_attribute (OBJ_ATTR_PROC);
4283
4284 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4285 attributes_set_explicitly[tag] = 1;
4286 }
4287
4288 /* Emit a tls fix for the symbol. */
4289
4290 static void
4291 s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4292 {
4293 char *p;
4294 expressionS exp;
4295 #ifdef md_flush_pending_output
4296 md_flush_pending_output ();
4297 #endif
4298
4299 #ifdef md_cons_align
4300 md_cons_align (4);
4301 #endif
4302
4303 /* Since we're just labelling the code, there's no need to define a
4304 mapping symbol. */
4305 expression (&exp);
4306 p = obstack_next_free (&frchain_now->frch_obstack);
4307 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4308 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4309 : BFD_RELOC_ARM_TLS_DESCSEQ);
4310 }
4311 #endif /* OBJ_ELF */
4312
4313 static void s_arm_arch (int);
4314 static void s_arm_object_arch (int);
4315 static void s_arm_cpu (int);
4316 static void s_arm_fpu (int);
4317 static void s_arm_arch_extension (int);
4318
4319 #ifdef TE_PE
4320
4321 static void
4322 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
4323 {
4324 expressionS exp;
4325
4326 do
4327 {
4328 expression (&exp);
4329 if (exp.X_op == O_symbol)
4330 exp.X_op = O_secrel;
4331
4332 emit_expr (&exp, 4);
4333 }
4334 while (*input_line_pointer++ == ',');
4335
4336 input_line_pointer--;
4337 demand_empty_rest_of_line ();
4338 }
4339 #endif /* TE_PE */
4340
4341 /* This table describes all the machine specific pseudo-ops the assembler
4342 has to support. The fields are:
4343 pseudo-op name without dot
4344 function to call to execute this pseudo-op
4345 Integer arg to pass to the function. */
4346
4347 const pseudo_typeS md_pseudo_table[] =
4348 {
4349 /* Never called because '.req' does not start a line. */
4350 { "req", s_req, 0 },
4351 /* Following two are likewise never called. */
4352 { "dn", s_dn, 0 },
4353 { "qn", s_qn, 0 },
4354 { "unreq", s_unreq, 0 },
4355 { "bss", s_bss, 0 },
4356 { "align", s_align, 0 },
4357 { "arm", s_arm, 0 },
4358 { "thumb", s_thumb, 0 },
4359 { "code", s_code, 0 },
4360 { "force_thumb", s_force_thumb, 0 },
4361 { "thumb_func", s_thumb_func, 0 },
4362 { "thumb_set", s_thumb_set, 0 },
4363 { "even", s_even, 0 },
4364 { "ltorg", s_ltorg, 0 },
4365 { "pool", s_ltorg, 0 },
4366 { "syntax", s_syntax, 0 },
4367 { "cpu", s_arm_cpu, 0 },
4368 { "arch", s_arm_arch, 0 },
4369 { "object_arch", s_arm_object_arch, 0 },
4370 { "fpu", s_arm_fpu, 0 },
4371 { "arch_extension", s_arm_arch_extension, 0 },
4372 #ifdef OBJ_ELF
4373 { "word", s_arm_elf_cons, 4 },
4374 { "long", s_arm_elf_cons, 4 },
4375 { "inst.n", s_arm_elf_inst, 2 },
4376 { "inst.w", s_arm_elf_inst, 4 },
4377 { "inst", s_arm_elf_inst, 0 },
4378 { "rel31", s_arm_rel31, 0 },
4379 { "fnstart", s_arm_unwind_fnstart, 0 },
4380 { "fnend", s_arm_unwind_fnend, 0 },
4381 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4382 { "personality", s_arm_unwind_personality, 0 },
4383 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4384 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4385 { "save", s_arm_unwind_save, 0 },
4386 { "vsave", s_arm_unwind_save, 1 },
4387 { "movsp", s_arm_unwind_movsp, 0 },
4388 { "pad", s_arm_unwind_pad, 0 },
4389 { "setfp", s_arm_unwind_setfp, 0 },
4390 { "unwind_raw", s_arm_unwind_raw, 0 },
4391 { "eabi_attribute", s_arm_eabi_attribute, 0 },
4392 { "tlsdescseq", s_arm_tls_descseq, 0 },
4393 #else
4394 { "word", cons, 4},
4395
4396 /* These are used for dwarf. */
4397 {"2byte", cons, 2},
4398 {"4byte", cons, 4},
4399 {"8byte", cons, 8},
4400 /* These are used for dwarf2. */
4401 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4402 { "loc", dwarf2_directive_loc, 0 },
4403 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
4404 #endif
4405 { "extend", float_cons, 'x' },
4406 { "ldouble", float_cons, 'x' },
4407 { "packed", float_cons, 'p' },
4408 #ifdef TE_PE
4409 {"secrel32", pe_directive_secrel, 0},
4410 #endif
4411 { 0, 0, 0 }
4412 };
4413 \f
4414 /* Parser functions used exclusively in instruction operands. */
4415
4416 /* Generic immediate-value read function for use in insn parsing.
4417 STR points to the beginning of the immediate (the leading #);
4418 VAL receives the value; if the value is outside [MIN, MAX]
4419 issue an error. PREFIX_OPT is true if the immediate prefix is
4420 optional. */
4421
4422 static int
4423 parse_immediate (char **str, int *val, int min, int max,
4424 bfd_boolean prefix_opt)
4425 {
4426 expressionS exp;
4427 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4428 if (exp.X_op != O_constant)
4429 {
4430 inst.error = _("constant expression required");
4431 return FAIL;
4432 }
4433
4434 if (exp.X_add_number < min || exp.X_add_number > max)
4435 {
4436 inst.error = _("immediate value out of range");
4437 return FAIL;
4438 }
4439
4440 *val = exp.X_add_number;
4441 return SUCCESS;
4442 }
4443
4444 /* Less-generic immediate-value read function with the possibility of loading a
4445 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
4446 instructions. Puts the result directly in inst.operands[i]. */
4447
4448 static int
4449 parse_big_immediate (char **str, int i)
4450 {
4451 expressionS exp;
4452 char *ptr = *str;
4453
4454 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4455
4456 if (exp.X_op == O_constant)
4457 {
4458 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4459 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4460 O_constant. We have to be careful not to break compilation for
4461 32-bit X_add_number, though. */
4462 if ((exp.X_add_number & ~(offsetT)(0xffffffffU)) != 0)
4463 {
4464 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4465 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4466 inst.operands[i].regisimm = 1;
4467 }
4468 }
4469 else if (exp.X_op == O_big
4470 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32)
4471 {
4472 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4473
4474 /* Bignums have their least significant bits in
4475 generic_bignum[0]. Make sure we put 32 bits in imm and
4476 32 bits in reg, in a (hopefully) portable way. */
4477 gas_assert (parts != 0);
4478
4479 /* Make sure that the number is not too big.
4480 PR 11972: Bignums can now be sign-extended to the
4481 size of a .octa so check that the out of range bits
4482 are all zero or all one. */
4483 if (LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 64)
4484 {
4485 LITTLENUM_TYPE m = -1;
4486
4487 if (generic_bignum[parts * 2] != 0
4488 && generic_bignum[parts * 2] != m)
4489 return FAIL;
4490
4491 for (j = parts * 2 + 1; j < (unsigned) exp.X_add_number; j++)
4492 if (generic_bignum[j] != generic_bignum[j-1])
4493 return FAIL;
4494 }
4495
4496 inst.operands[i].imm = 0;
4497 for (j = 0; j < parts; j++, idx++)
4498 inst.operands[i].imm |= generic_bignum[idx]
4499 << (LITTLENUM_NUMBER_OF_BITS * j);
4500 inst.operands[i].reg = 0;
4501 for (j = 0; j < parts; j++, idx++)
4502 inst.operands[i].reg |= generic_bignum[idx]
4503 << (LITTLENUM_NUMBER_OF_BITS * j);
4504 inst.operands[i].regisimm = 1;
4505 }
4506 else
4507 return FAIL;
4508
4509 *str = ptr;
4510
4511 return SUCCESS;
4512 }
4513
4514 /* Returns the pseudo-register number of an FPA immediate constant,
4515 or FAIL if there isn't a valid constant here. */
4516
4517 static int
4518 parse_fpa_immediate (char ** str)
4519 {
4520 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4521 char * save_in;
4522 expressionS exp;
4523 int i;
4524 int j;
4525
4526 /* First try and match exact strings, this is to guarantee
4527 that some formats will work even for cross assembly. */
4528
4529 for (i = 0; fp_const[i]; i++)
4530 {
4531 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
4532 {
4533 char *start = *str;
4534
4535 *str += strlen (fp_const[i]);
4536 if (is_end_of_line[(unsigned char) **str])
4537 return i + 8;
4538 *str = start;
4539 }
4540 }
4541
4542 /* Just because we didn't get a match doesn't mean that the constant
4543 isn't valid, just that it is in a format that we don't
4544 automatically recognize. Try parsing it with the standard
4545 expression routines. */
4546
4547 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
4548
4549 /* Look for a raw floating point number. */
4550 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4551 && is_end_of_line[(unsigned char) *save_in])
4552 {
4553 for (i = 0; i < NUM_FLOAT_VALS; i++)
4554 {
4555 for (j = 0; j < MAX_LITTLENUMS; j++)
4556 {
4557 if (words[j] != fp_values[i][j])
4558 break;
4559 }
4560
4561 if (j == MAX_LITTLENUMS)
4562 {
4563 *str = save_in;
4564 return i + 8;
4565 }
4566 }
4567 }
4568
4569 /* Try and parse a more complex expression, this will probably fail
4570 unless the code uses a floating point prefix (eg "0f"). */
4571 save_in = input_line_pointer;
4572 input_line_pointer = *str;
4573 if (expression (&exp) == absolute_section
4574 && exp.X_op == O_big
4575 && exp.X_add_number < 0)
4576 {
4577 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4578 Ditto for 15. */
4579 if (gen_to_words (words, 5, (long) 15) == 0)
4580 {
4581 for (i = 0; i < NUM_FLOAT_VALS; i++)
4582 {
4583 for (j = 0; j < MAX_LITTLENUMS; j++)
4584 {
4585 if (words[j] != fp_values[i][j])
4586 break;
4587 }
4588
4589 if (j == MAX_LITTLENUMS)
4590 {
4591 *str = input_line_pointer;
4592 input_line_pointer = save_in;
4593 return i + 8;
4594 }
4595 }
4596 }
4597 }
4598
4599 *str = input_line_pointer;
4600 input_line_pointer = save_in;
4601 inst.error = _("invalid FPA immediate expression");
4602 return FAIL;
4603 }
4604
4605 /* Returns 1 if a number has "quarter-precision" float format
4606 0baBbbbbbc defgh000 00000000 00000000. */
4607
4608 static int
4609 is_quarter_float (unsigned imm)
4610 {
4611 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4612 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4613 }
4614
4615 /* Parse an 8-bit "quarter-precision" floating point number of the form:
4616 0baBbbbbbc defgh000 00000000 00000000.
4617 The zero and minus-zero cases need special handling, since they can't be
4618 encoded in the "quarter-precision" float format, but can nonetheless be
4619 loaded as integer constants. */
4620
4621 static unsigned
4622 parse_qfloat_immediate (char **ccp, int *immed)
4623 {
4624 char *str = *ccp;
4625 char *fpnum;
4626 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4627 int found_fpchar = 0;
4628
4629 skip_past_char (&str, '#');
4630
4631 /* We must not accidentally parse an integer as a floating-point number. Make
4632 sure that the value we parse is not an integer by checking for special
4633 characters '.' or 'e'.
4634 FIXME: This is a horrible hack, but doing better is tricky because type
4635 information isn't in a very usable state at parse time. */
4636 fpnum = str;
4637 skip_whitespace (fpnum);
4638
4639 if (strncmp (fpnum, "0x", 2) == 0)
4640 return FAIL;
4641 else
4642 {
4643 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4644 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4645 {
4646 found_fpchar = 1;
4647 break;
4648 }
4649
4650 if (!found_fpchar)
4651 return FAIL;
4652 }
4653
4654 if ((str = atof_ieee (str, 's', words)) != NULL)
4655 {
4656 unsigned fpword = 0;
4657 int i;
4658
4659 /* Our FP word must be 32 bits (single-precision FP). */
4660 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4661 {
4662 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4663 fpword |= words[i];
4664 }
4665
4666 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
4667 *immed = fpword;
4668 else
4669 return FAIL;
4670
4671 *ccp = str;
4672
4673 return SUCCESS;
4674 }
4675
4676 return FAIL;
4677 }
4678
4679 /* Shift operands. */
4680 enum shift_kind
4681 {
4682 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4683 };
4684
4685 struct asm_shift_name
4686 {
4687 const char *name;
4688 enum shift_kind kind;
4689 };
4690
4691 /* Third argument to parse_shift. */
4692 enum parse_shift_mode
4693 {
4694 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4695 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4696 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4697 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4698 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4699 };
4700
4701 /* Parse a <shift> specifier on an ARM data processing instruction.
4702 This has three forms:
4703
4704 (LSL|LSR|ASL|ASR|ROR) Rs
4705 (LSL|LSR|ASL|ASR|ROR) #imm
4706 RRX
4707
4708 Note that ASL is assimilated to LSL in the instruction encoding, and
4709 RRX to ROR #0 (which cannot be written as such). */
4710
4711 static int
4712 parse_shift (char **str, int i, enum parse_shift_mode mode)
4713 {
4714 const struct asm_shift_name *shift_name;
4715 enum shift_kind shift;
4716 char *s = *str;
4717 char *p = s;
4718 int reg;
4719
4720 for (p = *str; ISALPHA (*p); p++)
4721 ;
4722
4723 if (p == *str)
4724 {
4725 inst.error = _("shift expression expected");
4726 return FAIL;
4727 }
4728
4729 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
4730 p - *str);
4731
4732 if (shift_name == NULL)
4733 {
4734 inst.error = _("shift expression expected");
4735 return FAIL;
4736 }
4737
4738 shift = shift_name->kind;
4739
4740 switch (mode)
4741 {
4742 case NO_SHIFT_RESTRICT:
4743 case SHIFT_IMMEDIATE: break;
4744
4745 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4746 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4747 {
4748 inst.error = _("'LSL' or 'ASR' required");
4749 return FAIL;
4750 }
4751 break;
4752
4753 case SHIFT_LSL_IMMEDIATE:
4754 if (shift != SHIFT_LSL)
4755 {
4756 inst.error = _("'LSL' required");
4757 return FAIL;
4758 }
4759 break;
4760
4761 case SHIFT_ASR_IMMEDIATE:
4762 if (shift != SHIFT_ASR)
4763 {
4764 inst.error = _("'ASR' required");
4765 return FAIL;
4766 }
4767 break;
4768
4769 default: abort ();
4770 }
4771
4772 if (shift != SHIFT_RRX)
4773 {
4774 /* Whitespace can appear here if the next thing is a bare digit. */
4775 skip_whitespace (p);
4776
4777 if (mode == NO_SHIFT_RESTRICT
4778 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4779 {
4780 inst.operands[i].imm = reg;
4781 inst.operands[i].immisreg = 1;
4782 }
4783 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4784 return FAIL;
4785 }
4786 inst.operands[i].shift_kind = shift;
4787 inst.operands[i].shifted = 1;
4788 *str = p;
4789 return SUCCESS;
4790 }
4791
4792 /* Parse a <shifter_operand> for an ARM data processing instruction:
4793
4794 #<immediate>
4795 #<immediate>, <rotate>
4796 <Rm>
4797 <Rm>, <shift>
4798
4799 where <shift> is defined by parse_shift above, and <rotate> is a
4800 multiple of 2 between 0 and 30. Validation of immediate operands
4801 is deferred to md_apply_fix. */
4802
4803 static int
4804 parse_shifter_operand (char **str, int i)
4805 {
4806 int value;
4807 expressionS exp;
4808
4809 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
4810 {
4811 inst.operands[i].reg = value;
4812 inst.operands[i].isreg = 1;
4813
4814 /* parse_shift will override this if appropriate */
4815 inst.reloc.exp.X_op = O_constant;
4816 inst.reloc.exp.X_add_number = 0;
4817
4818 if (skip_past_comma (str) == FAIL)
4819 return SUCCESS;
4820
4821 /* Shift operation on register. */
4822 return parse_shift (str, i, NO_SHIFT_RESTRICT);
4823 }
4824
4825 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4826 return FAIL;
4827
4828 if (skip_past_comma (str) == SUCCESS)
4829 {
4830 /* #x, y -- ie explicit rotation by Y. */
4831 if (my_get_expression (&exp, str, GE_NO_PREFIX))
4832 return FAIL;
4833
4834 if (exp.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
4835 {
4836 inst.error = _("constant expression expected");
4837 return FAIL;
4838 }
4839
4840 value = exp.X_add_number;
4841 if (value < 0 || value > 30 || value % 2 != 0)
4842 {
4843 inst.error = _("invalid rotation");
4844 return FAIL;
4845 }
4846 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4847 {
4848 inst.error = _("invalid constant");
4849 return FAIL;
4850 }
4851
4852 /* Convert to decoded value. md_apply_fix will put it back. */
4853 inst.reloc.exp.X_add_number
4854 = (((inst.reloc.exp.X_add_number << (32 - value))
4855 | (inst.reloc.exp.X_add_number >> value)) & 0xffffffff);
4856 }
4857
4858 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4859 inst.reloc.pc_rel = 0;
4860 return SUCCESS;
4861 }
4862
4863 /* Group relocation information. Each entry in the table contains the
4864 textual name of the relocation as may appear in assembler source
4865 and must end with a colon.
4866 Along with this textual name are the relocation codes to be used if
4867 the corresponding instruction is an ALU instruction (ADD or SUB only),
4868 an LDR, an LDRS, or an LDC. */
4869
4870 struct group_reloc_table_entry
4871 {
4872 const char *name;
4873 int alu_code;
4874 int ldr_code;
4875 int ldrs_code;
4876 int ldc_code;
4877 };
4878
4879 typedef enum
4880 {
4881 /* Varieties of non-ALU group relocation. */
4882
4883 GROUP_LDR,
4884 GROUP_LDRS,
4885 GROUP_LDC
4886 } group_reloc_type;
4887
4888 static struct group_reloc_table_entry group_reloc_table[] =
4889 { /* Program counter relative: */
4890 { "pc_g0_nc",
4891 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4892 0, /* LDR */
4893 0, /* LDRS */
4894 0 }, /* LDC */
4895 { "pc_g0",
4896 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4897 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4898 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4899 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4900 { "pc_g1_nc",
4901 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4902 0, /* LDR */
4903 0, /* LDRS */
4904 0 }, /* LDC */
4905 { "pc_g1",
4906 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4907 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4908 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4909 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4910 { "pc_g2",
4911 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4912 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4913 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4914 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4915 /* Section base relative */
4916 { "sb_g0_nc",
4917 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4918 0, /* LDR */
4919 0, /* LDRS */
4920 0 }, /* LDC */
4921 { "sb_g0",
4922 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4923 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4924 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4925 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4926 { "sb_g1_nc",
4927 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4928 0, /* LDR */
4929 0, /* LDRS */
4930 0 }, /* LDC */
4931 { "sb_g1",
4932 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4933 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4934 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4935 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4936 { "sb_g2",
4937 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4938 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4939 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4940 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4941
4942 /* Given the address of a pointer pointing to the textual name of a group
4943 relocation as may appear in assembler source, attempt to find its details
4944 in group_reloc_table. The pointer will be updated to the character after
4945 the trailing colon. On failure, FAIL will be returned; SUCCESS
4946 otherwise. On success, *entry will be updated to point at the relevant
4947 group_reloc_table entry. */
4948
4949 static int
4950 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
4951 {
4952 unsigned int i;
4953 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
4954 {
4955 int length = strlen (group_reloc_table[i].name);
4956
4957 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
4958 && (*str)[length] == ':')
4959 {
4960 *out = &group_reloc_table[i];
4961 *str += (length + 1);
4962 return SUCCESS;
4963 }
4964 }
4965
4966 return FAIL;
4967 }
4968
4969 /* Parse a <shifter_operand> for an ARM data processing instruction
4970 (as for parse_shifter_operand) where group relocations are allowed:
4971
4972 #<immediate>
4973 #<immediate>, <rotate>
4974 #:<group_reloc>:<expression>
4975 <Rm>
4976 <Rm>, <shift>
4977
4978 where <group_reloc> is one of the strings defined in group_reloc_table.
4979 The hashes are optional.
4980
4981 Everything else is as for parse_shifter_operand. */
4982
4983 static parse_operand_result
4984 parse_shifter_operand_group_reloc (char **str, int i)
4985 {
4986 /* Determine if we have the sequence of characters #: or just :
4987 coming next. If we do, then we check for a group relocation.
4988 If we don't, punt the whole lot to parse_shifter_operand. */
4989
4990 if (((*str)[0] == '#' && (*str)[1] == ':')
4991 || (*str)[0] == ':')
4992 {
4993 struct group_reloc_table_entry *entry;
4994
4995 if ((*str)[0] == '#')
4996 (*str) += 2;
4997 else
4998 (*str)++;
4999
5000 /* Try to parse a group relocation. Anything else is an error. */
5001 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5002 {
5003 inst.error = _("unknown group relocation");
5004 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5005 }
5006
5007 /* We now have the group relocation table entry corresponding to
5008 the name in the assembler source. Next, we parse the expression. */
5009 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
5010 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5011
5012 /* Record the relocation type (always the ALU variant here). */
5013 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
5014 gas_assert (inst.reloc.type != 0);
5015
5016 return PARSE_OPERAND_SUCCESS;
5017 }
5018 else
5019 return parse_shifter_operand (str, i) == SUCCESS
5020 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5021
5022 /* Never reached. */
5023 }
5024
5025 /* Parse a Neon alignment expression. Information is written to
5026 inst.operands[i]. We assume the initial ':' has been skipped.
5027
5028 align .imm = align << 8, .immisalign=1, .preind=0 */
5029 static parse_operand_result
5030 parse_neon_alignment (char **str, int i)
5031 {
5032 char *p = *str;
5033 expressionS exp;
5034
5035 my_get_expression (&exp, &p, GE_NO_PREFIX);
5036
5037 if (exp.X_op != O_constant)
5038 {
5039 inst.error = _("alignment must be constant");
5040 return PARSE_OPERAND_FAIL;
5041 }
5042
5043 inst.operands[i].imm = exp.X_add_number << 8;
5044 inst.operands[i].immisalign = 1;
5045 /* Alignments are not pre-indexes. */
5046 inst.operands[i].preind = 0;
5047
5048 *str = p;
5049 return PARSE_OPERAND_SUCCESS;
5050 }
5051
5052 /* Parse all forms of an ARM address expression. Information is written
5053 to inst.operands[i] and/or inst.reloc.
5054
5055 Preindexed addressing (.preind=1):
5056
5057 [Rn, #offset] .reg=Rn .reloc.exp=offset
5058 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5059 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5060 .shift_kind=shift .reloc.exp=shift_imm
5061
5062 These three may have a trailing ! which causes .writeback to be set also.
5063
5064 Postindexed addressing (.postind=1, .writeback=1):
5065
5066 [Rn], #offset .reg=Rn .reloc.exp=offset
5067 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5068 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5069 .shift_kind=shift .reloc.exp=shift_imm
5070
5071 Unindexed addressing (.preind=0, .postind=0):
5072
5073 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5074
5075 Other:
5076
5077 [Rn]{!} shorthand for [Rn,#0]{!}
5078 =immediate .isreg=0 .reloc.exp=immediate
5079 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
5080
5081 It is the caller's responsibility to check for addressing modes not
5082 supported by the instruction, and to set inst.reloc.type. */
5083
5084 static parse_operand_result
5085 parse_address_main (char **str, int i, int group_relocations,
5086 group_reloc_type group_type)
5087 {
5088 char *p = *str;
5089 int reg;
5090
5091 if (skip_past_char (&p, '[') == FAIL)
5092 {
5093 if (skip_past_char (&p, '=') == FAIL)
5094 {
5095 /* Bare address - translate to PC-relative offset. */
5096 inst.reloc.pc_rel = 1;
5097 inst.operands[i].reg = REG_PC;
5098 inst.operands[i].isreg = 1;
5099 inst.operands[i].preind = 1;
5100 }
5101 /* Otherwise a load-constant pseudo op, no special treatment needed here. */
5102
5103 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5104 return PARSE_OPERAND_FAIL;
5105
5106 *str = p;
5107 return PARSE_OPERAND_SUCCESS;
5108 }
5109
5110 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5111 {
5112 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5113 return PARSE_OPERAND_FAIL;
5114 }
5115 inst.operands[i].reg = reg;
5116 inst.operands[i].isreg = 1;
5117
5118 if (skip_past_comma (&p) == SUCCESS)
5119 {
5120 inst.operands[i].preind = 1;
5121
5122 if (*p == '+') p++;
5123 else if (*p == '-') p++, inst.operands[i].negative = 1;
5124
5125 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5126 {
5127 inst.operands[i].imm = reg;
5128 inst.operands[i].immisreg = 1;
5129
5130 if (skip_past_comma (&p) == SUCCESS)
5131 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5132 return PARSE_OPERAND_FAIL;
5133 }
5134 else if (skip_past_char (&p, ':') == SUCCESS)
5135 {
5136 /* FIXME: '@' should be used here, but it's filtered out by generic
5137 code before we get to see it here. This may be subject to
5138 change. */
5139 parse_operand_result result = parse_neon_alignment (&p, i);
5140
5141 if (result != PARSE_OPERAND_SUCCESS)
5142 return result;
5143 }
5144 else
5145 {
5146 if (inst.operands[i].negative)
5147 {
5148 inst.operands[i].negative = 0;
5149 p--;
5150 }
5151
5152 if (group_relocations
5153 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
5154 {
5155 struct group_reloc_table_entry *entry;
5156
5157 /* Skip over the #: or : sequence. */
5158 if (*p == '#')
5159 p += 2;
5160 else
5161 p++;
5162
5163 /* Try to parse a group relocation. Anything else is an
5164 error. */
5165 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5166 {
5167 inst.error = _("unknown group relocation");
5168 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5169 }
5170
5171 /* We now have the group relocation table entry corresponding to
5172 the name in the assembler source. Next, we parse the
5173 expression. */
5174 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5175 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5176
5177 /* Record the relocation type. */
5178 switch (group_type)
5179 {
5180 case GROUP_LDR:
5181 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
5182 break;
5183
5184 case GROUP_LDRS:
5185 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
5186 break;
5187
5188 case GROUP_LDC:
5189 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
5190 break;
5191
5192 default:
5193 gas_assert (0);
5194 }
5195
5196 if (inst.reloc.type == 0)
5197 {
5198 inst.error = _("this group relocation is not allowed on this instruction");
5199 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5200 }
5201 }
5202 else
5203 {
5204 char *q = p;
5205 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5206 return PARSE_OPERAND_FAIL;
5207 /* If the offset is 0, find out if it's a +0 or -0. */
5208 if (inst.reloc.exp.X_op == O_constant
5209 && inst.reloc.exp.X_add_number == 0)
5210 {
5211 skip_whitespace (q);
5212 if (*q == '#')
5213 {
5214 q++;
5215 skip_whitespace (q);
5216 }
5217 if (*q == '-')
5218 inst.operands[i].negative = 1;
5219 }
5220 }
5221 }
5222 }
5223 else if (skip_past_char (&p, ':') == SUCCESS)
5224 {
5225 /* FIXME: '@' should be used here, but it's filtered out by generic code
5226 before we get to see it here. This may be subject to change. */
5227 parse_operand_result result = parse_neon_alignment (&p, i);
5228
5229 if (result != PARSE_OPERAND_SUCCESS)
5230 return result;
5231 }
5232
5233 if (skip_past_char (&p, ']') == FAIL)
5234 {
5235 inst.error = _("']' expected");
5236 return PARSE_OPERAND_FAIL;
5237 }
5238
5239 if (skip_past_char (&p, '!') == SUCCESS)
5240 inst.operands[i].writeback = 1;
5241
5242 else if (skip_past_comma (&p) == SUCCESS)
5243 {
5244 if (skip_past_char (&p, '{') == SUCCESS)
5245 {
5246 /* [Rn], {expr} - unindexed, with option */
5247 if (parse_immediate (&p, &inst.operands[i].imm,
5248 0, 255, TRUE) == FAIL)
5249 return PARSE_OPERAND_FAIL;
5250
5251 if (skip_past_char (&p, '}') == FAIL)
5252 {
5253 inst.error = _("'}' expected at end of 'option' field");
5254 return PARSE_OPERAND_FAIL;
5255 }
5256 if (inst.operands[i].preind)
5257 {
5258 inst.error = _("cannot combine index with option");
5259 return PARSE_OPERAND_FAIL;
5260 }
5261 *str = p;
5262 return PARSE_OPERAND_SUCCESS;
5263 }
5264 else
5265 {
5266 inst.operands[i].postind = 1;
5267 inst.operands[i].writeback = 1;
5268
5269 if (inst.operands[i].preind)
5270 {
5271 inst.error = _("cannot combine pre- and post-indexing");
5272 return PARSE_OPERAND_FAIL;
5273 }
5274
5275 if (*p == '+') p++;
5276 else if (*p == '-') p++, inst.operands[i].negative = 1;
5277
5278 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5279 {
5280 /* We might be using the immediate for alignment already. If we
5281 are, OR the register number into the low-order bits. */
5282 if (inst.operands[i].immisalign)
5283 inst.operands[i].imm |= reg;
5284 else
5285 inst.operands[i].imm = reg;
5286 inst.operands[i].immisreg = 1;
5287
5288 if (skip_past_comma (&p) == SUCCESS)
5289 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5290 return PARSE_OPERAND_FAIL;
5291 }
5292 else
5293 {
5294 char *q = p;
5295 if (inst.operands[i].negative)
5296 {
5297 inst.operands[i].negative = 0;
5298 p--;
5299 }
5300 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5301 return PARSE_OPERAND_FAIL;
5302 /* If the offset is 0, find out if it's a +0 or -0. */
5303 if (inst.reloc.exp.X_op == O_constant
5304 && inst.reloc.exp.X_add_number == 0)
5305 {
5306 skip_whitespace (q);
5307 if (*q == '#')
5308 {
5309 q++;
5310 skip_whitespace (q);
5311 }
5312 if (*q == '-')
5313 inst.operands[i].negative = 1;
5314 }
5315 }
5316 }
5317 }
5318
5319 /* If at this point neither .preind nor .postind is set, we have a
5320 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5321 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5322 {
5323 inst.operands[i].preind = 1;
5324 inst.reloc.exp.X_op = O_constant;
5325 inst.reloc.exp.X_add_number = 0;
5326 }
5327 *str = p;
5328 return PARSE_OPERAND_SUCCESS;
5329 }
5330
5331 static int
5332 parse_address (char **str, int i)
5333 {
5334 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
5335 ? SUCCESS : FAIL;
5336 }
5337
5338 static parse_operand_result
5339 parse_address_group_reloc (char **str, int i, group_reloc_type type)
5340 {
5341 return parse_address_main (str, i, 1, type);
5342 }
5343
5344 /* Parse an operand for a MOVW or MOVT instruction. */
5345 static int
5346 parse_half (char **str)
5347 {
5348 char * p;
5349
5350 p = *str;
5351 skip_past_char (&p, '#');
5352 if (strncasecmp (p, ":lower16:", 9) == 0)
5353 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5354 else if (strncasecmp (p, ":upper16:", 9) == 0)
5355 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5356
5357 if (inst.reloc.type != BFD_RELOC_UNUSED)
5358 {
5359 p += 9;
5360 skip_whitespace (p);
5361 }
5362
5363 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5364 return FAIL;
5365
5366 if (inst.reloc.type == BFD_RELOC_UNUSED)
5367 {
5368 if (inst.reloc.exp.X_op != O_constant)
5369 {
5370 inst.error = _("constant expression expected");
5371 return FAIL;
5372 }
5373 if (inst.reloc.exp.X_add_number < 0
5374 || inst.reloc.exp.X_add_number > 0xffff)
5375 {
5376 inst.error = _("immediate value out of range");
5377 return FAIL;
5378 }
5379 }
5380 *str = p;
5381 return SUCCESS;
5382 }
5383
5384 /* Miscellaneous. */
5385
5386 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5387 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5388 static int
5389 parse_psr (char **str, bfd_boolean lhs)
5390 {
5391 char *p;
5392 unsigned long psr_field;
5393 const struct asm_psr *psr;
5394 char *start;
5395 bfd_boolean is_apsr = FALSE;
5396 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
5397
5398 /* PR gas/12698: If the user has specified -march=all then m_profile will
5399 be TRUE, but we want to ignore it in this case as we are building for any
5400 CPU type, including non-m variants. */
5401 if (selected_cpu.core == arm_arch_any.core)
5402 m_profile = FALSE;
5403
5404 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5405 feature for ease of use and backwards compatibility. */
5406 p = *str;
5407 if (strncasecmp (p, "SPSR", 4) == 0)
5408 {
5409 if (m_profile)
5410 goto unsupported_psr;
5411
5412 psr_field = SPSR_BIT;
5413 }
5414 else if (strncasecmp (p, "CPSR", 4) == 0)
5415 {
5416 if (m_profile)
5417 goto unsupported_psr;
5418
5419 psr_field = 0;
5420 }
5421 else if (strncasecmp (p, "APSR", 4) == 0)
5422 {
5423 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
5424 and ARMv7-R architecture CPUs. */
5425 is_apsr = TRUE;
5426 psr_field = 0;
5427 }
5428 else if (m_profile)
5429 {
5430 start = p;
5431 do
5432 p++;
5433 while (ISALNUM (*p) || *p == '_');
5434
5435 if (strncasecmp (start, "iapsr", 5) == 0
5436 || strncasecmp (start, "eapsr", 5) == 0
5437 || strncasecmp (start, "xpsr", 4) == 0
5438 || strncasecmp (start, "psr", 3) == 0)
5439 p = start + strcspn (start, "rR") + 1;
5440
5441 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5442 p - start);
5443
5444 if (!psr)
5445 return FAIL;
5446
5447 /* If APSR is being written, a bitfield may be specified. Note that
5448 APSR itself is handled above. */
5449 if (psr->field <= 3)
5450 {
5451 psr_field = psr->field;
5452 is_apsr = TRUE;
5453 goto check_suffix;
5454 }
5455
5456 *str = p;
5457 /* M-profile MSR instructions have the mask field set to "10", except
5458 *PSR variants which modify APSR, which may use a different mask (and
5459 have been handled already). Do that by setting the PSR_f field
5460 here. */
5461 return psr->field | (lhs ? PSR_f : 0);
5462 }
5463 else
5464 goto unsupported_psr;
5465
5466 p += 4;
5467 check_suffix:
5468 if (*p == '_')
5469 {
5470 /* A suffix follows. */
5471 p++;
5472 start = p;
5473
5474 do
5475 p++;
5476 while (ISALNUM (*p) || *p == '_');
5477
5478 if (is_apsr)
5479 {
5480 /* APSR uses a notation for bits, rather than fields. */
5481 unsigned int nzcvq_bits = 0;
5482 unsigned int g_bit = 0;
5483 char *bit;
5484
5485 for (bit = start; bit != p; bit++)
5486 {
5487 switch (TOLOWER (*bit))
5488 {
5489 case 'n':
5490 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
5491 break;
5492
5493 case 'z':
5494 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
5495 break;
5496
5497 case 'c':
5498 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
5499 break;
5500
5501 case 'v':
5502 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
5503 break;
5504
5505 case 'q':
5506 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
5507 break;
5508
5509 case 'g':
5510 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
5511 break;
5512
5513 default:
5514 inst.error = _("unexpected bit specified after APSR");
5515 return FAIL;
5516 }
5517 }
5518
5519 if (nzcvq_bits == 0x1f)
5520 psr_field |= PSR_f;
5521
5522 if (g_bit == 0x1)
5523 {
5524 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
5525 {
5526 inst.error = _("selected processor does not "
5527 "support DSP extension");
5528 return FAIL;
5529 }
5530
5531 psr_field |= PSR_s;
5532 }
5533
5534 if ((nzcvq_bits & 0x20) != 0
5535 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
5536 || (g_bit & 0x2) != 0)
5537 {
5538 inst.error = _("bad bitmask specified after APSR");
5539 return FAIL;
5540 }
5541 }
5542 else
5543 {
5544 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
5545 p - start);
5546 if (!psr)
5547 goto error;
5548
5549 psr_field |= psr->field;
5550 }
5551 }
5552 else
5553 {
5554 if (ISALNUM (*p))
5555 goto error; /* Garbage after "[CS]PSR". */
5556
5557 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
5558 is deprecated, but allow it anyway. */
5559 if (is_apsr && lhs)
5560 {
5561 psr_field |= PSR_f;
5562 as_tsktsk (_("writing to APSR without specifying a bitmask is "
5563 "deprecated"));
5564 }
5565 else if (!m_profile)
5566 /* These bits are never right for M-profile devices: don't set them
5567 (only code paths which read/write APSR reach here). */
5568 psr_field |= (PSR_c | PSR_f);
5569 }
5570 *str = p;
5571 return psr_field;
5572
5573 unsupported_psr:
5574 inst.error = _("selected processor does not support requested special "
5575 "purpose register");
5576 return FAIL;
5577
5578 error:
5579 inst.error = _("flag for {c}psr instruction expected");
5580 return FAIL;
5581 }
5582
5583 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5584 value suitable for splatting into the AIF field of the instruction. */
5585
5586 static int
5587 parse_cps_flags (char **str)
5588 {
5589 int val = 0;
5590 int saw_a_flag = 0;
5591 char *s = *str;
5592
5593 for (;;)
5594 switch (*s++)
5595 {
5596 case '\0': case ',':
5597 goto done;
5598
5599 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
5600 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
5601 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
5602
5603 default:
5604 inst.error = _("unrecognized CPS flag");
5605 return FAIL;
5606 }
5607
5608 done:
5609 if (saw_a_flag == 0)
5610 {
5611 inst.error = _("missing CPS flags");
5612 return FAIL;
5613 }
5614
5615 *str = s - 1;
5616 return val;
5617 }
5618
5619 /* Parse an endian specifier ("BE" or "LE", case insensitive);
5620 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
5621
5622 static int
5623 parse_endian_specifier (char **str)
5624 {
5625 int little_endian;
5626 char *s = *str;
5627
5628 if (strncasecmp (s, "BE", 2))
5629 little_endian = 0;
5630 else if (strncasecmp (s, "LE", 2))
5631 little_endian = 1;
5632 else
5633 {
5634 inst.error = _("valid endian specifiers are be or le");
5635 return FAIL;
5636 }
5637
5638 if (ISALNUM (s[2]) || s[2] == '_')
5639 {
5640 inst.error = _("valid endian specifiers are be or le");
5641 return FAIL;
5642 }
5643
5644 *str = s + 2;
5645 return little_endian;
5646 }
5647
5648 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5649 value suitable for poking into the rotate field of an sxt or sxta
5650 instruction, or FAIL on error. */
5651
5652 static int
5653 parse_ror (char **str)
5654 {
5655 int rot;
5656 char *s = *str;
5657
5658 if (strncasecmp (s, "ROR", 3) == 0)
5659 s += 3;
5660 else
5661 {
5662 inst.error = _("missing rotation field after comma");
5663 return FAIL;
5664 }
5665
5666 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5667 return FAIL;
5668
5669 switch (rot)
5670 {
5671 case 0: *str = s; return 0x0;
5672 case 8: *str = s; return 0x1;
5673 case 16: *str = s; return 0x2;
5674 case 24: *str = s; return 0x3;
5675
5676 default:
5677 inst.error = _("rotation can only be 0, 8, 16, or 24");
5678 return FAIL;
5679 }
5680 }
5681
5682 /* Parse a conditional code (from conds[] below). The value returned is in the
5683 range 0 .. 14, or FAIL. */
5684 static int
5685 parse_cond (char **str)
5686 {
5687 char *q;
5688 const struct asm_cond *c;
5689 int n;
5690 /* Condition codes are always 2 characters, so matching up to
5691 3 characters is sufficient. */
5692 char cond[3];
5693
5694 q = *str;
5695 n = 0;
5696 while (ISALPHA (*q) && n < 3)
5697 {
5698 cond[n] = TOLOWER (*q);
5699 q++;
5700 n++;
5701 }
5702
5703 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
5704 if (!c)
5705 {
5706 inst.error = _("condition required");
5707 return FAIL;
5708 }
5709
5710 *str = q;
5711 return c->value;
5712 }
5713
5714 /* Parse an option for a barrier instruction. Returns the encoding for the
5715 option, or FAIL. */
5716 static int
5717 parse_barrier (char **str)
5718 {
5719 char *p, *q;
5720 const struct asm_barrier_opt *o;
5721
5722 p = q = *str;
5723 while (ISALPHA (*q))
5724 q++;
5725
5726 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
5727 q - p);
5728 if (!o)
5729 return FAIL;
5730
5731 *str = q;
5732 return o->value;
5733 }
5734
5735 /* Parse the operands of a table branch instruction. Similar to a memory
5736 operand. */
5737 static int
5738 parse_tb (char **str)
5739 {
5740 char * p = *str;
5741 int reg;
5742
5743 if (skip_past_char (&p, '[') == FAIL)
5744 {
5745 inst.error = _("'[' expected");
5746 return FAIL;
5747 }
5748
5749 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5750 {
5751 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5752 return FAIL;
5753 }
5754 inst.operands[0].reg = reg;
5755
5756 if (skip_past_comma (&p) == FAIL)
5757 {
5758 inst.error = _("',' expected");
5759 return FAIL;
5760 }
5761
5762 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5763 {
5764 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5765 return FAIL;
5766 }
5767 inst.operands[0].imm = reg;
5768
5769 if (skip_past_comma (&p) == SUCCESS)
5770 {
5771 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5772 return FAIL;
5773 if (inst.reloc.exp.X_add_number != 1)
5774 {
5775 inst.error = _("invalid shift");
5776 return FAIL;
5777 }
5778 inst.operands[0].shifted = 1;
5779 }
5780
5781 if (skip_past_char (&p, ']') == FAIL)
5782 {
5783 inst.error = _("']' expected");
5784 return FAIL;
5785 }
5786 *str = p;
5787 return SUCCESS;
5788 }
5789
5790 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5791 information on the types the operands can take and how they are encoded.
5792 Up to four operands may be read; this function handles setting the
5793 ".present" field for each read operand itself.
5794 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5795 else returns FAIL. */
5796
5797 static int
5798 parse_neon_mov (char **str, int *which_operand)
5799 {
5800 int i = *which_operand, val;
5801 enum arm_reg_type rtype;
5802 char *ptr = *str;
5803 struct neon_type_el optype;
5804
5805 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5806 {
5807 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5808 inst.operands[i].reg = val;
5809 inst.operands[i].isscalar = 1;
5810 inst.operands[i].vectype = optype;
5811 inst.operands[i++].present = 1;
5812
5813 if (skip_past_comma (&ptr) == FAIL)
5814 goto wanted_comma;
5815
5816 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5817 goto wanted_arm;
5818
5819 inst.operands[i].reg = val;
5820 inst.operands[i].isreg = 1;
5821 inst.operands[i].present = 1;
5822 }
5823 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
5824 != FAIL)
5825 {
5826 /* Cases 0, 1, 2, 3, 5 (D only). */
5827 if (skip_past_comma (&ptr) == FAIL)
5828 goto wanted_comma;
5829
5830 inst.operands[i].reg = val;
5831 inst.operands[i].isreg = 1;
5832 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5833 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5834 inst.operands[i].isvec = 1;
5835 inst.operands[i].vectype = optype;
5836 inst.operands[i++].present = 1;
5837
5838 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5839 {
5840 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5841 Case 13: VMOV <Sd>, <Rm> */
5842 inst.operands[i].reg = val;
5843 inst.operands[i].isreg = 1;
5844 inst.operands[i].present = 1;
5845
5846 if (rtype == REG_TYPE_NQ)
5847 {
5848 first_error (_("can't use Neon quad register here"));
5849 return FAIL;
5850 }
5851 else if (rtype != REG_TYPE_VFS)
5852 {
5853 i++;
5854 if (skip_past_comma (&ptr) == FAIL)
5855 goto wanted_comma;
5856 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5857 goto wanted_arm;
5858 inst.operands[i].reg = val;
5859 inst.operands[i].isreg = 1;
5860 inst.operands[i].present = 1;
5861 }
5862 }
5863 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5864 &optype)) != FAIL)
5865 {
5866 /* Case 0: VMOV<c><q> <Qd>, <Qm>
5867 Case 1: VMOV<c><q> <Dd>, <Dm>
5868 Case 8: VMOV.F32 <Sd>, <Sm>
5869 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5870
5871 inst.operands[i].reg = val;
5872 inst.operands[i].isreg = 1;
5873 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5874 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5875 inst.operands[i].isvec = 1;
5876 inst.operands[i].vectype = optype;
5877 inst.operands[i].present = 1;
5878
5879 if (skip_past_comma (&ptr) == SUCCESS)
5880 {
5881 /* Case 15. */
5882 i++;
5883
5884 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5885 goto wanted_arm;
5886
5887 inst.operands[i].reg = val;
5888 inst.operands[i].isreg = 1;
5889 inst.operands[i++].present = 1;
5890
5891 if (skip_past_comma (&ptr) == FAIL)
5892 goto wanted_comma;
5893
5894 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5895 goto wanted_arm;
5896
5897 inst.operands[i].reg = val;
5898 inst.operands[i].isreg = 1;
5899 inst.operands[i++].present = 1;
5900 }
5901 }
5902 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5903 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5904 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5905 Case 10: VMOV.F32 <Sd>, #<imm>
5906 Case 11: VMOV.F64 <Dd>, #<imm> */
5907 inst.operands[i].immisfloat = 1;
5908 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5909 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5910 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5911 ;
5912 else
5913 {
5914 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5915 return FAIL;
5916 }
5917 }
5918 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5919 {
5920 /* Cases 6, 7. */
5921 inst.operands[i].reg = val;
5922 inst.operands[i].isreg = 1;
5923 inst.operands[i++].present = 1;
5924
5925 if (skip_past_comma (&ptr) == FAIL)
5926 goto wanted_comma;
5927
5928 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5929 {
5930 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
5931 inst.operands[i].reg = val;
5932 inst.operands[i].isscalar = 1;
5933 inst.operands[i].present = 1;
5934 inst.operands[i].vectype = optype;
5935 }
5936 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5937 {
5938 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
5939 inst.operands[i].reg = val;
5940 inst.operands[i].isreg = 1;
5941 inst.operands[i++].present = 1;
5942
5943 if (skip_past_comma (&ptr) == FAIL)
5944 goto wanted_comma;
5945
5946 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
5947 == FAIL)
5948 {
5949 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5950 return FAIL;
5951 }
5952
5953 inst.operands[i].reg = val;
5954 inst.operands[i].isreg = 1;
5955 inst.operands[i].isvec = 1;
5956 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5957 inst.operands[i].vectype = optype;
5958 inst.operands[i].present = 1;
5959
5960 if (rtype == REG_TYPE_VFS)
5961 {
5962 /* Case 14. */
5963 i++;
5964 if (skip_past_comma (&ptr) == FAIL)
5965 goto wanted_comma;
5966 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
5967 &optype)) == FAIL)
5968 {
5969 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
5970 return FAIL;
5971 }
5972 inst.operands[i].reg = val;
5973 inst.operands[i].isreg = 1;
5974 inst.operands[i].isvec = 1;
5975 inst.operands[i].issingle = 1;
5976 inst.operands[i].vectype = optype;
5977 inst.operands[i].present = 1;
5978 }
5979 }
5980 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
5981 != FAIL)
5982 {
5983 /* Case 13. */
5984 inst.operands[i].reg = val;
5985 inst.operands[i].isreg = 1;
5986 inst.operands[i].isvec = 1;
5987 inst.operands[i].issingle = 1;
5988 inst.operands[i].vectype = optype;
5989 inst.operands[i++].present = 1;
5990 }
5991 }
5992 else
5993 {
5994 first_error (_("parse error"));
5995 return FAIL;
5996 }
5997
5998 /* Successfully parsed the operands. Update args. */
5999 *which_operand = i;
6000 *str = ptr;
6001 return SUCCESS;
6002
6003 wanted_comma:
6004 first_error (_("expected comma"));
6005 return FAIL;
6006
6007 wanted_arm:
6008 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
6009 return FAIL;
6010 }
6011
6012 /* Use this macro when the operand constraints are different
6013 for ARM and THUMB (e.g. ldrd). */
6014 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6015 ((arm_operand) | ((thumb_operand) << 16))
6016
6017 /* Matcher codes for parse_operands. */
6018 enum operand_parse_code
6019 {
6020 OP_stop, /* end of line */
6021
6022 OP_RR, /* ARM register */
6023 OP_RRnpc, /* ARM register, not r15 */
6024 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
6025 OP_RRnpcb, /* ARM register, not r15, in square brackets */
6026 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
6027 optional trailing ! */
6028 OP_RRw, /* ARM register, not r15, optional trailing ! */
6029 OP_RCP, /* Coprocessor number */
6030 OP_RCN, /* Coprocessor register */
6031 OP_RF, /* FPA register */
6032 OP_RVS, /* VFP single precision register */
6033 OP_RVD, /* VFP double precision register (0..15) */
6034 OP_RND, /* Neon double precision register (0..31) */
6035 OP_RNQ, /* Neon quad precision register */
6036 OP_RVSD, /* VFP single or double precision register */
6037 OP_RNDQ, /* Neon double or quad precision register */
6038 OP_RNSDQ, /* Neon single, double or quad precision register */
6039 OP_RNSC, /* Neon scalar D[X] */
6040 OP_RVC, /* VFP control register */
6041 OP_RMF, /* Maverick F register */
6042 OP_RMD, /* Maverick D register */
6043 OP_RMFX, /* Maverick FX register */
6044 OP_RMDX, /* Maverick DX register */
6045 OP_RMAX, /* Maverick AX register */
6046 OP_RMDS, /* Maverick DSPSC register */
6047 OP_RIWR, /* iWMMXt wR register */
6048 OP_RIWC, /* iWMMXt wC register */
6049 OP_RIWG, /* iWMMXt wCG register */
6050 OP_RXA, /* XScale accumulator register */
6051
6052 OP_REGLST, /* ARM register list */
6053 OP_VRSLST, /* VFP single-precision register list */
6054 OP_VRDLST, /* VFP double-precision register list */
6055 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
6056 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6057 OP_NSTRLST, /* Neon element/structure list */
6058
6059 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
6060 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
6061 OP_RR_RNSC, /* ARM reg or Neon scalar. */
6062 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
6063 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6064 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6065 OP_VMOV, /* Neon VMOV operands. */
6066 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
6067 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
6068 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
6069
6070 OP_I0, /* immediate zero */
6071 OP_I7, /* immediate value 0 .. 7 */
6072 OP_I15, /* 0 .. 15 */
6073 OP_I16, /* 1 .. 16 */
6074 OP_I16z, /* 0 .. 16 */
6075 OP_I31, /* 0 .. 31 */
6076 OP_I31w, /* 0 .. 31, optional trailing ! */
6077 OP_I32, /* 1 .. 32 */
6078 OP_I32z, /* 0 .. 32 */
6079 OP_I63, /* 0 .. 63 */
6080 OP_I63s, /* -64 .. 63 */
6081 OP_I64, /* 1 .. 64 */
6082 OP_I64z, /* 0 .. 64 */
6083 OP_I255, /* 0 .. 255 */
6084
6085 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6086 OP_I7b, /* 0 .. 7 */
6087 OP_I15b, /* 0 .. 15 */
6088 OP_I31b, /* 0 .. 31 */
6089
6090 OP_SH, /* shifter operand */
6091 OP_SHG, /* shifter operand with possible group relocation */
6092 OP_ADDR, /* Memory address expression (any mode) */
6093 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6094 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6095 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
6096 OP_EXP, /* arbitrary expression */
6097 OP_EXPi, /* same, with optional immediate prefix */
6098 OP_EXPr, /* same, with optional relocation suffix */
6099 OP_HALF, /* 0 .. 65535 or low/high reloc. */
6100
6101 OP_CPSF, /* CPS flags */
6102 OP_ENDI, /* Endianness specifier */
6103 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
6104 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
6105 OP_COND, /* conditional code */
6106 OP_TB, /* Table branch. */
6107
6108 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
6109
6110 OP_RRnpc_I0, /* ARM register or literal 0 */
6111 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
6112 OP_RR_EXi, /* ARM register or expression with imm prefix */
6113 OP_RF_IF, /* FPA register or immediate */
6114 OP_RIWR_RIWC, /* iWMMXt R or C reg */
6115 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
6116
6117 /* Optional operands. */
6118 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
6119 OP_oI31b, /* 0 .. 31 */
6120 OP_oI32b, /* 1 .. 32 */
6121 OP_oIffffb, /* 0 .. 65535 */
6122 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
6123
6124 OP_oRR, /* ARM register */
6125 OP_oRRnpc, /* ARM register, not the PC */
6126 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
6127 OP_oRRw, /* ARM register, not r15, optional trailing ! */
6128 OP_oRND, /* Optional Neon double precision register */
6129 OP_oRNQ, /* Optional Neon quad precision register */
6130 OP_oRNDQ, /* Optional Neon double or quad precision register */
6131 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
6132 OP_oSHll, /* LSL immediate */
6133 OP_oSHar, /* ASR immediate */
6134 OP_oSHllar, /* LSL or ASR immediate */
6135 OP_oROR, /* ROR 0/8/16/24 */
6136 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
6137
6138 /* Some pre-defined mixed (ARM/THUMB) operands. */
6139 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
6140 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
6141 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
6142
6143 OP_FIRST_OPTIONAL = OP_oI7b
6144 };
6145
6146 /* Generic instruction operand parser. This does no encoding and no
6147 semantic validation; it merely squirrels values away in the inst
6148 structure. Returns SUCCESS or FAIL depending on whether the
6149 specified grammar matched. */
6150 static int
6151 parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
6152 {
6153 unsigned const int *upat = pattern;
6154 char *backtrack_pos = 0;
6155 const char *backtrack_error = 0;
6156 int i, val, backtrack_index = 0;
6157 enum arm_reg_type rtype;
6158 parse_operand_result result;
6159 unsigned int op_parse_code;
6160
6161 #define po_char_or_fail(chr) \
6162 do \
6163 { \
6164 if (skip_past_char (&str, chr) == FAIL) \
6165 goto bad_args; \
6166 } \
6167 while (0)
6168
6169 #define po_reg_or_fail(regtype) \
6170 do \
6171 { \
6172 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6173 & inst.operands[i].vectype); \
6174 if (val == FAIL) \
6175 { \
6176 first_error (_(reg_expected_msgs[regtype])); \
6177 goto failure; \
6178 } \
6179 inst.operands[i].reg = val; \
6180 inst.operands[i].isreg = 1; \
6181 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6182 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6183 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6184 || rtype == REG_TYPE_VFD \
6185 || rtype == REG_TYPE_NQ); \
6186 } \
6187 while (0)
6188
6189 #define po_reg_or_goto(regtype, label) \
6190 do \
6191 { \
6192 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6193 & inst.operands[i].vectype); \
6194 if (val == FAIL) \
6195 goto label; \
6196 \
6197 inst.operands[i].reg = val; \
6198 inst.operands[i].isreg = 1; \
6199 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6200 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6201 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6202 || rtype == REG_TYPE_VFD \
6203 || rtype == REG_TYPE_NQ); \
6204 } \
6205 while (0)
6206
6207 #define po_imm_or_fail(min, max, popt) \
6208 do \
6209 { \
6210 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
6211 goto failure; \
6212 inst.operands[i].imm = val; \
6213 } \
6214 while (0)
6215
6216 #define po_scalar_or_goto(elsz, label) \
6217 do \
6218 { \
6219 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
6220 if (val == FAIL) \
6221 goto label; \
6222 inst.operands[i].reg = val; \
6223 inst.operands[i].isscalar = 1; \
6224 } \
6225 while (0)
6226
6227 #define po_misc_or_fail(expr) \
6228 do \
6229 { \
6230 if (expr) \
6231 goto failure; \
6232 } \
6233 while (0)
6234
6235 #define po_misc_or_fail_no_backtrack(expr) \
6236 do \
6237 { \
6238 result = expr; \
6239 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
6240 backtrack_pos = 0; \
6241 if (result != PARSE_OPERAND_SUCCESS) \
6242 goto failure; \
6243 } \
6244 while (0)
6245
6246 #define po_barrier_or_imm(str) \
6247 do \
6248 { \
6249 val = parse_barrier (&str); \
6250 if (val == FAIL) \
6251 { \
6252 if (ISALPHA (*str)) \
6253 goto failure; \
6254 else \
6255 goto immediate; \
6256 } \
6257 else \
6258 { \
6259 if ((inst.instruction & 0xf0) == 0x60 \
6260 && val != 0xf) \
6261 { \
6262 /* ISB can only take SY as an option. */ \
6263 inst.error = _("invalid barrier type"); \
6264 goto failure; \
6265 } \
6266 } \
6267 } \
6268 while (0)
6269
6270 skip_whitespace (str);
6271
6272 for (i = 0; upat[i] != OP_stop; i++)
6273 {
6274 op_parse_code = upat[i];
6275 if (op_parse_code >= 1<<16)
6276 op_parse_code = thumb ? (op_parse_code >> 16)
6277 : (op_parse_code & ((1<<16)-1));
6278
6279 if (op_parse_code >= OP_FIRST_OPTIONAL)
6280 {
6281 /* Remember where we are in case we need to backtrack. */
6282 gas_assert (!backtrack_pos);
6283 backtrack_pos = str;
6284 backtrack_error = inst.error;
6285 backtrack_index = i;
6286 }
6287
6288 if (i > 0 && (i > 1 || inst.operands[0].present))
6289 po_char_or_fail (',');
6290
6291 switch (op_parse_code)
6292 {
6293 /* Registers */
6294 case OP_oRRnpc:
6295 case OP_oRRnpcsp:
6296 case OP_RRnpc:
6297 case OP_RRnpcsp:
6298 case OP_oRR:
6299 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
6300 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
6301 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
6302 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6303 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6304 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
6305 case OP_oRND:
6306 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
6307 case OP_RVC:
6308 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6309 break;
6310 /* Also accept generic coprocessor regs for unknown registers. */
6311 coproc_reg:
6312 po_reg_or_fail (REG_TYPE_CN);
6313 break;
6314 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6315 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6316 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6317 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6318 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6319 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6320 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6321 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6322 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6323 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
6324 case OP_oRNQ:
6325 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
6326 case OP_oRNDQ:
6327 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
6328 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6329 case OP_oRNSDQ:
6330 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
6331
6332 /* Neon scalar. Using an element size of 8 means that some invalid
6333 scalars are accepted here, so deal with those in later code. */
6334 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6335
6336 case OP_RNDQ_I0:
6337 {
6338 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6339 break;
6340 try_imm0:
6341 po_imm_or_fail (0, 0, TRUE);
6342 }
6343 break;
6344
6345 case OP_RVSD_I0:
6346 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6347 break;
6348
6349 case OP_RR_RNSC:
6350 {
6351 po_scalar_or_goto (8, try_rr);
6352 break;
6353 try_rr:
6354 po_reg_or_fail (REG_TYPE_RN);
6355 }
6356 break;
6357
6358 case OP_RNSDQ_RNSC:
6359 {
6360 po_scalar_or_goto (8, try_nsdq);
6361 break;
6362 try_nsdq:
6363 po_reg_or_fail (REG_TYPE_NSDQ);
6364 }
6365 break;
6366
6367 case OP_RNDQ_RNSC:
6368 {
6369 po_scalar_or_goto (8, try_ndq);
6370 break;
6371 try_ndq:
6372 po_reg_or_fail (REG_TYPE_NDQ);
6373 }
6374 break;
6375
6376 case OP_RND_RNSC:
6377 {
6378 po_scalar_or_goto (8, try_vfd);
6379 break;
6380 try_vfd:
6381 po_reg_or_fail (REG_TYPE_VFD);
6382 }
6383 break;
6384
6385 case OP_VMOV:
6386 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6387 not careful then bad things might happen. */
6388 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6389 break;
6390
6391 case OP_RNDQ_Ibig:
6392 {
6393 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
6394 break;
6395 try_immbig:
6396 /* There's a possibility of getting a 64-bit immediate here, so
6397 we need special handling. */
6398 if (parse_big_immediate (&str, i) == FAIL)
6399 {
6400 inst.error = _("immediate value is out of range");
6401 goto failure;
6402 }
6403 }
6404 break;
6405
6406 case OP_RNDQ_I63b:
6407 {
6408 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6409 break;
6410 try_shimm:
6411 po_imm_or_fail (0, 63, TRUE);
6412 }
6413 break;
6414
6415 case OP_RRnpcb:
6416 po_char_or_fail ('[');
6417 po_reg_or_fail (REG_TYPE_RN);
6418 po_char_or_fail (']');
6419 break;
6420
6421 case OP_RRnpctw:
6422 case OP_RRw:
6423 case OP_oRRw:
6424 po_reg_or_fail (REG_TYPE_RN);
6425 if (skip_past_char (&str, '!') == SUCCESS)
6426 inst.operands[i].writeback = 1;
6427 break;
6428
6429 /* Immediates */
6430 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6431 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6432 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
6433 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
6434 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6435 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
6436 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
6437 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
6438 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6439 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6440 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
6441 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
6442
6443 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6444 case OP_oI7b:
6445 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6446 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6447 case OP_oI31b:
6448 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
6449 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
6450 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6451
6452 /* Immediate variants */
6453 case OP_oI255c:
6454 po_char_or_fail ('{');
6455 po_imm_or_fail (0, 255, TRUE);
6456 po_char_or_fail ('}');
6457 break;
6458
6459 case OP_I31w:
6460 /* The expression parser chokes on a trailing !, so we have
6461 to find it first and zap it. */
6462 {
6463 char *s = str;
6464 while (*s && *s != ',')
6465 s++;
6466 if (s[-1] == '!')
6467 {
6468 s[-1] = '\0';
6469 inst.operands[i].writeback = 1;
6470 }
6471 po_imm_or_fail (0, 31, TRUE);
6472 if (str == s - 1)
6473 str = s;
6474 }
6475 break;
6476
6477 /* Expressions */
6478 case OP_EXPi: EXPi:
6479 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6480 GE_OPT_PREFIX));
6481 break;
6482
6483 case OP_EXP:
6484 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6485 GE_NO_PREFIX));
6486 break;
6487
6488 case OP_EXPr: EXPr:
6489 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6490 GE_NO_PREFIX));
6491 if (inst.reloc.exp.X_op == O_symbol)
6492 {
6493 val = parse_reloc (&str);
6494 if (val == -1)
6495 {
6496 inst.error = _("unrecognized relocation suffix");
6497 goto failure;
6498 }
6499 else if (val != BFD_RELOC_UNUSED)
6500 {
6501 inst.operands[i].imm = val;
6502 inst.operands[i].hasreloc = 1;
6503 }
6504 }
6505 break;
6506
6507 /* Operand for MOVW or MOVT. */
6508 case OP_HALF:
6509 po_misc_or_fail (parse_half (&str));
6510 break;
6511
6512 /* Register or expression. */
6513 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
6514 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
6515
6516 /* Register or immediate. */
6517 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
6518 I0: po_imm_or_fail (0, 0, FALSE); break;
6519
6520 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
6521 IF:
6522 if (!is_immediate_prefix (*str))
6523 goto bad_args;
6524 str++;
6525 val = parse_fpa_immediate (&str);
6526 if (val == FAIL)
6527 goto failure;
6528 /* FPA immediates are encoded as registers 8-15.
6529 parse_fpa_immediate has already applied the offset. */
6530 inst.operands[i].reg = val;
6531 inst.operands[i].isreg = 1;
6532 break;
6533
6534 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
6535 I32z: po_imm_or_fail (0, 32, FALSE); break;
6536
6537 /* Two kinds of register. */
6538 case OP_RIWR_RIWC:
6539 {
6540 struct reg_entry *rege = arm_reg_parse_multi (&str);
6541 if (!rege
6542 || (rege->type != REG_TYPE_MMXWR
6543 && rege->type != REG_TYPE_MMXWC
6544 && rege->type != REG_TYPE_MMXWCG))
6545 {
6546 inst.error = _("iWMMXt data or control register expected");
6547 goto failure;
6548 }
6549 inst.operands[i].reg = rege->number;
6550 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
6551 }
6552 break;
6553
6554 case OP_RIWC_RIWG:
6555 {
6556 struct reg_entry *rege = arm_reg_parse_multi (&str);
6557 if (!rege
6558 || (rege->type != REG_TYPE_MMXWC
6559 && rege->type != REG_TYPE_MMXWCG))
6560 {
6561 inst.error = _("iWMMXt control register expected");
6562 goto failure;
6563 }
6564 inst.operands[i].reg = rege->number;
6565 inst.operands[i].isreg = 1;
6566 }
6567 break;
6568
6569 /* Misc */
6570 case OP_CPSF: val = parse_cps_flags (&str); break;
6571 case OP_ENDI: val = parse_endian_specifier (&str); break;
6572 case OP_oROR: val = parse_ror (&str); break;
6573 case OP_COND: val = parse_cond (&str); break;
6574 case OP_oBARRIER_I15:
6575 po_barrier_or_imm (str); break;
6576 immediate:
6577 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
6578 goto failure;
6579 break;
6580
6581 case OP_wPSR:
6582 case OP_rPSR:
6583 po_reg_or_goto (REG_TYPE_RNB, try_psr);
6584 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
6585 {
6586 inst.error = _("Banked registers are not available with this "
6587 "architecture.");
6588 goto failure;
6589 }
6590 break;
6591 try_psr:
6592 val = parse_psr (&str, op_parse_code == OP_wPSR);
6593 break;
6594
6595 case OP_APSR_RR:
6596 po_reg_or_goto (REG_TYPE_RN, try_apsr);
6597 break;
6598 try_apsr:
6599 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
6600 instruction). */
6601 if (strncasecmp (str, "APSR_", 5) == 0)
6602 {
6603 unsigned found = 0;
6604 str += 5;
6605 while (found < 15)
6606 switch (*str++)
6607 {
6608 case 'c': found = (found & 1) ? 16 : found | 1; break;
6609 case 'n': found = (found & 2) ? 16 : found | 2; break;
6610 case 'z': found = (found & 4) ? 16 : found | 4; break;
6611 case 'v': found = (found & 8) ? 16 : found | 8; break;
6612 default: found = 16;
6613 }
6614 if (found != 15)
6615 goto failure;
6616 inst.operands[i].isvec = 1;
6617 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
6618 inst.operands[i].reg = REG_PC;
6619 }
6620 else
6621 goto failure;
6622 break;
6623
6624 case OP_TB:
6625 po_misc_or_fail (parse_tb (&str));
6626 break;
6627
6628 /* Register lists. */
6629 case OP_REGLST:
6630 val = parse_reg_list (&str);
6631 if (*str == '^')
6632 {
6633 inst.operands[1].writeback = 1;
6634 str++;
6635 }
6636 break;
6637
6638 case OP_VRSLST:
6639 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
6640 break;
6641
6642 case OP_VRDLST:
6643 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
6644 break;
6645
6646 case OP_VRSDLST:
6647 /* Allow Q registers too. */
6648 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6649 REGLIST_NEON_D);
6650 if (val == FAIL)
6651 {
6652 inst.error = NULL;
6653 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6654 REGLIST_VFP_S);
6655 inst.operands[i].issingle = 1;
6656 }
6657 break;
6658
6659 case OP_NRDLST:
6660 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6661 REGLIST_NEON_D);
6662 break;
6663
6664 case OP_NSTRLST:
6665 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
6666 &inst.operands[i].vectype);
6667 break;
6668
6669 /* Addressing modes */
6670 case OP_ADDR:
6671 po_misc_or_fail (parse_address (&str, i));
6672 break;
6673
6674 case OP_ADDRGLDR:
6675 po_misc_or_fail_no_backtrack (
6676 parse_address_group_reloc (&str, i, GROUP_LDR));
6677 break;
6678
6679 case OP_ADDRGLDRS:
6680 po_misc_or_fail_no_backtrack (
6681 parse_address_group_reloc (&str, i, GROUP_LDRS));
6682 break;
6683
6684 case OP_ADDRGLDC:
6685 po_misc_or_fail_no_backtrack (
6686 parse_address_group_reloc (&str, i, GROUP_LDC));
6687 break;
6688
6689 case OP_SH:
6690 po_misc_or_fail (parse_shifter_operand (&str, i));
6691 break;
6692
6693 case OP_SHG:
6694 po_misc_or_fail_no_backtrack (
6695 parse_shifter_operand_group_reloc (&str, i));
6696 break;
6697
6698 case OP_oSHll:
6699 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6700 break;
6701
6702 case OP_oSHar:
6703 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6704 break;
6705
6706 case OP_oSHllar:
6707 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6708 break;
6709
6710 default:
6711 as_fatal (_("unhandled operand code %d"), op_parse_code);
6712 }
6713
6714 /* Various value-based sanity checks and shared operations. We
6715 do not signal immediate failures for the register constraints;
6716 this allows a syntax error to take precedence. */
6717 switch (op_parse_code)
6718 {
6719 case OP_oRRnpc:
6720 case OP_RRnpc:
6721 case OP_RRnpcb:
6722 case OP_RRw:
6723 case OP_oRRw:
6724 case OP_RRnpc_I0:
6725 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6726 inst.error = BAD_PC;
6727 break;
6728
6729 case OP_oRRnpcsp:
6730 case OP_RRnpcsp:
6731 if (inst.operands[i].isreg)
6732 {
6733 if (inst.operands[i].reg == REG_PC)
6734 inst.error = BAD_PC;
6735 else if (inst.operands[i].reg == REG_SP)
6736 inst.error = BAD_SP;
6737 }
6738 break;
6739
6740 case OP_RRnpctw:
6741 if (inst.operands[i].isreg
6742 && inst.operands[i].reg == REG_PC
6743 && (inst.operands[i].writeback || thumb))
6744 inst.error = BAD_PC;
6745 break;
6746
6747 case OP_CPSF:
6748 case OP_ENDI:
6749 case OP_oROR:
6750 case OP_wPSR:
6751 case OP_rPSR:
6752 case OP_COND:
6753 case OP_oBARRIER_I15:
6754 case OP_REGLST:
6755 case OP_VRSLST:
6756 case OP_VRDLST:
6757 case OP_VRSDLST:
6758 case OP_NRDLST:
6759 case OP_NSTRLST:
6760 if (val == FAIL)
6761 goto failure;
6762 inst.operands[i].imm = val;
6763 break;
6764
6765 default:
6766 break;
6767 }
6768
6769 /* If we get here, this operand was successfully parsed. */
6770 inst.operands[i].present = 1;
6771 continue;
6772
6773 bad_args:
6774 inst.error = BAD_ARGS;
6775
6776 failure:
6777 if (!backtrack_pos)
6778 {
6779 /* The parse routine should already have set inst.error, but set a
6780 default here just in case. */
6781 if (!inst.error)
6782 inst.error = _("syntax error");
6783 return FAIL;
6784 }
6785
6786 /* Do not backtrack over a trailing optional argument that
6787 absorbed some text. We will only fail again, with the
6788 'garbage following instruction' error message, which is
6789 probably less helpful than the current one. */
6790 if (backtrack_index == i && backtrack_pos != str
6791 && upat[i+1] == OP_stop)
6792 {
6793 if (!inst.error)
6794 inst.error = _("syntax error");
6795 return FAIL;
6796 }
6797
6798 /* Try again, skipping the optional argument at backtrack_pos. */
6799 str = backtrack_pos;
6800 inst.error = backtrack_error;
6801 inst.operands[backtrack_index].present = 0;
6802 i = backtrack_index;
6803 backtrack_pos = 0;
6804 }
6805
6806 /* Check that we have parsed all the arguments. */
6807 if (*str != '\0' && !inst.error)
6808 inst.error = _("garbage following instruction");
6809
6810 return inst.error ? FAIL : SUCCESS;
6811 }
6812
6813 #undef po_char_or_fail
6814 #undef po_reg_or_fail
6815 #undef po_reg_or_goto
6816 #undef po_imm_or_fail
6817 #undef po_scalar_or_fail
6818 #undef po_barrier_or_imm
6819
6820 /* Shorthand macro for instruction encoding functions issuing errors. */
6821 #define constraint(expr, err) \
6822 do \
6823 { \
6824 if (expr) \
6825 { \
6826 inst.error = err; \
6827 return; \
6828 } \
6829 } \
6830 while (0)
6831
6832 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
6833 instructions are unpredictable if these registers are used. This
6834 is the BadReg predicate in ARM's Thumb-2 documentation. */
6835 #define reject_bad_reg(reg) \
6836 do \
6837 if (reg == REG_SP || reg == REG_PC) \
6838 { \
6839 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
6840 return; \
6841 } \
6842 while (0)
6843
6844 /* If REG is R13 (the stack pointer), warn that its use is
6845 deprecated. */
6846 #define warn_deprecated_sp(reg) \
6847 do \
6848 if (warn_on_deprecated && reg == REG_SP) \
6849 as_warn (_("use of r13 is deprecated")); \
6850 while (0)
6851
6852 /* Functions for operand encoding. ARM, then Thumb. */
6853
6854 #define rotate_left(v, n) (v << n | v >> (32 - n))
6855
6856 /* If VAL can be encoded in the immediate field of an ARM instruction,
6857 return the encoded form. Otherwise, return FAIL. */
6858
6859 static unsigned int
6860 encode_arm_immediate (unsigned int val)
6861 {
6862 unsigned int a, i;
6863
6864 for (i = 0; i < 32; i += 2)
6865 if ((a = rotate_left (val, i)) <= 0xff)
6866 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6867
6868 return FAIL;
6869 }
6870
6871 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6872 return the encoded form. Otherwise, return FAIL. */
6873 static unsigned int
6874 encode_thumb32_immediate (unsigned int val)
6875 {
6876 unsigned int a, i;
6877
6878 if (val <= 0xff)
6879 return val;
6880
6881 for (i = 1; i <= 24; i++)
6882 {
6883 a = val >> i;
6884 if ((val & ~(0xff << i)) == 0)
6885 return ((val >> i) & 0x7f) | ((32 - i) << 7);
6886 }
6887
6888 a = val & 0xff;
6889 if (val == ((a << 16) | a))
6890 return 0x100 | a;
6891 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6892 return 0x300 | a;
6893
6894 a = val & 0xff00;
6895 if (val == ((a << 16) | a))
6896 return 0x200 | (a >> 8);
6897
6898 return FAIL;
6899 }
6900 /* Encode a VFP SP or DP register number into inst.instruction. */
6901
6902 static void
6903 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6904 {
6905 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6906 && reg > 15)
6907 {
6908 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
6909 {
6910 if (thumb_mode)
6911 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
6912 fpu_vfp_ext_d32);
6913 else
6914 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
6915 fpu_vfp_ext_d32);
6916 }
6917 else
6918 {
6919 first_error (_("D register out of range for selected VFP version"));
6920 return;
6921 }
6922 }
6923
6924 switch (pos)
6925 {
6926 case VFP_REG_Sd:
6927 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
6928 break;
6929
6930 case VFP_REG_Sn:
6931 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
6932 break;
6933
6934 case VFP_REG_Sm:
6935 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
6936 break;
6937
6938 case VFP_REG_Dd:
6939 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
6940 break;
6941
6942 case VFP_REG_Dn:
6943 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
6944 break;
6945
6946 case VFP_REG_Dm:
6947 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
6948 break;
6949
6950 default:
6951 abort ();
6952 }
6953 }
6954
6955 /* Encode a <shift> in an ARM-format instruction. The immediate,
6956 if any, is handled by md_apply_fix. */
6957 static void
6958 encode_arm_shift (int i)
6959 {
6960 if (inst.operands[i].shift_kind == SHIFT_RRX)
6961 inst.instruction |= SHIFT_ROR << 5;
6962 else
6963 {
6964 inst.instruction |= inst.operands[i].shift_kind << 5;
6965 if (inst.operands[i].immisreg)
6966 {
6967 inst.instruction |= SHIFT_BY_REG;
6968 inst.instruction |= inst.operands[i].imm << 8;
6969 }
6970 else
6971 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6972 }
6973 }
6974
6975 static void
6976 encode_arm_shifter_operand (int i)
6977 {
6978 if (inst.operands[i].isreg)
6979 {
6980 inst.instruction |= inst.operands[i].reg;
6981 encode_arm_shift (i);
6982 }
6983 else
6984 inst.instruction |= INST_IMMEDIATE;
6985 }
6986
6987 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
6988 static void
6989 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
6990 {
6991 gas_assert (inst.operands[i].isreg);
6992 inst.instruction |= inst.operands[i].reg << 16;
6993
6994 if (inst.operands[i].preind)
6995 {
6996 if (is_t)
6997 {
6998 inst.error = _("instruction does not accept preindexed addressing");
6999 return;
7000 }
7001 inst.instruction |= PRE_INDEX;
7002 if (inst.operands[i].writeback)
7003 inst.instruction |= WRITE_BACK;
7004
7005 }
7006 else if (inst.operands[i].postind)
7007 {
7008 gas_assert (inst.operands[i].writeback);
7009 if (is_t)
7010 inst.instruction |= WRITE_BACK;
7011 }
7012 else /* unindexed - only for coprocessor */
7013 {
7014 inst.error = _("instruction does not accept unindexed addressing");
7015 return;
7016 }
7017
7018 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
7019 && (((inst.instruction & 0x000f0000) >> 16)
7020 == ((inst.instruction & 0x0000f000) >> 12)))
7021 as_warn ((inst.instruction & LOAD_BIT)
7022 ? _("destination register same as write-back base")
7023 : _("source register same as write-back base"));
7024 }
7025
7026 /* inst.operands[i] was set up by parse_address. Encode it into an
7027 ARM-format mode 2 load or store instruction. If is_t is true,
7028 reject forms that cannot be used with a T instruction (i.e. not
7029 post-indexed). */
7030 static void
7031 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
7032 {
7033 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
7034
7035 encode_arm_addr_mode_common (i, is_t);
7036
7037 if (inst.operands[i].immisreg)
7038 {
7039 constraint ((inst.operands[i].imm == REG_PC
7040 || (is_pc && inst.operands[i].writeback)),
7041 BAD_PC_ADDRESSING);
7042 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
7043 inst.instruction |= inst.operands[i].imm;
7044 if (!inst.operands[i].negative)
7045 inst.instruction |= INDEX_UP;
7046 if (inst.operands[i].shifted)
7047 {
7048 if (inst.operands[i].shift_kind == SHIFT_RRX)
7049 inst.instruction |= SHIFT_ROR << 5;
7050 else
7051 {
7052 inst.instruction |= inst.operands[i].shift_kind << 5;
7053 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7054 }
7055 }
7056 }
7057 else /* immediate offset in inst.reloc */
7058 {
7059 if (is_pc && !inst.reloc.pc_rel)
7060 {
7061 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
7062
7063 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
7064 cannot use PC in addressing.
7065 PC cannot be used in writeback addressing, either. */
7066 constraint ((is_t || inst.operands[i].writeback),
7067 BAD_PC_ADDRESSING);
7068
7069 /* Use of PC in str is deprecated for ARMv7. */
7070 if (warn_on_deprecated
7071 && !is_load
7072 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
7073 as_warn (_("use of PC in this instruction is deprecated"));
7074 }
7075
7076 if (inst.reloc.type == BFD_RELOC_UNUSED)
7077 {
7078 /* Prefer + for zero encoded value. */
7079 if (!inst.operands[i].negative)
7080 inst.instruction |= INDEX_UP;
7081 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
7082 }
7083 }
7084 }
7085
7086 /* inst.operands[i] was set up by parse_address. Encode it into an
7087 ARM-format mode 3 load or store instruction. Reject forms that
7088 cannot be used with such instructions. If is_t is true, reject
7089 forms that cannot be used with a T instruction (i.e. not
7090 post-indexed). */
7091 static void
7092 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
7093 {
7094 if (inst.operands[i].immisreg && inst.operands[i].shifted)
7095 {
7096 inst.error = _("instruction does not accept scaled register index");
7097 return;
7098 }
7099
7100 encode_arm_addr_mode_common (i, is_t);
7101
7102 if (inst.operands[i].immisreg)
7103 {
7104 constraint ((inst.operands[i].imm == REG_PC
7105 || inst.operands[i].reg == REG_PC),
7106 BAD_PC_ADDRESSING);
7107 inst.instruction |= inst.operands[i].imm;
7108 if (!inst.operands[i].negative)
7109 inst.instruction |= INDEX_UP;
7110 }
7111 else /* immediate offset in inst.reloc */
7112 {
7113 constraint ((inst.operands[i].reg == REG_PC && !inst.reloc.pc_rel
7114 && inst.operands[i].writeback),
7115 BAD_PC_WRITEBACK);
7116 inst.instruction |= HWOFFSET_IMM;
7117 if (inst.reloc.type == BFD_RELOC_UNUSED)
7118 {
7119 /* Prefer + for zero encoded value. */
7120 if (!inst.operands[i].negative)
7121 inst.instruction |= INDEX_UP;
7122
7123 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
7124 }
7125 }
7126 }
7127
7128 /* inst.operands[i] was set up by parse_address. Encode it into an
7129 ARM-format instruction. Reject all forms which cannot be encoded
7130 into a coprocessor load/store instruction. If wb_ok is false,
7131 reject use of writeback; if unind_ok is false, reject use of
7132 unindexed addressing. If reloc_override is not 0, use it instead
7133 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
7134 (in which case it is preserved). */
7135
7136 static int
7137 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
7138 {
7139 inst.instruction |= inst.operands[i].reg << 16;
7140
7141 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
7142
7143 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
7144 {
7145 gas_assert (!inst.operands[i].writeback);
7146 if (!unind_ok)
7147 {
7148 inst.error = _("instruction does not support unindexed addressing");
7149 return FAIL;
7150 }
7151 inst.instruction |= inst.operands[i].imm;
7152 inst.instruction |= INDEX_UP;
7153 return SUCCESS;
7154 }
7155
7156 if (inst.operands[i].preind)
7157 inst.instruction |= PRE_INDEX;
7158
7159 if (inst.operands[i].writeback)
7160 {
7161 if (inst.operands[i].reg == REG_PC)
7162 {
7163 inst.error = _("pc may not be used with write-back");
7164 return FAIL;
7165 }
7166 if (!wb_ok)
7167 {
7168 inst.error = _("instruction does not support writeback");
7169 return FAIL;
7170 }
7171 inst.instruction |= WRITE_BACK;
7172 }
7173
7174 if (reloc_override)
7175 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
7176 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
7177 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
7178 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
7179 {
7180 if (thumb_mode)
7181 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
7182 else
7183 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
7184 }
7185
7186 /* Prefer + for zero encoded value. */
7187 if (!inst.operands[i].negative)
7188 inst.instruction |= INDEX_UP;
7189
7190 return SUCCESS;
7191 }
7192
7193 /* inst.reloc.exp describes an "=expr" load pseudo-operation.
7194 Determine whether it can be performed with a move instruction; if
7195 it can, convert inst.instruction to that move instruction and
7196 return TRUE; if it can't, convert inst.instruction to a literal-pool
7197 load and return FALSE. If this is not a valid thing to do in the
7198 current context, set inst.error and return TRUE.
7199
7200 inst.operands[i] describes the destination register. */
7201
7202 static bfd_boolean
7203 move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
7204 {
7205 unsigned long tbit;
7206
7207 if (thumb_p)
7208 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
7209 else
7210 tbit = LOAD_BIT;
7211
7212 if ((inst.instruction & tbit) == 0)
7213 {
7214 inst.error = _("invalid pseudo operation");
7215 return TRUE;
7216 }
7217 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
7218 {
7219 inst.error = _("constant expression expected");
7220 return TRUE;
7221 }
7222 if (inst.reloc.exp.X_op == O_constant)
7223 {
7224 if (thumb_p)
7225 {
7226 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
7227 {
7228 /* This can be done with a mov(1) instruction. */
7229 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
7230 inst.instruction |= inst.reloc.exp.X_add_number;
7231 return TRUE;
7232 }
7233 }
7234 else
7235 {
7236 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
7237 if (value != FAIL)
7238 {
7239 /* This can be done with a mov instruction. */
7240 inst.instruction &= LITERAL_MASK;
7241 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
7242 inst.instruction |= value & 0xfff;
7243 return TRUE;
7244 }
7245
7246 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
7247 if (value != FAIL)
7248 {
7249 /* This can be done with a mvn instruction. */
7250 inst.instruction &= LITERAL_MASK;
7251 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
7252 inst.instruction |= value & 0xfff;
7253 return TRUE;
7254 }
7255 }
7256 }
7257
7258 if (add_to_lit_pool () == FAIL)
7259 {
7260 inst.error = _("literal pool insertion failed");
7261 return TRUE;
7262 }
7263 inst.operands[1].reg = REG_PC;
7264 inst.operands[1].isreg = 1;
7265 inst.operands[1].preind = 1;
7266 inst.reloc.pc_rel = 1;
7267 inst.reloc.type = (thumb_p
7268 ? BFD_RELOC_ARM_THUMB_OFFSET
7269 : (mode_3
7270 ? BFD_RELOC_ARM_HWLITERAL
7271 : BFD_RELOC_ARM_LITERAL));
7272 return FALSE;
7273 }
7274
7275 /* Functions for instruction encoding, sorted by sub-architecture.
7276 First some generics; their names are taken from the conventional
7277 bit positions for register arguments in ARM format instructions. */
7278
7279 static void
7280 do_noargs (void)
7281 {
7282 }
7283
7284 static void
7285 do_rd (void)
7286 {
7287 inst.instruction |= inst.operands[0].reg << 12;
7288 }
7289
7290 static void
7291 do_rd_rm (void)
7292 {
7293 inst.instruction |= inst.operands[0].reg << 12;
7294 inst.instruction |= inst.operands[1].reg;
7295 }
7296
7297 static void
7298 do_rd_rn (void)
7299 {
7300 inst.instruction |= inst.operands[0].reg << 12;
7301 inst.instruction |= inst.operands[1].reg << 16;
7302 }
7303
7304 static void
7305 do_rn_rd (void)
7306 {
7307 inst.instruction |= inst.operands[0].reg << 16;
7308 inst.instruction |= inst.operands[1].reg << 12;
7309 }
7310
7311 static void
7312 do_rd_rm_rn (void)
7313 {
7314 unsigned Rn = inst.operands[2].reg;
7315 /* Enforce restrictions on SWP instruction. */
7316 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
7317 {
7318 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
7319 _("Rn must not overlap other operands"));
7320
7321 /* SWP{b} is deprecated for ARMv6* and ARMv7. */
7322 if (warn_on_deprecated
7323 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7324 as_warn (_("swp{b} use is deprecated for this architecture"));
7325
7326 }
7327 inst.instruction |= inst.operands[0].reg << 12;
7328 inst.instruction |= inst.operands[1].reg;
7329 inst.instruction |= Rn << 16;
7330 }
7331
7332 static void
7333 do_rd_rn_rm (void)
7334 {
7335 inst.instruction |= inst.operands[0].reg << 12;
7336 inst.instruction |= inst.operands[1].reg << 16;
7337 inst.instruction |= inst.operands[2].reg;
7338 }
7339
7340 static void
7341 do_rm_rd_rn (void)
7342 {
7343 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
7344 constraint (((inst.reloc.exp.X_op != O_constant
7345 && inst.reloc.exp.X_op != O_illegal)
7346 || inst.reloc.exp.X_add_number != 0),
7347 BAD_ADDR_MODE);
7348 inst.instruction |= inst.operands[0].reg;
7349 inst.instruction |= inst.operands[1].reg << 12;
7350 inst.instruction |= inst.operands[2].reg << 16;
7351 }
7352
7353 static void
7354 do_imm0 (void)
7355 {
7356 inst.instruction |= inst.operands[0].imm;
7357 }
7358
7359 static void
7360 do_rd_cpaddr (void)
7361 {
7362 inst.instruction |= inst.operands[0].reg << 12;
7363 encode_arm_cp_address (1, TRUE, TRUE, 0);
7364 }
7365
7366 /* ARM instructions, in alphabetical order by function name (except
7367 that wrapper functions appear immediately after the function they
7368 wrap). */
7369
7370 /* This is a pseudo-op of the form "adr rd, label" to be converted
7371 into a relative address of the form "add rd, pc, #label-.-8". */
7372
7373 static void
7374 do_adr (void)
7375 {
7376 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
7377
7378 /* Frag hacking will turn this into a sub instruction if the offset turns
7379 out to be negative. */
7380 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7381 inst.reloc.pc_rel = 1;
7382 inst.reloc.exp.X_add_number -= 8;
7383 }
7384
7385 /* This is a pseudo-op of the form "adrl rd, label" to be converted
7386 into a relative address of the form:
7387 add rd, pc, #low(label-.-8)"
7388 add rd, rd, #high(label-.-8)" */
7389
7390 static void
7391 do_adrl (void)
7392 {
7393 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
7394
7395 /* Frag hacking will turn this into a sub instruction if the offset turns
7396 out to be negative. */
7397 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
7398 inst.reloc.pc_rel = 1;
7399 inst.size = INSN_SIZE * 2;
7400 inst.reloc.exp.X_add_number -= 8;
7401 }
7402
7403 static void
7404 do_arit (void)
7405 {
7406 if (!inst.operands[1].present)
7407 inst.operands[1].reg = inst.operands[0].reg;
7408 inst.instruction |= inst.operands[0].reg << 12;
7409 inst.instruction |= inst.operands[1].reg << 16;
7410 encode_arm_shifter_operand (2);
7411 }
7412
7413 static void
7414 do_barrier (void)
7415 {
7416 if (inst.operands[0].present)
7417 {
7418 constraint ((inst.instruction & 0xf0) != 0x40
7419 && inst.operands[0].imm > 0xf
7420 && inst.operands[0].imm < 0x0,
7421 _("bad barrier type"));
7422 inst.instruction |= inst.operands[0].imm;
7423 }
7424 else
7425 inst.instruction |= 0xf;
7426 }
7427
7428 static void
7429 do_bfc (void)
7430 {
7431 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
7432 constraint (msb > 32, _("bit-field extends past end of register"));
7433 /* The instruction encoding stores the LSB and MSB,
7434 not the LSB and width. */
7435 inst.instruction |= inst.operands[0].reg << 12;
7436 inst.instruction |= inst.operands[1].imm << 7;
7437 inst.instruction |= (msb - 1) << 16;
7438 }
7439
7440 static void
7441 do_bfi (void)
7442 {
7443 unsigned int msb;
7444
7445 /* #0 in second position is alternative syntax for bfc, which is
7446 the same instruction but with REG_PC in the Rm field. */
7447 if (!inst.operands[1].isreg)
7448 inst.operands[1].reg = REG_PC;
7449
7450 msb = inst.operands[2].imm + inst.operands[3].imm;
7451 constraint (msb > 32, _("bit-field extends past end of register"));
7452 /* The instruction encoding stores the LSB and MSB,
7453 not the LSB and width. */
7454 inst.instruction |= inst.operands[0].reg << 12;
7455 inst.instruction |= inst.operands[1].reg;
7456 inst.instruction |= inst.operands[2].imm << 7;
7457 inst.instruction |= (msb - 1) << 16;
7458 }
7459
7460 static void
7461 do_bfx (void)
7462 {
7463 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
7464 _("bit-field extends past end of register"));
7465 inst.instruction |= inst.operands[0].reg << 12;
7466 inst.instruction |= inst.operands[1].reg;
7467 inst.instruction |= inst.operands[2].imm << 7;
7468 inst.instruction |= (inst.operands[3].imm - 1) << 16;
7469 }
7470
7471 /* ARM V5 breakpoint instruction (argument parse)
7472 BKPT <16 bit unsigned immediate>
7473 Instruction is not conditional.
7474 The bit pattern given in insns[] has the COND_ALWAYS condition,
7475 and it is an error if the caller tried to override that. */
7476
7477 static void
7478 do_bkpt (void)
7479 {
7480 /* Top 12 of 16 bits to bits 19:8. */
7481 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
7482
7483 /* Bottom 4 of 16 bits to bits 3:0. */
7484 inst.instruction |= inst.operands[0].imm & 0xf;
7485 }
7486
7487 static void
7488 encode_branch (int default_reloc)
7489 {
7490 if (inst.operands[0].hasreloc)
7491 {
7492 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
7493 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
7494 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
7495 inst.reloc.type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
7496 ? BFD_RELOC_ARM_PLT32
7497 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
7498 }
7499 else
7500 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
7501 inst.reloc.pc_rel = 1;
7502 }
7503
7504 static void
7505 do_branch (void)
7506 {
7507 #ifdef OBJ_ELF
7508 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7509 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7510 else
7511 #endif
7512 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7513 }
7514
7515 static void
7516 do_bl (void)
7517 {
7518 #ifdef OBJ_ELF
7519 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7520 {
7521 if (inst.cond == COND_ALWAYS)
7522 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
7523 else
7524 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7525 }
7526 else
7527 #endif
7528 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7529 }
7530
7531 /* ARM V5 branch-link-exchange instruction (argument parse)
7532 BLX <target_addr> ie BLX(1)
7533 BLX{<condition>} <Rm> ie BLX(2)
7534 Unfortunately, there are two different opcodes for this mnemonic.
7535 So, the insns[].value is not used, and the code here zaps values
7536 into inst.instruction.
7537 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
7538
7539 static void
7540 do_blx (void)
7541 {
7542 if (inst.operands[0].isreg)
7543 {
7544 /* Arg is a register; the opcode provided by insns[] is correct.
7545 It is not illegal to do "blx pc", just useless. */
7546 if (inst.operands[0].reg == REG_PC)
7547 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
7548
7549 inst.instruction |= inst.operands[0].reg;
7550 }
7551 else
7552 {
7553 /* Arg is an address; this instruction cannot be executed
7554 conditionally, and the opcode must be adjusted.
7555 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
7556 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
7557 constraint (inst.cond != COND_ALWAYS, BAD_COND);
7558 inst.instruction = 0xfa000000;
7559 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
7560 }
7561 }
7562
7563 static void
7564 do_bx (void)
7565 {
7566 bfd_boolean want_reloc;
7567
7568 if (inst.operands[0].reg == REG_PC)
7569 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
7570
7571 inst.instruction |= inst.operands[0].reg;
7572 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
7573 it is for ARMv4t or earlier. */
7574 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
7575 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
7576 want_reloc = TRUE;
7577
7578 #ifdef OBJ_ELF
7579 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
7580 #endif
7581 want_reloc = FALSE;
7582
7583 if (want_reloc)
7584 inst.reloc.type = BFD_RELOC_ARM_V4BX;
7585 }
7586
7587
7588 /* ARM v5TEJ. Jump to Jazelle code. */
7589
7590 static void
7591 do_bxj (void)
7592 {
7593 if (inst.operands[0].reg == REG_PC)
7594 as_tsktsk (_("use of r15 in bxj is not really useful"));
7595
7596 inst.instruction |= inst.operands[0].reg;
7597 }
7598
7599 /* Co-processor data operation:
7600 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
7601 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
7602 static void
7603 do_cdp (void)
7604 {
7605 inst.instruction |= inst.operands[0].reg << 8;
7606 inst.instruction |= inst.operands[1].imm << 20;
7607 inst.instruction |= inst.operands[2].reg << 12;
7608 inst.instruction |= inst.operands[3].reg << 16;
7609 inst.instruction |= inst.operands[4].reg;
7610 inst.instruction |= inst.operands[5].imm << 5;
7611 }
7612
7613 static void
7614 do_cmp (void)
7615 {
7616 inst.instruction |= inst.operands[0].reg << 16;
7617 encode_arm_shifter_operand (1);
7618 }
7619
7620 /* Transfer between coprocessor and ARM registers.
7621 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
7622 MRC2
7623 MCR{cond}
7624 MCR2
7625
7626 No special properties. */
7627
7628 static void
7629 do_co_reg (void)
7630 {
7631 unsigned Rd;
7632
7633 Rd = inst.operands[2].reg;
7634 if (thumb_mode)
7635 {
7636 if (inst.instruction == 0xee000010
7637 || inst.instruction == 0xfe000010)
7638 /* MCR, MCR2 */
7639 reject_bad_reg (Rd);
7640 else
7641 /* MRC, MRC2 */
7642 constraint (Rd == REG_SP, BAD_SP);
7643 }
7644 else
7645 {
7646 /* MCR */
7647 if (inst.instruction == 0xe000010)
7648 constraint (Rd == REG_PC, BAD_PC);
7649 }
7650
7651
7652 inst.instruction |= inst.operands[0].reg << 8;
7653 inst.instruction |= inst.operands[1].imm << 21;
7654 inst.instruction |= Rd << 12;
7655 inst.instruction |= inst.operands[3].reg << 16;
7656 inst.instruction |= inst.operands[4].reg;
7657 inst.instruction |= inst.operands[5].imm << 5;
7658 }
7659
7660 /* Transfer between coprocessor register and pair of ARM registers.
7661 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
7662 MCRR2
7663 MRRC{cond}
7664 MRRC2
7665
7666 Two XScale instructions are special cases of these:
7667
7668 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
7669 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
7670
7671 Result unpredictable if Rd or Rn is R15. */
7672
7673 static void
7674 do_co_reg2c (void)
7675 {
7676 unsigned Rd, Rn;
7677
7678 Rd = inst.operands[2].reg;
7679 Rn = inst.operands[3].reg;
7680
7681 if (thumb_mode)
7682 {
7683 reject_bad_reg (Rd);
7684 reject_bad_reg (Rn);
7685 }
7686 else
7687 {
7688 constraint (Rd == REG_PC, BAD_PC);
7689 constraint (Rn == REG_PC, BAD_PC);
7690 }
7691
7692 inst.instruction |= inst.operands[0].reg << 8;
7693 inst.instruction |= inst.operands[1].imm << 4;
7694 inst.instruction |= Rd << 12;
7695 inst.instruction |= Rn << 16;
7696 inst.instruction |= inst.operands[4].reg;
7697 }
7698
7699 static void
7700 do_cpsi (void)
7701 {
7702 inst.instruction |= inst.operands[0].imm << 6;
7703 if (inst.operands[1].present)
7704 {
7705 inst.instruction |= CPSI_MMOD;
7706 inst.instruction |= inst.operands[1].imm;
7707 }
7708 }
7709
7710 static void
7711 do_dbg (void)
7712 {
7713 inst.instruction |= inst.operands[0].imm;
7714 }
7715
7716 static void
7717 do_div (void)
7718 {
7719 unsigned Rd, Rn, Rm;
7720
7721 Rd = inst.operands[0].reg;
7722 Rn = (inst.operands[1].present
7723 ? inst.operands[1].reg : Rd);
7724 Rm = inst.operands[2].reg;
7725
7726 constraint ((Rd == REG_PC), BAD_PC);
7727 constraint ((Rn == REG_PC), BAD_PC);
7728 constraint ((Rm == REG_PC), BAD_PC);
7729
7730 inst.instruction |= Rd << 16;
7731 inst.instruction |= Rn << 0;
7732 inst.instruction |= Rm << 8;
7733 }
7734
7735 static void
7736 do_it (void)
7737 {
7738 /* There is no IT instruction in ARM mode. We
7739 process it to do the validation as if in
7740 thumb mode, just in case the code gets
7741 assembled for thumb using the unified syntax. */
7742
7743 inst.size = 0;
7744 if (unified_syntax)
7745 {
7746 set_it_insn_type (IT_INSN);
7747 now_it.mask = (inst.instruction & 0xf) | 0x10;
7748 now_it.cc = inst.operands[0].imm;
7749 }
7750 }
7751
7752 static void
7753 do_ldmstm (void)
7754 {
7755 int base_reg = inst.operands[0].reg;
7756 int range = inst.operands[1].imm;
7757
7758 inst.instruction |= base_reg << 16;
7759 inst.instruction |= range;
7760
7761 if (inst.operands[1].writeback)
7762 inst.instruction |= LDM_TYPE_2_OR_3;
7763
7764 if (inst.operands[0].writeback)
7765 {
7766 inst.instruction |= WRITE_BACK;
7767 /* Check for unpredictable uses of writeback. */
7768 if (inst.instruction & LOAD_BIT)
7769 {
7770 /* Not allowed in LDM type 2. */
7771 if ((inst.instruction & LDM_TYPE_2_OR_3)
7772 && ((range & (1 << REG_PC)) == 0))
7773 as_warn (_("writeback of base register is UNPREDICTABLE"));
7774 /* Only allowed if base reg not in list for other types. */
7775 else if (range & (1 << base_reg))
7776 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
7777 }
7778 else /* STM. */
7779 {
7780 /* Not allowed for type 2. */
7781 if (inst.instruction & LDM_TYPE_2_OR_3)
7782 as_warn (_("writeback of base register is UNPREDICTABLE"));
7783 /* Only allowed if base reg not in list, or first in list. */
7784 else if ((range & (1 << base_reg))
7785 && (range & ((1 << base_reg) - 1)))
7786 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
7787 }
7788 }
7789 }
7790
7791 /* ARMv5TE load-consecutive (argument parse)
7792 Mode is like LDRH.
7793
7794 LDRccD R, mode
7795 STRccD R, mode. */
7796
7797 static void
7798 do_ldrd (void)
7799 {
7800 constraint (inst.operands[0].reg % 2 != 0,
7801 _("first destination register must be even"));
7802 constraint (inst.operands[1].present
7803 && inst.operands[1].reg != inst.operands[0].reg + 1,
7804 _("can only load two consecutive registers"));
7805 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7806 constraint (!inst.operands[2].isreg, _("'[' expected"));
7807
7808 if (!inst.operands[1].present)
7809 inst.operands[1].reg = inst.operands[0].reg + 1;
7810
7811 if (inst.instruction & LOAD_BIT)
7812 {
7813 /* encode_arm_addr_mode_3 will diagnose overlap between the base
7814 register and the first register written; we have to diagnose
7815 overlap between the base and the second register written here. */
7816
7817 if (inst.operands[2].reg == inst.operands[1].reg
7818 && (inst.operands[2].writeback || inst.operands[2].postind))
7819 as_warn (_("base register written back, and overlaps "
7820 "second destination register"));
7821
7822 /* For an index-register load, the index register must not overlap the
7823 destination (even if not write-back). */
7824 else if (inst.operands[2].immisreg
7825 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
7826 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
7827 as_warn (_("index register overlaps destination register"));
7828 }
7829
7830 inst.instruction |= inst.operands[0].reg << 12;
7831 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
7832 }
7833
7834 static void
7835 do_ldrex (void)
7836 {
7837 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
7838 || inst.operands[1].postind || inst.operands[1].writeback
7839 || inst.operands[1].immisreg || inst.operands[1].shifted
7840 || inst.operands[1].negative
7841 /* This can arise if the programmer has written
7842 strex rN, rM, foo
7843 or if they have mistakenly used a register name as the last
7844 operand, eg:
7845 strex rN, rM, rX
7846 It is very difficult to distinguish between these two cases
7847 because "rX" might actually be a label. ie the register
7848 name has been occluded by a symbol of the same name. So we
7849 just generate a general 'bad addressing mode' type error
7850 message and leave it up to the programmer to discover the
7851 true cause and fix their mistake. */
7852 || (inst.operands[1].reg == REG_PC),
7853 BAD_ADDR_MODE);
7854
7855 constraint (inst.reloc.exp.X_op != O_constant
7856 || inst.reloc.exp.X_add_number != 0,
7857 _("offset must be zero in ARM encoding"));
7858
7859 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
7860
7861 inst.instruction |= inst.operands[0].reg << 12;
7862 inst.instruction |= inst.operands[1].reg << 16;
7863 inst.reloc.type = BFD_RELOC_UNUSED;
7864 }
7865
7866 static void
7867 do_ldrexd (void)
7868 {
7869 constraint (inst.operands[0].reg % 2 != 0,
7870 _("even register required"));
7871 constraint (inst.operands[1].present
7872 && inst.operands[1].reg != inst.operands[0].reg + 1,
7873 _("can only load two consecutive registers"));
7874 /* If op 1 were present and equal to PC, this function wouldn't
7875 have been called in the first place. */
7876 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7877
7878 inst.instruction |= inst.operands[0].reg << 12;
7879 inst.instruction |= inst.operands[2].reg << 16;
7880 }
7881
7882 static void
7883 do_ldst (void)
7884 {
7885 inst.instruction |= inst.operands[0].reg << 12;
7886 if (!inst.operands[1].isreg)
7887 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
7888 return;
7889 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
7890 }
7891
7892 static void
7893 do_ldstt (void)
7894 {
7895 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7896 reject [Rn,...]. */
7897 if (inst.operands[1].preind)
7898 {
7899 constraint (inst.reloc.exp.X_op != O_constant
7900 || inst.reloc.exp.X_add_number != 0,
7901 _("this instruction requires a post-indexed address"));
7902
7903 inst.operands[1].preind = 0;
7904 inst.operands[1].postind = 1;
7905 inst.operands[1].writeback = 1;
7906 }
7907 inst.instruction |= inst.operands[0].reg << 12;
7908 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
7909 }
7910
7911 /* Halfword and signed-byte load/store operations. */
7912
7913 static void
7914 do_ldstv4 (void)
7915 {
7916 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
7917 inst.instruction |= inst.operands[0].reg << 12;
7918 if (!inst.operands[1].isreg)
7919 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
7920 return;
7921 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
7922 }
7923
7924 static void
7925 do_ldsttv4 (void)
7926 {
7927 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7928 reject [Rn,...]. */
7929 if (inst.operands[1].preind)
7930 {
7931 constraint (inst.reloc.exp.X_op != O_constant
7932 || inst.reloc.exp.X_add_number != 0,
7933 _("this instruction requires a post-indexed address"));
7934
7935 inst.operands[1].preind = 0;
7936 inst.operands[1].postind = 1;
7937 inst.operands[1].writeback = 1;
7938 }
7939 inst.instruction |= inst.operands[0].reg << 12;
7940 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
7941 }
7942
7943 /* Co-processor register load/store.
7944 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
7945 static void
7946 do_lstc (void)
7947 {
7948 inst.instruction |= inst.operands[0].reg << 8;
7949 inst.instruction |= inst.operands[1].reg << 12;
7950 encode_arm_cp_address (2, TRUE, TRUE, 0);
7951 }
7952
7953 static void
7954 do_mlas (void)
7955 {
7956 /* This restriction does not apply to mls (nor to mla in v6 or later). */
7957 if (inst.operands[0].reg == inst.operands[1].reg
7958 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
7959 && !(inst.instruction & 0x00400000))
7960 as_tsktsk (_("Rd and Rm should be different in mla"));
7961
7962 inst.instruction |= inst.operands[0].reg << 16;
7963 inst.instruction |= inst.operands[1].reg;
7964 inst.instruction |= inst.operands[2].reg << 8;
7965 inst.instruction |= inst.operands[3].reg << 12;
7966 }
7967
7968 static void
7969 do_mov (void)
7970 {
7971 inst.instruction |= inst.operands[0].reg << 12;
7972 encode_arm_shifter_operand (1);
7973 }
7974
7975 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
7976 static void
7977 do_mov16 (void)
7978 {
7979 bfd_vma imm;
7980 bfd_boolean top;
7981
7982 top = (inst.instruction & 0x00400000) != 0;
7983 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
7984 _(":lower16: not allowed this instruction"));
7985 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
7986 _(":upper16: not allowed instruction"));
7987 inst.instruction |= inst.operands[0].reg << 12;
7988 if (inst.reloc.type == BFD_RELOC_UNUSED)
7989 {
7990 imm = inst.reloc.exp.X_add_number;
7991 /* The value is in two pieces: 0:11, 16:19. */
7992 inst.instruction |= (imm & 0x00000fff);
7993 inst.instruction |= (imm & 0x0000f000) << 4;
7994 }
7995 }
7996
7997 static void do_vfp_nsyn_opcode (const char *);
7998
7999 static int
8000 do_vfp_nsyn_mrs (void)
8001 {
8002 if (inst.operands[0].isvec)
8003 {
8004 if (inst.operands[1].reg != 1)
8005 first_error (_("operand 1 must be FPSCR"));
8006 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
8007 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
8008 do_vfp_nsyn_opcode ("fmstat");
8009 }
8010 else if (inst.operands[1].isvec)
8011 do_vfp_nsyn_opcode ("fmrx");
8012 else
8013 return FAIL;
8014
8015 return SUCCESS;
8016 }
8017
8018 static int
8019 do_vfp_nsyn_msr (void)
8020 {
8021 if (inst.operands[0].isvec)
8022 do_vfp_nsyn_opcode ("fmxr");
8023 else
8024 return FAIL;
8025
8026 return SUCCESS;
8027 }
8028
8029 static void
8030 do_vmrs (void)
8031 {
8032 unsigned Rt = inst.operands[0].reg;
8033
8034 if (thumb_mode && inst.operands[0].reg == REG_SP)
8035 {
8036 inst.error = BAD_SP;
8037 return;
8038 }
8039
8040 /* APSR_ sets isvec. All other refs to PC are illegal. */
8041 if (!inst.operands[0].isvec && inst.operands[0].reg == REG_PC)
8042 {
8043 inst.error = BAD_PC;
8044 return;
8045 }
8046
8047 if (inst.operands[1].reg != 1)
8048 first_error (_("operand 1 must be FPSCR"));
8049
8050 inst.instruction |= (Rt << 12);
8051 }
8052
8053 static void
8054 do_vmsr (void)
8055 {
8056 unsigned Rt = inst.operands[1].reg;
8057
8058 if (thumb_mode)
8059 reject_bad_reg (Rt);
8060 else if (Rt == REG_PC)
8061 {
8062 inst.error = BAD_PC;
8063 return;
8064 }
8065
8066 if (inst.operands[0].reg != 1)
8067 first_error (_("operand 0 must be FPSCR"));
8068
8069 inst.instruction |= (Rt << 12);
8070 }
8071
8072 static void
8073 do_mrs (void)
8074 {
8075 unsigned br;
8076
8077 if (do_vfp_nsyn_mrs () == SUCCESS)
8078 return;
8079
8080 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
8081 inst.instruction |= inst.operands[0].reg << 12;
8082
8083 if (inst.operands[1].isreg)
8084 {
8085 br = inst.operands[1].reg;
8086 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf000))
8087 as_bad (_("bad register for mrs"));
8088 }
8089 else
8090 {
8091 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
8092 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
8093 != (PSR_c|PSR_f),
8094 _("'APSR', 'CPSR' or 'SPSR' expected"));
8095 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
8096 }
8097
8098 inst.instruction |= br;
8099 }
8100
8101 /* Two possible forms:
8102 "{C|S}PSR_<field>, Rm",
8103 "{C|S}PSR_f, #expression". */
8104
8105 static void
8106 do_msr (void)
8107 {
8108 if (do_vfp_nsyn_msr () == SUCCESS)
8109 return;
8110
8111 inst.instruction |= inst.operands[0].imm;
8112 if (inst.operands[1].isreg)
8113 inst.instruction |= inst.operands[1].reg;
8114 else
8115 {
8116 inst.instruction |= INST_IMMEDIATE;
8117 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
8118 inst.reloc.pc_rel = 0;
8119 }
8120 }
8121
8122 static void
8123 do_mul (void)
8124 {
8125 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
8126
8127 if (!inst.operands[2].present)
8128 inst.operands[2].reg = inst.operands[0].reg;
8129 inst.instruction |= inst.operands[0].reg << 16;
8130 inst.instruction |= inst.operands[1].reg;
8131 inst.instruction |= inst.operands[2].reg << 8;
8132
8133 if (inst.operands[0].reg == inst.operands[1].reg
8134 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
8135 as_tsktsk (_("Rd and Rm should be different in mul"));
8136 }
8137
8138 /* Long Multiply Parser
8139 UMULL RdLo, RdHi, Rm, Rs
8140 SMULL RdLo, RdHi, Rm, Rs
8141 UMLAL RdLo, RdHi, Rm, Rs
8142 SMLAL RdLo, RdHi, Rm, Rs. */
8143
8144 static void
8145 do_mull (void)
8146 {
8147 inst.instruction |= inst.operands[0].reg << 12;
8148 inst.instruction |= inst.operands[1].reg << 16;
8149 inst.instruction |= inst.operands[2].reg;
8150 inst.instruction |= inst.operands[3].reg << 8;
8151
8152 /* rdhi and rdlo must be different. */
8153 if (inst.operands[0].reg == inst.operands[1].reg)
8154 as_tsktsk (_("rdhi and rdlo must be different"));
8155
8156 /* rdhi, rdlo and rm must all be different before armv6. */
8157 if ((inst.operands[0].reg == inst.operands[2].reg
8158 || inst.operands[1].reg == inst.operands[2].reg)
8159 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
8160 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
8161 }
8162
8163 static void
8164 do_nop (void)
8165 {
8166 if (inst.operands[0].present
8167 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
8168 {
8169 /* Architectural NOP hints are CPSR sets with no bits selected. */
8170 inst.instruction &= 0xf0000000;
8171 inst.instruction |= 0x0320f000;
8172 if (inst.operands[0].present)
8173 inst.instruction |= inst.operands[0].imm;
8174 }
8175 }
8176
8177 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
8178 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
8179 Condition defaults to COND_ALWAYS.
8180 Error if Rd, Rn or Rm are R15. */
8181
8182 static void
8183 do_pkhbt (void)
8184 {
8185 inst.instruction |= inst.operands[0].reg << 12;
8186 inst.instruction |= inst.operands[1].reg << 16;
8187 inst.instruction |= inst.operands[2].reg;
8188 if (inst.operands[3].present)
8189 encode_arm_shift (3);
8190 }
8191
8192 /* ARM V6 PKHTB (Argument Parse). */
8193
8194 static void
8195 do_pkhtb (void)
8196 {
8197 if (!inst.operands[3].present)
8198 {
8199 /* If the shift specifier is omitted, turn the instruction
8200 into pkhbt rd, rm, rn. */
8201 inst.instruction &= 0xfff00010;
8202 inst.instruction |= inst.operands[0].reg << 12;
8203 inst.instruction |= inst.operands[1].reg;
8204 inst.instruction |= inst.operands[2].reg << 16;
8205 }
8206 else
8207 {
8208 inst.instruction |= inst.operands[0].reg << 12;
8209 inst.instruction |= inst.operands[1].reg << 16;
8210 inst.instruction |= inst.operands[2].reg;
8211 encode_arm_shift (3);
8212 }
8213 }
8214
8215 /* ARMv5TE: Preload-Cache
8216 MP Extensions: Preload for write
8217
8218 PLD(W) <addr_mode>
8219
8220 Syntactically, like LDR with B=1, W=0, L=1. */
8221
8222 static void
8223 do_pld (void)
8224 {
8225 constraint (!inst.operands[0].isreg,
8226 _("'[' expected after PLD mnemonic"));
8227 constraint (inst.operands[0].postind,
8228 _("post-indexed expression used in preload instruction"));
8229 constraint (inst.operands[0].writeback,
8230 _("writeback used in preload instruction"));
8231 constraint (!inst.operands[0].preind,
8232 _("unindexed addressing used in preload instruction"));
8233 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8234 }
8235
8236 /* ARMv7: PLI <addr_mode> */
8237 static void
8238 do_pli (void)
8239 {
8240 constraint (!inst.operands[0].isreg,
8241 _("'[' expected after PLI mnemonic"));
8242 constraint (inst.operands[0].postind,
8243 _("post-indexed expression used in preload instruction"));
8244 constraint (inst.operands[0].writeback,
8245 _("writeback used in preload instruction"));
8246 constraint (!inst.operands[0].preind,
8247 _("unindexed addressing used in preload instruction"));
8248 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8249 inst.instruction &= ~PRE_INDEX;
8250 }
8251
8252 static void
8253 do_push_pop (void)
8254 {
8255 inst.operands[1] = inst.operands[0];
8256 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
8257 inst.operands[0].isreg = 1;
8258 inst.operands[0].writeback = 1;
8259 inst.operands[0].reg = REG_SP;
8260 do_ldmstm ();
8261 }
8262
8263 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
8264 word at the specified address and the following word
8265 respectively.
8266 Unconditionally executed.
8267 Error if Rn is R15. */
8268
8269 static void
8270 do_rfe (void)
8271 {
8272 inst.instruction |= inst.operands[0].reg << 16;
8273 if (inst.operands[0].writeback)
8274 inst.instruction |= WRITE_BACK;
8275 }
8276
8277 /* ARM V6 ssat (argument parse). */
8278
8279 static void
8280 do_ssat (void)
8281 {
8282 inst.instruction |= inst.operands[0].reg << 12;
8283 inst.instruction |= (inst.operands[1].imm - 1) << 16;
8284 inst.instruction |= inst.operands[2].reg;
8285
8286 if (inst.operands[3].present)
8287 encode_arm_shift (3);
8288 }
8289
8290 /* ARM V6 usat (argument parse). */
8291
8292 static void
8293 do_usat (void)
8294 {
8295 inst.instruction |= inst.operands[0].reg << 12;
8296 inst.instruction |= inst.operands[1].imm << 16;
8297 inst.instruction |= inst.operands[2].reg;
8298
8299 if (inst.operands[3].present)
8300 encode_arm_shift (3);
8301 }
8302
8303 /* ARM V6 ssat16 (argument parse). */
8304
8305 static void
8306 do_ssat16 (void)
8307 {
8308 inst.instruction |= inst.operands[0].reg << 12;
8309 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
8310 inst.instruction |= inst.operands[2].reg;
8311 }
8312
8313 static void
8314 do_usat16 (void)
8315 {
8316 inst.instruction |= inst.operands[0].reg << 12;
8317 inst.instruction |= inst.operands[1].imm << 16;
8318 inst.instruction |= inst.operands[2].reg;
8319 }
8320
8321 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
8322 preserving the other bits.
8323
8324 setend <endian_specifier>, where <endian_specifier> is either
8325 BE or LE. */
8326
8327 static void
8328 do_setend (void)
8329 {
8330 if (inst.operands[0].imm)
8331 inst.instruction |= 0x200;
8332 }
8333
8334 static void
8335 do_shift (void)
8336 {
8337 unsigned int Rm = (inst.operands[1].present
8338 ? inst.operands[1].reg
8339 : inst.operands[0].reg);
8340
8341 inst.instruction |= inst.operands[0].reg << 12;
8342 inst.instruction |= Rm;
8343 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
8344 {
8345 inst.instruction |= inst.operands[2].reg << 8;
8346 inst.instruction |= SHIFT_BY_REG;
8347 }
8348 else
8349 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
8350 }
8351
8352 static void
8353 do_smc (void)
8354 {
8355 inst.reloc.type = BFD_RELOC_ARM_SMC;
8356 inst.reloc.pc_rel = 0;
8357 }
8358
8359 static void
8360 do_hvc (void)
8361 {
8362 inst.reloc.type = BFD_RELOC_ARM_HVC;
8363 inst.reloc.pc_rel = 0;
8364 }
8365
8366 static void
8367 do_swi (void)
8368 {
8369 inst.reloc.type = BFD_RELOC_ARM_SWI;
8370 inst.reloc.pc_rel = 0;
8371 }
8372
8373 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
8374 SMLAxy{cond} Rd,Rm,Rs,Rn
8375 SMLAWy{cond} Rd,Rm,Rs,Rn
8376 Error if any register is R15. */
8377
8378 static void
8379 do_smla (void)
8380 {
8381 inst.instruction |= inst.operands[0].reg << 16;
8382 inst.instruction |= inst.operands[1].reg;
8383 inst.instruction |= inst.operands[2].reg << 8;
8384 inst.instruction |= inst.operands[3].reg << 12;
8385 }
8386
8387 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
8388 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
8389 Error if any register is R15.
8390 Warning if Rdlo == Rdhi. */
8391
8392 static void
8393 do_smlal (void)
8394 {
8395 inst.instruction |= inst.operands[0].reg << 12;
8396 inst.instruction |= inst.operands[1].reg << 16;
8397 inst.instruction |= inst.operands[2].reg;
8398 inst.instruction |= inst.operands[3].reg << 8;
8399
8400 if (inst.operands[0].reg == inst.operands[1].reg)
8401 as_tsktsk (_("rdhi and rdlo must be different"));
8402 }
8403
8404 /* ARM V5E (El Segundo) signed-multiply (argument parse)
8405 SMULxy{cond} Rd,Rm,Rs
8406 Error if any register is R15. */
8407
8408 static void
8409 do_smul (void)
8410 {
8411 inst.instruction |= inst.operands[0].reg << 16;
8412 inst.instruction |= inst.operands[1].reg;
8413 inst.instruction |= inst.operands[2].reg << 8;
8414 }
8415
8416 /* ARM V6 srs (argument parse). The variable fields in the encoding are
8417 the same for both ARM and Thumb-2. */
8418
8419 static void
8420 do_srs (void)
8421 {
8422 int reg;
8423
8424 if (inst.operands[0].present)
8425 {
8426 reg = inst.operands[0].reg;
8427 constraint (reg != REG_SP, _("SRS base register must be r13"));
8428 }
8429 else
8430 reg = REG_SP;
8431
8432 inst.instruction |= reg << 16;
8433 inst.instruction |= inst.operands[1].imm;
8434 if (inst.operands[0].writeback || inst.operands[1].writeback)
8435 inst.instruction |= WRITE_BACK;
8436 }
8437
8438 /* ARM V6 strex (argument parse). */
8439
8440 static void
8441 do_strex (void)
8442 {
8443 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8444 || inst.operands[2].postind || inst.operands[2].writeback
8445 || inst.operands[2].immisreg || inst.operands[2].shifted
8446 || inst.operands[2].negative
8447 /* See comment in do_ldrex(). */
8448 || (inst.operands[2].reg == REG_PC),
8449 BAD_ADDR_MODE);
8450
8451 constraint (inst.operands[0].reg == inst.operands[1].reg
8452 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8453
8454 constraint (inst.reloc.exp.X_op != O_constant
8455 || inst.reloc.exp.X_add_number != 0,
8456 _("offset must be zero in ARM encoding"));
8457
8458 inst.instruction |= inst.operands[0].reg << 12;
8459 inst.instruction |= inst.operands[1].reg;
8460 inst.instruction |= inst.operands[2].reg << 16;
8461 inst.reloc.type = BFD_RELOC_UNUSED;
8462 }
8463
8464 static void
8465 do_strexd (void)
8466 {
8467 constraint (inst.operands[1].reg % 2 != 0,
8468 _("even register required"));
8469 constraint (inst.operands[2].present
8470 && inst.operands[2].reg != inst.operands[1].reg + 1,
8471 _("can only store two consecutive registers"));
8472 /* If op 2 were present and equal to PC, this function wouldn't
8473 have been called in the first place. */
8474 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
8475
8476 constraint (inst.operands[0].reg == inst.operands[1].reg
8477 || inst.operands[0].reg == inst.operands[1].reg + 1
8478 || inst.operands[0].reg == inst.operands[3].reg,
8479 BAD_OVERLAP);
8480
8481 inst.instruction |= inst.operands[0].reg << 12;
8482 inst.instruction |= inst.operands[1].reg;
8483 inst.instruction |= inst.operands[3].reg << 16;
8484 }
8485
8486 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
8487 extends it to 32-bits, and adds the result to a value in another
8488 register. You can specify a rotation by 0, 8, 16, or 24 bits
8489 before extracting the 16-bit value.
8490 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
8491 Condition defaults to COND_ALWAYS.
8492 Error if any register uses R15. */
8493
8494 static void
8495 do_sxtah (void)
8496 {
8497 inst.instruction |= inst.operands[0].reg << 12;
8498 inst.instruction |= inst.operands[1].reg << 16;
8499 inst.instruction |= inst.operands[2].reg;
8500 inst.instruction |= inst.operands[3].imm << 10;
8501 }
8502
8503 /* ARM V6 SXTH.
8504
8505 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
8506 Condition defaults to COND_ALWAYS.
8507 Error if any register uses R15. */
8508
8509 static void
8510 do_sxth (void)
8511 {
8512 inst.instruction |= inst.operands[0].reg << 12;
8513 inst.instruction |= inst.operands[1].reg;
8514 inst.instruction |= inst.operands[2].imm << 10;
8515 }
8516 \f
8517 /* VFP instructions. In a logical order: SP variant first, monad
8518 before dyad, arithmetic then move then load/store. */
8519
8520 static void
8521 do_vfp_sp_monadic (void)
8522 {
8523 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8524 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8525 }
8526
8527 static void
8528 do_vfp_sp_dyadic (void)
8529 {
8530 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8531 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8532 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8533 }
8534
8535 static void
8536 do_vfp_sp_compare_z (void)
8537 {
8538 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8539 }
8540
8541 static void
8542 do_vfp_dp_sp_cvt (void)
8543 {
8544 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8545 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8546 }
8547
8548 static void
8549 do_vfp_sp_dp_cvt (void)
8550 {
8551 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8552 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8553 }
8554
8555 static void
8556 do_vfp_reg_from_sp (void)
8557 {
8558 inst.instruction |= inst.operands[0].reg << 12;
8559 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8560 }
8561
8562 static void
8563 do_vfp_reg2_from_sp2 (void)
8564 {
8565 constraint (inst.operands[2].imm != 2,
8566 _("only two consecutive VFP SP registers allowed here"));
8567 inst.instruction |= inst.operands[0].reg << 12;
8568 inst.instruction |= inst.operands[1].reg << 16;
8569 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8570 }
8571
8572 static void
8573 do_vfp_sp_from_reg (void)
8574 {
8575 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
8576 inst.instruction |= inst.operands[1].reg << 12;
8577 }
8578
8579 static void
8580 do_vfp_sp2_from_reg2 (void)
8581 {
8582 constraint (inst.operands[0].imm != 2,
8583 _("only two consecutive VFP SP registers allowed here"));
8584 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
8585 inst.instruction |= inst.operands[1].reg << 12;
8586 inst.instruction |= inst.operands[2].reg << 16;
8587 }
8588
8589 static void
8590 do_vfp_sp_ldst (void)
8591 {
8592 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8593 encode_arm_cp_address (1, FALSE, TRUE, 0);
8594 }
8595
8596 static void
8597 do_vfp_dp_ldst (void)
8598 {
8599 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8600 encode_arm_cp_address (1, FALSE, TRUE, 0);
8601 }
8602
8603
8604 static void
8605 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
8606 {
8607 if (inst.operands[0].writeback)
8608 inst.instruction |= WRITE_BACK;
8609 else
8610 constraint (ldstm_type != VFP_LDSTMIA,
8611 _("this addressing mode requires base-register writeback"));
8612 inst.instruction |= inst.operands[0].reg << 16;
8613 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
8614 inst.instruction |= inst.operands[1].imm;
8615 }
8616
8617 static void
8618 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
8619 {
8620 int count;
8621
8622 if (inst.operands[0].writeback)
8623 inst.instruction |= WRITE_BACK;
8624 else
8625 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
8626 _("this addressing mode requires base-register writeback"));
8627
8628 inst.instruction |= inst.operands[0].reg << 16;
8629 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8630
8631 count = inst.operands[1].imm << 1;
8632 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
8633 count += 1;
8634
8635 inst.instruction |= count;
8636 }
8637
8638 static void
8639 do_vfp_sp_ldstmia (void)
8640 {
8641 vfp_sp_ldstm (VFP_LDSTMIA);
8642 }
8643
8644 static void
8645 do_vfp_sp_ldstmdb (void)
8646 {
8647 vfp_sp_ldstm (VFP_LDSTMDB);
8648 }
8649
8650 static void
8651 do_vfp_dp_ldstmia (void)
8652 {
8653 vfp_dp_ldstm (VFP_LDSTMIA);
8654 }
8655
8656 static void
8657 do_vfp_dp_ldstmdb (void)
8658 {
8659 vfp_dp_ldstm (VFP_LDSTMDB);
8660 }
8661
8662 static void
8663 do_vfp_xp_ldstmia (void)
8664 {
8665 vfp_dp_ldstm (VFP_LDSTMIAX);
8666 }
8667
8668 static void
8669 do_vfp_xp_ldstmdb (void)
8670 {
8671 vfp_dp_ldstm (VFP_LDSTMDBX);
8672 }
8673
8674 static void
8675 do_vfp_dp_rd_rm (void)
8676 {
8677 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8678 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8679 }
8680
8681 static void
8682 do_vfp_dp_rn_rd (void)
8683 {
8684 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
8685 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8686 }
8687
8688 static void
8689 do_vfp_dp_rd_rn (void)
8690 {
8691 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8692 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8693 }
8694
8695 static void
8696 do_vfp_dp_rd_rn_rm (void)
8697 {
8698 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8699 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8700 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
8701 }
8702
8703 static void
8704 do_vfp_dp_rd (void)
8705 {
8706 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8707 }
8708
8709 static void
8710 do_vfp_dp_rm_rd_rn (void)
8711 {
8712 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
8713 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8714 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
8715 }
8716
8717 /* VFPv3 instructions. */
8718 static void
8719 do_vfp_sp_const (void)
8720 {
8721 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8722 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8723 inst.instruction |= (inst.operands[1].imm & 0x0f);
8724 }
8725
8726 static void
8727 do_vfp_dp_const (void)
8728 {
8729 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8730 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8731 inst.instruction |= (inst.operands[1].imm & 0x0f);
8732 }
8733
8734 static void
8735 vfp_conv (int srcsize)
8736 {
8737 unsigned immbits = srcsize - inst.operands[1].imm;
8738 inst.instruction |= (immbits & 1) << 5;
8739 inst.instruction |= (immbits >> 1);
8740 }
8741
8742 static void
8743 do_vfp_sp_conv_16 (void)
8744 {
8745 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8746 vfp_conv (16);
8747 }
8748
8749 static void
8750 do_vfp_dp_conv_16 (void)
8751 {
8752 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8753 vfp_conv (16);
8754 }
8755
8756 static void
8757 do_vfp_sp_conv_32 (void)
8758 {
8759 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8760 vfp_conv (32);
8761 }
8762
8763 static void
8764 do_vfp_dp_conv_32 (void)
8765 {
8766 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8767 vfp_conv (32);
8768 }
8769 \f
8770 /* FPA instructions. Also in a logical order. */
8771
8772 static void
8773 do_fpa_cmp (void)
8774 {
8775 inst.instruction |= inst.operands[0].reg << 16;
8776 inst.instruction |= inst.operands[1].reg;
8777 }
8778
8779 static void
8780 do_fpa_ldmstm (void)
8781 {
8782 inst.instruction |= inst.operands[0].reg << 12;
8783 switch (inst.operands[1].imm)
8784 {
8785 case 1: inst.instruction |= CP_T_X; break;
8786 case 2: inst.instruction |= CP_T_Y; break;
8787 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
8788 case 4: break;
8789 default: abort ();
8790 }
8791
8792 if (inst.instruction & (PRE_INDEX | INDEX_UP))
8793 {
8794 /* The instruction specified "ea" or "fd", so we can only accept
8795 [Rn]{!}. The instruction does not really support stacking or
8796 unstacking, so we have to emulate these by setting appropriate
8797 bits and offsets. */
8798 constraint (inst.reloc.exp.X_op != O_constant
8799 || inst.reloc.exp.X_add_number != 0,
8800 _("this instruction does not support indexing"));
8801
8802 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
8803 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
8804
8805 if (!(inst.instruction & INDEX_UP))
8806 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
8807
8808 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
8809 {
8810 inst.operands[2].preind = 0;
8811 inst.operands[2].postind = 1;
8812 }
8813 }
8814
8815 encode_arm_cp_address (2, TRUE, TRUE, 0);
8816 }
8817 \f
8818 /* iWMMXt instructions: strictly in alphabetical order. */
8819
8820 static void
8821 do_iwmmxt_tandorc (void)
8822 {
8823 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
8824 }
8825
8826 static void
8827 do_iwmmxt_textrc (void)
8828 {
8829 inst.instruction |= inst.operands[0].reg << 12;
8830 inst.instruction |= inst.operands[1].imm;
8831 }
8832
8833 static void
8834 do_iwmmxt_textrm (void)
8835 {
8836 inst.instruction |= inst.operands[0].reg << 12;
8837 inst.instruction |= inst.operands[1].reg << 16;
8838 inst.instruction |= inst.operands[2].imm;
8839 }
8840
8841 static void
8842 do_iwmmxt_tinsr (void)
8843 {
8844 inst.instruction |= inst.operands[0].reg << 16;
8845 inst.instruction |= inst.operands[1].reg << 12;
8846 inst.instruction |= inst.operands[2].imm;
8847 }
8848
8849 static void
8850 do_iwmmxt_tmia (void)
8851 {
8852 inst.instruction |= inst.operands[0].reg << 5;
8853 inst.instruction |= inst.operands[1].reg;
8854 inst.instruction |= inst.operands[2].reg << 12;
8855 }
8856
8857 static void
8858 do_iwmmxt_waligni (void)
8859 {
8860 inst.instruction |= inst.operands[0].reg << 12;
8861 inst.instruction |= inst.operands[1].reg << 16;
8862 inst.instruction |= inst.operands[2].reg;
8863 inst.instruction |= inst.operands[3].imm << 20;
8864 }
8865
8866 static void
8867 do_iwmmxt_wmerge (void)
8868 {
8869 inst.instruction |= inst.operands[0].reg << 12;
8870 inst.instruction |= inst.operands[1].reg << 16;
8871 inst.instruction |= inst.operands[2].reg;
8872 inst.instruction |= inst.operands[3].imm << 21;
8873 }
8874
8875 static void
8876 do_iwmmxt_wmov (void)
8877 {
8878 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
8879 inst.instruction |= inst.operands[0].reg << 12;
8880 inst.instruction |= inst.operands[1].reg << 16;
8881 inst.instruction |= inst.operands[1].reg;
8882 }
8883
8884 static void
8885 do_iwmmxt_wldstbh (void)
8886 {
8887 int reloc;
8888 inst.instruction |= inst.operands[0].reg << 12;
8889 if (thumb_mode)
8890 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
8891 else
8892 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
8893 encode_arm_cp_address (1, TRUE, FALSE, reloc);
8894 }
8895
8896 static void
8897 do_iwmmxt_wldstw (void)
8898 {
8899 /* RIWR_RIWC clears .isreg for a control register. */
8900 if (!inst.operands[0].isreg)
8901 {
8902 constraint (inst.cond != COND_ALWAYS, BAD_COND);
8903 inst.instruction |= 0xf0000000;
8904 }
8905
8906 inst.instruction |= inst.operands[0].reg << 12;
8907 encode_arm_cp_address (1, TRUE, TRUE, 0);
8908 }
8909
8910 static void
8911 do_iwmmxt_wldstd (void)
8912 {
8913 inst.instruction |= inst.operands[0].reg << 12;
8914 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
8915 && inst.operands[1].immisreg)
8916 {
8917 inst.instruction &= ~0x1a000ff;
8918 inst.instruction |= (0xf << 28);
8919 if (inst.operands[1].preind)
8920 inst.instruction |= PRE_INDEX;
8921 if (!inst.operands[1].negative)
8922 inst.instruction |= INDEX_UP;
8923 if (inst.operands[1].writeback)
8924 inst.instruction |= WRITE_BACK;
8925 inst.instruction |= inst.operands[1].reg << 16;
8926 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8927 inst.instruction |= inst.operands[1].imm;
8928 }
8929 else
8930 encode_arm_cp_address (1, TRUE, FALSE, 0);
8931 }
8932
8933 static void
8934 do_iwmmxt_wshufh (void)
8935 {
8936 inst.instruction |= inst.operands[0].reg << 12;
8937 inst.instruction |= inst.operands[1].reg << 16;
8938 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
8939 inst.instruction |= (inst.operands[2].imm & 0x0f);
8940 }
8941
8942 static void
8943 do_iwmmxt_wzero (void)
8944 {
8945 /* WZERO reg is an alias for WANDN reg, reg, reg. */
8946 inst.instruction |= inst.operands[0].reg;
8947 inst.instruction |= inst.operands[0].reg << 12;
8948 inst.instruction |= inst.operands[0].reg << 16;
8949 }
8950
8951 static void
8952 do_iwmmxt_wrwrwr_or_imm5 (void)
8953 {
8954 if (inst.operands[2].isreg)
8955 do_rd_rn_rm ();
8956 else {
8957 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
8958 _("immediate operand requires iWMMXt2"));
8959 do_rd_rn ();
8960 if (inst.operands[2].imm == 0)
8961 {
8962 switch ((inst.instruction >> 20) & 0xf)
8963 {
8964 case 4:
8965 case 5:
8966 case 6:
8967 case 7:
8968 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
8969 inst.operands[2].imm = 16;
8970 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
8971 break;
8972 case 8:
8973 case 9:
8974 case 10:
8975 case 11:
8976 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
8977 inst.operands[2].imm = 32;
8978 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
8979 break;
8980 case 12:
8981 case 13:
8982 case 14:
8983 case 15:
8984 {
8985 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
8986 unsigned long wrn;
8987 wrn = (inst.instruction >> 16) & 0xf;
8988 inst.instruction &= 0xff0fff0f;
8989 inst.instruction |= wrn;
8990 /* Bail out here; the instruction is now assembled. */
8991 return;
8992 }
8993 }
8994 }
8995 /* Map 32 -> 0, etc. */
8996 inst.operands[2].imm &= 0x1f;
8997 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
8998 }
8999 }
9000 \f
9001 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
9002 operations first, then control, shift, and load/store. */
9003
9004 /* Insns like "foo X,Y,Z". */
9005
9006 static void
9007 do_mav_triple (void)
9008 {
9009 inst.instruction |= inst.operands[0].reg << 16;
9010 inst.instruction |= inst.operands[1].reg;
9011 inst.instruction |= inst.operands[2].reg << 12;
9012 }
9013
9014 /* Insns like "foo W,X,Y,Z".
9015 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
9016
9017 static void
9018 do_mav_quad (void)
9019 {
9020 inst.instruction |= inst.operands[0].reg << 5;
9021 inst.instruction |= inst.operands[1].reg << 12;
9022 inst.instruction |= inst.operands[2].reg << 16;
9023 inst.instruction |= inst.operands[3].reg;
9024 }
9025
9026 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
9027 static void
9028 do_mav_dspsc (void)
9029 {
9030 inst.instruction |= inst.operands[1].reg << 12;
9031 }
9032
9033 /* Maverick shift immediate instructions.
9034 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
9035 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
9036
9037 static void
9038 do_mav_shift (void)
9039 {
9040 int imm = inst.operands[2].imm;
9041
9042 inst.instruction |= inst.operands[0].reg << 12;
9043 inst.instruction |= inst.operands[1].reg << 16;
9044
9045 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
9046 Bits 5-7 of the insn should have bits 4-6 of the immediate.
9047 Bit 4 should be 0. */
9048 imm = (imm & 0xf) | ((imm & 0x70) << 1);
9049
9050 inst.instruction |= imm;
9051 }
9052 \f
9053 /* XScale instructions. Also sorted arithmetic before move. */
9054
9055 /* Xscale multiply-accumulate (argument parse)
9056 MIAcc acc0,Rm,Rs
9057 MIAPHcc acc0,Rm,Rs
9058 MIAxycc acc0,Rm,Rs. */
9059
9060 static void
9061 do_xsc_mia (void)
9062 {
9063 inst.instruction |= inst.operands[1].reg;
9064 inst.instruction |= inst.operands[2].reg << 12;
9065 }
9066
9067 /* Xscale move-accumulator-register (argument parse)
9068
9069 MARcc acc0,RdLo,RdHi. */
9070
9071 static void
9072 do_xsc_mar (void)
9073 {
9074 inst.instruction |= inst.operands[1].reg << 12;
9075 inst.instruction |= inst.operands[2].reg << 16;
9076 }
9077
9078 /* Xscale move-register-accumulator (argument parse)
9079
9080 MRAcc RdLo,RdHi,acc0. */
9081
9082 static void
9083 do_xsc_mra (void)
9084 {
9085 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
9086 inst.instruction |= inst.operands[0].reg << 12;
9087 inst.instruction |= inst.operands[1].reg << 16;
9088 }
9089 \f
9090 /* Encoding functions relevant only to Thumb. */
9091
9092 /* inst.operands[i] is a shifted-register operand; encode
9093 it into inst.instruction in the format used by Thumb32. */
9094
9095 static void
9096 encode_thumb32_shifted_operand (int i)
9097 {
9098 unsigned int value = inst.reloc.exp.X_add_number;
9099 unsigned int shift = inst.operands[i].shift_kind;
9100
9101 constraint (inst.operands[i].immisreg,
9102 _("shift by register not allowed in thumb mode"));
9103 inst.instruction |= inst.operands[i].reg;
9104 if (shift == SHIFT_RRX)
9105 inst.instruction |= SHIFT_ROR << 4;
9106 else
9107 {
9108 constraint (inst.reloc.exp.X_op != O_constant,
9109 _("expression too complex"));
9110
9111 constraint (value > 32
9112 || (value == 32 && (shift == SHIFT_LSL
9113 || shift == SHIFT_ROR)),
9114 _("shift expression is too large"));
9115
9116 if (value == 0)
9117 shift = SHIFT_LSL;
9118 else if (value == 32)
9119 value = 0;
9120
9121 inst.instruction |= shift << 4;
9122 inst.instruction |= (value & 0x1c) << 10;
9123 inst.instruction |= (value & 0x03) << 6;
9124 }
9125 }
9126
9127
9128 /* inst.operands[i] was set up by parse_address. Encode it into a
9129 Thumb32 format load or store instruction. Reject forms that cannot
9130 be used with such instructions. If is_t is true, reject forms that
9131 cannot be used with a T instruction; if is_d is true, reject forms
9132 that cannot be used with a D instruction. If it is a store insn,
9133 reject PC in Rn. */
9134
9135 static void
9136 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
9137 {
9138 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
9139
9140 constraint (!inst.operands[i].isreg,
9141 _("Instruction does not support =N addresses"));
9142
9143 inst.instruction |= inst.operands[i].reg << 16;
9144 if (inst.operands[i].immisreg)
9145 {
9146 constraint (is_pc, BAD_PC_ADDRESSING);
9147 constraint (is_t || is_d, _("cannot use register index with this instruction"));
9148 constraint (inst.operands[i].negative,
9149 _("Thumb does not support negative register indexing"));
9150 constraint (inst.operands[i].postind,
9151 _("Thumb does not support register post-indexing"));
9152 constraint (inst.operands[i].writeback,
9153 _("Thumb does not support register indexing with writeback"));
9154 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
9155 _("Thumb supports only LSL in shifted register indexing"));
9156
9157 inst.instruction |= inst.operands[i].imm;
9158 if (inst.operands[i].shifted)
9159 {
9160 constraint (inst.reloc.exp.X_op != O_constant,
9161 _("expression too complex"));
9162 constraint (inst.reloc.exp.X_add_number < 0
9163 || inst.reloc.exp.X_add_number > 3,
9164 _("shift out of range"));
9165 inst.instruction |= inst.reloc.exp.X_add_number << 4;
9166 }
9167 inst.reloc.type = BFD_RELOC_UNUSED;
9168 }
9169 else if (inst.operands[i].preind)
9170 {
9171 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
9172 constraint (is_t && inst.operands[i].writeback,
9173 _("cannot use writeback with this instruction"));
9174 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0)
9175 && !inst.reloc.pc_rel, BAD_PC_ADDRESSING);
9176
9177 if (is_d)
9178 {
9179 inst.instruction |= 0x01000000;
9180 if (inst.operands[i].writeback)
9181 inst.instruction |= 0x00200000;
9182 }
9183 else
9184 {
9185 inst.instruction |= 0x00000c00;
9186 if (inst.operands[i].writeback)
9187 inst.instruction |= 0x00000100;
9188 }
9189 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
9190 }
9191 else if (inst.operands[i].postind)
9192 {
9193 gas_assert (inst.operands[i].writeback);
9194 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
9195 constraint (is_t, _("cannot use post-indexing with this instruction"));
9196
9197 if (is_d)
9198 inst.instruction |= 0x00200000;
9199 else
9200 inst.instruction |= 0x00000900;
9201 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
9202 }
9203 else /* unindexed - only for coprocessor */
9204 inst.error = _("instruction does not accept unindexed addressing");
9205 }
9206
9207 /* Table of Thumb instructions which exist in both 16- and 32-bit
9208 encodings (the latter only in post-V6T2 cores). The index is the
9209 value used in the insns table below. When there is more than one
9210 possible 16-bit encoding for the instruction, this table always
9211 holds variant (1).
9212 Also contains several pseudo-instructions used during relaxation. */
9213 #define T16_32_TAB \
9214 X(_adc, 4140, eb400000), \
9215 X(_adcs, 4140, eb500000), \
9216 X(_add, 1c00, eb000000), \
9217 X(_adds, 1c00, eb100000), \
9218 X(_addi, 0000, f1000000), \
9219 X(_addis, 0000, f1100000), \
9220 X(_add_pc,000f, f20f0000), \
9221 X(_add_sp,000d, f10d0000), \
9222 X(_adr, 000f, f20f0000), \
9223 X(_and, 4000, ea000000), \
9224 X(_ands, 4000, ea100000), \
9225 X(_asr, 1000, fa40f000), \
9226 X(_asrs, 1000, fa50f000), \
9227 X(_b, e000, f000b000), \
9228 X(_bcond, d000, f0008000), \
9229 X(_bic, 4380, ea200000), \
9230 X(_bics, 4380, ea300000), \
9231 X(_cmn, 42c0, eb100f00), \
9232 X(_cmp, 2800, ebb00f00), \
9233 X(_cpsie, b660, f3af8400), \
9234 X(_cpsid, b670, f3af8600), \
9235 X(_cpy, 4600, ea4f0000), \
9236 X(_dec_sp,80dd, f1ad0d00), \
9237 X(_eor, 4040, ea800000), \
9238 X(_eors, 4040, ea900000), \
9239 X(_inc_sp,00dd, f10d0d00), \
9240 X(_ldmia, c800, e8900000), \
9241 X(_ldr, 6800, f8500000), \
9242 X(_ldrb, 7800, f8100000), \
9243 X(_ldrh, 8800, f8300000), \
9244 X(_ldrsb, 5600, f9100000), \
9245 X(_ldrsh, 5e00, f9300000), \
9246 X(_ldr_pc,4800, f85f0000), \
9247 X(_ldr_pc2,4800, f85f0000), \
9248 X(_ldr_sp,9800, f85d0000), \
9249 X(_lsl, 0000, fa00f000), \
9250 X(_lsls, 0000, fa10f000), \
9251 X(_lsr, 0800, fa20f000), \
9252 X(_lsrs, 0800, fa30f000), \
9253 X(_mov, 2000, ea4f0000), \
9254 X(_movs, 2000, ea5f0000), \
9255 X(_mul, 4340, fb00f000), \
9256 X(_muls, 4340, ffffffff), /* no 32b muls */ \
9257 X(_mvn, 43c0, ea6f0000), \
9258 X(_mvns, 43c0, ea7f0000), \
9259 X(_neg, 4240, f1c00000), /* rsb #0 */ \
9260 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
9261 X(_orr, 4300, ea400000), \
9262 X(_orrs, 4300, ea500000), \
9263 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
9264 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
9265 X(_rev, ba00, fa90f080), \
9266 X(_rev16, ba40, fa90f090), \
9267 X(_revsh, bac0, fa90f0b0), \
9268 X(_ror, 41c0, fa60f000), \
9269 X(_rors, 41c0, fa70f000), \
9270 X(_sbc, 4180, eb600000), \
9271 X(_sbcs, 4180, eb700000), \
9272 X(_stmia, c000, e8800000), \
9273 X(_str, 6000, f8400000), \
9274 X(_strb, 7000, f8000000), \
9275 X(_strh, 8000, f8200000), \
9276 X(_str_sp,9000, f84d0000), \
9277 X(_sub, 1e00, eba00000), \
9278 X(_subs, 1e00, ebb00000), \
9279 X(_subi, 8000, f1a00000), \
9280 X(_subis, 8000, f1b00000), \
9281 X(_sxtb, b240, fa4ff080), \
9282 X(_sxth, b200, fa0ff080), \
9283 X(_tst, 4200, ea100f00), \
9284 X(_uxtb, b2c0, fa5ff080), \
9285 X(_uxth, b280, fa1ff080), \
9286 X(_nop, bf00, f3af8000), \
9287 X(_yield, bf10, f3af8001), \
9288 X(_wfe, bf20, f3af8002), \
9289 X(_wfi, bf30, f3af8003), \
9290 X(_sev, bf40, f3af8004),
9291
9292 /* To catch errors in encoding functions, the codes are all offset by
9293 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
9294 as 16-bit instructions. */
9295 #define X(a,b,c) T_MNEM##a
9296 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
9297 #undef X
9298
9299 #define X(a,b,c) 0x##b
9300 static const unsigned short thumb_op16[] = { T16_32_TAB };
9301 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
9302 #undef X
9303
9304 #define X(a,b,c) 0x##c
9305 static const unsigned int thumb_op32[] = { T16_32_TAB };
9306 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
9307 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
9308 #undef X
9309 #undef T16_32_TAB
9310
9311 /* Thumb instruction encoders, in alphabetical order. */
9312
9313 /* ADDW or SUBW. */
9314
9315 static void
9316 do_t_add_sub_w (void)
9317 {
9318 int Rd, Rn;
9319
9320 Rd = inst.operands[0].reg;
9321 Rn = inst.operands[1].reg;
9322
9323 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
9324 is the SP-{plus,minus}-immediate form of the instruction. */
9325 if (Rn == REG_SP)
9326 constraint (Rd == REG_PC, BAD_PC);
9327 else
9328 reject_bad_reg (Rd);
9329
9330 inst.instruction |= (Rn << 16) | (Rd << 8);
9331 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9332 }
9333
9334 /* Parse an add or subtract instruction. We get here with inst.instruction
9335 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
9336
9337 static void
9338 do_t_add_sub (void)
9339 {
9340 int Rd, Rs, Rn;
9341
9342 Rd = inst.operands[0].reg;
9343 Rs = (inst.operands[1].present
9344 ? inst.operands[1].reg /* Rd, Rs, foo */
9345 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9346
9347 if (Rd == REG_PC)
9348 set_it_insn_type_last ();
9349
9350 if (unified_syntax)
9351 {
9352 bfd_boolean flags;
9353 bfd_boolean narrow;
9354 int opcode;
9355
9356 flags = (inst.instruction == T_MNEM_adds
9357 || inst.instruction == T_MNEM_subs);
9358 if (flags)
9359 narrow = !in_it_block ();
9360 else
9361 narrow = in_it_block ();
9362 if (!inst.operands[2].isreg)
9363 {
9364 int add;
9365
9366 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9367
9368 add = (inst.instruction == T_MNEM_add
9369 || inst.instruction == T_MNEM_adds);
9370 opcode = 0;
9371 if (inst.size_req != 4)
9372 {
9373 /* Attempt to use a narrow opcode, with relaxation if
9374 appropriate. */
9375 if (Rd == REG_SP && Rs == REG_SP && !flags)
9376 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
9377 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
9378 opcode = T_MNEM_add_sp;
9379 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
9380 opcode = T_MNEM_add_pc;
9381 else if (Rd <= 7 && Rs <= 7 && narrow)
9382 {
9383 if (flags)
9384 opcode = add ? T_MNEM_addis : T_MNEM_subis;
9385 else
9386 opcode = add ? T_MNEM_addi : T_MNEM_subi;
9387 }
9388 if (opcode)
9389 {
9390 inst.instruction = THUMB_OP16(opcode);
9391 inst.instruction |= (Rd << 4) | Rs;
9392 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9393 if (inst.size_req != 2)
9394 inst.relax = opcode;
9395 }
9396 else
9397 constraint (inst.size_req == 2, BAD_HIREG);
9398 }
9399 if (inst.size_req == 4
9400 || (inst.size_req != 2 && !opcode))
9401 {
9402 if (Rd == REG_PC)
9403 {
9404 constraint (add, BAD_PC);
9405 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
9406 _("only SUBS PC, LR, #const allowed"));
9407 constraint (inst.reloc.exp.X_op != O_constant,
9408 _("expression too complex"));
9409 constraint (inst.reloc.exp.X_add_number < 0
9410 || inst.reloc.exp.X_add_number > 0xff,
9411 _("immediate value out of range"));
9412 inst.instruction = T2_SUBS_PC_LR
9413 | inst.reloc.exp.X_add_number;
9414 inst.reloc.type = BFD_RELOC_UNUSED;
9415 return;
9416 }
9417 else if (Rs == REG_PC)
9418 {
9419 /* Always use addw/subw. */
9420 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
9421 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9422 }
9423 else
9424 {
9425 inst.instruction = THUMB_OP32 (inst.instruction);
9426 inst.instruction = (inst.instruction & 0xe1ffffff)
9427 | 0x10000000;
9428 if (flags)
9429 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9430 else
9431 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
9432 }
9433 inst.instruction |= Rd << 8;
9434 inst.instruction |= Rs << 16;
9435 }
9436 }
9437 else
9438 {
9439 Rn = inst.operands[2].reg;
9440 /* See if we can do this with a 16-bit instruction. */
9441 if (!inst.operands[2].shifted && inst.size_req != 4)
9442 {
9443 if (Rd > 7 || Rs > 7 || Rn > 7)
9444 narrow = FALSE;
9445
9446 if (narrow)
9447 {
9448 inst.instruction = ((inst.instruction == T_MNEM_adds
9449 || inst.instruction == T_MNEM_add)
9450 ? T_OPCODE_ADD_R3
9451 : T_OPCODE_SUB_R3);
9452 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9453 return;
9454 }
9455
9456 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
9457 {
9458 /* Thumb-1 cores (except v6-M) require at least one high
9459 register in a narrow non flag setting add. */
9460 if (Rd > 7 || Rn > 7
9461 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
9462 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
9463 {
9464 if (Rd == Rn)
9465 {
9466 Rn = Rs;
9467 Rs = Rd;
9468 }
9469 inst.instruction = T_OPCODE_ADD_HI;
9470 inst.instruction |= (Rd & 8) << 4;
9471 inst.instruction |= (Rd & 7);
9472 inst.instruction |= Rn << 3;
9473 return;
9474 }
9475 }
9476 }
9477
9478 constraint (Rd == REG_PC, BAD_PC);
9479 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9480 constraint (Rs == REG_PC, BAD_PC);
9481 reject_bad_reg (Rn);
9482
9483 /* If we get here, it can't be done in 16 bits. */
9484 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
9485 _("shift must be constant"));
9486 inst.instruction = THUMB_OP32 (inst.instruction);
9487 inst.instruction |= Rd << 8;
9488 inst.instruction |= Rs << 16;
9489 encode_thumb32_shifted_operand (2);
9490 }
9491 }
9492 else
9493 {
9494 constraint (inst.instruction == T_MNEM_adds
9495 || inst.instruction == T_MNEM_subs,
9496 BAD_THUMB32);
9497
9498 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
9499 {
9500 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
9501 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
9502 BAD_HIREG);
9503
9504 inst.instruction = (inst.instruction == T_MNEM_add
9505 ? 0x0000 : 0x8000);
9506 inst.instruction |= (Rd << 4) | Rs;
9507 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9508 return;
9509 }
9510
9511 Rn = inst.operands[2].reg;
9512 constraint (inst.operands[2].shifted, _("unshifted register required"));
9513
9514 /* We now have Rd, Rs, and Rn set to registers. */
9515 if (Rd > 7 || Rs > 7 || Rn > 7)
9516 {
9517 /* Can't do this for SUB. */
9518 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
9519 inst.instruction = T_OPCODE_ADD_HI;
9520 inst.instruction |= (Rd & 8) << 4;
9521 inst.instruction |= (Rd & 7);
9522 if (Rs == Rd)
9523 inst.instruction |= Rn << 3;
9524 else if (Rn == Rd)
9525 inst.instruction |= Rs << 3;
9526 else
9527 constraint (1, _("dest must overlap one source register"));
9528 }
9529 else
9530 {
9531 inst.instruction = (inst.instruction == T_MNEM_add
9532 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
9533 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9534 }
9535 }
9536 }
9537
9538 static void
9539 do_t_adr (void)
9540 {
9541 unsigned Rd;
9542
9543 Rd = inst.operands[0].reg;
9544 reject_bad_reg (Rd);
9545
9546 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
9547 {
9548 /* Defer to section relaxation. */
9549 inst.relax = inst.instruction;
9550 inst.instruction = THUMB_OP16 (inst.instruction);
9551 inst.instruction |= Rd << 4;
9552 }
9553 else if (unified_syntax && inst.size_req != 2)
9554 {
9555 /* Generate a 32-bit opcode. */
9556 inst.instruction = THUMB_OP32 (inst.instruction);
9557 inst.instruction |= Rd << 8;
9558 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
9559 inst.reloc.pc_rel = 1;
9560 }
9561 else
9562 {
9563 /* Generate a 16-bit opcode. */
9564 inst.instruction = THUMB_OP16 (inst.instruction);
9565 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9566 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
9567 inst.reloc.pc_rel = 1;
9568
9569 inst.instruction |= Rd << 4;
9570 }
9571 }
9572
9573 /* Arithmetic instructions for which there is just one 16-bit
9574 instruction encoding, and it allows only two low registers.
9575 For maximal compatibility with ARM syntax, we allow three register
9576 operands even when Thumb-32 instructions are not available, as long
9577 as the first two are identical. For instance, both "sbc r0,r1" and
9578 "sbc r0,r0,r1" are allowed. */
9579 static void
9580 do_t_arit3 (void)
9581 {
9582 int Rd, Rs, Rn;
9583
9584 Rd = inst.operands[0].reg;
9585 Rs = (inst.operands[1].present
9586 ? inst.operands[1].reg /* Rd, Rs, foo */
9587 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9588 Rn = inst.operands[2].reg;
9589
9590 reject_bad_reg (Rd);
9591 reject_bad_reg (Rs);
9592 if (inst.operands[2].isreg)
9593 reject_bad_reg (Rn);
9594
9595 if (unified_syntax)
9596 {
9597 if (!inst.operands[2].isreg)
9598 {
9599 /* For an immediate, we always generate a 32-bit opcode;
9600 section relaxation will shrink it later if possible. */
9601 inst.instruction = THUMB_OP32 (inst.instruction);
9602 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9603 inst.instruction |= Rd << 8;
9604 inst.instruction |= Rs << 16;
9605 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9606 }
9607 else
9608 {
9609 bfd_boolean narrow;
9610
9611 /* See if we can do this with a 16-bit instruction. */
9612 if (THUMB_SETS_FLAGS (inst.instruction))
9613 narrow = !in_it_block ();
9614 else
9615 narrow = in_it_block ();
9616
9617 if (Rd > 7 || Rn > 7 || Rs > 7)
9618 narrow = FALSE;
9619 if (inst.operands[2].shifted)
9620 narrow = FALSE;
9621 if (inst.size_req == 4)
9622 narrow = FALSE;
9623
9624 if (narrow
9625 && Rd == Rs)
9626 {
9627 inst.instruction = THUMB_OP16 (inst.instruction);
9628 inst.instruction |= Rd;
9629 inst.instruction |= Rn << 3;
9630 return;
9631 }
9632
9633 /* If we get here, it can't be done in 16 bits. */
9634 constraint (inst.operands[2].shifted
9635 && inst.operands[2].immisreg,
9636 _("shift must be constant"));
9637 inst.instruction = THUMB_OP32 (inst.instruction);
9638 inst.instruction |= Rd << 8;
9639 inst.instruction |= Rs << 16;
9640 encode_thumb32_shifted_operand (2);
9641 }
9642 }
9643 else
9644 {
9645 /* On its face this is a lie - the instruction does set the
9646 flags. However, the only supported mnemonic in this mode
9647 says it doesn't. */
9648 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9649
9650 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9651 _("unshifted register required"));
9652 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9653 constraint (Rd != Rs,
9654 _("dest and source1 must be the same register"));
9655
9656 inst.instruction = THUMB_OP16 (inst.instruction);
9657 inst.instruction |= Rd;
9658 inst.instruction |= Rn << 3;
9659 }
9660 }
9661
9662 /* Similarly, but for instructions where the arithmetic operation is
9663 commutative, so we can allow either of them to be different from
9664 the destination operand in a 16-bit instruction. For instance, all
9665 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
9666 accepted. */
9667 static void
9668 do_t_arit3c (void)
9669 {
9670 int Rd, Rs, Rn;
9671
9672 Rd = inst.operands[0].reg;
9673 Rs = (inst.operands[1].present
9674 ? inst.operands[1].reg /* Rd, Rs, foo */
9675 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9676 Rn = inst.operands[2].reg;
9677
9678 reject_bad_reg (Rd);
9679 reject_bad_reg (Rs);
9680 if (inst.operands[2].isreg)
9681 reject_bad_reg (Rn);
9682
9683 if (unified_syntax)
9684 {
9685 if (!inst.operands[2].isreg)
9686 {
9687 /* For an immediate, we always generate a 32-bit opcode;
9688 section relaxation will shrink it later if possible. */
9689 inst.instruction = THUMB_OP32 (inst.instruction);
9690 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9691 inst.instruction |= Rd << 8;
9692 inst.instruction |= Rs << 16;
9693 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9694 }
9695 else
9696 {
9697 bfd_boolean narrow;
9698
9699 /* See if we can do this with a 16-bit instruction. */
9700 if (THUMB_SETS_FLAGS (inst.instruction))
9701 narrow = !in_it_block ();
9702 else
9703 narrow = in_it_block ();
9704
9705 if (Rd > 7 || Rn > 7 || Rs > 7)
9706 narrow = FALSE;
9707 if (inst.operands[2].shifted)
9708 narrow = FALSE;
9709 if (inst.size_req == 4)
9710 narrow = FALSE;
9711
9712 if (narrow)
9713 {
9714 if (Rd == Rs)
9715 {
9716 inst.instruction = THUMB_OP16 (inst.instruction);
9717 inst.instruction |= Rd;
9718 inst.instruction |= Rn << 3;
9719 return;
9720 }
9721 if (Rd == Rn)
9722 {
9723 inst.instruction = THUMB_OP16 (inst.instruction);
9724 inst.instruction |= Rd;
9725 inst.instruction |= Rs << 3;
9726 return;
9727 }
9728 }
9729
9730 /* If we get here, it can't be done in 16 bits. */
9731 constraint (inst.operands[2].shifted
9732 && inst.operands[2].immisreg,
9733 _("shift must be constant"));
9734 inst.instruction = THUMB_OP32 (inst.instruction);
9735 inst.instruction |= Rd << 8;
9736 inst.instruction |= Rs << 16;
9737 encode_thumb32_shifted_operand (2);
9738 }
9739 }
9740 else
9741 {
9742 /* On its face this is a lie - the instruction does set the
9743 flags. However, the only supported mnemonic in this mode
9744 says it doesn't. */
9745 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9746
9747 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9748 _("unshifted register required"));
9749 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9750
9751 inst.instruction = THUMB_OP16 (inst.instruction);
9752 inst.instruction |= Rd;
9753
9754 if (Rd == Rs)
9755 inst.instruction |= Rn << 3;
9756 else if (Rd == Rn)
9757 inst.instruction |= Rs << 3;
9758 else
9759 constraint (1, _("dest must overlap one source register"));
9760 }
9761 }
9762
9763 static void
9764 do_t_barrier (void)
9765 {
9766 if (inst.operands[0].present)
9767 {
9768 constraint ((inst.instruction & 0xf0) != 0x40
9769 && inst.operands[0].imm > 0xf
9770 && inst.operands[0].imm < 0x0,
9771 _("bad barrier type"));
9772 inst.instruction |= inst.operands[0].imm;
9773 }
9774 else
9775 inst.instruction |= 0xf;
9776 }
9777
9778 static void
9779 do_t_bfc (void)
9780 {
9781 unsigned Rd;
9782 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9783 constraint (msb > 32, _("bit-field extends past end of register"));
9784 /* The instruction encoding stores the LSB and MSB,
9785 not the LSB and width. */
9786 Rd = inst.operands[0].reg;
9787 reject_bad_reg (Rd);
9788 inst.instruction |= Rd << 8;
9789 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
9790 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
9791 inst.instruction |= msb - 1;
9792 }
9793
9794 static void
9795 do_t_bfi (void)
9796 {
9797 int Rd, Rn;
9798 unsigned int msb;
9799
9800 Rd = inst.operands[0].reg;
9801 reject_bad_reg (Rd);
9802
9803 /* #0 in second position is alternative syntax for bfc, which is
9804 the same instruction but with REG_PC in the Rm field. */
9805 if (!inst.operands[1].isreg)
9806 Rn = REG_PC;
9807 else
9808 {
9809 Rn = inst.operands[1].reg;
9810 reject_bad_reg (Rn);
9811 }
9812
9813 msb = inst.operands[2].imm + inst.operands[3].imm;
9814 constraint (msb > 32, _("bit-field extends past end of register"));
9815 /* The instruction encoding stores the LSB and MSB,
9816 not the LSB and width. */
9817 inst.instruction |= Rd << 8;
9818 inst.instruction |= Rn << 16;
9819 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9820 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9821 inst.instruction |= msb - 1;
9822 }
9823
9824 static void
9825 do_t_bfx (void)
9826 {
9827 unsigned Rd, Rn;
9828
9829 Rd = inst.operands[0].reg;
9830 Rn = inst.operands[1].reg;
9831
9832 reject_bad_reg (Rd);
9833 reject_bad_reg (Rn);
9834
9835 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9836 _("bit-field extends past end of register"));
9837 inst.instruction |= Rd << 8;
9838 inst.instruction |= Rn << 16;
9839 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9840 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9841 inst.instruction |= inst.operands[3].imm - 1;
9842 }
9843
9844 /* ARM V5 Thumb BLX (argument parse)
9845 BLX <target_addr> which is BLX(1)
9846 BLX <Rm> which is BLX(2)
9847 Unfortunately, there are two different opcodes for this mnemonic.
9848 So, the insns[].value is not used, and the code here zaps values
9849 into inst.instruction.
9850
9851 ??? How to take advantage of the additional two bits of displacement
9852 available in Thumb32 mode? Need new relocation? */
9853
9854 static void
9855 do_t_blx (void)
9856 {
9857 set_it_insn_type_last ();
9858
9859 if (inst.operands[0].isreg)
9860 {
9861 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9862 /* We have a register, so this is BLX(2). */
9863 inst.instruction |= inst.operands[0].reg << 3;
9864 }
9865 else
9866 {
9867 /* No register. This must be BLX(1). */
9868 inst.instruction = 0xf000e800;
9869 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
9870 }
9871 }
9872
9873 static void
9874 do_t_branch (void)
9875 {
9876 int opcode;
9877 int cond;
9878 int reloc;
9879
9880 cond = inst.cond;
9881 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
9882
9883 if (in_it_block ())
9884 {
9885 /* Conditional branches inside IT blocks are encoded as unconditional
9886 branches. */
9887 cond = COND_ALWAYS;
9888 }
9889 else
9890 cond = inst.cond;
9891
9892 if (cond != COND_ALWAYS)
9893 opcode = T_MNEM_bcond;
9894 else
9895 opcode = inst.instruction;
9896
9897 if (unified_syntax
9898 && (inst.size_req == 4
9899 || (inst.size_req != 2
9900 && (inst.operands[0].hasreloc
9901 || inst.reloc.exp.X_op == O_constant))))
9902 {
9903 inst.instruction = THUMB_OP32(opcode);
9904 if (cond == COND_ALWAYS)
9905 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
9906 else
9907 {
9908 gas_assert (cond != 0xF);
9909 inst.instruction |= cond << 22;
9910 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
9911 }
9912 }
9913 else
9914 {
9915 inst.instruction = THUMB_OP16(opcode);
9916 if (cond == COND_ALWAYS)
9917 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
9918 else
9919 {
9920 inst.instruction |= cond << 8;
9921 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
9922 }
9923 /* Allow section relaxation. */
9924 if (unified_syntax && inst.size_req != 2)
9925 inst.relax = opcode;
9926 }
9927 inst.reloc.type = reloc;
9928 inst.reloc.pc_rel = 1;
9929 }
9930
9931 static void
9932 do_t_bkpt (void)
9933 {
9934 constraint (inst.cond != COND_ALWAYS,
9935 _("instruction is always unconditional"));
9936 if (inst.operands[0].present)
9937 {
9938 constraint (inst.operands[0].imm > 255,
9939 _("immediate value out of range"));
9940 inst.instruction |= inst.operands[0].imm;
9941 set_it_insn_type (NEUTRAL_IT_INSN);
9942 }
9943 }
9944
9945 static void
9946 do_t_branch23 (void)
9947 {
9948 set_it_insn_type_last ();
9949 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
9950
9951 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
9952 this file. We used to simply ignore the PLT reloc type here --
9953 the branch encoding is now needed to deal with TLSCALL relocs.
9954 So if we see a PLT reloc now, put it back to how it used to be to
9955 keep the preexisting behaviour. */
9956 if (inst.reloc.type == BFD_RELOC_ARM_PLT32)
9957 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
9958
9959 #if defined(OBJ_COFF)
9960 /* If the destination of the branch is a defined symbol which does not have
9961 the THUMB_FUNC attribute, then we must be calling a function which has
9962 the (interfacearm) attribute. We look for the Thumb entry point to that
9963 function and change the branch to refer to that function instead. */
9964 if ( inst.reloc.exp.X_op == O_symbol
9965 && inst.reloc.exp.X_add_symbol != NULL
9966 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
9967 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
9968 inst.reloc.exp.X_add_symbol =
9969 find_real_start (inst.reloc.exp.X_add_symbol);
9970 #endif
9971 }
9972
9973 static void
9974 do_t_bx (void)
9975 {
9976 set_it_insn_type_last ();
9977 inst.instruction |= inst.operands[0].reg << 3;
9978 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
9979 should cause the alignment to be checked once it is known. This is
9980 because BX PC only works if the instruction is word aligned. */
9981 }
9982
9983 static void
9984 do_t_bxj (void)
9985 {
9986 int Rm;
9987
9988 set_it_insn_type_last ();
9989 Rm = inst.operands[0].reg;
9990 reject_bad_reg (Rm);
9991 inst.instruction |= Rm << 16;
9992 }
9993
9994 static void
9995 do_t_clz (void)
9996 {
9997 unsigned Rd;
9998 unsigned Rm;
9999
10000 Rd = inst.operands[0].reg;
10001 Rm = inst.operands[1].reg;
10002
10003 reject_bad_reg (Rd);
10004 reject_bad_reg (Rm);
10005
10006 inst.instruction |= Rd << 8;
10007 inst.instruction |= Rm << 16;
10008 inst.instruction |= Rm;
10009 }
10010
10011 static void
10012 do_t_cps (void)
10013 {
10014 set_it_insn_type (OUTSIDE_IT_INSN);
10015 inst.instruction |= inst.operands[0].imm;
10016 }
10017
10018 static void
10019 do_t_cpsi (void)
10020 {
10021 set_it_insn_type (OUTSIDE_IT_INSN);
10022 if (unified_syntax
10023 && (inst.operands[1].present || inst.size_req == 4)
10024 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
10025 {
10026 unsigned int imod = (inst.instruction & 0x0030) >> 4;
10027 inst.instruction = 0xf3af8000;
10028 inst.instruction |= imod << 9;
10029 inst.instruction |= inst.operands[0].imm << 5;
10030 if (inst.operands[1].present)
10031 inst.instruction |= 0x100 | inst.operands[1].imm;
10032 }
10033 else
10034 {
10035 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
10036 && (inst.operands[0].imm & 4),
10037 _("selected processor does not support 'A' form "
10038 "of this instruction"));
10039 constraint (inst.operands[1].present || inst.size_req == 4,
10040 _("Thumb does not support the 2-argument "
10041 "form of this instruction"));
10042 inst.instruction |= inst.operands[0].imm;
10043 }
10044 }
10045
10046 /* THUMB CPY instruction (argument parse). */
10047
10048 static void
10049 do_t_cpy (void)
10050 {
10051 if (inst.size_req == 4)
10052 {
10053 inst.instruction = THUMB_OP32 (T_MNEM_mov);
10054 inst.instruction |= inst.operands[0].reg << 8;
10055 inst.instruction |= inst.operands[1].reg;
10056 }
10057 else
10058 {
10059 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
10060 inst.instruction |= (inst.operands[0].reg & 0x7);
10061 inst.instruction |= inst.operands[1].reg << 3;
10062 }
10063 }
10064
10065 static void
10066 do_t_cbz (void)
10067 {
10068 set_it_insn_type (OUTSIDE_IT_INSN);
10069 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10070 inst.instruction |= inst.operands[0].reg;
10071 inst.reloc.pc_rel = 1;
10072 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
10073 }
10074
10075 static void
10076 do_t_dbg (void)
10077 {
10078 inst.instruction |= inst.operands[0].imm;
10079 }
10080
10081 static void
10082 do_t_div (void)
10083 {
10084 unsigned Rd, Rn, Rm;
10085
10086 Rd = inst.operands[0].reg;
10087 Rn = (inst.operands[1].present
10088 ? inst.operands[1].reg : Rd);
10089 Rm = inst.operands[2].reg;
10090
10091 reject_bad_reg (Rd);
10092 reject_bad_reg (Rn);
10093 reject_bad_reg (Rm);
10094
10095 inst.instruction |= Rd << 8;
10096 inst.instruction |= Rn << 16;
10097 inst.instruction |= Rm;
10098 }
10099
10100 static void
10101 do_t_hint (void)
10102 {
10103 if (unified_syntax && inst.size_req == 4)
10104 inst.instruction = THUMB_OP32 (inst.instruction);
10105 else
10106 inst.instruction = THUMB_OP16 (inst.instruction);
10107 }
10108
10109 static void
10110 do_t_it (void)
10111 {
10112 unsigned int cond = inst.operands[0].imm;
10113
10114 set_it_insn_type (IT_INSN);
10115 now_it.mask = (inst.instruction & 0xf) | 0x10;
10116 now_it.cc = cond;
10117
10118 /* If the condition is a negative condition, invert the mask. */
10119 if ((cond & 0x1) == 0x0)
10120 {
10121 unsigned int mask = inst.instruction & 0x000f;
10122
10123 if ((mask & 0x7) == 0)
10124 /* no conversion needed */;
10125 else if ((mask & 0x3) == 0)
10126 mask ^= 0x8;
10127 else if ((mask & 0x1) == 0)
10128 mask ^= 0xC;
10129 else
10130 mask ^= 0xE;
10131
10132 inst.instruction &= 0xfff0;
10133 inst.instruction |= mask;
10134 }
10135
10136 inst.instruction |= cond << 4;
10137 }
10138
10139 /* Helper function used for both push/pop and ldm/stm. */
10140 static void
10141 encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
10142 {
10143 bfd_boolean load;
10144
10145 load = (inst.instruction & (1 << 20)) != 0;
10146
10147 if (mask & (1 << 13))
10148 inst.error = _("SP not allowed in register list");
10149
10150 if ((mask & (1 << base)) != 0
10151 && writeback)
10152 inst.error = _("having the base register in the register list when "
10153 "using write back is UNPREDICTABLE");
10154
10155 if (load)
10156 {
10157 if (mask & (1 << 15))
10158 {
10159 if (mask & (1 << 14))
10160 inst.error = _("LR and PC should not both be in register list");
10161 else
10162 set_it_insn_type_last ();
10163 }
10164 }
10165 else
10166 {
10167 if (mask & (1 << 15))
10168 inst.error = _("PC not allowed in register list");
10169 }
10170
10171 if ((mask & (mask - 1)) == 0)
10172 {
10173 /* Single register transfers implemented as str/ldr. */
10174 if (writeback)
10175 {
10176 if (inst.instruction & (1 << 23))
10177 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
10178 else
10179 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
10180 }
10181 else
10182 {
10183 if (inst.instruction & (1 << 23))
10184 inst.instruction = 0x00800000; /* ia -> [base] */
10185 else
10186 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
10187 }
10188
10189 inst.instruction |= 0xf8400000;
10190 if (load)
10191 inst.instruction |= 0x00100000;
10192
10193 mask = ffs (mask) - 1;
10194 mask <<= 12;
10195 }
10196 else if (writeback)
10197 inst.instruction |= WRITE_BACK;
10198
10199 inst.instruction |= mask;
10200 inst.instruction |= base << 16;
10201 }
10202
10203 static void
10204 do_t_ldmstm (void)
10205 {
10206 /* This really doesn't seem worth it. */
10207 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
10208 _("expression too complex"));
10209 constraint (inst.operands[1].writeback,
10210 _("Thumb load/store multiple does not support {reglist}^"));
10211
10212 if (unified_syntax)
10213 {
10214 bfd_boolean narrow;
10215 unsigned mask;
10216
10217 narrow = FALSE;
10218 /* See if we can use a 16-bit instruction. */
10219 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
10220 && inst.size_req != 4
10221 && !(inst.operands[1].imm & ~0xff))
10222 {
10223 mask = 1 << inst.operands[0].reg;
10224
10225 if (inst.operands[0].reg <= 7)
10226 {
10227 if (inst.instruction == T_MNEM_stmia
10228 ? inst.operands[0].writeback
10229 : (inst.operands[0].writeback
10230 == !(inst.operands[1].imm & mask)))
10231 {
10232 if (inst.instruction == T_MNEM_stmia
10233 && (inst.operands[1].imm & mask)
10234 && (inst.operands[1].imm & (mask - 1)))
10235 as_warn (_("value stored for r%d is UNKNOWN"),
10236 inst.operands[0].reg);
10237
10238 inst.instruction = THUMB_OP16 (inst.instruction);
10239 inst.instruction |= inst.operands[0].reg << 8;
10240 inst.instruction |= inst.operands[1].imm;
10241 narrow = TRUE;
10242 }
10243 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10244 {
10245 /* This means 1 register in reg list one of 3 situations:
10246 1. Instruction is stmia, but without writeback.
10247 2. lmdia without writeback, but with Rn not in
10248 reglist.
10249 3. ldmia with writeback, but with Rn in reglist.
10250 Case 3 is UNPREDICTABLE behaviour, so we handle
10251 case 1 and 2 which can be converted into a 16-bit
10252 str or ldr. The SP cases are handled below. */
10253 unsigned long opcode;
10254 /* First, record an error for Case 3. */
10255 if (inst.operands[1].imm & mask
10256 && inst.operands[0].writeback)
10257 inst.error =
10258 _("having the base register in the register list when "
10259 "using write back is UNPREDICTABLE");
10260
10261 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
10262 : T_MNEM_ldr);
10263 inst.instruction = THUMB_OP16 (opcode);
10264 inst.instruction |= inst.operands[0].reg << 3;
10265 inst.instruction |= (ffs (inst.operands[1].imm)-1);
10266 narrow = TRUE;
10267 }
10268 }
10269 else if (inst.operands[0] .reg == REG_SP)
10270 {
10271 if (inst.operands[0].writeback)
10272 {
10273 inst.instruction =
10274 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10275 ? T_MNEM_push : T_MNEM_pop);
10276 inst.instruction |= inst.operands[1].imm;
10277 narrow = TRUE;
10278 }
10279 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10280 {
10281 inst.instruction =
10282 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10283 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
10284 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
10285 narrow = TRUE;
10286 }
10287 }
10288 }
10289
10290 if (!narrow)
10291 {
10292 if (inst.instruction < 0xffff)
10293 inst.instruction = THUMB_OP32 (inst.instruction);
10294
10295 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
10296 inst.operands[0].writeback);
10297 }
10298 }
10299 else
10300 {
10301 constraint (inst.operands[0].reg > 7
10302 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
10303 constraint (inst.instruction != T_MNEM_ldmia
10304 && inst.instruction != T_MNEM_stmia,
10305 _("Thumb-2 instruction only valid in unified syntax"));
10306 if (inst.instruction == T_MNEM_stmia)
10307 {
10308 if (!inst.operands[0].writeback)
10309 as_warn (_("this instruction will write back the base register"));
10310 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
10311 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
10312 as_warn (_("value stored for r%d is UNKNOWN"),
10313 inst.operands[0].reg);
10314 }
10315 else
10316 {
10317 if (!inst.operands[0].writeback
10318 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
10319 as_warn (_("this instruction will write back the base register"));
10320 else if (inst.operands[0].writeback
10321 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
10322 as_warn (_("this instruction will not write back the base register"));
10323 }
10324
10325 inst.instruction = THUMB_OP16 (inst.instruction);
10326 inst.instruction |= inst.operands[0].reg << 8;
10327 inst.instruction |= inst.operands[1].imm;
10328 }
10329 }
10330
10331 static void
10332 do_t_ldrex (void)
10333 {
10334 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
10335 || inst.operands[1].postind || inst.operands[1].writeback
10336 || inst.operands[1].immisreg || inst.operands[1].shifted
10337 || inst.operands[1].negative,
10338 BAD_ADDR_MODE);
10339
10340 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
10341
10342 inst.instruction |= inst.operands[0].reg << 12;
10343 inst.instruction |= inst.operands[1].reg << 16;
10344 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
10345 }
10346
10347 static void
10348 do_t_ldrexd (void)
10349 {
10350 if (!inst.operands[1].present)
10351 {
10352 constraint (inst.operands[0].reg == REG_LR,
10353 _("r14 not allowed as first register "
10354 "when second register is omitted"));
10355 inst.operands[1].reg = inst.operands[0].reg + 1;
10356 }
10357 constraint (inst.operands[0].reg == inst.operands[1].reg,
10358 BAD_OVERLAP);
10359
10360 inst.instruction |= inst.operands[0].reg << 12;
10361 inst.instruction |= inst.operands[1].reg << 8;
10362 inst.instruction |= inst.operands[2].reg << 16;
10363 }
10364
10365 static void
10366 do_t_ldst (void)
10367 {
10368 unsigned long opcode;
10369 int Rn;
10370
10371 if (inst.operands[0].isreg
10372 && !inst.operands[0].preind
10373 && inst.operands[0].reg == REG_PC)
10374 set_it_insn_type_last ();
10375
10376 opcode = inst.instruction;
10377 if (unified_syntax)
10378 {
10379 if (!inst.operands[1].isreg)
10380 {
10381 if (opcode <= 0xffff)
10382 inst.instruction = THUMB_OP32 (opcode);
10383 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10384 return;
10385 }
10386 if (inst.operands[1].isreg
10387 && !inst.operands[1].writeback
10388 && !inst.operands[1].shifted && !inst.operands[1].postind
10389 && !inst.operands[1].negative && inst.operands[0].reg <= 7
10390 && opcode <= 0xffff
10391 && inst.size_req != 4)
10392 {
10393 /* Insn may have a 16-bit form. */
10394 Rn = inst.operands[1].reg;
10395 if (inst.operands[1].immisreg)
10396 {
10397 inst.instruction = THUMB_OP16 (opcode);
10398 /* [Rn, Rik] */
10399 if (Rn <= 7 && inst.operands[1].imm <= 7)
10400 goto op16;
10401 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
10402 reject_bad_reg (inst.operands[1].imm);
10403 }
10404 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
10405 && opcode != T_MNEM_ldrsb)
10406 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
10407 || (Rn == REG_SP && opcode == T_MNEM_str))
10408 {
10409 /* [Rn, #const] */
10410 if (Rn > 7)
10411 {
10412 if (Rn == REG_PC)
10413 {
10414 if (inst.reloc.pc_rel)
10415 opcode = T_MNEM_ldr_pc2;
10416 else
10417 opcode = T_MNEM_ldr_pc;
10418 }
10419 else
10420 {
10421 if (opcode == T_MNEM_ldr)
10422 opcode = T_MNEM_ldr_sp;
10423 else
10424 opcode = T_MNEM_str_sp;
10425 }
10426 inst.instruction = inst.operands[0].reg << 8;
10427 }
10428 else
10429 {
10430 inst.instruction = inst.operands[0].reg;
10431 inst.instruction |= inst.operands[1].reg << 3;
10432 }
10433 inst.instruction |= THUMB_OP16 (opcode);
10434 if (inst.size_req == 2)
10435 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10436 else
10437 inst.relax = opcode;
10438 return;
10439 }
10440 }
10441 /* Definitely a 32-bit variant. */
10442
10443 /* Warning for Erratum 752419. */
10444 if (opcode == T_MNEM_ldr
10445 && inst.operands[0].reg == REG_SP
10446 && inst.operands[1].writeback == 1
10447 && !inst.operands[1].immisreg)
10448 {
10449 if (no_cpu_selected ()
10450 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
10451 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
10452 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
10453 as_warn (_("This instruction may be unpredictable "
10454 "if executed on M-profile cores "
10455 "with interrupts enabled."));
10456 }
10457
10458 /* Do some validations regarding addressing modes. */
10459 if (inst.operands[1].immisreg && opcode != T_MNEM_ldr
10460 && opcode != T_MNEM_str)
10461 reject_bad_reg (inst.operands[1].imm);
10462
10463 inst.instruction = THUMB_OP32 (opcode);
10464 inst.instruction |= inst.operands[0].reg << 12;
10465 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
10466 return;
10467 }
10468
10469 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10470
10471 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
10472 {
10473 /* Only [Rn,Rm] is acceptable. */
10474 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
10475 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
10476 || inst.operands[1].postind || inst.operands[1].shifted
10477 || inst.operands[1].negative,
10478 _("Thumb does not support this addressing mode"));
10479 inst.instruction = THUMB_OP16 (inst.instruction);
10480 goto op16;
10481 }
10482
10483 inst.instruction = THUMB_OP16 (inst.instruction);
10484 if (!inst.operands[1].isreg)
10485 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10486 return;
10487
10488 constraint (!inst.operands[1].preind
10489 || inst.operands[1].shifted
10490 || inst.operands[1].writeback,
10491 _("Thumb does not support this addressing mode"));
10492 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
10493 {
10494 constraint (inst.instruction & 0x0600,
10495 _("byte or halfword not valid for base register"));
10496 constraint (inst.operands[1].reg == REG_PC
10497 && !(inst.instruction & THUMB_LOAD_BIT),
10498 _("r15 based store not allowed"));
10499 constraint (inst.operands[1].immisreg,
10500 _("invalid base register for register offset"));
10501
10502 if (inst.operands[1].reg == REG_PC)
10503 inst.instruction = T_OPCODE_LDR_PC;
10504 else if (inst.instruction & THUMB_LOAD_BIT)
10505 inst.instruction = T_OPCODE_LDR_SP;
10506 else
10507 inst.instruction = T_OPCODE_STR_SP;
10508
10509 inst.instruction |= inst.operands[0].reg << 8;
10510 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10511 return;
10512 }
10513
10514 constraint (inst.operands[1].reg > 7, BAD_HIREG);
10515 if (!inst.operands[1].immisreg)
10516 {
10517 /* Immediate offset. */
10518 inst.instruction |= inst.operands[0].reg;
10519 inst.instruction |= inst.operands[1].reg << 3;
10520 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10521 return;
10522 }
10523
10524 /* Register offset. */
10525 constraint (inst.operands[1].imm > 7, BAD_HIREG);
10526 constraint (inst.operands[1].negative,
10527 _("Thumb does not support this addressing mode"));
10528
10529 op16:
10530 switch (inst.instruction)
10531 {
10532 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
10533 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
10534 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
10535 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
10536 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
10537 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
10538 case 0x5600 /* ldrsb */:
10539 case 0x5e00 /* ldrsh */: break;
10540 default: abort ();
10541 }
10542
10543 inst.instruction |= inst.operands[0].reg;
10544 inst.instruction |= inst.operands[1].reg << 3;
10545 inst.instruction |= inst.operands[1].imm << 6;
10546 }
10547
10548 static void
10549 do_t_ldstd (void)
10550 {
10551 if (!inst.operands[1].present)
10552 {
10553 inst.operands[1].reg = inst.operands[0].reg + 1;
10554 constraint (inst.operands[0].reg == REG_LR,
10555 _("r14 not allowed here"));
10556 }
10557 inst.instruction |= inst.operands[0].reg << 12;
10558 inst.instruction |= inst.operands[1].reg << 8;
10559 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
10560 }
10561
10562 static void
10563 do_t_ldstt (void)
10564 {
10565 inst.instruction |= inst.operands[0].reg << 12;
10566 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
10567 }
10568
10569 static void
10570 do_t_mla (void)
10571 {
10572 unsigned Rd, Rn, Rm, Ra;
10573
10574 Rd = inst.operands[0].reg;
10575 Rn = inst.operands[1].reg;
10576 Rm = inst.operands[2].reg;
10577 Ra = inst.operands[3].reg;
10578
10579 reject_bad_reg (Rd);
10580 reject_bad_reg (Rn);
10581 reject_bad_reg (Rm);
10582 reject_bad_reg (Ra);
10583
10584 inst.instruction |= Rd << 8;
10585 inst.instruction |= Rn << 16;
10586 inst.instruction |= Rm;
10587 inst.instruction |= Ra << 12;
10588 }
10589
10590 static void
10591 do_t_mlal (void)
10592 {
10593 unsigned RdLo, RdHi, Rn, Rm;
10594
10595 RdLo = inst.operands[0].reg;
10596 RdHi = inst.operands[1].reg;
10597 Rn = inst.operands[2].reg;
10598 Rm = inst.operands[3].reg;
10599
10600 reject_bad_reg (RdLo);
10601 reject_bad_reg (RdHi);
10602 reject_bad_reg (Rn);
10603 reject_bad_reg (Rm);
10604
10605 inst.instruction |= RdLo << 12;
10606 inst.instruction |= RdHi << 8;
10607 inst.instruction |= Rn << 16;
10608 inst.instruction |= Rm;
10609 }
10610
10611 static void
10612 do_t_mov_cmp (void)
10613 {
10614 unsigned Rn, Rm;
10615
10616 Rn = inst.operands[0].reg;
10617 Rm = inst.operands[1].reg;
10618
10619 if (Rn == REG_PC)
10620 set_it_insn_type_last ();
10621
10622 if (unified_syntax)
10623 {
10624 int r0off = (inst.instruction == T_MNEM_mov
10625 || inst.instruction == T_MNEM_movs) ? 8 : 16;
10626 unsigned long opcode;
10627 bfd_boolean narrow;
10628 bfd_boolean low_regs;
10629
10630 low_regs = (Rn <= 7 && Rm <= 7);
10631 opcode = inst.instruction;
10632 if (in_it_block ())
10633 narrow = opcode != T_MNEM_movs;
10634 else
10635 narrow = opcode != T_MNEM_movs || low_regs;
10636 if (inst.size_req == 4
10637 || inst.operands[1].shifted)
10638 narrow = FALSE;
10639
10640 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
10641 if (opcode == T_MNEM_movs && inst.operands[1].isreg
10642 && !inst.operands[1].shifted
10643 && Rn == REG_PC
10644 && Rm == REG_LR)
10645 {
10646 inst.instruction = T2_SUBS_PC_LR;
10647 return;
10648 }
10649
10650 if (opcode == T_MNEM_cmp)
10651 {
10652 constraint (Rn == REG_PC, BAD_PC);
10653 if (narrow)
10654 {
10655 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
10656 but valid. */
10657 warn_deprecated_sp (Rm);
10658 /* R15 was documented as a valid choice for Rm in ARMv6,
10659 but as UNPREDICTABLE in ARMv7. ARM's proprietary
10660 tools reject R15, so we do too. */
10661 constraint (Rm == REG_PC, BAD_PC);
10662 }
10663 else
10664 reject_bad_reg (Rm);
10665 }
10666 else if (opcode == T_MNEM_mov
10667 || opcode == T_MNEM_movs)
10668 {
10669 if (inst.operands[1].isreg)
10670 {
10671 if (opcode == T_MNEM_movs)
10672 {
10673 reject_bad_reg (Rn);
10674 reject_bad_reg (Rm);
10675 }
10676 else if (narrow)
10677 {
10678 /* This is mov.n. */
10679 if ((Rn == REG_SP || Rn == REG_PC)
10680 && (Rm == REG_SP || Rm == REG_PC))
10681 {
10682 as_warn (_("Use of r%u as a source register is "
10683 "deprecated when r%u is the destination "
10684 "register."), Rm, Rn);
10685 }
10686 }
10687 else
10688 {
10689 /* This is mov.w. */
10690 constraint (Rn == REG_PC, BAD_PC);
10691 constraint (Rm == REG_PC, BAD_PC);
10692 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
10693 }
10694 }
10695 else
10696 reject_bad_reg (Rn);
10697 }
10698
10699 if (!inst.operands[1].isreg)
10700 {
10701 /* Immediate operand. */
10702 if (!in_it_block () && opcode == T_MNEM_mov)
10703 narrow = 0;
10704 if (low_regs && narrow)
10705 {
10706 inst.instruction = THUMB_OP16 (opcode);
10707 inst.instruction |= Rn << 8;
10708 if (inst.size_req == 2)
10709 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10710 else
10711 inst.relax = opcode;
10712 }
10713 else
10714 {
10715 inst.instruction = THUMB_OP32 (inst.instruction);
10716 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10717 inst.instruction |= Rn << r0off;
10718 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10719 }
10720 }
10721 else if (inst.operands[1].shifted && inst.operands[1].immisreg
10722 && (inst.instruction == T_MNEM_mov
10723 || inst.instruction == T_MNEM_movs))
10724 {
10725 /* Register shifts are encoded as separate shift instructions. */
10726 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
10727
10728 if (in_it_block ())
10729 narrow = !flags;
10730 else
10731 narrow = flags;
10732
10733 if (inst.size_req == 4)
10734 narrow = FALSE;
10735
10736 if (!low_regs || inst.operands[1].imm > 7)
10737 narrow = FALSE;
10738
10739 if (Rn != Rm)
10740 narrow = FALSE;
10741
10742 switch (inst.operands[1].shift_kind)
10743 {
10744 case SHIFT_LSL:
10745 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
10746 break;
10747 case SHIFT_ASR:
10748 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
10749 break;
10750 case SHIFT_LSR:
10751 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
10752 break;
10753 case SHIFT_ROR:
10754 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
10755 break;
10756 default:
10757 abort ();
10758 }
10759
10760 inst.instruction = opcode;
10761 if (narrow)
10762 {
10763 inst.instruction |= Rn;
10764 inst.instruction |= inst.operands[1].imm << 3;
10765 }
10766 else
10767 {
10768 if (flags)
10769 inst.instruction |= CONDS_BIT;
10770
10771 inst.instruction |= Rn << 8;
10772 inst.instruction |= Rm << 16;
10773 inst.instruction |= inst.operands[1].imm;
10774 }
10775 }
10776 else if (!narrow)
10777 {
10778 /* Some mov with immediate shift have narrow variants.
10779 Register shifts are handled above. */
10780 if (low_regs && inst.operands[1].shifted
10781 && (inst.instruction == T_MNEM_mov
10782 || inst.instruction == T_MNEM_movs))
10783 {
10784 if (in_it_block ())
10785 narrow = (inst.instruction == T_MNEM_mov);
10786 else
10787 narrow = (inst.instruction == T_MNEM_movs);
10788 }
10789
10790 if (narrow)
10791 {
10792 switch (inst.operands[1].shift_kind)
10793 {
10794 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
10795 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
10796 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
10797 default: narrow = FALSE; break;
10798 }
10799 }
10800
10801 if (narrow)
10802 {
10803 inst.instruction |= Rn;
10804 inst.instruction |= Rm << 3;
10805 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10806 }
10807 else
10808 {
10809 inst.instruction = THUMB_OP32 (inst.instruction);
10810 inst.instruction |= Rn << r0off;
10811 encode_thumb32_shifted_operand (1);
10812 }
10813 }
10814 else
10815 switch (inst.instruction)
10816 {
10817 case T_MNEM_mov:
10818 inst.instruction = T_OPCODE_MOV_HR;
10819 inst.instruction |= (Rn & 0x8) << 4;
10820 inst.instruction |= (Rn & 0x7);
10821 inst.instruction |= Rm << 3;
10822 break;
10823
10824 case T_MNEM_movs:
10825 /* We know we have low registers at this point.
10826 Generate LSLS Rd, Rs, #0. */
10827 inst.instruction = T_OPCODE_LSL_I;
10828 inst.instruction |= Rn;
10829 inst.instruction |= Rm << 3;
10830 break;
10831
10832 case T_MNEM_cmp:
10833 if (low_regs)
10834 {
10835 inst.instruction = T_OPCODE_CMP_LR;
10836 inst.instruction |= Rn;
10837 inst.instruction |= Rm << 3;
10838 }
10839 else
10840 {
10841 inst.instruction = T_OPCODE_CMP_HR;
10842 inst.instruction |= (Rn & 0x8) << 4;
10843 inst.instruction |= (Rn & 0x7);
10844 inst.instruction |= Rm << 3;
10845 }
10846 break;
10847 }
10848 return;
10849 }
10850
10851 inst.instruction = THUMB_OP16 (inst.instruction);
10852
10853 /* PR 10443: Do not silently ignore shifted operands. */
10854 constraint (inst.operands[1].shifted,
10855 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
10856
10857 if (inst.operands[1].isreg)
10858 {
10859 if (Rn < 8 && Rm < 8)
10860 {
10861 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
10862 since a MOV instruction produces unpredictable results. */
10863 if (inst.instruction == T_OPCODE_MOV_I8)
10864 inst.instruction = T_OPCODE_ADD_I3;
10865 else
10866 inst.instruction = T_OPCODE_CMP_LR;
10867
10868 inst.instruction |= Rn;
10869 inst.instruction |= Rm << 3;
10870 }
10871 else
10872 {
10873 if (inst.instruction == T_OPCODE_MOV_I8)
10874 inst.instruction = T_OPCODE_MOV_HR;
10875 else
10876 inst.instruction = T_OPCODE_CMP_HR;
10877 do_t_cpy ();
10878 }
10879 }
10880 else
10881 {
10882 constraint (Rn > 7,
10883 _("only lo regs allowed with immediate"));
10884 inst.instruction |= Rn << 8;
10885 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10886 }
10887 }
10888
10889 static void
10890 do_t_mov16 (void)
10891 {
10892 unsigned Rd;
10893 bfd_vma imm;
10894 bfd_boolean top;
10895
10896 top = (inst.instruction & 0x00800000) != 0;
10897 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
10898 {
10899 constraint (top, _(":lower16: not allowed this instruction"));
10900 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
10901 }
10902 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
10903 {
10904 constraint (!top, _(":upper16: not allowed this instruction"));
10905 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
10906 }
10907
10908 Rd = inst.operands[0].reg;
10909 reject_bad_reg (Rd);
10910
10911 inst.instruction |= Rd << 8;
10912 if (inst.reloc.type == BFD_RELOC_UNUSED)
10913 {
10914 imm = inst.reloc.exp.X_add_number;
10915 inst.instruction |= (imm & 0xf000) << 4;
10916 inst.instruction |= (imm & 0x0800) << 15;
10917 inst.instruction |= (imm & 0x0700) << 4;
10918 inst.instruction |= (imm & 0x00ff);
10919 }
10920 }
10921
10922 static void
10923 do_t_mvn_tst (void)
10924 {
10925 unsigned Rn, Rm;
10926
10927 Rn = inst.operands[0].reg;
10928 Rm = inst.operands[1].reg;
10929
10930 if (inst.instruction == T_MNEM_cmp
10931 || inst.instruction == T_MNEM_cmn)
10932 constraint (Rn == REG_PC, BAD_PC);
10933 else
10934 reject_bad_reg (Rn);
10935 reject_bad_reg (Rm);
10936
10937 if (unified_syntax)
10938 {
10939 int r0off = (inst.instruction == T_MNEM_mvn
10940 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
10941 bfd_boolean narrow;
10942
10943 if (inst.size_req == 4
10944 || inst.instruction > 0xffff
10945 || inst.operands[1].shifted
10946 || Rn > 7 || Rm > 7)
10947 narrow = FALSE;
10948 else if (inst.instruction == T_MNEM_cmn)
10949 narrow = TRUE;
10950 else if (THUMB_SETS_FLAGS (inst.instruction))
10951 narrow = !in_it_block ();
10952 else
10953 narrow = in_it_block ();
10954
10955 if (!inst.operands[1].isreg)
10956 {
10957 /* For an immediate, we always generate a 32-bit opcode;
10958 section relaxation will shrink it later if possible. */
10959 if (inst.instruction < 0xffff)
10960 inst.instruction = THUMB_OP32 (inst.instruction);
10961 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10962 inst.instruction |= Rn << r0off;
10963 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10964 }
10965 else
10966 {
10967 /* See if we can do this with a 16-bit instruction. */
10968 if (narrow)
10969 {
10970 inst.instruction = THUMB_OP16 (inst.instruction);
10971 inst.instruction |= Rn;
10972 inst.instruction |= Rm << 3;
10973 }
10974 else
10975 {
10976 constraint (inst.operands[1].shifted
10977 && inst.operands[1].immisreg,
10978 _("shift must be constant"));
10979 if (inst.instruction < 0xffff)
10980 inst.instruction = THUMB_OP32 (inst.instruction);
10981 inst.instruction |= Rn << r0off;
10982 encode_thumb32_shifted_operand (1);
10983 }
10984 }
10985 }
10986 else
10987 {
10988 constraint (inst.instruction > 0xffff
10989 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
10990 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
10991 _("unshifted register required"));
10992 constraint (Rn > 7 || Rm > 7,
10993 BAD_HIREG);
10994
10995 inst.instruction = THUMB_OP16 (inst.instruction);
10996 inst.instruction |= Rn;
10997 inst.instruction |= Rm << 3;
10998 }
10999 }
11000
11001 static void
11002 do_t_mrs (void)
11003 {
11004 unsigned Rd;
11005
11006 if (do_vfp_nsyn_mrs () == SUCCESS)
11007 return;
11008
11009 Rd = inst.operands[0].reg;
11010 reject_bad_reg (Rd);
11011 inst.instruction |= Rd << 8;
11012
11013 if (inst.operands[1].isreg)
11014 {
11015 unsigned br = inst.operands[1].reg;
11016 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
11017 as_bad (_("bad register for mrs"));
11018
11019 inst.instruction |= br & (0xf << 16);
11020 inst.instruction |= (br & 0x300) >> 4;
11021 inst.instruction |= (br & SPSR_BIT) >> 2;
11022 }
11023 else
11024 {
11025 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
11026
11027 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
11028 constraint (flags != 0, _("selected processor does not support "
11029 "requested special purpose register"));
11030 else
11031 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
11032 devices). */
11033 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
11034 _("'APSR', 'CPSR' or 'SPSR' expected"));
11035
11036 inst.instruction |= (flags & SPSR_BIT) >> 2;
11037 inst.instruction |= inst.operands[1].imm & 0xff;
11038 inst.instruction |= 0xf0000;
11039 }
11040 }
11041
11042 static void
11043 do_t_msr (void)
11044 {
11045 int flags;
11046 unsigned Rn;
11047
11048 if (do_vfp_nsyn_msr () == SUCCESS)
11049 return;
11050
11051 constraint (!inst.operands[1].isreg,
11052 _("Thumb encoding does not support an immediate here"));
11053
11054 if (inst.operands[0].isreg)
11055 flags = (int)(inst.operands[0].reg);
11056 else
11057 flags = inst.operands[0].imm;
11058
11059 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
11060 {
11061 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
11062
11063 constraint ((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11064 && (bits & ~(PSR_s | PSR_f)) != 0)
11065 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11066 && bits != PSR_f),
11067 _("selected processor does not support requested special "
11068 "purpose register"));
11069 }
11070 else
11071 constraint ((flags & 0xff) != 0, _("selected processor does not support "
11072 "requested special purpose register"));
11073
11074 Rn = inst.operands[1].reg;
11075 reject_bad_reg (Rn);
11076
11077 inst.instruction |= (flags & SPSR_BIT) >> 2;
11078 inst.instruction |= (flags & 0xf0000) >> 8;
11079 inst.instruction |= (flags & 0x300) >> 4;
11080 inst.instruction |= (flags & 0xff);
11081 inst.instruction |= Rn << 16;
11082 }
11083
11084 static void
11085 do_t_mul (void)
11086 {
11087 bfd_boolean narrow;
11088 unsigned Rd, Rn, Rm;
11089
11090 if (!inst.operands[2].present)
11091 inst.operands[2].reg = inst.operands[0].reg;
11092
11093 Rd = inst.operands[0].reg;
11094 Rn = inst.operands[1].reg;
11095 Rm = inst.operands[2].reg;
11096
11097 if (unified_syntax)
11098 {
11099 if (inst.size_req == 4
11100 || (Rd != Rn
11101 && Rd != Rm)
11102 || Rn > 7
11103 || Rm > 7)
11104 narrow = FALSE;
11105 else if (inst.instruction == T_MNEM_muls)
11106 narrow = !in_it_block ();
11107 else
11108 narrow = in_it_block ();
11109 }
11110 else
11111 {
11112 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
11113 constraint (Rn > 7 || Rm > 7,
11114 BAD_HIREG);
11115 narrow = TRUE;
11116 }
11117
11118 if (narrow)
11119 {
11120 /* 16-bit MULS/Conditional MUL. */
11121 inst.instruction = THUMB_OP16 (inst.instruction);
11122 inst.instruction |= Rd;
11123
11124 if (Rd == Rn)
11125 inst.instruction |= Rm << 3;
11126 else if (Rd == Rm)
11127 inst.instruction |= Rn << 3;
11128 else
11129 constraint (1, _("dest must overlap one source register"));
11130 }
11131 else
11132 {
11133 constraint (inst.instruction != T_MNEM_mul,
11134 _("Thumb-2 MUL must not set flags"));
11135 /* 32-bit MUL. */
11136 inst.instruction = THUMB_OP32 (inst.instruction);
11137 inst.instruction |= Rd << 8;
11138 inst.instruction |= Rn << 16;
11139 inst.instruction |= Rm << 0;
11140
11141 reject_bad_reg (Rd);
11142 reject_bad_reg (Rn);
11143 reject_bad_reg (Rm);
11144 }
11145 }
11146
11147 static void
11148 do_t_mull (void)
11149 {
11150 unsigned RdLo, RdHi, Rn, Rm;
11151
11152 RdLo = inst.operands[0].reg;
11153 RdHi = inst.operands[1].reg;
11154 Rn = inst.operands[2].reg;
11155 Rm = inst.operands[3].reg;
11156
11157 reject_bad_reg (RdLo);
11158 reject_bad_reg (RdHi);
11159 reject_bad_reg (Rn);
11160 reject_bad_reg (Rm);
11161
11162 inst.instruction |= RdLo << 12;
11163 inst.instruction |= RdHi << 8;
11164 inst.instruction |= Rn << 16;
11165 inst.instruction |= Rm;
11166
11167 if (RdLo == RdHi)
11168 as_tsktsk (_("rdhi and rdlo must be different"));
11169 }
11170
11171 static void
11172 do_t_nop (void)
11173 {
11174 set_it_insn_type (NEUTRAL_IT_INSN);
11175
11176 if (unified_syntax)
11177 {
11178 if (inst.size_req == 4 || inst.operands[0].imm > 15)
11179 {
11180 inst.instruction = THUMB_OP32 (inst.instruction);
11181 inst.instruction |= inst.operands[0].imm;
11182 }
11183 else
11184 {
11185 /* PR9722: Check for Thumb2 availability before
11186 generating a thumb2 nop instruction. */
11187 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
11188 {
11189 inst.instruction = THUMB_OP16 (inst.instruction);
11190 inst.instruction |= inst.operands[0].imm << 4;
11191 }
11192 else
11193 inst.instruction = 0x46c0;
11194 }
11195 }
11196 else
11197 {
11198 constraint (inst.operands[0].present,
11199 _("Thumb does not support NOP with hints"));
11200 inst.instruction = 0x46c0;
11201 }
11202 }
11203
11204 static void
11205 do_t_neg (void)
11206 {
11207 if (unified_syntax)
11208 {
11209 bfd_boolean narrow;
11210
11211 if (THUMB_SETS_FLAGS (inst.instruction))
11212 narrow = !in_it_block ();
11213 else
11214 narrow = in_it_block ();
11215 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11216 narrow = FALSE;
11217 if (inst.size_req == 4)
11218 narrow = FALSE;
11219
11220 if (!narrow)
11221 {
11222 inst.instruction = THUMB_OP32 (inst.instruction);
11223 inst.instruction |= inst.operands[0].reg << 8;
11224 inst.instruction |= inst.operands[1].reg << 16;
11225 }
11226 else
11227 {
11228 inst.instruction = THUMB_OP16 (inst.instruction);
11229 inst.instruction |= inst.operands[0].reg;
11230 inst.instruction |= inst.operands[1].reg << 3;
11231 }
11232 }
11233 else
11234 {
11235 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
11236 BAD_HIREG);
11237 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11238
11239 inst.instruction = THUMB_OP16 (inst.instruction);
11240 inst.instruction |= inst.operands[0].reg;
11241 inst.instruction |= inst.operands[1].reg << 3;
11242 }
11243 }
11244
11245 static void
11246 do_t_orn (void)
11247 {
11248 unsigned Rd, Rn;
11249
11250 Rd = inst.operands[0].reg;
11251 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
11252
11253 reject_bad_reg (Rd);
11254 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
11255 reject_bad_reg (Rn);
11256
11257 inst.instruction |= Rd << 8;
11258 inst.instruction |= Rn << 16;
11259
11260 if (!inst.operands[2].isreg)
11261 {
11262 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11263 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11264 }
11265 else
11266 {
11267 unsigned Rm;
11268
11269 Rm = inst.operands[2].reg;
11270 reject_bad_reg (Rm);
11271
11272 constraint (inst.operands[2].shifted
11273 && inst.operands[2].immisreg,
11274 _("shift must be constant"));
11275 encode_thumb32_shifted_operand (2);
11276 }
11277 }
11278
11279 static void
11280 do_t_pkhbt (void)
11281 {
11282 unsigned Rd, Rn, Rm;
11283
11284 Rd = inst.operands[0].reg;
11285 Rn = inst.operands[1].reg;
11286 Rm = inst.operands[2].reg;
11287
11288 reject_bad_reg (Rd);
11289 reject_bad_reg (Rn);
11290 reject_bad_reg (Rm);
11291
11292 inst.instruction |= Rd << 8;
11293 inst.instruction |= Rn << 16;
11294 inst.instruction |= Rm;
11295 if (inst.operands[3].present)
11296 {
11297 unsigned int val = inst.reloc.exp.X_add_number;
11298 constraint (inst.reloc.exp.X_op != O_constant,
11299 _("expression too complex"));
11300 inst.instruction |= (val & 0x1c) << 10;
11301 inst.instruction |= (val & 0x03) << 6;
11302 }
11303 }
11304
11305 static void
11306 do_t_pkhtb (void)
11307 {
11308 if (!inst.operands[3].present)
11309 {
11310 unsigned Rtmp;
11311
11312 inst.instruction &= ~0x00000020;
11313
11314 /* PR 10168. Swap the Rm and Rn registers. */
11315 Rtmp = inst.operands[1].reg;
11316 inst.operands[1].reg = inst.operands[2].reg;
11317 inst.operands[2].reg = Rtmp;
11318 }
11319 do_t_pkhbt ();
11320 }
11321
11322 static void
11323 do_t_pld (void)
11324 {
11325 if (inst.operands[0].immisreg)
11326 reject_bad_reg (inst.operands[0].imm);
11327
11328 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
11329 }
11330
11331 static void
11332 do_t_push_pop (void)
11333 {
11334 unsigned mask;
11335
11336 constraint (inst.operands[0].writeback,
11337 _("push/pop do not support {reglist}^"));
11338 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
11339 _("expression too complex"));
11340
11341 mask = inst.operands[0].imm;
11342 if ((mask & ~0xff) == 0)
11343 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
11344 else if ((inst.instruction == T_MNEM_push
11345 && (mask & ~0xff) == 1 << REG_LR)
11346 || (inst.instruction == T_MNEM_pop
11347 && (mask & ~0xff) == 1 << REG_PC))
11348 {
11349 inst.instruction = THUMB_OP16 (inst.instruction);
11350 inst.instruction |= THUMB_PP_PC_LR;
11351 inst.instruction |= mask & 0xff;
11352 }
11353 else if (unified_syntax)
11354 {
11355 inst.instruction = THUMB_OP32 (inst.instruction);
11356 encode_thumb2_ldmstm (13, mask, TRUE);
11357 }
11358 else
11359 {
11360 inst.error = _("invalid register list to push/pop instruction");
11361 return;
11362 }
11363 }
11364
11365 static void
11366 do_t_rbit (void)
11367 {
11368 unsigned Rd, Rm;
11369
11370 Rd = inst.operands[0].reg;
11371 Rm = inst.operands[1].reg;
11372
11373 reject_bad_reg (Rd);
11374 reject_bad_reg (Rm);
11375
11376 inst.instruction |= Rd << 8;
11377 inst.instruction |= Rm << 16;
11378 inst.instruction |= Rm;
11379 }
11380
11381 static void
11382 do_t_rev (void)
11383 {
11384 unsigned Rd, Rm;
11385
11386 Rd = inst.operands[0].reg;
11387 Rm = inst.operands[1].reg;
11388
11389 reject_bad_reg (Rd);
11390 reject_bad_reg (Rm);
11391
11392 if (Rd <= 7 && Rm <= 7
11393 && inst.size_req != 4)
11394 {
11395 inst.instruction = THUMB_OP16 (inst.instruction);
11396 inst.instruction |= Rd;
11397 inst.instruction |= Rm << 3;
11398 }
11399 else if (unified_syntax)
11400 {
11401 inst.instruction = THUMB_OP32 (inst.instruction);
11402 inst.instruction |= Rd << 8;
11403 inst.instruction |= Rm << 16;
11404 inst.instruction |= Rm;
11405 }
11406 else
11407 inst.error = BAD_HIREG;
11408 }
11409
11410 static void
11411 do_t_rrx (void)
11412 {
11413 unsigned Rd, Rm;
11414
11415 Rd = inst.operands[0].reg;
11416 Rm = inst.operands[1].reg;
11417
11418 reject_bad_reg (Rd);
11419 reject_bad_reg (Rm);
11420
11421 inst.instruction |= Rd << 8;
11422 inst.instruction |= Rm;
11423 }
11424
11425 static void
11426 do_t_rsb (void)
11427 {
11428 unsigned Rd, Rs;
11429
11430 Rd = inst.operands[0].reg;
11431 Rs = (inst.operands[1].present
11432 ? inst.operands[1].reg /* Rd, Rs, foo */
11433 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11434
11435 reject_bad_reg (Rd);
11436 reject_bad_reg (Rs);
11437 if (inst.operands[2].isreg)
11438 reject_bad_reg (inst.operands[2].reg);
11439
11440 inst.instruction |= Rd << 8;
11441 inst.instruction |= Rs << 16;
11442 if (!inst.operands[2].isreg)
11443 {
11444 bfd_boolean narrow;
11445
11446 if ((inst.instruction & 0x00100000) != 0)
11447 narrow = !in_it_block ();
11448 else
11449 narrow = in_it_block ();
11450
11451 if (Rd > 7 || Rs > 7)
11452 narrow = FALSE;
11453
11454 if (inst.size_req == 4 || !unified_syntax)
11455 narrow = FALSE;
11456
11457 if (inst.reloc.exp.X_op != O_constant
11458 || inst.reloc.exp.X_add_number != 0)
11459 narrow = FALSE;
11460
11461 /* Turn rsb #0 into 16-bit neg. We should probably do this via
11462 relaxation, but it doesn't seem worth the hassle. */
11463 if (narrow)
11464 {
11465 inst.reloc.type = BFD_RELOC_UNUSED;
11466 inst.instruction = THUMB_OP16 (T_MNEM_negs);
11467 inst.instruction |= Rs << 3;
11468 inst.instruction |= Rd;
11469 }
11470 else
11471 {
11472 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11473 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11474 }
11475 }
11476 else
11477 encode_thumb32_shifted_operand (2);
11478 }
11479
11480 static void
11481 do_t_setend (void)
11482 {
11483 set_it_insn_type (OUTSIDE_IT_INSN);
11484 if (inst.operands[0].imm)
11485 inst.instruction |= 0x8;
11486 }
11487
11488 static void
11489 do_t_shift (void)
11490 {
11491 if (!inst.operands[1].present)
11492 inst.operands[1].reg = inst.operands[0].reg;
11493
11494 if (unified_syntax)
11495 {
11496 bfd_boolean narrow;
11497 int shift_kind;
11498
11499 switch (inst.instruction)
11500 {
11501 case T_MNEM_asr:
11502 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
11503 case T_MNEM_lsl:
11504 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
11505 case T_MNEM_lsr:
11506 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
11507 case T_MNEM_ror:
11508 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
11509 default: abort ();
11510 }
11511
11512 if (THUMB_SETS_FLAGS (inst.instruction))
11513 narrow = !in_it_block ();
11514 else
11515 narrow = in_it_block ();
11516 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11517 narrow = FALSE;
11518 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
11519 narrow = FALSE;
11520 if (inst.operands[2].isreg
11521 && (inst.operands[1].reg != inst.operands[0].reg
11522 || inst.operands[2].reg > 7))
11523 narrow = FALSE;
11524 if (inst.size_req == 4)
11525 narrow = FALSE;
11526
11527 reject_bad_reg (inst.operands[0].reg);
11528 reject_bad_reg (inst.operands[1].reg);
11529
11530 if (!narrow)
11531 {
11532 if (inst.operands[2].isreg)
11533 {
11534 reject_bad_reg (inst.operands[2].reg);
11535 inst.instruction = THUMB_OP32 (inst.instruction);
11536 inst.instruction |= inst.operands[0].reg << 8;
11537 inst.instruction |= inst.operands[1].reg << 16;
11538 inst.instruction |= inst.operands[2].reg;
11539 }
11540 else
11541 {
11542 inst.operands[1].shifted = 1;
11543 inst.operands[1].shift_kind = shift_kind;
11544 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
11545 ? T_MNEM_movs : T_MNEM_mov);
11546 inst.instruction |= inst.operands[0].reg << 8;
11547 encode_thumb32_shifted_operand (1);
11548 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
11549 inst.reloc.type = BFD_RELOC_UNUSED;
11550 }
11551 }
11552 else
11553 {
11554 if (inst.operands[2].isreg)
11555 {
11556 switch (shift_kind)
11557 {
11558 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
11559 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
11560 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
11561 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
11562 default: abort ();
11563 }
11564
11565 inst.instruction |= inst.operands[0].reg;
11566 inst.instruction |= inst.operands[2].reg << 3;
11567 }
11568 else
11569 {
11570 switch (shift_kind)
11571 {
11572 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11573 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11574 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
11575 default: abort ();
11576 }
11577 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11578 inst.instruction |= inst.operands[0].reg;
11579 inst.instruction |= inst.operands[1].reg << 3;
11580 }
11581 }
11582 }
11583 else
11584 {
11585 constraint (inst.operands[0].reg > 7
11586 || inst.operands[1].reg > 7, BAD_HIREG);
11587 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11588
11589 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
11590 {
11591 constraint (inst.operands[2].reg > 7, BAD_HIREG);
11592 constraint (inst.operands[0].reg != inst.operands[1].reg,
11593 _("source1 and dest must be same register"));
11594
11595 switch (inst.instruction)
11596 {
11597 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
11598 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
11599 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
11600 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
11601 default: abort ();
11602 }
11603
11604 inst.instruction |= inst.operands[0].reg;
11605 inst.instruction |= inst.operands[2].reg << 3;
11606 }
11607 else
11608 {
11609 switch (inst.instruction)
11610 {
11611 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
11612 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
11613 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
11614 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
11615 default: abort ();
11616 }
11617 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11618 inst.instruction |= inst.operands[0].reg;
11619 inst.instruction |= inst.operands[1].reg << 3;
11620 }
11621 }
11622 }
11623
11624 static void
11625 do_t_simd (void)
11626 {
11627 unsigned Rd, Rn, Rm;
11628
11629 Rd = inst.operands[0].reg;
11630 Rn = inst.operands[1].reg;
11631 Rm = inst.operands[2].reg;
11632
11633 reject_bad_reg (Rd);
11634 reject_bad_reg (Rn);
11635 reject_bad_reg (Rm);
11636
11637 inst.instruction |= Rd << 8;
11638 inst.instruction |= Rn << 16;
11639 inst.instruction |= Rm;
11640 }
11641
11642 static void
11643 do_t_simd2 (void)
11644 {
11645 unsigned Rd, Rn, Rm;
11646
11647 Rd = inst.operands[0].reg;
11648 Rm = inst.operands[1].reg;
11649 Rn = inst.operands[2].reg;
11650
11651 reject_bad_reg (Rd);
11652 reject_bad_reg (Rn);
11653 reject_bad_reg (Rm);
11654
11655 inst.instruction |= Rd << 8;
11656 inst.instruction |= Rn << 16;
11657 inst.instruction |= Rm;
11658 }
11659
11660 static void
11661 do_t_smc (void)
11662 {
11663 unsigned int value = inst.reloc.exp.X_add_number;
11664 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
11665 _("SMC is not permitted on this architecture"));
11666 constraint (inst.reloc.exp.X_op != O_constant,
11667 _("expression too complex"));
11668 inst.reloc.type = BFD_RELOC_UNUSED;
11669 inst.instruction |= (value & 0xf000) >> 12;
11670 inst.instruction |= (value & 0x0ff0);
11671 inst.instruction |= (value & 0x000f) << 16;
11672 }
11673
11674 static void
11675 do_t_hvc (void)
11676 {
11677 unsigned int value = inst.reloc.exp.X_add_number;
11678
11679 inst.reloc.type = BFD_RELOC_UNUSED;
11680 inst.instruction |= (value & 0x0fff);
11681 inst.instruction |= (value & 0xf000) << 4;
11682 }
11683
11684 static void
11685 do_t_ssat_usat (int bias)
11686 {
11687 unsigned Rd, Rn;
11688
11689 Rd = inst.operands[0].reg;
11690 Rn = inst.operands[2].reg;
11691
11692 reject_bad_reg (Rd);
11693 reject_bad_reg (Rn);
11694
11695 inst.instruction |= Rd << 8;
11696 inst.instruction |= inst.operands[1].imm - bias;
11697 inst.instruction |= Rn << 16;
11698
11699 if (inst.operands[3].present)
11700 {
11701 offsetT shift_amount = inst.reloc.exp.X_add_number;
11702
11703 inst.reloc.type = BFD_RELOC_UNUSED;
11704
11705 constraint (inst.reloc.exp.X_op != O_constant,
11706 _("expression too complex"));
11707
11708 if (shift_amount != 0)
11709 {
11710 constraint (shift_amount > 31,
11711 _("shift expression is too large"));
11712
11713 if (inst.operands[3].shift_kind == SHIFT_ASR)
11714 inst.instruction |= 0x00200000; /* sh bit. */
11715
11716 inst.instruction |= (shift_amount & 0x1c) << 10;
11717 inst.instruction |= (shift_amount & 0x03) << 6;
11718 }
11719 }
11720 }
11721
11722 static void
11723 do_t_ssat (void)
11724 {
11725 do_t_ssat_usat (1);
11726 }
11727
11728 static void
11729 do_t_ssat16 (void)
11730 {
11731 unsigned Rd, Rn;
11732
11733 Rd = inst.operands[0].reg;
11734 Rn = inst.operands[2].reg;
11735
11736 reject_bad_reg (Rd);
11737 reject_bad_reg (Rn);
11738
11739 inst.instruction |= Rd << 8;
11740 inst.instruction |= inst.operands[1].imm - 1;
11741 inst.instruction |= Rn << 16;
11742 }
11743
11744 static void
11745 do_t_strex (void)
11746 {
11747 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
11748 || inst.operands[2].postind || inst.operands[2].writeback
11749 || inst.operands[2].immisreg || inst.operands[2].shifted
11750 || inst.operands[2].negative,
11751 BAD_ADDR_MODE);
11752
11753 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
11754
11755 inst.instruction |= inst.operands[0].reg << 8;
11756 inst.instruction |= inst.operands[1].reg << 12;
11757 inst.instruction |= inst.operands[2].reg << 16;
11758 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
11759 }
11760
11761 static void
11762 do_t_strexd (void)
11763 {
11764 if (!inst.operands[2].present)
11765 inst.operands[2].reg = inst.operands[1].reg + 1;
11766
11767 constraint (inst.operands[0].reg == inst.operands[1].reg
11768 || inst.operands[0].reg == inst.operands[2].reg
11769 || inst.operands[0].reg == inst.operands[3].reg,
11770 BAD_OVERLAP);
11771
11772 inst.instruction |= inst.operands[0].reg;
11773 inst.instruction |= inst.operands[1].reg << 12;
11774 inst.instruction |= inst.operands[2].reg << 8;
11775 inst.instruction |= inst.operands[3].reg << 16;
11776 }
11777
11778 static void
11779 do_t_sxtah (void)
11780 {
11781 unsigned Rd, Rn, Rm;
11782
11783 Rd = inst.operands[0].reg;
11784 Rn = inst.operands[1].reg;
11785 Rm = inst.operands[2].reg;
11786
11787 reject_bad_reg (Rd);
11788 reject_bad_reg (Rn);
11789 reject_bad_reg (Rm);
11790
11791 inst.instruction |= Rd << 8;
11792 inst.instruction |= Rn << 16;
11793 inst.instruction |= Rm;
11794 inst.instruction |= inst.operands[3].imm << 4;
11795 }
11796
11797 static void
11798 do_t_sxth (void)
11799 {
11800 unsigned Rd, Rm;
11801
11802 Rd = inst.operands[0].reg;
11803 Rm = inst.operands[1].reg;
11804
11805 reject_bad_reg (Rd);
11806 reject_bad_reg (Rm);
11807
11808 if (inst.instruction <= 0xffff
11809 && inst.size_req != 4
11810 && Rd <= 7 && Rm <= 7
11811 && (!inst.operands[2].present || inst.operands[2].imm == 0))
11812 {
11813 inst.instruction = THUMB_OP16 (inst.instruction);
11814 inst.instruction |= Rd;
11815 inst.instruction |= Rm << 3;
11816 }
11817 else if (unified_syntax)
11818 {
11819 if (inst.instruction <= 0xffff)
11820 inst.instruction = THUMB_OP32 (inst.instruction);
11821 inst.instruction |= Rd << 8;
11822 inst.instruction |= Rm;
11823 inst.instruction |= inst.operands[2].imm << 4;
11824 }
11825 else
11826 {
11827 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
11828 _("Thumb encoding does not support rotation"));
11829 constraint (1, BAD_HIREG);
11830 }
11831 }
11832
11833 static void
11834 do_t_swi (void)
11835 {
11836 /* We have to do the following check manually as ARM_EXT_OS only applies
11837 to ARM_EXT_V6M. */
11838 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6m))
11839 {
11840 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_os)
11841 /* This only applies to the v6m howver, not later architectures. */
11842 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7))
11843 as_bad (_("SVC is not permitted on this architecture"));
11844 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, arm_ext_os);
11845 }
11846
11847 inst.reloc.type = BFD_RELOC_ARM_SWI;
11848 }
11849
11850 static void
11851 do_t_tb (void)
11852 {
11853 unsigned Rn, Rm;
11854 int half;
11855
11856 half = (inst.instruction & 0x10) != 0;
11857 set_it_insn_type_last ();
11858 constraint (inst.operands[0].immisreg,
11859 _("instruction requires register index"));
11860
11861 Rn = inst.operands[0].reg;
11862 Rm = inst.operands[0].imm;
11863
11864 constraint (Rn == REG_SP, BAD_SP);
11865 reject_bad_reg (Rm);
11866
11867 constraint (!half && inst.operands[0].shifted,
11868 _("instruction does not allow shifted index"));
11869 inst.instruction |= (Rn << 16) | Rm;
11870 }
11871
11872 static void
11873 do_t_usat (void)
11874 {
11875 do_t_ssat_usat (0);
11876 }
11877
11878 static void
11879 do_t_usat16 (void)
11880 {
11881 unsigned Rd, Rn;
11882
11883 Rd = inst.operands[0].reg;
11884 Rn = inst.operands[2].reg;
11885
11886 reject_bad_reg (Rd);
11887 reject_bad_reg (Rn);
11888
11889 inst.instruction |= Rd << 8;
11890 inst.instruction |= inst.operands[1].imm;
11891 inst.instruction |= Rn << 16;
11892 }
11893
11894 /* Neon instruction encoder helpers. */
11895
11896 /* Encodings for the different types for various Neon opcodes. */
11897
11898 /* An "invalid" code for the following tables. */
11899 #define N_INV -1u
11900
11901 struct neon_tab_entry
11902 {
11903 unsigned integer;
11904 unsigned float_or_poly;
11905 unsigned scalar_or_imm;
11906 };
11907
11908 /* Map overloaded Neon opcodes to their respective encodings. */
11909 #define NEON_ENC_TAB \
11910 X(vabd, 0x0000700, 0x1200d00, N_INV), \
11911 X(vmax, 0x0000600, 0x0000f00, N_INV), \
11912 X(vmin, 0x0000610, 0x0200f00, N_INV), \
11913 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
11914 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
11915 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
11916 X(vadd, 0x0000800, 0x0000d00, N_INV), \
11917 X(vsub, 0x1000800, 0x0200d00, N_INV), \
11918 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
11919 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
11920 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
11921 /* Register variants of the following two instructions are encoded as
11922 vcge / vcgt with the operands reversed. */ \
11923 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
11924 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
11925 X(vfma, N_INV, 0x0000c10, N_INV), \
11926 X(vfms, N_INV, 0x0200c10, N_INV), \
11927 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
11928 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
11929 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
11930 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
11931 X(vmlal, 0x0800800, N_INV, 0x0800240), \
11932 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
11933 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
11934 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
11935 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
11936 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
11937 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
11938 X(vshl, 0x0000400, N_INV, 0x0800510), \
11939 X(vqshl, 0x0000410, N_INV, 0x0800710), \
11940 X(vand, 0x0000110, N_INV, 0x0800030), \
11941 X(vbic, 0x0100110, N_INV, 0x0800030), \
11942 X(veor, 0x1000110, N_INV, N_INV), \
11943 X(vorn, 0x0300110, N_INV, 0x0800010), \
11944 X(vorr, 0x0200110, N_INV, 0x0800010), \
11945 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
11946 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
11947 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
11948 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
11949 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
11950 X(vst1, 0x0000000, 0x0800000, N_INV), \
11951 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
11952 X(vst2, 0x0000100, 0x0800100, N_INV), \
11953 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
11954 X(vst3, 0x0000200, 0x0800200, N_INV), \
11955 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
11956 X(vst4, 0x0000300, 0x0800300, N_INV), \
11957 X(vmovn, 0x1b20200, N_INV, N_INV), \
11958 X(vtrn, 0x1b20080, N_INV, N_INV), \
11959 X(vqmovn, 0x1b20200, N_INV, N_INV), \
11960 X(vqmovun, 0x1b20240, N_INV, N_INV), \
11961 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
11962 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
11963 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
11964 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
11965 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
11966 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
11967 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
11968 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
11969 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
11970
11971 enum neon_opc
11972 {
11973 #define X(OPC,I,F,S) N_MNEM_##OPC
11974 NEON_ENC_TAB
11975 #undef X
11976 };
11977
11978 static const struct neon_tab_entry neon_enc_tab[] =
11979 {
11980 #define X(OPC,I,F,S) { (I), (F), (S) }
11981 NEON_ENC_TAB
11982 #undef X
11983 };
11984
11985 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
11986 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11987 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11988 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11989 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11990 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11991 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11992 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11993 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11994 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11995 #define NEON_ENC_SINGLE_(X) \
11996 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
11997 #define NEON_ENC_DOUBLE_(X) \
11998 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
11999
12000 #define NEON_ENCODE(type, inst) \
12001 do \
12002 { \
12003 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
12004 inst.is_neon = 1; \
12005 } \
12006 while (0)
12007
12008 #define check_neon_suffixes \
12009 do \
12010 { \
12011 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
12012 { \
12013 as_bad (_("invalid neon suffix for non neon instruction")); \
12014 return; \
12015 } \
12016 } \
12017 while (0)
12018
12019 /* Define shapes for instruction operands. The following mnemonic characters
12020 are used in this table:
12021
12022 F - VFP S<n> register
12023 D - Neon D<n> register
12024 Q - Neon Q<n> register
12025 I - Immediate
12026 S - Scalar
12027 R - ARM register
12028 L - D<n> register list
12029
12030 This table is used to generate various data:
12031 - enumerations of the form NS_DDR to be used as arguments to
12032 neon_select_shape.
12033 - a table classifying shapes into single, double, quad, mixed.
12034 - a table used to drive neon_select_shape. */
12035
12036 #define NEON_SHAPE_DEF \
12037 X(3, (D, D, D), DOUBLE), \
12038 X(3, (Q, Q, Q), QUAD), \
12039 X(3, (D, D, I), DOUBLE), \
12040 X(3, (Q, Q, I), QUAD), \
12041 X(3, (D, D, S), DOUBLE), \
12042 X(3, (Q, Q, S), QUAD), \
12043 X(2, (D, D), DOUBLE), \
12044 X(2, (Q, Q), QUAD), \
12045 X(2, (D, S), DOUBLE), \
12046 X(2, (Q, S), QUAD), \
12047 X(2, (D, R), DOUBLE), \
12048 X(2, (Q, R), QUAD), \
12049 X(2, (D, I), DOUBLE), \
12050 X(2, (Q, I), QUAD), \
12051 X(3, (D, L, D), DOUBLE), \
12052 X(2, (D, Q), MIXED), \
12053 X(2, (Q, D), MIXED), \
12054 X(3, (D, Q, I), MIXED), \
12055 X(3, (Q, D, I), MIXED), \
12056 X(3, (Q, D, D), MIXED), \
12057 X(3, (D, Q, Q), MIXED), \
12058 X(3, (Q, Q, D), MIXED), \
12059 X(3, (Q, D, S), MIXED), \
12060 X(3, (D, Q, S), MIXED), \
12061 X(4, (D, D, D, I), DOUBLE), \
12062 X(4, (Q, Q, Q, I), QUAD), \
12063 X(2, (F, F), SINGLE), \
12064 X(3, (F, F, F), SINGLE), \
12065 X(2, (F, I), SINGLE), \
12066 X(2, (F, D), MIXED), \
12067 X(2, (D, F), MIXED), \
12068 X(3, (F, F, I), MIXED), \
12069 X(4, (R, R, F, F), SINGLE), \
12070 X(4, (F, F, R, R), SINGLE), \
12071 X(3, (D, R, R), DOUBLE), \
12072 X(3, (R, R, D), DOUBLE), \
12073 X(2, (S, R), SINGLE), \
12074 X(2, (R, S), SINGLE), \
12075 X(2, (F, R), SINGLE), \
12076 X(2, (R, F), SINGLE)
12077
12078 #define S2(A,B) NS_##A##B
12079 #define S3(A,B,C) NS_##A##B##C
12080 #define S4(A,B,C,D) NS_##A##B##C##D
12081
12082 #define X(N, L, C) S##N L
12083
12084 enum neon_shape
12085 {
12086 NEON_SHAPE_DEF,
12087 NS_NULL
12088 };
12089
12090 #undef X
12091 #undef S2
12092 #undef S3
12093 #undef S4
12094
12095 enum neon_shape_class
12096 {
12097 SC_SINGLE,
12098 SC_DOUBLE,
12099 SC_QUAD,
12100 SC_MIXED
12101 };
12102
12103 #define X(N, L, C) SC_##C
12104
12105 static enum neon_shape_class neon_shape_class[] =
12106 {
12107 NEON_SHAPE_DEF
12108 };
12109
12110 #undef X
12111
12112 enum neon_shape_el
12113 {
12114 SE_F,
12115 SE_D,
12116 SE_Q,
12117 SE_I,
12118 SE_S,
12119 SE_R,
12120 SE_L
12121 };
12122
12123 /* Register widths of above. */
12124 static unsigned neon_shape_el_size[] =
12125 {
12126 32,
12127 64,
12128 128,
12129 0,
12130 32,
12131 32,
12132 0
12133 };
12134
12135 struct neon_shape_info
12136 {
12137 unsigned els;
12138 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
12139 };
12140
12141 #define S2(A,B) { SE_##A, SE_##B }
12142 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
12143 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
12144
12145 #define X(N, L, C) { N, S##N L }
12146
12147 static struct neon_shape_info neon_shape_tab[] =
12148 {
12149 NEON_SHAPE_DEF
12150 };
12151
12152 #undef X
12153 #undef S2
12154 #undef S3
12155 #undef S4
12156
12157 /* Bit masks used in type checking given instructions.
12158 'N_EQK' means the type must be the same as (or based on in some way) the key
12159 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
12160 set, various other bits can be set as well in order to modify the meaning of
12161 the type constraint. */
12162
12163 enum neon_type_mask
12164 {
12165 N_S8 = 0x0000001,
12166 N_S16 = 0x0000002,
12167 N_S32 = 0x0000004,
12168 N_S64 = 0x0000008,
12169 N_U8 = 0x0000010,
12170 N_U16 = 0x0000020,
12171 N_U32 = 0x0000040,
12172 N_U64 = 0x0000080,
12173 N_I8 = 0x0000100,
12174 N_I16 = 0x0000200,
12175 N_I32 = 0x0000400,
12176 N_I64 = 0x0000800,
12177 N_8 = 0x0001000,
12178 N_16 = 0x0002000,
12179 N_32 = 0x0004000,
12180 N_64 = 0x0008000,
12181 N_P8 = 0x0010000,
12182 N_P16 = 0x0020000,
12183 N_F16 = 0x0040000,
12184 N_F32 = 0x0080000,
12185 N_F64 = 0x0100000,
12186 N_KEY = 0x1000000, /* Key element (main type specifier). */
12187 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
12188 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
12189 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
12190 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
12191 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
12192 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
12193 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
12194 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
12195 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
12196 N_UTYP = 0,
12197 N_MAX_NONSPECIAL = N_F64
12198 };
12199
12200 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
12201
12202 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
12203 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
12204 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
12205 #define N_SUF_32 (N_SU_32 | N_F32)
12206 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
12207 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
12208
12209 /* Pass this as the first type argument to neon_check_type to ignore types
12210 altogether. */
12211 #define N_IGNORE_TYPE (N_KEY | N_EQK)
12212
12213 /* Select a "shape" for the current instruction (describing register types or
12214 sizes) from a list of alternatives. Return NS_NULL if the current instruction
12215 doesn't fit. For non-polymorphic shapes, checking is usually done as a
12216 function of operand parsing, so this function doesn't need to be called.
12217 Shapes should be listed in order of decreasing length. */
12218
12219 static enum neon_shape
12220 neon_select_shape (enum neon_shape shape, ...)
12221 {
12222 va_list ap;
12223 enum neon_shape first_shape = shape;
12224
12225 /* Fix missing optional operands. FIXME: we don't know at this point how
12226 many arguments we should have, so this makes the assumption that we have
12227 > 1. This is true of all current Neon opcodes, I think, but may not be
12228 true in the future. */
12229 if (!inst.operands[1].present)
12230 inst.operands[1] = inst.operands[0];
12231
12232 va_start (ap, shape);
12233
12234 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
12235 {
12236 unsigned j;
12237 int matches = 1;
12238
12239 for (j = 0; j < neon_shape_tab[shape].els; j++)
12240 {
12241 if (!inst.operands[j].present)
12242 {
12243 matches = 0;
12244 break;
12245 }
12246
12247 switch (neon_shape_tab[shape].el[j])
12248 {
12249 case SE_F:
12250 if (!(inst.operands[j].isreg
12251 && inst.operands[j].isvec
12252 && inst.operands[j].issingle
12253 && !inst.operands[j].isquad))
12254 matches = 0;
12255 break;
12256
12257 case SE_D:
12258 if (!(inst.operands[j].isreg
12259 && inst.operands[j].isvec
12260 && !inst.operands[j].isquad
12261 && !inst.operands[j].issingle))
12262 matches = 0;
12263 break;
12264
12265 case SE_R:
12266 if (!(inst.operands[j].isreg
12267 && !inst.operands[j].isvec))
12268 matches = 0;
12269 break;
12270
12271 case SE_Q:
12272 if (!(inst.operands[j].isreg
12273 && inst.operands[j].isvec
12274 && inst.operands[j].isquad
12275 && !inst.operands[j].issingle))
12276 matches = 0;
12277 break;
12278
12279 case SE_I:
12280 if (!(!inst.operands[j].isreg
12281 && !inst.operands[j].isscalar))
12282 matches = 0;
12283 break;
12284
12285 case SE_S:
12286 if (!(!inst.operands[j].isreg
12287 && inst.operands[j].isscalar))
12288 matches = 0;
12289 break;
12290
12291 case SE_L:
12292 break;
12293 }
12294 if (!matches)
12295 break;
12296 }
12297 if (matches)
12298 break;
12299 }
12300
12301 va_end (ap);
12302
12303 if (shape == NS_NULL && first_shape != NS_NULL)
12304 first_error (_("invalid instruction shape"));
12305
12306 return shape;
12307 }
12308
12309 /* True if SHAPE is predominantly a quadword operation (most of the time, this
12310 means the Q bit should be set). */
12311
12312 static int
12313 neon_quad (enum neon_shape shape)
12314 {
12315 return neon_shape_class[shape] == SC_QUAD;
12316 }
12317
12318 static void
12319 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
12320 unsigned *g_size)
12321 {
12322 /* Allow modification to be made to types which are constrained to be
12323 based on the key element, based on bits set alongside N_EQK. */
12324 if ((typebits & N_EQK) != 0)
12325 {
12326 if ((typebits & N_HLF) != 0)
12327 *g_size /= 2;
12328 else if ((typebits & N_DBL) != 0)
12329 *g_size *= 2;
12330 if ((typebits & N_SGN) != 0)
12331 *g_type = NT_signed;
12332 else if ((typebits & N_UNS) != 0)
12333 *g_type = NT_unsigned;
12334 else if ((typebits & N_INT) != 0)
12335 *g_type = NT_integer;
12336 else if ((typebits & N_FLT) != 0)
12337 *g_type = NT_float;
12338 else if ((typebits & N_SIZ) != 0)
12339 *g_type = NT_untyped;
12340 }
12341 }
12342
12343 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
12344 operand type, i.e. the single type specified in a Neon instruction when it
12345 is the only one given. */
12346
12347 static struct neon_type_el
12348 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
12349 {
12350 struct neon_type_el dest = *key;
12351
12352 gas_assert ((thisarg & N_EQK) != 0);
12353
12354 neon_modify_type_size (thisarg, &dest.type, &dest.size);
12355
12356 return dest;
12357 }
12358
12359 /* Convert Neon type and size into compact bitmask representation. */
12360
12361 static enum neon_type_mask
12362 type_chk_of_el_type (enum neon_el_type type, unsigned size)
12363 {
12364 switch (type)
12365 {
12366 case NT_untyped:
12367 switch (size)
12368 {
12369 case 8: return N_8;
12370 case 16: return N_16;
12371 case 32: return N_32;
12372 case 64: return N_64;
12373 default: ;
12374 }
12375 break;
12376
12377 case NT_integer:
12378 switch (size)
12379 {
12380 case 8: return N_I8;
12381 case 16: return N_I16;
12382 case 32: return N_I32;
12383 case 64: return N_I64;
12384 default: ;
12385 }
12386 break;
12387
12388 case NT_float:
12389 switch (size)
12390 {
12391 case 16: return N_F16;
12392 case 32: return N_F32;
12393 case 64: return N_F64;
12394 default: ;
12395 }
12396 break;
12397
12398 case NT_poly:
12399 switch (size)
12400 {
12401 case 8: return N_P8;
12402 case 16: return N_P16;
12403 default: ;
12404 }
12405 break;
12406
12407 case NT_signed:
12408 switch (size)
12409 {
12410 case 8: return N_S8;
12411 case 16: return N_S16;
12412 case 32: return N_S32;
12413 case 64: return N_S64;
12414 default: ;
12415 }
12416 break;
12417
12418 case NT_unsigned:
12419 switch (size)
12420 {
12421 case 8: return N_U8;
12422 case 16: return N_U16;
12423 case 32: return N_U32;
12424 case 64: return N_U64;
12425 default: ;
12426 }
12427 break;
12428
12429 default: ;
12430 }
12431
12432 return N_UTYP;
12433 }
12434
12435 /* Convert compact Neon bitmask type representation to a type and size. Only
12436 handles the case where a single bit is set in the mask. */
12437
12438 static int
12439 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
12440 enum neon_type_mask mask)
12441 {
12442 if ((mask & N_EQK) != 0)
12443 return FAIL;
12444
12445 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
12446 *size = 8;
12447 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
12448 *size = 16;
12449 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
12450 *size = 32;
12451 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
12452 *size = 64;
12453 else
12454 return FAIL;
12455
12456 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
12457 *type = NT_signed;
12458 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
12459 *type = NT_unsigned;
12460 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
12461 *type = NT_integer;
12462 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
12463 *type = NT_untyped;
12464 else if ((mask & (N_P8 | N_P16)) != 0)
12465 *type = NT_poly;
12466 else if ((mask & (N_F32 | N_F64)) != 0)
12467 *type = NT_float;
12468 else
12469 return FAIL;
12470
12471 return SUCCESS;
12472 }
12473
12474 /* Modify a bitmask of allowed types. This is only needed for type
12475 relaxation. */
12476
12477 static unsigned
12478 modify_types_allowed (unsigned allowed, unsigned mods)
12479 {
12480 unsigned size;
12481 enum neon_el_type type;
12482 unsigned destmask;
12483 int i;
12484
12485 destmask = 0;
12486
12487 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
12488 {
12489 if (el_type_of_type_chk (&type, &size,
12490 (enum neon_type_mask) (allowed & i)) == SUCCESS)
12491 {
12492 neon_modify_type_size (mods, &type, &size);
12493 destmask |= type_chk_of_el_type (type, size);
12494 }
12495 }
12496
12497 return destmask;
12498 }
12499
12500 /* Check type and return type classification.
12501 The manual states (paraphrase): If one datatype is given, it indicates the
12502 type given in:
12503 - the second operand, if there is one
12504 - the operand, if there is no second operand
12505 - the result, if there are no operands.
12506 This isn't quite good enough though, so we use a concept of a "key" datatype
12507 which is set on a per-instruction basis, which is the one which matters when
12508 only one data type is written.
12509 Note: this function has side-effects (e.g. filling in missing operands). All
12510 Neon instructions should call it before performing bit encoding. */
12511
12512 static struct neon_type_el
12513 neon_check_type (unsigned els, enum neon_shape ns, ...)
12514 {
12515 va_list ap;
12516 unsigned i, pass, key_el = 0;
12517 unsigned types[NEON_MAX_TYPE_ELS];
12518 enum neon_el_type k_type = NT_invtype;
12519 unsigned k_size = -1u;
12520 struct neon_type_el badtype = {NT_invtype, -1};
12521 unsigned key_allowed = 0;
12522
12523 /* Optional registers in Neon instructions are always (not) in operand 1.
12524 Fill in the missing operand here, if it was omitted. */
12525 if (els > 1 && !inst.operands[1].present)
12526 inst.operands[1] = inst.operands[0];
12527
12528 /* Suck up all the varargs. */
12529 va_start (ap, ns);
12530 for (i = 0; i < els; i++)
12531 {
12532 unsigned thisarg = va_arg (ap, unsigned);
12533 if (thisarg == N_IGNORE_TYPE)
12534 {
12535 va_end (ap);
12536 return badtype;
12537 }
12538 types[i] = thisarg;
12539 if ((thisarg & N_KEY) != 0)
12540 key_el = i;
12541 }
12542 va_end (ap);
12543
12544 if (inst.vectype.elems > 0)
12545 for (i = 0; i < els; i++)
12546 if (inst.operands[i].vectype.type != NT_invtype)
12547 {
12548 first_error (_("types specified in both the mnemonic and operands"));
12549 return badtype;
12550 }
12551
12552 /* Duplicate inst.vectype elements here as necessary.
12553 FIXME: No idea if this is exactly the same as the ARM assembler,
12554 particularly when an insn takes one register and one non-register
12555 operand. */
12556 if (inst.vectype.elems == 1 && els > 1)
12557 {
12558 unsigned j;
12559 inst.vectype.elems = els;
12560 inst.vectype.el[key_el] = inst.vectype.el[0];
12561 for (j = 0; j < els; j++)
12562 if (j != key_el)
12563 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12564 types[j]);
12565 }
12566 else if (inst.vectype.elems == 0 && els > 0)
12567 {
12568 unsigned j;
12569 /* No types were given after the mnemonic, so look for types specified
12570 after each operand. We allow some flexibility here; as long as the
12571 "key" operand has a type, we can infer the others. */
12572 for (j = 0; j < els; j++)
12573 if (inst.operands[j].vectype.type != NT_invtype)
12574 inst.vectype.el[j] = inst.operands[j].vectype;
12575
12576 if (inst.operands[key_el].vectype.type != NT_invtype)
12577 {
12578 for (j = 0; j < els; j++)
12579 if (inst.operands[j].vectype.type == NT_invtype)
12580 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12581 types[j]);
12582 }
12583 else
12584 {
12585 first_error (_("operand types can't be inferred"));
12586 return badtype;
12587 }
12588 }
12589 else if (inst.vectype.elems != els)
12590 {
12591 first_error (_("type specifier has the wrong number of parts"));
12592 return badtype;
12593 }
12594
12595 for (pass = 0; pass < 2; pass++)
12596 {
12597 for (i = 0; i < els; i++)
12598 {
12599 unsigned thisarg = types[i];
12600 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
12601 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
12602 enum neon_el_type g_type = inst.vectype.el[i].type;
12603 unsigned g_size = inst.vectype.el[i].size;
12604
12605 /* Decay more-specific signed & unsigned types to sign-insensitive
12606 integer types if sign-specific variants are unavailable. */
12607 if ((g_type == NT_signed || g_type == NT_unsigned)
12608 && (types_allowed & N_SU_ALL) == 0)
12609 g_type = NT_integer;
12610
12611 /* If only untyped args are allowed, decay any more specific types to
12612 them. Some instructions only care about signs for some element
12613 sizes, so handle that properly. */
12614 if ((g_size == 8 && (types_allowed & N_8) != 0)
12615 || (g_size == 16 && (types_allowed & N_16) != 0)
12616 || (g_size == 32 && (types_allowed & N_32) != 0)
12617 || (g_size == 64 && (types_allowed & N_64) != 0))
12618 g_type = NT_untyped;
12619
12620 if (pass == 0)
12621 {
12622 if ((thisarg & N_KEY) != 0)
12623 {
12624 k_type = g_type;
12625 k_size = g_size;
12626 key_allowed = thisarg & ~N_KEY;
12627 }
12628 }
12629 else
12630 {
12631 if ((thisarg & N_VFP) != 0)
12632 {
12633 enum neon_shape_el regshape;
12634 unsigned regwidth, match;
12635
12636 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
12637 if (ns == NS_NULL)
12638 {
12639 first_error (_("invalid instruction shape"));
12640 return badtype;
12641 }
12642 regshape = neon_shape_tab[ns].el[i];
12643 regwidth = neon_shape_el_size[regshape];
12644
12645 /* In VFP mode, operands must match register widths. If we
12646 have a key operand, use its width, else use the width of
12647 the current operand. */
12648 if (k_size != -1u)
12649 match = k_size;
12650 else
12651 match = g_size;
12652
12653 if (regwidth != match)
12654 {
12655 first_error (_("operand size must match register width"));
12656 return badtype;
12657 }
12658 }
12659
12660 if ((thisarg & N_EQK) == 0)
12661 {
12662 unsigned given_type = type_chk_of_el_type (g_type, g_size);
12663
12664 if ((given_type & types_allowed) == 0)
12665 {
12666 first_error (_("bad type in Neon instruction"));
12667 return badtype;
12668 }
12669 }
12670 else
12671 {
12672 enum neon_el_type mod_k_type = k_type;
12673 unsigned mod_k_size = k_size;
12674 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
12675 if (g_type != mod_k_type || g_size != mod_k_size)
12676 {
12677 first_error (_("inconsistent types in Neon instruction"));
12678 return badtype;
12679 }
12680 }
12681 }
12682 }
12683 }
12684
12685 return inst.vectype.el[key_el];
12686 }
12687
12688 /* Neon-style VFP instruction forwarding. */
12689
12690 /* Thumb VFP instructions have 0xE in the condition field. */
12691
12692 static void
12693 do_vfp_cond_or_thumb (void)
12694 {
12695 inst.is_neon = 1;
12696
12697 if (thumb_mode)
12698 inst.instruction |= 0xe0000000;
12699 else
12700 inst.instruction |= inst.cond << 28;
12701 }
12702
12703 /* Look up and encode a simple mnemonic, for use as a helper function for the
12704 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
12705 etc. It is assumed that operand parsing has already been done, and that the
12706 operands are in the form expected by the given opcode (this isn't necessarily
12707 the same as the form in which they were parsed, hence some massaging must
12708 take place before this function is called).
12709 Checks current arch version against that in the looked-up opcode. */
12710
12711 static void
12712 do_vfp_nsyn_opcode (const char *opname)
12713 {
12714 const struct asm_opcode *opcode;
12715
12716 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
12717
12718 if (!opcode)
12719 abort ();
12720
12721 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
12722 thumb_mode ? *opcode->tvariant : *opcode->avariant),
12723 _(BAD_FPU));
12724
12725 inst.is_neon = 1;
12726
12727 if (thumb_mode)
12728 {
12729 inst.instruction = opcode->tvalue;
12730 opcode->tencode ();
12731 }
12732 else
12733 {
12734 inst.instruction = (inst.cond << 28) | opcode->avalue;
12735 opcode->aencode ();
12736 }
12737 }
12738
12739 static void
12740 do_vfp_nsyn_add_sub (enum neon_shape rs)
12741 {
12742 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
12743
12744 if (rs == NS_FFF)
12745 {
12746 if (is_add)
12747 do_vfp_nsyn_opcode ("fadds");
12748 else
12749 do_vfp_nsyn_opcode ("fsubs");
12750 }
12751 else
12752 {
12753 if (is_add)
12754 do_vfp_nsyn_opcode ("faddd");
12755 else
12756 do_vfp_nsyn_opcode ("fsubd");
12757 }
12758 }
12759
12760 /* Check operand types to see if this is a VFP instruction, and if so call
12761 PFN (). */
12762
12763 static int
12764 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
12765 {
12766 enum neon_shape rs;
12767 struct neon_type_el et;
12768
12769 switch (args)
12770 {
12771 case 2:
12772 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12773 et = neon_check_type (2, rs,
12774 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12775 break;
12776
12777 case 3:
12778 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12779 et = neon_check_type (3, rs,
12780 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12781 break;
12782
12783 default:
12784 abort ();
12785 }
12786
12787 if (et.type != NT_invtype)
12788 {
12789 pfn (rs);
12790 return SUCCESS;
12791 }
12792
12793 inst.error = NULL;
12794 return FAIL;
12795 }
12796
12797 static void
12798 do_vfp_nsyn_mla_mls (enum neon_shape rs)
12799 {
12800 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
12801
12802 if (rs == NS_FFF)
12803 {
12804 if (is_mla)
12805 do_vfp_nsyn_opcode ("fmacs");
12806 else
12807 do_vfp_nsyn_opcode ("fnmacs");
12808 }
12809 else
12810 {
12811 if (is_mla)
12812 do_vfp_nsyn_opcode ("fmacd");
12813 else
12814 do_vfp_nsyn_opcode ("fnmacd");
12815 }
12816 }
12817
12818 static void
12819 do_vfp_nsyn_fma_fms (enum neon_shape rs)
12820 {
12821 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
12822
12823 if (rs == NS_FFF)
12824 {
12825 if (is_fma)
12826 do_vfp_nsyn_opcode ("ffmas");
12827 else
12828 do_vfp_nsyn_opcode ("ffnmas");
12829 }
12830 else
12831 {
12832 if (is_fma)
12833 do_vfp_nsyn_opcode ("ffmad");
12834 else
12835 do_vfp_nsyn_opcode ("ffnmad");
12836 }
12837 }
12838
12839 static void
12840 do_vfp_nsyn_mul (enum neon_shape rs)
12841 {
12842 if (rs == NS_FFF)
12843 do_vfp_nsyn_opcode ("fmuls");
12844 else
12845 do_vfp_nsyn_opcode ("fmuld");
12846 }
12847
12848 static void
12849 do_vfp_nsyn_abs_neg (enum neon_shape rs)
12850 {
12851 int is_neg = (inst.instruction & 0x80) != 0;
12852 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
12853
12854 if (rs == NS_FF)
12855 {
12856 if (is_neg)
12857 do_vfp_nsyn_opcode ("fnegs");
12858 else
12859 do_vfp_nsyn_opcode ("fabss");
12860 }
12861 else
12862 {
12863 if (is_neg)
12864 do_vfp_nsyn_opcode ("fnegd");
12865 else
12866 do_vfp_nsyn_opcode ("fabsd");
12867 }
12868 }
12869
12870 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
12871 insns belong to Neon, and are handled elsewhere. */
12872
12873 static void
12874 do_vfp_nsyn_ldm_stm (int is_dbmode)
12875 {
12876 int is_ldm = (inst.instruction & (1 << 20)) != 0;
12877 if (is_ldm)
12878 {
12879 if (is_dbmode)
12880 do_vfp_nsyn_opcode ("fldmdbs");
12881 else
12882 do_vfp_nsyn_opcode ("fldmias");
12883 }
12884 else
12885 {
12886 if (is_dbmode)
12887 do_vfp_nsyn_opcode ("fstmdbs");
12888 else
12889 do_vfp_nsyn_opcode ("fstmias");
12890 }
12891 }
12892
12893 static void
12894 do_vfp_nsyn_sqrt (void)
12895 {
12896 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12897 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12898
12899 if (rs == NS_FF)
12900 do_vfp_nsyn_opcode ("fsqrts");
12901 else
12902 do_vfp_nsyn_opcode ("fsqrtd");
12903 }
12904
12905 static void
12906 do_vfp_nsyn_div (void)
12907 {
12908 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12909 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
12910 N_F32 | N_F64 | N_KEY | N_VFP);
12911
12912 if (rs == NS_FFF)
12913 do_vfp_nsyn_opcode ("fdivs");
12914 else
12915 do_vfp_nsyn_opcode ("fdivd");
12916 }
12917
12918 static void
12919 do_vfp_nsyn_nmul (void)
12920 {
12921 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12922 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
12923 N_F32 | N_F64 | N_KEY | N_VFP);
12924
12925 if (rs == NS_FFF)
12926 {
12927 NEON_ENCODE (SINGLE, inst);
12928 do_vfp_sp_dyadic ();
12929 }
12930 else
12931 {
12932 NEON_ENCODE (DOUBLE, inst);
12933 do_vfp_dp_rd_rn_rm ();
12934 }
12935 do_vfp_cond_or_thumb ();
12936 }
12937
12938 static void
12939 do_vfp_nsyn_cmp (void)
12940 {
12941 if (inst.operands[1].isreg)
12942 {
12943 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12944 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12945
12946 if (rs == NS_FF)
12947 {
12948 NEON_ENCODE (SINGLE, inst);
12949 do_vfp_sp_monadic ();
12950 }
12951 else
12952 {
12953 NEON_ENCODE (DOUBLE, inst);
12954 do_vfp_dp_rd_rm ();
12955 }
12956 }
12957 else
12958 {
12959 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
12960 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
12961
12962 switch (inst.instruction & 0x0fffffff)
12963 {
12964 case N_MNEM_vcmp:
12965 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
12966 break;
12967 case N_MNEM_vcmpe:
12968 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
12969 break;
12970 default:
12971 abort ();
12972 }
12973
12974 if (rs == NS_FI)
12975 {
12976 NEON_ENCODE (SINGLE, inst);
12977 do_vfp_sp_compare_z ();
12978 }
12979 else
12980 {
12981 NEON_ENCODE (DOUBLE, inst);
12982 do_vfp_dp_rd ();
12983 }
12984 }
12985 do_vfp_cond_or_thumb ();
12986 }
12987
12988 static void
12989 nsyn_insert_sp (void)
12990 {
12991 inst.operands[1] = inst.operands[0];
12992 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
12993 inst.operands[0].reg = REG_SP;
12994 inst.operands[0].isreg = 1;
12995 inst.operands[0].writeback = 1;
12996 inst.operands[0].present = 1;
12997 }
12998
12999 static void
13000 do_vfp_nsyn_push (void)
13001 {
13002 nsyn_insert_sp ();
13003 if (inst.operands[1].issingle)
13004 do_vfp_nsyn_opcode ("fstmdbs");
13005 else
13006 do_vfp_nsyn_opcode ("fstmdbd");
13007 }
13008
13009 static void
13010 do_vfp_nsyn_pop (void)
13011 {
13012 nsyn_insert_sp ();
13013 if (inst.operands[1].issingle)
13014 do_vfp_nsyn_opcode ("fldmias");
13015 else
13016 do_vfp_nsyn_opcode ("fldmiad");
13017 }
13018
13019 /* Fix up Neon data-processing instructions, ORing in the correct bits for
13020 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
13021
13022 static void
13023 neon_dp_fixup (struct arm_it* insn)
13024 {
13025 unsigned int i = insn->instruction;
13026 insn->is_neon = 1;
13027
13028 if (thumb_mode)
13029 {
13030 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
13031 if (i & (1 << 24))
13032 i |= 1 << 28;
13033
13034 i &= ~(1 << 24);
13035
13036 i |= 0xef000000;
13037 }
13038 else
13039 i |= 0xf2000000;
13040
13041 insn->instruction = i;
13042 }
13043
13044 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
13045 (0, 1, 2, 3). */
13046
13047 static unsigned
13048 neon_logbits (unsigned x)
13049 {
13050 return ffs (x) - 4;
13051 }
13052
13053 #define LOW4(R) ((R) & 0xf)
13054 #define HI1(R) (((R) >> 4) & 1)
13055
13056 /* Encode insns with bit pattern:
13057
13058 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
13059 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
13060
13061 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
13062 different meaning for some instruction. */
13063
13064 static void
13065 neon_three_same (int isquad, int ubit, int size)
13066 {
13067 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13068 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13069 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13070 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13071 inst.instruction |= LOW4 (inst.operands[2].reg);
13072 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13073 inst.instruction |= (isquad != 0) << 6;
13074 inst.instruction |= (ubit != 0) << 24;
13075 if (size != -1)
13076 inst.instruction |= neon_logbits (size) << 20;
13077
13078 neon_dp_fixup (&inst);
13079 }
13080
13081 /* Encode instructions of the form:
13082
13083 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
13084 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
13085
13086 Don't write size if SIZE == -1. */
13087
13088 static void
13089 neon_two_same (int qbit, int ubit, int size)
13090 {
13091 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13092 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13093 inst.instruction |= LOW4 (inst.operands[1].reg);
13094 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13095 inst.instruction |= (qbit != 0) << 6;
13096 inst.instruction |= (ubit != 0) << 24;
13097
13098 if (size != -1)
13099 inst.instruction |= neon_logbits (size) << 18;
13100
13101 neon_dp_fixup (&inst);
13102 }
13103
13104 /* Neon instruction encoders, in approximate order of appearance. */
13105
13106 static void
13107 do_neon_dyadic_i_su (void)
13108 {
13109 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13110 struct neon_type_el et = neon_check_type (3, rs,
13111 N_EQK, N_EQK, N_SU_32 | N_KEY);
13112 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13113 }
13114
13115 static void
13116 do_neon_dyadic_i64_su (void)
13117 {
13118 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13119 struct neon_type_el et = neon_check_type (3, rs,
13120 N_EQK, N_EQK, N_SU_ALL | N_KEY);
13121 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13122 }
13123
13124 static void
13125 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
13126 unsigned immbits)
13127 {
13128 unsigned size = et.size >> 3;
13129 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13130 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13131 inst.instruction |= LOW4 (inst.operands[1].reg);
13132 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13133 inst.instruction |= (isquad != 0) << 6;
13134 inst.instruction |= immbits << 16;
13135 inst.instruction |= (size >> 3) << 7;
13136 inst.instruction |= (size & 0x7) << 19;
13137 if (write_ubit)
13138 inst.instruction |= (uval != 0) << 24;
13139
13140 neon_dp_fixup (&inst);
13141 }
13142
13143 static void
13144 do_neon_shl_imm (void)
13145 {
13146 if (!inst.operands[2].isreg)
13147 {
13148 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13149 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
13150 NEON_ENCODE (IMMED, inst);
13151 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
13152 }
13153 else
13154 {
13155 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13156 struct neon_type_el et = neon_check_type (3, rs,
13157 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
13158 unsigned int tmp;
13159
13160 /* VSHL/VQSHL 3-register variants have syntax such as:
13161 vshl.xx Dd, Dm, Dn
13162 whereas other 3-register operations encoded by neon_three_same have
13163 syntax like:
13164 vadd.xx Dd, Dn, Dm
13165 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
13166 here. */
13167 tmp = inst.operands[2].reg;
13168 inst.operands[2].reg = inst.operands[1].reg;
13169 inst.operands[1].reg = tmp;
13170 NEON_ENCODE (INTEGER, inst);
13171 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13172 }
13173 }
13174
13175 static void
13176 do_neon_qshl_imm (void)
13177 {
13178 if (!inst.operands[2].isreg)
13179 {
13180 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13181 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
13182
13183 NEON_ENCODE (IMMED, inst);
13184 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
13185 inst.operands[2].imm);
13186 }
13187 else
13188 {
13189 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13190 struct neon_type_el et = neon_check_type (3, rs,
13191 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
13192 unsigned int tmp;
13193
13194 /* See note in do_neon_shl_imm. */
13195 tmp = inst.operands[2].reg;
13196 inst.operands[2].reg = inst.operands[1].reg;
13197 inst.operands[1].reg = tmp;
13198 NEON_ENCODE (INTEGER, inst);
13199 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13200 }
13201 }
13202
13203 static void
13204 do_neon_rshl (void)
13205 {
13206 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13207 struct neon_type_el et = neon_check_type (3, rs,
13208 N_EQK, N_EQK, N_SU_ALL | N_KEY);
13209 unsigned int tmp;
13210
13211 tmp = inst.operands[2].reg;
13212 inst.operands[2].reg = inst.operands[1].reg;
13213 inst.operands[1].reg = tmp;
13214 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13215 }
13216
13217 static int
13218 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
13219 {
13220 /* Handle .I8 pseudo-instructions. */
13221 if (size == 8)
13222 {
13223 /* Unfortunately, this will make everything apart from zero out-of-range.
13224 FIXME is this the intended semantics? There doesn't seem much point in
13225 accepting .I8 if so. */
13226 immediate |= immediate << 8;
13227 size = 16;
13228 }
13229
13230 if (size >= 32)
13231 {
13232 if (immediate == (immediate & 0x000000ff))
13233 {
13234 *immbits = immediate;
13235 return 0x1;
13236 }
13237 else if (immediate == (immediate & 0x0000ff00))
13238 {
13239 *immbits = immediate >> 8;
13240 return 0x3;
13241 }
13242 else if (immediate == (immediate & 0x00ff0000))
13243 {
13244 *immbits = immediate >> 16;
13245 return 0x5;
13246 }
13247 else if (immediate == (immediate & 0xff000000))
13248 {
13249 *immbits = immediate >> 24;
13250 return 0x7;
13251 }
13252 if ((immediate & 0xffff) != (immediate >> 16))
13253 goto bad_immediate;
13254 immediate &= 0xffff;
13255 }
13256
13257 if (immediate == (immediate & 0x000000ff))
13258 {
13259 *immbits = immediate;
13260 return 0x9;
13261 }
13262 else if (immediate == (immediate & 0x0000ff00))
13263 {
13264 *immbits = immediate >> 8;
13265 return 0xb;
13266 }
13267
13268 bad_immediate:
13269 first_error (_("immediate value out of range"));
13270 return FAIL;
13271 }
13272
13273 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
13274 A, B, C, D. */
13275
13276 static int
13277 neon_bits_same_in_bytes (unsigned imm)
13278 {
13279 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
13280 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
13281 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
13282 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
13283 }
13284
13285 /* For immediate of above form, return 0bABCD. */
13286
13287 static unsigned
13288 neon_squash_bits (unsigned imm)
13289 {
13290 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
13291 | ((imm & 0x01000000) >> 21);
13292 }
13293
13294 /* Compress quarter-float representation to 0b...000 abcdefgh. */
13295
13296 static unsigned
13297 neon_qfloat_bits (unsigned imm)
13298 {
13299 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
13300 }
13301
13302 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
13303 the instruction. *OP is passed as the initial value of the op field, and
13304 may be set to a different value depending on the constant (i.e.
13305 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
13306 MVN). If the immediate looks like a repeated pattern then also
13307 try smaller element sizes. */
13308
13309 static int
13310 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
13311 unsigned *immbits, int *op, int size,
13312 enum neon_el_type type)
13313 {
13314 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
13315 float. */
13316 if (type == NT_float && !float_p)
13317 return FAIL;
13318
13319 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
13320 {
13321 if (size != 32 || *op == 1)
13322 return FAIL;
13323 *immbits = neon_qfloat_bits (immlo);
13324 return 0xf;
13325 }
13326
13327 if (size == 64)
13328 {
13329 if (neon_bits_same_in_bytes (immhi)
13330 && neon_bits_same_in_bytes (immlo))
13331 {
13332 if (*op == 1)
13333 return FAIL;
13334 *immbits = (neon_squash_bits (immhi) << 4)
13335 | neon_squash_bits (immlo);
13336 *op = 1;
13337 return 0xe;
13338 }
13339
13340 if (immhi != immlo)
13341 return FAIL;
13342 }
13343
13344 if (size >= 32)
13345 {
13346 if (immlo == (immlo & 0x000000ff))
13347 {
13348 *immbits = immlo;
13349 return 0x0;
13350 }
13351 else if (immlo == (immlo & 0x0000ff00))
13352 {
13353 *immbits = immlo >> 8;
13354 return 0x2;
13355 }
13356 else if (immlo == (immlo & 0x00ff0000))
13357 {
13358 *immbits = immlo >> 16;
13359 return 0x4;
13360 }
13361 else if (immlo == (immlo & 0xff000000))
13362 {
13363 *immbits = immlo >> 24;
13364 return 0x6;
13365 }
13366 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
13367 {
13368 *immbits = (immlo >> 8) & 0xff;
13369 return 0xc;
13370 }
13371 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
13372 {
13373 *immbits = (immlo >> 16) & 0xff;
13374 return 0xd;
13375 }
13376
13377 if ((immlo & 0xffff) != (immlo >> 16))
13378 return FAIL;
13379 immlo &= 0xffff;
13380 }
13381
13382 if (size >= 16)
13383 {
13384 if (immlo == (immlo & 0x000000ff))
13385 {
13386 *immbits = immlo;
13387 return 0x8;
13388 }
13389 else if (immlo == (immlo & 0x0000ff00))
13390 {
13391 *immbits = immlo >> 8;
13392 return 0xa;
13393 }
13394
13395 if ((immlo & 0xff) != (immlo >> 8))
13396 return FAIL;
13397 immlo &= 0xff;
13398 }
13399
13400 if (immlo == (immlo & 0x000000ff))
13401 {
13402 /* Don't allow MVN with 8-bit immediate. */
13403 if (*op == 1)
13404 return FAIL;
13405 *immbits = immlo;
13406 return 0xe;
13407 }
13408
13409 return FAIL;
13410 }
13411
13412 /* Write immediate bits [7:0] to the following locations:
13413
13414 |28/24|23 19|18 16|15 4|3 0|
13415 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
13416
13417 This function is used by VMOV/VMVN/VORR/VBIC. */
13418
13419 static void
13420 neon_write_immbits (unsigned immbits)
13421 {
13422 inst.instruction |= immbits & 0xf;
13423 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
13424 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
13425 }
13426
13427 /* Invert low-order SIZE bits of XHI:XLO. */
13428
13429 static void
13430 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
13431 {
13432 unsigned immlo = xlo ? *xlo : 0;
13433 unsigned immhi = xhi ? *xhi : 0;
13434
13435 switch (size)
13436 {
13437 case 8:
13438 immlo = (~immlo) & 0xff;
13439 break;
13440
13441 case 16:
13442 immlo = (~immlo) & 0xffff;
13443 break;
13444
13445 case 64:
13446 immhi = (~immhi) & 0xffffffff;
13447 /* fall through. */
13448
13449 case 32:
13450 immlo = (~immlo) & 0xffffffff;
13451 break;
13452
13453 default:
13454 abort ();
13455 }
13456
13457 if (xlo)
13458 *xlo = immlo;
13459
13460 if (xhi)
13461 *xhi = immhi;
13462 }
13463
13464 static void
13465 do_neon_logic (void)
13466 {
13467 if (inst.operands[2].present && inst.operands[2].isreg)
13468 {
13469 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13470 neon_check_type (3, rs, N_IGNORE_TYPE);
13471 /* U bit and size field were set as part of the bitmask. */
13472 NEON_ENCODE (INTEGER, inst);
13473 neon_three_same (neon_quad (rs), 0, -1);
13474 }
13475 else
13476 {
13477 const int three_ops_form = (inst.operands[2].present
13478 && !inst.operands[2].isreg);
13479 const int immoperand = (three_ops_form ? 2 : 1);
13480 enum neon_shape rs = (three_ops_form
13481 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
13482 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
13483 struct neon_type_el et = neon_check_type (2, rs,
13484 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
13485 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
13486 unsigned immbits;
13487 int cmode;
13488
13489 if (et.type == NT_invtype)
13490 return;
13491
13492 if (three_ops_form)
13493 constraint (inst.operands[0].reg != inst.operands[1].reg,
13494 _("first and second operands shall be the same register"));
13495
13496 NEON_ENCODE (IMMED, inst);
13497
13498 immbits = inst.operands[immoperand].imm;
13499 if (et.size == 64)
13500 {
13501 /* .i64 is a pseudo-op, so the immediate must be a repeating
13502 pattern. */
13503 if (immbits != (inst.operands[immoperand].regisimm ?
13504 inst.operands[immoperand].reg : 0))
13505 {
13506 /* Set immbits to an invalid constant. */
13507 immbits = 0xdeadbeef;
13508 }
13509 }
13510
13511 switch (opcode)
13512 {
13513 case N_MNEM_vbic:
13514 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13515 break;
13516
13517 case N_MNEM_vorr:
13518 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13519 break;
13520
13521 case N_MNEM_vand:
13522 /* Pseudo-instruction for VBIC. */
13523 neon_invert_size (&immbits, 0, et.size);
13524 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13525 break;
13526
13527 case N_MNEM_vorn:
13528 /* Pseudo-instruction for VORR. */
13529 neon_invert_size (&immbits, 0, et.size);
13530 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13531 break;
13532
13533 default:
13534 abort ();
13535 }
13536
13537 if (cmode == FAIL)
13538 return;
13539
13540 inst.instruction |= neon_quad (rs) << 6;
13541 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13542 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13543 inst.instruction |= cmode << 8;
13544 neon_write_immbits (immbits);
13545
13546 neon_dp_fixup (&inst);
13547 }
13548 }
13549
13550 static void
13551 do_neon_bitfield (void)
13552 {
13553 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13554 neon_check_type (3, rs, N_IGNORE_TYPE);
13555 neon_three_same (neon_quad (rs), 0, -1);
13556 }
13557
13558 static void
13559 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
13560 unsigned destbits)
13561 {
13562 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13563 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
13564 types | N_KEY);
13565 if (et.type == NT_float)
13566 {
13567 NEON_ENCODE (FLOAT, inst);
13568 neon_three_same (neon_quad (rs), 0, -1);
13569 }
13570 else
13571 {
13572 NEON_ENCODE (INTEGER, inst);
13573 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
13574 }
13575 }
13576
13577 static void
13578 do_neon_dyadic_if_su (void)
13579 {
13580 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
13581 }
13582
13583 static void
13584 do_neon_dyadic_if_su_d (void)
13585 {
13586 /* This version only allow D registers, but that constraint is enforced during
13587 operand parsing so we don't need to do anything extra here. */
13588 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
13589 }
13590
13591 static void
13592 do_neon_dyadic_if_i_d (void)
13593 {
13594 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13595 affected if we specify unsigned args. */
13596 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13597 }
13598
13599 enum vfp_or_neon_is_neon_bits
13600 {
13601 NEON_CHECK_CC = 1,
13602 NEON_CHECK_ARCH = 2
13603 };
13604
13605 /* Call this function if an instruction which may have belonged to the VFP or
13606 Neon instruction sets, but turned out to be a Neon instruction (due to the
13607 operand types involved, etc.). We have to check and/or fix-up a couple of
13608 things:
13609
13610 - Make sure the user hasn't attempted to make a Neon instruction
13611 conditional.
13612 - Alter the value in the condition code field if necessary.
13613 - Make sure that the arch supports Neon instructions.
13614
13615 Which of these operations take place depends on bits from enum
13616 vfp_or_neon_is_neon_bits.
13617
13618 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
13619 current instruction's condition is COND_ALWAYS, the condition field is
13620 changed to inst.uncond_value. This is necessary because instructions shared
13621 between VFP and Neon may be conditional for the VFP variants only, and the
13622 unconditional Neon version must have, e.g., 0xF in the condition field. */
13623
13624 static int
13625 vfp_or_neon_is_neon (unsigned check)
13626 {
13627 /* Conditions are always legal in Thumb mode (IT blocks). */
13628 if (!thumb_mode && (check & NEON_CHECK_CC))
13629 {
13630 if (inst.cond != COND_ALWAYS)
13631 {
13632 first_error (_(BAD_COND));
13633 return FAIL;
13634 }
13635 if (inst.uncond_value != -1)
13636 inst.instruction |= inst.uncond_value << 28;
13637 }
13638
13639 if ((check & NEON_CHECK_ARCH)
13640 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
13641 {
13642 first_error (_(BAD_FPU));
13643 return FAIL;
13644 }
13645
13646 return SUCCESS;
13647 }
13648
13649 static void
13650 do_neon_addsub_if_i (void)
13651 {
13652 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
13653 return;
13654
13655 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13656 return;
13657
13658 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13659 affected if we specify unsigned args. */
13660 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
13661 }
13662
13663 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
13664 result to be:
13665 V<op> A,B (A is operand 0, B is operand 2)
13666 to mean:
13667 V<op> A,B,A
13668 not:
13669 V<op> A,B,B
13670 so handle that case specially. */
13671
13672 static void
13673 neon_exchange_operands (void)
13674 {
13675 void *scratch = alloca (sizeof (inst.operands[0]));
13676 if (inst.operands[1].present)
13677 {
13678 /* Swap operands[1] and operands[2]. */
13679 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
13680 inst.operands[1] = inst.operands[2];
13681 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
13682 }
13683 else
13684 {
13685 inst.operands[1] = inst.operands[2];
13686 inst.operands[2] = inst.operands[0];
13687 }
13688 }
13689
13690 static void
13691 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
13692 {
13693 if (inst.operands[2].isreg)
13694 {
13695 if (invert)
13696 neon_exchange_operands ();
13697 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
13698 }
13699 else
13700 {
13701 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13702 struct neon_type_el et = neon_check_type (2, rs,
13703 N_EQK | N_SIZ, immtypes | N_KEY);
13704
13705 NEON_ENCODE (IMMED, inst);
13706 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13707 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13708 inst.instruction |= LOW4 (inst.operands[1].reg);
13709 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13710 inst.instruction |= neon_quad (rs) << 6;
13711 inst.instruction |= (et.type == NT_float) << 10;
13712 inst.instruction |= neon_logbits (et.size) << 18;
13713
13714 neon_dp_fixup (&inst);
13715 }
13716 }
13717
13718 static void
13719 do_neon_cmp (void)
13720 {
13721 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
13722 }
13723
13724 static void
13725 do_neon_cmp_inv (void)
13726 {
13727 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
13728 }
13729
13730 static void
13731 do_neon_ceq (void)
13732 {
13733 neon_compare (N_IF_32, N_IF_32, FALSE);
13734 }
13735
13736 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
13737 scalars, which are encoded in 5 bits, M : Rm.
13738 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
13739 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
13740 index in M. */
13741
13742 static unsigned
13743 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
13744 {
13745 unsigned regno = NEON_SCALAR_REG (scalar);
13746 unsigned elno = NEON_SCALAR_INDEX (scalar);
13747
13748 switch (elsize)
13749 {
13750 case 16:
13751 if (regno > 7 || elno > 3)
13752 goto bad_scalar;
13753 return regno | (elno << 3);
13754
13755 case 32:
13756 if (regno > 15 || elno > 1)
13757 goto bad_scalar;
13758 return regno | (elno << 4);
13759
13760 default:
13761 bad_scalar:
13762 first_error (_("scalar out of range for multiply instruction"));
13763 }
13764
13765 return 0;
13766 }
13767
13768 /* Encode multiply / multiply-accumulate scalar instructions. */
13769
13770 static void
13771 neon_mul_mac (struct neon_type_el et, int ubit)
13772 {
13773 unsigned scalar;
13774
13775 /* Give a more helpful error message if we have an invalid type. */
13776 if (et.type == NT_invtype)
13777 return;
13778
13779 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
13780 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13781 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13782 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13783 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13784 inst.instruction |= LOW4 (scalar);
13785 inst.instruction |= HI1 (scalar) << 5;
13786 inst.instruction |= (et.type == NT_float) << 8;
13787 inst.instruction |= neon_logbits (et.size) << 20;
13788 inst.instruction |= (ubit != 0) << 24;
13789
13790 neon_dp_fixup (&inst);
13791 }
13792
13793 static void
13794 do_neon_mac_maybe_scalar (void)
13795 {
13796 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
13797 return;
13798
13799 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13800 return;
13801
13802 if (inst.operands[2].isscalar)
13803 {
13804 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
13805 struct neon_type_el et = neon_check_type (3, rs,
13806 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
13807 NEON_ENCODE (SCALAR, inst);
13808 neon_mul_mac (et, neon_quad (rs));
13809 }
13810 else
13811 {
13812 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13813 affected if we specify unsigned args. */
13814 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13815 }
13816 }
13817
13818 static void
13819 do_neon_fmac (void)
13820 {
13821 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
13822 return;
13823
13824 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13825 return;
13826
13827 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13828 }
13829
13830 static void
13831 do_neon_tst (void)
13832 {
13833 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13834 struct neon_type_el et = neon_check_type (3, rs,
13835 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
13836 neon_three_same (neon_quad (rs), 0, et.size);
13837 }
13838
13839 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
13840 same types as the MAC equivalents. The polynomial type for this instruction
13841 is encoded the same as the integer type. */
13842
13843 static void
13844 do_neon_mul (void)
13845 {
13846 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
13847 return;
13848
13849 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13850 return;
13851
13852 if (inst.operands[2].isscalar)
13853 do_neon_mac_maybe_scalar ();
13854 else
13855 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
13856 }
13857
13858 static void
13859 do_neon_qdmulh (void)
13860 {
13861 if (inst.operands[2].isscalar)
13862 {
13863 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
13864 struct neon_type_el et = neon_check_type (3, rs,
13865 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
13866 NEON_ENCODE (SCALAR, inst);
13867 neon_mul_mac (et, neon_quad (rs));
13868 }
13869 else
13870 {
13871 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13872 struct neon_type_el et = neon_check_type (3, rs,
13873 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
13874 NEON_ENCODE (INTEGER, inst);
13875 /* The U bit (rounding) comes from bit mask. */
13876 neon_three_same (neon_quad (rs), 0, et.size);
13877 }
13878 }
13879
13880 static void
13881 do_neon_fcmp_absolute (void)
13882 {
13883 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13884 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
13885 /* Size field comes from bit mask. */
13886 neon_three_same (neon_quad (rs), 1, -1);
13887 }
13888
13889 static void
13890 do_neon_fcmp_absolute_inv (void)
13891 {
13892 neon_exchange_operands ();
13893 do_neon_fcmp_absolute ();
13894 }
13895
13896 static void
13897 do_neon_step (void)
13898 {
13899 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13900 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
13901 neon_three_same (neon_quad (rs), 0, -1);
13902 }
13903
13904 static void
13905 do_neon_abs_neg (void)
13906 {
13907 enum neon_shape rs;
13908 struct neon_type_el et;
13909
13910 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
13911 return;
13912
13913 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13914 return;
13915
13916 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13917 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
13918
13919 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13920 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13921 inst.instruction |= LOW4 (inst.operands[1].reg);
13922 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13923 inst.instruction |= neon_quad (rs) << 6;
13924 inst.instruction |= (et.type == NT_float) << 10;
13925 inst.instruction |= neon_logbits (et.size) << 18;
13926
13927 neon_dp_fixup (&inst);
13928 }
13929
13930 static void
13931 do_neon_sli (void)
13932 {
13933 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13934 struct neon_type_el et = neon_check_type (2, rs,
13935 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13936 int imm = inst.operands[2].imm;
13937 constraint (imm < 0 || (unsigned)imm >= et.size,
13938 _("immediate out of range for insert"));
13939 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
13940 }
13941
13942 static void
13943 do_neon_sri (void)
13944 {
13945 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13946 struct neon_type_el et = neon_check_type (2, rs,
13947 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13948 int imm = inst.operands[2].imm;
13949 constraint (imm < 1 || (unsigned)imm > et.size,
13950 _("immediate out of range for insert"));
13951 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
13952 }
13953
13954 static void
13955 do_neon_qshlu_imm (void)
13956 {
13957 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13958 struct neon_type_el et = neon_check_type (2, rs,
13959 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
13960 int imm = inst.operands[2].imm;
13961 constraint (imm < 0 || (unsigned)imm >= et.size,
13962 _("immediate out of range for shift"));
13963 /* Only encodes the 'U present' variant of the instruction.
13964 In this case, signed types have OP (bit 8) set to 0.
13965 Unsigned types have OP set to 1. */
13966 inst.instruction |= (et.type == NT_unsigned) << 8;
13967 /* The rest of the bits are the same as other immediate shifts. */
13968 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
13969 }
13970
13971 static void
13972 do_neon_qmovn (void)
13973 {
13974 struct neon_type_el et = neon_check_type (2, NS_DQ,
13975 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
13976 /* Saturating move where operands can be signed or unsigned, and the
13977 destination has the same signedness. */
13978 NEON_ENCODE (INTEGER, inst);
13979 if (et.type == NT_unsigned)
13980 inst.instruction |= 0xc0;
13981 else
13982 inst.instruction |= 0x80;
13983 neon_two_same (0, 1, et.size / 2);
13984 }
13985
13986 static void
13987 do_neon_qmovun (void)
13988 {
13989 struct neon_type_el et = neon_check_type (2, NS_DQ,
13990 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
13991 /* Saturating move with unsigned results. Operands must be signed. */
13992 NEON_ENCODE (INTEGER, inst);
13993 neon_two_same (0, 1, et.size / 2);
13994 }
13995
13996 static void
13997 do_neon_rshift_sat_narrow (void)
13998 {
13999 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14000 or unsigned. If operands are unsigned, results must also be unsigned. */
14001 struct neon_type_el et = neon_check_type (2, NS_DQI,
14002 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
14003 int imm = inst.operands[2].imm;
14004 /* This gets the bounds check, size encoding and immediate bits calculation
14005 right. */
14006 et.size /= 2;
14007
14008 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
14009 VQMOVN.I<size> <Dd>, <Qm>. */
14010 if (imm == 0)
14011 {
14012 inst.operands[2].present = 0;
14013 inst.instruction = N_MNEM_vqmovn;
14014 do_neon_qmovn ();
14015 return;
14016 }
14017
14018 constraint (imm < 1 || (unsigned)imm > et.size,
14019 _("immediate out of range"));
14020 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
14021 }
14022
14023 static void
14024 do_neon_rshift_sat_narrow_u (void)
14025 {
14026 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14027 or unsigned. If operands are unsigned, results must also be unsigned. */
14028 struct neon_type_el et = neon_check_type (2, NS_DQI,
14029 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
14030 int imm = inst.operands[2].imm;
14031 /* This gets the bounds check, size encoding and immediate bits calculation
14032 right. */
14033 et.size /= 2;
14034
14035 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
14036 VQMOVUN.I<size> <Dd>, <Qm>. */
14037 if (imm == 0)
14038 {
14039 inst.operands[2].present = 0;
14040 inst.instruction = N_MNEM_vqmovun;
14041 do_neon_qmovun ();
14042 return;
14043 }
14044
14045 constraint (imm < 1 || (unsigned)imm > et.size,
14046 _("immediate out of range"));
14047 /* FIXME: The manual is kind of unclear about what value U should have in
14048 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
14049 must be 1. */
14050 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
14051 }
14052
14053 static void
14054 do_neon_movn (void)
14055 {
14056 struct neon_type_el et = neon_check_type (2, NS_DQ,
14057 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
14058 NEON_ENCODE (INTEGER, inst);
14059 neon_two_same (0, 1, et.size / 2);
14060 }
14061
14062 static void
14063 do_neon_rshift_narrow (void)
14064 {
14065 struct neon_type_el et = neon_check_type (2, NS_DQI,
14066 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
14067 int imm = inst.operands[2].imm;
14068 /* This gets the bounds check, size encoding and immediate bits calculation
14069 right. */
14070 et.size /= 2;
14071
14072 /* If immediate is zero then we are a pseudo-instruction for
14073 VMOVN.I<size> <Dd>, <Qm> */
14074 if (imm == 0)
14075 {
14076 inst.operands[2].present = 0;
14077 inst.instruction = N_MNEM_vmovn;
14078 do_neon_movn ();
14079 return;
14080 }
14081
14082 constraint (imm < 1 || (unsigned)imm > et.size,
14083 _("immediate out of range for narrowing operation"));
14084 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
14085 }
14086
14087 static void
14088 do_neon_shll (void)
14089 {
14090 /* FIXME: Type checking when lengthening. */
14091 struct neon_type_el et = neon_check_type (2, NS_QDI,
14092 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
14093 unsigned imm = inst.operands[2].imm;
14094
14095 if (imm == et.size)
14096 {
14097 /* Maximum shift variant. */
14098 NEON_ENCODE (INTEGER, inst);
14099 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14100 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14101 inst.instruction |= LOW4 (inst.operands[1].reg);
14102 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14103 inst.instruction |= neon_logbits (et.size) << 18;
14104
14105 neon_dp_fixup (&inst);
14106 }
14107 else
14108 {
14109 /* A more-specific type check for non-max versions. */
14110 et = neon_check_type (2, NS_QDI,
14111 N_EQK | N_DBL, N_SU_32 | N_KEY);
14112 NEON_ENCODE (IMMED, inst);
14113 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
14114 }
14115 }
14116
14117 /* Check the various types for the VCVT instruction, and return which version
14118 the current instruction is. */
14119
14120 static int
14121 neon_cvt_flavour (enum neon_shape rs)
14122 {
14123 #define CVT_VAR(C,X,Y) \
14124 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
14125 if (et.type != NT_invtype) \
14126 { \
14127 inst.error = NULL; \
14128 return (C); \
14129 }
14130 struct neon_type_el et;
14131 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
14132 || rs == NS_FF) ? N_VFP : 0;
14133 /* The instruction versions which take an immediate take one register
14134 argument, which is extended to the width of the full register. Thus the
14135 "source" and "destination" registers must have the same width. Hack that
14136 here by making the size equal to the key (wider, in this case) operand. */
14137 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
14138
14139 CVT_VAR (0, N_S32, N_F32);
14140 CVT_VAR (1, N_U32, N_F32);
14141 CVT_VAR (2, N_F32, N_S32);
14142 CVT_VAR (3, N_F32, N_U32);
14143 /* Half-precision conversions. */
14144 CVT_VAR (4, N_F32, N_F16);
14145 CVT_VAR (5, N_F16, N_F32);
14146
14147 whole_reg = N_VFP;
14148
14149 /* VFP instructions. */
14150 CVT_VAR (6, N_F32, N_F64);
14151 CVT_VAR (7, N_F64, N_F32);
14152 CVT_VAR (8, N_S32, N_F64 | key);
14153 CVT_VAR (9, N_U32, N_F64 | key);
14154 CVT_VAR (10, N_F64 | key, N_S32);
14155 CVT_VAR (11, N_F64 | key, N_U32);
14156 /* VFP instructions with bitshift. */
14157 CVT_VAR (12, N_F32 | key, N_S16);
14158 CVT_VAR (13, N_F32 | key, N_U16);
14159 CVT_VAR (14, N_F64 | key, N_S16);
14160 CVT_VAR (15, N_F64 | key, N_U16);
14161 CVT_VAR (16, N_S16, N_F32 | key);
14162 CVT_VAR (17, N_U16, N_F32 | key);
14163 CVT_VAR (18, N_S16, N_F64 | key);
14164 CVT_VAR (19, N_U16, N_F64 | key);
14165
14166 return -1;
14167 #undef CVT_VAR
14168 }
14169
14170 /* Neon-syntax VFP conversions. */
14171
14172 static void
14173 do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
14174 {
14175 const char *opname = 0;
14176
14177 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
14178 {
14179 /* Conversions with immediate bitshift. */
14180 const char *enc[] =
14181 {
14182 "ftosls",
14183 "ftouls",
14184 "fsltos",
14185 "fultos",
14186 NULL,
14187 NULL,
14188 NULL,
14189 NULL,
14190 "ftosld",
14191 "ftould",
14192 "fsltod",
14193 "fultod",
14194 "fshtos",
14195 "fuhtos",
14196 "fshtod",
14197 "fuhtod",
14198 "ftoshs",
14199 "ftouhs",
14200 "ftoshd",
14201 "ftouhd"
14202 };
14203
14204 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
14205 {
14206 opname = enc[flavour];
14207 constraint (inst.operands[0].reg != inst.operands[1].reg,
14208 _("operands 0 and 1 must be the same register"));
14209 inst.operands[1] = inst.operands[2];
14210 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
14211 }
14212 }
14213 else
14214 {
14215 /* Conversions without bitshift. */
14216 const char *enc[] =
14217 {
14218 "ftosis",
14219 "ftouis",
14220 "fsitos",
14221 "fuitos",
14222 "NULL",
14223 "NULL",
14224 "fcvtsd",
14225 "fcvtds",
14226 "ftosid",
14227 "ftouid",
14228 "fsitod",
14229 "fuitod"
14230 };
14231
14232 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
14233 opname = enc[flavour];
14234 }
14235
14236 if (opname)
14237 do_vfp_nsyn_opcode (opname);
14238 }
14239
14240 static void
14241 do_vfp_nsyn_cvtz (void)
14242 {
14243 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
14244 int flavour = neon_cvt_flavour (rs);
14245 const char *enc[] =
14246 {
14247 "ftosizs",
14248 "ftouizs",
14249 NULL,
14250 NULL,
14251 NULL,
14252 NULL,
14253 NULL,
14254 NULL,
14255 "ftosizd",
14256 "ftouizd"
14257 };
14258
14259 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
14260 do_vfp_nsyn_opcode (enc[flavour]);
14261 }
14262
14263 static void
14264 do_neon_cvt_1 (bfd_boolean round_to_zero ATTRIBUTE_UNUSED)
14265 {
14266 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
14267 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
14268 int flavour = neon_cvt_flavour (rs);
14269
14270 /* PR11109: Handle round-to-zero for VCVT conversions. */
14271 if (round_to_zero
14272 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
14273 && (flavour == 0 || flavour == 1 || flavour == 8 || flavour == 9)
14274 && (rs == NS_FD || rs == NS_FF))
14275 {
14276 do_vfp_nsyn_cvtz ();
14277 return;
14278 }
14279
14280 /* VFP rather than Neon conversions. */
14281 if (flavour >= 6)
14282 {
14283 do_vfp_nsyn_cvt (rs, flavour);
14284 return;
14285 }
14286
14287 switch (rs)
14288 {
14289 case NS_DDI:
14290 case NS_QQI:
14291 {
14292 unsigned immbits;
14293 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
14294
14295 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14296 return;
14297
14298 /* Fixed-point conversion with #0 immediate is encoded as an
14299 integer conversion. */
14300 if (inst.operands[2].present && inst.operands[2].imm == 0)
14301 goto int_encode;
14302 immbits = 32 - inst.operands[2].imm;
14303 NEON_ENCODE (IMMED, inst);
14304 if (flavour != -1)
14305 inst.instruction |= enctab[flavour];
14306 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14307 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14308 inst.instruction |= LOW4 (inst.operands[1].reg);
14309 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14310 inst.instruction |= neon_quad (rs) << 6;
14311 inst.instruction |= 1 << 21;
14312 inst.instruction |= immbits << 16;
14313
14314 neon_dp_fixup (&inst);
14315 }
14316 break;
14317
14318 case NS_DD:
14319 case NS_QQ:
14320 int_encode:
14321 {
14322 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
14323
14324 NEON_ENCODE (INTEGER, inst);
14325
14326 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14327 return;
14328
14329 if (flavour != -1)
14330 inst.instruction |= enctab[flavour];
14331
14332 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14333 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14334 inst.instruction |= LOW4 (inst.operands[1].reg);
14335 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14336 inst.instruction |= neon_quad (rs) << 6;
14337 inst.instruction |= 2 << 18;
14338
14339 neon_dp_fixup (&inst);
14340 }
14341 break;
14342
14343 /* Half-precision conversions for Advanced SIMD -- neon. */
14344 case NS_QD:
14345 case NS_DQ:
14346
14347 if ((rs == NS_DQ)
14348 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
14349 {
14350 as_bad (_("operand size must match register width"));
14351 break;
14352 }
14353
14354 if ((rs == NS_QD)
14355 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
14356 {
14357 as_bad (_("operand size must match register width"));
14358 break;
14359 }
14360
14361 if (rs == NS_DQ)
14362 inst.instruction = 0x3b60600;
14363 else
14364 inst.instruction = 0x3b60700;
14365
14366 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14367 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14368 inst.instruction |= LOW4 (inst.operands[1].reg);
14369 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14370 neon_dp_fixup (&inst);
14371 break;
14372
14373 default:
14374 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
14375 do_vfp_nsyn_cvt (rs, flavour);
14376 }
14377 }
14378
14379 static void
14380 do_neon_cvtr (void)
14381 {
14382 do_neon_cvt_1 (FALSE);
14383 }
14384
14385 static void
14386 do_neon_cvt (void)
14387 {
14388 do_neon_cvt_1 (TRUE);
14389 }
14390
14391 static void
14392 do_neon_cvtb (void)
14393 {
14394 inst.instruction = 0xeb20a40;
14395
14396 /* The sizes are attached to the mnemonic. */
14397 if (inst.vectype.el[0].type != NT_invtype
14398 && inst.vectype.el[0].size == 16)
14399 inst.instruction |= 0x00010000;
14400
14401 /* Programmer's syntax: the sizes are attached to the operands. */
14402 else if (inst.operands[0].vectype.type != NT_invtype
14403 && inst.operands[0].vectype.size == 16)
14404 inst.instruction |= 0x00010000;
14405
14406 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
14407 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
14408 do_vfp_cond_or_thumb ();
14409 }
14410
14411
14412 static void
14413 do_neon_cvtt (void)
14414 {
14415 do_neon_cvtb ();
14416 inst.instruction |= 0x80;
14417 }
14418
14419 static void
14420 neon_move_immediate (void)
14421 {
14422 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
14423 struct neon_type_el et = neon_check_type (2, rs,
14424 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
14425 unsigned immlo, immhi = 0, immbits;
14426 int op, cmode, float_p;
14427
14428 constraint (et.type == NT_invtype,
14429 _("operand size must be specified for immediate VMOV"));
14430
14431 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
14432 op = (inst.instruction & (1 << 5)) != 0;
14433
14434 immlo = inst.operands[1].imm;
14435 if (inst.operands[1].regisimm)
14436 immhi = inst.operands[1].reg;
14437
14438 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
14439 _("immediate has bits set outside the operand size"));
14440
14441 float_p = inst.operands[1].immisfloat;
14442
14443 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
14444 et.size, et.type)) == FAIL)
14445 {
14446 /* Invert relevant bits only. */
14447 neon_invert_size (&immlo, &immhi, et.size);
14448 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
14449 with one or the other; those cases are caught by
14450 neon_cmode_for_move_imm. */
14451 op = !op;
14452 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
14453 &op, et.size, et.type)) == FAIL)
14454 {
14455 first_error (_("immediate out of range"));
14456 return;
14457 }
14458 }
14459
14460 inst.instruction &= ~(1 << 5);
14461 inst.instruction |= op << 5;
14462
14463 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14464 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14465 inst.instruction |= neon_quad (rs) << 6;
14466 inst.instruction |= cmode << 8;
14467
14468 neon_write_immbits (immbits);
14469 }
14470
14471 static void
14472 do_neon_mvn (void)
14473 {
14474 if (inst.operands[1].isreg)
14475 {
14476 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14477
14478 NEON_ENCODE (INTEGER, inst);
14479 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14480 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14481 inst.instruction |= LOW4 (inst.operands[1].reg);
14482 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14483 inst.instruction |= neon_quad (rs) << 6;
14484 }
14485 else
14486 {
14487 NEON_ENCODE (IMMED, inst);
14488 neon_move_immediate ();
14489 }
14490
14491 neon_dp_fixup (&inst);
14492 }
14493
14494 /* Encode instructions of form:
14495
14496 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
14497 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
14498
14499 static void
14500 neon_mixed_length (struct neon_type_el et, unsigned size)
14501 {
14502 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14503 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14504 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14505 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14506 inst.instruction |= LOW4 (inst.operands[2].reg);
14507 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14508 inst.instruction |= (et.type == NT_unsigned) << 24;
14509 inst.instruction |= neon_logbits (size) << 20;
14510
14511 neon_dp_fixup (&inst);
14512 }
14513
14514 static void
14515 do_neon_dyadic_long (void)
14516 {
14517 /* FIXME: Type checking for lengthening op. */
14518 struct neon_type_el et = neon_check_type (3, NS_QDD,
14519 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
14520 neon_mixed_length (et, et.size);
14521 }
14522
14523 static void
14524 do_neon_abal (void)
14525 {
14526 struct neon_type_el et = neon_check_type (3, NS_QDD,
14527 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
14528 neon_mixed_length (et, et.size);
14529 }
14530
14531 static void
14532 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
14533 {
14534 if (inst.operands[2].isscalar)
14535 {
14536 struct neon_type_el et = neon_check_type (3, NS_QDS,
14537 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
14538 NEON_ENCODE (SCALAR, inst);
14539 neon_mul_mac (et, et.type == NT_unsigned);
14540 }
14541 else
14542 {
14543 struct neon_type_el et = neon_check_type (3, NS_QDD,
14544 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
14545 NEON_ENCODE (INTEGER, inst);
14546 neon_mixed_length (et, et.size);
14547 }
14548 }
14549
14550 static void
14551 do_neon_mac_maybe_scalar_long (void)
14552 {
14553 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
14554 }
14555
14556 static void
14557 do_neon_dyadic_wide (void)
14558 {
14559 struct neon_type_el et = neon_check_type (3, NS_QQD,
14560 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
14561 neon_mixed_length (et, et.size);
14562 }
14563
14564 static void
14565 do_neon_dyadic_narrow (void)
14566 {
14567 struct neon_type_el et = neon_check_type (3, NS_QDD,
14568 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
14569 /* Operand sign is unimportant, and the U bit is part of the opcode,
14570 so force the operand type to integer. */
14571 et.type = NT_integer;
14572 neon_mixed_length (et, et.size / 2);
14573 }
14574
14575 static void
14576 do_neon_mul_sat_scalar_long (void)
14577 {
14578 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
14579 }
14580
14581 static void
14582 do_neon_vmull (void)
14583 {
14584 if (inst.operands[2].isscalar)
14585 do_neon_mac_maybe_scalar_long ();
14586 else
14587 {
14588 struct neon_type_el et = neon_check_type (3, NS_QDD,
14589 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
14590 if (et.type == NT_poly)
14591 NEON_ENCODE (POLY, inst);
14592 else
14593 NEON_ENCODE (INTEGER, inst);
14594 /* For polynomial encoding, size field must be 0b00 and the U bit must be
14595 zero. Should be OK as-is. */
14596 neon_mixed_length (et, et.size);
14597 }
14598 }
14599
14600 static void
14601 do_neon_ext (void)
14602 {
14603 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
14604 struct neon_type_el et = neon_check_type (3, rs,
14605 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14606 unsigned imm = (inst.operands[3].imm * et.size) / 8;
14607
14608 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
14609 _("shift out of range"));
14610 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14611 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14612 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14613 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14614 inst.instruction |= LOW4 (inst.operands[2].reg);
14615 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14616 inst.instruction |= neon_quad (rs) << 6;
14617 inst.instruction |= imm << 8;
14618
14619 neon_dp_fixup (&inst);
14620 }
14621
14622 static void
14623 do_neon_rev (void)
14624 {
14625 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14626 struct neon_type_el et = neon_check_type (2, rs,
14627 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14628 unsigned op = (inst.instruction >> 7) & 3;
14629 /* N (width of reversed regions) is encoded as part of the bitmask. We
14630 extract it here to check the elements to be reversed are smaller.
14631 Otherwise we'd get a reserved instruction. */
14632 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
14633 gas_assert (elsize != 0);
14634 constraint (et.size >= elsize,
14635 _("elements must be smaller than reversal region"));
14636 neon_two_same (neon_quad (rs), 1, et.size);
14637 }
14638
14639 static void
14640 do_neon_dup (void)
14641 {
14642 if (inst.operands[1].isscalar)
14643 {
14644 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
14645 struct neon_type_el et = neon_check_type (2, rs,
14646 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14647 unsigned sizebits = et.size >> 3;
14648 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
14649 int logsize = neon_logbits (et.size);
14650 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
14651
14652 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
14653 return;
14654
14655 NEON_ENCODE (SCALAR, inst);
14656 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14657 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14658 inst.instruction |= LOW4 (dm);
14659 inst.instruction |= HI1 (dm) << 5;
14660 inst.instruction |= neon_quad (rs) << 6;
14661 inst.instruction |= x << 17;
14662 inst.instruction |= sizebits << 16;
14663
14664 neon_dp_fixup (&inst);
14665 }
14666 else
14667 {
14668 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
14669 struct neon_type_el et = neon_check_type (2, rs,
14670 N_8 | N_16 | N_32 | N_KEY, N_EQK);
14671 /* Duplicate ARM register to lanes of vector. */
14672 NEON_ENCODE (ARMREG, inst);
14673 switch (et.size)
14674 {
14675 case 8: inst.instruction |= 0x400000; break;
14676 case 16: inst.instruction |= 0x000020; break;
14677 case 32: inst.instruction |= 0x000000; break;
14678 default: break;
14679 }
14680 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
14681 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
14682 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
14683 inst.instruction |= neon_quad (rs) << 21;
14684 /* The encoding for this instruction is identical for the ARM and Thumb
14685 variants, except for the condition field. */
14686 do_vfp_cond_or_thumb ();
14687 }
14688 }
14689
14690 /* VMOV has particularly many variations. It can be one of:
14691 0. VMOV<c><q> <Qd>, <Qm>
14692 1. VMOV<c><q> <Dd>, <Dm>
14693 (Register operations, which are VORR with Rm = Rn.)
14694 2. VMOV<c><q>.<dt> <Qd>, #<imm>
14695 3. VMOV<c><q>.<dt> <Dd>, #<imm>
14696 (Immediate loads.)
14697 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
14698 (ARM register to scalar.)
14699 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
14700 (Two ARM registers to vector.)
14701 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
14702 (Scalar to ARM register.)
14703 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
14704 (Vector to two ARM registers.)
14705 8. VMOV.F32 <Sd>, <Sm>
14706 9. VMOV.F64 <Dd>, <Dm>
14707 (VFP register moves.)
14708 10. VMOV.F32 <Sd>, #imm
14709 11. VMOV.F64 <Dd>, #imm
14710 (VFP float immediate load.)
14711 12. VMOV <Rd>, <Sm>
14712 (VFP single to ARM reg.)
14713 13. VMOV <Sd>, <Rm>
14714 (ARM reg to VFP single.)
14715 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
14716 (Two ARM regs to two VFP singles.)
14717 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
14718 (Two VFP singles to two ARM regs.)
14719
14720 These cases can be disambiguated using neon_select_shape, except cases 1/9
14721 and 3/11 which depend on the operand type too.
14722
14723 All the encoded bits are hardcoded by this function.
14724
14725 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
14726 Cases 5, 7 may be used with VFPv2 and above.
14727
14728 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
14729 can specify a type where it doesn't make sense to, and is ignored). */
14730
14731 static void
14732 do_neon_mov (void)
14733 {
14734 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
14735 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
14736 NS_NULL);
14737 struct neon_type_el et;
14738 const char *ldconst = 0;
14739
14740 switch (rs)
14741 {
14742 case NS_DD: /* case 1/9. */
14743 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14744 /* It is not an error here if no type is given. */
14745 inst.error = NULL;
14746 if (et.type == NT_float && et.size == 64)
14747 {
14748 do_vfp_nsyn_opcode ("fcpyd");
14749 break;
14750 }
14751 /* fall through. */
14752
14753 case NS_QQ: /* case 0/1. */
14754 {
14755 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14756 return;
14757 /* The architecture manual I have doesn't explicitly state which
14758 value the U bit should have for register->register moves, but
14759 the equivalent VORR instruction has U = 0, so do that. */
14760 inst.instruction = 0x0200110;
14761 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14762 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14763 inst.instruction |= LOW4 (inst.operands[1].reg);
14764 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14765 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14766 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14767 inst.instruction |= neon_quad (rs) << 6;
14768
14769 neon_dp_fixup (&inst);
14770 }
14771 break;
14772
14773 case NS_DI: /* case 3/11. */
14774 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14775 inst.error = NULL;
14776 if (et.type == NT_float && et.size == 64)
14777 {
14778 /* case 11 (fconstd). */
14779 ldconst = "fconstd";
14780 goto encode_fconstd;
14781 }
14782 /* fall through. */
14783
14784 case NS_QI: /* case 2/3. */
14785 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14786 return;
14787 inst.instruction = 0x0800010;
14788 neon_move_immediate ();
14789 neon_dp_fixup (&inst);
14790 break;
14791
14792 case NS_SR: /* case 4. */
14793 {
14794 unsigned bcdebits = 0;
14795 int logsize;
14796 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
14797 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
14798
14799 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
14800 logsize = neon_logbits (et.size);
14801
14802 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14803 _(BAD_FPU));
14804 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14805 && et.size != 32, _(BAD_FPU));
14806 constraint (et.type == NT_invtype, _("bad type for scalar"));
14807 constraint (x >= 64 / et.size, _("scalar index out of range"));
14808
14809 switch (et.size)
14810 {
14811 case 8: bcdebits = 0x8; break;
14812 case 16: bcdebits = 0x1; break;
14813 case 32: bcdebits = 0x0; break;
14814 default: ;
14815 }
14816
14817 bcdebits |= x << logsize;
14818
14819 inst.instruction = 0xe000b10;
14820 do_vfp_cond_or_thumb ();
14821 inst.instruction |= LOW4 (dn) << 16;
14822 inst.instruction |= HI1 (dn) << 7;
14823 inst.instruction |= inst.operands[1].reg << 12;
14824 inst.instruction |= (bcdebits & 3) << 5;
14825 inst.instruction |= (bcdebits >> 2) << 21;
14826 }
14827 break;
14828
14829 case NS_DRR: /* case 5 (fmdrr). */
14830 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
14831 _(BAD_FPU));
14832
14833 inst.instruction = 0xc400b10;
14834 do_vfp_cond_or_thumb ();
14835 inst.instruction |= LOW4 (inst.operands[0].reg);
14836 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
14837 inst.instruction |= inst.operands[1].reg << 12;
14838 inst.instruction |= inst.operands[2].reg << 16;
14839 break;
14840
14841 case NS_RS: /* case 6. */
14842 {
14843 unsigned logsize;
14844 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
14845 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
14846 unsigned abcdebits = 0;
14847
14848 et = neon_check_type (2, NS_NULL,
14849 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
14850 logsize = neon_logbits (et.size);
14851
14852 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14853 _(BAD_FPU));
14854 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14855 && et.size != 32, _(BAD_FPU));
14856 constraint (et.type == NT_invtype, _("bad type for scalar"));
14857 constraint (x >= 64 / et.size, _("scalar index out of range"));
14858
14859 switch (et.size)
14860 {
14861 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
14862 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
14863 case 32: abcdebits = 0x00; break;
14864 default: ;
14865 }
14866
14867 abcdebits |= x << logsize;
14868 inst.instruction = 0xe100b10;
14869 do_vfp_cond_or_thumb ();
14870 inst.instruction |= LOW4 (dn) << 16;
14871 inst.instruction |= HI1 (dn) << 7;
14872 inst.instruction |= inst.operands[0].reg << 12;
14873 inst.instruction |= (abcdebits & 3) << 5;
14874 inst.instruction |= (abcdebits >> 2) << 21;
14875 }
14876 break;
14877
14878 case NS_RRD: /* case 7 (fmrrd). */
14879 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
14880 _(BAD_FPU));
14881
14882 inst.instruction = 0xc500b10;
14883 do_vfp_cond_or_thumb ();
14884 inst.instruction |= inst.operands[0].reg << 12;
14885 inst.instruction |= inst.operands[1].reg << 16;
14886 inst.instruction |= LOW4 (inst.operands[2].reg);
14887 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14888 break;
14889
14890 case NS_FF: /* case 8 (fcpys). */
14891 do_vfp_nsyn_opcode ("fcpys");
14892 break;
14893
14894 case NS_FI: /* case 10 (fconsts). */
14895 ldconst = "fconsts";
14896 encode_fconstd:
14897 if (is_quarter_float (inst.operands[1].imm))
14898 {
14899 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
14900 do_vfp_nsyn_opcode (ldconst);
14901 }
14902 else
14903 first_error (_("immediate out of range"));
14904 break;
14905
14906 case NS_RF: /* case 12 (fmrs). */
14907 do_vfp_nsyn_opcode ("fmrs");
14908 break;
14909
14910 case NS_FR: /* case 13 (fmsr). */
14911 do_vfp_nsyn_opcode ("fmsr");
14912 break;
14913
14914 /* The encoders for the fmrrs and fmsrr instructions expect three operands
14915 (one of which is a list), but we have parsed four. Do some fiddling to
14916 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
14917 expect. */
14918 case NS_RRFF: /* case 14 (fmrrs). */
14919 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
14920 _("VFP registers must be adjacent"));
14921 inst.operands[2].imm = 2;
14922 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
14923 do_vfp_nsyn_opcode ("fmrrs");
14924 break;
14925
14926 case NS_FFRR: /* case 15 (fmsrr). */
14927 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
14928 _("VFP registers must be adjacent"));
14929 inst.operands[1] = inst.operands[2];
14930 inst.operands[2] = inst.operands[3];
14931 inst.operands[0].imm = 2;
14932 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
14933 do_vfp_nsyn_opcode ("fmsrr");
14934 break;
14935
14936 default:
14937 abort ();
14938 }
14939 }
14940
14941 static void
14942 do_neon_rshift_round_imm (void)
14943 {
14944 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14945 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
14946 int imm = inst.operands[2].imm;
14947
14948 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
14949 if (imm == 0)
14950 {
14951 inst.operands[2].present = 0;
14952 do_neon_mov ();
14953 return;
14954 }
14955
14956 constraint (imm < 1 || (unsigned)imm > et.size,
14957 _("immediate out of range for shift"));
14958 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
14959 et.size - imm);
14960 }
14961
14962 static void
14963 do_neon_movl (void)
14964 {
14965 struct neon_type_el et = neon_check_type (2, NS_QD,
14966 N_EQK | N_DBL, N_SU_32 | N_KEY);
14967 unsigned sizebits = et.size >> 3;
14968 inst.instruction |= sizebits << 19;
14969 neon_two_same (0, et.type == NT_unsigned, -1);
14970 }
14971
14972 static void
14973 do_neon_trn (void)
14974 {
14975 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14976 struct neon_type_el et = neon_check_type (2, rs,
14977 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14978 NEON_ENCODE (INTEGER, inst);
14979 neon_two_same (neon_quad (rs), 1, et.size);
14980 }
14981
14982 static void
14983 do_neon_zip_uzp (void)
14984 {
14985 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14986 struct neon_type_el et = neon_check_type (2, rs,
14987 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14988 if (rs == NS_DD && et.size == 32)
14989 {
14990 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
14991 inst.instruction = N_MNEM_vtrn;
14992 do_neon_trn ();
14993 return;
14994 }
14995 neon_two_same (neon_quad (rs), 1, et.size);
14996 }
14997
14998 static void
14999 do_neon_sat_abs_neg (void)
15000 {
15001 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15002 struct neon_type_el et = neon_check_type (2, rs,
15003 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
15004 neon_two_same (neon_quad (rs), 1, et.size);
15005 }
15006
15007 static void
15008 do_neon_pair_long (void)
15009 {
15010 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15011 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
15012 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
15013 inst.instruction |= (et.type == NT_unsigned) << 7;
15014 neon_two_same (neon_quad (rs), 1, et.size);
15015 }
15016
15017 static void
15018 do_neon_recip_est (void)
15019 {
15020 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15021 struct neon_type_el et = neon_check_type (2, rs,
15022 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
15023 inst.instruction |= (et.type == NT_float) << 8;
15024 neon_two_same (neon_quad (rs), 1, et.size);
15025 }
15026
15027 static void
15028 do_neon_cls (void)
15029 {
15030 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15031 struct neon_type_el et = neon_check_type (2, rs,
15032 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
15033 neon_two_same (neon_quad (rs), 1, et.size);
15034 }
15035
15036 static void
15037 do_neon_clz (void)
15038 {
15039 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15040 struct neon_type_el et = neon_check_type (2, rs,
15041 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
15042 neon_two_same (neon_quad (rs), 1, et.size);
15043 }
15044
15045 static void
15046 do_neon_cnt (void)
15047 {
15048 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15049 struct neon_type_el et = neon_check_type (2, rs,
15050 N_EQK | N_INT, N_8 | N_KEY);
15051 neon_two_same (neon_quad (rs), 1, et.size);
15052 }
15053
15054 static void
15055 do_neon_swp (void)
15056 {
15057 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15058 neon_two_same (neon_quad (rs), 1, -1);
15059 }
15060
15061 static void
15062 do_neon_tbl_tbx (void)
15063 {
15064 unsigned listlenbits;
15065 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
15066
15067 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
15068 {
15069 first_error (_("bad list length for table lookup"));
15070 return;
15071 }
15072
15073 listlenbits = inst.operands[1].imm - 1;
15074 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15075 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15076 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15077 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15078 inst.instruction |= LOW4 (inst.operands[2].reg);
15079 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15080 inst.instruction |= listlenbits << 8;
15081
15082 neon_dp_fixup (&inst);
15083 }
15084
15085 static void
15086 do_neon_ldm_stm (void)
15087 {
15088 /* P, U and L bits are part of bitmask. */
15089 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
15090 unsigned offsetbits = inst.operands[1].imm * 2;
15091
15092 if (inst.operands[1].issingle)
15093 {
15094 do_vfp_nsyn_ldm_stm (is_dbmode);
15095 return;
15096 }
15097
15098 constraint (is_dbmode && !inst.operands[0].writeback,
15099 _("writeback (!) must be used for VLDMDB and VSTMDB"));
15100
15101 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15102 _("register list must contain at least 1 and at most 16 "
15103 "registers"));
15104
15105 inst.instruction |= inst.operands[0].reg << 16;
15106 inst.instruction |= inst.operands[0].writeback << 21;
15107 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
15108 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
15109
15110 inst.instruction |= offsetbits;
15111
15112 do_vfp_cond_or_thumb ();
15113 }
15114
15115 static void
15116 do_neon_ldr_str (void)
15117 {
15118 int is_ldr = (inst.instruction & (1 << 20)) != 0;
15119
15120 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
15121 And is UNPREDICTABLE in thumb mode. */
15122 if (!is_ldr
15123 && inst.operands[1].reg == REG_PC
15124 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
15125 {
15126 if (!thumb_mode && warn_on_deprecated)
15127 as_warn (_("Use of PC here is deprecated"));
15128 else
15129 inst.error = _("Use of PC here is UNPREDICTABLE");
15130 }
15131
15132 if (inst.operands[0].issingle)
15133 {
15134 if (is_ldr)
15135 do_vfp_nsyn_opcode ("flds");
15136 else
15137 do_vfp_nsyn_opcode ("fsts");
15138 }
15139 else
15140 {
15141 if (is_ldr)
15142 do_vfp_nsyn_opcode ("fldd");
15143 else
15144 do_vfp_nsyn_opcode ("fstd");
15145 }
15146 }
15147
15148 /* "interleave" version also handles non-interleaving register VLD1/VST1
15149 instructions. */
15150
15151 static void
15152 do_neon_ld_st_interleave (void)
15153 {
15154 struct neon_type_el et = neon_check_type (1, NS_NULL,
15155 N_8 | N_16 | N_32 | N_64);
15156 unsigned alignbits = 0;
15157 unsigned idx;
15158 /* The bits in this table go:
15159 0: register stride of one (0) or two (1)
15160 1,2: register list length, minus one (1, 2, 3, 4).
15161 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
15162 We use -1 for invalid entries. */
15163 const int typetable[] =
15164 {
15165 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
15166 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
15167 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
15168 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
15169 };
15170 int typebits;
15171
15172 if (et.type == NT_invtype)
15173 return;
15174
15175 if (inst.operands[1].immisalign)
15176 switch (inst.operands[1].imm >> 8)
15177 {
15178 case 64: alignbits = 1; break;
15179 case 128:
15180 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
15181 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
15182 goto bad_alignment;
15183 alignbits = 2;
15184 break;
15185 case 256:
15186 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
15187 goto bad_alignment;
15188 alignbits = 3;
15189 break;
15190 default:
15191 bad_alignment:
15192 first_error (_("bad alignment"));
15193 return;
15194 }
15195
15196 inst.instruction |= alignbits << 4;
15197 inst.instruction |= neon_logbits (et.size) << 6;
15198
15199 /* Bits [4:6] of the immediate in a list specifier encode register stride
15200 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
15201 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
15202 up the right value for "type" in a table based on this value and the given
15203 list style, then stick it back. */
15204 idx = ((inst.operands[0].imm >> 4) & 7)
15205 | (((inst.instruction >> 8) & 3) << 3);
15206
15207 typebits = typetable[idx];
15208
15209 constraint (typebits == -1, _("bad list type for instruction"));
15210
15211 inst.instruction &= ~0xf00;
15212 inst.instruction |= typebits << 8;
15213 }
15214
15215 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
15216 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
15217 otherwise. The variable arguments are a list of pairs of legal (size, align)
15218 values, terminated with -1. */
15219
15220 static int
15221 neon_alignment_bit (int size, int align, int *do_align, ...)
15222 {
15223 va_list ap;
15224 int result = FAIL, thissize, thisalign;
15225
15226 if (!inst.operands[1].immisalign)
15227 {
15228 *do_align = 0;
15229 return SUCCESS;
15230 }
15231
15232 va_start (ap, do_align);
15233
15234 do
15235 {
15236 thissize = va_arg (ap, int);
15237 if (thissize == -1)
15238 break;
15239 thisalign = va_arg (ap, int);
15240
15241 if (size == thissize && align == thisalign)
15242 result = SUCCESS;
15243 }
15244 while (result != SUCCESS);
15245
15246 va_end (ap);
15247
15248 if (result == SUCCESS)
15249 *do_align = 1;
15250 else
15251 first_error (_("unsupported alignment for instruction"));
15252
15253 return result;
15254 }
15255
15256 static void
15257 do_neon_ld_st_lane (void)
15258 {
15259 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
15260 int align_good, do_align = 0;
15261 int logsize = neon_logbits (et.size);
15262 int align = inst.operands[1].imm >> 8;
15263 int n = (inst.instruction >> 8) & 3;
15264 int max_el = 64 / et.size;
15265
15266 if (et.type == NT_invtype)
15267 return;
15268
15269 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
15270 _("bad list length"));
15271 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
15272 _("scalar index out of range"));
15273 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
15274 && et.size == 8,
15275 _("stride of 2 unavailable when element size is 8"));
15276
15277 switch (n)
15278 {
15279 case 0: /* VLD1 / VST1. */
15280 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
15281 32, 32, -1);
15282 if (align_good == FAIL)
15283 return;
15284 if (do_align)
15285 {
15286 unsigned alignbits = 0;
15287 switch (et.size)
15288 {
15289 case 16: alignbits = 0x1; break;
15290 case 32: alignbits = 0x3; break;
15291 default: ;
15292 }
15293 inst.instruction |= alignbits << 4;
15294 }
15295 break;
15296
15297 case 1: /* VLD2 / VST2. */
15298 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
15299 32, 64, -1);
15300 if (align_good == FAIL)
15301 return;
15302 if (do_align)
15303 inst.instruction |= 1 << 4;
15304 break;
15305
15306 case 2: /* VLD3 / VST3. */
15307 constraint (inst.operands[1].immisalign,
15308 _("can't use alignment with this instruction"));
15309 break;
15310
15311 case 3: /* VLD4 / VST4. */
15312 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15313 16, 64, 32, 64, 32, 128, -1);
15314 if (align_good == FAIL)
15315 return;
15316 if (do_align)
15317 {
15318 unsigned alignbits = 0;
15319 switch (et.size)
15320 {
15321 case 8: alignbits = 0x1; break;
15322 case 16: alignbits = 0x1; break;
15323 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
15324 default: ;
15325 }
15326 inst.instruction |= alignbits << 4;
15327 }
15328 break;
15329
15330 default: ;
15331 }
15332
15333 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
15334 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15335 inst.instruction |= 1 << (4 + logsize);
15336
15337 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
15338 inst.instruction |= logsize << 10;
15339 }
15340
15341 /* Encode single n-element structure to all lanes VLD<n> instructions. */
15342
15343 static void
15344 do_neon_ld_dup (void)
15345 {
15346 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
15347 int align_good, do_align = 0;
15348
15349 if (et.type == NT_invtype)
15350 return;
15351
15352 switch ((inst.instruction >> 8) & 3)
15353 {
15354 case 0: /* VLD1. */
15355 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
15356 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15357 &do_align, 16, 16, 32, 32, -1);
15358 if (align_good == FAIL)
15359 return;
15360 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
15361 {
15362 case 1: break;
15363 case 2: inst.instruction |= 1 << 5; break;
15364 default: first_error (_("bad list length")); return;
15365 }
15366 inst.instruction |= neon_logbits (et.size) << 6;
15367 break;
15368
15369 case 1: /* VLD2. */
15370 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15371 &do_align, 8, 16, 16, 32, 32, 64, -1);
15372 if (align_good == FAIL)
15373 return;
15374 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
15375 _("bad list length"));
15376 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15377 inst.instruction |= 1 << 5;
15378 inst.instruction |= neon_logbits (et.size) << 6;
15379 break;
15380
15381 case 2: /* VLD3. */
15382 constraint (inst.operands[1].immisalign,
15383 _("can't use alignment with this instruction"));
15384 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
15385 _("bad list length"));
15386 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15387 inst.instruction |= 1 << 5;
15388 inst.instruction |= neon_logbits (et.size) << 6;
15389 break;
15390
15391 case 3: /* VLD4. */
15392 {
15393 int align = inst.operands[1].imm >> 8;
15394 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15395 16, 64, 32, 64, 32, 128, -1);
15396 if (align_good == FAIL)
15397 return;
15398 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
15399 _("bad list length"));
15400 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15401 inst.instruction |= 1 << 5;
15402 if (et.size == 32 && align == 128)
15403 inst.instruction |= 0x3 << 6;
15404 else
15405 inst.instruction |= neon_logbits (et.size) << 6;
15406 }
15407 break;
15408
15409 default: ;
15410 }
15411
15412 inst.instruction |= do_align << 4;
15413 }
15414
15415 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
15416 apart from bits [11:4]. */
15417
15418 static void
15419 do_neon_ldx_stx (void)
15420 {
15421 if (inst.operands[1].isreg)
15422 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
15423
15424 switch (NEON_LANE (inst.operands[0].imm))
15425 {
15426 case NEON_INTERLEAVE_LANES:
15427 NEON_ENCODE (INTERLV, inst);
15428 do_neon_ld_st_interleave ();
15429 break;
15430
15431 case NEON_ALL_LANES:
15432 NEON_ENCODE (DUP, inst);
15433 do_neon_ld_dup ();
15434 break;
15435
15436 default:
15437 NEON_ENCODE (LANE, inst);
15438 do_neon_ld_st_lane ();
15439 }
15440
15441 /* L bit comes from bit mask. */
15442 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15443 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15444 inst.instruction |= inst.operands[1].reg << 16;
15445
15446 if (inst.operands[1].postind)
15447 {
15448 int postreg = inst.operands[1].imm & 0xf;
15449 constraint (!inst.operands[1].immisreg,
15450 _("post-index must be a register"));
15451 constraint (postreg == 0xd || postreg == 0xf,
15452 _("bad register for post-index"));
15453 inst.instruction |= postreg;
15454 }
15455 else if (inst.operands[1].writeback)
15456 {
15457 inst.instruction |= 0xd;
15458 }
15459 else
15460 inst.instruction |= 0xf;
15461
15462 if (thumb_mode)
15463 inst.instruction |= 0xf9000000;
15464 else
15465 inst.instruction |= 0xf4000000;
15466 }
15467 \f
15468 /* Overall per-instruction processing. */
15469
15470 /* We need to be able to fix up arbitrary expressions in some statements.
15471 This is so that we can handle symbols that are an arbitrary distance from
15472 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
15473 which returns part of an address in a form which will be valid for
15474 a data instruction. We do this by pushing the expression into a symbol
15475 in the expr_section, and creating a fix for that. */
15476
15477 static void
15478 fix_new_arm (fragS * frag,
15479 int where,
15480 short int size,
15481 expressionS * exp,
15482 int pc_rel,
15483 int reloc)
15484 {
15485 fixS * new_fix;
15486
15487 switch (exp->X_op)
15488 {
15489 case O_constant:
15490 if (pc_rel)
15491 {
15492 /* Create an absolute valued symbol, so we have something to
15493 refer to in the object file. Unfortunately for us, gas's
15494 generic expression parsing will already have folded out
15495 any use of .set foo/.type foo %function that may have
15496 been used to set type information of the target location,
15497 that's being specified symbolically. We have to presume
15498 the user knows what they are doing. */
15499 char name[16 + 8];
15500 symbolS *symbol;
15501
15502 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
15503
15504 symbol = symbol_find_or_make (name);
15505 S_SET_SEGMENT (symbol, absolute_section);
15506 symbol_set_frag (symbol, &zero_address_frag);
15507 S_SET_VALUE (symbol, exp->X_add_number);
15508 exp->X_op = O_symbol;
15509 exp->X_add_symbol = symbol;
15510 exp->X_add_number = 0;
15511 }
15512 /* FALLTHROUGH */
15513 case O_symbol:
15514 case O_add:
15515 case O_subtract:
15516 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
15517 (enum bfd_reloc_code_real) reloc);
15518 break;
15519
15520 default:
15521 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
15522 pc_rel, (enum bfd_reloc_code_real) reloc);
15523 break;
15524 }
15525
15526 /* Mark whether the fix is to a THUMB instruction, or an ARM
15527 instruction. */
15528 new_fix->tc_fix_data = thumb_mode;
15529 }
15530
15531 /* Create a frg for an instruction requiring relaxation. */
15532 static void
15533 output_relax_insn (void)
15534 {
15535 char * to;
15536 symbolS *sym;
15537 int offset;
15538
15539 /* The size of the instruction is unknown, so tie the debug info to the
15540 start of the instruction. */
15541 dwarf2_emit_insn (0);
15542
15543 switch (inst.reloc.exp.X_op)
15544 {
15545 case O_symbol:
15546 sym = inst.reloc.exp.X_add_symbol;
15547 offset = inst.reloc.exp.X_add_number;
15548 break;
15549 case O_constant:
15550 sym = NULL;
15551 offset = inst.reloc.exp.X_add_number;
15552 break;
15553 default:
15554 sym = make_expr_symbol (&inst.reloc.exp);
15555 offset = 0;
15556 break;
15557 }
15558 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
15559 inst.relax, sym, offset, NULL/*offset, opcode*/);
15560 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
15561 }
15562
15563 /* Write a 32-bit thumb instruction to buf. */
15564 static void
15565 put_thumb32_insn (char * buf, unsigned long insn)
15566 {
15567 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
15568 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
15569 }
15570
15571 static void
15572 output_inst (const char * str)
15573 {
15574 char * to = NULL;
15575
15576 if (inst.error)
15577 {
15578 as_bad ("%s -- `%s'", inst.error, str);
15579 return;
15580 }
15581 if (inst.relax)
15582 {
15583 output_relax_insn ();
15584 return;
15585 }
15586 if (inst.size == 0)
15587 return;
15588
15589 to = frag_more (inst.size);
15590 /* PR 9814: Record the thumb mode into the current frag so that we know
15591 what type of NOP padding to use, if necessary. We override any previous
15592 setting so that if the mode has changed then the NOPS that we use will
15593 match the encoding of the last instruction in the frag. */
15594 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
15595
15596 if (thumb_mode && (inst.size > THUMB_SIZE))
15597 {
15598 gas_assert (inst.size == (2 * THUMB_SIZE));
15599 put_thumb32_insn (to, inst.instruction);
15600 }
15601 else if (inst.size > INSN_SIZE)
15602 {
15603 gas_assert (inst.size == (2 * INSN_SIZE));
15604 md_number_to_chars (to, inst.instruction, INSN_SIZE);
15605 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
15606 }
15607 else
15608 md_number_to_chars (to, inst.instruction, inst.size);
15609
15610 if (inst.reloc.type != BFD_RELOC_UNUSED)
15611 fix_new_arm (frag_now, to - frag_now->fr_literal,
15612 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
15613 inst.reloc.type);
15614
15615 dwarf2_emit_insn (inst.size);
15616 }
15617
15618 static char *
15619 output_it_inst (int cond, int mask, char * to)
15620 {
15621 unsigned long instruction = 0xbf00;
15622
15623 mask &= 0xf;
15624 instruction |= mask;
15625 instruction |= cond << 4;
15626
15627 if (to == NULL)
15628 {
15629 to = frag_more (2);
15630 #ifdef OBJ_ELF
15631 dwarf2_emit_insn (2);
15632 #endif
15633 }
15634
15635 md_number_to_chars (to, instruction, 2);
15636
15637 return to;
15638 }
15639
15640 /* Tag values used in struct asm_opcode's tag field. */
15641 enum opcode_tag
15642 {
15643 OT_unconditional, /* Instruction cannot be conditionalized.
15644 The ARM condition field is still 0xE. */
15645 OT_unconditionalF, /* Instruction cannot be conditionalized
15646 and carries 0xF in its ARM condition field. */
15647 OT_csuffix, /* Instruction takes a conditional suffix. */
15648 OT_csuffixF, /* Some forms of the instruction take a conditional
15649 suffix, others place 0xF where the condition field
15650 would be. */
15651 OT_cinfix3, /* Instruction takes a conditional infix,
15652 beginning at character index 3. (In
15653 unified mode, it becomes a suffix.) */
15654 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
15655 tsts, cmps, cmns, and teqs. */
15656 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
15657 character index 3, even in unified mode. Used for
15658 legacy instructions where suffix and infix forms
15659 may be ambiguous. */
15660 OT_csuf_or_in3, /* Instruction takes either a conditional
15661 suffix or an infix at character index 3. */
15662 OT_odd_infix_unc, /* This is the unconditional variant of an
15663 instruction that takes a conditional infix
15664 at an unusual position. In unified mode,
15665 this variant will accept a suffix. */
15666 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
15667 are the conditional variants of instructions that
15668 take conditional infixes in unusual positions.
15669 The infix appears at character index
15670 (tag - OT_odd_infix_0). These are not accepted
15671 in unified mode. */
15672 };
15673
15674 /* Subroutine of md_assemble, responsible for looking up the primary
15675 opcode from the mnemonic the user wrote. STR points to the
15676 beginning of the mnemonic.
15677
15678 This is not simply a hash table lookup, because of conditional
15679 variants. Most instructions have conditional variants, which are
15680 expressed with a _conditional affix_ to the mnemonic. If we were
15681 to encode each conditional variant as a literal string in the opcode
15682 table, it would have approximately 20,000 entries.
15683
15684 Most mnemonics take this affix as a suffix, and in unified syntax,
15685 'most' is upgraded to 'all'. However, in the divided syntax, some
15686 instructions take the affix as an infix, notably the s-variants of
15687 the arithmetic instructions. Of those instructions, all but six
15688 have the infix appear after the third character of the mnemonic.
15689
15690 Accordingly, the algorithm for looking up primary opcodes given
15691 an identifier is:
15692
15693 1. Look up the identifier in the opcode table.
15694 If we find a match, go to step U.
15695
15696 2. Look up the last two characters of the identifier in the
15697 conditions table. If we find a match, look up the first N-2
15698 characters of the identifier in the opcode table. If we
15699 find a match, go to step CE.
15700
15701 3. Look up the fourth and fifth characters of the identifier in
15702 the conditions table. If we find a match, extract those
15703 characters from the identifier, and look up the remaining
15704 characters in the opcode table. If we find a match, go
15705 to step CM.
15706
15707 4. Fail.
15708
15709 U. Examine the tag field of the opcode structure, in case this is
15710 one of the six instructions with its conditional infix in an
15711 unusual place. If it is, the tag tells us where to find the
15712 infix; look it up in the conditions table and set inst.cond
15713 accordingly. Otherwise, this is an unconditional instruction.
15714 Again set inst.cond accordingly. Return the opcode structure.
15715
15716 CE. Examine the tag field to make sure this is an instruction that
15717 should receive a conditional suffix. If it is not, fail.
15718 Otherwise, set inst.cond from the suffix we already looked up,
15719 and return the opcode structure.
15720
15721 CM. Examine the tag field to make sure this is an instruction that
15722 should receive a conditional infix after the third character.
15723 If it is not, fail. Otherwise, undo the edits to the current
15724 line of input and proceed as for case CE. */
15725
15726 static const struct asm_opcode *
15727 opcode_lookup (char **str)
15728 {
15729 char *end, *base;
15730 char *affix;
15731 const struct asm_opcode *opcode;
15732 const struct asm_cond *cond;
15733 char save[2];
15734
15735 /* Scan up to the end of the mnemonic, which must end in white space,
15736 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
15737 for (base = end = *str; *end != '\0'; end++)
15738 if (*end == ' ' || *end == '.')
15739 break;
15740
15741 if (end == base)
15742 return NULL;
15743
15744 /* Handle a possible width suffix and/or Neon type suffix. */
15745 if (end[0] == '.')
15746 {
15747 int offset = 2;
15748
15749 /* The .w and .n suffixes are only valid if the unified syntax is in
15750 use. */
15751 if (unified_syntax && end[1] == 'w')
15752 inst.size_req = 4;
15753 else if (unified_syntax && end[1] == 'n')
15754 inst.size_req = 2;
15755 else
15756 offset = 0;
15757
15758 inst.vectype.elems = 0;
15759
15760 *str = end + offset;
15761
15762 if (end[offset] == '.')
15763 {
15764 /* See if we have a Neon type suffix (possible in either unified or
15765 non-unified ARM syntax mode). */
15766 if (parse_neon_type (&inst.vectype, str) == FAIL)
15767 return NULL;
15768 }
15769 else if (end[offset] != '\0' && end[offset] != ' ')
15770 return NULL;
15771 }
15772 else
15773 *str = end;
15774
15775 /* Look for unaffixed or special-case affixed mnemonic. */
15776 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15777 end - base);
15778 if (opcode)
15779 {
15780 /* step U */
15781 if (opcode->tag < OT_odd_infix_0)
15782 {
15783 inst.cond = COND_ALWAYS;
15784 return opcode;
15785 }
15786
15787 if (warn_on_deprecated && unified_syntax)
15788 as_warn (_("conditional infixes are deprecated in unified syntax"));
15789 affix = base + (opcode->tag - OT_odd_infix_0);
15790 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15791 gas_assert (cond);
15792
15793 inst.cond = cond->value;
15794 return opcode;
15795 }
15796
15797 /* Cannot have a conditional suffix on a mnemonic of less than two
15798 characters. */
15799 if (end - base < 3)
15800 return NULL;
15801
15802 /* Look for suffixed mnemonic. */
15803 affix = end - 2;
15804 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15805 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15806 affix - base);
15807 if (opcode && cond)
15808 {
15809 /* step CE */
15810 switch (opcode->tag)
15811 {
15812 case OT_cinfix3_legacy:
15813 /* Ignore conditional suffixes matched on infix only mnemonics. */
15814 break;
15815
15816 case OT_cinfix3:
15817 case OT_cinfix3_deprecated:
15818 case OT_odd_infix_unc:
15819 if (!unified_syntax)
15820 return 0;
15821 /* else fall through */
15822
15823 case OT_csuffix:
15824 case OT_csuffixF:
15825 case OT_csuf_or_in3:
15826 inst.cond = cond->value;
15827 return opcode;
15828
15829 case OT_unconditional:
15830 case OT_unconditionalF:
15831 if (thumb_mode)
15832 inst.cond = cond->value;
15833 else
15834 {
15835 /* Delayed diagnostic. */
15836 inst.error = BAD_COND;
15837 inst.cond = COND_ALWAYS;
15838 }
15839 return opcode;
15840
15841 default:
15842 return NULL;
15843 }
15844 }
15845
15846 /* Cannot have a usual-position infix on a mnemonic of less than
15847 six characters (five would be a suffix). */
15848 if (end - base < 6)
15849 return NULL;
15850
15851 /* Look for infixed mnemonic in the usual position. */
15852 affix = base + 3;
15853 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15854 if (!cond)
15855 return NULL;
15856
15857 memcpy (save, affix, 2);
15858 memmove (affix, affix + 2, (end - affix) - 2);
15859 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15860 (end - base) - 2);
15861 memmove (affix + 2, affix, (end - affix) - 2);
15862 memcpy (affix, save, 2);
15863
15864 if (opcode
15865 && (opcode->tag == OT_cinfix3
15866 || opcode->tag == OT_cinfix3_deprecated
15867 || opcode->tag == OT_csuf_or_in3
15868 || opcode->tag == OT_cinfix3_legacy))
15869 {
15870 /* Step CM. */
15871 if (warn_on_deprecated && unified_syntax
15872 && (opcode->tag == OT_cinfix3
15873 || opcode->tag == OT_cinfix3_deprecated))
15874 as_warn (_("conditional infixes are deprecated in unified syntax"));
15875
15876 inst.cond = cond->value;
15877 return opcode;
15878 }
15879
15880 return NULL;
15881 }
15882
15883 /* This function generates an initial IT instruction, leaving its block
15884 virtually open for the new instructions. Eventually,
15885 the mask will be updated by now_it_add_mask () each time
15886 a new instruction needs to be included in the IT block.
15887 Finally, the block is closed with close_automatic_it_block ().
15888 The block closure can be requested either from md_assemble (),
15889 a tencode (), or due to a label hook. */
15890
15891 static void
15892 new_automatic_it_block (int cond)
15893 {
15894 now_it.state = AUTOMATIC_IT_BLOCK;
15895 now_it.mask = 0x18;
15896 now_it.cc = cond;
15897 now_it.block_length = 1;
15898 mapping_state (MAP_THUMB);
15899 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
15900 }
15901
15902 /* Close an automatic IT block.
15903 See comments in new_automatic_it_block (). */
15904
15905 static void
15906 close_automatic_it_block (void)
15907 {
15908 now_it.mask = 0x10;
15909 now_it.block_length = 0;
15910 }
15911
15912 /* Update the mask of the current automatically-generated IT
15913 instruction. See comments in new_automatic_it_block (). */
15914
15915 static void
15916 now_it_add_mask (int cond)
15917 {
15918 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
15919 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
15920 | ((bitvalue) << (nbit)))
15921 const int resulting_bit = (cond & 1);
15922
15923 now_it.mask &= 0xf;
15924 now_it.mask = SET_BIT_VALUE (now_it.mask,
15925 resulting_bit,
15926 (5 - now_it.block_length));
15927 now_it.mask = SET_BIT_VALUE (now_it.mask,
15928 1,
15929 ((5 - now_it.block_length) - 1) );
15930 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
15931
15932 #undef CLEAR_BIT
15933 #undef SET_BIT_VALUE
15934 }
15935
15936 /* The IT blocks handling machinery is accessed through the these functions:
15937 it_fsm_pre_encode () from md_assemble ()
15938 set_it_insn_type () optional, from the tencode functions
15939 set_it_insn_type_last () ditto
15940 in_it_block () ditto
15941 it_fsm_post_encode () from md_assemble ()
15942 force_automatic_it_block_close () from label habdling functions
15943
15944 Rationale:
15945 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
15946 initializing the IT insn type with a generic initial value depending
15947 on the inst.condition.
15948 2) During the tencode function, two things may happen:
15949 a) The tencode function overrides the IT insn type by
15950 calling either set_it_insn_type (type) or set_it_insn_type_last ().
15951 b) The tencode function queries the IT block state by
15952 calling in_it_block () (i.e. to determine narrow/not narrow mode).
15953
15954 Both set_it_insn_type and in_it_block run the internal FSM state
15955 handling function (handle_it_state), because: a) setting the IT insn
15956 type may incur in an invalid state (exiting the function),
15957 and b) querying the state requires the FSM to be updated.
15958 Specifically we want to avoid creating an IT block for conditional
15959 branches, so it_fsm_pre_encode is actually a guess and we can't
15960 determine whether an IT block is required until the tencode () routine
15961 has decided what type of instruction this actually it.
15962 Because of this, if set_it_insn_type and in_it_block have to be used,
15963 set_it_insn_type has to be called first.
15964
15965 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
15966 determines the insn IT type depending on the inst.cond code.
15967 When a tencode () routine encodes an instruction that can be
15968 either outside an IT block, or, in the case of being inside, has to be
15969 the last one, set_it_insn_type_last () will determine the proper
15970 IT instruction type based on the inst.cond code. Otherwise,
15971 set_it_insn_type can be called for overriding that logic or
15972 for covering other cases.
15973
15974 Calling handle_it_state () may not transition the IT block state to
15975 OUTSIDE_IT_BLOCK immediatelly, since the (current) state could be
15976 still queried. Instead, if the FSM determines that the state should
15977 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
15978 after the tencode () function: that's what it_fsm_post_encode () does.
15979
15980 Since in_it_block () calls the state handling function to get an
15981 updated state, an error may occur (due to invalid insns combination).
15982 In that case, inst.error is set.
15983 Therefore, inst.error has to be checked after the execution of
15984 the tencode () routine.
15985
15986 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
15987 any pending state change (if any) that didn't take place in
15988 handle_it_state () as explained above. */
15989
15990 static void
15991 it_fsm_pre_encode (void)
15992 {
15993 if (inst.cond != COND_ALWAYS)
15994 inst.it_insn_type = INSIDE_IT_INSN;
15995 else
15996 inst.it_insn_type = OUTSIDE_IT_INSN;
15997
15998 now_it.state_handled = 0;
15999 }
16000
16001 /* IT state FSM handling function. */
16002
16003 static int
16004 handle_it_state (void)
16005 {
16006 now_it.state_handled = 1;
16007
16008 switch (now_it.state)
16009 {
16010 case OUTSIDE_IT_BLOCK:
16011 switch (inst.it_insn_type)
16012 {
16013 case OUTSIDE_IT_INSN:
16014 break;
16015
16016 case INSIDE_IT_INSN:
16017 case INSIDE_IT_LAST_INSN:
16018 if (thumb_mode == 0)
16019 {
16020 if (unified_syntax
16021 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
16022 as_tsktsk (_("Warning: conditional outside an IT block"\
16023 " for Thumb."));
16024 }
16025 else
16026 {
16027 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
16028 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
16029 {
16030 /* Automatically generate the IT instruction. */
16031 new_automatic_it_block (inst.cond);
16032 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
16033 close_automatic_it_block ();
16034 }
16035 else
16036 {
16037 inst.error = BAD_OUT_IT;
16038 return FAIL;
16039 }
16040 }
16041 break;
16042
16043 case IF_INSIDE_IT_LAST_INSN:
16044 case NEUTRAL_IT_INSN:
16045 break;
16046
16047 case IT_INSN:
16048 now_it.state = MANUAL_IT_BLOCK;
16049 now_it.block_length = 0;
16050 break;
16051 }
16052 break;
16053
16054 case AUTOMATIC_IT_BLOCK:
16055 /* Three things may happen now:
16056 a) We should increment current it block size;
16057 b) We should close current it block (closing insn or 4 insns);
16058 c) We should close current it block and start a new one (due
16059 to incompatible conditions or
16060 4 insns-length block reached). */
16061
16062 switch (inst.it_insn_type)
16063 {
16064 case OUTSIDE_IT_INSN:
16065 /* The closure of the block shall happen immediatelly,
16066 so any in_it_block () call reports the block as closed. */
16067 force_automatic_it_block_close ();
16068 break;
16069
16070 case INSIDE_IT_INSN:
16071 case INSIDE_IT_LAST_INSN:
16072 case IF_INSIDE_IT_LAST_INSN:
16073 now_it.block_length++;
16074
16075 if (now_it.block_length > 4
16076 || !now_it_compatible (inst.cond))
16077 {
16078 force_automatic_it_block_close ();
16079 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
16080 new_automatic_it_block (inst.cond);
16081 }
16082 else
16083 {
16084 now_it_add_mask (inst.cond);
16085 }
16086
16087 if (now_it.state == AUTOMATIC_IT_BLOCK
16088 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
16089 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
16090 close_automatic_it_block ();
16091 break;
16092
16093 case NEUTRAL_IT_INSN:
16094 now_it.block_length++;
16095
16096 if (now_it.block_length > 4)
16097 force_automatic_it_block_close ();
16098 else
16099 now_it_add_mask (now_it.cc & 1);
16100 break;
16101
16102 case IT_INSN:
16103 close_automatic_it_block ();
16104 now_it.state = MANUAL_IT_BLOCK;
16105 break;
16106 }
16107 break;
16108
16109 case MANUAL_IT_BLOCK:
16110 {
16111 /* Check conditional suffixes. */
16112 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
16113 int is_last;
16114 now_it.mask <<= 1;
16115 now_it.mask &= 0x1f;
16116 is_last = (now_it.mask == 0x10);
16117
16118 switch (inst.it_insn_type)
16119 {
16120 case OUTSIDE_IT_INSN:
16121 inst.error = BAD_NOT_IT;
16122 return FAIL;
16123
16124 case INSIDE_IT_INSN:
16125 if (cond != inst.cond)
16126 {
16127 inst.error = BAD_IT_COND;
16128 return FAIL;
16129 }
16130 break;
16131
16132 case INSIDE_IT_LAST_INSN:
16133 case IF_INSIDE_IT_LAST_INSN:
16134 if (cond != inst.cond)
16135 {
16136 inst.error = BAD_IT_COND;
16137 return FAIL;
16138 }
16139 if (!is_last)
16140 {
16141 inst.error = BAD_BRANCH;
16142 return FAIL;
16143 }
16144 break;
16145
16146 case NEUTRAL_IT_INSN:
16147 /* The BKPT instruction is unconditional even in an IT block. */
16148 break;
16149
16150 case IT_INSN:
16151 inst.error = BAD_IT_IT;
16152 return FAIL;
16153 }
16154 }
16155 break;
16156 }
16157
16158 return SUCCESS;
16159 }
16160
16161 static void
16162 it_fsm_post_encode (void)
16163 {
16164 int is_last;
16165
16166 if (!now_it.state_handled)
16167 handle_it_state ();
16168
16169 is_last = (now_it.mask == 0x10);
16170 if (is_last)
16171 {
16172 now_it.state = OUTSIDE_IT_BLOCK;
16173 now_it.mask = 0;
16174 }
16175 }
16176
16177 static void
16178 force_automatic_it_block_close (void)
16179 {
16180 if (now_it.state == AUTOMATIC_IT_BLOCK)
16181 {
16182 close_automatic_it_block ();
16183 now_it.state = OUTSIDE_IT_BLOCK;
16184 now_it.mask = 0;
16185 }
16186 }
16187
16188 static int
16189 in_it_block (void)
16190 {
16191 if (!now_it.state_handled)
16192 handle_it_state ();
16193
16194 return now_it.state != OUTSIDE_IT_BLOCK;
16195 }
16196
16197 void
16198 md_assemble (char *str)
16199 {
16200 char *p = str;
16201 const struct asm_opcode * opcode;
16202
16203 /* Align the previous label if needed. */
16204 if (last_label_seen != NULL)
16205 {
16206 symbol_set_frag (last_label_seen, frag_now);
16207 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
16208 S_SET_SEGMENT (last_label_seen, now_seg);
16209 }
16210
16211 memset (&inst, '\0', sizeof (inst));
16212 inst.reloc.type = BFD_RELOC_UNUSED;
16213
16214 opcode = opcode_lookup (&p);
16215 if (!opcode)
16216 {
16217 /* It wasn't an instruction, but it might be a register alias of
16218 the form alias .req reg, or a Neon .dn/.qn directive. */
16219 if (! create_register_alias (str, p)
16220 && ! create_neon_reg_alias (str, p))
16221 as_bad (_("bad instruction `%s'"), str);
16222
16223 return;
16224 }
16225
16226 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
16227 as_warn (_("s suffix on comparison instruction is deprecated"));
16228
16229 /* The value which unconditional instructions should have in place of the
16230 condition field. */
16231 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
16232
16233 if (thumb_mode)
16234 {
16235 arm_feature_set variant;
16236
16237 variant = cpu_variant;
16238 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
16239 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
16240 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
16241 /* Check that this instruction is supported for this CPU. */
16242 if (!opcode->tvariant
16243 || (thumb_mode == 1
16244 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
16245 {
16246 as_bad (_("selected processor does not support Thumb mode `%s'"), str);
16247 return;
16248 }
16249 if (inst.cond != COND_ALWAYS && !unified_syntax
16250 && opcode->tencode != do_t_branch)
16251 {
16252 as_bad (_("Thumb does not support conditional execution"));
16253 return;
16254 }
16255
16256 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2))
16257 {
16258 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
16259 && !(ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr)
16260 || ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_barrier)))
16261 {
16262 /* Two things are addressed here.
16263 1) Implicit require narrow instructions on Thumb-1.
16264 This avoids relaxation accidentally introducing Thumb-2
16265 instructions.
16266 2) Reject wide instructions in non Thumb-2 cores. */
16267 if (inst.size_req == 0)
16268 inst.size_req = 2;
16269 else if (inst.size_req == 4)
16270 {
16271 as_bad (_("selected processor does not support Thumb-2 mode `%s'"), str);
16272 return;
16273 }
16274 }
16275 }
16276
16277 inst.instruction = opcode->tvalue;
16278
16279 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
16280 {
16281 /* Prepare the it_insn_type for those encodings that don't set
16282 it. */
16283 it_fsm_pre_encode ();
16284
16285 opcode->tencode ();
16286
16287 it_fsm_post_encode ();
16288 }
16289
16290 if (!(inst.error || inst.relax))
16291 {
16292 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
16293 inst.size = (inst.instruction > 0xffff ? 4 : 2);
16294 if (inst.size_req && inst.size_req != inst.size)
16295 {
16296 as_bad (_("cannot honor width suffix -- `%s'"), str);
16297 return;
16298 }
16299 }
16300
16301 /* Something has gone badly wrong if we try to relax a fixed size
16302 instruction. */
16303 gas_assert (inst.size_req == 0 || !inst.relax);
16304
16305 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16306 *opcode->tvariant);
16307 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
16308 set those bits when Thumb-2 32-bit instructions are seen. ie.
16309 anything other than bl/blx and v6-M instructions.
16310 This is overly pessimistic for relaxable instructions. */
16311 if (((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
16312 || inst.relax)
16313 && !(ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
16314 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier)))
16315 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16316 arm_ext_v6t2);
16317
16318 check_neon_suffixes;
16319
16320 if (!inst.error)
16321 {
16322 mapping_state (MAP_THUMB);
16323 }
16324 }
16325 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
16326 {
16327 bfd_boolean is_bx;
16328
16329 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
16330 is_bx = (opcode->aencode == do_bx);
16331
16332 /* Check that this instruction is supported for this CPU. */
16333 if (!(is_bx && fix_v4bx)
16334 && !(opcode->avariant &&
16335 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
16336 {
16337 as_bad (_("selected processor does not support ARM mode `%s'"), str);
16338 return;
16339 }
16340 if (inst.size_req)
16341 {
16342 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
16343 return;
16344 }
16345
16346 inst.instruction = opcode->avalue;
16347 if (opcode->tag == OT_unconditionalF)
16348 inst.instruction |= 0xF << 28;
16349 else
16350 inst.instruction |= inst.cond << 28;
16351 inst.size = INSN_SIZE;
16352 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
16353 {
16354 it_fsm_pre_encode ();
16355 opcode->aencode ();
16356 it_fsm_post_encode ();
16357 }
16358 /* Arm mode bx is marked as both v4T and v5 because it's still required
16359 on a hypothetical non-thumb v5 core. */
16360 if (is_bx)
16361 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
16362 else
16363 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
16364 *opcode->avariant);
16365
16366 check_neon_suffixes;
16367
16368 if (!inst.error)
16369 {
16370 mapping_state (MAP_ARM);
16371 }
16372 }
16373 else
16374 {
16375 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
16376 "-- `%s'"), str);
16377 return;
16378 }
16379 output_inst (str);
16380 }
16381
16382 static void
16383 check_it_blocks_finished (void)
16384 {
16385 #ifdef OBJ_ELF
16386 asection *sect;
16387
16388 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
16389 if (seg_info (sect)->tc_segment_info_data.current_it.state
16390 == MANUAL_IT_BLOCK)
16391 {
16392 as_warn (_("section '%s' finished with an open IT block."),
16393 sect->name);
16394 }
16395 #else
16396 if (now_it.state == MANUAL_IT_BLOCK)
16397 as_warn (_("file finished with an open IT block."));
16398 #endif
16399 }
16400
16401 /* Various frobbings of labels and their addresses. */
16402
16403 void
16404 arm_start_line_hook (void)
16405 {
16406 last_label_seen = NULL;
16407 }
16408
16409 void
16410 arm_frob_label (symbolS * sym)
16411 {
16412 last_label_seen = sym;
16413
16414 ARM_SET_THUMB (sym, thumb_mode);
16415
16416 #if defined OBJ_COFF || defined OBJ_ELF
16417 ARM_SET_INTERWORK (sym, support_interwork);
16418 #endif
16419
16420 force_automatic_it_block_close ();
16421
16422 /* Note - do not allow local symbols (.Lxxx) to be labelled
16423 as Thumb functions. This is because these labels, whilst
16424 they exist inside Thumb code, are not the entry points for
16425 possible ARM->Thumb calls. Also, these labels can be used
16426 as part of a computed goto or switch statement. eg gcc
16427 can generate code that looks like this:
16428
16429 ldr r2, [pc, .Laaa]
16430 lsl r3, r3, #2
16431 ldr r2, [r3, r2]
16432 mov pc, r2
16433
16434 .Lbbb: .word .Lxxx
16435 .Lccc: .word .Lyyy
16436 ..etc...
16437 .Laaa: .word Lbbb
16438
16439 The first instruction loads the address of the jump table.
16440 The second instruction converts a table index into a byte offset.
16441 The third instruction gets the jump address out of the table.
16442 The fourth instruction performs the jump.
16443
16444 If the address stored at .Laaa is that of a symbol which has the
16445 Thumb_Func bit set, then the linker will arrange for this address
16446 to have the bottom bit set, which in turn would mean that the
16447 address computation performed by the third instruction would end
16448 up with the bottom bit set. Since the ARM is capable of unaligned
16449 word loads, the instruction would then load the incorrect address
16450 out of the jump table, and chaos would ensue. */
16451 if (label_is_thumb_function_name
16452 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
16453 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
16454 {
16455 /* When the address of a Thumb function is taken the bottom
16456 bit of that address should be set. This will allow
16457 interworking between Arm and Thumb functions to work
16458 correctly. */
16459
16460 THUMB_SET_FUNC (sym, 1);
16461
16462 label_is_thumb_function_name = FALSE;
16463 }
16464
16465 dwarf2_emit_label (sym);
16466 }
16467
16468 bfd_boolean
16469 arm_data_in_code (void)
16470 {
16471 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
16472 {
16473 *input_line_pointer = '/';
16474 input_line_pointer += 5;
16475 *input_line_pointer = 0;
16476 return TRUE;
16477 }
16478
16479 return FALSE;
16480 }
16481
16482 char *
16483 arm_canonicalize_symbol_name (char * name)
16484 {
16485 int len;
16486
16487 if (thumb_mode && (len = strlen (name)) > 5
16488 && streq (name + len - 5, "/data"))
16489 *(name + len - 5) = 0;
16490
16491 return name;
16492 }
16493 \f
16494 /* Table of all register names defined by default. The user can
16495 define additional names with .req. Note that all register names
16496 should appear in both upper and lowercase variants. Some registers
16497 also have mixed-case names. */
16498
16499 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
16500 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
16501 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
16502 #define REGSET(p,t) \
16503 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
16504 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
16505 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
16506 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
16507 #define REGSETH(p,t) \
16508 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
16509 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
16510 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
16511 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
16512 #define REGSET2(p,t) \
16513 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
16514 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
16515 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
16516 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
16517 #define SPLRBANK(base,bank,t) \
16518 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
16519 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
16520 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
16521 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
16522 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
16523 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
16524
16525 static const struct reg_entry reg_names[] =
16526 {
16527 /* ARM integer registers. */
16528 REGSET(r, RN), REGSET(R, RN),
16529
16530 /* ATPCS synonyms. */
16531 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
16532 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
16533 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
16534
16535 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
16536 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
16537 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
16538
16539 /* Well-known aliases. */
16540 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
16541 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
16542
16543 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
16544 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
16545
16546 /* Coprocessor numbers. */
16547 REGSET(p, CP), REGSET(P, CP),
16548
16549 /* Coprocessor register numbers. The "cr" variants are for backward
16550 compatibility. */
16551 REGSET(c, CN), REGSET(C, CN),
16552 REGSET(cr, CN), REGSET(CR, CN),
16553
16554 /* ARM banked registers. */
16555 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
16556 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
16557 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
16558 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
16559 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
16560 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
16561 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
16562
16563 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
16564 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
16565 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
16566 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
16567 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
16568 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(SP_fiq,512|(13<<16),RNB),
16569 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
16570 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
16571
16572 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
16573 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
16574 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
16575 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
16576 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
16577 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
16578 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
16579 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
16580 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
16581
16582 /* FPA registers. */
16583 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
16584 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
16585
16586 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
16587 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
16588
16589 /* VFP SP registers. */
16590 REGSET(s,VFS), REGSET(S,VFS),
16591 REGSETH(s,VFS), REGSETH(S,VFS),
16592
16593 /* VFP DP Registers. */
16594 REGSET(d,VFD), REGSET(D,VFD),
16595 /* Extra Neon DP registers. */
16596 REGSETH(d,VFD), REGSETH(D,VFD),
16597
16598 /* Neon QP registers. */
16599 REGSET2(q,NQ), REGSET2(Q,NQ),
16600
16601 /* VFP control registers. */
16602 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
16603 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
16604 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
16605 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
16606 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
16607 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
16608
16609 /* Maverick DSP coprocessor registers. */
16610 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
16611 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
16612
16613 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
16614 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
16615 REGDEF(dspsc,0,DSPSC),
16616
16617 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
16618 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
16619 REGDEF(DSPSC,0,DSPSC),
16620
16621 /* iWMMXt data registers - p0, c0-15. */
16622 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
16623
16624 /* iWMMXt control registers - p1, c0-3. */
16625 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
16626 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
16627 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
16628 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
16629
16630 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
16631 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
16632 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
16633 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
16634 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
16635
16636 /* XScale accumulator registers. */
16637 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
16638 };
16639 #undef REGDEF
16640 #undef REGNUM
16641 #undef REGSET
16642
16643 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
16644 within psr_required_here. */
16645 static const struct asm_psr psrs[] =
16646 {
16647 /* Backward compatibility notation. Note that "all" is no longer
16648 truly all possible PSR bits. */
16649 {"all", PSR_c | PSR_f},
16650 {"flg", PSR_f},
16651 {"ctl", PSR_c},
16652
16653 /* Individual flags. */
16654 {"f", PSR_f},
16655 {"c", PSR_c},
16656 {"x", PSR_x},
16657 {"s", PSR_s},
16658
16659 /* Combinations of flags. */
16660 {"fs", PSR_f | PSR_s},
16661 {"fx", PSR_f | PSR_x},
16662 {"fc", PSR_f | PSR_c},
16663 {"sf", PSR_s | PSR_f},
16664 {"sx", PSR_s | PSR_x},
16665 {"sc", PSR_s | PSR_c},
16666 {"xf", PSR_x | PSR_f},
16667 {"xs", PSR_x | PSR_s},
16668 {"xc", PSR_x | PSR_c},
16669 {"cf", PSR_c | PSR_f},
16670 {"cs", PSR_c | PSR_s},
16671 {"cx", PSR_c | PSR_x},
16672 {"fsx", PSR_f | PSR_s | PSR_x},
16673 {"fsc", PSR_f | PSR_s | PSR_c},
16674 {"fxs", PSR_f | PSR_x | PSR_s},
16675 {"fxc", PSR_f | PSR_x | PSR_c},
16676 {"fcs", PSR_f | PSR_c | PSR_s},
16677 {"fcx", PSR_f | PSR_c | PSR_x},
16678 {"sfx", PSR_s | PSR_f | PSR_x},
16679 {"sfc", PSR_s | PSR_f | PSR_c},
16680 {"sxf", PSR_s | PSR_x | PSR_f},
16681 {"sxc", PSR_s | PSR_x | PSR_c},
16682 {"scf", PSR_s | PSR_c | PSR_f},
16683 {"scx", PSR_s | PSR_c | PSR_x},
16684 {"xfs", PSR_x | PSR_f | PSR_s},
16685 {"xfc", PSR_x | PSR_f | PSR_c},
16686 {"xsf", PSR_x | PSR_s | PSR_f},
16687 {"xsc", PSR_x | PSR_s | PSR_c},
16688 {"xcf", PSR_x | PSR_c | PSR_f},
16689 {"xcs", PSR_x | PSR_c | PSR_s},
16690 {"cfs", PSR_c | PSR_f | PSR_s},
16691 {"cfx", PSR_c | PSR_f | PSR_x},
16692 {"csf", PSR_c | PSR_s | PSR_f},
16693 {"csx", PSR_c | PSR_s | PSR_x},
16694 {"cxf", PSR_c | PSR_x | PSR_f},
16695 {"cxs", PSR_c | PSR_x | PSR_s},
16696 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
16697 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
16698 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
16699 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
16700 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
16701 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
16702 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
16703 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
16704 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
16705 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
16706 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
16707 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
16708 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
16709 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
16710 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
16711 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
16712 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
16713 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
16714 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
16715 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
16716 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
16717 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
16718 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
16719 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
16720 };
16721
16722 /* Table of V7M psr names. */
16723 static const struct asm_psr v7m_psrs[] =
16724 {
16725 {"apsr", 0 }, {"APSR", 0 },
16726 {"iapsr", 1 }, {"IAPSR", 1 },
16727 {"eapsr", 2 }, {"EAPSR", 2 },
16728 {"psr", 3 }, {"PSR", 3 },
16729 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
16730 {"ipsr", 5 }, {"IPSR", 5 },
16731 {"epsr", 6 }, {"EPSR", 6 },
16732 {"iepsr", 7 }, {"IEPSR", 7 },
16733 {"msp", 8 }, {"MSP", 8 },
16734 {"psp", 9 }, {"PSP", 9 },
16735 {"primask", 16}, {"PRIMASK", 16},
16736 {"basepri", 17}, {"BASEPRI", 17},
16737 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
16738 {"basepri_max", 18}, {"BASEPRI_MASK", 18}, /* Typo, preserved for backwards compatibility. */
16739 {"faultmask", 19}, {"FAULTMASK", 19},
16740 {"control", 20}, {"CONTROL", 20}
16741 };
16742
16743 /* Table of all shift-in-operand names. */
16744 static const struct asm_shift_name shift_names [] =
16745 {
16746 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
16747 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
16748 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
16749 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
16750 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
16751 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
16752 };
16753
16754 /* Table of all explicit relocation names. */
16755 #ifdef OBJ_ELF
16756 static struct reloc_entry reloc_names[] =
16757 {
16758 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
16759 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
16760 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
16761 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
16762 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
16763 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
16764 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
16765 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
16766 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
16767 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
16768 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
16769 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
16770 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
16771 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
16772 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
16773 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
16774 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
16775 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ}
16776 };
16777 #endif
16778
16779 /* Table of all conditional affixes. 0xF is not defined as a condition code. */
16780 static const struct asm_cond conds[] =
16781 {
16782 {"eq", 0x0},
16783 {"ne", 0x1},
16784 {"cs", 0x2}, {"hs", 0x2},
16785 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
16786 {"mi", 0x4},
16787 {"pl", 0x5},
16788 {"vs", 0x6},
16789 {"vc", 0x7},
16790 {"hi", 0x8},
16791 {"ls", 0x9},
16792 {"ge", 0xa},
16793 {"lt", 0xb},
16794 {"gt", 0xc},
16795 {"le", 0xd},
16796 {"al", 0xe}
16797 };
16798
16799 static struct asm_barrier_opt barrier_opt_names[] =
16800 {
16801 { "sy", 0xf }, { "SY", 0xf },
16802 { "un", 0x7 }, { "UN", 0x7 },
16803 { "st", 0xe }, { "ST", 0xe },
16804 { "unst", 0x6 }, { "UNST", 0x6 },
16805 { "ish", 0xb }, { "ISH", 0xb },
16806 { "sh", 0xb }, { "SH", 0xb },
16807 { "ishst", 0xa }, { "ISHST", 0xa },
16808 { "shst", 0xa }, { "SHST", 0xa },
16809 { "nsh", 0x7 }, { "NSH", 0x7 },
16810 { "nshst", 0x6 }, { "NSHST", 0x6 },
16811 { "osh", 0x3 }, { "OSH", 0x3 },
16812 { "oshst", 0x2 }, { "OSHST", 0x2 }
16813 };
16814
16815 /* Table of ARM-format instructions. */
16816
16817 /* Macros for gluing together operand strings. N.B. In all cases
16818 other than OPS0, the trailing OP_stop comes from default
16819 zero-initialization of the unspecified elements of the array. */
16820 #define OPS0() { OP_stop, }
16821 #define OPS1(a) { OP_##a, }
16822 #define OPS2(a,b) { OP_##a,OP_##b, }
16823 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
16824 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
16825 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
16826 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
16827
16828 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
16829 This is useful when mixing operands for ARM and THUMB, i.e. using the
16830 MIX_ARM_THUMB_OPERANDS macro.
16831 In order to use these macros, prefix the number of operands with _
16832 e.g. _3. */
16833 #define OPS_1(a) { a, }
16834 #define OPS_2(a,b) { a,b, }
16835 #define OPS_3(a,b,c) { a,b,c, }
16836 #define OPS_4(a,b,c,d) { a,b,c,d, }
16837 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
16838 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
16839
16840 /* These macros abstract out the exact format of the mnemonic table and
16841 save some repeated characters. */
16842
16843 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
16844 #define TxCE(mnem, op, top, nops, ops, ae, te) \
16845 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
16846 THUMB_VARIANT, do_##ae, do_##te }
16847
16848 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
16849 a T_MNEM_xyz enumerator. */
16850 #define TCE(mnem, aop, top, nops, ops, ae, te) \
16851 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
16852 #define tCE(mnem, aop, top, nops, ops, ae, te) \
16853 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16854
16855 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
16856 infix after the third character. */
16857 #define TxC3(mnem, op, top, nops, ops, ae, te) \
16858 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
16859 THUMB_VARIANT, do_##ae, do_##te }
16860 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
16861 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
16862 THUMB_VARIANT, do_##ae, do_##te }
16863 #define TC3(mnem, aop, top, nops, ops, ae, te) \
16864 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
16865 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
16866 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
16867 #define tC3(mnem, aop, top, nops, ops, ae, te) \
16868 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16869 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
16870 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16871
16872 /* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
16873 appear in the condition table. */
16874 #define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
16875 { m1 #m2 m3, OPS##nops ops, sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
16876 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
16877
16878 #define TxCM(m1, m2, op, top, nops, ops, ae, te) \
16879 TxCM_ (m1, , m2, op, top, nops, ops, ae, te), \
16880 TxCM_ (m1, eq, m2, op, top, nops, ops, ae, te), \
16881 TxCM_ (m1, ne, m2, op, top, nops, ops, ae, te), \
16882 TxCM_ (m1, cs, m2, op, top, nops, ops, ae, te), \
16883 TxCM_ (m1, hs, m2, op, top, nops, ops, ae, te), \
16884 TxCM_ (m1, cc, m2, op, top, nops, ops, ae, te), \
16885 TxCM_ (m1, ul, m2, op, top, nops, ops, ae, te), \
16886 TxCM_ (m1, lo, m2, op, top, nops, ops, ae, te), \
16887 TxCM_ (m1, mi, m2, op, top, nops, ops, ae, te), \
16888 TxCM_ (m1, pl, m2, op, top, nops, ops, ae, te), \
16889 TxCM_ (m1, vs, m2, op, top, nops, ops, ae, te), \
16890 TxCM_ (m1, vc, m2, op, top, nops, ops, ae, te), \
16891 TxCM_ (m1, hi, m2, op, top, nops, ops, ae, te), \
16892 TxCM_ (m1, ls, m2, op, top, nops, ops, ae, te), \
16893 TxCM_ (m1, ge, m2, op, top, nops, ops, ae, te), \
16894 TxCM_ (m1, lt, m2, op, top, nops, ops, ae, te), \
16895 TxCM_ (m1, gt, m2, op, top, nops, ops, ae, te), \
16896 TxCM_ (m1, le, m2, op, top, nops, ops, ae, te), \
16897 TxCM_ (m1, al, m2, op, top, nops, ops, ae, te)
16898
16899 #define TCM(m1,m2, aop, top, nops, ops, ae, te) \
16900 TxCM (m1,m2, aop, 0x##top, nops, ops, ae, te)
16901 #define tCM(m1,m2, aop, top, nops, ops, ae, te) \
16902 TxCM (m1,m2, aop, T_MNEM##top, nops, ops, ae, te)
16903
16904 /* Mnemonic that cannot be conditionalized. The ARM condition-code
16905 field is still 0xE. Many of the Thumb variants can be executed
16906 conditionally, so this is checked separately. */
16907 #define TUE(mnem, op, top, nops, ops, ae, te) \
16908 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
16909 THUMB_VARIANT, do_##ae, do_##te }
16910
16911 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
16912 condition code field. */
16913 #define TUF(mnem, op, top, nops, ops, ae, te) \
16914 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
16915 THUMB_VARIANT, do_##ae, do_##te }
16916
16917 /* ARM-only variants of all the above. */
16918 #define CE(mnem, op, nops, ops, ae) \
16919 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16920
16921 #define C3(mnem, op, nops, ops, ae) \
16922 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16923
16924 /* Legacy mnemonics that always have conditional infix after the third
16925 character. */
16926 #define CL(mnem, op, nops, ops, ae) \
16927 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
16928 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16929
16930 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
16931 #define cCE(mnem, op, nops, ops, ae) \
16932 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16933
16934 /* Legacy coprocessor instructions where conditional infix and conditional
16935 suffix are ambiguous. For consistency this includes all FPA instructions,
16936 not just the potentially ambiguous ones. */
16937 #define cCL(mnem, op, nops, ops, ae) \
16938 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
16939 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16940
16941 /* Coprocessor, takes either a suffix or a position-3 infix
16942 (for an FPA corner case). */
16943 #define C3E(mnem, op, nops, ops, ae) \
16944 { mnem, OPS##nops ops, OT_csuf_or_in3, \
16945 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16946
16947 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
16948 { m1 #m2 m3, OPS##nops ops, \
16949 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
16950 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16951
16952 #define CM(m1, m2, op, nops, ops, ae) \
16953 xCM_ (m1, , m2, op, nops, ops, ae), \
16954 xCM_ (m1, eq, m2, op, nops, ops, ae), \
16955 xCM_ (m1, ne, m2, op, nops, ops, ae), \
16956 xCM_ (m1, cs, m2, op, nops, ops, ae), \
16957 xCM_ (m1, hs, m2, op, nops, ops, ae), \
16958 xCM_ (m1, cc, m2, op, nops, ops, ae), \
16959 xCM_ (m1, ul, m2, op, nops, ops, ae), \
16960 xCM_ (m1, lo, m2, op, nops, ops, ae), \
16961 xCM_ (m1, mi, m2, op, nops, ops, ae), \
16962 xCM_ (m1, pl, m2, op, nops, ops, ae), \
16963 xCM_ (m1, vs, m2, op, nops, ops, ae), \
16964 xCM_ (m1, vc, m2, op, nops, ops, ae), \
16965 xCM_ (m1, hi, m2, op, nops, ops, ae), \
16966 xCM_ (m1, ls, m2, op, nops, ops, ae), \
16967 xCM_ (m1, ge, m2, op, nops, ops, ae), \
16968 xCM_ (m1, lt, m2, op, nops, ops, ae), \
16969 xCM_ (m1, gt, m2, op, nops, ops, ae), \
16970 xCM_ (m1, le, m2, op, nops, ops, ae), \
16971 xCM_ (m1, al, m2, op, nops, ops, ae)
16972
16973 #define UE(mnem, op, nops, ops, ae) \
16974 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16975
16976 #define UF(mnem, op, nops, ops, ae) \
16977 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16978
16979 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
16980 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
16981 use the same encoding function for each. */
16982 #define NUF(mnem, op, nops, ops, enc) \
16983 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
16984 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16985
16986 /* Neon data processing, version which indirects through neon_enc_tab for
16987 the various overloaded versions of opcodes. */
16988 #define nUF(mnem, op, nops, ops, enc) \
16989 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
16990 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16991
16992 /* Neon insn with conditional suffix for the ARM version, non-overloaded
16993 version. */
16994 #define NCE_tag(mnem, op, nops, ops, enc, tag) \
16995 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
16996 THUMB_VARIANT, do_##enc, do_##enc }
16997
16998 #define NCE(mnem, op, nops, ops, enc) \
16999 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
17000
17001 #define NCEF(mnem, op, nops, ops, enc) \
17002 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
17003
17004 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
17005 #define nCE_tag(mnem, op, nops, ops, enc, tag) \
17006 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
17007 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17008
17009 #define nCE(mnem, op, nops, ops, enc) \
17010 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
17011
17012 #define nCEF(mnem, op, nops, ops, enc) \
17013 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
17014
17015 #define do_0 0
17016
17017 static const struct asm_opcode insns[] =
17018 {
17019 #define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
17020 #define THUMB_VARIANT &arm_ext_v4t
17021 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
17022 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
17023 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
17024 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
17025 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
17026 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
17027 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
17028 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
17029 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
17030 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
17031 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
17032 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
17033 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
17034 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
17035 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
17036 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
17037
17038 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
17039 for setting PSR flag bits. They are obsolete in V6 and do not
17040 have Thumb equivalents. */
17041 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
17042 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
17043 CL("tstp", 110f000, 2, (RR, SH), cmp),
17044 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
17045 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
17046 CL("cmpp", 150f000, 2, (RR, SH), cmp),
17047 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
17048 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
17049 CL("cmnp", 170f000, 2, (RR, SH), cmp),
17050
17051 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
17052 tC3("movs", 1b00000, _movs, 2, (RR, SH), mov, t_mov_cmp),
17053 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
17054 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
17055
17056 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
17057 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
17058 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
17059 OP_RRnpc),
17060 OP_ADDRGLDR),ldst, t_ldst),
17061 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
17062
17063 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17064 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17065 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17066 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17067 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17068 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17069
17070 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
17071 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
17072 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
17073 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
17074
17075 /* Pseudo ops. */
17076 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
17077 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
17078 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
17079
17080 /* Thumb-compatibility pseudo ops. */
17081 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
17082 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
17083 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
17084 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
17085 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
17086 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
17087 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
17088 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
17089 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
17090 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
17091 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
17092 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
17093
17094 /* These may simplify to neg. */
17095 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
17096 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
17097
17098 #undef THUMB_VARIANT
17099 #define THUMB_VARIANT & arm_ext_v6
17100
17101 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
17102
17103 /* V1 instructions with no Thumb analogue prior to V6T2. */
17104 #undef THUMB_VARIANT
17105 #define THUMB_VARIANT & arm_ext_v6t2
17106
17107 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
17108 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
17109 CL("teqp", 130f000, 2, (RR, SH), cmp),
17110
17111 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17112 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17113 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
17114 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17115
17116 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17117 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17118
17119 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17120 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17121
17122 /* V1 instructions with no Thumb analogue at all. */
17123 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
17124 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
17125
17126 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
17127 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
17128 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
17129 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
17130 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
17131 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
17132 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
17133 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
17134
17135 #undef ARM_VARIANT
17136 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
17137 #undef THUMB_VARIANT
17138 #define THUMB_VARIANT & arm_ext_v4t
17139
17140 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
17141 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
17142
17143 #undef THUMB_VARIANT
17144 #define THUMB_VARIANT & arm_ext_v6t2
17145
17146 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
17147 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
17148
17149 /* Generic coprocessor instructions. */
17150 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
17151 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17152 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17153 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17154 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17155 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17156 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
17157
17158 #undef ARM_VARIANT
17159 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
17160
17161 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
17162 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
17163
17164 #undef ARM_VARIANT
17165 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
17166 #undef THUMB_VARIANT
17167 #define THUMB_VARIANT & arm_ext_msr
17168
17169 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
17170 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
17171
17172 #undef ARM_VARIANT
17173 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
17174 #undef THUMB_VARIANT
17175 #define THUMB_VARIANT & arm_ext_v6t2
17176
17177 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17178 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17179 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17180 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17181 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17182 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17183 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17184 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17185
17186 #undef ARM_VARIANT
17187 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
17188 #undef THUMB_VARIANT
17189 #define THUMB_VARIANT & arm_ext_v4t
17190
17191 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17192 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17193 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17194 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17195 tCM("ld","sh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17196 tCM("ld","sb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17197
17198 #undef ARM_VARIANT
17199 #define ARM_VARIANT & arm_ext_v4t_5
17200
17201 /* ARM Architecture 4T. */
17202 /* Note: bx (and blx) are required on V5, even if the processor does
17203 not support Thumb. */
17204 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
17205
17206 #undef ARM_VARIANT
17207 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
17208 #undef THUMB_VARIANT
17209 #define THUMB_VARIANT & arm_ext_v5t
17210
17211 /* Note: blx has 2 variants; the .value coded here is for
17212 BLX(2). Only this variant has conditional execution. */
17213 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
17214 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
17215
17216 #undef THUMB_VARIANT
17217 #define THUMB_VARIANT & arm_ext_v6t2
17218
17219 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
17220 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17221 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17222 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17223 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17224 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
17225 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17226 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17227
17228 #undef ARM_VARIANT
17229 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
17230 #undef THUMB_VARIANT
17231 #define THUMB_VARIANT &arm_ext_v5exp
17232
17233 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17234 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17235 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17236 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17237
17238 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17239 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17240
17241 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17242 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17243 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17244 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17245
17246 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17247 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17248 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17249 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17250
17251 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17252 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17253
17254 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17255 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17256 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17257 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17258
17259 #undef ARM_VARIANT
17260 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
17261 #undef THUMB_VARIANT
17262 #define THUMB_VARIANT &arm_ext_v6t2
17263
17264 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
17265 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
17266 ldrd, t_ldstd),
17267 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
17268 ADDRGLDRS), ldrd, t_ldstd),
17269
17270 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17271 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17272
17273 #undef ARM_VARIANT
17274 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
17275
17276 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
17277
17278 #undef ARM_VARIANT
17279 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
17280 #undef THUMB_VARIANT
17281 #define THUMB_VARIANT & arm_ext_v6
17282
17283 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
17284 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
17285 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17286 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17287 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17288 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17289 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17290 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17291 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17292 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
17293
17294 #undef THUMB_VARIANT
17295 #define THUMB_VARIANT & arm_ext_v6t2
17296
17297 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
17298 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17299 strex, t_strex),
17300 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17301 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17302
17303 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
17304 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
17305
17306 /* ARM V6 not included in V7M. */
17307 #undef THUMB_VARIANT
17308 #define THUMB_VARIANT & arm_ext_v6_notm
17309 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17310 UF(rfeib, 9900a00, 1, (RRw), rfe),
17311 UF(rfeda, 8100a00, 1, (RRw), rfe),
17312 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17313 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17314 UF(rfefa, 9900a00, 1, (RRw), rfe),
17315 UF(rfeea, 8100a00, 1, (RRw), rfe),
17316 TUF("rfeed", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17317 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
17318 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
17319 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
17320 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
17321
17322 /* ARM V6 not included in V7M (eg. integer SIMD). */
17323 #undef THUMB_VARIANT
17324 #define THUMB_VARIANT & arm_ext_v6_dsp
17325 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
17326 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
17327 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
17328 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17329 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17330 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17331 /* Old name for QASX. */
17332 TCE("qaddsubx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17333 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17334 /* Old name for QSAX. */
17335 TCE("qsubaddx", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17336 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17337 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17338 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17339 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17340 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17341 /* Old name for SASX. */
17342 TCE("saddsubx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17343 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17344 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17345 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17346 /* Old name for SHASX. */
17347 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17348 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17349 /* Old name for SHSAX. */
17350 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17351 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17352 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17353 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17354 /* Old name for SSAX. */
17355 TCE("ssubaddx", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17356 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17357 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17358 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17359 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17360 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17361 /* Old name for UASX. */
17362 TCE("uaddsubx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17363 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17364 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17365 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17366 /* Old name for UHASX. */
17367 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17368 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17369 /* Old name for UHSAX. */
17370 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17371 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17372 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17373 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17374 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17375 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17376 /* Old name for UQASX. */
17377 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17378 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17379 /* Old name for UQSAX. */
17380 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17381 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17382 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17383 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17384 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17385 /* Old name for USAX. */
17386 TCE("usubaddx", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17387 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17388 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17389 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17390 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17391 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17392 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17393 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17394 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17395 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17396 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17397 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17398 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17399 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17400 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17401 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17402 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17403 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17404 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17405 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17406 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17407 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17408 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17409 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17410 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17411 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17412 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17413 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17414 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17415 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
17416 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
17417 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17418 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17419 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
17420
17421 #undef ARM_VARIANT
17422 #define ARM_VARIANT & arm_ext_v6k
17423 #undef THUMB_VARIANT
17424 #define THUMB_VARIANT & arm_ext_v6k
17425
17426 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
17427 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
17428 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
17429 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
17430
17431 #undef THUMB_VARIANT
17432 #define THUMB_VARIANT & arm_ext_v6_notm
17433 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
17434 ldrexd, t_ldrexd),
17435 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
17436 RRnpcb), strexd, t_strexd),
17437
17438 #undef THUMB_VARIANT
17439 #define THUMB_VARIANT & arm_ext_v6t2
17440 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
17441 rd_rn, rd_rn),
17442 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
17443 rd_rn, rd_rn),
17444 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17445 strex, rm_rd_rn),
17446 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17447 strex, rm_rd_rn),
17448 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
17449
17450 #undef ARM_VARIANT
17451 #define ARM_VARIANT & arm_ext_sec
17452 #undef THUMB_VARIANT
17453 #define THUMB_VARIANT & arm_ext_sec
17454
17455 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
17456
17457 #undef ARM_VARIANT
17458 #define ARM_VARIANT & arm_ext_virt
17459 #undef THUMB_VARIANT
17460 #define THUMB_VARIANT & arm_ext_virt
17461
17462 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
17463 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
17464
17465 #undef ARM_VARIANT
17466 #define ARM_VARIANT & arm_ext_v6t2
17467 #undef THUMB_VARIANT
17468 #define THUMB_VARIANT & arm_ext_v6t2
17469
17470 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
17471 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
17472 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
17473 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
17474
17475 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
17476 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
17477 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
17478 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
17479
17480 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17481 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17482 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17483 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17484
17485 /* Thumb-only instructions. */
17486 #undef ARM_VARIANT
17487 #define ARM_VARIANT NULL
17488 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
17489 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
17490
17491 /* ARM does not really have an IT instruction, so always allow it.
17492 The opcode is copied from Thumb in order to allow warnings in
17493 -mimplicit-it=[never | arm] modes. */
17494 #undef ARM_VARIANT
17495 #define ARM_VARIANT & arm_ext_v1
17496
17497 TUE("it", bf08, bf08, 1, (COND), it, t_it),
17498 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
17499 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
17500 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
17501 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
17502 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
17503 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
17504 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
17505 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
17506 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
17507 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
17508 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
17509 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
17510 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
17511 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
17512 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
17513 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
17514 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
17515
17516 /* Thumb2 only instructions. */
17517 #undef ARM_VARIANT
17518 #define ARM_VARIANT NULL
17519
17520 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
17521 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
17522 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
17523 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
17524 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
17525 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
17526
17527 /* Hardware division instructions. */
17528 #undef ARM_VARIANT
17529 #define ARM_VARIANT & arm_ext_adiv
17530 #undef THUMB_VARIANT
17531 #define THUMB_VARIANT & arm_ext_div
17532
17533 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
17534 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
17535
17536 /* ARM V6M/V7 instructions. */
17537 #undef ARM_VARIANT
17538 #define ARM_VARIANT & arm_ext_barrier
17539 #undef THUMB_VARIANT
17540 #define THUMB_VARIANT & arm_ext_barrier
17541
17542 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, t_barrier),
17543 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, t_barrier),
17544 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, t_barrier),
17545
17546 /* ARM V7 instructions. */
17547 #undef ARM_VARIANT
17548 #define ARM_VARIANT & arm_ext_v7
17549 #undef THUMB_VARIANT
17550 #define THUMB_VARIANT & arm_ext_v7
17551
17552 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
17553 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
17554
17555 #undef ARM_VARIANT
17556 #define ARM_VARIANT & arm_ext_mp
17557 #undef THUMB_VARIANT
17558 #define THUMB_VARIANT & arm_ext_mp
17559
17560 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
17561
17562 #undef ARM_VARIANT
17563 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
17564
17565 cCE("wfs", e200110, 1, (RR), rd),
17566 cCE("rfs", e300110, 1, (RR), rd),
17567 cCE("wfc", e400110, 1, (RR), rd),
17568 cCE("rfc", e500110, 1, (RR), rd),
17569
17570 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
17571 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
17572 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
17573 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
17574
17575 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
17576 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
17577 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
17578 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
17579
17580 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
17581 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
17582 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
17583 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
17584 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
17585 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
17586 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
17587 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
17588 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
17589 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
17590 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
17591 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
17592
17593 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
17594 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
17595 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
17596 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
17597 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
17598 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
17599 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
17600 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
17601 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
17602 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
17603 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
17604 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
17605
17606 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
17607 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
17608 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
17609 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
17610 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
17611 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
17612 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
17613 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
17614 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
17615 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
17616 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
17617 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
17618
17619 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
17620 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
17621 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
17622 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
17623 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
17624 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
17625 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
17626 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
17627 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
17628 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
17629 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
17630 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
17631
17632 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
17633 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
17634 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
17635 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
17636 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
17637 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
17638 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
17639 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
17640 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
17641 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
17642 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
17643 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
17644
17645 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
17646 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
17647 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
17648 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
17649 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
17650 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
17651 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
17652 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
17653 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
17654 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
17655 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
17656 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
17657
17658 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
17659 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
17660 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
17661 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
17662 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
17663 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
17664 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
17665 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
17666 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
17667 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
17668 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
17669 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
17670
17671 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
17672 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
17673 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
17674 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
17675 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
17676 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
17677 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
17678 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
17679 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
17680 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
17681 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
17682 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
17683
17684 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
17685 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
17686 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
17687 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
17688 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
17689 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
17690 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
17691 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
17692 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
17693 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
17694 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
17695 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
17696
17697 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
17698 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
17699 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
17700 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
17701 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
17702 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
17703 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
17704 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
17705 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
17706 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
17707 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
17708 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
17709
17710 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
17711 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
17712 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
17713 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
17714 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
17715 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
17716 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
17717 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
17718 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
17719 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
17720 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
17721 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
17722
17723 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
17724 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
17725 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
17726 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
17727 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
17728 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
17729 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
17730 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
17731 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
17732 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
17733 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
17734 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
17735
17736 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
17737 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
17738 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
17739 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
17740 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
17741 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
17742 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
17743 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
17744 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
17745 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
17746 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
17747 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
17748
17749 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
17750 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
17751 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
17752 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
17753 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
17754 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
17755 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
17756 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
17757 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
17758 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
17759 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
17760 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
17761
17762 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
17763 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
17764 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
17765 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
17766 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
17767 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
17768 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
17769 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
17770 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
17771 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
17772 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
17773 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
17774
17775 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
17776 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
17777 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
17778 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
17779 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
17780 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
17781 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
17782 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
17783 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
17784 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
17785 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
17786 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
17787
17788 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
17789 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
17790 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
17791 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
17792 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
17793 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17794 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17795 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17796 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
17797 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
17798 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
17799 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
17800
17801 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
17802 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
17803 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
17804 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
17805 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
17806 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17807 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17808 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17809 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
17810 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
17811 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
17812 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
17813
17814 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
17815 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
17816 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
17817 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
17818 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
17819 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17820 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17821 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17822 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
17823 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
17824 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
17825 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
17826
17827 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
17828 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
17829 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
17830 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
17831 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
17832 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17833 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17834 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17835 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
17836 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
17837 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
17838 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
17839
17840 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
17841 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
17842 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
17843 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
17844 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
17845 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17846 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17847 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17848 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
17849 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
17850 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
17851 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
17852
17853 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
17854 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
17855 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
17856 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
17857 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
17858 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17859 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17860 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17861 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
17862 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
17863 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
17864 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
17865
17866 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
17867 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
17868 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
17869 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
17870 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
17871 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17872 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17873 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17874 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
17875 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
17876 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
17877 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
17878
17879 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
17880 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
17881 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
17882 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
17883 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
17884 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17885 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17886 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17887 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
17888 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
17889 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
17890 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
17891
17892 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
17893 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
17894 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
17895 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
17896 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
17897 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17898 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17899 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17900 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
17901 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
17902 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
17903 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
17904
17905 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
17906 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
17907 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
17908 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
17909 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
17910 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17911 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17912 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17913 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
17914 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
17915 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
17916 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
17917
17918 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17919 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17920 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17921 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17922 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17923 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17924 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17925 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17926 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17927 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17928 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17929 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17930
17931 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17932 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17933 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17934 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17935 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17936 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17937 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17938 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17939 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17940 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17941 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17942 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17943
17944 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17945 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17946 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17947 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17948 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17949 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17950 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17951 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17952 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17953 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17954 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17955 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17956
17957 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
17958 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
17959 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
17960 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
17961
17962 cCL("flts", e000110, 2, (RF, RR), rn_rd),
17963 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
17964 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
17965 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
17966 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
17967 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
17968 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
17969 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
17970 cCL("flte", e080110, 2, (RF, RR), rn_rd),
17971 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
17972 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
17973 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
17974
17975 /* The implementation of the FIX instruction is broken on some
17976 assemblers, in that it accepts a precision specifier as well as a
17977 rounding specifier, despite the fact that this is meaningless.
17978 To be more compatible, we accept it as well, though of course it
17979 does not set any bits. */
17980 cCE("fix", e100110, 2, (RR, RF), rd_rm),
17981 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
17982 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
17983 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
17984 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
17985 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
17986 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
17987 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
17988 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
17989 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
17990 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
17991 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
17992 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
17993
17994 /* Instructions that were new with the real FPA, call them V2. */
17995 #undef ARM_VARIANT
17996 #define ARM_VARIANT & fpu_fpa_ext_v2
17997
17998 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17999 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18000 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18001 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18002 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18003 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18004
18005 #undef ARM_VARIANT
18006 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
18007
18008 /* Moves and type conversions. */
18009 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
18010 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
18011 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
18012 cCE("fmstat", ef1fa10, 0, (), noargs),
18013 cCE("vmrs", ef10a10, 2, (APSR_RR, RVC), vmrs),
18014 cCE("vmsr", ee10a10, 2, (RVC, RR), vmsr),
18015 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
18016 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
18017 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
18018 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
18019 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
18020 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
18021 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
18022 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
18023
18024 /* Memory operations. */
18025 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
18026 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
18027 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18028 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18029 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18030 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18031 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18032 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18033 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18034 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18035 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18036 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18037 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18038 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18039 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18040 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18041 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18042 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18043
18044 /* Monadic operations. */
18045 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
18046 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
18047 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
18048
18049 /* Dyadic operations. */
18050 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18051 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18052 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18053 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18054 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18055 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18056 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18057 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18058 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18059
18060 /* Comparisons. */
18061 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
18062 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
18063 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
18064 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
18065
18066 /* Double precision load/store are still present on single precision
18067 implementations. */
18068 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
18069 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
18070 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18071 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18072 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18073 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18074 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18075 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18076 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18077 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18078
18079 #undef ARM_VARIANT
18080 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
18081
18082 /* Moves and type conversions. */
18083 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18084 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
18085 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18086 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
18087 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
18088 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
18089 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
18090 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
18091 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
18092 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
18093 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18094 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
18095 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18096
18097 /* Monadic operations. */
18098 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18099 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18100 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18101
18102 /* Dyadic operations. */
18103 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18104 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18105 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18106 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18107 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18108 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18109 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18110 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18111 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18112
18113 /* Comparisons. */
18114 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18115 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
18116 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18117 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
18118
18119 #undef ARM_VARIANT
18120 #define ARM_VARIANT & fpu_vfp_ext_v2
18121
18122 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
18123 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
18124 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
18125 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
18126
18127 /* Instructions which may belong to either the Neon or VFP instruction sets.
18128 Individual encoder functions perform additional architecture checks. */
18129 #undef ARM_VARIANT
18130 #define ARM_VARIANT & fpu_vfp_ext_v1xd
18131 #undef THUMB_VARIANT
18132 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
18133
18134 /* These mnemonics are unique to VFP. */
18135 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
18136 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
18137 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18138 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18139 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18140 nCE(vcmp, _vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
18141 nCE(vcmpe, _vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
18142 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
18143 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
18144 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
18145
18146 /* Mnemonics shared by Neon and VFP. */
18147 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
18148 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
18149 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
18150
18151 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
18152 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
18153
18154 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
18155 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
18156
18157 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18158 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18159 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18160 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18161 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18162 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18163 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
18164 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
18165
18166 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32b), neon_cvt),
18167 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
18168 nCEF(vcvtb, _vcvt, 2, (RVS, RVS), neon_cvtb),
18169 nCEF(vcvtt, _vcvt, 2, (RVS, RVS), neon_cvtt),
18170
18171
18172 /* NOTE: All VMOV encoding is special-cased! */
18173 NCE(vmov, 0, 1, (VMOV), neon_mov),
18174 NCE(vmovq, 0, 1, (VMOV), neon_mov),
18175
18176 #undef THUMB_VARIANT
18177 #define THUMB_VARIANT & fpu_neon_ext_v1
18178 #undef ARM_VARIANT
18179 #define ARM_VARIANT & fpu_neon_ext_v1
18180
18181 /* Data processing with three registers of the same length. */
18182 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
18183 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
18184 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
18185 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18186 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18187 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18188 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18189 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18190 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18191 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
18192 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
18193 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
18194 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
18195 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
18196 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
18197 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
18198 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
18199 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
18200 /* If not immediate, fall back to neon_dyadic_i64_su.
18201 shl_imm should accept I8 I16 I32 I64,
18202 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
18203 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
18204 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
18205 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
18206 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
18207 /* Logic ops, types optional & ignored. */
18208 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18209 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18210 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18211 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18212 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18213 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18214 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18215 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18216 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
18217 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
18218 /* Bitfield ops, untyped. */
18219 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18220 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18221 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18222 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18223 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18224 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18225 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
18226 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18227 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18228 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18229 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18230 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18231 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18232 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
18233 back to neon_dyadic_if_su. */
18234 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
18235 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
18236 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
18237 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
18238 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
18239 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
18240 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
18241 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
18242 /* Comparison. Type I8 I16 I32 F32. */
18243 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
18244 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
18245 /* As above, D registers only. */
18246 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
18247 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
18248 /* Int and float variants, signedness unimportant. */
18249 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
18250 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
18251 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
18252 /* Add/sub take types I8 I16 I32 I64 F32. */
18253 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
18254 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
18255 /* vtst takes sizes 8, 16, 32. */
18256 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
18257 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
18258 /* VMUL takes I8 I16 I32 F32 P8. */
18259 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
18260 /* VQD{R}MULH takes S16 S32. */
18261 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18262 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
18263 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18264 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
18265 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18266 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
18267 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18268 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
18269 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18270 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
18271 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18272 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
18273 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18274 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18275 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18276 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18277
18278 /* Two address, int/float. Types S8 S16 S32 F32. */
18279 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
18280 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
18281
18282 /* Data processing with two registers and a shift amount. */
18283 /* Right shifts, and variants with rounding.
18284 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
18285 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18286 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18287 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18288 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18289 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18290 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18291 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18292 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18293 /* Shift and insert. Sizes accepted 8 16 32 64. */
18294 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
18295 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
18296 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
18297 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
18298 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
18299 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
18300 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
18301 /* Right shift immediate, saturating & narrowing, with rounding variants.
18302 Types accepted S16 S32 S64 U16 U32 U64. */
18303 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18304 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18305 /* As above, unsigned. Types accepted S16 S32 S64. */
18306 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18307 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18308 /* Right shift narrowing. Types accepted I16 I32 I64. */
18309 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18310 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18311 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
18312 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
18313 /* CVT with optional immediate for fixed-point variant. */
18314 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
18315
18316 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
18317 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
18318
18319 /* Data processing, three registers of different lengths. */
18320 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
18321 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
18322 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
18323 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
18324 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
18325 /* If not scalar, fall back to neon_dyadic_long.
18326 Vector types as above, scalar types S16 S32 U16 U32. */
18327 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
18328 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
18329 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
18330 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18331 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18332 /* Dyadic, narrowing insns. Types I16 I32 I64. */
18333 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18334 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18335 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18336 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18337 /* Saturating doubling multiplies. Types S16 S32. */
18338 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18339 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18340 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18341 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
18342 S16 S32 U16 U32. */
18343 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
18344
18345 /* Extract. Size 8. */
18346 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
18347 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
18348
18349 /* Two registers, miscellaneous. */
18350 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
18351 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
18352 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
18353 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
18354 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
18355 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
18356 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
18357 /* Vector replicate. Sizes 8 16 32. */
18358 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
18359 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
18360 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
18361 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
18362 /* VMOVN. Types I16 I32 I64. */
18363 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
18364 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
18365 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
18366 /* VQMOVUN. Types S16 S32 S64. */
18367 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
18368 /* VZIP / VUZP. Sizes 8 16 32. */
18369 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
18370 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
18371 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
18372 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
18373 /* VQABS / VQNEG. Types S8 S16 S32. */
18374 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
18375 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
18376 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
18377 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
18378 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
18379 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
18380 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
18381 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
18382 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
18383 /* Reciprocal estimates. Types U32 F32. */
18384 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
18385 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
18386 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
18387 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
18388 /* VCLS. Types S8 S16 S32. */
18389 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
18390 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
18391 /* VCLZ. Types I8 I16 I32. */
18392 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
18393 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
18394 /* VCNT. Size 8. */
18395 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
18396 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
18397 /* Two address, untyped. */
18398 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
18399 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
18400 /* VTRN. Sizes 8 16 32. */
18401 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
18402 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
18403
18404 /* Table lookup. Size 8. */
18405 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
18406 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
18407
18408 #undef THUMB_VARIANT
18409 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
18410 #undef ARM_VARIANT
18411 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
18412
18413 /* Neon element/structure load/store. */
18414 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
18415 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
18416 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
18417 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
18418 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
18419 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
18420 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
18421 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
18422
18423 #undef THUMB_VARIANT
18424 #define THUMB_VARIANT &fpu_vfp_ext_v3xd
18425 #undef ARM_VARIANT
18426 #define ARM_VARIANT &fpu_vfp_ext_v3xd
18427 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
18428 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18429 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18430 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18431 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18432 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18433 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18434 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18435 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18436
18437 #undef THUMB_VARIANT
18438 #define THUMB_VARIANT & fpu_vfp_ext_v3
18439 #undef ARM_VARIANT
18440 #define ARM_VARIANT & fpu_vfp_ext_v3
18441
18442 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
18443 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18444 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18445 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18446 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18447 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18448 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18449 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18450 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18451
18452 #undef ARM_VARIANT
18453 #define ARM_VARIANT &fpu_vfp_ext_fma
18454 #undef THUMB_VARIANT
18455 #define THUMB_VARIANT &fpu_vfp_ext_fma
18456 /* Mnemonics shared by Neon and VFP. These are included in the
18457 VFP FMA variant; NEON and VFP FMA always includes the NEON
18458 FMA instructions. */
18459 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
18460 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
18461 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
18462 the v form should always be used. */
18463 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18464 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18465 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18466 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18467 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18468 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18469
18470 #undef THUMB_VARIANT
18471 #undef ARM_VARIANT
18472 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
18473
18474 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18475 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18476 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18477 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18478 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18479 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18480 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
18481 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
18482
18483 #undef ARM_VARIANT
18484 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
18485
18486 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
18487 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
18488 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
18489 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
18490 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
18491 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
18492 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
18493 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
18494 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
18495 cCE("textrmub", e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18496 cCE("textrmuh", e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18497 cCE("textrmuw", e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18498 cCE("textrmsb", e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18499 cCE("textrmsh", e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18500 cCE("textrmsw", e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18501 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18502 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18503 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18504 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
18505 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
18506 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18507 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18508 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18509 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18510 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18511 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18512 cCE("tmovmskb", e100030, 2, (RR, RIWR), rd_rn),
18513 cCE("tmovmskh", e500030, 2, (RR, RIWR), rd_rn),
18514 cCE("tmovmskw", e900030, 2, (RR, RIWR), rd_rn),
18515 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
18516 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
18517 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
18518 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
18519 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
18520 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
18521 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
18522 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
18523 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18524 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18525 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18526 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18527 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18528 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18529 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18530 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18531 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18532 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
18533 cCE("walignr0", e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18534 cCE("walignr1", e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18535 cCE("walignr2", ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18536 cCE("walignr3", eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18537 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18538 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18539 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18540 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18541 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18542 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18543 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18544 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18545 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18546 cCE("wcmpgtub", e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18547 cCE("wcmpgtuh", e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18548 cCE("wcmpgtuw", e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18549 cCE("wcmpgtsb", e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18550 cCE("wcmpgtsh", e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18551 cCE("wcmpgtsw", eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18552 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18553 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18554 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
18555 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
18556 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18557 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18558 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18559 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18560 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18561 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18562 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18563 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18564 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18565 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18566 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18567 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18568 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18569 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18570 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18571 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18572 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18573 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18574 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
18575 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18576 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18577 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18578 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18579 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18580 cCE("wpackhss", e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18581 cCE("wpackhus", e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18582 cCE("wpackwss", eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18583 cCE("wpackwus", e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18584 cCE("wpackdss", ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18585 cCE("wpackdus", ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18586 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18587 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18588 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18589 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18590 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18591 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18592 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18593 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18594 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18595 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18596 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
18597 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18598 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18599 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18600 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18601 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18602 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18603 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18604 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18605 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18606 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18607 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18608 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18609 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18610 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18611 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18612 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18613 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18614 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18615 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18616 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18617 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
18618 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
18619 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18620 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18621 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18622 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18623 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18624 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18625 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18626 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18627 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18628 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
18629 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
18630 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
18631 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
18632 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
18633 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
18634 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18635 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18636 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18637 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
18638 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
18639 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
18640 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
18641 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
18642 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
18643 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18644 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18645 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18646 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18647 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
18648
18649 #undef ARM_VARIANT
18650 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
18651
18652 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
18653 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
18654 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
18655 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
18656 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
18657 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
18658 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18659 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18660 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18661 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18662 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18663 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18664 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18665 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18666 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18667 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18668 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18669 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18670 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18671 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18672 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
18673 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18674 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18675 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18676 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18677 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18678 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18679 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18680 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18681 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18682 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18683 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18684 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18685 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18686 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18687 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18688 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18689 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18690 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18691 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18692 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18693 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18694 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18695 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18696 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18697 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18698 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18699 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18700 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18701 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18702 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18703 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18704 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18705 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18706 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18707 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18708 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18709
18710 #undef ARM_VARIANT
18711 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
18712
18713 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
18714 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
18715 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
18716 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
18717 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
18718 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
18719 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
18720 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
18721 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
18722 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
18723 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
18724 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
18725 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
18726 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
18727 cCE("cfmv64lr", e000510, 2, (RMDX, RR), rn_rd),
18728 cCE("cfmvr64l", e100510, 2, (RR, RMDX), rd_rn),
18729 cCE("cfmv64hr", e000530, 2, (RMDX, RR), rn_rd),
18730 cCE("cfmvr64h", e100530, 2, (RR, RMDX), rd_rn),
18731 cCE("cfmval32", e200440, 2, (RMAX, RMFX), rd_rn),
18732 cCE("cfmv32al", e100440, 2, (RMFX, RMAX), rd_rn),
18733 cCE("cfmvam32", e200460, 2, (RMAX, RMFX), rd_rn),
18734 cCE("cfmv32am", e100460, 2, (RMFX, RMAX), rd_rn),
18735 cCE("cfmvah32", e200480, 2, (RMAX, RMFX), rd_rn),
18736 cCE("cfmv32ah", e100480, 2, (RMFX, RMAX), rd_rn),
18737 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
18738 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
18739 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
18740 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
18741 cCE("cfmvsc32", e2004e0, 2, (RMDS, RMDX), mav_dspsc),
18742 cCE("cfmv32sc", e1004e0, 2, (RMDX, RMDS), rd),
18743 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
18744 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
18745 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
18746 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
18747 cCE("cfcvt32s", e000480, 2, (RMF, RMFX), rd_rn),
18748 cCE("cfcvt32d", e0004a0, 2, (RMD, RMFX), rd_rn),
18749 cCE("cfcvt64s", e0004c0, 2, (RMF, RMDX), rd_rn),
18750 cCE("cfcvt64d", e0004e0, 2, (RMD, RMDX), rd_rn),
18751 cCE("cfcvts32", e100580, 2, (RMFX, RMF), rd_rn),
18752 cCE("cfcvtd32", e1005a0, 2, (RMFX, RMD), rd_rn),
18753 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
18754 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
18755 cCE("cfrshl32", e000550, 3, (RMFX, RMFX, RR), mav_triple),
18756 cCE("cfrshl64", e000570, 3, (RMDX, RMDX, RR), mav_triple),
18757 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
18758 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
18759 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
18760 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
18761 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
18762 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
18763 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
18764 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
18765 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
18766 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
18767 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
18768 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
18769 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
18770 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
18771 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
18772 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
18773 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
18774 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
18775 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
18776 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
18777 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18778 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18779 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18780 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18781 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18782 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18783 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18784 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18785 cCE("cfmadd32", e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18786 cCE("cfmsub32", e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18787 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
18788 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
18789 };
18790 #undef ARM_VARIANT
18791 #undef THUMB_VARIANT
18792 #undef TCE
18793 #undef TCM
18794 #undef TUE
18795 #undef TUF
18796 #undef TCC
18797 #undef cCE
18798 #undef cCL
18799 #undef C3E
18800 #undef CE
18801 #undef CM
18802 #undef UE
18803 #undef UF
18804 #undef UT
18805 #undef NUF
18806 #undef nUF
18807 #undef NCE
18808 #undef nCE
18809 #undef OPS0
18810 #undef OPS1
18811 #undef OPS2
18812 #undef OPS3
18813 #undef OPS4
18814 #undef OPS5
18815 #undef OPS6
18816 #undef do_0
18817 \f
18818 /* MD interface: bits in the object file. */
18819
18820 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
18821 for use in the a.out file, and stores them in the array pointed to by buf.
18822 This knows about the endian-ness of the target machine and does
18823 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
18824 2 (short) and 4 (long) Floating numbers are put out as a series of
18825 LITTLENUMS (shorts, here at least). */
18826
18827 void
18828 md_number_to_chars (char * buf, valueT val, int n)
18829 {
18830 if (target_big_endian)
18831 number_to_chars_bigendian (buf, val, n);
18832 else
18833 number_to_chars_littleendian (buf, val, n);
18834 }
18835
18836 static valueT
18837 md_chars_to_number (char * buf, int n)
18838 {
18839 valueT result = 0;
18840 unsigned char * where = (unsigned char *) buf;
18841
18842 if (target_big_endian)
18843 {
18844 while (n--)
18845 {
18846 result <<= 8;
18847 result |= (*where++ & 255);
18848 }
18849 }
18850 else
18851 {
18852 while (n--)
18853 {
18854 result <<= 8;
18855 result |= (where[n] & 255);
18856 }
18857 }
18858
18859 return result;
18860 }
18861
18862 /* MD interface: Sections. */
18863
18864 /* Estimate the size of a frag before relaxing. Assume everything fits in
18865 2 bytes. */
18866
18867 int
18868 md_estimate_size_before_relax (fragS * fragp,
18869 segT segtype ATTRIBUTE_UNUSED)
18870 {
18871 fragp->fr_var = 2;
18872 return 2;
18873 }
18874
18875 /* Convert a machine dependent frag. */
18876
18877 void
18878 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
18879 {
18880 unsigned long insn;
18881 unsigned long old_op;
18882 char *buf;
18883 expressionS exp;
18884 fixS *fixp;
18885 int reloc_type;
18886 int pc_rel;
18887 int opcode;
18888
18889 buf = fragp->fr_literal + fragp->fr_fix;
18890
18891 old_op = bfd_get_16(abfd, buf);
18892 if (fragp->fr_symbol)
18893 {
18894 exp.X_op = O_symbol;
18895 exp.X_add_symbol = fragp->fr_symbol;
18896 }
18897 else
18898 {
18899 exp.X_op = O_constant;
18900 }
18901 exp.X_add_number = fragp->fr_offset;
18902 opcode = fragp->fr_subtype;
18903 switch (opcode)
18904 {
18905 case T_MNEM_ldr_pc:
18906 case T_MNEM_ldr_pc2:
18907 case T_MNEM_ldr_sp:
18908 case T_MNEM_str_sp:
18909 case T_MNEM_ldr:
18910 case T_MNEM_ldrb:
18911 case T_MNEM_ldrh:
18912 case T_MNEM_str:
18913 case T_MNEM_strb:
18914 case T_MNEM_strh:
18915 if (fragp->fr_var == 4)
18916 {
18917 insn = THUMB_OP32 (opcode);
18918 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
18919 {
18920 insn |= (old_op & 0x700) << 4;
18921 }
18922 else
18923 {
18924 insn |= (old_op & 7) << 12;
18925 insn |= (old_op & 0x38) << 13;
18926 }
18927 insn |= 0x00000c00;
18928 put_thumb32_insn (buf, insn);
18929 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
18930 }
18931 else
18932 {
18933 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
18934 }
18935 pc_rel = (opcode == T_MNEM_ldr_pc2);
18936 break;
18937 case T_MNEM_adr:
18938 if (fragp->fr_var == 4)
18939 {
18940 insn = THUMB_OP32 (opcode);
18941 insn |= (old_op & 0xf0) << 4;
18942 put_thumb32_insn (buf, insn);
18943 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
18944 }
18945 else
18946 {
18947 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18948 exp.X_add_number -= 4;
18949 }
18950 pc_rel = 1;
18951 break;
18952 case T_MNEM_mov:
18953 case T_MNEM_movs:
18954 case T_MNEM_cmp:
18955 case T_MNEM_cmn:
18956 if (fragp->fr_var == 4)
18957 {
18958 int r0off = (opcode == T_MNEM_mov
18959 || opcode == T_MNEM_movs) ? 0 : 8;
18960 insn = THUMB_OP32 (opcode);
18961 insn = (insn & 0xe1ffffff) | 0x10000000;
18962 insn |= (old_op & 0x700) << r0off;
18963 put_thumb32_insn (buf, insn);
18964 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
18965 }
18966 else
18967 {
18968 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
18969 }
18970 pc_rel = 0;
18971 break;
18972 case T_MNEM_b:
18973 if (fragp->fr_var == 4)
18974 {
18975 insn = THUMB_OP32(opcode);
18976 put_thumb32_insn (buf, insn);
18977 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
18978 }
18979 else
18980 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
18981 pc_rel = 1;
18982 break;
18983 case T_MNEM_bcond:
18984 if (fragp->fr_var == 4)
18985 {
18986 insn = THUMB_OP32(opcode);
18987 insn |= (old_op & 0xf00) << 14;
18988 put_thumb32_insn (buf, insn);
18989 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
18990 }
18991 else
18992 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
18993 pc_rel = 1;
18994 break;
18995 case T_MNEM_add_sp:
18996 case T_MNEM_add_pc:
18997 case T_MNEM_inc_sp:
18998 case T_MNEM_dec_sp:
18999 if (fragp->fr_var == 4)
19000 {
19001 /* ??? Choose between add and addw. */
19002 insn = THUMB_OP32 (opcode);
19003 insn |= (old_op & 0xf0) << 4;
19004 put_thumb32_insn (buf, insn);
19005 if (opcode == T_MNEM_add_pc)
19006 reloc_type = BFD_RELOC_ARM_T32_IMM12;
19007 else
19008 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
19009 }
19010 else
19011 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19012 pc_rel = 0;
19013 break;
19014
19015 case T_MNEM_addi:
19016 case T_MNEM_addis:
19017 case T_MNEM_subi:
19018 case T_MNEM_subis:
19019 if (fragp->fr_var == 4)
19020 {
19021 insn = THUMB_OP32 (opcode);
19022 insn |= (old_op & 0xf0) << 4;
19023 insn |= (old_op & 0xf) << 16;
19024 put_thumb32_insn (buf, insn);
19025 if (insn & (1 << 20))
19026 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
19027 else
19028 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
19029 }
19030 else
19031 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19032 pc_rel = 0;
19033 break;
19034 default:
19035 abort ();
19036 }
19037 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
19038 (enum bfd_reloc_code_real) reloc_type);
19039 fixp->fx_file = fragp->fr_file;
19040 fixp->fx_line = fragp->fr_line;
19041 fragp->fr_fix += fragp->fr_var;
19042 }
19043
19044 /* Return the size of a relaxable immediate operand instruction.
19045 SHIFT and SIZE specify the form of the allowable immediate. */
19046 static int
19047 relax_immediate (fragS *fragp, int size, int shift)
19048 {
19049 offsetT offset;
19050 offsetT mask;
19051 offsetT low;
19052
19053 /* ??? Should be able to do better than this. */
19054 if (fragp->fr_symbol)
19055 return 4;
19056
19057 low = (1 << shift) - 1;
19058 mask = (1 << (shift + size)) - (1 << shift);
19059 offset = fragp->fr_offset;
19060 /* Force misaligned offsets to 32-bit variant. */
19061 if (offset & low)
19062 return 4;
19063 if (offset & ~mask)
19064 return 4;
19065 return 2;
19066 }
19067
19068 /* Get the address of a symbol during relaxation. */
19069 static addressT
19070 relaxed_symbol_addr (fragS *fragp, long stretch)
19071 {
19072 fragS *sym_frag;
19073 addressT addr;
19074 symbolS *sym;
19075
19076 sym = fragp->fr_symbol;
19077 sym_frag = symbol_get_frag (sym);
19078 know (S_GET_SEGMENT (sym) != absolute_section
19079 || sym_frag == &zero_address_frag);
19080 addr = S_GET_VALUE (sym) + fragp->fr_offset;
19081
19082 /* If frag has yet to be reached on this pass, assume it will
19083 move by STRETCH just as we did. If this is not so, it will
19084 be because some frag between grows, and that will force
19085 another pass. */
19086
19087 if (stretch != 0
19088 && sym_frag->relax_marker != fragp->relax_marker)
19089 {
19090 fragS *f;
19091
19092 /* Adjust stretch for any alignment frag. Note that if have
19093 been expanding the earlier code, the symbol may be
19094 defined in what appears to be an earlier frag. FIXME:
19095 This doesn't handle the fr_subtype field, which specifies
19096 a maximum number of bytes to skip when doing an
19097 alignment. */
19098 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
19099 {
19100 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
19101 {
19102 if (stretch < 0)
19103 stretch = - ((- stretch)
19104 & ~ ((1 << (int) f->fr_offset) - 1));
19105 else
19106 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
19107 if (stretch == 0)
19108 break;
19109 }
19110 }
19111 if (f != NULL)
19112 addr += stretch;
19113 }
19114
19115 return addr;
19116 }
19117
19118 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
19119 load. */
19120 static int
19121 relax_adr (fragS *fragp, asection *sec, long stretch)
19122 {
19123 addressT addr;
19124 offsetT val;
19125
19126 /* Assume worst case for symbols not known to be in the same section. */
19127 if (fragp->fr_symbol == NULL
19128 || !S_IS_DEFINED (fragp->fr_symbol)
19129 || sec != S_GET_SEGMENT (fragp->fr_symbol)
19130 || S_IS_WEAK (fragp->fr_symbol))
19131 return 4;
19132
19133 val = relaxed_symbol_addr (fragp, stretch);
19134 addr = fragp->fr_address + fragp->fr_fix;
19135 addr = (addr + 4) & ~3;
19136 /* Force misaligned targets to 32-bit variant. */
19137 if (val & 3)
19138 return 4;
19139 val -= addr;
19140 if (val < 0 || val > 1020)
19141 return 4;
19142 return 2;
19143 }
19144
19145 /* Return the size of a relaxable add/sub immediate instruction. */
19146 static int
19147 relax_addsub (fragS *fragp, asection *sec)
19148 {
19149 char *buf;
19150 int op;
19151
19152 buf = fragp->fr_literal + fragp->fr_fix;
19153 op = bfd_get_16(sec->owner, buf);
19154 if ((op & 0xf) == ((op >> 4) & 0xf))
19155 return relax_immediate (fragp, 8, 0);
19156 else
19157 return relax_immediate (fragp, 3, 0);
19158 }
19159
19160
19161 /* Return the size of a relaxable branch instruction. BITS is the
19162 size of the offset field in the narrow instruction. */
19163
19164 static int
19165 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
19166 {
19167 addressT addr;
19168 offsetT val;
19169 offsetT limit;
19170
19171 /* Assume worst case for symbols not known to be in the same section. */
19172 if (!S_IS_DEFINED (fragp->fr_symbol)
19173 || sec != S_GET_SEGMENT (fragp->fr_symbol)
19174 || S_IS_WEAK (fragp->fr_symbol))
19175 return 4;
19176
19177 #ifdef OBJ_ELF
19178 if (S_IS_DEFINED (fragp->fr_symbol)
19179 && ARM_IS_FUNC (fragp->fr_symbol))
19180 return 4;
19181
19182 /* PR 12532. Global symbols with default visibility might
19183 be preempted, so do not relax relocations to them. */
19184 if ((ELF_ST_VISIBILITY (S_GET_OTHER (fragp->fr_symbol)) == STV_DEFAULT)
19185 && (! S_IS_LOCAL (fragp->fr_symbol)))
19186 return 4;
19187 #endif
19188
19189 val = relaxed_symbol_addr (fragp, stretch);
19190 addr = fragp->fr_address + fragp->fr_fix + 4;
19191 val -= addr;
19192
19193 /* Offset is a signed value *2 */
19194 limit = 1 << bits;
19195 if (val >= limit || val < -limit)
19196 return 4;
19197 return 2;
19198 }
19199
19200
19201 /* Relax a machine dependent frag. This returns the amount by which
19202 the current size of the frag should change. */
19203
19204 int
19205 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
19206 {
19207 int oldsize;
19208 int newsize;
19209
19210 oldsize = fragp->fr_var;
19211 switch (fragp->fr_subtype)
19212 {
19213 case T_MNEM_ldr_pc2:
19214 newsize = relax_adr (fragp, sec, stretch);
19215 break;
19216 case T_MNEM_ldr_pc:
19217 case T_MNEM_ldr_sp:
19218 case T_MNEM_str_sp:
19219 newsize = relax_immediate (fragp, 8, 2);
19220 break;
19221 case T_MNEM_ldr:
19222 case T_MNEM_str:
19223 newsize = relax_immediate (fragp, 5, 2);
19224 break;
19225 case T_MNEM_ldrh:
19226 case T_MNEM_strh:
19227 newsize = relax_immediate (fragp, 5, 1);
19228 break;
19229 case T_MNEM_ldrb:
19230 case T_MNEM_strb:
19231 newsize = relax_immediate (fragp, 5, 0);
19232 break;
19233 case T_MNEM_adr:
19234 newsize = relax_adr (fragp, sec, stretch);
19235 break;
19236 case T_MNEM_mov:
19237 case T_MNEM_movs:
19238 case T_MNEM_cmp:
19239 case T_MNEM_cmn:
19240 newsize = relax_immediate (fragp, 8, 0);
19241 break;
19242 case T_MNEM_b:
19243 newsize = relax_branch (fragp, sec, 11, stretch);
19244 break;
19245 case T_MNEM_bcond:
19246 newsize = relax_branch (fragp, sec, 8, stretch);
19247 break;
19248 case T_MNEM_add_sp:
19249 case T_MNEM_add_pc:
19250 newsize = relax_immediate (fragp, 8, 2);
19251 break;
19252 case T_MNEM_inc_sp:
19253 case T_MNEM_dec_sp:
19254 newsize = relax_immediate (fragp, 7, 2);
19255 break;
19256 case T_MNEM_addi:
19257 case T_MNEM_addis:
19258 case T_MNEM_subi:
19259 case T_MNEM_subis:
19260 newsize = relax_addsub (fragp, sec);
19261 break;
19262 default:
19263 abort ();
19264 }
19265
19266 fragp->fr_var = newsize;
19267 /* Freeze wide instructions that are at or before the same location as
19268 in the previous pass. This avoids infinite loops.
19269 Don't freeze them unconditionally because targets may be artificially
19270 misaligned by the expansion of preceding frags. */
19271 if (stretch <= 0 && newsize > 2)
19272 {
19273 md_convert_frag (sec->owner, sec, fragp);
19274 frag_wane (fragp);
19275 }
19276
19277 return newsize - oldsize;
19278 }
19279
19280 /* Round up a section size to the appropriate boundary. */
19281
19282 valueT
19283 md_section_align (segT segment ATTRIBUTE_UNUSED,
19284 valueT size)
19285 {
19286 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
19287 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
19288 {
19289 /* For a.out, force the section size to be aligned. If we don't do
19290 this, BFD will align it for us, but it will not write out the
19291 final bytes of the section. This may be a bug in BFD, but it is
19292 easier to fix it here since that is how the other a.out targets
19293 work. */
19294 int align;
19295
19296 align = bfd_get_section_alignment (stdoutput, segment);
19297 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
19298 }
19299 #endif
19300
19301 return size;
19302 }
19303
19304 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
19305 of an rs_align_code fragment. */
19306
19307 void
19308 arm_handle_align (fragS * fragP)
19309 {
19310 static char const arm_noop[2][2][4] =
19311 {
19312 { /* ARMv1 */
19313 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
19314 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
19315 },
19316 { /* ARMv6k */
19317 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
19318 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
19319 },
19320 };
19321 static char const thumb_noop[2][2][2] =
19322 {
19323 { /* Thumb-1 */
19324 {0xc0, 0x46}, /* LE */
19325 {0x46, 0xc0}, /* BE */
19326 },
19327 { /* Thumb-2 */
19328 {0x00, 0xbf}, /* LE */
19329 {0xbf, 0x00} /* BE */
19330 }
19331 };
19332 static char const wide_thumb_noop[2][4] =
19333 { /* Wide Thumb-2 */
19334 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
19335 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
19336 };
19337
19338 unsigned bytes, fix, noop_size;
19339 char * p;
19340 const char * noop;
19341 const char *narrow_noop = NULL;
19342 #ifdef OBJ_ELF
19343 enum mstate state;
19344 #endif
19345
19346 if (fragP->fr_type != rs_align_code)
19347 return;
19348
19349 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
19350 p = fragP->fr_literal + fragP->fr_fix;
19351 fix = 0;
19352
19353 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
19354 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
19355
19356 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
19357
19358 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
19359 {
19360 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
19361 {
19362 narrow_noop = thumb_noop[1][target_big_endian];
19363 noop = wide_thumb_noop[target_big_endian];
19364 }
19365 else
19366 noop = thumb_noop[0][target_big_endian];
19367 noop_size = 2;
19368 #ifdef OBJ_ELF
19369 state = MAP_THUMB;
19370 #endif
19371 }
19372 else
19373 {
19374 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k) != 0]
19375 [target_big_endian];
19376 noop_size = 4;
19377 #ifdef OBJ_ELF
19378 state = MAP_ARM;
19379 #endif
19380 }
19381
19382 fragP->fr_var = noop_size;
19383
19384 if (bytes & (noop_size - 1))
19385 {
19386 fix = bytes & (noop_size - 1);
19387 #ifdef OBJ_ELF
19388 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
19389 #endif
19390 memset (p, 0, fix);
19391 p += fix;
19392 bytes -= fix;
19393 }
19394
19395 if (narrow_noop)
19396 {
19397 if (bytes & noop_size)
19398 {
19399 /* Insert a narrow noop. */
19400 memcpy (p, narrow_noop, noop_size);
19401 p += noop_size;
19402 bytes -= noop_size;
19403 fix += noop_size;
19404 }
19405
19406 /* Use wide noops for the remainder */
19407 noop_size = 4;
19408 }
19409
19410 while (bytes >= noop_size)
19411 {
19412 memcpy (p, noop, noop_size);
19413 p += noop_size;
19414 bytes -= noop_size;
19415 fix += noop_size;
19416 }
19417
19418 fragP->fr_fix += fix;
19419 }
19420
19421 /* Called from md_do_align. Used to create an alignment
19422 frag in a code section. */
19423
19424 void
19425 arm_frag_align_code (int n, int max)
19426 {
19427 char * p;
19428
19429 /* We assume that there will never be a requirement
19430 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
19431 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
19432 {
19433 char err_msg[128];
19434
19435 sprintf (err_msg,
19436 _("alignments greater than %d bytes not supported in .text sections."),
19437 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
19438 as_fatal ("%s", err_msg);
19439 }
19440
19441 p = frag_var (rs_align_code,
19442 MAX_MEM_FOR_RS_ALIGN_CODE,
19443 1,
19444 (relax_substateT) max,
19445 (symbolS *) NULL,
19446 (offsetT) n,
19447 (char *) NULL);
19448 *p = 0;
19449 }
19450
19451 /* Perform target specific initialisation of a frag.
19452 Note - despite the name this initialisation is not done when the frag
19453 is created, but only when its type is assigned. A frag can be created
19454 and used a long time before its type is set, so beware of assuming that
19455 this initialisationis performed first. */
19456
19457 #ifndef OBJ_ELF
19458 void
19459 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
19460 {
19461 /* Record whether this frag is in an ARM or a THUMB area. */
19462 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
19463 }
19464
19465 #else /* OBJ_ELF is defined. */
19466 void
19467 arm_init_frag (fragS * fragP, int max_chars)
19468 {
19469 /* If the current ARM vs THUMB mode has not already
19470 been recorded into this frag then do so now. */
19471 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
19472 {
19473 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
19474
19475 /* Record a mapping symbol for alignment frags. We will delete this
19476 later if the alignment ends up empty. */
19477 switch (fragP->fr_type)
19478 {
19479 case rs_align:
19480 case rs_align_test:
19481 case rs_fill:
19482 mapping_state_2 (MAP_DATA, max_chars);
19483 break;
19484 case rs_align_code:
19485 mapping_state_2 (thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
19486 break;
19487 default:
19488 break;
19489 }
19490 }
19491 }
19492
19493 /* When we change sections we need to issue a new mapping symbol. */
19494
19495 void
19496 arm_elf_change_section (void)
19497 {
19498 /* Link an unlinked unwind index table section to the .text section. */
19499 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
19500 && elf_linked_to_section (now_seg) == NULL)
19501 elf_linked_to_section (now_seg) = text_section;
19502 }
19503
19504 int
19505 arm_elf_section_type (const char * str, size_t len)
19506 {
19507 if (len == 5 && strncmp (str, "exidx", 5) == 0)
19508 return SHT_ARM_EXIDX;
19509
19510 return -1;
19511 }
19512 \f
19513 /* Code to deal with unwinding tables. */
19514
19515 static void add_unwind_adjustsp (offsetT);
19516
19517 /* Generate any deferred unwind frame offset. */
19518
19519 static void
19520 flush_pending_unwind (void)
19521 {
19522 offsetT offset;
19523
19524 offset = unwind.pending_offset;
19525 unwind.pending_offset = 0;
19526 if (offset != 0)
19527 add_unwind_adjustsp (offset);
19528 }
19529
19530 /* Add an opcode to this list for this function. Two-byte opcodes should
19531 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
19532 order. */
19533
19534 static void
19535 add_unwind_opcode (valueT op, int length)
19536 {
19537 /* Add any deferred stack adjustment. */
19538 if (unwind.pending_offset)
19539 flush_pending_unwind ();
19540
19541 unwind.sp_restored = 0;
19542
19543 if (unwind.opcode_count + length > unwind.opcode_alloc)
19544 {
19545 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
19546 if (unwind.opcodes)
19547 unwind.opcodes = (unsigned char *) xrealloc (unwind.opcodes,
19548 unwind.opcode_alloc);
19549 else
19550 unwind.opcodes = (unsigned char *) xmalloc (unwind.opcode_alloc);
19551 }
19552 while (length > 0)
19553 {
19554 length--;
19555 unwind.opcodes[unwind.opcode_count] = op & 0xff;
19556 op >>= 8;
19557 unwind.opcode_count++;
19558 }
19559 }
19560
19561 /* Add unwind opcodes to adjust the stack pointer. */
19562
19563 static void
19564 add_unwind_adjustsp (offsetT offset)
19565 {
19566 valueT op;
19567
19568 if (offset > 0x200)
19569 {
19570 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
19571 char bytes[5];
19572 int n;
19573 valueT o;
19574
19575 /* Long form: 0xb2, uleb128. */
19576 /* This might not fit in a word so add the individual bytes,
19577 remembering the list is built in reverse order. */
19578 o = (valueT) ((offset - 0x204) >> 2);
19579 if (o == 0)
19580 add_unwind_opcode (0, 1);
19581
19582 /* Calculate the uleb128 encoding of the offset. */
19583 n = 0;
19584 while (o)
19585 {
19586 bytes[n] = o & 0x7f;
19587 o >>= 7;
19588 if (o)
19589 bytes[n] |= 0x80;
19590 n++;
19591 }
19592 /* Add the insn. */
19593 for (; n; n--)
19594 add_unwind_opcode (bytes[n - 1], 1);
19595 add_unwind_opcode (0xb2, 1);
19596 }
19597 else if (offset > 0x100)
19598 {
19599 /* Two short opcodes. */
19600 add_unwind_opcode (0x3f, 1);
19601 op = (offset - 0x104) >> 2;
19602 add_unwind_opcode (op, 1);
19603 }
19604 else if (offset > 0)
19605 {
19606 /* Short opcode. */
19607 op = (offset - 4) >> 2;
19608 add_unwind_opcode (op, 1);
19609 }
19610 else if (offset < 0)
19611 {
19612 offset = -offset;
19613 while (offset > 0x100)
19614 {
19615 add_unwind_opcode (0x7f, 1);
19616 offset -= 0x100;
19617 }
19618 op = ((offset - 4) >> 2) | 0x40;
19619 add_unwind_opcode (op, 1);
19620 }
19621 }
19622
19623 /* Finish the list of unwind opcodes for this function. */
19624 static void
19625 finish_unwind_opcodes (void)
19626 {
19627 valueT op;
19628
19629 if (unwind.fp_used)
19630 {
19631 /* Adjust sp as necessary. */
19632 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
19633 flush_pending_unwind ();
19634
19635 /* After restoring sp from the frame pointer. */
19636 op = 0x90 | unwind.fp_reg;
19637 add_unwind_opcode (op, 1);
19638 }
19639 else
19640 flush_pending_unwind ();
19641 }
19642
19643
19644 /* Start an exception table entry. If idx is nonzero this is an index table
19645 entry. */
19646
19647 static void
19648 start_unwind_section (const segT text_seg, int idx)
19649 {
19650 const char * text_name;
19651 const char * prefix;
19652 const char * prefix_once;
19653 const char * group_name;
19654 size_t prefix_len;
19655 size_t text_len;
19656 char * sec_name;
19657 size_t sec_name_len;
19658 int type;
19659 int flags;
19660 int linkonce;
19661
19662 if (idx)
19663 {
19664 prefix = ELF_STRING_ARM_unwind;
19665 prefix_once = ELF_STRING_ARM_unwind_once;
19666 type = SHT_ARM_EXIDX;
19667 }
19668 else
19669 {
19670 prefix = ELF_STRING_ARM_unwind_info;
19671 prefix_once = ELF_STRING_ARM_unwind_info_once;
19672 type = SHT_PROGBITS;
19673 }
19674
19675 text_name = segment_name (text_seg);
19676 if (streq (text_name, ".text"))
19677 text_name = "";
19678
19679 if (strncmp (text_name, ".gnu.linkonce.t.",
19680 strlen (".gnu.linkonce.t.")) == 0)
19681 {
19682 prefix = prefix_once;
19683 text_name += strlen (".gnu.linkonce.t.");
19684 }
19685
19686 prefix_len = strlen (prefix);
19687 text_len = strlen (text_name);
19688 sec_name_len = prefix_len + text_len;
19689 sec_name = (char *) xmalloc (sec_name_len + 1);
19690 memcpy (sec_name, prefix, prefix_len);
19691 memcpy (sec_name + prefix_len, text_name, text_len);
19692 sec_name[prefix_len + text_len] = '\0';
19693
19694 flags = SHF_ALLOC;
19695 linkonce = 0;
19696 group_name = 0;
19697
19698 /* Handle COMDAT group. */
19699 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
19700 {
19701 group_name = elf_group_name (text_seg);
19702 if (group_name == NULL)
19703 {
19704 as_bad (_("Group section `%s' has no group signature"),
19705 segment_name (text_seg));
19706 ignore_rest_of_line ();
19707 return;
19708 }
19709 flags |= SHF_GROUP;
19710 linkonce = 1;
19711 }
19712
19713 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
19714
19715 /* Set the section link for index tables. */
19716 if (idx)
19717 elf_linked_to_section (now_seg) = text_seg;
19718 }
19719
19720
19721 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
19722 personality routine data. Returns zero, or the index table value for
19723 and inline entry. */
19724
19725 static valueT
19726 create_unwind_entry (int have_data)
19727 {
19728 int size;
19729 addressT where;
19730 char *ptr;
19731 /* The current word of data. */
19732 valueT data;
19733 /* The number of bytes left in this word. */
19734 int n;
19735
19736 finish_unwind_opcodes ();
19737
19738 /* Remember the current text section. */
19739 unwind.saved_seg = now_seg;
19740 unwind.saved_subseg = now_subseg;
19741
19742 start_unwind_section (now_seg, 0);
19743
19744 if (unwind.personality_routine == NULL)
19745 {
19746 if (unwind.personality_index == -2)
19747 {
19748 if (have_data)
19749 as_bad (_("handlerdata in cantunwind frame"));
19750 return 1; /* EXIDX_CANTUNWIND. */
19751 }
19752
19753 /* Use a default personality routine if none is specified. */
19754 if (unwind.personality_index == -1)
19755 {
19756 if (unwind.opcode_count > 3)
19757 unwind.personality_index = 1;
19758 else
19759 unwind.personality_index = 0;
19760 }
19761
19762 /* Space for the personality routine entry. */
19763 if (unwind.personality_index == 0)
19764 {
19765 if (unwind.opcode_count > 3)
19766 as_bad (_("too many unwind opcodes for personality routine 0"));
19767
19768 if (!have_data)
19769 {
19770 /* All the data is inline in the index table. */
19771 data = 0x80;
19772 n = 3;
19773 while (unwind.opcode_count > 0)
19774 {
19775 unwind.opcode_count--;
19776 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19777 n--;
19778 }
19779
19780 /* Pad with "finish" opcodes. */
19781 while (n--)
19782 data = (data << 8) | 0xb0;
19783
19784 return data;
19785 }
19786 size = 0;
19787 }
19788 else
19789 /* We get two opcodes "free" in the first word. */
19790 size = unwind.opcode_count - 2;
19791 }
19792 else
19793 /* An extra byte is required for the opcode count. */
19794 size = unwind.opcode_count + 1;
19795
19796 size = (size + 3) >> 2;
19797 if (size > 0xff)
19798 as_bad (_("too many unwind opcodes"));
19799
19800 frag_align (2, 0, 0);
19801 record_alignment (now_seg, 2);
19802 unwind.table_entry = expr_build_dot ();
19803
19804 /* Allocate the table entry. */
19805 ptr = frag_more ((size << 2) + 4);
19806 where = frag_now_fix () - ((size << 2) + 4);
19807
19808 switch (unwind.personality_index)
19809 {
19810 case -1:
19811 /* ??? Should this be a PLT generating relocation? */
19812 /* Custom personality routine. */
19813 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
19814 BFD_RELOC_ARM_PREL31);
19815
19816 where += 4;
19817 ptr += 4;
19818
19819 /* Set the first byte to the number of additional words. */
19820 data = size - 1;
19821 n = 3;
19822 break;
19823
19824 /* ABI defined personality routines. */
19825 case 0:
19826 /* Three opcodes bytes are packed into the first word. */
19827 data = 0x80;
19828 n = 3;
19829 break;
19830
19831 case 1:
19832 case 2:
19833 /* The size and first two opcode bytes go in the first word. */
19834 data = ((0x80 + unwind.personality_index) << 8) | size;
19835 n = 2;
19836 break;
19837
19838 default:
19839 /* Should never happen. */
19840 abort ();
19841 }
19842
19843 /* Pack the opcodes into words (MSB first), reversing the list at the same
19844 time. */
19845 while (unwind.opcode_count > 0)
19846 {
19847 if (n == 0)
19848 {
19849 md_number_to_chars (ptr, data, 4);
19850 ptr += 4;
19851 n = 4;
19852 data = 0;
19853 }
19854 unwind.opcode_count--;
19855 n--;
19856 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19857 }
19858
19859 /* Finish off the last word. */
19860 if (n < 4)
19861 {
19862 /* Pad with "finish" opcodes. */
19863 while (n--)
19864 data = (data << 8) | 0xb0;
19865
19866 md_number_to_chars (ptr, data, 4);
19867 }
19868
19869 if (!have_data)
19870 {
19871 /* Add an empty descriptor if there is no user-specified data. */
19872 ptr = frag_more (4);
19873 md_number_to_chars (ptr, 0, 4);
19874 }
19875
19876 return 0;
19877 }
19878
19879
19880 /* Initialize the DWARF-2 unwind information for this procedure. */
19881
19882 void
19883 tc_arm_frame_initial_instructions (void)
19884 {
19885 cfi_add_CFA_def_cfa (REG_SP, 0);
19886 }
19887 #endif /* OBJ_ELF */
19888
19889 /* Convert REGNAME to a DWARF-2 register number. */
19890
19891 int
19892 tc_arm_regname_to_dw2regnum (char *regname)
19893 {
19894 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
19895
19896 if (reg == FAIL)
19897 return -1;
19898
19899 return reg;
19900 }
19901
19902 #ifdef TE_PE
19903 void
19904 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
19905 {
19906 expressionS exp;
19907
19908 exp.X_op = O_secrel;
19909 exp.X_add_symbol = symbol;
19910 exp.X_add_number = 0;
19911 emit_expr (&exp, size);
19912 }
19913 #endif
19914
19915 /* MD interface: Symbol and relocation handling. */
19916
19917 /* Return the address within the segment that a PC-relative fixup is
19918 relative to. For ARM, PC-relative fixups applied to instructions
19919 are generally relative to the location of the fixup plus 8 bytes.
19920 Thumb branches are offset by 4, and Thumb loads relative to PC
19921 require special handling. */
19922
19923 long
19924 md_pcrel_from_section (fixS * fixP, segT seg)
19925 {
19926 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
19927
19928 /* If this is pc-relative and we are going to emit a relocation
19929 then we just want to put out any pipeline compensation that the linker
19930 will need. Otherwise we want to use the calculated base.
19931 For WinCE we skip the bias for externals as well, since this
19932 is how the MS ARM-CE assembler behaves and we want to be compatible. */
19933 if (fixP->fx_pcrel
19934 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
19935 || (arm_force_relocation (fixP)
19936 #ifdef TE_WINCE
19937 && !S_IS_EXTERNAL (fixP->fx_addsy)
19938 #endif
19939 )))
19940 base = 0;
19941
19942
19943 switch (fixP->fx_r_type)
19944 {
19945 /* PC relative addressing on the Thumb is slightly odd as the
19946 bottom two bits of the PC are forced to zero for the
19947 calculation. This happens *after* application of the
19948 pipeline offset. However, Thumb adrl already adjusts for
19949 this, so we need not do it again. */
19950 case BFD_RELOC_ARM_THUMB_ADD:
19951 return base & ~3;
19952
19953 case BFD_RELOC_ARM_THUMB_OFFSET:
19954 case BFD_RELOC_ARM_T32_OFFSET_IMM:
19955 case BFD_RELOC_ARM_T32_ADD_PC12:
19956 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
19957 return (base + 4) & ~3;
19958
19959 /* Thumb branches are simply offset by +4. */
19960 case BFD_RELOC_THUMB_PCREL_BRANCH7:
19961 case BFD_RELOC_THUMB_PCREL_BRANCH9:
19962 case BFD_RELOC_THUMB_PCREL_BRANCH12:
19963 case BFD_RELOC_THUMB_PCREL_BRANCH20:
19964 case BFD_RELOC_THUMB_PCREL_BRANCH25:
19965 return base + 4;
19966
19967 case BFD_RELOC_THUMB_PCREL_BRANCH23:
19968 if (fixP->fx_addsy
19969 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19970 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
19971 && ARM_IS_FUNC (fixP->fx_addsy)
19972 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19973 base = fixP->fx_where + fixP->fx_frag->fr_address;
19974 return base + 4;
19975
19976 /* BLX is like branches above, but forces the low two bits of PC to
19977 zero. */
19978 case BFD_RELOC_THUMB_PCREL_BLX:
19979 if (fixP->fx_addsy
19980 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19981 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
19982 && THUMB_IS_FUNC (fixP->fx_addsy)
19983 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19984 base = fixP->fx_where + fixP->fx_frag->fr_address;
19985 return (base + 4) & ~3;
19986
19987 /* ARM mode branches are offset by +8. However, the Windows CE
19988 loader expects the relocation not to take this into account. */
19989 case BFD_RELOC_ARM_PCREL_BLX:
19990 if (fixP->fx_addsy
19991 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19992 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
19993 && ARM_IS_FUNC (fixP->fx_addsy)
19994 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19995 base = fixP->fx_where + fixP->fx_frag->fr_address;
19996 return base + 8;
19997
19998 case BFD_RELOC_ARM_PCREL_CALL:
19999 if (fixP->fx_addsy
20000 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20001 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20002 && THUMB_IS_FUNC (fixP->fx_addsy)
20003 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20004 base = fixP->fx_where + fixP->fx_frag->fr_address;
20005 return base + 8;
20006
20007 case BFD_RELOC_ARM_PCREL_BRANCH:
20008 case BFD_RELOC_ARM_PCREL_JUMP:
20009 case BFD_RELOC_ARM_PLT32:
20010 #ifdef TE_WINCE
20011 /* When handling fixups immediately, because we have already
20012 discovered the value of a symbol, or the address of the frag involved
20013 we must account for the offset by +8, as the OS loader will never see the reloc.
20014 see fixup_segment() in write.c
20015 The S_IS_EXTERNAL test handles the case of global symbols.
20016 Those need the calculated base, not just the pipe compensation the linker will need. */
20017 if (fixP->fx_pcrel
20018 && fixP->fx_addsy != NULL
20019 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20020 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
20021 return base + 8;
20022 return base;
20023 #else
20024 return base + 8;
20025 #endif
20026
20027
20028 /* ARM mode loads relative to PC are also offset by +8. Unlike
20029 branches, the Windows CE loader *does* expect the relocation
20030 to take this into account. */
20031 case BFD_RELOC_ARM_OFFSET_IMM:
20032 case BFD_RELOC_ARM_OFFSET_IMM8:
20033 case BFD_RELOC_ARM_HWLITERAL:
20034 case BFD_RELOC_ARM_LITERAL:
20035 case BFD_RELOC_ARM_CP_OFF_IMM:
20036 return base + 8;
20037
20038
20039 /* Other PC-relative relocations are un-offset. */
20040 default:
20041 return base;
20042 }
20043 }
20044
20045 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
20046 Otherwise we have no need to default values of symbols. */
20047
20048 symbolS *
20049 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
20050 {
20051 #ifdef OBJ_ELF
20052 if (name[0] == '_' && name[1] == 'G'
20053 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
20054 {
20055 if (!GOT_symbol)
20056 {
20057 if (symbol_find (name))
20058 as_bad (_("GOT already in the symbol table"));
20059
20060 GOT_symbol = symbol_new (name, undefined_section,
20061 (valueT) 0, & zero_address_frag);
20062 }
20063
20064 return GOT_symbol;
20065 }
20066 #endif
20067
20068 return NULL;
20069 }
20070
20071 /* Subroutine of md_apply_fix. Check to see if an immediate can be
20072 computed as two separate immediate values, added together. We
20073 already know that this value cannot be computed by just one ARM
20074 instruction. */
20075
20076 static unsigned int
20077 validate_immediate_twopart (unsigned int val,
20078 unsigned int * highpart)
20079 {
20080 unsigned int a;
20081 unsigned int i;
20082
20083 for (i = 0; i < 32; i += 2)
20084 if (((a = rotate_left (val, i)) & 0xff) != 0)
20085 {
20086 if (a & 0xff00)
20087 {
20088 if (a & ~ 0xffff)
20089 continue;
20090 * highpart = (a >> 8) | ((i + 24) << 7);
20091 }
20092 else if (a & 0xff0000)
20093 {
20094 if (a & 0xff000000)
20095 continue;
20096 * highpart = (a >> 16) | ((i + 16) << 7);
20097 }
20098 else
20099 {
20100 gas_assert (a & 0xff000000);
20101 * highpart = (a >> 24) | ((i + 8) << 7);
20102 }
20103
20104 return (a & 0xff) | (i << 7);
20105 }
20106
20107 return FAIL;
20108 }
20109
20110 static int
20111 validate_offset_imm (unsigned int val, int hwse)
20112 {
20113 if ((hwse && val > 255) || val > 4095)
20114 return FAIL;
20115 return val;
20116 }
20117
20118 /* Subroutine of md_apply_fix. Do those data_ops which can take a
20119 negative immediate constant by altering the instruction. A bit of
20120 a hack really.
20121 MOV <-> MVN
20122 AND <-> BIC
20123 ADC <-> SBC
20124 by inverting the second operand, and
20125 ADD <-> SUB
20126 CMP <-> CMN
20127 by negating the second operand. */
20128
20129 static int
20130 negate_data_op (unsigned long * instruction,
20131 unsigned long value)
20132 {
20133 int op, new_inst;
20134 unsigned long negated, inverted;
20135
20136 negated = encode_arm_immediate (-value);
20137 inverted = encode_arm_immediate (~value);
20138
20139 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
20140 switch (op)
20141 {
20142 /* First negates. */
20143 case OPCODE_SUB: /* ADD <-> SUB */
20144 new_inst = OPCODE_ADD;
20145 value = negated;
20146 break;
20147
20148 case OPCODE_ADD:
20149 new_inst = OPCODE_SUB;
20150 value = negated;
20151 break;
20152
20153 case OPCODE_CMP: /* CMP <-> CMN */
20154 new_inst = OPCODE_CMN;
20155 value = negated;
20156 break;
20157
20158 case OPCODE_CMN:
20159 new_inst = OPCODE_CMP;
20160 value = negated;
20161 break;
20162
20163 /* Now Inverted ops. */
20164 case OPCODE_MOV: /* MOV <-> MVN */
20165 new_inst = OPCODE_MVN;
20166 value = inverted;
20167 break;
20168
20169 case OPCODE_MVN:
20170 new_inst = OPCODE_MOV;
20171 value = inverted;
20172 break;
20173
20174 case OPCODE_AND: /* AND <-> BIC */
20175 new_inst = OPCODE_BIC;
20176 value = inverted;
20177 break;
20178
20179 case OPCODE_BIC:
20180 new_inst = OPCODE_AND;
20181 value = inverted;
20182 break;
20183
20184 case OPCODE_ADC: /* ADC <-> SBC */
20185 new_inst = OPCODE_SBC;
20186 value = inverted;
20187 break;
20188
20189 case OPCODE_SBC:
20190 new_inst = OPCODE_ADC;
20191 value = inverted;
20192 break;
20193
20194 /* We cannot do anything. */
20195 default:
20196 return FAIL;
20197 }
20198
20199 if (value == (unsigned) FAIL)
20200 return FAIL;
20201
20202 *instruction &= OPCODE_MASK;
20203 *instruction |= new_inst << DATA_OP_SHIFT;
20204 return value;
20205 }
20206
20207 /* Like negate_data_op, but for Thumb-2. */
20208
20209 static unsigned int
20210 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
20211 {
20212 int op, new_inst;
20213 int rd;
20214 unsigned int negated, inverted;
20215
20216 negated = encode_thumb32_immediate (-value);
20217 inverted = encode_thumb32_immediate (~value);
20218
20219 rd = (*instruction >> 8) & 0xf;
20220 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
20221 switch (op)
20222 {
20223 /* ADD <-> SUB. Includes CMP <-> CMN. */
20224 case T2_OPCODE_SUB:
20225 new_inst = T2_OPCODE_ADD;
20226 value = negated;
20227 break;
20228
20229 case T2_OPCODE_ADD:
20230 new_inst = T2_OPCODE_SUB;
20231 value = negated;
20232 break;
20233
20234 /* ORR <-> ORN. Includes MOV <-> MVN. */
20235 case T2_OPCODE_ORR:
20236 new_inst = T2_OPCODE_ORN;
20237 value = inverted;
20238 break;
20239
20240 case T2_OPCODE_ORN:
20241 new_inst = T2_OPCODE_ORR;
20242 value = inverted;
20243 break;
20244
20245 /* AND <-> BIC. TST has no inverted equivalent. */
20246 case T2_OPCODE_AND:
20247 new_inst = T2_OPCODE_BIC;
20248 if (rd == 15)
20249 value = FAIL;
20250 else
20251 value = inverted;
20252 break;
20253
20254 case T2_OPCODE_BIC:
20255 new_inst = T2_OPCODE_AND;
20256 value = inverted;
20257 break;
20258
20259 /* ADC <-> SBC */
20260 case T2_OPCODE_ADC:
20261 new_inst = T2_OPCODE_SBC;
20262 value = inverted;
20263 break;
20264
20265 case T2_OPCODE_SBC:
20266 new_inst = T2_OPCODE_ADC;
20267 value = inverted;
20268 break;
20269
20270 /* We cannot do anything. */
20271 default:
20272 return FAIL;
20273 }
20274
20275 if (value == (unsigned int)FAIL)
20276 return FAIL;
20277
20278 *instruction &= T2_OPCODE_MASK;
20279 *instruction |= new_inst << T2_DATA_OP_SHIFT;
20280 return value;
20281 }
20282
20283 /* Read a 32-bit thumb instruction from buf. */
20284 static unsigned long
20285 get_thumb32_insn (char * buf)
20286 {
20287 unsigned long insn;
20288 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
20289 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20290
20291 return insn;
20292 }
20293
20294
20295 /* We usually want to set the low bit on the address of thumb function
20296 symbols. In particular .word foo - . should have the low bit set.
20297 Generic code tries to fold the difference of two symbols to
20298 a constant. Prevent this and force a relocation when the first symbols
20299 is a thumb function. */
20300
20301 bfd_boolean
20302 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
20303 {
20304 if (op == O_subtract
20305 && l->X_op == O_symbol
20306 && r->X_op == O_symbol
20307 && THUMB_IS_FUNC (l->X_add_symbol))
20308 {
20309 l->X_op = O_subtract;
20310 l->X_op_symbol = r->X_add_symbol;
20311 l->X_add_number -= r->X_add_number;
20312 return TRUE;
20313 }
20314
20315 /* Process as normal. */
20316 return FALSE;
20317 }
20318
20319 /* Encode Thumb2 unconditional branches and calls. The encoding
20320 for the 2 are identical for the immediate values. */
20321
20322 static void
20323 encode_thumb2_b_bl_offset (char * buf, offsetT value)
20324 {
20325 #define T2I1I2MASK ((1 << 13) | (1 << 11))
20326 offsetT newval;
20327 offsetT newval2;
20328 addressT S, I1, I2, lo, hi;
20329
20330 S = (value >> 24) & 0x01;
20331 I1 = (value >> 23) & 0x01;
20332 I2 = (value >> 22) & 0x01;
20333 hi = (value >> 12) & 0x3ff;
20334 lo = (value >> 1) & 0x7ff;
20335 newval = md_chars_to_number (buf, THUMB_SIZE);
20336 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20337 newval |= (S << 10) | hi;
20338 newval2 &= ~T2I1I2MASK;
20339 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
20340 md_number_to_chars (buf, newval, THUMB_SIZE);
20341 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20342 }
20343
20344 void
20345 md_apply_fix (fixS * fixP,
20346 valueT * valP,
20347 segT seg)
20348 {
20349 offsetT value = * valP;
20350 offsetT newval;
20351 unsigned int newimm;
20352 unsigned long temp;
20353 int sign;
20354 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
20355
20356 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
20357
20358 /* Note whether this will delete the relocation. */
20359
20360 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
20361 fixP->fx_done = 1;
20362
20363 /* On a 64-bit host, silently truncate 'value' to 32 bits for
20364 consistency with the behaviour on 32-bit hosts. Remember value
20365 for emit_reloc. */
20366 value &= 0xffffffff;
20367 value ^= 0x80000000;
20368 value -= 0x80000000;
20369
20370 *valP = value;
20371 fixP->fx_addnumber = value;
20372
20373 /* Same treatment for fixP->fx_offset. */
20374 fixP->fx_offset &= 0xffffffff;
20375 fixP->fx_offset ^= 0x80000000;
20376 fixP->fx_offset -= 0x80000000;
20377
20378 switch (fixP->fx_r_type)
20379 {
20380 case BFD_RELOC_NONE:
20381 /* This will need to go in the object file. */
20382 fixP->fx_done = 0;
20383 break;
20384
20385 case BFD_RELOC_ARM_IMMEDIATE:
20386 /* We claim that this fixup has been processed here,
20387 even if in fact we generate an error because we do
20388 not have a reloc for it, so tc_gen_reloc will reject it. */
20389 fixP->fx_done = 1;
20390
20391 if (fixP->fx_addsy)
20392 {
20393 const char *msg = 0;
20394
20395 if (! S_IS_DEFINED (fixP->fx_addsy))
20396 msg = _("undefined symbol %s used as an immediate value");
20397 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
20398 msg = _("symbol %s is in a different section");
20399 else if (S_IS_WEAK (fixP->fx_addsy))
20400 msg = _("symbol %s is weak and may be overridden later");
20401
20402 if (msg)
20403 {
20404 as_bad_where (fixP->fx_file, fixP->fx_line,
20405 msg, S_GET_NAME (fixP->fx_addsy));
20406 break;
20407 }
20408 }
20409
20410 newimm = encode_arm_immediate (value);
20411 temp = md_chars_to_number (buf, INSN_SIZE);
20412
20413 /* If the instruction will fail, see if we can fix things up by
20414 changing the opcode. */
20415 if (newimm == (unsigned int) FAIL
20416 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
20417 {
20418 as_bad_where (fixP->fx_file, fixP->fx_line,
20419 _("invalid constant (%lx) after fixup"),
20420 (unsigned long) value);
20421 break;
20422 }
20423
20424 newimm |= (temp & 0xfffff000);
20425 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
20426 break;
20427
20428 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
20429 {
20430 unsigned int highpart = 0;
20431 unsigned int newinsn = 0xe1a00000; /* nop. */
20432
20433 if (fixP->fx_addsy)
20434 {
20435 const char *msg = 0;
20436
20437 if (! S_IS_DEFINED (fixP->fx_addsy))
20438 msg = _("undefined symbol %s used as an immediate value");
20439 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
20440 msg = _("symbol %s is in a different section");
20441 else if (S_IS_WEAK (fixP->fx_addsy))
20442 msg = _("symbol %s is weak and may be overridden later");
20443
20444 if (msg)
20445 {
20446 as_bad_where (fixP->fx_file, fixP->fx_line,
20447 msg, S_GET_NAME (fixP->fx_addsy));
20448 break;
20449 }
20450 }
20451
20452 newimm = encode_arm_immediate (value);
20453 temp = md_chars_to_number (buf, INSN_SIZE);
20454
20455 /* If the instruction will fail, see if we can fix things up by
20456 changing the opcode. */
20457 if (newimm == (unsigned int) FAIL
20458 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
20459 {
20460 /* No ? OK - try using two ADD instructions to generate
20461 the value. */
20462 newimm = validate_immediate_twopart (value, & highpart);
20463
20464 /* Yes - then make sure that the second instruction is
20465 also an add. */
20466 if (newimm != (unsigned int) FAIL)
20467 newinsn = temp;
20468 /* Still No ? Try using a negated value. */
20469 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
20470 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
20471 /* Otherwise - give up. */
20472 else
20473 {
20474 as_bad_where (fixP->fx_file, fixP->fx_line,
20475 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
20476 (long) value);
20477 break;
20478 }
20479
20480 /* Replace the first operand in the 2nd instruction (which
20481 is the PC) with the destination register. We have
20482 already added in the PC in the first instruction and we
20483 do not want to do it again. */
20484 newinsn &= ~ 0xf0000;
20485 newinsn |= ((newinsn & 0x0f000) << 4);
20486 }
20487
20488 newimm |= (temp & 0xfffff000);
20489 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
20490
20491 highpart |= (newinsn & 0xfffff000);
20492 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
20493 }
20494 break;
20495
20496 case BFD_RELOC_ARM_OFFSET_IMM:
20497 if (!fixP->fx_done && seg->use_rela_p)
20498 value = 0;
20499
20500 case BFD_RELOC_ARM_LITERAL:
20501 sign = value > 0;
20502
20503 if (value < 0)
20504 value = - value;
20505
20506 if (validate_offset_imm (value, 0) == FAIL)
20507 {
20508 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
20509 as_bad_where (fixP->fx_file, fixP->fx_line,
20510 _("invalid literal constant: pool needs to be closer"));
20511 else
20512 as_bad_where (fixP->fx_file, fixP->fx_line,
20513 _("bad immediate value for offset (%ld)"),
20514 (long) value);
20515 break;
20516 }
20517
20518 newval = md_chars_to_number (buf, INSN_SIZE);
20519 if (value == 0)
20520 newval &= 0xfffff000;
20521 else
20522 {
20523 newval &= 0xff7ff000;
20524 newval |= value | (sign ? INDEX_UP : 0);
20525 }
20526 md_number_to_chars (buf, newval, INSN_SIZE);
20527 break;
20528
20529 case BFD_RELOC_ARM_OFFSET_IMM8:
20530 case BFD_RELOC_ARM_HWLITERAL:
20531 sign = value > 0;
20532
20533 if (value < 0)
20534 value = - value;
20535
20536 if (validate_offset_imm (value, 1) == FAIL)
20537 {
20538 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
20539 as_bad_where (fixP->fx_file, fixP->fx_line,
20540 _("invalid literal constant: pool needs to be closer"));
20541 else
20542 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
20543 (long) value);
20544 break;
20545 }
20546
20547 newval = md_chars_to_number (buf, INSN_SIZE);
20548 if (value == 0)
20549 newval &= 0xfffff0f0;
20550 else
20551 {
20552 newval &= 0xff7ff0f0;
20553 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
20554 }
20555 md_number_to_chars (buf, newval, INSN_SIZE);
20556 break;
20557
20558 case BFD_RELOC_ARM_T32_OFFSET_U8:
20559 if (value < 0 || value > 1020 || value % 4 != 0)
20560 as_bad_where (fixP->fx_file, fixP->fx_line,
20561 _("bad immediate value for offset (%ld)"), (long) value);
20562 value /= 4;
20563
20564 newval = md_chars_to_number (buf+2, THUMB_SIZE);
20565 newval |= value;
20566 md_number_to_chars (buf+2, newval, THUMB_SIZE);
20567 break;
20568
20569 case BFD_RELOC_ARM_T32_OFFSET_IMM:
20570 /* This is a complicated relocation used for all varieties of Thumb32
20571 load/store instruction with immediate offset:
20572
20573 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
20574 *4, optional writeback(W)
20575 (doubleword load/store)
20576
20577 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
20578 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
20579 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
20580 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
20581 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
20582
20583 Uppercase letters indicate bits that are already encoded at
20584 this point. Lowercase letters are our problem. For the
20585 second block of instructions, the secondary opcode nybble
20586 (bits 8..11) is present, and bit 23 is zero, even if this is
20587 a PC-relative operation. */
20588 newval = md_chars_to_number (buf, THUMB_SIZE);
20589 newval <<= 16;
20590 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
20591
20592 if ((newval & 0xf0000000) == 0xe0000000)
20593 {
20594 /* Doubleword load/store: 8-bit offset, scaled by 4. */
20595 if (value >= 0)
20596 newval |= (1 << 23);
20597 else
20598 value = -value;
20599 if (value % 4 != 0)
20600 {
20601 as_bad_where (fixP->fx_file, fixP->fx_line,
20602 _("offset not a multiple of 4"));
20603 break;
20604 }
20605 value /= 4;
20606 if (value > 0xff)
20607 {
20608 as_bad_where (fixP->fx_file, fixP->fx_line,
20609 _("offset out of range"));
20610 break;
20611 }
20612 newval &= ~0xff;
20613 }
20614 else if ((newval & 0x000f0000) == 0x000f0000)
20615 {
20616 /* PC-relative, 12-bit offset. */
20617 if (value >= 0)
20618 newval |= (1 << 23);
20619 else
20620 value = -value;
20621 if (value > 0xfff)
20622 {
20623 as_bad_where (fixP->fx_file, fixP->fx_line,
20624 _("offset out of range"));
20625 break;
20626 }
20627 newval &= ~0xfff;
20628 }
20629 else if ((newval & 0x00000100) == 0x00000100)
20630 {
20631 /* Writeback: 8-bit, +/- offset. */
20632 if (value >= 0)
20633 newval |= (1 << 9);
20634 else
20635 value = -value;
20636 if (value > 0xff)
20637 {
20638 as_bad_where (fixP->fx_file, fixP->fx_line,
20639 _("offset out of range"));
20640 break;
20641 }
20642 newval &= ~0xff;
20643 }
20644 else if ((newval & 0x00000f00) == 0x00000e00)
20645 {
20646 /* T-instruction: positive 8-bit offset. */
20647 if (value < 0 || value > 0xff)
20648 {
20649 as_bad_where (fixP->fx_file, fixP->fx_line,
20650 _("offset out of range"));
20651 break;
20652 }
20653 newval &= ~0xff;
20654 newval |= value;
20655 }
20656 else
20657 {
20658 /* Positive 12-bit or negative 8-bit offset. */
20659 int limit;
20660 if (value >= 0)
20661 {
20662 newval |= (1 << 23);
20663 limit = 0xfff;
20664 }
20665 else
20666 {
20667 value = -value;
20668 limit = 0xff;
20669 }
20670 if (value > limit)
20671 {
20672 as_bad_where (fixP->fx_file, fixP->fx_line,
20673 _("offset out of range"));
20674 break;
20675 }
20676 newval &= ~limit;
20677 }
20678
20679 newval |= value;
20680 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
20681 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
20682 break;
20683
20684 case BFD_RELOC_ARM_SHIFT_IMM:
20685 newval = md_chars_to_number (buf, INSN_SIZE);
20686 if (((unsigned long) value) > 32
20687 || (value == 32
20688 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
20689 {
20690 as_bad_where (fixP->fx_file, fixP->fx_line,
20691 _("shift expression is too large"));
20692 break;
20693 }
20694
20695 if (value == 0)
20696 /* Shifts of zero must be done as lsl. */
20697 newval &= ~0x60;
20698 else if (value == 32)
20699 value = 0;
20700 newval &= 0xfffff07f;
20701 newval |= (value & 0x1f) << 7;
20702 md_number_to_chars (buf, newval, INSN_SIZE);
20703 break;
20704
20705 case BFD_RELOC_ARM_T32_IMMEDIATE:
20706 case BFD_RELOC_ARM_T32_ADD_IMM:
20707 case BFD_RELOC_ARM_T32_IMM12:
20708 case BFD_RELOC_ARM_T32_ADD_PC12:
20709 /* We claim that this fixup has been processed here,
20710 even if in fact we generate an error because we do
20711 not have a reloc for it, so tc_gen_reloc will reject it. */
20712 fixP->fx_done = 1;
20713
20714 if (fixP->fx_addsy
20715 && ! S_IS_DEFINED (fixP->fx_addsy))
20716 {
20717 as_bad_where (fixP->fx_file, fixP->fx_line,
20718 _("undefined symbol %s used as an immediate value"),
20719 S_GET_NAME (fixP->fx_addsy));
20720 break;
20721 }
20722
20723 newval = md_chars_to_number (buf, THUMB_SIZE);
20724 newval <<= 16;
20725 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
20726
20727 newimm = FAIL;
20728 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
20729 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
20730 {
20731 newimm = encode_thumb32_immediate (value);
20732 if (newimm == (unsigned int) FAIL)
20733 newimm = thumb32_negate_data_op (&newval, value);
20734 }
20735 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
20736 && newimm == (unsigned int) FAIL)
20737 {
20738 /* Turn add/sum into addw/subw. */
20739 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
20740 newval = (newval & 0xfeffffff) | 0x02000000;
20741 /* No flat 12-bit imm encoding for addsw/subsw. */
20742 if ((newval & 0x00100000) == 0)
20743 {
20744 /* 12 bit immediate for addw/subw. */
20745 if (value < 0)
20746 {
20747 value = -value;
20748 newval ^= 0x00a00000;
20749 }
20750 if (value > 0xfff)
20751 newimm = (unsigned int) FAIL;
20752 else
20753 newimm = value;
20754 }
20755 }
20756
20757 if (newimm == (unsigned int)FAIL)
20758 {
20759 as_bad_where (fixP->fx_file, fixP->fx_line,
20760 _("invalid constant (%lx) after fixup"),
20761 (unsigned long) value);
20762 break;
20763 }
20764
20765 newval |= (newimm & 0x800) << 15;
20766 newval |= (newimm & 0x700) << 4;
20767 newval |= (newimm & 0x0ff);
20768
20769 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
20770 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
20771 break;
20772
20773 case BFD_RELOC_ARM_SMC:
20774 if (((unsigned long) value) > 0xffff)
20775 as_bad_where (fixP->fx_file, fixP->fx_line,
20776 _("invalid smc expression"));
20777 newval = md_chars_to_number (buf, INSN_SIZE);
20778 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
20779 md_number_to_chars (buf, newval, INSN_SIZE);
20780 break;
20781
20782 case BFD_RELOC_ARM_HVC:
20783 if (((unsigned long) value) > 0xffff)
20784 as_bad_where (fixP->fx_file, fixP->fx_line,
20785 _("invalid hvc expression"));
20786 newval = md_chars_to_number (buf, INSN_SIZE);
20787 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
20788 md_number_to_chars (buf, newval, INSN_SIZE);
20789 break;
20790
20791 case BFD_RELOC_ARM_SWI:
20792 if (fixP->tc_fix_data != 0)
20793 {
20794 if (((unsigned long) value) > 0xff)
20795 as_bad_where (fixP->fx_file, fixP->fx_line,
20796 _("invalid swi expression"));
20797 newval = md_chars_to_number (buf, THUMB_SIZE);
20798 newval |= value;
20799 md_number_to_chars (buf, newval, THUMB_SIZE);
20800 }
20801 else
20802 {
20803 if (((unsigned long) value) > 0x00ffffff)
20804 as_bad_where (fixP->fx_file, fixP->fx_line,
20805 _("invalid swi expression"));
20806 newval = md_chars_to_number (buf, INSN_SIZE);
20807 newval |= value;
20808 md_number_to_chars (buf, newval, INSN_SIZE);
20809 }
20810 break;
20811
20812 case BFD_RELOC_ARM_MULTI:
20813 if (((unsigned long) value) > 0xffff)
20814 as_bad_where (fixP->fx_file, fixP->fx_line,
20815 _("invalid expression in load/store multiple"));
20816 newval = value | md_chars_to_number (buf, INSN_SIZE);
20817 md_number_to_chars (buf, newval, INSN_SIZE);
20818 break;
20819
20820 #ifdef OBJ_ELF
20821 case BFD_RELOC_ARM_PCREL_CALL:
20822
20823 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20824 && fixP->fx_addsy
20825 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20826 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20827 && THUMB_IS_FUNC (fixP->fx_addsy))
20828 /* Flip the bl to blx. This is a simple flip
20829 bit here because we generate PCREL_CALL for
20830 unconditional bls. */
20831 {
20832 newval = md_chars_to_number (buf, INSN_SIZE);
20833 newval = newval | 0x10000000;
20834 md_number_to_chars (buf, newval, INSN_SIZE);
20835 temp = 1;
20836 fixP->fx_done = 1;
20837 }
20838 else
20839 temp = 3;
20840 goto arm_branch_common;
20841
20842 case BFD_RELOC_ARM_PCREL_JUMP:
20843 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20844 && fixP->fx_addsy
20845 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20846 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20847 && THUMB_IS_FUNC (fixP->fx_addsy))
20848 {
20849 /* This would map to a bl<cond>, b<cond>,
20850 b<always> to a Thumb function. We
20851 need to force a relocation for this particular
20852 case. */
20853 newval = md_chars_to_number (buf, INSN_SIZE);
20854 fixP->fx_done = 0;
20855 }
20856
20857 case BFD_RELOC_ARM_PLT32:
20858 #endif
20859 case BFD_RELOC_ARM_PCREL_BRANCH:
20860 temp = 3;
20861 goto arm_branch_common;
20862
20863 case BFD_RELOC_ARM_PCREL_BLX:
20864
20865 temp = 1;
20866 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20867 && fixP->fx_addsy
20868 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20869 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20870 && ARM_IS_FUNC (fixP->fx_addsy))
20871 {
20872 /* Flip the blx to a bl and warn. */
20873 const char *name = S_GET_NAME (fixP->fx_addsy);
20874 newval = 0xeb000000;
20875 as_warn_where (fixP->fx_file, fixP->fx_line,
20876 _("blx to '%s' an ARM ISA state function changed to bl"),
20877 name);
20878 md_number_to_chars (buf, newval, INSN_SIZE);
20879 temp = 3;
20880 fixP->fx_done = 1;
20881 }
20882
20883 #ifdef OBJ_ELF
20884 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
20885 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
20886 #endif
20887
20888 arm_branch_common:
20889 /* We are going to store value (shifted right by two) in the
20890 instruction, in a 24 bit, signed field. Bits 26 through 32 either
20891 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
20892 also be be clear. */
20893 if (value & temp)
20894 as_bad_where (fixP->fx_file, fixP->fx_line,
20895 _("misaligned branch destination"));
20896 if ((value & (offsetT)0xfe000000) != (offsetT)0
20897 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
20898 as_bad_where (fixP->fx_file, fixP->fx_line,
20899 _("branch out of range"));
20900
20901 if (fixP->fx_done || !seg->use_rela_p)
20902 {
20903 newval = md_chars_to_number (buf, INSN_SIZE);
20904 newval |= (value >> 2) & 0x00ffffff;
20905 /* Set the H bit on BLX instructions. */
20906 if (temp == 1)
20907 {
20908 if (value & 2)
20909 newval |= 0x01000000;
20910 else
20911 newval &= ~0x01000000;
20912 }
20913 md_number_to_chars (buf, newval, INSN_SIZE);
20914 }
20915 break;
20916
20917 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
20918 /* CBZ can only branch forward. */
20919
20920 /* Attempts to use CBZ to branch to the next instruction
20921 (which, strictly speaking, are prohibited) will be turned into
20922 no-ops.
20923
20924 FIXME: It may be better to remove the instruction completely and
20925 perform relaxation. */
20926 if (value == -2)
20927 {
20928 newval = md_chars_to_number (buf, THUMB_SIZE);
20929 newval = 0xbf00; /* NOP encoding T1 */
20930 md_number_to_chars (buf, newval, THUMB_SIZE);
20931 }
20932 else
20933 {
20934 if (value & ~0x7e)
20935 as_bad_where (fixP->fx_file, fixP->fx_line,
20936 _("branch out of range"));
20937
20938 if (fixP->fx_done || !seg->use_rela_p)
20939 {
20940 newval = md_chars_to_number (buf, THUMB_SIZE);
20941 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
20942 md_number_to_chars (buf, newval, THUMB_SIZE);
20943 }
20944 }
20945 break;
20946
20947 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
20948 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
20949 as_bad_where (fixP->fx_file, fixP->fx_line,
20950 _("branch out of range"));
20951
20952 if (fixP->fx_done || !seg->use_rela_p)
20953 {
20954 newval = md_chars_to_number (buf, THUMB_SIZE);
20955 newval |= (value & 0x1ff) >> 1;
20956 md_number_to_chars (buf, newval, THUMB_SIZE);
20957 }
20958 break;
20959
20960 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
20961 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
20962 as_bad_where (fixP->fx_file, fixP->fx_line,
20963 _("branch out of range"));
20964
20965 if (fixP->fx_done || !seg->use_rela_p)
20966 {
20967 newval = md_chars_to_number (buf, THUMB_SIZE);
20968 newval |= (value & 0xfff) >> 1;
20969 md_number_to_chars (buf, newval, THUMB_SIZE);
20970 }
20971 break;
20972
20973 case BFD_RELOC_THUMB_PCREL_BRANCH20:
20974 if (fixP->fx_addsy
20975 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20976 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20977 && ARM_IS_FUNC (fixP->fx_addsy)
20978 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20979 {
20980 /* Force a relocation for a branch 20 bits wide. */
20981 fixP->fx_done = 0;
20982 }
20983 if ((value & ~0x1fffff) && ((value & ~0x1fffff) != ~0x1fffff))
20984 as_bad_where (fixP->fx_file, fixP->fx_line,
20985 _("conditional branch out of range"));
20986
20987 if (fixP->fx_done || !seg->use_rela_p)
20988 {
20989 offsetT newval2;
20990 addressT S, J1, J2, lo, hi;
20991
20992 S = (value & 0x00100000) >> 20;
20993 J2 = (value & 0x00080000) >> 19;
20994 J1 = (value & 0x00040000) >> 18;
20995 hi = (value & 0x0003f000) >> 12;
20996 lo = (value & 0x00000ffe) >> 1;
20997
20998 newval = md_chars_to_number (buf, THUMB_SIZE);
20999 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21000 newval |= (S << 10) | hi;
21001 newval2 |= (J1 << 13) | (J2 << 11) | lo;
21002 md_number_to_chars (buf, newval, THUMB_SIZE);
21003 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
21004 }
21005 break;
21006
21007 case BFD_RELOC_THUMB_PCREL_BLX:
21008
21009 /* If there is a blx from a thumb state function to
21010 another thumb function flip this to a bl and warn
21011 about it. */
21012
21013 if (fixP->fx_addsy
21014 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21015 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21016 && THUMB_IS_FUNC (fixP->fx_addsy))
21017 {
21018 const char *name = S_GET_NAME (fixP->fx_addsy);
21019 as_warn_where (fixP->fx_file, fixP->fx_line,
21020 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
21021 name);
21022 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21023 newval = newval | 0x1000;
21024 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
21025 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
21026 fixP->fx_done = 1;
21027 }
21028
21029
21030 goto thumb_bl_common;
21031
21032 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21033
21034 /* A bl from Thumb state ISA to an internal ARM state function
21035 is converted to a blx. */
21036 if (fixP->fx_addsy
21037 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21038 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21039 && ARM_IS_FUNC (fixP->fx_addsy)
21040 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21041 {
21042 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21043 newval = newval & ~0x1000;
21044 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
21045 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
21046 fixP->fx_done = 1;
21047 }
21048
21049 thumb_bl_common:
21050
21051 #ifdef OBJ_ELF
21052 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4 &&
21053 fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
21054 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
21055 #endif
21056
21057 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
21058 /* For a BLX instruction, make sure that the relocation is rounded up
21059 to a word boundary. This follows the semantics of the instruction
21060 which specifies that bit 1 of the target address will come from bit
21061 1 of the base address. */
21062 value = (value + 1) & ~ 1;
21063
21064
21065 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
21066 {
21067 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2)))
21068 {
21069 as_bad_where (fixP->fx_file, fixP->fx_line,
21070 _("branch out of range"));
21071 }
21072 else if ((value & ~0x1ffffff)
21073 && ((value & ~0x1ffffff) != ~0x1ffffff))
21074 {
21075 as_bad_where (fixP->fx_file, fixP->fx_line,
21076 _("Thumb2 branch out of range"));
21077 }
21078 }
21079
21080 if (fixP->fx_done || !seg->use_rela_p)
21081 encode_thumb2_b_bl_offset (buf, value);
21082
21083 break;
21084
21085 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21086 if ((value & ~0x1ffffff) && ((value & ~0x1ffffff) != ~0x1ffffff))
21087 as_bad_where (fixP->fx_file, fixP->fx_line,
21088 _("branch out of range"));
21089
21090 if (fixP->fx_done || !seg->use_rela_p)
21091 encode_thumb2_b_bl_offset (buf, value);
21092
21093 break;
21094
21095 case BFD_RELOC_8:
21096 if (fixP->fx_done || !seg->use_rela_p)
21097 md_number_to_chars (buf, value, 1);
21098 break;
21099
21100 case BFD_RELOC_16:
21101 if (fixP->fx_done || !seg->use_rela_p)
21102 md_number_to_chars (buf, value, 2);
21103 break;
21104
21105 #ifdef OBJ_ELF
21106 case BFD_RELOC_ARM_TLS_CALL:
21107 case BFD_RELOC_ARM_THM_TLS_CALL:
21108 case BFD_RELOC_ARM_TLS_DESCSEQ:
21109 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
21110 S_SET_THREAD_LOCAL (fixP->fx_addsy);
21111 break;
21112
21113 case BFD_RELOC_ARM_TLS_GOTDESC:
21114 case BFD_RELOC_ARM_TLS_GD32:
21115 case BFD_RELOC_ARM_TLS_LE32:
21116 case BFD_RELOC_ARM_TLS_IE32:
21117 case BFD_RELOC_ARM_TLS_LDM32:
21118 case BFD_RELOC_ARM_TLS_LDO32:
21119 S_SET_THREAD_LOCAL (fixP->fx_addsy);
21120 /* fall through */
21121
21122 case BFD_RELOC_ARM_GOT32:
21123 case BFD_RELOC_ARM_GOTOFF:
21124 if (fixP->fx_done || !seg->use_rela_p)
21125 md_number_to_chars (buf, 0, 4);
21126 break;
21127
21128 case BFD_RELOC_ARM_GOT_PREL:
21129 if (fixP->fx_done || !seg->use_rela_p)
21130 md_number_to_chars (buf, value, 4);
21131 break;
21132
21133 case BFD_RELOC_ARM_TARGET2:
21134 /* TARGET2 is not partial-inplace, so we need to write the
21135 addend here for REL targets, because it won't be written out
21136 during reloc processing later. */
21137 if (fixP->fx_done || !seg->use_rela_p)
21138 md_number_to_chars (buf, fixP->fx_offset, 4);
21139 break;
21140 #endif
21141
21142 case BFD_RELOC_RVA:
21143 case BFD_RELOC_32:
21144 case BFD_RELOC_ARM_TARGET1:
21145 case BFD_RELOC_ARM_ROSEGREL32:
21146 case BFD_RELOC_ARM_SBREL32:
21147 case BFD_RELOC_32_PCREL:
21148 #ifdef TE_PE
21149 case BFD_RELOC_32_SECREL:
21150 #endif
21151 if (fixP->fx_done || !seg->use_rela_p)
21152 #ifdef TE_WINCE
21153 /* For WinCE we only do this for pcrel fixups. */
21154 if (fixP->fx_done || fixP->fx_pcrel)
21155 #endif
21156 md_number_to_chars (buf, value, 4);
21157 break;
21158
21159 #ifdef OBJ_ELF
21160 case BFD_RELOC_ARM_PREL31:
21161 if (fixP->fx_done || !seg->use_rela_p)
21162 {
21163 newval = md_chars_to_number (buf, 4) & 0x80000000;
21164 if ((value ^ (value >> 1)) & 0x40000000)
21165 {
21166 as_bad_where (fixP->fx_file, fixP->fx_line,
21167 _("rel31 relocation overflow"));
21168 }
21169 newval |= value & 0x7fffffff;
21170 md_number_to_chars (buf, newval, 4);
21171 }
21172 break;
21173 #endif
21174
21175 case BFD_RELOC_ARM_CP_OFF_IMM:
21176 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
21177 if (value < -1023 || value > 1023 || (value & 3))
21178 as_bad_where (fixP->fx_file, fixP->fx_line,
21179 _("co-processor offset out of range"));
21180 cp_off_common:
21181 sign = value > 0;
21182 if (value < 0)
21183 value = -value;
21184 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
21185 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
21186 newval = md_chars_to_number (buf, INSN_SIZE);
21187 else
21188 newval = get_thumb32_insn (buf);
21189 if (value == 0)
21190 newval &= 0xffffff00;
21191 else
21192 {
21193 newval &= 0xff7fff00;
21194 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
21195 }
21196 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
21197 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
21198 md_number_to_chars (buf, newval, INSN_SIZE);
21199 else
21200 put_thumb32_insn (buf, newval);
21201 break;
21202
21203 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
21204 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
21205 if (value < -255 || value > 255)
21206 as_bad_where (fixP->fx_file, fixP->fx_line,
21207 _("co-processor offset out of range"));
21208 value *= 4;
21209 goto cp_off_common;
21210
21211 case BFD_RELOC_ARM_THUMB_OFFSET:
21212 newval = md_chars_to_number (buf, THUMB_SIZE);
21213 /* Exactly what ranges, and where the offset is inserted depends
21214 on the type of instruction, we can establish this from the
21215 top 4 bits. */
21216 switch (newval >> 12)
21217 {
21218 case 4: /* PC load. */
21219 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
21220 forced to zero for these loads; md_pcrel_from has already
21221 compensated for this. */
21222 if (value & 3)
21223 as_bad_where (fixP->fx_file, fixP->fx_line,
21224 _("invalid offset, target not word aligned (0x%08lX)"),
21225 (((unsigned long) fixP->fx_frag->fr_address
21226 + (unsigned long) fixP->fx_where) & ~3)
21227 + (unsigned long) value);
21228
21229 if (value & ~0x3fc)
21230 as_bad_where (fixP->fx_file, fixP->fx_line,
21231 _("invalid offset, value too big (0x%08lX)"),
21232 (long) value);
21233
21234 newval |= value >> 2;
21235 break;
21236
21237 case 9: /* SP load/store. */
21238 if (value & ~0x3fc)
21239 as_bad_where (fixP->fx_file, fixP->fx_line,
21240 _("invalid offset, value too big (0x%08lX)"),
21241 (long) value);
21242 newval |= value >> 2;
21243 break;
21244
21245 case 6: /* Word load/store. */
21246 if (value & ~0x7c)
21247 as_bad_where (fixP->fx_file, fixP->fx_line,
21248 _("invalid offset, value too big (0x%08lX)"),
21249 (long) value);
21250 newval |= value << 4; /* 6 - 2. */
21251 break;
21252
21253 case 7: /* Byte load/store. */
21254 if (value & ~0x1f)
21255 as_bad_where (fixP->fx_file, fixP->fx_line,
21256 _("invalid offset, value too big (0x%08lX)"),
21257 (long) value);
21258 newval |= value << 6;
21259 break;
21260
21261 case 8: /* Halfword load/store. */
21262 if (value & ~0x3e)
21263 as_bad_where (fixP->fx_file, fixP->fx_line,
21264 _("invalid offset, value too big (0x%08lX)"),
21265 (long) value);
21266 newval |= value << 5; /* 6 - 1. */
21267 break;
21268
21269 default:
21270 as_bad_where (fixP->fx_file, fixP->fx_line,
21271 "Unable to process relocation for thumb opcode: %lx",
21272 (unsigned long) newval);
21273 break;
21274 }
21275 md_number_to_chars (buf, newval, THUMB_SIZE);
21276 break;
21277
21278 case BFD_RELOC_ARM_THUMB_ADD:
21279 /* This is a complicated relocation, since we use it for all of
21280 the following immediate relocations:
21281
21282 3bit ADD/SUB
21283 8bit ADD/SUB
21284 9bit ADD/SUB SP word-aligned
21285 10bit ADD PC/SP word-aligned
21286
21287 The type of instruction being processed is encoded in the
21288 instruction field:
21289
21290 0x8000 SUB
21291 0x00F0 Rd
21292 0x000F Rs
21293 */
21294 newval = md_chars_to_number (buf, THUMB_SIZE);
21295 {
21296 int rd = (newval >> 4) & 0xf;
21297 int rs = newval & 0xf;
21298 int subtract = !!(newval & 0x8000);
21299
21300 /* Check for HI regs, only very restricted cases allowed:
21301 Adjusting SP, and using PC or SP to get an address. */
21302 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
21303 || (rs > 7 && rs != REG_SP && rs != REG_PC))
21304 as_bad_where (fixP->fx_file, fixP->fx_line,
21305 _("invalid Hi register with immediate"));
21306
21307 /* If value is negative, choose the opposite instruction. */
21308 if (value < 0)
21309 {
21310 value = -value;
21311 subtract = !subtract;
21312 if (value < 0)
21313 as_bad_where (fixP->fx_file, fixP->fx_line,
21314 _("immediate value out of range"));
21315 }
21316
21317 if (rd == REG_SP)
21318 {
21319 if (value & ~0x1fc)
21320 as_bad_where (fixP->fx_file, fixP->fx_line,
21321 _("invalid immediate for stack address calculation"));
21322 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
21323 newval |= value >> 2;
21324 }
21325 else if (rs == REG_PC || rs == REG_SP)
21326 {
21327 if (subtract || value & ~0x3fc)
21328 as_bad_where (fixP->fx_file, fixP->fx_line,
21329 _("invalid immediate for address calculation (value = 0x%08lX)"),
21330 (unsigned long) value);
21331 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
21332 newval |= rd << 8;
21333 newval |= value >> 2;
21334 }
21335 else if (rs == rd)
21336 {
21337 if (value & ~0xff)
21338 as_bad_where (fixP->fx_file, fixP->fx_line,
21339 _("immediate value out of range"));
21340 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
21341 newval |= (rd << 8) | value;
21342 }
21343 else
21344 {
21345 if (value & ~0x7)
21346 as_bad_where (fixP->fx_file, fixP->fx_line,
21347 _("immediate value out of range"));
21348 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
21349 newval |= rd | (rs << 3) | (value << 6);
21350 }
21351 }
21352 md_number_to_chars (buf, newval, THUMB_SIZE);
21353 break;
21354
21355 case BFD_RELOC_ARM_THUMB_IMM:
21356 newval = md_chars_to_number (buf, THUMB_SIZE);
21357 if (value < 0 || value > 255)
21358 as_bad_where (fixP->fx_file, fixP->fx_line,
21359 _("invalid immediate: %ld is out of range"),
21360 (long) value);
21361 newval |= value;
21362 md_number_to_chars (buf, newval, THUMB_SIZE);
21363 break;
21364
21365 case BFD_RELOC_ARM_THUMB_SHIFT:
21366 /* 5bit shift value (0..32). LSL cannot take 32. */
21367 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
21368 temp = newval & 0xf800;
21369 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
21370 as_bad_where (fixP->fx_file, fixP->fx_line,
21371 _("invalid shift value: %ld"), (long) value);
21372 /* Shifts of zero must be encoded as LSL. */
21373 if (value == 0)
21374 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
21375 /* Shifts of 32 are encoded as zero. */
21376 else if (value == 32)
21377 value = 0;
21378 newval |= value << 6;
21379 md_number_to_chars (buf, newval, THUMB_SIZE);
21380 break;
21381
21382 case BFD_RELOC_VTABLE_INHERIT:
21383 case BFD_RELOC_VTABLE_ENTRY:
21384 fixP->fx_done = 0;
21385 return;
21386
21387 case BFD_RELOC_ARM_MOVW:
21388 case BFD_RELOC_ARM_MOVT:
21389 case BFD_RELOC_ARM_THUMB_MOVW:
21390 case BFD_RELOC_ARM_THUMB_MOVT:
21391 if (fixP->fx_done || !seg->use_rela_p)
21392 {
21393 /* REL format relocations are limited to a 16-bit addend. */
21394 if (!fixP->fx_done)
21395 {
21396 if (value < -0x8000 || value > 0x7fff)
21397 as_bad_where (fixP->fx_file, fixP->fx_line,
21398 _("offset out of range"));
21399 }
21400 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
21401 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
21402 {
21403 value >>= 16;
21404 }
21405
21406 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
21407 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
21408 {
21409 newval = get_thumb32_insn (buf);
21410 newval &= 0xfbf08f00;
21411 newval |= (value & 0xf000) << 4;
21412 newval |= (value & 0x0800) << 15;
21413 newval |= (value & 0x0700) << 4;
21414 newval |= (value & 0x00ff);
21415 put_thumb32_insn (buf, newval);
21416 }
21417 else
21418 {
21419 newval = md_chars_to_number (buf, 4);
21420 newval &= 0xfff0f000;
21421 newval |= value & 0x0fff;
21422 newval |= (value & 0xf000) << 4;
21423 md_number_to_chars (buf, newval, 4);
21424 }
21425 }
21426 return;
21427
21428 case BFD_RELOC_ARM_ALU_PC_G0_NC:
21429 case BFD_RELOC_ARM_ALU_PC_G0:
21430 case BFD_RELOC_ARM_ALU_PC_G1_NC:
21431 case BFD_RELOC_ARM_ALU_PC_G1:
21432 case BFD_RELOC_ARM_ALU_PC_G2:
21433 case BFD_RELOC_ARM_ALU_SB_G0_NC:
21434 case BFD_RELOC_ARM_ALU_SB_G0:
21435 case BFD_RELOC_ARM_ALU_SB_G1_NC:
21436 case BFD_RELOC_ARM_ALU_SB_G1:
21437 case BFD_RELOC_ARM_ALU_SB_G2:
21438 gas_assert (!fixP->fx_done);
21439 if (!seg->use_rela_p)
21440 {
21441 bfd_vma insn;
21442 bfd_vma encoded_addend;
21443 bfd_vma addend_abs = abs (value);
21444
21445 /* Check that the absolute value of the addend can be
21446 expressed as an 8-bit constant plus a rotation. */
21447 encoded_addend = encode_arm_immediate (addend_abs);
21448 if (encoded_addend == (unsigned int) FAIL)
21449 as_bad_where (fixP->fx_file, fixP->fx_line,
21450 _("the offset 0x%08lX is not representable"),
21451 (unsigned long) addend_abs);
21452
21453 /* Extract the instruction. */
21454 insn = md_chars_to_number (buf, INSN_SIZE);
21455
21456 /* If the addend is positive, use an ADD instruction.
21457 Otherwise use a SUB. Take care not to destroy the S bit. */
21458 insn &= 0xff1fffff;
21459 if (value < 0)
21460 insn |= 1 << 22;
21461 else
21462 insn |= 1 << 23;
21463
21464 /* Place the encoded addend into the first 12 bits of the
21465 instruction. */
21466 insn &= 0xfffff000;
21467 insn |= encoded_addend;
21468
21469 /* Update the instruction. */
21470 md_number_to_chars (buf, insn, INSN_SIZE);
21471 }
21472 break;
21473
21474 case BFD_RELOC_ARM_LDR_PC_G0:
21475 case BFD_RELOC_ARM_LDR_PC_G1:
21476 case BFD_RELOC_ARM_LDR_PC_G2:
21477 case BFD_RELOC_ARM_LDR_SB_G0:
21478 case BFD_RELOC_ARM_LDR_SB_G1:
21479 case BFD_RELOC_ARM_LDR_SB_G2:
21480 gas_assert (!fixP->fx_done);
21481 if (!seg->use_rela_p)
21482 {
21483 bfd_vma insn;
21484 bfd_vma addend_abs = abs (value);
21485
21486 /* Check that the absolute value of the addend can be
21487 encoded in 12 bits. */
21488 if (addend_abs >= 0x1000)
21489 as_bad_where (fixP->fx_file, fixP->fx_line,
21490 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
21491 (unsigned long) addend_abs);
21492
21493 /* Extract the instruction. */
21494 insn = md_chars_to_number (buf, INSN_SIZE);
21495
21496 /* If the addend is negative, clear bit 23 of the instruction.
21497 Otherwise set it. */
21498 if (value < 0)
21499 insn &= ~(1 << 23);
21500 else
21501 insn |= 1 << 23;
21502
21503 /* Place the absolute value of the addend into the first 12 bits
21504 of the instruction. */
21505 insn &= 0xfffff000;
21506 insn |= addend_abs;
21507
21508 /* Update the instruction. */
21509 md_number_to_chars (buf, insn, INSN_SIZE);
21510 }
21511 break;
21512
21513 case BFD_RELOC_ARM_LDRS_PC_G0:
21514 case BFD_RELOC_ARM_LDRS_PC_G1:
21515 case BFD_RELOC_ARM_LDRS_PC_G2:
21516 case BFD_RELOC_ARM_LDRS_SB_G0:
21517 case BFD_RELOC_ARM_LDRS_SB_G1:
21518 case BFD_RELOC_ARM_LDRS_SB_G2:
21519 gas_assert (!fixP->fx_done);
21520 if (!seg->use_rela_p)
21521 {
21522 bfd_vma insn;
21523 bfd_vma addend_abs = abs (value);
21524
21525 /* Check that the absolute value of the addend can be
21526 encoded in 8 bits. */
21527 if (addend_abs >= 0x100)
21528 as_bad_where (fixP->fx_file, fixP->fx_line,
21529 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
21530 (unsigned long) addend_abs);
21531
21532 /* Extract the instruction. */
21533 insn = md_chars_to_number (buf, INSN_SIZE);
21534
21535 /* If the addend is negative, clear bit 23 of the instruction.
21536 Otherwise set it. */
21537 if (value < 0)
21538 insn &= ~(1 << 23);
21539 else
21540 insn |= 1 << 23;
21541
21542 /* Place the first four bits of the absolute value of the addend
21543 into the first 4 bits of the instruction, and the remaining
21544 four into bits 8 .. 11. */
21545 insn &= 0xfffff0f0;
21546 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
21547
21548 /* Update the instruction. */
21549 md_number_to_chars (buf, insn, INSN_SIZE);
21550 }
21551 break;
21552
21553 case BFD_RELOC_ARM_LDC_PC_G0:
21554 case BFD_RELOC_ARM_LDC_PC_G1:
21555 case BFD_RELOC_ARM_LDC_PC_G2:
21556 case BFD_RELOC_ARM_LDC_SB_G0:
21557 case BFD_RELOC_ARM_LDC_SB_G1:
21558 case BFD_RELOC_ARM_LDC_SB_G2:
21559 gas_assert (!fixP->fx_done);
21560 if (!seg->use_rela_p)
21561 {
21562 bfd_vma insn;
21563 bfd_vma addend_abs = abs (value);
21564
21565 /* Check that the absolute value of the addend is a multiple of
21566 four and, when divided by four, fits in 8 bits. */
21567 if (addend_abs & 0x3)
21568 as_bad_where (fixP->fx_file, fixP->fx_line,
21569 _("bad offset 0x%08lX (must be word-aligned)"),
21570 (unsigned long) addend_abs);
21571
21572 if ((addend_abs >> 2) > 0xff)
21573 as_bad_where (fixP->fx_file, fixP->fx_line,
21574 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
21575 (unsigned long) addend_abs);
21576
21577 /* Extract the instruction. */
21578 insn = md_chars_to_number (buf, INSN_SIZE);
21579
21580 /* If the addend is negative, clear bit 23 of the instruction.
21581 Otherwise set it. */
21582 if (value < 0)
21583 insn &= ~(1 << 23);
21584 else
21585 insn |= 1 << 23;
21586
21587 /* Place the addend (divided by four) into the first eight
21588 bits of the instruction. */
21589 insn &= 0xfffffff0;
21590 insn |= addend_abs >> 2;
21591
21592 /* Update the instruction. */
21593 md_number_to_chars (buf, insn, INSN_SIZE);
21594 }
21595 break;
21596
21597 case BFD_RELOC_ARM_V4BX:
21598 /* This will need to go in the object file. */
21599 fixP->fx_done = 0;
21600 break;
21601
21602 case BFD_RELOC_UNUSED:
21603 default:
21604 as_bad_where (fixP->fx_file, fixP->fx_line,
21605 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
21606 }
21607 }
21608
21609 /* Translate internal representation of relocation info to BFD target
21610 format. */
21611
21612 arelent *
21613 tc_gen_reloc (asection *section, fixS *fixp)
21614 {
21615 arelent * reloc;
21616 bfd_reloc_code_real_type code;
21617
21618 reloc = (arelent *) xmalloc (sizeof (arelent));
21619
21620 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
21621 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
21622 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
21623
21624 if (fixp->fx_pcrel)
21625 {
21626 if (section->use_rela_p)
21627 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
21628 else
21629 fixp->fx_offset = reloc->address;
21630 }
21631 reloc->addend = fixp->fx_offset;
21632
21633 switch (fixp->fx_r_type)
21634 {
21635 case BFD_RELOC_8:
21636 if (fixp->fx_pcrel)
21637 {
21638 code = BFD_RELOC_8_PCREL;
21639 break;
21640 }
21641
21642 case BFD_RELOC_16:
21643 if (fixp->fx_pcrel)
21644 {
21645 code = BFD_RELOC_16_PCREL;
21646 break;
21647 }
21648
21649 case BFD_RELOC_32:
21650 if (fixp->fx_pcrel)
21651 {
21652 code = BFD_RELOC_32_PCREL;
21653 break;
21654 }
21655
21656 case BFD_RELOC_ARM_MOVW:
21657 if (fixp->fx_pcrel)
21658 {
21659 code = BFD_RELOC_ARM_MOVW_PCREL;
21660 break;
21661 }
21662
21663 case BFD_RELOC_ARM_MOVT:
21664 if (fixp->fx_pcrel)
21665 {
21666 code = BFD_RELOC_ARM_MOVT_PCREL;
21667 break;
21668 }
21669
21670 case BFD_RELOC_ARM_THUMB_MOVW:
21671 if (fixp->fx_pcrel)
21672 {
21673 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
21674 break;
21675 }
21676
21677 case BFD_RELOC_ARM_THUMB_MOVT:
21678 if (fixp->fx_pcrel)
21679 {
21680 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
21681 break;
21682 }
21683
21684 case BFD_RELOC_NONE:
21685 case BFD_RELOC_ARM_PCREL_BRANCH:
21686 case BFD_RELOC_ARM_PCREL_BLX:
21687 case BFD_RELOC_RVA:
21688 case BFD_RELOC_THUMB_PCREL_BRANCH7:
21689 case BFD_RELOC_THUMB_PCREL_BRANCH9:
21690 case BFD_RELOC_THUMB_PCREL_BRANCH12:
21691 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21692 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21693 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21694 case BFD_RELOC_VTABLE_ENTRY:
21695 case BFD_RELOC_VTABLE_INHERIT:
21696 #ifdef TE_PE
21697 case BFD_RELOC_32_SECREL:
21698 #endif
21699 code = fixp->fx_r_type;
21700 break;
21701
21702 case BFD_RELOC_THUMB_PCREL_BLX:
21703 #ifdef OBJ_ELF
21704 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
21705 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
21706 else
21707 #endif
21708 code = BFD_RELOC_THUMB_PCREL_BLX;
21709 break;
21710
21711 case BFD_RELOC_ARM_LITERAL:
21712 case BFD_RELOC_ARM_HWLITERAL:
21713 /* If this is called then the a literal has
21714 been referenced across a section boundary. */
21715 as_bad_where (fixp->fx_file, fixp->fx_line,
21716 _("literal referenced across section boundary"));
21717 return NULL;
21718
21719 #ifdef OBJ_ELF
21720 case BFD_RELOC_ARM_TLS_CALL:
21721 case BFD_RELOC_ARM_THM_TLS_CALL:
21722 case BFD_RELOC_ARM_TLS_DESCSEQ:
21723 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
21724 case BFD_RELOC_ARM_GOT32:
21725 case BFD_RELOC_ARM_GOTOFF:
21726 case BFD_RELOC_ARM_GOT_PREL:
21727 case BFD_RELOC_ARM_PLT32:
21728 case BFD_RELOC_ARM_TARGET1:
21729 case BFD_RELOC_ARM_ROSEGREL32:
21730 case BFD_RELOC_ARM_SBREL32:
21731 case BFD_RELOC_ARM_PREL31:
21732 case BFD_RELOC_ARM_TARGET2:
21733 case BFD_RELOC_ARM_TLS_LE32:
21734 case BFD_RELOC_ARM_TLS_LDO32:
21735 case BFD_RELOC_ARM_PCREL_CALL:
21736 case BFD_RELOC_ARM_PCREL_JUMP:
21737 case BFD_RELOC_ARM_ALU_PC_G0_NC:
21738 case BFD_RELOC_ARM_ALU_PC_G0:
21739 case BFD_RELOC_ARM_ALU_PC_G1_NC:
21740 case BFD_RELOC_ARM_ALU_PC_G1:
21741 case BFD_RELOC_ARM_ALU_PC_G2:
21742 case BFD_RELOC_ARM_LDR_PC_G0:
21743 case BFD_RELOC_ARM_LDR_PC_G1:
21744 case BFD_RELOC_ARM_LDR_PC_G2:
21745 case BFD_RELOC_ARM_LDRS_PC_G0:
21746 case BFD_RELOC_ARM_LDRS_PC_G1:
21747 case BFD_RELOC_ARM_LDRS_PC_G2:
21748 case BFD_RELOC_ARM_LDC_PC_G0:
21749 case BFD_RELOC_ARM_LDC_PC_G1:
21750 case BFD_RELOC_ARM_LDC_PC_G2:
21751 case BFD_RELOC_ARM_ALU_SB_G0_NC:
21752 case BFD_RELOC_ARM_ALU_SB_G0:
21753 case BFD_RELOC_ARM_ALU_SB_G1_NC:
21754 case BFD_RELOC_ARM_ALU_SB_G1:
21755 case BFD_RELOC_ARM_ALU_SB_G2:
21756 case BFD_RELOC_ARM_LDR_SB_G0:
21757 case BFD_RELOC_ARM_LDR_SB_G1:
21758 case BFD_RELOC_ARM_LDR_SB_G2:
21759 case BFD_RELOC_ARM_LDRS_SB_G0:
21760 case BFD_RELOC_ARM_LDRS_SB_G1:
21761 case BFD_RELOC_ARM_LDRS_SB_G2:
21762 case BFD_RELOC_ARM_LDC_SB_G0:
21763 case BFD_RELOC_ARM_LDC_SB_G1:
21764 case BFD_RELOC_ARM_LDC_SB_G2:
21765 case BFD_RELOC_ARM_V4BX:
21766 code = fixp->fx_r_type;
21767 break;
21768
21769 case BFD_RELOC_ARM_TLS_GOTDESC:
21770 case BFD_RELOC_ARM_TLS_GD32:
21771 case BFD_RELOC_ARM_TLS_IE32:
21772 case BFD_RELOC_ARM_TLS_LDM32:
21773 /* BFD will include the symbol's address in the addend.
21774 But we don't want that, so subtract it out again here. */
21775 if (!S_IS_COMMON (fixp->fx_addsy))
21776 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
21777 code = fixp->fx_r_type;
21778 break;
21779 #endif
21780
21781 case BFD_RELOC_ARM_IMMEDIATE:
21782 as_bad_where (fixp->fx_file, fixp->fx_line,
21783 _("internal relocation (type: IMMEDIATE) not fixed up"));
21784 return NULL;
21785
21786 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
21787 as_bad_where (fixp->fx_file, fixp->fx_line,
21788 _("ADRL used for a symbol not defined in the same file"));
21789 return NULL;
21790
21791 case BFD_RELOC_ARM_OFFSET_IMM:
21792 if (section->use_rela_p)
21793 {
21794 code = fixp->fx_r_type;
21795 break;
21796 }
21797
21798 if (fixp->fx_addsy != NULL
21799 && !S_IS_DEFINED (fixp->fx_addsy)
21800 && S_IS_LOCAL (fixp->fx_addsy))
21801 {
21802 as_bad_where (fixp->fx_file, fixp->fx_line,
21803 _("undefined local label `%s'"),
21804 S_GET_NAME (fixp->fx_addsy));
21805 return NULL;
21806 }
21807
21808 as_bad_where (fixp->fx_file, fixp->fx_line,
21809 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
21810 return NULL;
21811
21812 default:
21813 {
21814 char * type;
21815
21816 switch (fixp->fx_r_type)
21817 {
21818 case BFD_RELOC_NONE: type = "NONE"; break;
21819 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
21820 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
21821 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
21822 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
21823 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
21824 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
21825 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
21826 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
21827 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
21828 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
21829 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
21830 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
21831 default: type = _("<unknown>"); break;
21832 }
21833 as_bad_where (fixp->fx_file, fixp->fx_line,
21834 _("cannot represent %s relocation in this object file format"),
21835 type);
21836 return NULL;
21837 }
21838 }
21839
21840 #ifdef OBJ_ELF
21841 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
21842 && GOT_symbol
21843 && fixp->fx_addsy == GOT_symbol)
21844 {
21845 code = BFD_RELOC_ARM_GOTPC;
21846 reloc->addend = fixp->fx_offset = reloc->address;
21847 }
21848 #endif
21849
21850 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
21851
21852 if (reloc->howto == NULL)
21853 {
21854 as_bad_where (fixp->fx_file, fixp->fx_line,
21855 _("cannot represent %s relocation in this object file format"),
21856 bfd_get_reloc_code_name (code));
21857 return NULL;
21858 }
21859
21860 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
21861 vtable entry to be used in the relocation's section offset. */
21862 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
21863 reloc->address = fixp->fx_offset;
21864
21865 return reloc;
21866 }
21867
21868 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
21869
21870 void
21871 cons_fix_new_arm (fragS * frag,
21872 int where,
21873 int size,
21874 expressionS * exp)
21875 {
21876 bfd_reloc_code_real_type type;
21877 int pcrel = 0;
21878
21879 /* Pick a reloc.
21880 FIXME: @@ Should look at CPU word size. */
21881 switch (size)
21882 {
21883 case 1:
21884 type = BFD_RELOC_8;
21885 break;
21886 case 2:
21887 type = BFD_RELOC_16;
21888 break;
21889 case 4:
21890 default:
21891 type = BFD_RELOC_32;
21892 break;
21893 case 8:
21894 type = BFD_RELOC_64;
21895 break;
21896 }
21897
21898 #ifdef TE_PE
21899 if (exp->X_op == O_secrel)
21900 {
21901 exp->X_op = O_symbol;
21902 type = BFD_RELOC_32_SECREL;
21903 }
21904 #endif
21905
21906 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
21907 }
21908
21909 #if defined (OBJ_COFF)
21910 void
21911 arm_validate_fix (fixS * fixP)
21912 {
21913 /* If the destination of the branch is a defined symbol which does not have
21914 the THUMB_FUNC attribute, then we must be calling a function which has
21915 the (interfacearm) attribute. We look for the Thumb entry point to that
21916 function and change the branch to refer to that function instead. */
21917 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
21918 && fixP->fx_addsy != NULL
21919 && S_IS_DEFINED (fixP->fx_addsy)
21920 && ! THUMB_IS_FUNC (fixP->fx_addsy))
21921 {
21922 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
21923 }
21924 }
21925 #endif
21926
21927
21928 int
21929 arm_force_relocation (struct fix * fixp)
21930 {
21931 #if defined (OBJ_COFF) && defined (TE_PE)
21932 if (fixp->fx_r_type == BFD_RELOC_RVA)
21933 return 1;
21934 #endif
21935
21936 /* In case we have a call or a branch to a function in ARM ISA mode from
21937 a thumb function or vice-versa force the relocation. These relocations
21938 are cleared off for some cores that might have blx and simple transformations
21939 are possible. */
21940
21941 #ifdef OBJ_ELF
21942 switch (fixp->fx_r_type)
21943 {
21944 case BFD_RELOC_ARM_PCREL_JUMP:
21945 case BFD_RELOC_ARM_PCREL_CALL:
21946 case BFD_RELOC_THUMB_PCREL_BLX:
21947 if (THUMB_IS_FUNC (fixp->fx_addsy))
21948 return 1;
21949 break;
21950
21951 case BFD_RELOC_ARM_PCREL_BLX:
21952 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21953 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21954 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21955 if (ARM_IS_FUNC (fixp->fx_addsy))
21956 return 1;
21957 break;
21958
21959 default:
21960 break;
21961 }
21962 #endif
21963
21964 /* Resolve these relocations even if the symbol is extern or weak.
21965 Technically this is probably wrong due to symbol preemption.
21966 In practice these relocations do not have enough range to be useful
21967 at dynamic link time, and some code (e.g. in the Linux kernel)
21968 expects these references to be resolved. */
21969 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
21970 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
21971 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
21972 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
21973 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
21974 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
21975 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
21976 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
21977 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
21978 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
21979 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
21980 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
21981 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
21982 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
21983 return 0;
21984
21985 /* Always leave these relocations for the linker. */
21986 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
21987 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
21988 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
21989 return 1;
21990
21991 /* Always generate relocations against function symbols. */
21992 if (fixp->fx_r_type == BFD_RELOC_32
21993 && fixp->fx_addsy
21994 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
21995 return 1;
21996
21997 return generic_force_reloc (fixp);
21998 }
21999
22000 #if defined (OBJ_ELF) || defined (OBJ_COFF)
22001 /* Relocations against function names must be left unadjusted,
22002 so that the linker can use this information to generate interworking
22003 stubs. The MIPS version of this function
22004 also prevents relocations that are mips-16 specific, but I do not
22005 know why it does this.
22006
22007 FIXME:
22008 There is one other problem that ought to be addressed here, but
22009 which currently is not: Taking the address of a label (rather
22010 than a function) and then later jumping to that address. Such
22011 addresses also ought to have their bottom bit set (assuming that
22012 they reside in Thumb code), but at the moment they will not. */
22013
22014 bfd_boolean
22015 arm_fix_adjustable (fixS * fixP)
22016 {
22017 if (fixP->fx_addsy == NULL)
22018 return 1;
22019
22020 /* Preserve relocations against symbols with function type. */
22021 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
22022 return FALSE;
22023
22024 if (THUMB_IS_FUNC (fixP->fx_addsy)
22025 && fixP->fx_subsy == NULL)
22026 return FALSE;
22027
22028 /* We need the symbol name for the VTABLE entries. */
22029 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
22030 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
22031 return FALSE;
22032
22033 /* Don't allow symbols to be discarded on GOT related relocs. */
22034 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
22035 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
22036 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
22037 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
22038 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
22039 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
22040 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
22041 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
22042 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
22043 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
22044 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
22045 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
22046 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
22047 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
22048 return FALSE;
22049
22050 /* Similarly for group relocations. */
22051 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
22052 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
22053 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
22054 return FALSE;
22055
22056 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
22057 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
22058 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
22059 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
22060 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
22061 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
22062 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
22063 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
22064 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
22065 return FALSE;
22066
22067 return TRUE;
22068 }
22069 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
22070
22071 #ifdef OBJ_ELF
22072
22073 const char *
22074 elf32_arm_target_format (void)
22075 {
22076 #ifdef TE_SYMBIAN
22077 return (target_big_endian
22078 ? "elf32-bigarm-symbian"
22079 : "elf32-littlearm-symbian");
22080 #elif defined (TE_VXWORKS)
22081 return (target_big_endian
22082 ? "elf32-bigarm-vxworks"
22083 : "elf32-littlearm-vxworks");
22084 #else
22085 if (target_big_endian)
22086 return "elf32-bigarm";
22087 else
22088 return "elf32-littlearm";
22089 #endif
22090 }
22091
22092 void
22093 armelf_frob_symbol (symbolS * symp,
22094 int * puntp)
22095 {
22096 elf_frob_symbol (symp, puntp);
22097 }
22098 #endif
22099
22100 /* MD interface: Finalization. */
22101
22102 void
22103 arm_cleanup (void)
22104 {
22105 literal_pool * pool;
22106
22107 /* Ensure that all the IT blocks are properly closed. */
22108 check_it_blocks_finished ();
22109
22110 for (pool = list_of_pools; pool; pool = pool->next)
22111 {
22112 /* Put it at the end of the relevant section. */
22113 subseg_set (pool->section, pool->sub_section);
22114 #ifdef OBJ_ELF
22115 arm_elf_change_section ();
22116 #endif
22117 s_ltorg (0);
22118 }
22119 }
22120
22121 #ifdef OBJ_ELF
22122 /* Remove any excess mapping symbols generated for alignment frags in
22123 SEC. We may have created a mapping symbol before a zero byte
22124 alignment; remove it if there's a mapping symbol after the
22125 alignment. */
22126 static void
22127 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
22128 void *dummy ATTRIBUTE_UNUSED)
22129 {
22130 segment_info_type *seginfo = seg_info (sec);
22131 fragS *fragp;
22132
22133 if (seginfo == NULL || seginfo->frchainP == NULL)
22134 return;
22135
22136 for (fragp = seginfo->frchainP->frch_root;
22137 fragp != NULL;
22138 fragp = fragp->fr_next)
22139 {
22140 symbolS *sym = fragp->tc_frag_data.last_map;
22141 fragS *next = fragp->fr_next;
22142
22143 /* Variable-sized frags have been converted to fixed size by
22144 this point. But if this was variable-sized to start with,
22145 there will be a fixed-size frag after it. So don't handle
22146 next == NULL. */
22147 if (sym == NULL || next == NULL)
22148 continue;
22149
22150 if (S_GET_VALUE (sym) < next->fr_address)
22151 /* Not at the end of this frag. */
22152 continue;
22153 know (S_GET_VALUE (sym) == next->fr_address);
22154
22155 do
22156 {
22157 if (next->tc_frag_data.first_map != NULL)
22158 {
22159 /* Next frag starts with a mapping symbol. Discard this
22160 one. */
22161 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
22162 break;
22163 }
22164
22165 if (next->fr_next == NULL)
22166 {
22167 /* This mapping symbol is at the end of the section. Discard
22168 it. */
22169 know (next->fr_fix == 0 && next->fr_var == 0);
22170 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
22171 break;
22172 }
22173
22174 /* As long as we have empty frags without any mapping symbols,
22175 keep looking. */
22176 /* If the next frag is non-empty and does not start with a
22177 mapping symbol, then this mapping symbol is required. */
22178 if (next->fr_address != next->fr_next->fr_address)
22179 break;
22180
22181 next = next->fr_next;
22182 }
22183 while (next != NULL);
22184 }
22185 }
22186 #endif
22187
22188 /* Adjust the symbol table. This marks Thumb symbols as distinct from
22189 ARM ones. */
22190
22191 void
22192 arm_adjust_symtab (void)
22193 {
22194 #ifdef OBJ_COFF
22195 symbolS * sym;
22196
22197 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
22198 {
22199 if (ARM_IS_THUMB (sym))
22200 {
22201 if (THUMB_IS_FUNC (sym))
22202 {
22203 /* Mark the symbol as a Thumb function. */
22204 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
22205 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
22206 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
22207
22208 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
22209 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
22210 else
22211 as_bad (_("%s: unexpected function type: %d"),
22212 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
22213 }
22214 else switch (S_GET_STORAGE_CLASS (sym))
22215 {
22216 case C_EXT:
22217 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
22218 break;
22219 case C_STAT:
22220 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
22221 break;
22222 case C_LABEL:
22223 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
22224 break;
22225 default:
22226 /* Do nothing. */
22227 break;
22228 }
22229 }
22230
22231 if (ARM_IS_INTERWORK (sym))
22232 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
22233 }
22234 #endif
22235 #ifdef OBJ_ELF
22236 symbolS * sym;
22237 char bind;
22238
22239 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
22240 {
22241 if (ARM_IS_THUMB (sym))
22242 {
22243 elf_symbol_type * elf_sym;
22244
22245 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
22246 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
22247
22248 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
22249 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
22250 {
22251 /* If it's a .thumb_func, declare it as so,
22252 otherwise tag label as .code 16. */
22253 if (THUMB_IS_FUNC (sym))
22254 elf_sym->internal_elf_sym.st_target_internal
22255 = ST_BRANCH_TO_THUMB;
22256 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
22257 elf_sym->internal_elf_sym.st_info =
22258 ELF_ST_INFO (bind, STT_ARM_16BIT);
22259 }
22260 }
22261 }
22262
22263 /* Remove any overlapping mapping symbols generated by alignment frags. */
22264 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
22265 /* Now do generic ELF adjustments. */
22266 elf_adjust_symtab ();
22267 #endif
22268 }
22269
22270 /* MD interface: Initialization. */
22271
22272 static void
22273 set_constant_flonums (void)
22274 {
22275 int i;
22276
22277 for (i = 0; i < NUM_FLOAT_VALS; i++)
22278 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
22279 abort ();
22280 }
22281
22282 /* Auto-select Thumb mode if it's the only available instruction set for the
22283 given architecture. */
22284
22285 static void
22286 autoselect_thumb_from_cpu_variant (void)
22287 {
22288 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
22289 opcode_select (16);
22290 }
22291
22292 void
22293 md_begin (void)
22294 {
22295 unsigned mach;
22296 unsigned int i;
22297
22298 if ( (arm_ops_hsh = hash_new ()) == NULL
22299 || (arm_cond_hsh = hash_new ()) == NULL
22300 || (arm_shift_hsh = hash_new ()) == NULL
22301 || (arm_psr_hsh = hash_new ()) == NULL
22302 || (arm_v7m_psr_hsh = hash_new ()) == NULL
22303 || (arm_reg_hsh = hash_new ()) == NULL
22304 || (arm_reloc_hsh = hash_new ()) == NULL
22305 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
22306 as_fatal (_("virtual memory exhausted"));
22307
22308 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
22309 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
22310 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
22311 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
22312 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
22313 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
22314 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
22315 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
22316 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
22317 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
22318 (void *) (v7m_psrs + i));
22319 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
22320 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
22321 for (i = 0;
22322 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
22323 i++)
22324 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
22325 (void *) (barrier_opt_names + i));
22326 #ifdef OBJ_ELF
22327 for (i = 0; i < sizeof (reloc_names) / sizeof (struct reloc_entry); i++)
22328 hash_insert (arm_reloc_hsh, reloc_names[i].name, (void *) (reloc_names + i));
22329 #endif
22330
22331 set_constant_flonums ();
22332
22333 /* Set the cpu variant based on the command-line options. We prefer
22334 -mcpu= over -march= if both are set (as for GCC); and we prefer
22335 -mfpu= over any other way of setting the floating point unit.
22336 Use of legacy options with new options are faulted. */
22337 if (legacy_cpu)
22338 {
22339 if (mcpu_cpu_opt || march_cpu_opt)
22340 as_bad (_("use of old and new-style options to set CPU type"));
22341
22342 mcpu_cpu_opt = legacy_cpu;
22343 }
22344 else if (!mcpu_cpu_opt)
22345 mcpu_cpu_opt = march_cpu_opt;
22346
22347 if (legacy_fpu)
22348 {
22349 if (mfpu_opt)
22350 as_bad (_("use of old and new-style options to set FPU type"));
22351
22352 mfpu_opt = legacy_fpu;
22353 }
22354 else if (!mfpu_opt)
22355 {
22356 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
22357 || defined (TE_NetBSD) || defined (TE_VXWORKS))
22358 /* Some environments specify a default FPU. If they don't, infer it
22359 from the processor. */
22360 if (mcpu_fpu_opt)
22361 mfpu_opt = mcpu_fpu_opt;
22362 else
22363 mfpu_opt = march_fpu_opt;
22364 #else
22365 mfpu_opt = &fpu_default;
22366 #endif
22367 }
22368
22369 if (!mfpu_opt)
22370 {
22371 if (mcpu_cpu_opt != NULL)
22372 mfpu_opt = &fpu_default;
22373 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
22374 mfpu_opt = &fpu_arch_vfp_v2;
22375 else
22376 mfpu_opt = &fpu_arch_fpa;
22377 }
22378
22379 #ifdef CPU_DEFAULT
22380 if (!mcpu_cpu_opt)
22381 {
22382 mcpu_cpu_opt = &cpu_default;
22383 selected_cpu = cpu_default;
22384 }
22385 #else
22386 if (mcpu_cpu_opt)
22387 selected_cpu = *mcpu_cpu_opt;
22388 else
22389 mcpu_cpu_opt = &arm_arch_any;
22390 #endif
22391
22392 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
22393
22394 autoselect_thumb_from_cpu_variant ();
22395
22396 arm_arch_used = thumb_arch_used = arm_arch_none;
22397
22398 #if defined OBJ_COFF || defined OBJ_ELF
22399 {
22400 unsigned int flags = 0;
22401
22402 #if defined OBJ_ELF
22403 flags = meabi_flags;
22404
22405 switch (meabi_flags)
22406 {
22407 case EF_ARM_EABI_UNKNOWN:
22408 #endif
22409 /* Set the flags in the private structure. */
22410 if (uses_apcs_26) flags |= F_APCS26;
22411 if (support_interwork) flags |= F_INTERWORK;
22412 if (uses_apcs_float) flags |= F_APCS_FLOAT;
22413 if (pic_code) flags |= F_PIC;
22414 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
22415 flags |= F_SOFT_FLOAT;
22416
22417 switch (mfloat_abi_opt)
22418 {
22419 case ARM_FLOAT_ABI_SOFT:
22420 case ARM_FLOAT_ABI_SOFTFP:
22421 flags |= F_SOFT_FLOAT;
22422 break;
22423
22424 case ARM_FLOAT_ABI_HARD:
22425 if (flags & F_SOFT_FLOAT)
22426 as_bad (_("hard-float conflicts with specified fpu"));
22427 break;
22428 }
22429
22430 /* Using pure-endian doubles (even if soft-float). */
22431 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
22432 flags |= F_VFP_FLOAT;
22433
22434 #if defined OBJ_ELF
22435 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
22436 flags |= EF_ARM_MAVERICK_FLOAT;
22437 break;
22438
22439 case EF_ARM_EABI_VER4:
22440 case EF_ARM_EABI_VER5:
22441 /* No additional flags to set. */
22442 break;
22443
22444 default:
22445 abort ();
22446 }
22447 #endif
22448 bfd_set_private_flags (stdoutput, flags);
22449
22450 /* We have run out flags in the COFF header to encode the
22451 status of ATPCS support, so instead we create a dummy,
22452 empty, debug section called .arm.atpcs. */
22453 if (atpcs)
22454 {
22455 asection * sec;
22456
22457 sec = bfd_make_section (stdoutput, ".arm.atpcs");
22458
22459 if (sec != NULL)
22460 {
22461 bfd_set_section_flags
22462 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
22463 bfd_set_section_size (stdoutput, sec, 0);
22464 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
22465 }
22466 }
22467 }
22468 #endif
22469
22470 /* Record the CPU type as well. */
22471 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
22472 mach = bfd_mach_arm_iWMMXt2;
22473 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
22474 mach = bfd_mach_arm_iWMMXt;
22475 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
22476 mach = bfd_mach_arm_XScale;
22477 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
22478 mach = bfd_mach_arm_ep9312;
22479 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
22480 mach = bfd_mach_arm_5TE;
22481 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
22482 {
22483 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
22484 mach = bfd_mach_arm_5T;
22485 else
22486 mach = bfd_mach_arm_5;
22487 }
22488 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
22489 {
22490 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
22491 mach = bfd_mach_arm_4T;
22492 else
22493 mach = bfd_mach_arm_4;
22494 }
22495 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
22496 mach = bfd_mach_arm_3M;
22497 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
22498 mach = bfd_mach_arm_3;
22499 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
22500 mach = bfd_mach_arm_2a;
22501 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
22502 mach = bfd_mach_arm_2;
22503 else
22504 mach = bfd_mach_arm_unknown;
22505
22506 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
22507 }
22508
22509 /* Command line processing. */
22510
22511 /* md_parse_option
22512 Invocation line includes a switch not recognized by the base assembler.
22513 See if it's a processor-specific option.
22514
22515 This routine is somewhat complicated by the need for backwards
22516 compatibility (since older releases of gcc can't be changed).
22517 The new options try to make the interface as compatible as
22518 possible with GCC.
22519
22520 New options (supported) are:
22521
22522 -mcpu=<cpu name> Assemble for selected processor
22523 -march=<architecture name> Assemble for selected architecture
22524 -mfpu=<fpu architecture> Assemble for selected FPU.
22525 -EB/-mbig-endian Big-endian
22526 -EL/-mlittle-endian Little-endian
22527 -k Generate PIC code
22528 -mthumb Start in Thumb mode
22529 -mthumb-interwork Code supports ARM/Thumb interworking
22530
22531 -m[no-]warn-deprecated Warn about deprecated features
22532
22533 For now we will also provide support for:
22534
22535 -mapcs-32 32-bit Program counter
22536 -mapcs-26 26-bit Program counter
22537 -macps-float Floats passed in FP registers
22538 -mapcs-reentrant Reentrant code
22539 -matpcs
22540 (sometime these will probably be replaced with -mapcs=<list of options>
22541 and -matpcs=<list of options>)
22542
22543 The remaining options are only supported for back-wards compatibility.
22544 Cpu variants, the arm part is optional:
22545 -m[arm]1 Currently not supported.
22546 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
22547 -m[arm]3 Arm 3 processor
22548 -m[arm]6[xx], Arm 6 processors
22549 -m[arm]7[xx][t][[d]m] Arm 7 processors
22550 -m[arm]8[10] Arm 8 processors
22551 -m[arm]9[20][tdmi] Arm 9 processors
22552 -mstrongarm[110[0]] StrongARM processors
22553 -mxscale XScale processors
22554 -m[arm]v[2345[t[e]]] Arm architectures
22555 -mall All (except the ARM1)
22556 FP variants:
22557 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
22558 -mfpe-old (No float load/store multiples)
22559 -mvfpxd VFP Single precision
22560 -mvfp All VFP
22561 -mno-fpu Disable all floating point instructions
22562
22563 The following CPU names are recognized:
22564 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
22565 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
22566 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
22567 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
22568 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
22569 arm10t arm10e, arm1020t, arm1020e, arm10200e,
22570 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
22571
22572 */
22573
22574 const char * md_shortopts = "m:k";
22575
22576 #ifdef ARM_BI_ENDIAN
22577 #define OPTION_EB (OPTION_MD_BASE + 0)
22578 #define OPTION_EL (OPTION_MD_BASE + 1)
22579 #else
22580 #if TARGET_BYTES_BIG_ENDIAN
22581 #define OPTION_EB (OPTION_MD_BASE + 0)
22582 #else
22583 #define OPTION_EL (OPTION_MD_BASE + 1)
22584 #endif
22585 #endif
22586 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
22587
22588 struct option md_longopts[] =
22589 {
22590 #ifdef OPTION_EB
22591 {"EB", no_argument, NULL, OPTION_EB},
22592 #endif
22593 #ifdef OPTION_EL
22594 {"EL", no_argument, NULL, OPTION_EL},
22595 #endif
22596 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
22597 {NULL, no_argument, NULL, 0}
22598 };
22599
22600 size_t md_longopts_size = sizeof (md_longopts);
22601
22602 struct arm_option_table
22603 {
22604 char *option; /* Option name to match. */
22605 char *help; /* Help information. */
22606 int *var; /* Variable to change. */
22607 int value; /* What to change it to. */
22608 char *deprecated; /* If non-null, print this message. */
22609 };
22610
22611 struct arm_option_table arm_opts[] =
22612 {
22613 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
22614 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
22615 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
22616 &support_interwork, 1, NULL},
22617 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
22618 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
22619 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
22620 1, NULL},
22621 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
22622 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
22623 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
22624 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
22625 NULL},
22626
22627 /* These are recognized by the assembler, but have no affect on code. */
22628 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
22629 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
22630
22631 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
22632 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
22633 &warn_on_deprecated, 0, NULL},
22634 {NULL, NULL, NULL, 0, NULL}
22635 };
22636
22637 struct arm_legacy_option_table
22638 {
22639 char *option; /* Option name to match. */
22640 const arm_feature_set **var; /* Variable to change. */
22641 const arm_feature_set value; /* What to change it to. */
22642 char *deprecated; /* If non-null, print this message. */
22643 };
22644
22645 const struct arm_legacy_option_table arm_legacy_opts[] =
22646 {
22647 /* DON'T add any new processors to this list -- we want the whole list
22648 to go away... Add them to the processors table instead. */
22649 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
22650 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
22651 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
22652 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
22653 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
22654 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
22655 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
22656 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
22657 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
22658 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
22659 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
22660 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
22661 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
22662 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
22663 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
22664 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
22665 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
22666 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
22667 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
22668 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
22669 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
22670 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
22671 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
22672 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
22673 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
22674 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
22675 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
22676 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
22677 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
22678 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
22679 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
22680 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
22681 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
22682 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
22683 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
22684 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
22685 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
22686 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
22687 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
22688 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
22689 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
22690 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
22691 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
22692 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
22693 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
22694 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
22695 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22696 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22697 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22698 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22699 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
22700 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
22701 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
22702 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
22703 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
22704 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
22705 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
22706 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
22707 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
22708 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
22709 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
22710 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
22711 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
22712 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
22713 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
22714 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
22715 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
22716 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
22717 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
22718 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
22719 N_("use -mcpu=strongarm110")},
22720 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
22721 N_("use -mcpu=strongarm1100")},
22722 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
22723 N_("use -mcpu=strongarm1110")},
22724 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
22725 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
22726 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
22727
22728 /* Architecture variants -- don't add any more to this list either. */
22729 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
22730 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
22731 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
22732 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
22733 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
22734 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
22735 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
22736 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
22737 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
22738 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
22739 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
22740 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
22741 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
22742 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
22743 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
22744 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
22745 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
22746 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
22747
22748 /* Floating point variants -- don't add any more to this list either. */
22749 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
22750 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
22751 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
22752 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
22753 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
22754
22755 {NULL, NULL, ARM_ARCH_NONE, NULL}
22756 };
22757
22758 struct arm_cpu_option_table
22759 {
22760 char *name;
22761 const arm_feature_set value;
22762 /* For some CPUs we assume an FPU unless the user explicitly sets
22763 -mfpu=... */
22764 const arm_feature_set default_fpu;
22765 /* The canonical name of the CPU, or NULL to use NAME converted to upper
22766 case. */
22767 const char *canonical_name;
22768 };
22769
22770 /* This list should, at a minimum, contain all the cpu names
22771 recognized by GCC. */
22772 static const struct arm_cpu_option_table arm_cpus[] =
22773 {
22774 {"all", ARM_ANY, FPU_ARCH_FPA, NULL},
22775 {"arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL},
22776 {"arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL},
22777 {"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
22778 {"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
22779 {"arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22780 {"arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22781 {"arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22782 {"arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22783 {"arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22784 {"arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22785 {"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22786 {"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22787 {"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22788 {"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22789 {"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22790 {"arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22791 {"arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22792 {"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22793 {"arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22794 {"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22795 {"arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22796 {"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22797 {"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22798 {"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22799 {"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22800 {"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22801 {"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22802 {"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22803 {"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22804 {"arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22805 {"arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22806 {"arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22807 {"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22808 {"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22809 {"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22810 {"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22811 {"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22812 {"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22813 {"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"},
22814 {"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22815 {"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22816 {"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22817 {"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22818 {"fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22819 {"fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22820 /* For V5 or later processors we default to using VFP; but the user
22821 should really set the FPU type explicitly. */
22822 {"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22823 {"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22824 {"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
22825 {"arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
22826 {"arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
22827 {"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22828 {"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"},
22829 {"arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22830 {"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22831 {"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"},
22832 {"arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22833 {"arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22834 {"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22835 {"arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22836 {"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22837 {"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"},
22838 {"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22839 {"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22840 {"arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22841 {"arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM1026EJ-S"},
22842 {"arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
22843 {"fa606te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22844 {"fa616te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22845 {"fa626te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22846 {"fmp626", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22847 {"fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22848 {"arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"},
22849 {"arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL},
22850 {"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2, "ARM1136JF-S"},
22851 {"arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL},
22852 {"mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, "MPCore"},
22853 {"mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, "MPCore"},
22854 {"arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL},
22855 {"arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL},
22856 {"arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL},
22857 {"arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL},
22858 {"cortex-a5", ARM_ARCH_V7A_MP_SEC,
22859 FPU_NONE, "Cortex-A5"},
22860 {"cortex-a8", ARM_ARCH_V7A_SEC,
22861 ARM_FEATURE (0, FPU_VFP_V3
22862 | FPU_NEON_EXT_V1),
22863 "Cortex-A8"},
22864 {"cortex-a9", ARM_ARCH_V7A_MP_SEC,
22865 ARM_FEATURE (0, FPU_VFP_V3
22866 | FPU_NEON_EXT_V1),
22867 "Cortex-A9"},
22868 {"cortex-a15", ARM_ARCH_V7A_IDIV_MP_SEC_VIRT,
22869 FPU_ARCH_NEON_VFP_V4,
22870 "Cortex-A15"},
22871 {"cortex-r4", ARM_ARCH_V7R, FPU_NONE, "Cortex-R4"},
22872 {"cortex-r4f", ARM_ARCH_V7R, FPU_ARCH_VFP_V3D16,
22873 "Cortex-R4F"},
22874 {"cortex-r5", ARM_ARCH_V7R_IDIV,
22875 FPU_NONE, "Cortex-R5"},
22876 {"cortex-m4", ARM_ARCH_V7EM, FPU_NONE, "Cortex-M4"},
22877 {"cortex-m3", ARM_ARCH_V7M, FPU_NONE, "Cortex-M3"},
22878 {"cortex-m1", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M1"},
22879 {"cortex-m0", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0"},
22880 /* ??? XSCALE is really an architecture. */
22881 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
22882 /* ??? iwmmxt is not a processor. */
22883 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL},
22884 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL},
22885 {"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
22886 /* Maverick */
22887 {"ep9312", ARM_FEATURE (ARM_AEXT_V4T, ARM_CEXT_MAVERICK), FPU_ARCH_MAVERICK, "ARM920T"},
22888 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL}
22889 };
22890
22891 struct arm_arch_option_table
22892 {
22893 char *name;
22894 const arm_feature_set value;
22895 const arm_feature_set default_fpu;
22896 };
22897
22898 /* This list should, at a minimum, contain all the architecture names
22899 recognized by GCC. */
22900 static const struct arm_arch_option_table arm_archs[] =
22901 {
22902 {"all", ARM_ANY, FPU_ARCH_FPA},
22903 {"armv1", ARM_ARCH_V1, FPU_ARCH_FPA},
22904 {"armv2", ARM_ARCH_V2, FPU_ARCH_FPA},
22905 {"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA},
22906 {"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA},
22907 {"armv3", ARM_ARCH_V3, FPU_ARCH_FPA},
22908 {"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA},
22909 {"armv4", ARM_ARCH_V4, FPU_ARCH_FPA},
22910 {"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA},
22911 {"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA},
22912 {"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA},
22913 {"armv5", ARM_ARCH_V5, FPU_ARCH_VFP},
22914 {"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP},
22915 {"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP},
22916 {"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP},
22917 {"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP},
22918 {"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP},
22919 {"armv6", ARM_ARCH_V6, FPU_ARCH_VFP},
22920 {"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP},
22921 {"armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP},
22922 {"armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP},
22923 {"armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP},
22924 {"armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP},
22925 {"armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP},
22926 {"armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP},
22927 {"armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP},
22928 {"armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP},
22929 {"armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP},
22930 {"armv7", ARM_ARCH_V7, FPU_ARCH_VFP},
22931 /* The official spelling of the ARMv7 profile variants is the dashed form.
22932 Accept the non-dashed form for compatibility with old toolchains. */
22933 {"armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP},
22934 {"armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP},
22935 {"armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP},
22936 {"armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP},
22937 {"armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP},
22938 {"armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP},
22939 {"armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP},
22940 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP},
22941 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP},
22942 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP},
22943 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
22944 };
22945
22946 /* ISA extensions in the co-processor and main instruction set space. */
22947 struct arm_option_extension_value_table
22948 {
22949 char *name;
22950 const arm_feature_set value;
22951 const arm_feature_set allowed_archs;
22952 };
22953
22954 /* The following table must be in alphabetical order with a NULL last entry.
22955 */
22956 static const struct arm_option_extension_value_table arm_extensions[] =
22957 {
22958 {"idiv", ARM_FEATURE (ARM_EXT_ADIV | ARM_EXT_DIV, 0),
22959 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)},
22960 {"iwmmxt", ARM_FEATURE (0, ARM_CEXT_IWMMXT), ARM_ANY},
22961 {"iwmmxt2", ARM_FEATURE (0, ARM_CEXT_IWMMXT2), ARM_ANY},
22962 {"maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK), ARM_ANY},
22963 {"mp", ARM_FEATURE (ARM_EXT_MP, 0),
22964 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)},
22965 {"os", ARM_FEATURE (ARM_EXT_OS, 0),
22966 ARM_FEATURE (ARM_EXT_V6M, 0)},
22967 {"sec", ARM_FEATURE (ARM_EXT_SEC, 0),
22968 ARM_FEATURE (ARM_EXT_V6K | ARM_EXT_V7A, 0)},
22969 {"virt", ARM_FEATURE (ARM_EXT_VIRT | ARM_EXT_ADIV | ARM_EXT_DIV, 0),
22970 ARM_FEATURE (ARM_EXT_V7A, 0)},
22971 {"xscale", ARM_FEATURE (0, ARM_CEXT_XSCALE), ARM_ANY},
22972 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
22973 };
22974
22975 /* ISA floating-point and Advanced SIMD extensions. */
22976 struct arm_option_fpu_value_table
22977 {
22978 char *name;
22979 const arm_feature_set value;
22980 };
22981
22982 /* This list should, at a minimum, contain all the fpu names
22983 recognized by GCC. */
22984 static const struct arm_option_fpu_value_table arm_fpus[] =
22985 {
22986 {"softfpa", FPU_NONE},
22987 {"fpe", FPU_ARCH_FPE},
22988 {"fpe2", FPU_ARCH_FPE},
22989 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
22990 {"fpa", FPU_ARCH_FPA},
22991 {"fpa10", FPU_ARCH_FPA},
22992 {"fpa11", FPU_ARCH_FPA},
22993 {"arm7500fe", FPU_ARCH_FPA},
22994 {"softvfp", FPU_ARCH_VFP},
22995 {"softvfp+vfp", FPU_ARCH_VFP_V2},
22996 {"vfp", FPU_ARCH_VFP_V2},
22997 {"vfp9", FPU_ARCH_VFP_V2},
22998 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
22999 {"vfp10", FPU_ARCH_VFP_V2},
23000 {"vfp10-r0", FPU_ARCH_VFP_V1},
23001 {"vfpxd", FPU_ARCH_VFP_V1xD},
23002 {"vfpv2", FPU_ARCH_VFP_V2},
23003 {"vfpv3", FPU_ARCH_VFP_V3},
23004 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
23005 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
23006 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
23007 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
23008 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
23009 {"arm1020t", FPU_ARCH_VFP_V1},
23010 {"arm1020e", FPU_ARCH_VFP_V2},
23011 {"arm1136jfs", FPU_ARCH_VFP_V2},
23012 {"arm1136jf-s", FPU_ARCH_VFP_V2},
23013 {"maverick", FPU_ARCH_MAVERICK},
23014 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
23015 {"neon-fp16", FPU_ARCH_NEON_FP16},
23016 {"vfpv4", FPU_ARCH_VFP_V4},
23017 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
23018 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
23019 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
23020 {NULL, ARM_ARCH_NONE}
23021 };
23022
23023 struct arm_option_value_table
23024 {
23025 char *name;
23026 long value;
23027 };
23028
23029 static const struct arm_option_value_table arm_float_abis[] =
23030 {
23031 {"hard", ARM_FLOAT_ABI_HARD},
23032 {"softfp", ARM_FLOAT_ABI_SOFTFP},
23033 {"soft", ARM_FLOAT_ABI_SOFT},
23034 {NULL, 0}
23035 };
23036
23037 #ifdef OBJ_ELF
23038 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
23039 static const struct arm_option_value_table arm_eabis[] =
23040 {
23041 {"gnu", EF_ARM_EABI_UNKNOWN},
23042 {"4", EF_ARM_EABI_VER4},
23043 {"5", EF_ARM_EABI_VER5},
23044 {NULL, 0}
23045 };
23046 #endif
23047
23048 struct arm_long_option_table
23049 {
23050 char * option; /* Substring to match. */
23051 char * help; /* Help information. */
23052 int (* func) (char * subopt); /* Function to decode sub-option. */
23053 char * deprecated; /* If non-null, print this message. */
23054 };
23055
23056 static bfd_boolean
23057 arm_parse_extension (char * str, const arm_feature_set **opt_p)
23058 {
23059 arm_feature_set *ext_set = (arm_feature_set *)
23060 xmalloc (sizeof (arm_feature_set));
23061
23062 /* We insist on extensions being specified in alphabetical order, and with
23063 extensions being added before being removed. We achieve this by having
23064 the global ARM_EXTENSIONS table in alphabetical order, and using the
23065 ADDING_VALUE variable to indicate whether we are adding an extension (1)
23066 or removing it (0) and only allowing it to change in the order
23067 -1 -> 1 -> 0. */
23068 const struct arm_option_extension_value_table * opt = NULL;
23069 int adding_value = -1;
23070
23071 /* Copy the feature set, so that we can modify it. */
23072 *ext_set = **opt_p;
23073 *opt_p = ext_set;
23074
23075 while (str != NULL && *str != 0)
23076 {
23077 char * ext;
23078 size_t optlen;
23079
23080 if (*str != '+')
23081 {
23082 as_bad (_("invalid architectural extension"));
23083 return FALSE;
23084 }
23085
23086 str++;
23087 ext = strchr (str, '+');
23088
23089 if (ext != NULL)
23090 optlen = ext - str;
23091 else
23092 optlen = strlen (str);
23093
23094 if (optlen >= 2
23095 && strncmp (str, "no", 2) == 0)
23096 {
23097 if (adding_value != 0)
23098 {
23099 adding_value = 0;
23100 opt = arm_extensions;
23101 }
23102
23103 optlen -= 2;
23104 str += 2;
23105 }
23106 else if (optlen > 0)
23107 {
23108 if (adding_value == -1)
23109 {
23110 adding_value = 1;
23111 opt = arm_extensions;
23112 }
23113 else if (adding_value != 1)
23114 {
23115 as_bad (_("must specify extensions to add before specifying "
23116 "those to remove"));
23117 return FALSE;
23118 }
23119 }
23120
23121 if (optlen == 0)
23122 {
23123 as_bad (_("missing architectural extension"));
23124 return FALSE;
23125 }
23126
23127 gas_assert (adding_value != -1);
23128 gas_assert (opt != NULL);
23129
23130 /* Scan over the options table trying to find an exact match. */
23131 for (; opt->name != NULL; opt++)
23132 if (strncmp (opt->name, str, optlen) == 0
23133 && strlen (opt->name) == optlen)
23134 {
23135 /* Check we can apply the extension to this architecture. */
23136 if (!ARM_CPU_HAS_FEATURE (*ext_set, opt->allowed_archs))
23137 {
23138 as_bad (_("extension does not apply to the base architecture"));
23139 return FALSE;
23140 }
23141
23142 /* Add or remove the extension. */
23143 if (adding_value)
23144 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
23145 else
23146 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->value);
23147
23148 break;
23149 }
23150
23151 if (opt->name == NULL)
23152 {
23153 /* Did we fail to find an extension because it wasn't specified in
23154 alphabetical order, or because it does not exist? */
23155
23156 for (opt = arm_extensions; opt->name != NULL; opt++)
23157 if (strncmp (opt->name, str, optlen) == 0)
23158 break;
23159
23160 if (opt->name == NULL)
23161 as_bad (_("unknown architectural extension `%s'"), str);
23162 else
23163 as_bad (_("architectural extensions must be specified in "
23164 "alphabetical order"));
23165
23166 return FALSE;
23167 }
23168 else
23169 {
23170 /* We should skip the extension we've just matched the next time
23171 round. */
23172 opt++;
23173 }
23174
23175 str = ext;
23176 };
23177
23178 return TRUE;
23179 }
23180
23181 static bfd_boolean
23182 arm_parse_cpu (char * str)
23183 {
23184 const struct arm_cpu_option_table * opt;
23185 char * ext = strchr (str, '+');
23186 int optlen;
23187
23188 if (ext != NULL)
23189 optlen = ext - str;
23190 else
23191 optlen = strlen (str);
23192
23193 if (optlen == 0)
23194 {
23195 as_bad (_("missing cpu name `%s'"), str);
23196 return FALSE;
23197 }
23198
23199 for (opt = arm_cpus; opt->name != NULL; opt++)
23200 if (strncmp (opt->name, str, optlen) == 0)
23201 {
23202 mcpu_cpu_opt = &opt->value;
23203 mcpu_fpu_opt = &opt->default_fpu;
23204 if (opt->canonical_name)
23205 strcpy (selected_cpu_name, opt->canonical_name);
23206 else
23207 {
23208 int i;
23209
23210 for (i = 0; i < optlen; i++)
23211 selected_cpu_name[i] = TOUPPER (opt->name[i]);
23212 selected_cpu_name[i] = 0;
23213 }
23214
23215 if (ext != NULL)
23216 return arm_parse_extension (ext, &mcpu_cpu_opt);
23217
23218 return TRUE;
23219 }
23220
23221 as_bad (_("unknown cpu `%s'"), str);
23222 return FALSE;
23223 }
23224
23225 static bfd_boolean
23226 arm_parse_arch (char * str)
23227 {
23228 const struct arm_arch_option_table *opt;
23229 char *ext = strchr (str, '+');
23230 int optlen;
23231
23232 if (ext != NULL)
23233 optlen = ext - str;
23234 else
23235 optlen = strlen (str);
23236
23237 if (optlen == 0)
23238 {
23239 as_bad (_("missing architecture name `%s'"), str);
23240 return FALSE;
23241 }
23242
23243 for (opt = arm_archs; opt->name != NULL; opt++)
23244 if (strncmp (opt->name, str, optlen) == 0)
23245 {
23246 march_cpu_opt = &opt->value;
23247 march_fpu_opt = &opt->default_fpu;
23248 strcpy (selected_cpu_name, opt->name);
23249
23250 if (ext != NULL)
23251 return arm_parse_extension (ext, &march_cpu_opt);
23252
23253 return TRUE;
23254 }
23255
23256 as_bad (_("unknown architecture `%s'\n"), str);
23257 return FALSE;
23258 }
23259
23260 static bfd_boolean
23261 arm_parse_fpu (char * str)
23262 {
23263 const struct arm_option_fpu_value_table * opt;
23264
23265 for (opt = arm_fpus; opt->name != NULL; opt++)
23266 if (streq (opt->name, str))
23267 {
23268 mfpu_opt = &opt->value;
23269 return TRUE;
23270 }
23271
23272 as_bad (_("unknown floating point format `%s'\n"), str);
23273 return FALSE;
23274 }
23275
23276 static bfd_boolean
23277 arm_parse_float_abi (char * str)
23278 {
23279 const struct arm_option_value_table * opt;
23280
23281 for (opt = arm_float_abis; opt->name != NULL; opt++)
23282 if (streq (opt->name, str))
23283 {
23284 mfloat_abi_opt = opt->value;
23285 return TRUE;
23286 }
23287
23288 as_bad (_("unknown floating point abi `%s'\n"), str);
23289 return FALSE;
23290 }
23291
23292 #ifdef OBJ_ELF
23293 static bfd_boolean
23294 arm_parse_eabi (char * str)
23295 {
23296 const struct arm_option_value_table *opt;
23297
23298 for (opt = arm_eabis; opt->name != NULL; opt++)
23299 if (streq (opt->name, str))
23300 {
23301 meabi_flags = opt->value;
23302 return TRUE;
23303 }
23304 as_bad (_("unknown EABI `%s'\n"), str);
23305 return FALSE;
23306 }
23307 #endif
23308
23309 static bfd_boolean
23310 arm_parse_it_mode (char * str)
23311 {
23312 bfd_boolean ret = TRUE;
23313
23314 if (streq ("arm", str))
23315 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
23316 else if (streq ("thumb", str))
23317 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
23318 else if (streq ("always", str))
23319 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
23320 else if (streq ("never", str))
23321 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
23322 else
23323 {
23324 as_bad (_("unknown implicit IT mode `%s', should be "\
23325 "arm, thumb, always, or never."), str);
23326 ret = FALSE;
23327 }
23328
23329 return ret;
23330 }
23331
23332 struct arm_long_option_table arm_long_opts[] =
23333 {
23334 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
23335 arm_parse_cpu, NULL},
23336 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
23337 arm_parse_arch, NULL},
23338 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
23339 arm_parse_fpu, NULL},
23340 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
23341 arm_parse_float_abi, NULL},
23342 #ifdef OBJ_ELF
23343 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
23344 arm_parse_eabi, NULL},
23345 #endif
23346 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
23347 arm_parse_it_mode, NULL},
23348 {NULL, NULL, 0, NULL}
23349 };
23350
23351 int
23352 md_parse_option (int c, char * arg)
23353 {
23354 struct arm_option_table *opt;
23355 const struct arm_legacy_option_table *fopt;
23356 struct arm_long_option_table *lopt;
23357
23358 switch (c)
23359 {
23360 #ifdef OPTION_EB
23361 case OPTION_EB:
23362 target_big_endian = 1;
23363 break;
23364 #endif
23365
23366 #ifdef OPTION_EL
23367 case OPTION_EL:
23368 target_big_endian = 0;
23369 break;
23370 #endif
23371
23372 case OPTION_FIX_V4BX:
23373 fix_v4bx = TRUE;
23374 break;
23375
23376 case 'a':
23377 /* Listing option. Just ignore these, we don't support additional
23378 ones. */
23379 return 0;
23380
23381 default:
23382 for (opt = arm_opts; opt->option != NULL; opt++)
23383 {
23384 if (c == opt->option[0]
23385 && ((arg == NULL && opt->option[1] == 0)
23386 || streq (arg, opt->option + 1)))
23387 {
23388 /* If the option is deprecated, tell the user. */
23389 if (warn_on_deprecated && opt->deprecated != NULL)
23390 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
23391 arg ? arg : "", _(opt->deprecated));
23392
23393 if (opt->var != NULL)
23394 *opt->var = opt->value;
23395
23396 return 1;
23397 }
23398 }
23399
23400 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
23401 {
23402 if (c == fopt->option[0]
23403 && ((arg == NULL && fopt->option[1] == 0)
23404 || streq (arg, fopt->option + 1)))
23405 {
23406 /* If the option is deprecated, tell the user. */
23407 if (warn_on_deprecated && fopt->deprecated != NULL)
23408 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
23409 arg ? arg : "", _(fopt->deprecated));
23410
23411 if (fopt->var != NULL)
23412 *fopt->var = &fopt->value;
23413
23414 return 1;
23415 }
23416 }
23417
23418 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
23419 {
23420 /* These options are expected to have an argument. */
23421 if (c == lopt->option[0]
23422 && arg != NULL
23423 && strncmp (arg, lopt->option + 1,
23424 strlen (lopt->option + 1)) == 0)
23425 {
23426 /* If the option is deprecated, tell the user. */
23427 if (warn_on_deprecated && lopt->deprecated != NULL)
23428 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
23429 _(lopt->deprecated));
23430
23431 /* Call the sup-option parser. */
23432 return lopt->func (arg + strlen (lopt->option) - 1);
23433 }
23434 }
23435
23436 return 0;
23437 }
23438
23439 return 1;
23440 }
23441
23442 void
23443 md_show_usage (FILE * fp)
23444 {
23445 struct arm_option_table *opt;
23446 struct arm_long_option_table *lopt;
23447
23448 fprintf (fp, _(" ARM-specific assembler options:\n"));
23449
23450 for (opt = arm_opts; opt->option != NULL; opt++)
23451 if (opt->help != NULL)
23452 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
23453
23454 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
23455 if (lopt->help != NULL)
23456 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
23457
23458 #ifdef OPTION_EB
23459 fprintf (fp, _("\
23460 -EB assemble code for a big-endian cpu\n"));
23461 #endif
23462
23463 #ifdef OPTION_EL
23464 fprintf (fp, _("\
23465 -EL assemble code for a little-endian cpu\n"));
23466 #endif
23467
23468 fprintf (fp, _("\
23469 --fix-v4bx Allow BX in ARMv4 code\n"));
23470 }
23471
23472
23473 #ifdef OBJ_ELF
23474 typedef struct
23475 {
23476 int val;
23477 arm_feature_set flags;
23478 } cpu_arch_ver_table;
23479
23480 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
23481 least features first. */
23482 static const cpu_arch_ver_table cpu_arch_ver[] =
23483 {
23484 {1, ARM_ARCH_V4},
23485 {2, ARM_ARCH_V4T},
23486 {3, ARM_ARCH_V5},
23487 {3, ARM_ARCH_V5T},
23488 {4, ARM_ARCH_V5TE},
23489 {5, ARM_ARCH_V5TEJ},
23490 {6, ARM_ARCH_V6},
23491 {9, ARM_ARCH_V6K},
23492 {7, ARM_ARCH_V6Z},
23493 {11, ARM_ARCH_V6M},
23494 {12, ARM_ARCH_V6SM},
23495 {8, ARM_ARCH_V6T2},
23496 {10, ARM_ARCH_V7A},
23497 {10, ARM_ARCH_V7R},
23498 {10, ARM_ARCH_V7M},
23499 {0, ARM_ARCH_NONE}
23500 };
23501
23502 /* Set an attribute if it has not already been set by the user. */
23503 static void
23504 aeabi_set_attribute_int (int tag, int value)
23505 {
23506 if (tag < 1
23507 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
23508 || !attributes_set_explicitly[tag])
23509 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
23510 }
23511
23512 static void
23513 aeabi_set_attribute_string (int tag, const char *value)
23514 {
23515 if (tag < 1
23516 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
23517 || !attributes_set_explicitly[tag])
23518 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
23519 }
23520
23521 /* Set the public EABI object attributes. */
23522 static void
23523 aeabi_set_public_attributes (void)
23524 {
23525 int arch;
23526 int virt_sec = 0;
23527 arm_feature_set flags;
23528 arm_feature_set tmp;
23529 const cpu_arch_ver_table *p;
23530
23531 /* Choose the architecture based on the capabilities of the requested cpu
23532 (if any) and/or the instructions actually used. */
23533 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
23534 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
23535 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
23536 /*Allow the user to override the reported architecture. */
23537 if (object_arch)
23538 {
23539 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
23540 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
23541 }
23542
23543 /* We need to make sure that the attributes do not identify us as v6S-M
23544 when the only v6S-M feature in use is the Operating System Extensions. */
23545 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_os))
23546 if (!ARM_CPU_HAS_FEATURE (flags, arm_arch_v6m_only))
23547 ARM_CLEAR_FEATURE (flags, flags, arm_ext_os);
23548
23549 tmp = flags;
23550 arch = 0;
23551 for (p = cpu_arch_ver; p->val; p++)
23552 {
23553 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
23554 {
23555 arch = p->val;
23556 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
23557 }
23558 }
23559
23560 /* The table lookup above finds the last architecture to contribute
23561 a new feature. Unfortunately, Tag13 is a subset of the union of
23562 v6T2 and v7-M, so it is never seen as contributing a new feature.
23563 We can not search for the last entry which is entirely used,
23564 because if no CPU is specified we build up only those flags
23565 actually used. Perhaps we should separate out the specified
23566 and implicit cases. Avoid taking this path for -march=all by
23567 checking for contradictory v7-A / v7-M features. */
23568 if (arch == 10
23569 && !ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a)
23570 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m)
23571 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v6_dsp))
23572 arch = 13;
23573
23574 /* Tag_CPU_name. */
23575 if (selected_cpu_name[0])
23576 {
23577 char *q;
23578
23579 q = selected_cpu_name;
23580 if (strncmp (q, "armv", 4) == 0)
23581 {
23582 int i;
23583
23584 q += 4;
23585 for (i = 0; q[i]; i++)
23586 q[i] = TOUPPER (q[i]);
23587 }
23588 aeabi_set_attribute_string (Tag_CPU_name, q);
23589 }
23590
23591 /* Tag_CPU_arch. */
23592 aeabi_set_attribute_int (Tag_CPU_arch, arch);
23593
23594 /* Tag_CPU_arch_profile. */
23595 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
23596 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'A');
23597 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
23598 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'R');
23599 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
23600 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'M');
23601
23602 /* Tag_ARM_ISA_use. */
23603 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
23604 || arch == 0)
23605 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
23606
23607 /* Tag_THUMB_ISA_use. */
23608 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
23609 || arch == 0)
23610 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
23611 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
23612
23613 /* Tag_VFP_arch. */
23614 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
23615 aeabi_set_attribute_int (Tag_VFP_arch,
23616 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
23617 ? 5 : 6);
23618 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
23619 aeabi_set_attribute_int (Tag_VFP_arch, 3);
23620 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
23621 aeabi_set_attribute_int (Tag_VFP_arch, 4);
23622 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
23623 aeabi_set_attribute_int (Tag_VFP_arch, 2);
23624 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
23625 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
23626 aeabi_set_attribute_int (Tag_VFP_arch, 1);
23627
23628 /* Tag_ABI_HardFP_use. */
23629 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
23630 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
23631 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
23632
23633 /* Tag_WMMX_arch. */
23634 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
23635 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
23636 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
23637 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
23638
23639 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
23640 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
23641 aeabi_set_attribute_int
23642 (Tag_Advanced_SIMD_arch, (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma)
23643 ? 2 : 1));
23644
23645 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
23646 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16))
23647 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
23648
23649 /* Tag_DIV_use. */
23650 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv))
23651 aeabi_set_attribute_int (Tag_DIV_use, 2);
23652 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_div))
23653 aeabi_set_attribute_int (Tag_DIV_use, 0);
23654 else
23655 aeabi_set_attribute_int (Tag_DIV_use, 1);
23656
23657 /* Tag_MP_extension_use. */
23658 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
23659 aeabi_set_attribute_int (Tag_MPextension_use, 1);
23660
23661 /* Tag Virtualization_use. */
23662 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
23663 virt_sec |= 1;
23664 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
23665 virt_sec |= 2;
23666 if (virt_sec != 0)
23667 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
23668 }
23669
23670 /* Add the default contents for the .ARM.attributes section. */
23671 void
23672 arm_md_end (void)
23673 {
23674 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
23675 return;
23676
23677 aeabi_set_public_attributes ();
23678 }
23679 #endif /* OBJ_ELF */
23680
23681
23682 /* Parse a .cpu directive. */
23683
23684 static void
23685 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
23686 {
23687 const struct arm_cpu_option_table *opt;
23688 char *name;
23689 char saved_char;
23690
23691 name = input_line_pointer;
23692 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23693 input_line_pointer++;
23694 saved_char = *input_line_pointer;
23695 *input_line_pointer = 0;
23696
23697 /* Skip the first "all" entry. */
23698 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
23699 if (streq (opt->name, name))
23700 {
23701 mcpu_cpu_opt = &opt->value;
23702 selected_cpu = opt->value;
23703 if (opt->canonical_name)
23704 strcpy (selected_cpu_name, opt->canonical_name);
23705 else
23706 {
23707 int i;
23708 for (i = 0; opt->name[i]; i++)
23709 selected_cpu_name[i] = TOUPPER (opt->name[i]);
23710 selected_cpu_name[i] = 0;
23711 }
23712 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23713 *input_line_pointer = saved_char;
23714 demand_empty_rest_of_line ();
23715 return;
23716 }
23717 as_bad (_("unknown cpu `%s'"), name);
23718 *input_line_pointer = saved_char;
23719 ignore_rest_of_line ();
23720 }
23721
23722
23723 /* Parse a .arch directive. */
23724
23725 static void
23726 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
23727 {
23728 const struct arm_arch_option_table *opt;
23729 char saved_char;
23730 char *name;
23731
23732 name = input_line_pointer;
23733 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23734 input_line_pointer++;
23735 saved_char = *input_line_pointer;
23736 *input_line_pointer = 0;
23737
23738 /* Skip the first "all" entry. */
23739 for (opt = arm_archs + 1; opt->name != NULL; opt++)
23740 if (streq (opt->name, name))
23741 {
23742 mcpu_cpu_opt = &opt->value;
23743 selected_cpu = opt->value;
23744 strcpy (selected_cpu_name, opt->name);
23745 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23746 *input_line_pointer = saved_char;
23747 demand_empty_rest_of_line ();
23748 return;
23749 }
23750
23751 as_bad (_("unknown architecture `%s'\n"), name);
23752 *input_line_pointer = saved_char;
23753 ignore_rest_of_line ();
23754 }
23755
23756
23757 /* Parse a .object_arch directive. */
23758
23759 static void
23760 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
23761 {
23762 const struct arm_arch_option_table *opt;
23763 char saved_char;
23764 char *name;
23765
23766 name = input_line_pointer;
23767 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23768 input_line_pointer++;
23769 saved_char = *input_line_pointer;
23770 *input_line_pointer = 0;
23771
23772 /* Skip the first "all" entry. */
23773 for (opt = arm_archs + 1; opt->name != NULL; opt++)
23774 if (streq (opt->name, name))
23775 {
23776 object_arch = &opt->value;
23777 *input_line_pointer = saved_char;
23778 demand_empty_rest_of_line ();
23779 return;
23780 }
23781
23782 as_bad (_("unknown architecture `%s'\n"), name);
23783 *input_line_pointer = saved_char;
23784 ignore_rest_of_line ();
23785 }
23786
23787 /* Parse a .arch_extension directive. */
23788
23789 static void
23790 s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
23791 {
23792 const struct arm_option_extension_value_table *opt;
23793 char saved_char;
23794 char *name;
23795 int adding_value = 1;
23796
23797 name = input_line_pointer;
23798 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23799 input_line_pointer++;
23800 saved_char = *input_line_pointer;
23801 *input_line_pointer = 0;
23802
23803 if (strlen (name) >= 2
23804 && strncmp (name, "no", 2) == 0)
23805 {
23806 adding_value = 0;
23807 name += 2;
23808 }
23809
23810 for (opt = arm_extensions; opt->name != NULL; opt++)
23811 if (streq (opt->name, name))
23812 {
23813 if (!ARM_CPU_HAS_FEATURE (*mcpu_cpu_opt, opt->allowed_archs))
23814 {
23815 as_bad (_("architectural extension `%s' is not allowed for the "
23816 "current base architecture"), name);
23817 break;
23818 }
23819
23820 if (adding_value)
23821 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_cpu, opt->value);
23822 else
23823 ARM_CLEAR_FEATURE (selected_cpu, selected_cpu, opt->value);
23824
23825 mcpu_cpu_opt = &selected_cpu;
23826 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23827 *input_line_pointer = saved_char;
23828 demand_empty_rest_of_line ();
23829 return;
23830 }
23831
23832 if (opt->name == NULL)
23833 as_bad (_("unknown architecture `%s'\n"), name);
23834
23835 *input_line_pointer = saved_char;
23836 ignore_rest_of_line ();
23837 }
23838
23839 /* Parse a .fpu directive. */
23840
23841 static void
23842 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
23843 {
23844 const struct arm_option_fpu_value_table *opt;
23845 char saved_char;
23846 char *name;
23847
23848 name = input_line_pointer;
23849 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23850 input_line_pointer++;
23851 saved_char = *input_line_pointer;
23852 *input_line_pointer = 0;
23853
23854 for (opt = arm_fpus; opt->name != NULL; opt++)
23855 if (streq (opt->name, name))
23856 {
23857 mfpu_opt = &opt->value;
23858 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23859 *input_line_pointer = saved_char;
23860 demand_empty_rest_of_line ();
23861 return;
23862 }
23863
23864 as_bad (_("unknown floating point format `%s'\n"), name);
23865 *input_line_pointer = saved_char;
23866 ignore_rest_of_line ();
23867 }
23868
23869 /* Copy symbol information. */
23870
23871 void
23872 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
23873 {
23874 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
23875 }
23876
23877 #ifdef OBJ_ELF
23878 /* Given a symbolic attribute NAME, return the proper integer value.
23879 Returns -1 if the attribute is not known. */
23880
23881 int
23882 arm_convert_symbolic_attribute (const char *name)
23883 {
23884 static const struct
23885 {
23886 const char * name;
23887 const int tag;
23888 }
23889 attribute_table[] =
23890 {
23891 /* When you modify this table you should
23892 also modify the list in doc/c-arm.texi. */
23893 #define T(tag) {#tag, tag}
23894 T (Tag_CPU_raw_name),
23895 T (Tag_CPU_name),
23896 T (Tag_CPU_arch),
23897 T (Tag_CPU_arch_profile),
23898 T (Tag_ARM_ISA_use),
23899 T (Tag_THUMB_ISA_use),
23900 T (Tag_FP_arch),
23901 T (Tag_VFP_arch),
23902 T (Tag_WMMX_arch),
23903 T (Tag_Advanced_SIMD_arch),
23904 T (Tag_PCS_config),
23905 T (Tag_ABI_PCS_R9_use),
23906 T (Tag_ABI_PCS_RW_data),
23907 T (Tag_ABI_PCS_RO_data),
23908 T (Tag_ABI_PCS_GOT_use),
23909 T (Tag_ABI_PCS_wchar_t),
23910 T (Tag_ABI_FP_rounding),
23911 T (Tag_ABI_FP_denormal),
23912 T (Tag_ABI_FP_exceptions),
23913 T (Tag_ABI_FP_user_exceptions),
23914 T (Tag_ABI_FP_number_model),
23915 T (Tag_ABI_align_needed),
23916 T (Tag_ABI_align8_needed),
23917 T (Tag_ABI_align_preserved),
23918 T (Tag_ABI_align8_preserved),
23919 T (Tag_ABI_enum_size),
23920 T (Tag_ABI_HardFP_use),
23921 T (Tag_ABI_VFP_args),
23922 T (Tag_ABI_WMMX_args),
23923 T (Tag_ABI_optimization_goals),
23924 T (Tag_ABI_FP_optimization_goals),
23925 T (Tag_compatibility),
23926 T (Tag_CPU_unaligned_access),
23927 T (Tag_FP_HP_extension),
23928 T (Tag_VFP_HP_extension),
23929 T (Tag_ABI_FP_16bit_format),
23930 T (Tag_MPextension_use),
23931 T (Tag_DIV_use),
23932 T (Tag_nodefaults),
23933 T (Tag_also_compatible_with),
23934 T (Tag_conformance),
23935 T (Tag_T2EE_use),
23936 T (Tag_Virtualization_use),
23937 /* We deliberately do not include Tag_MPextension_use_legacy. */
23938 #undef T
23939 };
23940 unsigned int i;
23941
23942 if (name == NULL)
23943 return -1;
23944
23945 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
23946 if (streq (name, attribute_table[i].name))
23947 return attribute_table[i].tag;
23948
23949 return -1;
23950 }
23951
23952
23953 /* Apply sym value for relocations only in the case that
23954 they are for local symbols and you have the respective
23955 architectural feature for blx and simple switches. */
23956 int
23957 arm_apply_sym_value (struct fix * fixP)
23958 {
23959 if (fixP->fx_addsy
23960 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
23961 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
23962 {
23963 switch (fixP->fx_r_type)
23964 {
23965 case BFD_RELOC_ARM_PCREL_BLX:
23966 case BFD_RELOC_THUMB_PCREL_BRANCH23:
23967 if (ARM_IS_FUNC (fixP->fx_addsy))
23968 return 1;
23969 break;
23970
23971 case BFD_RELOC_ARM_PCREL_CALL:
23972 case BFD_RELOC_THUMB_PCREL_BLX:
23973 if (THUMB_IS_FUNC (fixP->fx_addsy))
23974 return 1;
23975 break;
23976
23977 default:
23978 break;
23979 }
23980
23981 }
23982 return 0;
23983 }
23984 #endif /* OBJ_ELF */
This page took 0.554877 seconds and 4 git commands to generate.